La2Zr2O7/LaAlO3 composite prepared by mixing precipitated precursors: Evolution of its structure under sintering

Επιστημονική δημοσίευση - Άρθρο Περιοδικού uoadl:3059129 6 Αναγνώσεις

Τμήμα Αγροτικής Ανάπτυξης, Αγροδιατροφής και Διαχείρισης Φυσικών Πόρων
Ερευνητικό υλικό ΕΚΠΑ
La2Zr2O7/LaAlO3 composite prepared by mixing precipitated precursors: Evolution of its structure under sintering
Γλώσσες Τεκμηρίου:
For La2Zr2O7/LaAlO3 composite prepared by aging (100 °C/10 h) of the mixture of precipitated precursors of La-Zr-O and La-Al-O, evolution of its structural features after sintering in air in the range of 100–1300 °C was investigated by applying XRD, HRTEM, FTIR, Raman and UV–Vis spectroscopies, 27Al MAS NMR and 139La NMR. The initial composite forms a highly dispersed and disordered structure retaining considerable concentrations of residual anions (anions from the initial salts, water molecules and hydrogen bound hydroxyls) due to basic properties of La cations. Stepwise removal of these anions by calcinations results in the crystallization of La2(Al)O2CO3 at 500 °C with complete disordering of the system after heating at 700 °C. These transitions are accompanied by appearance of AlO4 polyhedra. The La-Zr-O- containing phase appeared for the first time at 900 °C as fluorite-like ZrO2 stabilized by La (Al) cations, and LaAlO3 (P2) phase is also observed along with admixtures of La2O3 and La10Al4O21. At 1100 °C fluorite-like ZrO2 converts into the La2Zr2O7 (P1) phase, and in the range of 1100–1300 °C mixed P1 and P2 oxides are the main phases. For P1 phase, structure becomes more ordered at higher sintering temperatures, while for P2 phase in composite the nanodomain structure is still observed in comparison with individual mixed oxide at 1300 °C. The molecular –scale features of domain boundaries in nanostructured La-Zr-O/La-Al-O composite as well as applied inexpensive method of its fabrication provide required bases for a broad practical application of this material for Thermal barrier coatings (TBCs). © 2020 Elsevier B.V.
Έτος δημοσίευσης:
Bespalko, Y.
Kuznetsova, T.
Kriger, T.
Chesalov, Y.
Lapina, O.
Ishchenko, A.
Larina, T.
Sadykov, V.
Stathopoulos, V.
Materials Chemistry and Physics
Elsevier Ireland Ltd
Aluminum compounds; Composite coatings; Fluorspar; Lanthanum; Molecules; Positive ions; Sintering; Thermal barrier coatings; Zirconia, Disordered structures; Domain boundary; Nano-structured; Nanodomain structures; Sintering temperatures; Structural feature; Thermal barrier coating (TBCs); VIS spectroscopy, Phosphorus compounds
Επίσημο URL (Εκδότης):
Το ψηφιακό υλικό του τεκμηρίου δεν είναι διαθέσιμο.