
Anastasia Veneti

A Logi
 for

Interse
tion and Union Types

PhD Thesis

Supervisor: Yannis Stephanou

Department of Philosophy and History of S
ien
e

National and Kapodistrian University of Athens

Athens, O
tober 2015





To Smara and Thanassis





A
knowledgements

I would like to express my gratitude to my supervisor, Assistant Professor Yannis Stephanou, for his


onstru
tive guidan
e and elaborate remarks over the entire length and depth of my s
ienti�
 work, as

well as his extremely supportive advi
e and attitude throughout my struggle to manage the ups and downs

of the PhD-adventure. Thanks to him, this mathemati
al thesis enjoys the spe
ial treats of philosophy's

verbal a

ura
y.

I would also like to thank the external 
ollaborator of MPLA (graduate program in Logi
 and Al-

gorithms) Yiorgos Stavrinos for a
quainting me with the subje
ts of Lambda Cal
ulus, Proof Theory,

and Linear Logi
 through his ex
ellent tea
hing, for guiding my �rst resear
h steps into the topi
 of the

logi
al interpretation of interse
tion (and union) types, and for being an instru
tive 
o-author of several

papers.

I deeply thank Professor George Koletsos, member of the Three Member Committee, and the external


ollaborator of MPLA Nikos Rigas for inspiring me with fruitful dis
ussions and novel ideas on the wider

�eld of my resear
h during study 
ourses and private seminars.

I also thank Professor Simona Ron
hi Della Ro

a, member of the Three Member Committee, who

provided me with the s
ienti�
 \starting material" and shared her expertise and ideas with me during


onferen
es and, espe
ially, during her visit to Athens in 2009. Having the honour to work with her and

her 
olleague Alexis Saurin on a resear
h paper, I learned a great deal about s
ienti�
 team work and

intera
tion.

I would �nally like to thank for their pre
ious 
ooperation in 
ompleting this huge endeavour the other

members of the Seven Member Exam Committee: Professor Costas Dimitra
opoulos, Professor Emeritus

Stathis Za
hos, Asso
iate Professor Panos Rondogiannis, and Le
turer Petros Stephaneas.

My PhD was 
o-�nan
ed by the European Union (ESF) and Greek national funds through the funding

program \Hera
leitus II". I owe spe
ial thanks to Prof. Dimitra
opoulos for helping me 
omplete and

submit my funding appli
ation.

I thank my friend, my \mikri" Maria Fasouli, for generously o�ering me her sweet, warm, and witty


ompany, running by my side in the PhD-marathon for �ve years. I thank my mother, Smara Veneti, for

endlessly enduring and un
onditionally loving me. It was she who sponsored my studies, when Hera
leitus

was burdened with far more years than it 
ould bear. My beloved father, Thanassis Venetis, already knows

how blessed I feel that it was he who held my hand for forty one years. . .

v





Contents

Introdu
tion 1

1 A Logi
 for Interse
tion Types 5

1.1 Interse
tion Logi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Strong normalization of IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Corresponden
e between IL and IT . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Interse
tion Syn
hronous Logi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Strong normalization of ISL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Corresponden
e between ISL and IT . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Union Types 17

2.1 Subje
t redu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Cut elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Term 
hara
terizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Toward a Logi
 for Union Types 35

3.1 Interse
tion and Union Logi
 IUL

k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Commutations of lo
al rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Relating IUL

k

to MLns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Interse
tion and Union Logi
 IUL

m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Equivalen
e of IUL

k

and IUL

m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Relating IUL

m

to MLns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Dis
ussion of kits and mole
ules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Natural Dedu
tion IUL

m

and IUT

⊕
61

4.1 The logi
 IUL

m

in natural dedu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 The type system IUT

⊕
in natural dedu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Relating IUL

m

to IUT

⊕
in natural dedu
tion . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Corresponden
e between IUL

m

and IUT

⊕
77

5.1 Trees of impli
ations and union eliminations with terms . . . . . . . . . . . . . . . . . . . 77

5.2 Restri
ted 
orresponden
e theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 A transformation 
ounterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Non-restri
ted 
orresponden
e theorems? . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



viii Contents

6 Corresponden
e between IL

m

and IT

⊕
123

6.1 Trees of impli
ations with terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Revised 
orresponden
e theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Dis
ussion of the 
orresponden
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Sequent Cal
ulus IUL

m

and IUT

⊕
137

7.1 The logi
 IUL

m

in sequent 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 The type system IUT

⊕
in sequent 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Relating IUL

m

to IUT

⊕
in sequent 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Con
lusions and Future Work 161

A An Extensive Proof 163

B A Transformation Example 171

Bibliography 179



Introdu
tion

This thesis aims to de�ne a logi
al system 
orresponding to the type system with interse
tion and union

types in the perspe
tive of the Curry-Howard isomorphism. The type system with interse
tion and union

types [2℄ assigns types built by impli
ation, interse
tion, and union to terms of the untyped �-
al
ulus;

it is a type system à la Curry. We initially 
onsider a natural dedu
tion presentation for systems in logi


or type theory, i.e. a presentation with introdu
tion and elimination rules for every logi
al 
onne
tive or

type 
onstru
tor, respe
tively.

The Curry-Howard isomorphism [19℄ states a 
orresponden
e between systems of formal logi
 as en-


ountered in proof theory and 
omputational 
al
uli as found in type theory. For instan
e, the impli
ative

fragment of intuitionisti
 propositional logi
 
orresponds to the simply typed �-
al
ulus à la Chur
h, in

the sense that any proof in the logi
 
orresponds to a typable term à la Chur
h, whi
h thoroughly en
odes

the impli
ational stru
ture of the proof, or to a proof in the �→ Chur
h type system typing this very term.

More pre
isely, any proof in the logi
 gives a proof in the type system, if \de
orated" with simply typed

terms and, 
onversely, any proof in the type system gives ba
k a proof in the logi
, if terms are erased. In

the dire
tion from the logi
 to the type system, this is meant modulo the 
onversion of formulas to types

and the elimination of stru
tural rules; in the dire
tion from the type system to the logi
, it is meant

modulo the 
onversion of types to formulas and the addition of stru
tural rules. In the same manner,

the impli
ative, 
onjun
tive, and disjun
tive fragment of intuitionisti
 propositional logi
 
orresponds to

the �

∧∨
→ Chur
h type system through de
oration and erasure pro
edures. In parti
ular, any proof in the

logi
 provides a proof in the type system, if de
orated with typed terms with pairs and inje
tions and,


onversely, any proof in the type system returns a proof in the logi
, if terms are erased

1

; 
orresponding

proofs in the logi
 and the type system are su
h that the term typed by the latter proof re
ords the im-

pli
ative, 
onjun
tive, and disjun
tive stru
ture of the former. Provability of a 
ertain formula translates

to inhabitation of the 
orresponding type, while normalization of a 
ertain proof translates to redu
tion of

the 
orresponding term to normal form. In higher levels of the isomorphism, �rst-order logi
 
orresponds

to dependent types and se
ond-order logi
 
orresponds to polymorphi
 types.

As far as the type system with interse
tion and union types is 
on
erned, we say that we seek a logi



orresponding to it in the perspe
tive of the Curry-Howard isomorphism, sin
e it is a Curry type system

and the isomorphism a
tually applies to Chur
h type systems. However, adjusting the isomorphism's

main idea to its 
ase, we seek a logi
 
orresponding to it through a de
oration with untyped terms. Su
h

a logi
 needs to have logi
al 
onne
tives 
orresponding to the type 
onstru
tors of interse
tion and union,

whi
h implies an interpretation of interse
tion and union in logi
al terms.

The literature so far has o�ered logi
s 
orresponding to the type system with interse
tion types

in the Curry-Howard perspe
tive. The natural question whether interse
tion is logi
ally interpreted as

1

Both dire
tions hold modulo the 
onversions already mentioned for the 
orresponden
e between the impli
ative logi


and the �→ type system.

