TY - JOUR TI - Applying broadband dielectric spectroscopy (BDS) for the biophysical characterization of mammalian tissues under a variety of cellular stresses AU - Souli, M.P. AU - Klonos, P. AU - Fragopoulou, A.F. AU - Mavragani, I.V. AU - Pateras, I.S. AU - Kostomitsopoulos, N. AU - Margaritis, L.H. AU - Zoumpoulis, P. AU - Kaklamanis, L. AU - Kletsas, D. AU - Gorgoulis, V.G. AU - Kyritsis, A. AU - Pissis, P. AU - Georgakilas, A.G. JO - International Journal of Molecular Sciences PY - 2017 VL - 18 TODO - 4 SP - null PB - MDPI AG SN - 1422-0067 TODO - 10.3390/ijms18040838 TODO - animal tissue; Article; broadband dielectric spectroscopy; cell stress; cerebellar tissue; controlled study; electric conductivity; electrochemical impedance spectroscopy; electromagnetic radiation; gamma radiation; genomic instability; human; human tissue; hydration; ionizing radiation; lung adenocarcinoma; nonhuman; prostate cancer; rat; sensitivity analysis; skin; tissue characterization; animal; biophysics; molecular pathology; physiological stress; procedures, Animals; Biophysical Phenomena; Dielectric Spectroscopy; Electric Conductivity; Humans; Pathology, Molecular; Rats; Skin; Stress, Physiological TODO - The dielectric properties of biological tissues can contribute non-invasively to a better characterization and understanding of the structural properties and physiology of living organisms. The question we asked, is whether these induced changes are effected by an endogenous or exogenous cellular stress, and can they be detected non-invasively in the form of a dielectric response, e.g., an AC conductivity switch in the broadband frequency spectrum. This study constitutes the first methodological approach for the detection of environmental stress-induced damage in mammalian tissues by the means of broadband dielectric spectroscopy (BDS) at the frequencies of 1–106 Hz. Firstly, we used non-ionizing (NIR) and ionizing radiation (IR) as a typical environmental stress. Specifically, rats were exposed to either digital enhanced cordless telecommunication (DECT) radio frequency electromagnetic radiation or to γ-radiation, respectively. The other type of stress, characterized usually by high genomic instability, was the pathophysiological state of human cancer (lung and prostate). Analyzing the results of isothermal dielectric measurements provided information on the tissues’ water fraction. In most cases, our methodology proved sufficient in detecting structural changes, especially in the case of IR and malignancy. Useful specific dielectric response patterns are detected and correlated with each type of stress. Our results point towards the development of a dielectric-based methodology for better understanding and, in a relatively invasive way, the biological and structural changes effected by radiation and developing lung or prostate cancer often associated with genomic instability. © 2017 by the authors; licensee MDPI, Basel, Switzerland. ER -