NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Scapegoat trees:
a comparative performance assessment

Vasilios I. Venieris

Supervisor: Kostas Chatzikokolakis, Assistant Professor

ATHENS

MAY 2022

EONIKO KAI KAMNOAIZTPIAKO NANENIZTHMIO AOGHNQN

2XOAH OETIKQN ENMIZTHMON
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNION

NTYXIAKH EPTAZIA

AévTtpa scapegoat:
MIO CUYKPITIKA a§loAdynon mdOoEwV

BaoiAgiog I. Beviépng

EmiBAéTTWV: KwoTtag XatdnkokoAdkng, AvatAnpwthgc KabnyntAg

AOHNA

MAIOX 2022

BSc THESIS

Scapegoat trees: a comparative performance assessment

Vasilios l. Venieris
S.N.: 1115200800225

SUPERVISOR: Kostas Chatzikokolakis, Assistant Professor

EMIBAEMQN:

NTYXIAKH EPTAZIA

AévTpa scapegoat: pia CUYKPITIK agIoAOyNon eTIOO0EWV

BaoiAgiog I. Beviépng
A.M.: 1115200800225

KwoTtag Xar¢nkokoAdkng, AvatmmAnpwthg Kabnyntig

ABSTRACT

This Thesis presents and analyzes an alternative tree scheme for the efficient balancing of
binary search trees. Scapegoat trees are loosely balanced and restructure parts of
themselves on certain conditions. The amortized time complexity for each INSERT or

REMOVE operation is O(logn), while the worst-case real-time complexity of a FIND one

is O(logn). Scapegoat trees, unlike most self-balancing BST implementations, do not
require extra data (e.g. colors, weights, heights) in the tree nodes. Various metrics and
tests are used to compare AVL and scapegoat trees on their functionality. Finally, we
provide data as to the performance of scapegoat trees in potential real-time applications.

SUBJECT AREA: Data structures

KEYWORDS: Scapegoat, binary search tree, self-balancing, AVL, amortized time

NEPIAHWYH

H epyacia auti tmapouciadel kal avaAuel pia eVOAAOKTIKI) PEBODO yia TNV ATTOdOTIKNA
e¢looppoTTnon duadikwyv OEvipwyv avadnmnong. Ta Oévipa scapegoat eival eAa@pwg
ICOPPOTTNHEVA KAl aVOKATOOKEUAZOUV UEPN TOoug UTTO opiouéveg ouvBnkeg. H amortized
XPOVIKR TTOAUTTAOKOTNTO yia KGBe Aeimtoupyia INSERT i REMOVE eivai O(logn), evi n

worst-case TIpayuaTiki Xpovikr ToAutthokotnta piag FIND eivar O(logn). Ta dévtpa
scapegoat, o€ avTiBeon Pe TIG TTEPIOCCOTEPES UAOTTOINOEIG auTeEgIcoppoTTOUMEVWY BST, dev
amaITouv €mMITTAéOV dedopéva (TT.X. XpwuaTa, Bdpn, Uwn) OTOUG KOUPBOUG TwV BEVTPWV.
XpnaolyotrolouvTal dIAPOPEG PETPIKEG Kal OOKIPEG yIa TN oUuykpion Twv Oévipwyv AVL kai
scapegoat w¢ TTPOG TN AEITOUPYIKOTATA TOUG. TEAOG, TTAPEXOUNE BEDOUEVA WG TTPOG TNV
ETTId00ON TWV BEVTPWYV scapegoat o€ TTIBAVES EQAPPOYES TTPAYUATIKOU XPOVOU.

OEMATIKH NMEPIOXH: Aouég dedopévwv
AEZEIZ KAEIAIA: Scapegoat, duadikd 6évipo avalitnong, autegiooppdtrnon, AVL,

amortized xpovog

ACKNOWLEDGMENTS

| would like to thank my thesis supervisor, Kostas Chatzikokolakis, whose suggestions and
instructions have significantly contributed to the completion of this Thesis.

CONTENTS

PREFACE

1. INTRODUCTION

1.1 Binary search trees: characteristics and self-balancing schemes
1.2 Scapegoat trees: the theory behind them

1.2.1 How they balance themselves

1.2.2 How to implement them

1.3 Implementing AVL and SG trees for testing purposes

2. SINGLE-OPERATION PERFORMANCE ASSESSMENT

2.1 Setting up the test
2.1.1 AVL depth and rotations
2.1.2 SG depth vs AVL depth for various insertion configurations
2.2 Basic BST operations
2.2.1 INSERT(x): performance analysis
2.2.2 REMOVE(x): performance analysis
2.2.3 REMOVE(x): testing optimal upper bounds for q
2.2.4 FIND(x): performance analysis
2.3 Analysis of correctness for INSERT(x) and REMOVE(x)
2.3.1 REMOVE(x): amortized logarithmic cost
2.3.2 INSERT(x): amortized logarithmic cost

3. MULTI-OPERATION PERFORMANCE ASSESSMENT

3.1 Workload diversification: defining rules for the test

3.2 Scaling and bias parameters

3.3 Testing for small datasets and sessions

3.4 Computational hurdles in bigger datasets and how to avoid them

3.5 Results and performance assessment

4. DISCUSSION AND FUTURE WORK

5. CONCLUSIONS

TABLE OF TERMINOLOGY

13

14

14
14
14
15
15

16

16
16
16
17
17
18
20
21
22
22
22

24

24
24
24
25
26

27

28

30

ABBREVIATIONS - ACRONYMS

REFERENCES

31

32

LIST OF FIGURES

Figure 1: AVL depth and rotations 16
Figure 2: AVL/SG average depth 17
Figure 3: Insertion performance 18
Figure 4. Removal performance (Same-order removal) 19
Figure 5: Removal performance (Shuffled removal) 19