1



2 Introdu
tion


onjun
tion motivates the investigation whether the impli
ative and 
onjun
tive fragment of intuitionisti


propositional logi
 
orresponds to the type system with interse
tion types through a de
oration with

untyped terms. Su
h a 
orresponden
e is proved unfeasible in [18, 15℄; the de
oration on the logi
 needs to

simulate the terms in the type system and therefore to ignore, i.e. not to en
ode, 
onjun
tion introdu
tion,

but su
h a de
oration is impossible on proofs 
ontaining 
onjun
tion introdu
tions on 
onjun
ts whi
h

are not identi
ally de
orated.

⊢ t : � ⊢ t : �
(∩I)

⊢ t : � ∩ �
⊢ t : � ⊢ u : � t = u

(∧I)
⊢ t : � ∧ �

It is only a proper subset of this logi
 that 
orresponds to interse
tion types through de
oration, namely

the part that admits a de
oration whi
h ignores 
onjun
tion introdu
tion. Sin
e 
onjun
tion introdu
tion

in this part involves identi
ally de
orated 
onjun
ts, 
alled \syn
hronous" 
onjun
ts, we 
an roughly say

that interse
tion is logi
ally interpreted as a kind of syn
hronous 
onjun
tion. The logi
s o�ered in the

literature for interse
tion types attempt to express this spe
i�
 part of the impli
ative and 
onjun
tive

fragment of intuitionisti
 logi
 as an autonomous logi
al system by internalizing the metatheoreti
al


ondition that 
onjun
ts be identi
ally de
orated. The logi
s in question [18, 15℄, introdu
ed by S.

Ron
hi Della Ro

a and her 
olleagues in the early 2000s, employ interse
tion (syn
hronous 
onjun
tion)

as a logi
al 
onne
tive together with impli
ation. The logi
 in [18℄ is 
alled \Interse
tion Logi
" and

uses the stru
ture of full binary trees, 
alled \kits", to internalize the 
ondition mentioned above. A

re�nement of this logi
 is the system \Interse
tion Syn
hronous Logi
", proposed in [15℄, whi
h linearizes

kits into multisets of statements, 
alled \mole
ules".

We aim to o�er a logi
 
orresponding to the type system with interse
tion and union types in the

Curry-Howard perspe
tive, i.e. to study an extended-with-union version of the setup des
ribed above.

Besides the type system with interse
tion and union types, su
h a version involves the impli
ative,


onjun
tive, and disjun
tive fragment of intuitionisti
 propositional logi
, whi
h is the natural 
andidate

for a logi
 
orresponding to interse
tion and union types through de
oration. As expe
ted, though, this


orresponden
e is unfeasible; the de
oration on the logi
 needs to simulate the terms in the type system

and therefore to indu
e a substitution term on disjun
tion elimination, but su
h a de
oration is impossible

on proofs 
ontaining disjun
tion eliminations with minor premises whi
h are not identi
ally de
orated

2

.

⊢ t : � ∪ � x : � ⊢ u : � x : � ⊢ u : �
(∪E)

⊢ u[t=x] : �

⊢ t : � ∨ � x : � ⊢ u : � x : � ⊢ v : � u = v

(∨E)
⊢ u[t=x] : �

The extended version, therefore, in
ludes the proper subset of the impli
ative, 
onjun
tive, and disjun
tive

fragment of intuitionisti
 logi
 that indeed 
orresponds to interse
tion and union types through de
oration,

namely the part that admits a de
oration whi
h indu
es a substitution on disjun
tion elimination. Sin
e

disjun
tion elimination in this part involves syn
hronous minor premises, the logi
al interpretation of

union is a kind of syn
hronous disjun
tion. We aim to 
omplete the pi
ture in the extended setup with

the logi
 that expresses this spe
i�
 part of the impli
ative, 
onjun
tive, and disjun
tive fragment of

intuitionisti
 logi
 as an autonomous logi
al system by internalizing the 
ondition that minor premises in

disjun
tion elimination be identi
ally de
orated. The obvious way to a
hieve this is to extend the logi
s

o�ered by the team of Ron
hi with union (syn
hronous disjun
tion) as an additional logi
al 
onne
tive.

2

The de
oration on 
onjun
tion introdu
tion still needs to be as already des
ribed in the restri
ted, i.e. the union-free,

version of the setup.



Introdu
tion 3

Chapter 1 outlines the resear
h results established before the start of this thesis and familiarizes the

reader with the basi
 argument modes for the topi
. Working in natural dedu
tion style, we present

the type system with interse
tion types IT and explain why the impli
ative and 
onjun
tive fragment

of intuitionisti
 logi
, denoted LJ, does not 
orrespond to it through a de
oration with untyped terms.

Spotting the proper subset LJns of LJ that indeed 
orresponds to IT through de
oration, we then present

the logi
s \Interse
tion Logi
" IL and \Interse
tion Syn
hronous Logi
" ISL, whi
h both aim to express

LJns as an autonomous system. We demonstrate the 
orresponden
e between ea
h of these logi
s and IT

through de
oration; in both 
ases, su
h a 
orresponden
e interrelates a de
orated derivation in the logi


with a �nite number of derivations in the type system. This 
hapter summarizes the work in [18, 15℄.

Chapter 2 illustrates in detail the type system with interse
tion and union types IUT and its rule or

style variants, as well as its basi
 properties. First, a natural dedu
tion and a sequent 
al
ulus formulation

of the system are presented and proved equivalent, the former being additive and the latter multipli
ative.

A sequent 
al
ulus formulation is one with left and right introdu
tion rules for every type 
onstru
tor, and

a 
ut rule. Then, while the usual subje
t redu
tion is shown to fail, a more elaborate kind of redu
tion,


alled parallel redu
tion, is de�ned and shown to hold. Further, a 
ut elimination proof is given for

the sequent 
al
ulus formulation of the system, when 
ontra
tion is expli
itly in
luded. Finally, 
ertain

typings in IUT or its rule variants are examined with respe
t to the properties the typable terms display;

among others, it is dedu
ed that the terms typable in IUT are all and only the strongly normalizing ones.

This 
hapter 
ombines results in [2℄ and original work.

Chapter 3 exposes an early stage attempt to de�ne a logi
 
orresponding to interse
tion and union

types in the Curry-Howard perspe
tive. Working in natural dedu
tion style, we �rst show that the

impli
ative, 
onjun
tive, and disjun
tive fragment of intuitionisti
 logi
, denoted ML, does not 
orrespond

to the type system IUT through a de
oration with untyped terms. We then identify the proper subset

MLns of ML that indeed 
orresponds to IUT through de
oration and aim to represent it as an independent

logi
. Toward this end, we extend the logi
s IL and ISL with union rules to de�ne the logi
s IUL

k

and IUL

m

, respe
tively. We show that the extended logi
s are equivalent and examine whether the


orresponden
e between the restri
ted logi
 (IL or ISL) and IT through de
oration 
an be extended to a


orresponden
e between the extended logi
 (IUL

k

or IUL

m

) and IUT through de
oration. We demonstrate

how the substitution terms in union eliminations hinder the extended 
orresponden
e. Finally, we dis
uss

the advantages of the formalism of mole
ules over the formalism of kits that arise from 
omparing the

union elimination rules in the extended logi
s. This 
hapter is a revised version of the work in [20℄.

Chapter 4 introdu
es a modi�
ation

3

of the logi
 IUL

m

with respe
t to the de�nition of \mole
ule"

and the de�nition of rules, but still with introdu
tion and elimination rules for impli
ation, interse
tion,

and union. First, we present the modi�ed stru
ture and rules, drawing attention to the 
ru
ial distin
tion

between global and lo
al rules and to the additiveness of the 
onne
tives. Then, we state and prove 
ertain

derivable rules and properties of the logi
. We also elaborate on derivable rules and properties of the

type system IUT in natural dedu
tion style. Finally, we de�ne a de
oration of the logi
 with terms that

\
opy" the ones in the type system and we interrelate the de
orated logi
 with the type system, so as to

explain how the former is meant to use its stru
ture to depi
t the latter on a logi
al level.

