TY - JOUR TI - The Atkinson-Wilcox expansion theorem for electromagnetic chiral waves AU - Athanasiadis, C. AU - Giotopoulos, S. JO - Applied Mathematics Letters PY - 2003 VL - 16 TODO - 5 SP - 675-681 PB - SN - 0893-9659 TODO - 10.1016/S0893-9659(03)00066-1 TODO - null TODO - Consider the problem of scattering of a time-harmonic electromagnetic wave by a three-dimensional bounded and smooth obstacle. The infinite space outside the obstacle is filled by a homogeneous isotropic chiral medium. In the region exterior to a sphere that includes the scatterer, any solution of the generalized Helmholtz's equation that satisfies the Silver-Müller radiation condition has a uniformly and absolutely convergent expansion in inverse powers of the radial distance from the center of the sphere. The coefficients of the expansion can be determined from the leading coefficient, "the radiation pattern", by a recurrence relation. © 2003 Elsevier Science Ltd. All rights reserved. ER -