TY - JOUR TI - A Versatile Tripodal Cu(I) Reagent for C–N Bond Construction via Nitrene-Transfer Chemistry: Catalytic Perspectives and Mechanistic Insights on C–H Aminations/Amidinations and Olefin Aziridinations AU - Vivek Bagchi AU - Patrina Paraskevopoulou AU - Purak Das AU - Lingyu Chi AU - Qiuwen Wang AU - Amitava Choudhury AU - Jennifer S. Mathieson AU - Leroy Cronin AU - Daniel B. Pardue AU - Thomas R. Cundari AU - George Mitrikas AU - Yiannis Sanakis AU - Pericles Stavropoulos JO - Journal of the American Chemical Society PY - 2014 VL - 136 TODO - 32 SP - 11362--11381 PB - American Chemical Society (ACS) SN - 0002-7863, 1520-5126 TODO - 10.1021/ja503869j TODO - null TODO - A Cu-I catalyst (1), supported by a framework of strongly basic guanidinato moieties, mediates nitrene-transfer from PhI=NR sources to a wide variety of aliphatic hydrocarbons (C-H amination or amidination in the presence of nitriles) and olefins (aziridination). Product profiles are consistent with a stepwise rather than concerted C-N bond formation. Mechanistic investigations with the aid of Hammett plots, kinetic isotope effects, labeled stereochemical probes, and radical traps and clocks allow us to conclude that carboradical intermediates play a major role and are generated by hydrogen-atom abstraction from substrate C-H bonds or initial nitrene-addition to one of the olefinic carbons. Subsequent processes include solvent-caged radical recombination to afford the major amination and aziridination products but also one-electron oxidation of diffusively free carboradicals to generate amidination products due to carbocation participation. Analyses of metal- and ligand-centered events by variable temperature electrospray mass spectrometry, cyclic voltammetry, and electron paramagnetic resonance spectroscopy, coupled with computational studies, indicate that an active, but still elusive, copper-nitrene (S = 1) intermediate initially abstracts a hydrogen atom from, or adds nitrene to, C-H and C=C bonds, respectively, followed by a spin flip and radical rebound to afford intra- and intermolecular C-N containing products. ER -