@article{3089161, title = "Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach", author = "Giardine, B. and Borg, J. and Higgs, D.R. and Peterson, K.R. and Philipsen, S. and Maglott, D. and Singleton, B.K. and Anstee, D.J. and Basak, A.N. and Clark, B. and Costa, F.C. and Faustino, P. and Fedosyuk, H. and Felice, A.E. and Francina, A. and Galanello, R. and Gallivan, M.V.E. and Georgitsi, M. and Gibbons, R.J. and Giordano, P.C. and Harteveld, C.L. and Hoyer, J.D. and Jarvis, M. and Joly, P. and Kanavakis, E. and Kollia, P. and Menzel, S. and Miller, W. and Moradkhani, K. and Old, J. and Papachatzopoulou, A. and Papadakis, M.N. and Papadopoulos, P. and Pavlovic, S. and Perseu, L. and Radmilovic, M. and Riemer, C. and Satta, S. and Schrijver, I. and Stojiljkovic, M. and Thein, S.L. and Traeger-Synodinos, J. and Tully, R. and Wada, T. and Waye, J.S. and Wiemann, C. and Zukic, B. and Chui, D.H.K. and Wajcman, H. and Hardison, R.C. and Patrinos, G.P.", journal = "Nature Genetics", year = "2011", volume = "43", number = "4", pages = "295-302", issn = "1061-4036, 1546-1718", doi = "10.1038/ng.785", keywords = "globin, article; clinical data repository; controlled study; data base; gene locus; genetic variability; human; human cell; mouse; nonhuman; nucleotide sequence; priority journal; thalassemia, Base Sequence; Data Mining; Databases, Genetic; DNA; Genetic Variation; Genome, Human; Hemoglobinopathies; Hemoglobins; Human Genome Project; Humans; Molecular Sequence Data; Mutation; Promoter Regions, Genetic; Publishing", abstract = "We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases. © 2011 Nature America, Inc. All rights reserved." }