TY - JOUR TI - Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells AU - Hitzel, Juliane AU - Lee, Eunjee AU - Zhang, Yi AU - Bibli, Sofia Iris and AU - Li, Xiaogang AU - Zukunft, Sven AU - Pflueger, Beatrice AU - Hu, Jiong and AU - Schuermann, Christoph AU - Vasconez, Andrea Estefania AU - Oo, James A. AU - and Kratzer, Adelheid AU - Kumar, Sandeep AU - Rezende, Flavia and AU - Josipovic, Ivana AU - Thomas, Dominique AU - Giral, Hector AU - Schreiber, AU - Yannick AU - Geisslinger, Gerd AU - Fork, Christian AU - Yang, Xia and AU - Sigala, Fragiska AU - Romanoski, Casey E. AU - Kroll, Jens AU - Jo, AU - Hanjoong AU - Landmesser, Ulf AU - Lusis, Aldons J. AU - Namgaladze, Dmitry AU - and Fleming, Ingrid AU - Leisegang, Matthias S. AU - Zhu, Jun AU - Brandes, AU - Ralf P. JO - Nature Communications PY - 2018 VL - 9 TODO - null SP - null PB - Nature Publishing Group SN - 2041-1723 TODO - 10.1038/s41467-018-04602-0 TODO - null TODO - Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a causal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipoproteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2-controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis. ER -