TY - JOUR TI - Circumnuclear Dust in AP Librae and the Source of Its VHE Emission AU - Roychowdhury, Agniva AU - Meyer, Eileen T. AU - Georganopoulos, Markos and AU - Breiding, Peter AU - Petropoulou, Maria JO - ASTROPHYSICAL JOURNAL PY - 2022 VL - 924 TODO - 2 SP - null PB - IOP Publishing Ltd SN - 0004-637X TODO - 10.3847/1538-4357/ac34f1 TODO - null TODO - The broad high-energy spectral component in blazars is usually attributed to various inverse Compton scattering processes in the relativistic jet, but has not been clearly identified in most cases due to degeneracies in physical models. AP Librae, a low-synchrotron-peaking BL Lac object (LBL) detected in 2015 by H.E.S.S. at very high energies (VHE; >0.5 TeV), has an extremely broad high-energy spectrum, covering similar to 9 decades in energy. Standard synchrotron self-Compton models generally fail to reproduce the VHE emission, which has led to the suggestion that it might arise not from the blazar core, but on kiloparsec scales from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by a still-relativistic jet (IC/CMB). IC/CMB models for the TeV emission of AP Librae in prior works have implied a high level of infrared emission from the kiloparsec-scale jet. With newly obtained Hubble Space Telescope (HST) imaging, we obtain a deep upper limit on the kiloparsec-scale jet emission at 1.6 mu m, well below the expected level. High-resolution Atacama Large Millimeter/submillimeter Array imaging in bands 3-9 reveals a residual dust-disk signature after core subtraction, with a clearly thermal spectrum, and an extent (similar to 500 pc) that matches with a nonjet residual emission seen after point-spread function subtraction in our 1.6 mu m HST imaging. We find that the unusually broad GeV and VHE emission in AP Librae can be reproduced through the combined IC scattering of photons from the CMB and the dust disk, respectively, by electrons in both the blazar core and subkiloparsec jet. ER -