@article{3175661, title = "Detecting human coronary inflammation by imaging perivascular fat", author = "Antonopoulos, Alexios S. and Sanna, Fabio and Sabharwal, Nikant and and Thomas, Sheena and Oikonomou, Evangelos K. and Herdman, Laura and and Margaritis, Marios and Shirodaria, Cheerag and Kampoli, Anna-Maria and and Akoumianakis, Ioannis and Petrou, Mario and Sayeed, Rana and and Krasopoulos, George and Psarros, Constantinos and Ciccone, Patricia and and Brophy, Carl M. and Digby, Janet and Kelion, Andrew and Uberoi, Raman and and Anthony, Suzan and Alexopoulos, Nikolaos and Tousoulis, Dimitris and and Achenbach, Stephan and Neubauer, Stefan and Channon, Keith M. and and Antoniades, Charalambos", journal = "Science Translational Medicine", year = "2017", volume = "9", number = "398", publisher = "AMER ASSOC ADVANCEMENT SCIENCE", issn = "1946-6234, 1946-6242", doi = "10.1126/scitranslmed.aal2658", abstract = "Early detection of vascular inflammation would allow deployment of targeted strategies for the prevention or treatment of multiple disease states. Because vascular inflammation is not detectable with commonly used imaging modalities, we hypothesized that phenotypic changes in perivascular adipose tissue (PVAT) induced by vascular inflammation could be quantified using a new computerized tomography (CT) angiography methodology. We show that inflamed human vessels release cytokines that prevent lipid accumulation in PVAT-derived preadipocytes in vitro, ex vivo, and in vivo. We developed a three-dimensional PVAT analysis method and studied CT images of human adipose tissue explants from 453 patients undergoing cardiac surgery, relating the ex vivo images with in vivo CT scan information on the biology of the explants. We developed an imaging metric, the CT fat attenuation index (FAI), that describes adipocyte lipid content and size. The FAI has excellent sensitivity and specificity for detecting tissue inflammation as assessed by tissue uptake of 18F-fluorodeoxyglucose in positron emission tomography. In a validation cohort of 273 subjects, the FAI gradient around human coronary arteries identified early subclinical coronary artery disease in vivo, as well as detected dynamic changes of PVAT in response to variations of vascular inflammation, and inflamed, vulnerable atherosclerotic plaques during acute coronary syndromes. Our study revealed that human vessels exert paracrine effects on the surrounding PVAT, affecting local intracellular lipid accumulation in preadipocytes, which can be monitored using a CT imaging approach. This methodology can be implemented in clinical practice to noninvasively detect plaque instability in the human coronary vasculature." }