Chapter 5 resolves the 
orresponden
e between the de
orated logi
 IUL

m

and the type system IUT

in natural dedu
tion style. We �rst de�ne the notion of tree of impli
ations and union eliminations with

terms for both the de
orated logi
 and the type system. In the de
orated logi
, su
h trees re
ord the

inferen
es of rules that are global and have a 
ounterpart in the type system, whi
h are the inferen
es

3

The use of this modi�
ation, besides providing a more 
onvenient system, will be
ome 
lear in the next 
hapter, where

we exploit it to settle the 
orresponden
e between IUL

m

and IUT through de
oration.



4 Introdu
tion

of impli
ations and union elimination, as well as the de
oration terms on these inferen
es. In the type

system, su
h trees re
ord the inferen
es of rules that have a global 
ounterpart in the logi
, whi
h are

again the inferen
es of impli
ations and union elimination, as well as the terms in these inferen
es. While

every derivation in the de
orated logi
 has su
h a tree, there are derivations in the type system whi
h do

not have su
h a tree, as the pro
edure for su
h trees in the type system is algorithmi
 and does not always

terminate. We then state and prove 
orresponden
e theorems between the de
orated logi
 and the type

system, i.e. from the de
orated IUL

m

to IUT and 
onversely, whi
h interrelate a de
orated derivation

in the logi
 with a �nite number of derivations in the type system via restri
tions that involve the trees

des
ribed above. A derivation in the de
orated logi
 gives �nitely many derivations in the type system,

whose trees all exist and are identi
al and also identi
al to the tree of the derivation in the de
orated

logi
. Conversely, �nitely many derivations in the type system whose trees all exist and are identi
al

give ba
k a derivation in the de
orated logi
 with a tree identi
al to the tree of the derivations in the

type system. We also give a detailed 
ounterexample against the position that the restri
tions 
ould be

removed and that we 
ould thus have a 
orresponden
e in the manner of the 
orresponden
e given in the

�rst 
hapter between the de
orated IL (or ISL) and IT. Finally, we expli
ate the de�nitional fa
tors in

the de
orated logi
 that ne
essitate the restri
tions.

Chapter 6 examines how the method of trees, employed in the previous 
hapter to des
ribe the


orresponden
e between the de
orated logi
 IUL

m

and the type system IUT, 
an be adjusted to the


orresponden
e between the de
orated logi
 IL

m

and the type system IT, where the logi
 IL

m

is the

restri
tion of the logi
 IUL

m

to impli
ation and interse
tion. As IL

m

is a modi�
ation of ISL, the

examination of the 
orresponden
e in question with the method of trees is a
tually a re-examination of

the 
orresponden
e between the de
orated ISL and IT with the method of trees. Adjusting the method

leads to the de�nition of the notion of tree of impli
ations with terms for both the de
orated logi
 and the

type system. The pro
edure to attain the trees in the type system is still algorithmi
, but we prove that

it always terminates. We then state and prove 
orresponden
e theorems between the de
orated IL

m

and

IT, whi
h revise the 
orresponden
e theorems between the de
orated ISL and IT in that they add the

fa
t that ea
h of the trees of the derivations in the type system is identi
al to the tree of the derivation in

the de
orated logi
. We �nally 
ompare and 
ontrast the two 
orresponden
es, i.e. between the de
orated

IUL

m

and IUT and between the de
orated IL

m

and IT, to de
ide whether IUL

m

is indeed a logi
 for IUT

in the manner that IL

m

(or ISL) is a logi
 for IT.

Chapter 7 presents a sequent 
al
ulus formulation of the modi�ed logi
 IUL

m

, whi
h retains the

additive 
hara
ter of the natural dedu
tion formulation. First, we display the sequent 
al
ulus rules of

the logi
, fo
using on the distin
tion between global and lo
al rules. Then, we prove the equivalen
e

between the sequent 
al
ulus and natural dedu
tion presentations of the logi
. We also prove derivable

rules and properties of the sequent 
al
ulus logi
, whi
h are roughly the same as the ones of the natural

dedu
tion logi
. Moreover, we present an additive a

ount of the sequent 
al
ulus formulation of the type

system IUT. We prove the equivalen
e between the sequent 
al
ulus and natural dedu
tion formulations of

the type system and also the equivalen
e between the additive and multipli
ative a

ounts of the sequent


al
ulus formulation of the type system. We elaborate on derivable rules and properties of the newly

introdu
ed type system, whi
h are similar to the ones of the natural dedu
tion type system. Finally,

working with the sequent 
al
ulus logi
 and type system, we translate into the sequent 
al
ulus language

the intended interrelation between the logi
 and the type system through de
oration and the a
tual


orresponden
e between the de
orated logi
 and the type system through the notion of trees. Chapters

4 to 7 
ontain ex
lusively original work.



CHAPTER 1

A Logi
 for Interse
tion Types

The type assignment system with interse
tion types, denoted IT [18, 15℄ or D [13℄, was introdu
ed in the

early eighties by M. Coppo and M. Dezani-Cian
aglini [7, 8℄ to enhan
e the typability power of Curry's

type assignment system �→. It is very useful as a tool for investigating pure �-
al
ulus, sin
e it has

ni
e synta
ti
al properties. In parti
ular, we 
an prove that it assigns types to all and only the strongly

normalizing terms [13℄.

Due to the pe
uliar nature of the interse
tion, IT 
annot be used as a model for a programming

language; however, interse
tion types have been parti
ularly useful in studying the semanti
s of various

kinds of �-
al
uli. This 
an be done by extending the system with suitable sub-typing relations, so that

the type assignment a
ts as a �nitary tool to reason about the interpretation of �-terms in topologi
al

models of �-
al
ulus, like S
ott domains, DI-domains and 
oheren
e spa
es [1, 5, 10, 11℄.

De�nition 1.1 (IT) (i) Terms of the untyped �-
al
ulus Λ are de�ned by the grammar: t ::= x |�x:t | tt.
(ii) The set T

IT

of interse
tion types is generated by the grammar T
IT

∋ � ::= � | � → � | � ∩ �,

where � belongs to a 
ountable set of type variables. We use �; �; 
, et
. to denote type variables and

�; �; �, et
. to denote types. In omitting parentheses, we assume asso
iativity to the right for impli
ation,

asso
iativity to the left for interse
tion, and pre
eden
e of interse
tion over impli
ation.

(iii) A basis B is a �nite set { x1 : �1; : : : ; xm : �
m

} of assignments of interse
tion types to distin
t

variables. We de�ne dom(B) as the set { x1; : : : ; xm }. We write B; x : � for a basis B ∪ { x : � }, i.e.
for a x 6∈ dom(B).

(iv) The type system IT proves statements of the form B ⊢ t : �, where B is a basis, t ∈ Λ and � is

an interse
tion type. Its rules are shown in Figure 1.1. We write � :: B ⊢ t : � to denote a parti
ular

derivation � proving B ⊢ t : �.

Proposition 1.2 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respe
t to �, then there exists

a �

′ :: B; y : � ⊢ t[y=x] : � .
(ii) (Weakening) If B ⊢ t : � and B ⊆ B

′
, where B

′
is a basis, then B

′ ⊢ t : �.
(iii) (Strengthening) If B ⊢ t : �, then FV (t) ⊆ dom(B) and B ⊇ B

′ ⊢ t : �, where dom(B′) = FV (t).

Proof. By indu
tion on the given derivation in ea
h 
ase. Proposition (i) is used to show (ii), while (ii)

is used to show (iii). ⊣

By adding the 
onstant ! to T
IT

and the so-
alled (ù)-rule to the rules of IT, we get the type system

IT

ù

, denoted DÙ in [13℄. The (ù)-rule is a
tually an axiom stating that, for any basis B and any term

t, it is B ⊢ t : !. The following proposition holds for both IT and IT

ù

.

5
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(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

Figure 1.1: The type system IT.

Proposition 1.3 (Subje
t redu
tion) If B ⊢ t : � and t→
�

t

′
, then B ⊢ t′ : �.

Proof. A proof 
an be found in [13℄. ⊣

Subje
t expansion does not hold in IT. For instan
e, it is �y:(�x:y)(yy) →
�

�y:y and ⊢ �y:y : � → �,

but 0 �y:(�x:y)(yy) : � → �. An explanation of this fa
t 
an be found in [13℄. On the other hand,

subje
t expansion does hold in IT

ù

and is proved in [13℄. The most important property of IT, though, is

stated in the following theorem.

