TY - JOUR TI - Complexity of fracturing in terms of non‐extensive statistical physics: From earthquake faults to arctic sea ice fracturing AU - Vallianatos, F. AU - Michas, G. JO - Entropy PY - 2020 VL - 22 TODO - 11 SP - 1-15 PB - MDPI AG SN - 1099-4300 TODO - 10.3390/e22111194 TODO - null TODO - Fracturing processes within solid Earth materials are inherently a complex phenomenon so that the underlying physics that control fracture initiation and evolution still remain elusive. However, universal scaling relations seem to apply to the collective properties of fracturing phenomena. In this article we present a statistical physics approach to fracturing based on the framework of non‐extensive statistical physics (NESP). Fracturing phenomena typically present intermittency, multifractality, long‐range correlations and extreme fluctuations, properties that motivate the NESP approach. Initially we provide a brief review of the NESP approach to fracturing and earthquakes and then we analyze stress and stress direction time series within Arctic sea ice. We show that such time series present large fluctuations and probability distributions with “fat” tails, which can exactly be described with the q‐Gaussian distribution derived in the framework of NESP. Overall, NESP provide a consistent theoretical framework, based on the principle of entropy, for deriving the collective properties of fracturing phenomena and earthquakes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. ER -