Figure 6: Removal performance (Unordered insertion, same-order removal, breakdown by

factor) 20
Figure 7: Search performance (Same-order search) 21
Figure 8: Search performance (Shuffled search) 22

Figure 9: Insertion restructuring for ALPHA = 0.6667 (Unordered insertion, breakdown by

set size) 23

Figure 10: Session performance for 100K integers (breakdown by query ratio and

implementation) 25

Figure 11: Session composition for X5 query ratio (breakdown by set size and query type)
25

Figure 12: Asymptotic session performance for 100 integers, X20K query ratio (breakdown

by implementation) 26

Figure 13: Asymptotic session composition for 100 integers, X20K query ratio (breakdown

by query type) 26

Table 1: Table of terminology

Table 2: Abbreviations - Acronyms

LIST OF TABLES

30

31

PREFACE

When | first encountered the concept of scapegoat trees, | was nothing short of intrigued.
However, delving into detailed performance evaluation proved to be extremely difficult;
most sources | came across completely lacked any comparative analysis, while others, like
the early works of Galperin-Rivest and Andersson, were limited, owing to their
contemporary computational means. This Thesis is an attempt to fill that void.

Scapegoat trees: a comparative performance assessment

1. INTRODUCTION

1.1 Binary search trees: characteristics and self-balancing schemes

Binary search trees are used to store items (values, key-value pairs, strings etc.) in sorted
order, and possess the ability for fast insertion, deletion and look-up, similar to sorted
arrays, however, without the static memory limitations that the use of such linear data
structures incur. The crucial problem that BSTs face is that, given a monotonous set of
items, BSTs tend to degrade themselves to linked lists and, thus, losing their edge over
their linear counterparts; therefore, ever since their inception in the 1960s, various
tree-balancing schemes and techniques have emerged over the years to counter said
tendency [1]. The most prevalent implementations of self-balancing BSTs are AVL trees
and Red-Black trees, each with their own pros and cons:

e AVL trees excel at minimizing look-up times, essentially creating near-perfect BSTs,
that is, binary tree structures with each internal node having 2 children and external
nodes having none, at the cost of additional operations per insertion and deletion
and higher memory cost per node,

e Red-Black trees excel at minimizing insertion and deletion times, at the cost of
somewhat more loosely-constructed BSTs, making them ideal for applications that
favor insertions and deletions, such as Linux kernels.

This Thesis will attempt to examine a less popular, yet interesting BST implementation: the
scapegoat tree.

1.2 Scapegoat trees: the theory behind them

The name itself is based on the ancient practice of “singling out a person or group for
unmerited blame and consequent negative treatment”, that is, a scapegoat. When blame is
established, the scapegoat is left to fix the problem. Scapegoat trees belong to a wider
range of BSTs, called a-height-balanced trees [2] [3] [4], whose nodes are defined by the
following relaxed height balance criterion:

size(node. child) < a - size(node)

The above inequality provides 2 interesting corollaries:
e None of the 2 childrens’ subtrees can own more than a-100% of the nodes
contained within the parent’s tree; it sets a hard cap on both childrens’ tree sizes.
e The height balance factor (a, or ALPHA) is bounded between (0.5, 1).

1.2.1 How they balance themselves

Scapegoat trees balance themselves through partial rebuilding operations, during which,
an entire subtree is deconstructed and then rebuilt into a perfectly balanced one. One
could argue that rebuilding a subtree would be quite the suboptimal balancing method,
since that would occasionally require that the whole tree be rebalanced; thus, the
operation would essentially take ©(n) worst-case time, making it considerably worse than
AVL trees, which would take ©(1) worst-case for their rebalancing operations respectively.
However, as we will show in Chapter 2, where insertions and removal will be further
analyzed as to their time complexity, this new rebalancing operation takes essentially
0(1) worst-case real-time, establishing it as a very competitive alternative to most BST
implementation schemes.

V. Venieris 14

Scapegoat trees: a comparative performance assessment

1.2.2 How to implement them

Implementation-wise, they are quite simple: in addition to storing n, the size, that is, the

number of nodes in the tree, a separate counter q is also kept, that maintains an
upper-bound on the number of nodes and they must both obey the following inequality:

n<gq<2nisl.

g indicates a loose estimation on the tree’s maximum permissible height, which is
calculated as follows: hmax = log1 i [4]. The logarithm’s base occurs from the

fact that every node is supposed to have at most a-100% of its parent’s size.

e When the SG tree is initialized, ¢ = n. Every time a successfull insertion occurs,
q is increased by one, therefore increasing maximum permissible height. If the
newly inserted item’s path depth exceeds hmax, it causes the tree to increase in

height too much, effectively violating the height constraint and, by extension, our
a-criterion. The unbalanced subtree rooted somewhere along that path is then
found and rebuilt.

e When an item is successfully removed, we check whether q is still bounded from
above. If g surpasses 2n (due to the tree having lost nodes), the entire tree is

rebuilt in ®@(n) worst-case real time. Then q is set to n and, consequently, the tree’s
maximum height drops, since the SG tree now resembles a near-perfect BST.

e Since both n and g are increased by one during insertions, if no removal is done at
all, the initial equality always holds. Therefore, if our BST needs to support only
insertions and searches as basic operations, we could simplify our implementation

even further, by omitting g and its upper bound. Finally, hmax = logl/an.

Furthermore, scapegoat trees have no additional per-node memory overhead, unlike AVL
trees, whose nodes store their balance factor in the form of integers.