Theorem 1.4 A term t ∈ Λ is typable in IT if and only if it is strongly normalizing.

Proof. Given in [13℄ by the redu
ibility method. ⊣

Remark 1.5 The result of Theorem 1.4 breaks down in IT

ù

, whi
h may assign the type ! to any t ∈ Λ.

For a proof-theoreti
al justi�
ation of interse
tion types, we may leave ! aside and 
onsider the min-

imal type system with interse
tion types IT. A �rst attempt to �nd a logi
 
orresponding to interse
tion

types 
onsisted in investigating if and how the impli
ative and 
onjun
tive fragment of intuitionisti
 logi
,

denoted LJ in [18℄, 
ould be asso
iated with IT.

In [17, 9℄ it is argued that interse
tion types do not 
orrespond to provable formulas of LJ. In par-

ti
ular, it is shown that the set of all interse
tion types whi
h are inhabited by a 
losed term does not


oin
ide with the set of all provable formulas of LJ, if the type 
onstru
tor of interse
tion is 
onverted to

the logi
al 
onne
tive of 
onjun
tion. A simple 
ounter-example is the type � → � → � ∩ � whi
h is not

inhabited, while its 
orresponding formula � → � → � ∧ � is provable in LJ. The result holds, though,

for the set of all inhabited Curry types and the set of all provable formulas of impli
ational intuitionisti


logi
.

In [18, 15℄ it is argued that LJ does not 
orrespond to IT through a standard de
oration of its

derivations with untyped �-terms. A standard de
oration of LJ is one that en
odes all logi
al rules, i.e.

both impli
ation and 
onjun
tion. In fa
t, su
h a de
oration delivers the Curry type system �

∧
→. At this

point, we may re
all LJ and �

∧
→, and de�ne the de
oration whi
h serves as a \bridge" between the two

in the Curry-Howard perspe
tive.
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(ax)

� ⊢ �

Γ ⊢ �
(W)

Γ; � ⊢ �

Γ; �; �;∆ ⊢ �
(X)

Γ; �; �;∆ ⊢ �

Γ; � ⊢ �
(→I)

Γ ⊢ � → �

Γ ⊢ � → � Γ ⊢ �
(→E)

Γ ⊢ �

Γ ⊢ � Γ ⊢ �
(∧I)

Γ ⊢ � ∧ �
Γ ⊢ � ∧ �

(∧E1)

Γ ⊢ �
Γ ⊢ � ∧ �

(∧E2)

Γ ⊢ �

Figure 1.2: The logi
 LJ.

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ u : �
(∧I)

B ⊢ (t; u) : � ∧ �
B ⊢ t : � ∧ �

(∧E1)

B ⊢ �1(t) : �
B ⊢ t : � ∧ �

(∧E2)

B ⊢ �2(t) : �

Figure 1.3: The type system �

∧
→.

De�nition 1.6 (LJ) Considering formulas generated by the grammar � ::= � | � → � | � ∧ �, where

� belongs to a 
ountable set of atomi
 formulas, the logi
al system LJ proves statements Γ ⊢ �, where

the 
ontext Γ is a �nite sequen
e of formulas and � is a formula. Its rules are displayed in Figure 1.2.

Impli
ation is right asso
iative, while 
onjun
tion is left asso
iative and pre
edes over impli
ation.

De�nition 1.7 (�

∧
→) Considering types built by impli
ation and 
onjun
tion, also known as simple

types, the type system �

∧
→ proves statements B ⊢ t : �, where B is a basis, t belongs to the set Λ

p

of terms with pairs, i.e. t ::= x | �x:t | tt | (t; t) |�1(t); �2(t), and � is a simple type. Its rules are shown in

Figure 1.3.

De�nition 1.8 (Standard de
oration of LJ) Let � :: Γ = �1; : : : ; �m ⊢ � be a derivation in LJ.

By de
orating 
ontexts bottom-up with distin
t variables starting with the sequen
e p = x1; : : : ; xm and

then de
orating formulas to the right of \⊢" top-down with terms in Λ
p

, we get a de
orated derivation

�

∗ :: Γp = x1 : �1; : : : ; xm : �
m

⊢ t : � . The de
oration rules are depi
ted in Figure 1.4. When de
orating
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ u : �
(∧I)

Γp ⊢ (t; u) : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ �1(t) : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ �2(t) : �

Figure 1.4: Standard de
oration of LJ.


ontexts bottom-up, the new variable in a (→I)-premise is fresh with respe
t to the variables in the bran
h


onne
ting the (→I)-
on
lusion to the root.

Any derivation of LJ 
an be standardly de
orated to provide a derivation of �

∧
→, if de
orated 
ontexts

are seen as sets, formulas are seen as types, and stru
tural rules are ignored. Conversely, any derivation

of �

∧
→ 
an be 
onverted to one of LJ, if terms are erased, variable-free bases are seen as sequen
es, types

are seen as formulas, and stru
tural rules are added, where ne
essary. The following example shows the

de
oration and erasure dire
tions between LJ and �

∧
→.

�→ � ⊢ �→ �

(W)

�→ �; � ⊢ �→ �

(X)

�; �→ � ⊢ �→ �

� ⊢ �
(W)

�; �→ � ⊢ �
(→E)

�; �→ � ⊢ �
� ⊢ �

(W)

�; �→ � ⊢ �
(∧I)

�; �→ � ⊢
LJ

� ∧ �

de
oration

−→
←−

erasure

x : �; y : �→ � ⊢ y : �→ � x : �; y : �→ � ⊢ x : �
(→E)

x : �; y : �→ � ⊢ yx : � x : �; y : �→ � ⊢ x : �
(∧I)

x : �; y : �→ � ⊢
�

∧
→

(yx; x) : � ∧ �

Su
h a 
onne
tion through de
oration and erasure also holds between the impli
ative fragment of

intuitionisti
 logi
 and Curry's type assignment system �→.

It is further argued in [18, 15℄ that even if a so-
alled non-standard de
oration is employed, LJ does

not 
orrespond to IT. The idea for a non-standard de
oration that en
odes the impli
ation, but ignores

the 
onjun
tion, derives from the interse
tion rules of IT, in whi
h premise and 
on
lusion terms are

identi
al, and from the fa
t that we would like a de
orated derivation of LJ to provide a derivation of IT,

if 
onjun
tion were 
onverted to interse
tion. The rules for su
h a de
oration are shown in Figure 1.5.
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ t : �
(∧I)

Γp ⊢ t : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ t : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ t : �

Figure 1.5: Non-standard de
oration of LJ.

It is 
lear that the de
oration terminates only in derivations of LJ in whi
h all (∧I)'s are applied to

identi
ally de
orated

1

premises; otherwise, the de
oration fails. Identi
ally de
orated (sub)derivations

are 
alled isomorphi
 in [18℄. Isomorphi
 derivations share the same impli
ative stru
ture.

Consequently, only a proper subset of LJ, denoted LJns, admits a non-standard de
oration and it is

this subset that 
orresponds to IT through de
oration and erasure. As when relating the whole of LJ

to �

∧
→, a derivation of LJns 
an be non-standardly de
orated to provide a derivation of IT, if de
orated


ontexts are seen as sets, 
onjun
tion is 
onverted to interse
tion, and stru
tural rules are ignored.

Conversely, a derivation of IT 
an be 
onverted to one of LJns, if terms are erased, variable-free bases are

seen as sequen
es, interse
tion is 
onverted to 
onjun
tion, and stru
tural rules are added, if ne
essary.

An example of derivations in LJns and IT with su
h a 
onne
tion follows.

