@article{3074942, title = "Results from the TARC experiment: Spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing", author = "Abánades, A. and Aleixandre, J. and Andriamonje, S. and Angelopoulos, A. and Apostolakis, A. and Arnould, H. and Belle, E. and Bompas, C.A. and Brozzi, D. and Bueno, J. and Buono, S. and Carminati, F. and Casagrande, F. and Cennini, P. and Collar, J.I. and Cerro, E. and Moral, R.Del and Díez, S. and Dumps, L. and Eleftheriadis, C. and Embid, M. and Fernández, R. and Gálvez, J. and García, J. and Gelès, C. and Giorni, A. and González, E. and González, O. and Goulas, I. and Heuer, D. and Hussonnois, M. and Kadi, Y. and Karaiskos, P. and Kitis, G. and Klapisch, R. and Kokkas, P. and Lacoste, V. and Naour, C.Le and López, C. and Loiseaux, J.M. and Martínez-Val, J.M. and Méplan, O. and Nifenecker, H. and Oropesa, J. and Papadopoulos, I. and Pavlopoulos, P. and Pérez-Enciso, E. and Pérez-Navarro, A. and Perlado, M. and Placci, A. and Poza, M. and Revol, J.-P. and Rubbia, C. and Rubio, J.A. and Sakelliou, L. and Saldaa, F. and Savvidis, E. and Schussler, F. and Sirvent, C. and Tamarit, J. and Trubert, D. and Tzima, A. and Viano, J.B and Vieira, S. and Vlachoudis, V. and Zioutas, K.", journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment", year = "2002", volume = "478", number = "3", pages = "577-730", publisher = "Elsevier", doi = "10.1016/S0168-9002(01)00789-6", keywords = "Neutrons; Nuclear reactors; Radioactive waste disposal; Radioisotopes; Resonance, Adiabatic resonance crossing (ARC); Nuclear transmutation, Nuclear physics", abstract = "We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy (En ≥ 1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/c protons) slowing down in a 3.3 m × 3.3 m × 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications. © 2002 Elsevier Science B.V. All rights reserved." }