1.3 Implementing AVL and SG trees for testing purposes

One can’t help but wonder whether scapegoat trees have anything new to offer to the
table, since AVL trees are well-established and have been thoroughly studied ever since
their advent in the 1960s. Therefore, in order to measure the performance of SG trees,
one such implementation was extensively compared to an AVL one. To make our
comparative assessment as unbiased as possible, both implementations were developed
in C language and we have utilized identical helper functions for both trees, so as to keep
any code dissimilarities as few as possible and reduce the chances of one outperforming
the other due to code discrepancies.

V. Venieris 15

Scapegoat trees: a comparative performance assessment

2. SINGLE-OPERATION PERFORMANCE ASSESSMENT

2.1 Setting up the test

We chose to put our SG tree implementation against a typical AVL and compare the
structures they produce, as well as their performance. To do that, we have 3 different
metrics that will be combined and yield us the results we need:

e basic BST operations: INSERT(x), REMOVE(x), FIND(x),

e two kinds of initial datasets: ordered and unordered, essentially sorted and
randomly (uniformly) spread,

e two kinds of approaches upon the dataset: same-order and shuffled; that is, we
remove/find items either in the same order we inserted them based on the initial
dataset or at random.

2.1.1 AVL depth and rotations

At first, we computed the average depth of AVL and SG trees after inserting 1M integers,
both monotonically and at random. As shown in Figure 2, the AVL tree achieves a far
lower depth than the SG one, both with ordered and unordered sets of integers, with
depths 17.95 and 18.33 respectively. It should also be noted that set monotonicity is
important when it comes to rotations: ordered items require on average more rotations per
inserted item compared to unordered ones. However, those extra 0.3 rotations per item
contribute to the tree becoming near-perfect, achieving identical average depth to a tree
created by bulk initialization, shown in Figure 1.

AVL depth and rotations
- Avg depth (Ordered) = Avg rotations per item (Ordered) - Avg depth (Unordered) - Avg rotations per item (Unordered) - Bulk (SG)

10

Average depth and rotations per item

0.5
10 100 1000 10000 100000

Tree size

Figure 1. Average depth of an item and average number of rotations per insertion in an AVL
implementation. AVL performs on average 43% additional rotations per out-of-order item and it
results in the tree achieving near-optimal search times.

2.1.2 SG depth vs AVL depth for various insertion configurations

On the other hand, the SG tree acts differently, based on the ALPHA coefficient. At low
ALPHA, the SG tree essentially behaves like a quasi-AVL, where every node’s child
contains, on average, half of the node’s subtree [4], while at high ALPHA, it behaves like
an unbalanced BST. Figure 2 shows exactly that: inserting the items monotonically causes
the SG tree to slowly degrade to a linked list, whereas inserting them randomly causes the
tree to degrade until about 0.66 alpha, after which it behaves like a randomized BST.

V. Venieris 16

Scapegoat trees: a comparative performance assessment

AVL/SG average depth
= Ordered (SG) = Unordered (SG) - Ordered (AVL) = Unordered (AVL)

0 SO S P R O SE RO PSS PSS PSS P
P N N U i AP S P PR AR
Q7 Q7 Q7 Q7 Q7 Q7 Q7 O - N RN N LN N N N N N U N RN

ALPHA range (0.5- 1)

Figure 2. Implementation comparison on average depth. SG tree’s is similar for ordered and
unordered items, up until about 0.66, when unordered items depth stabilizes, whereas ordered item
depth increases exponentially.

2.2 Basic BST operations

We tested 3 operations, common to BST implementations: INSERT(x), REMOVE(x) and
FIND(x). An additional operation was implemented for the SG tree, called BULK(x[1,..,n]),
which, during the tree’s initialization, receives a set of ordered items and creates a

perfectly balanced BST in ®(n) real-time. The extra operation was created in order to
detect and compare differences in performance between off-line and on-line insertions. So,
essentially, BST initialization through bulk insertion produces the same structure as an AVL
tree given ordered items one by one.

2.2.1 INSERT(x): performance analysis

Figure 3 demonstrates INSERT(x)'s different performance for each BST implementation
and integer set:

e Ordered insertion for AVL is considerably better than SG tree. It achieves that by
performing 1 left rotation in every insertion, as shown in Figure 1. That essentially
forms a perfect tree, which in turn minimizes insertion times. Unordered insertion,
on the other hand, is considerably worse, even though the AVL tree performs on
average fewer rotations per integer.

e Ordered SG insertion appears to behave much worse, as ALPHA moves towards
the two extremes; that is due to the following reasons:

o The lower ALPHA becomes, the more frequent subtree rebalancing
operations become, hence the increasing times.

o The higher ALPHA becomes, the more degraded the tree becomes, which
leads to increasingly linear-like insertion times.

e Unordered SG insertion times are evidently fluctuating due to the random way items
are inserted. However, for ALPHA lower than 0.6, SG appears to be slightly faster at
inserting, due to the lower average depth of the tree. Those two distinct
performance levels should become clearer for bigger datasets, although checking it

V. Venieris 17

Scapegoat trees: a comparative performance assessment

Insertion of 1M integers (Seconds)

1.000 1

0.875 +

0.750 +

0.625 +

0.500 +

0.375 +

0.250 +

0.125 +

0.000

would entail impractically high running times and/or more extensive computational
capabilities.

Bulk insertion is obviously the fastest way to insert items, since all 1M items are
inserted off-line in ®(n) real-time. This essentially acts as our experimental low
bound, since no other operation or dataset order can achieve that performance;
even though AVL, given ordered items, can build the same near-perfect tree, log
linear time for insertions plus ©(n) real-time for rotations incurs massive time
penalties. In practice, for each of the 3 basic BST operations (INSERT(x),
REMOVE(x), FIND(x)), the closer their curves approach their respective
bulk-initialized operation performance, the better. Figure 4 and 7, SG ordered
removal and search respectively are typical examples of said near-optimal behavior.