� ⊢ �
(→I)

⊢ �→ �

� ⊢ �
(→I)

⊢ � → �


 ⊢ 

(→I)

⊢ 
 → 


(∧I)
⊢ (� → �) ∧ (
 → 
)

(∧I)
⊢
LJns

(�→ �) ∧ ((� → �) ∧ (
 → 
))

de
oration

−→
←−

erasure

x : � ⊢ x : �
(→I)

⊢ �x: x : �→ �

x : � ⊢ x : �
(→I)

⊢ �x: x : � → �

x : 
 ⊢ x : 

(→I)

⊢ �x: x : 
 → 


(∩I)
⊢ �x: x : (� → �) ∩ (
 → 
)

(∩I)
⊢
IT

�x: x : (�→ �) ∩ ((� → �) ∩ (
 → 
))

Derivations in LJ\LJns do not admit a non-standard de
oration. Su
h a derivation is the one proving

�; � → � ⊢ � ∧ �, shown on the previous page. The left and right premises of (∧I) are de
orated by yx

and x, respe
tively, if 
ontexts are de
orated by x; y, whi
h means that a non-standard de
oration 
annot

pro
eed to the 
on
lusion.

1

We mean de
orated non-standardly.
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The above dis
ussion testi�es that LJ restri
ted to impli
ation o�ers a logi
al foundation to the type

system �→, while the whole of LJ o�ers a logi
al foundation to �

∧
→. It is not the 
ase that LJ is the logi


behind IT through a 
orresponden
e by de
oration and erasure. If we employ the standard de
oration,

we end up 
orresponding with another type system, namely �

∧
→, while, if we employ the non-standard

de
oration, only a proper subset of LJ 
orresponds to IT. This means that interse
tion 
annot be logi
ally

interpreted as 
onjun
tion. It is rather a spe
ial kind of 
onjun
tion between isomorphi
 or syn
hronous


onjun
ts; it is referred to as syn
hronous 
onjun
tion in [15℄, while the standard intuitionisti
 
onjun
tion

is referred to as asyn
hronous 
onjun
tion. The notion of \isomorphism" or \syn
hroni
ity" of 
onjun
ts

is a metatheoreti
al restri
tion on LJ, as noted in [18℄, brought to light only by means of the non-standard

de
oration. The subset LJns expresses this spe
ial kind of 
onjun
tion and would serve as a logi
 for IT,

if it were somehow autonomized and des
ribed as a logi
 by itself. This is exa
tly what is attempted

in [18℄ and [15℄ by introdu
ing the logi
al systems \Interse
tion Logi
" and \Interse
tion Syn
hronous

Logi
", respe
tively.

1.1 Interse
tion Logi


Interse
tion Logi
 IL works with full binary trees

2

, 
alled kits, whose leaves are formulas generated by

impli
ation and interse
tion. It is a natural dedu
tion system whi
h proves judgements in sequent style.

Judgements in
lude kits of the same stru
ture, whi
h are 
alled overlapping. Sin
e IL is intended to

realize the part of LJ where (∧I) is applied to isomorphi
 premises, namely LJns, the rule introdu
ing

the interse
tion in IL should embody this isomorphism or sameness of premises. This is a
hieved by

binary trees; in parti
ular, the premises be
ome leaves originating from the same parent-node in a kit, so

that interse
tion introdu
tion in IL has a single premise. Its 
on
lusion gives a kit where the interse
tion

of the two leaves is a leaf on the parent-node. As a result, a non-standard de
oration of kits, en
oding

the impli
ation solely, is free to terminate in any derivation of IL.

⊢ t : � ⊢ t : �
(∧I) in LJns

⊢ t : � ∧ �

⊢ t : [�; � ]
(∩I) in IL

⊢ t : � ∩ �

A 
on
ise de�nition of IL and its a

ompanying notions follows.

De�nition 1.9 (IL) (i) A kit is a full binary tree K ::= � | [K;K] whose leaves are formulas generated

by the grammar � ::= � | � → � | � ∩ �, where � belongs to a 
ountable set of atomi
 formulas. We use

K;H;L to denote kits and �; �; �, et
. to denote leaves.

(ii) Two kits H;K overlap, denoted H ≃ K, if they share the same tree stru
ture, but possibly di�er

on their leaves.

(iii) A path of length n in a kit is a string of n letters from the set {l; r}, where l stands for \left"
and r for \right", that 
orresponds to the part of the kit whi
h starts at the root and ends at the node

rea
hed after n left or right steps. We use the letters p and q with subs
ripts, primes, et
. to denote

paths. The subtree of a kit K at path p, denoted K

p

, is the subtree of K rooted at the end of p in K.

A terminal path is one that ends at a leaf; the set of terminal paths of a kit K is denoted P

T

(K). Two
paths p and q of K are di�erent, if they split at a node of K.

2

A full binary tree is a tree in whi
h every node other than the leaves has two 
hild-nodes.
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(ax)

K ⊢ K

H1; : : : ; Hm

⊢ K H ≃ H
j

(1 6 j 6 m)
(W)

H1; : : : ; Hm

; H ⊢ K

Γ; H1; H2;∆ ⊢ K
(X)

Γ; H2; H1;∆ ⊢ K

Γ = H1; : : : ; Hm

⊢ K
(P)

Γ\ps = H1\
ps

; : : : ; H

m

\ps ⊢ K\ps

Γ; H ⊢ K
(→I)

Γ ⊢ H → K

Γ ⊢ H → K Γ ⊢ H
(→E)

Γ ⊢ K

H1[p := [�1; �1]]; : : : ; Hm

[p := [�
m

; �

m

]] ⊢ K[p := [�; � ]]
(∩I)

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := � ∩ � ]

Γ ⊢ K[p := � ∩ � ]
(∩E1)

Γ ⊢ K[p := �]

Γ ⊢ K[p := � ∩ � ]
(∩E2)

Γ ⊢ K[p := � ]

Figure 1.6: The logi
 IL.

(iv) If H ≃ K, then H → K is a kit overlapping with H;K and su
h that (H → K)p = H

p → K

p

,

for every p ∈ P

T

(H → K)[= P

T

(H) = P

T

(K)].
(v) The notation H [p := K] stands for the kit resulting from the substitution of H

p

by K in H. If ps

is a path in H, where s ∈ {l; r}, the pruning of H at path ps, denoted H\ps, is de�ned as H [p := H

ps].
(vi) The dedu
tive system IL derives judgements Γ ⊢ K, where the 
ontext Γ is a sequen
e of kits and

K is a kit. It 
onsists of the rules in Figure 1.6.

Remark 1.10 The in
lusion of the stru
tural rule of pruning, rule (P) in Figure 1.6, is motivated by

purely te
hni
al reasons, i.e. reasons 
on
erning the manipulation of the tree stru
ture.

It is easy to show that all judgements derived in IL in
lude overlapping kits, i.e. if H1; : : : ; Hm

⊢ K,

then H

j

≃ K (1 6 j 6 m).
The impli
ative rules a�e
t all terminal paths (or leaves) of (some of) the kits involved and are 
alled

global. On the other hand, the notation \ [p := ]" used in the interse
tion rules shows that these rules

a
t on a spe
i�
 path p. Rules a�e
ting a spe
i�
 path are 
alled lo
al. Pruning also a
ts lo
ally on kits.

The system just de�ned as \Interse
tion Logi
" is a
tually 
alled \pre-Interse
tion Logi
", denoted

pIL, in [18℄. Then, a derivation of IL proving Γ ⊢ K is de�ned as an equivalen
e 
lass of derivations of

pIL, all proving Γ ⊢ K. The equivalen
e relation between derivations of pIL is introdu
ed to eliminate

unne
essary di�erentiations resulting from di�eren
es in the order of appli
ation of 
onse
utive interse
-

tion rules 
on
erning di�erent paths. In pra
ti
e, though, a derivation of IL is identi�ed with a derivation

of pIL in the spe
i�ed equivalen
e 
lass.

