On the semi-annual variation of relativistic electrons in the outer radiation belt

Scientific publication - Journal Article uoadl:2961591 149 Read counter

Unit:
Department of Physics
Title:
On the semi-annual variation of relativistic electrons in the outer radiation belt
Languages of Item:
English
Abstract:
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and Geostationary Operational Environmental Satellite Energetic Particle Sensor (GOES/EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell–McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3–4.2 MeV energy range at L shells higher than 3.5, and, moreover, it exhibits an in-phase relationship with the Russell–McPherron effect, indicating the former is primarily driven by the latter. Furthermore, the analysis of the past three solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) high-speed stream (HSS) (interplanetary coronal mass ejection, ICME) occurrence.
Publication year:
2021
Authors:
Christos Katsavrias,
Constantinos Papadimitriou,
Sigiava Aminalragia-Giamini,
Ioannis A. Daglis,
Ingmar Sandberg,
Piers Jiggens
Journal:
Annales Geophysicae
Publisher:
Copernicus Publications
Volume:
39
Number:
3
Pages:
413–425
Keywords:
relativistic electrons, outer radiation belt, semi-annual variation, Russell–McPherron effect, wavelet
Main subject category:
Science
DOI:
https://doi.org/10.5194/angeo-39-413-2021
On the semi-annual variation of relativistic electrons in the outer radiation belt.pdf (17 MB) Open in new window