Insertion performance

= Ordered (SG) = Unordered (SG) Ordered (AVL) = Unordered (AVL) = Bulk (SG)

DO D L PR AL PR DAL OO AL DAL D PO LD
V2 A%V AV A DDAV AW AOAS D0 AV
I PPLFS LI P LEEL LNV RLSFEELL LSS FLF S

Q7 97 97 Q7 Q7 O O O O O O O O °

ALPHA range (0.5-1)

Figure 3. Implementation comparison on insertion. AVL times form a very wide band, whereas SG

tree seems to be somewhat consistent, for ALPHA between 0.55 - 0.85. At the edge of the chart,

ordered SG times increase exponentially.

For the next 2 standard BST operations, an extra step was added: items were removed or
searched for not only in the same order they were inserted, but also at random.

2.2.2 REMOVE(x): performance analysis

The following figures show how both implementations fared when items were removed
from the BSTs in the same order they were initially inserted and at random:

When it comes to ordered removal (Figure 4), SG is superior to AVL at both ordered
and unordered initial insertions. In fact, SG tree’s ordered removal time appears to
be optimal, as it coincides with the removal time for bulk insertion. That comes
down to the way subtree rebalancing works in SG trees: during ordered insertions,
when rebalancing is triggered, the scapegoat always happens to be at the root,
essentially restructuring the entire tree. Therefore, when the first removal occurs,
the tree already has minimal height.

V. Venieris 18

Scapegoat trees: a comparative performance assessment

Removal performance (Same-order removal)

= Ordered (SG) = Unordered (SG) - Ordered (AVL) = Unordered (AVL) = Bulk (SG)

Removal of 1M integers (Seconds)
o
w
a
o

ALPHA range (0.5 - 1)

Figure 4. Implementation comparison on same-order removal. Both implementations appear to have
a 450ms band gap between their respective ordered and unordered sets, at 1M items. Similar results
occurred in other set sizes as well.

e In Shuffled removal performance (Figure 5), the trend of SG superiority continues,
but with a few twists:

o The time gap between AVL’'s ordered and unordered insertion is now much
smaller.

o SG tree’s unordered insertion removal has significant time fluctuations, but
one can clearly distinguish 2 separate levels forming, when ALPHA becomes
low enough. That can, again, be attributed to the tree’s tendency of behaving
like a weakly balanced AVL tree.

o What's interesting is the tree’s performance after ordered insertions: at low
ALPHA, the tree is effectively a perfect BST. However, as ALPHA increases,
removal time increases exponentially in respect to ALPHA. That can be
explained by the fact that, because of the removals’ randomness, the tree is
filled with inconsistent branch depths, further degrading its structure to a list.

Removal performance (Shuffled removal)
= Ordered (SG) = Unordered (SG) - Ordered (AVL) = Unordered (AVL) = Bulk (SG)

0.875 +
0.850 +
0.825 +
0.800 +
0.775 +
0.750 +
0.725 +
0.700 +
0.675 +
0.650 +
0.625 +
0.600 +
0.575 +
0.550

Removal of 1M integers (Seconds)

OO S PRSP OSPROLEROLESOLES L ELSLL LSS S L
PAELSPLELSLLP LS LSS LELL PRSP LS PSSP S L
P FEELEEEELEFEEEEENE A A DA AR D PP F L E S P PP S P
707 0”707 07 0% 07 07 07 0% 07 07 07 07 07 & BT BT o T 0N o o o 0¥ 0% 0¥ 07 0% 0 o 07 07 0?7 07 07T 07 o7 ©

ALPHA range (0.5 - 1)

Figure 5. Implementation comparison on shuffled removal. SG tree completely dominates over AVL,
even for extremely high ALPHA values.

V. Venieris 19

Scapegoat trees: a comparative performance assessment

2.2.3 REMOVE(x): testing optimal upper bounds for q

Bibliography that was reviewed contained various approaches as to what the upper bound
for g should be: contemporary authors, like Pat Morin, use 2n [5], while others, including
Igal Galperin and Ronald Rivest, both prominent contributors to the study of

a-height-balanced BSTs and inventors of the SG tree, use % [2] [4]. Opting for the latter

gives 2n, for ALPHA sufficiently close to 0.5; however, as was shown in Figure 3, that
comes at a heavy insertion cost. On the other hand, Morin’s choice, even though satisfying
O(logn) amortized time, seems somewhat arbitrary, without any substantial explanation.

Thus, we decided to follow Morin’s move and chose various values ourselves, in order to
compare the performance differences during removal.

Figure 6 demonstrates how REMOVAL(x) operations’ performance fluctuates, depending
on the coefficient used in our implementation. The percentages in the legend indicate the
amount of successive removals the SG tree can handle in respect to the number of initial

items, before it rebalances itself from the root and resets q:

e As is clearly depicted, most coefficients seem to be forming an optimal performance
band between 5 and 1.67, without any noteworthy deviation. Bigger coefficients up
to 25 were also tested, but none exhibited any further improvement to performance.

e 1.2 seems to cause performance to deteriorate notably, pointing to the substantial
increase in rebalancing operations, as the legend suggests.

e At 1.11, performance has worsened even further, completing all removals at x1.5
the optimal band’s time.

e The band’s performance is evidently affected by a sufficiently low ALPHA up to 0.6.
That can be attributed to the tree’s initial rigid structure, which influences
subsequent shapes caused by the removals.