To give a 
orresponden
e between IL and LJns and also between IL and IT, a non-standard de
oration

of IL is de�ned in [18℄. The de
oration employs untyped �-terms to keep tra
k of the impli
ative stru
ture

of derivations.
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(ax)

x : K ⊢ x : K

x1 : H1; : : : ; xm : H
m

⊢ t : K
(W)

x1 : H1; : : : ; xm : H
m

; x : H ⊢ t : K

Γ r; y : H1; x : H2; ∆
r

′

⊢ t : K
(X)

Γ r; x : H2; y : H1; ∆
r

′

⊢ t : K

x1 : H1; : : : ; xm : H
m

⊢ t : K
(P)

x1 : H1\
ps

; : : : ; x

m

: H
m

\ps ⊢ t : K\ps

Γ r; x : H ⊢ t : K
(→I)

Γ r ⊢ �x: t : H → K

Γ r ⊢ t : H → K Γ r ⊢ u : H
(→E)

Γ r ⊢ tu : K

x1 : H1[p := [�1; �1]]; : : : ; xm : H
m

[p := [�
m

; �

m

]] ⊢ t : K[p := [�; � ]]
(∩I)

x1 : H1[p := �1]; : : : ; xm : H
m

[p := �

m

] ⊢ t : K[p := � ∩ � ]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E1)

Γ r ⊢ t : K[p := �]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E2)

Γ r ⊢ t : K[p := � ]

Figure 1.7: Non-standard de
oration of IL.

De�nition 1.11 (Non-standard de
oration of IL) Let � :: Γ = H1; : : : ; Hm

⊢ K be a derivation in

IL. By de
orating 
ontexts bottom-up with distin
t variables starting with the sequen
e r = x1; : : : ; xm

and then de
orating kits to the right of \⊢" top-down with terms in Λ, we get a de
orated derivation

�

? :: Γ r = x1 : H1; : : : ; xm : H
m

⊢ t : K. The de
oration rules are shown in Figure 1.7. When de
orating


ontexts bottom-up, the new variable in a (→I)-premise is fresh with respe
t to the variables in the bran
h


onne
ting the (→I)-
on
lusion to the root.

The following theorem 
onne
ts IL to LJns modulo the 
onversion of interse
tion to 
onjun
tion. It

states that a derivation in IL proje
ts to a �nite number of derivations in LJns that all admit the same

non-standard de
oration, namely the non-standard de
oration of the IL-derivation.

Theorem 1.12 Let � :: H1; : : : ; Hm

⊢ K be a derivation in IL, s.t. �

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K.

For every p ∈ P

T

(K), there exists a derivation �

p :: (H1)
p

; : : : ; (H
m

)p ⊢ Kp

in LJns, su
h that it admits

the same (non-standard) de
oration as �, i.e. su
h that (�p)? :: x1 : (H1)
p

; : : : ; x

m

: (H
m

)p ⊢ t : Kp

.

Proof. Given in [21℄ by indu
tion on �. ⊣

1.1.1 Strong normalization of IL

Derivations in IL are shown to be strongly normalizing in [18, 21℄. A normal derivation is one whi
h is

free of the pruning rule and also free of impli
ation and interse
tion redexes. The pruning rule 
an be

easily eliminated, sin
e it 
ommutes with every other rule and 
an thus be shifted up just below axioms,

where it 
an be ignored. Then, impli
ation and interse
tion redexes 
an be redu
ed as shown below.
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�0 :: Γ; H ⊢ K
(→I)

Γ ⊢ H → K
�1 :: Γ ⊢ H

(→E)

Γ ⊢ K

,→→ S(�1; �0) :: Γ ⊢ K

The notation S(�1; �0) stands for the derivation obtained from �0 by substituting spe
i�


3

instan
es of

axioms H ⊢ H by �1 and then possibly eliminating some instan
es of weakening and ex
hange.

H1[p := [�1; �1]]; : : : ; Hm

[p := [�
m

; �

m

]] ⊢ K[p := [�; � ]]
(∩I)

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := � ∩ � ]
(∩E1)

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := �]

,→∩

H1[p := [�1; �1]]; : : : ; Hm

[p := [�
m

; �

m

]] ⊢ K[p := [�; � ]]
(P) on pl

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := �]

To show that IL is strongly normalizing, Theorem 1.12 and the strong normalization of LJ are used.

Theorem 1.13 A derivation in IL is strongly normalizing.

Proof. A detailed proof is given in [21℄. ⊣

1.1.2 Corresponden
e between IL and IT

The following two theorems are stated and proved in [18℄. The �rst one relates a derivation of IL to a

�nite number of derivations in IT through the non-standard de
oration of IL. The se
ond one relates a

single derivation of IT to a derivation in IL, whose non-standard de
oration are the terms in the derivation

of IT.

Theorem 1.14 Let � :: H1; : : : ; Hm

⊢ K be a derivation in IL, s.t. �

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K.

For every p ∈ P

T

(K), there exists a derivation �

p :: { x1 : (H1)
p

; : : : ; x

m

: (H
m

)p } ⊢ t : Kp

in IT.

Proof. By indu
tion on the IL-derivation �. ⊣

Theorem 1.15 If � :: { x1 : �1; : : : ; xm : �
m

} ⊢ t : � is a derivation in IT, there exists a derivation

�

′ :: �1; : : : ; �m ⊢ � in IL, where �1; : : : ; �m, and � are kits 
onsisting of a single node, su
h that

(�′)? :: x1 : �1; : : : ; xm : �
m

⊢ t : � .

Proof. By indu
tion on the IT-derivation �. ⊣

3

Instan
es su
h that the kit H to the left of \⊢" does not move to the right of \⊢" by an (→I) rule.
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1.2 Interse
tion Syn
hronous Logi


Interse
tion Syn
hronous Logi
 ISL is a natural dedu
tion system proving multisets, 
alled mole
ules,

whose members are atoms. Roughly speaking, atoms are intuitionisti
 statements, where 
onjun
tion is


onverted to interse
tion. This logi
 is also intended to realize LJns, where (∧I) is applied to isomorphi


premises, so the rule introdu
ing the interse
tion embodies this isomorphism, as was the 
ase in IL. This

is a
hieved by \gathering" isomorphi
 premises as atoms of the same mole
ule, so that interse
tion intro-

du
tion has again a single premise. Its 
on
lusion gives a mole
ule where the two atoms, 
orresponding

to the isomorphi
 premises, have merged into one atom that 
ontains the interse
tion of the premises. As

was the 
ase with kits, a non-standard de
oration of mole
ules, en
oding the impli
ation solely, is free to

terminate in any derivation of ISL.

⊢ t : � ⊢ t : �
(∧I) in LJns

⊢ t : � ∧ �

t : [( ; �); ( ; � )]
(∩I) in ISL

t : [( ; � ∩ � )]

The stru
tural 
omponents and the rules of ISL are de�ned as follows.

De�nition 1.16 (ISL) (i) Formulas are generated by the grammar � ::= � | � → � | � ∩ �, where �

belongs to a 
ountable set of atomi
 formulas.

(ii) An atom is a pair (Γ ; �), where the 
ontext Γ is a �nite sequen
e of formulas and � is a formula.

We use A;B; C to denote atoms.

(iii) A mole
ule [A1; : : : ;An

] is a �nite multiset of atoms that all share the same 
ontext 
ardinality.

We use M;N to denote mole
ules.

(iv) The dedu
tive system ISL proves mole
ules by the rules depi
ted in Figure 1.8. We use the

notation [(Γ
i

; �
i

)
i

] for a mole
ule [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] and the symbol \∪" for multiset union.

It is explained in detail in [15, 21℄ why it is ne
essary to de�ne atom-
ontexts as sequen
es and have

expli
it weakening and ex
hange in order for ISL to 
orre
tly 
apture the behavior of the interse
tion


onne
tive.

The rules of ISL 
an be 
ategorized as global or lo
al a

ording to whether they a�e
t all or some

atoms of the premise mole
ule(s), respe
tively. The stru
tural rules of weakening and ex
hange and the

impli
ation rules are global, while the stru
tural rule of pruning and the interse
tion rules are lo
al.

A non-standard de
oration of ISL is de�ned in [15℄. This de
oration is used in [21℄ to establish a


orresponden
e between ISL and LJns and is also used in [15℄ to establish a 
orresponden
e between ISL

and IT.

De�nition 1.17 (Non-standard de
oration of ISL) Let � :: M = [(Γ
i

; �
i

)
i

] = [(�i1; : : : ; �
i

m

; �
i

)
i

]
be a derivation in ISL. By de
orating 
ontexts bottom-up with distin
t variables starting with the sequen
e

p = x1; : : : ; xm and then de
orating mole
ules top-down with terms in Λ, we get a de
orated derivation

�

? :: t : M
p

= [(Γ
i

; �
i

)
i

]
p

= [(x1 : �i1; : : : ; xm : �i
m

; �
i

)
i

]. The de
oration rules are shown in Figure 1.9.

When de
orating 
ontexts bottom-up, the new variable in an (→I)-premise is fresh with respe
t to the

variables in the bran
h 
onne
ting the (→I)-
on
lusion to the root.

The following theorem is analogous to Theorem 1.12 for IL. It is stated and proved in [21℄ and 
onne
ts

ISL to LJns modulo the 
onversion of interse
tion to 
onjun
tion.
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(ax)

[(�
i

; �
i

)
i

]

[(Γ
i

; �
i

)
i

]
(W)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

M∪N
(P)

M

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

M∪ [(Γ ; �); (Γ ; � )]
(∩I)

M∪ [(Γ ; � ∩ � )]

M∪ [(Γ ; � ∩ � )]
(∩E1)

M∪ [(Γ ; �)]

M∪ [(Γ ; � ∩ � )]
(∩E2)

M∪ [(Γ ; � )]

Figure 1.8: The logi
 ISL.

(ax)

x : [(�
i

; �
i

)
i

]
x

t : [(Γ
i

; �
i

)
i

]
p

(W)

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t :M
p

∪N
p

(P)

t :M
p

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t :M
p

∪ [(Γ ; �); (Γ ; � )]
p

(∩I)
t :M

p

∪ [(Γ ; � ∩ � )]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E1)

t :M
p

∪ [(Γ ; �)]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E2)

t :M
p

∪ [(Γ ; � )]
p

Figure 1.9: Non-standard de
oration of ISL.
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Theorem 1.18 Let � :: [(Γ
i

; �
i

)
i

] be a derivation in ISL, su
h that �

? :: t : [(Γ
i

; �
i

)
i

]
p

. For every i,

there exists a derivation �

i :: Γ
i

⊢ �
i

in LJns, su
h that it admits the same (non-standard) de
oration as

�, i.e. su
h that (�i)? :: (Γ
i

)p ⊢ t : �
i

.

Proof. By indu
tion on �. ⊣

1.2.1 Strong normalization of ISL

Derivations of ISL are shown to be strongly normalizing in [15, 21℄, using the notion of \normal deriva-

tion" as de�ned for IL. Pruning is eliminated by 
ommuting 
onversions as in IL, and redexes of logi
al


onne
tives are redu
ed as shown below. The substitution notation S(�1; �0) bears the usual meaning
4

.

�0 :: [(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

] �1 :: [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

,→→ S(�1; �0) :: [(Γi ; �i)i]

M∪ [(Γ ; �); (Γ ; � )]
(∩I)

M∪ [(Γ ; � ∩ � )]
(∩E1)

M∪ [(Γ ; �)]

,→∩

M∪ [(Γ ; �); (Γ ; � )]
(P)

M∪ [(Γ ; �)]

In [15℄ it is also noted that, in a (P)-free derivation, the stru
tural rules of weakening and ex
hange


an all be moved up above the logi
al rules, so that an axiom is followed by a sequen
e of weakenings,

whi
h is followed by a sequen
e of ex
hanges, whi
h is followed by logi
al rules. Su
h derivations are


alled 
anoni
al. It may be ne
essary to bring a derivation to 
anoni
al form for redexes to be properly

revealed. Nonetheless, redu
tion steps preserve 
anoni
al forms, provided that any pruning generated by

redu
tion is eliminated.

To show the strong normalization of ISL, we use Theorem 1.18 and the strong normalization of LJ.

Theorem 1.19 A derivation in ISL is strongly normalizing.

Proof. A detailed proof is given in [21℄. ⊣

1.2.2 Corresponden
e between ISL and IT

A theorem whi
h gives a 
orresponden
e between ISL and IT through the de
oration of ISL is stated and

proved in [15℄.

Theorem 1.20 If � :: [(�i1; : : : ; �
i

m

; �
i

)
i

] is in ISL, then �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)
i

]
x1;:::; xm if and only

if �

i

:: { x1 : �i1; : : : ; xm : �i
m

} ⊢ t : �
i

in IT, for every i.

Proof. The \only if" dire
tion is shown by indu
tion on �, while the \if" dire
tion is shown by indu
tion

on t. ⊣

4

Here it stands for the derivation obtained from �0 by substituting spe
i�
 instan
es of axioms [(�
i

; �
i

)
i

] by �1 and

then possibly eliminating some instan
es of weakening and ex
hange.



CHAPTER 2

Union Types

We start by presenting a type system with interse
tion and union types in natural dedu
tion style. The

system assigns interse
tion and union types to terms of the untyped �-
al
ulus Λ. It is introdu
ed in [2℄,

where it is denoted N, as an extension of IT

ù

with rules for union.

De�nition 2.1 (IUT

ù

) (i) The set T
IUT

ù

of interse
tion and union types is generated by the grammar

T
IUT

ù

∋ � ::= � |! |� → � |�∩� |�∪�, where � belongs to a 
ountable set of type variables. As usual, we

use �; �; 
, et
. to denote type variables and �; �; �, et
. to denote types. Impli
ation is right asso
iative,

while interse
tion and union are left asso
iative and pre
ede over impli
ation.

(ii) A typing statement is an expression t : �, where t ∈ Λ and � ∈ T
IUT

ù

. Term t is 
alled the

subje
t and type � the predi
ate of the typing statement. A basi
 typing statement x : � is a typing

statement whose subje
t is a variable. A basis is a set of basi
 typing statements su
h that the subje
ts

are pairwise distin
t. If B is a basis, then dom(B) denotes the set of term variables whi
h are subje
ts

of basi
 typing statements in B.

(iii) The type system IUT

ù

proves statements B ⊢ t : �, where B is a basis and t : � a typing

statement. We 
all B the assumptions and t : � the su

edent of B ⊢ t : �. The rules of the system are

shown in Figure 2.1.

Remark 2.2 (i) The system is additive, i.e. all rules with more than one premise are 
ontext-sharing.

(ii) Contra
tion (C) is derivable and equivalent to a union redex (∪IE), as shown below.

B; x : �; y : � ⊢ t : �
(C)

B; x : � ⊢ t[x=y] : �
❀

(ax)

B; x : � ⊢ x : �
(∪I)

B; x : � ⊢ x : � ∪ � B; x : �; y : � ⊢ t : � B; x : �; y : � ⊢ t : �
(∪E)

B; x : � ⊢ t[x=y] : �

The next lemma shows that a 
ut rule is also derivable.

Lemma 2.3 (Substitution lemma) If B ⊢ t : � and B; x : � ⊢ u : � , then B ⊢ u[t=x] : � .

Proof. Shown from hypotheses in [2℄ by employing a union redex. ⊣

As noted in [2℄, if one is interested in the proof-theoreti
al properties of the system, it 
an be useful

to reformulate it in a sequent 
al
ulus style, i.e. to present it with left and right introdu
tion rules and

17
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(ax)

B; x : � ⊢ x : �
(ù)

B ⊢ t : !

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

B ⊢ t : �
(∪I1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪I2)
B ⊢ t : � ∪ �

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

B ⊢ u[t=x] : �

Figure 2.1: The type system IUT

ù

in natural dedu
tion style.

in a multipli
ative manner. The sequent 
al
ulus version is presented in Figure 2.2. Statements B ⊢ t : �
are now 
alled sequents. We write B;B

′
to mean that B∪B′

is still a basis, i.e. if x ∈ dom(B)∩dom(B′),
then there is a unique �, su
h that x : � ∈ B and x : � ∈ B

′
. In (→L), variable y in the 
on
lusion

sequent is fresh with respe
t to the derivations proving the premise sequents.

(ax)

B; x : � ⊢ x : �
(ù)

B ⊢ t : !