Removal performance (Unordered insertion, same-order removal, breakdown by factor)

~ 5.0 (80%) = 2.5(60%) — 2.0 (50%) = 1.67 (40%) — 1.2 (18.2%) ~ 1.11 (10%)

0.03750 +

0.03500 +

0.03250 +

0.03000 +

0.02750 +

0.02500 +

Removal of 100K integers (Seconds)

0.02250 +

0.02000

® o P S o S o & 0. $ 5,
4;')’ 2 <,;5 O o;\" & @Q S Q;é\ ngQ & «‘3 S 409 & '13’@ 4@0 6‘/ «" 3 Q,QQ S fﬁ”Q;b Q;OQ & «‘3 & QQQ P P D F S
Q- Q- 0 Q7 Q7 QO QO O O Q Q Q Q QO 0 0 Y Q7 Q7 Q7 Q7 Q7 Q7 O

ALPHA range (O 5- 1)

Figure 6. Scapegoat tree: upper bound for g. Although ¢ < k - n, Vk > 1 must always be true, we
can see that, after a certain k value, performance remains unchanged.

V. Venieris 20

Scapegoat trees: a comparative performance assessment

2.2.4 FIND(x): performance analysis

Unlike REMOVE(x), FIND(x) operations are significantly more consistent as to their
performance for both same-order and shuffled search. Figure 7 is indicative of that
consistency:

0.500 +
0.475 +
0.450 +
0.425 +
0.400 +
0.375 +
0.350 +
0.325 +
0.300 +
0.275 +
0.250 +
0.225 +
0.200 +
0.175 +
0.150 +
0.125 -

Search of 1M integers (Seconds)

0.100

N

When

DO O AL DAL O AL OO OO L O AL P
V2 A QWA A LD AV AL DAY AN LDV A S YA AN S0 AP
YL LILPLLFFEEE LRSS P E P FFEF S

AVL and SG trees exhibit similar performance in same-order search for low ALPHA.
This is, of course, to be expected, because of the SG tree’s rigid structure
constraint.

An interesting finding to be noted is the fact that the SG tree appears to have
evidently lower average access time when bulk-initialized, compared to the AVL
one; that is bizarre at first glance since, as is shown in Figure 1, AVL trees, given
ordered items, produce perfect binary structures, just like bulk initialization. After
initial tests, a hypothesis arose that hardware (cache, in particular) is to be blamed.

As previously shown, increasing ALPHA exponentially increases average search
time for SG trees, for ordered insertions. In spite of that, at low ALPHA values, the
SG implementation outperforms the AVL one.

Unordered insertion produces similar trees, even though the SG tree is more
susceptible to randomness.

Search performance (Same-order search)

= Ordered (SG) = Unordered (SG) Ordered (AVL) = Unordered (AVL) = Bulk (SG)

//
e

o7 O Q" O Q" QO QO QO O O O QO QO7 Q7 07 Q7 Q7 O 0?, Q7 Q7 Q7 Q7 Qo7 o7 O Q('b Qo

ALPHA range (0.5- 1)

Figure 7. Implementation comparison on same-order search.

items are accessed randomly, a similar pattern emerges, but with a few key

differences, as illustrated in Figure 8:

SG tree’'s average access times are considerably noisier, typical of the
implementation’s behavior.
Near-identical SG tree performance to AVL at low ALPHA is affirmed. In fact, there
exist 3 distinct behaviors:
o Up to about 0.6 ALPHA, it is virtually impossible to distinguish between SG
and AVL trees,
o A transition band between 0.6 and 0.675, during which access time severely
deteriorates,
o At 0.675, performance is somewhat stabilized, despite the frequent noise.
AVL performance averages for ordered and unordered insertion swap places.

V. Venieris 21

Scapegoat trees: a comparative performance assessment

Search performance (Shuffled search)

= Ordered (SG) = Unordered (SG) - Ordered (AVL) = Unordered (AVL) = Bulk (SG)

0.675 + /
0.650 +

Search of 1M integers (Seconds)

OO NS PRSP RSP RO SOEROS P ROS LR OS LSS
B S O A S P G- A g S e M L (G S G S U SO
07 0707 07 07 97 07 07 0707 07 07 07 07 07 0 ©F 9T 0 T o 97 o 0% 97 0% o7 07 0¥ 07 0% o7 07 07 07 07 o7 o7

ALPHA range (0.5-1)

Figure 8. Implementation comparison on shuffled search. SG unordered search appears to be
stabilized after 0.675, just like its average depth in Figure 1.

2.3 Analysis of correctness for INSERT(x) and REMOVE(x)

As has been previously claimed, INSERT(x) and REMOVE(x) have 0(logn) amortized

time, which differs from AVL's O(logn) worst-case real time complexity. Therefore, we are
going to examine those 2 operations up close. For REMOVE(x), we chose to present the
aggregate analysis approach, whereas for INSERT(x), we decided to compute and store
the unbalanced subtree sizes and the frequency in which they appeared and, based on
these data, infer about insertions’ time complexity.

2.3.1 REMOVE(x): amortized logarithmic cost
Suppose a total rebalancing has just occurred during a removal. Consequently, q is set to

n. Additionally, suppose that the upper bound for q is k - n, with k € R+,k > 1.

Essentially, we can perform @ — 1 removals before the next total rebalancing

operation. Using aggregate analysis, the amortized cost of a removal, T, is:

c

~ >0(logn)+0(n) ~
T(n) = +—— , ¢ == 5 T(n) = 0(logn) + —= - ©(1) = 0(logn)

We have thus proven that, no matter the coefficient k, removals will always bear
logarithmic cost, in an amortized sense, which is also hinted at in Figure 6’s optimal
performance band.

2.3.2 INSERT(x): amortized logarithmic cost

Insertion, extensively as it may have been analyzed by previous research [2] [4] [5], is a
somewhat tedious process. Instead, we chose to experimentally verify that claim. We
worked with 3 different data sets: 100 thousand, 1 million and 10 million integers, inserting
one item at a time, while meticulously keeping tabs on every individual insertion and the

V. Venieris 22

Scapegoat trees: a comparative performance assessment

occurring subtree’s size that goes through rebalancing. Pat Morin mentions % as his

ALPHA of choice [5], whereas Galperin used a handful of values: 0.55, 0.6, 0.65 [4];
various online sources also tend to pick values between 0.67 and 0.7. Since a SG tree
with ALPHA at 0.6 and below resembles an AVL in both shape and performance, we
decided to pick 0.6667, which is close to all the aforementioned fractions. The results are
illustrated in Figure 9:

e By far the most interesting finding is that the overwhelming majority of insertions in
each data set - more than 99% - triggers a rebalancing operation of 0 size;
essentially, the SG tree doesn't rebalance any subtrees at all. In fact, as the set size
increases, that percentage approaches asymptotically 100%.

e The second most frequent subtree size is 4, at 0.05% of the insertions on average.
As the subtree size increases, the frequency drops exponentially fast.

e Surprisingly, increasing the set size by orders of magnitude does not increase the
maximum appearing subtree size: a literal handful of random outliers had more than
200 items to be rebalanced for both the 1M and 10M sets, the biggest of them being
at around 450. Based on that, we can confidently assume that the occurring
unbalanced subtrees are much smaller than the overall tree size and independent

of the set size, therefore the rebalancing operation should take O(1) worst-case
real time.

Insertion restructuring for ALPHA = 0.6667 (Unordered insertion, breakdown by set size)

= 100K =1M - 10M

10 1!
014

0.001 +

MY A L
v f_/\k.f/\/\/\. //\/\,.'.

0.00001 +

Restructured size frequency (Percentage)

N

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Restructured tree size

Figure 9. Rebalanced subtree size. At first, it was assumed that using bigger datasets should cause
the frequency and size of outliers to increase. However, both frequency and maximal subtree size
seem to be either independent of the dataset’s size or increase extremely slowly, possibly some
derivative of a(n) (inverse Ackermann function).

V. Venieris 23

Scapegoat trees: a comparative performance assessment

3. MULTI-OPERATION PERFORMANCE ASSESSMENT

3.1 Workload diversification: defining rules for the test

So far, we have only mentioned data regarding runs where a single operation type was
used during the test cycle. However, it is often the case that deterministic tests in a
controlled environment and real-time applications can bear wildly different results. We
decided to conduct additional tests; this time, it wasn’t just the integer input that was
randomized, but also the operations themselves.
Essentially, we attempted to simulate a rudimentary DBMS session, consisting of a
number of queries. During each query, it was given one integer at random with uniform
distribution and one of 3 operations to apply upon the item: INSERT(x), REMOVE(x) or
FIND(x). We then made the following assumptions:

e An item can be picked and inserted, removed or searched for multiple times.
If the chosen item is not inserted, an INSERT operation is picked for it.
If the chosen item is inserted, either FIND or REMOVE is picked at random.
There exists a REMOVE/FIND bias; it causes one operation to be picked more
frequently at the expense of the other.
Assumption no.1 is an obvious one: the same operations are often typically used on the
same items multiple times; for instance, searching for the same item. Points 2 and 3 are
somewhat more technical: since INSERT and REMOVE utilize binary search, when an
item already exists and doesn’t exist respectively, they fail and, because of the similar
execution times, can be mistaken for FIND ones and thus skew the results. Finally,
introducing a fluctuating REMOVE/FIND bias will help us ascertain which BST
implementation is more appropriate, based on the workload.

3.2 Scaling and bias parameters

As previously, AVL and SG trees (0.6667 alpha) were tested as to their performance: they
were given a 100K integer set and a query ratio; that is, a factor designating the session
size, in relation to the set size. In other words, the total amount of operations during a
session is given by the following simple formula:

of operations = setsize - queryratio

Moreover, we tested the integer set with increasingly larger query ratios and quantified our
R/F bias, giving it a range between 0 and 1:
e At 0, REMOVE(x) completely dominates, preventing any FIND(x) from being used,
e At 1, roles are reversed; FIND(x) is given exclusive preference.
e At 0.5, the probability of one of them being picked is exactly 0.5.

3.3 Testing for small datasets and sessions

Having set all of the parameters and metrics, we proceeded with the experiment, as
illustrated in Figure 10.

V. Venieris 24

Scapegoat trees: a comparative performance assessment

Session performance for 100K integers (breakdown by query ratio and implementation)
00 =50 (SG) =50 (AVL) ~ 100 (SG) = 100 (AVL) = 200 (SG) - 200 (AVL)
85 |
sof —————
754 T
70+
65+
6.0 +
55+
5.0
451
40 F
35+
3.0+
25+
2.0 F
151

Execution time (Seconds)

Q")Q@Q‘OB‘OQ‘OQ‘OQ@Q‘OQ‘QQ@ ‘90‘00‘00‘00‘009)0‘00‘909)0‘06

0’]/%’\0‘1/‘) Q AV 2 A\ o A 2 A o L AV5 A NP\ P VPR P4 NP\ L VP o M NP N a0 P N P P A NNy

Q 00 QQ QQ 0’» Q'\/ 0 0’» 0’1/ Q'L 0"], Q’L Q’D 0"&; 0“; Q’b Qb‘ an th an 0‘0 Qﬁ Q% 0‘0 < ‘b "0 ‘b /\ ’\ /\ /\ ‘b Q) ‘b ‘b Cb °) Q be N
Bias

Figure 10. Session performance for 100K integers. Similar results occurred for lower query ratios as
well, although differences in performance were negligible.

Our AVL implementation seems to severely lag behind the SG tree, which outperforms for
every query ratio up to a point, after which AVL gains the upper hand. That is to be
expected, since, given a bias close to 1, more searches lead to fewer removals chosen,
which consequently lead to fewer insertions (remember assumption no.2 and 3).

3.4 Computational hurdles in bigger datasets and how to avoid them

Unfortunately, any attempt to increase set size and query ratio any further proved to be
extremely time-consuming, due to exorbitantly impractical log linear execution times. It
was thus decided to approach the problem from a different angle. Figure 11 shows the
percentage of insertions, removals and searches in a session, given 2 different data sets
and the same query ratio.

Session composition for X5 query ratio (breakdown by set size and query type)

~ insrt (100K) = rmv (100K) - fnd (100K) = insrt (IM) = rmv (IM) = fnd (1M)

Query type to total amount of queries (Percentage)

S PSP L2 ‘3 L () ‘o S o O <'>) ‘3 () ¢3 () ‘o Q ‘o) <'> N ‘3 () ¢> () ‘o 0 <o N
S PP PSS PP C S PSS PRSP S P S /\ SHEELLSLPLLSS PSS
ST EF TN T > o P oV P P P P Q[b Na 0“ NSRS NN NI N ORI NN N NN IS

Bias

Figure 11. Session composition for x5 query ratio. Higher query ratios cause insertion and removal to
asymptotically converge to the same percentage for a given bias.

As it turns out, 2 sessions with identical query ratios exhibit the same behavior, regardless
of the set size. That clue significantly accelerated our experiments, since we can now use
a small data set paired with an arbitrarily large query ratio and effectively simulate any
session.

V. Venieris 25

Scapegoat trees: a comparative performance assessment

3.5 Results and performance assessment

We chose a 100-integer set and a 20K query ratio, shown in Figure 12 and 13.

Asymptotic session performance for 100 integers, X20K query ratio (breakdown by implementation)

= SG = AVL

0.23 +

0.18 +

0.13 +

Session execution time (Seconds)

0.08 |
o@c@c@o@o@obo@o%o@o@ @0‘00‘90‘00‘00‘00‘00‘00‘00%0
S FEFEF WA A &‘/"&‘@031'6;""@b"'é’é\@'\"'«‘”'\’\@@%’%\Q& 5\

000000000QQQQQDQQQQQ“QQQDQ@QQQQQQQQ Q'QQQQ%QQ'»
Bias

Figure 12. Asymptotic session performance. There is a clear downward trend in execution time, due
to fewer time-consuming insertions and removals being picked, in favor of more FIND operations.
Eventually, AVL becomes superior, since its structure is closer to a perfect tree.

Asymptotic session composition for 100 integers, X20K query ratio (breakdown by query type)

= insrt = rmv - fnd

45 1
40 T
35 1

Query type to total amount of queries (Percentage)
o
o

P RN N
ouiouvio v
AR

N A N A & N A N N A A N A N RN
PSP PSSP LSS S PP P P P B 40 S P S L PSP PSS PP C S
00 QQ 00 Qo QN Q Q QN 0,](QrL 0'1/ Q’L Q(b Q’b Q’b Q(b 0 Qb(Qb(Qb(Q‘o Qo’ Q‘o °<’3 QQ) Qb Q"o Qb Q/\ Q,\ Q/\ Q/\ X4 % ‘b Qib Qg QQ 09 Qg '\/Q

Bias

Figure 13. Asymptotic session composition. Insertions and removals follow the same curve;
however, the number of insertions is ever so slightly higher than those of removals, since items have
to already exist, in order for them to be removed. At 0.5 bias, the percentages of INSERT, REMOVE,
FIND are asymptotically equal to each other, at 33.3%.

The SG tree outperforms AVL, even for extremely search-intensive workloads. More
specifically, Figure 12 shows that the two performance curves intersect at a point between
0.95 and 0.975 bias, after which AVL becomes superior. With Figure 13’s help, we can
deduce that the point corresponds to about 90.5%; namely, 90.5% of the session’s
operations consists of FIND(x) and the remaining percentage splits evenly between
INSERT(x) and REMOVE(x), at 4.75% each. It is safe to conclude that, unless one uses
more than 90% of their time searching for items, switching to SG trees would be the more
efficient choice.

V. Venieris 26

Scapegoat trees: a comparative performance assessment

4. DISCUSSION AND FUTURE WORK

For the purposes of our experiments, we used several techniques to optimize our SG tree
implementation:

The insertion path is stored in the stack, therefore the use of parent pointers
becomes redundant.

To avoid encumbering our nodes with additional information, such as subtree size,
we used a recursive function to calculate the size of each node’s tree, as well as its
ancestors’ in the insertion path, on the fly. Furthermore, since each node in the
insertion path already has one child’s size pre-calculated, we need only calculate
the sibling’s size, add the 2 children’s sizes plus 1 and move up to the parent:

size(path[x — 1]) = size(path[x]) + size(sibling) + 1

where path|[x] denotes the node in question and path[x — 1] its parent. At

path[0], we reach the root of the tree.

To calculate the maximal permissible height/depth, one has to constantly resort to
logarithms. However, since logarithms are transcendental in nature, utilizing them
often incurs considerable time penalties, even in high-performance languages. We
chose to use the Euler-Mascheroni approximation instead, and by doing so, we
managed to reduce insertion times by about 4.5% on average.

However, we have yet to consider the following two optimization schemes, mainly due to
them going beyond the scope of this Thesis:

Parallelization for INSERT(x) and REMOVE(x): breaking the rebalancing load into
multiple threads could improve performance for both operations. One could argue
that insertions don'’t really trigger any meaningful rebalance; however, considering
that any rebalance during removals incurs massive time penalties, there is still
some performance boost to be had.

Extension of the SG scheme to m-ary trees, effectively creating a loose alternative
to B-trees. One should nonetheless take into account the fact that multiple siblings
can potentially cause insertion times to deteriorate during rebalances, due to
increasing times in recursively calculating subtree sizes. Another key difference is

that ALPHA in m-ary trees is bounded between (%, 1). Thus, our BST
implementation just so happens to be the special case, for which m = 2.

V. Venieris 27

Scapegoat trees: a comparative performance assessment

5. CONCLUSIONS

In our work, we extensively experimented with scapegoat trees -loosely balanced BSTs-
whose absence of additional intranodal information makes for very attractive data structure
alternatives for memory frugal applications, since only 3 global values are necessary at all
times:
e ALPHA: a fraction, a for short, between (0.5, 1), sets an upper bound on the number
of nodes a node, let it be A, can hold in its childrens’ subtrees. Thus, each of A's
children can’t contain more than a-100% of the nodes in A’s tree.

e n:the number of nodes in the entire tree
e (. a loose estimation of the maximal permissible height of the tree:
h = logl/aq, bounded between n and 2n. If REMOVE(x) isn’'t implemented,

max
our SG implementation can be simplified even further, only requiring 2 global

values, that is, ALPHA and n.

In a SG tree, a typical rebalancing operation begins at an external node, that is, the newly
inserted node, and examines higher ancestors until a node (the “scapegoat”) is found that

is so unbalanced, that the entire subtree rooted at the scapegoat can be rebuilt at 0(n),

making both insertions and removals’ cost O(logn) amortized time and O(logn)
worst-case real-time for searches.

Proving removal’'s amortized time is trivial, however the same can'’t be said for insertion.
Therefore, we ran tests for multiple dataset sizes, in order to estimate the average subtree
size. We found out that, as the dataset grows bigger, the amount of subtrees having size
0(1) tends asymptotically to 100%, and even the occasional outliers are very small and
highly unlikely to appear.

The SG tree is more loosely constructed than an AVL, having a considerably bigger
average height/depth. In spite of that, we decided to have the two BST implementations
run 3 basic BST operations (INSERT(x), REMOVE(x), FIND(x)), 2 kinds of datasets
(ordered, unordered) and 2 kinds of operation actions upon the dataset (same-order,
shuffled) and compare their respective results.

The SG tree often achieved lower execution times than the AVL in multiple scenarios, for
every basic BST operation that they were tested on:

e Insertion: SG performs in between AVL ordered and unordered set times, and, while
not universally superior to AVL, its performance is more consistent and better than
AVL’s unordered insertion.

e Removal: SG massively outperforms AVL in both ordered and unordered sets,
same-order and shuffled removals.

e Search: SG outperforms AVL in both ordered and unordered sets for same-order
searches, for ALPHA below 0.6. When it comes to shuffled searches, there’s mixed
performance, dependent on a. Again, given a sufficiently low a, SG has a
performance advantage over AVL.

Overall, our implementation’s competitive advantages compared to a typical AVL were
thoroughly illustrated: in most scenarios and every basic BST operation, SG appears to
have multiple strong points.

Additionally, we decided to check the SG tree’s performance, by choosing one of each
basic operation at random as well, instead of just an item, in order to simulate a real-time
query session. We devised a number of rudimentary rules that would have to be applied at
all times, such as REMOVAL(x) and/or FIND(x) not being chosen if the item picked isn’t
already in the tree and a REMOVE/FIND bias, which can influence the amount of
REMOVE(x) and FIND(x) operations being picked during a query session.

V. Venieris 28

Scapegoat trees: a comparative performance assessment

We tested both implementations for different dataset sizes. However, due to the log linear
execution times of the session, running them for bigger sizes proved problematic,
therefore we resorted to alternative computation methods. We showed conclusive
evidence that SG implementations perform better than AVL even for query sessions with
close to 90% of them consisting of FIND(x) operations.

Finally, we describe the various optimization techniques that were implemented in our SG
tree and we propose further potential improvements.

V. Venieris 29

Scapegoat trees: a comparative performance assessment

TABLE OF TERMINOLOGY

ZevOYAWOO0G 6pOC EAAnvik6g Opog
Worst-case XEIPIOTN TTEPITITWON
INSERT EI0aYyWyN

REMOVE dlaypan

FIND eupeon

Scapegoat QTTOTTOUTTAIOC TPAYOC
Amortized aTTooRECUEVOC

V. Venieris

30

Scapegoat trees: a comparative performance assessment

ABBREVIATIONS - ACRONYMS

BST Binary Search Tree

AVL Adelson-Velsky and Landis

SG Scapegoat

R/F REMOVE/FIND

K Thousand

M Million

DBMS DataBase Management System

V. Venieris

31

Scapegoat trees: a comparative performance assessment

REFERENCES

[1] Adelson-Velsky, Georgy; Landis, Evgenii (1962). "An algorithm for the organization of information".
Proceedings of the USSR Academy of Sciences, 1962.

[2] Galperin, lgal; Rivest, Ronald L., Scapegoat trees, Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 1993

[3] Andersson, Arne, Improving partial rebuilding by using simple balance criteria, Proc. Workshop on
Algorithms and Data Structures, Journal of Algorithms. Springer-Verlag, 1989.

[4] Galperin, Igal, “Chapter 3 - Scapegoat trees”, On Consulting a Set of Experts and Searching (Ph.D.
thesis), MIT, 1996.

[5] Morin, Pat., "Chapter 8 - Scapegoat Trees", Open Data Structures.

The scapegoat tree was developed in C and its repository is located at:

https://github.com/vasilisvenieris/scapegoat_tree

V. Venieris 32

https://github.com/vasilisvenieris/scapegoat_tree