B ⊢ t : � B

′
; x : � ⊢ u : �

(→L)

B; B

′
; y : � → � ⊢ u[yt=x] : �

B; x : � ⊢ t : �
(→R)

B ⊢ �x: t : � → �

B; x : � ⊢ t : �
(∩L1)

B; x : � ∩ � ⊢ t : �

B; x : � ⊢ t : �
(∩L2)

B; x : � ∩ � ⊢ t : �

B ⊢ t : � B

′ ⊢ t : �
(∩R)

B; B

′ ⊢ t : � ∩ �

B; x : � ⊢ t : � B

′
; x : � ⊢ t : �

(∪L)
B; B

′
; x : � ∪ � ⊢ t : �

B ⊢ t : �
(∪R1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪R2)

B ⊢ t : � ∪ �

B ⊢ t : � B

′
; x : � ⊢ u : �

(
ut)

B; B

′ ⊢ u[t=x] : �

Figure 2.2: The type system IUT

ù

in sequent 
al
ulus style.
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Remark 2.4 (i) In the sequent 
al
ulus formulation, the system is multipli
ative, i.e. all the rules with

more than one premise are 
ontext-free.

(ii) Contra
tion (C) is still derivable and equivalent to a 
ut rule.

B; x : �; y : � ⊢ t : �
(C)

B; x : � ⊢ t[x=y] : �
❀

(ax)

x : � ⊢ x : � B; x : �; y : � ⊢ t : �
(
ut)

B; x : � ⊢ t[x=y] : �

The following remark, de�nition, and proposition hold for both formulations of the system.

Remark 2.5 The proposition \if B ⊢ t : � is provable, then FV (t) ⊆ dom(B)" is not valid due to the

(ù)-rule. Removing the (ù)-rule, though, retrieves the validity of the proposition.

De�nition 2.6 (Similar derivations) A derivation �

′
is similar to a derivation � if and only if �

′

an

be obtained from � by adding basi
 typing statements to the bases or renaming term variables.

Similar derivations share the same derivation tree, i.e. the same sequen
e of rules, and di�er only in

the bases and the term variables.

Proposition 2.7 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respe
t to �, then there exists

a �

′ :: B; y : � ⊢ t[y=x] : � similar to �.

(ii) (Weakening) If � :: B ⊢ t : � and B ⊆ B

′
, where B

′
is a basis, then there exists a �

′ :: B′ ⊢ t : �
similar to �.

Proof. Either by indu
tion on � (for both (i) and (ii)) or as explained in [2℄. ⊣

It is shown in detail in [2℄ that the two formulations of the system are equivalent, i.e. that B ⊢ t : �
is proved in natural dedu
tion if and only if B ⊢ t : � is proved in sequent 
al
ulus. It is interesting to

noti
e that, in order to derive the 
ut rule in natural dedu
tion, a union redex is employed. If y is fresh

with respe
t to the derivation proving B

′
; x : � ⊢ u : � and y 6∈ dom(B), the following is a derivation of


ut in natural dedu
tion.

B ⊢ t : �
(W)

B; B

′ ⊢ t : �
(∪I)

B; B

′ ⊢ t : � ∪ �

B

′
; x : � ⊢ u : �

(Ren)+(W)

B; B

′
; y : � ⊢ u[y=x] : �

B

′
; x : � ⊢ u : �

(Ren)+(W)

B; B

′
; y : � ⊢ u[y=x] : �

(∪E)
B; B

′ ⊢ u[y=x][t=y] = u[t=x] : �

The dashed lines refer to Proposition 2.7 and the terms u[y=x][t=y] and u[t=x] in the �nal statement are

identi
al, sin
e y 6∈ FV (u).
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2.1 Subje
t redu
tion

As argued in [2℄, the type system IUT

ù

is not invariant under �-redu
tion of subje
ts, meaning that from

B ⊢ t : � and t ։
�

u we 
annot infer B ⊢ u : �. It is the union elimination rule that is blamed for this

la
k of invarian
e; the substitution that it 
ontains 
auses the loss of 
orresponden
e between subterms

and subderivations. In fa
t, many o

urren
es of the same subterm t in the term typed by the 
on
lusion


orrespond to a unique subderivation (premise) typing t.

B ⊢ t : � ∪ � B; x : � ⊢ (: : : x : : : x : : :) = u : � B; x : � ⊢ (: : : x : : : x : : :) = u : �
(∪E)

B ⊢ (: : : t : : : t : : :) = u[t=x] : �

If one attempted to show subje
t redu
tion in IUT

ù

by indu
tion on B ⊢ t : �, as is done for IT

ù

in [13℄, the many-to-one 
orresponden
e dis
ussed above would indu
e a problem. For, supposing a redex

in t were redu
ed, so that t →
�

t

′
and u[t=x] →

�

(: : : t′ : : : t : : :), the indu
tion hypothesis would give

B ⊢ t′ : � ∪ � and then an appli
ation of union elimination with B ⊢ t′ : � ∪ � as major premise and the

same minor premises as before would derive B ⊢ (: : : t′ : : : t′ : : :) = u[t′=x] : � whi
h is obviously not the

required 
on
lusion.

The example given in [2℄ is that one 
an assign the type

(� → � → �) ∩ (�→ �→ �) → (� → � ∪ �) → �→ �

to both �xyz: x ((�w:w) yz)((�w:w) yz) and �xyz: x (yz)(yz), but neither to �xyz: x (yz)((�w:w) yz),
nor to �xyz: x ((�w:w) yz)(yz). Hen
e, the system IUT

ù

is not invariant under �-expansion of subje
ts,

either.

The solution proposed in [2℄ is a di�erent notion of �-redu
tion, 
alled parallel �-redu
tion, whi
h,

roughly speaking, allows redu
tions performed simultaneously on all the o

urren
es of t in u[t=x]. In

other words, a 
ontra
tion step in now de�ned in su
h a way that u[t=x] → u[t′=x]. The system is proved

to be invariant under parallel �-redu
tion.

For the pre
ise de�nition of \parallel redu
tion", whi
h is somewhat stronger than the informal de-

s
ription given above, we need some preliminary de�nitions.

1. A non-empty set F of redex o

urren
es in a term t is 
alled uniform, if, for every redex R of t,

either all o

urren
es of R in t are in F or no o

urren
e of R in t is in F .

2. If t→
�

u and R is a redex o

urren
e in t, the set of residuals of R in u is the (possibly empty) set

of redexes whi
h are either instan
es of R or 
opies of it generated by the redu
tion.

3. A 
omplete development of (t;F), where F is a set of redex o

urren
es in t, is a redu
tion su
h

that all and only residuals of redexes in F are redu
ed.

Formal de�nitions of these notions 
an be found in [4℄.

De�nition 2.8 (Parallel Redu
tion) The redu
tion relation ⇒
p

over �-terms is de�ned as follows:

t⇒
p

u if and only if there exists a uniform set F of redex o

urren
es in t, su
h that (t;F) ։

pl

u, where

(t;F) ։

pl

u is the 
omplete development of (t;F).

Invarian
e of typing under parallel redu
tion is then proved in [2℄ for IUT

ù

.
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Theorem 2.9 If B ⊢ t : � and t⇒
p

u, then B ⊢ u : �.

The proof is given for the sequent 
al
ulus formulation of the system, but the theorem holds for both

formulations, sin
e they are equivalent.

2.2 Cut elimination

In this se
tion we 
onsider the system in Figure 2.2 with the (ù)-rule ex
luded and 
ontra
tion expli
itly

in
luded; let us denote it IUT

C

. We will show 
ut elimination in IUT

C

by means of Gentzen's method [12℄.

The need to remove the (ù)-rule and admit the 
ontra
tion rule will be justi�ed after the details of the

proof have been provided. The 
ut elimination proof will be derived as a 
onsequen
e of a multi
ut

elimination proof in the type system IUT

′
C

, whi
h is de�ned below.

De�nition 2.10 (IUT

′
C

) The type system IUT

′
C

is de�ned by the rules in Figure 2.2, if we ex
lude the

(ù)-rule and in
lude 
ontra
tion and also substitute the 
ut rule by a multi
ut rule, 
alled \mix rule".

B; x : �; y : � ⊢ t : �
(C)

B; x : � ⊢ t[x=y] : �

B ⊢ t : � B

′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

B; B

′ ⊢ u[t=x1; : : : ; t=xm] : �

In the mix rule we are allowed to eliminate any number of basi
 typing statements with predi
ate �

from the basis of the right premise and not just a single su
h typing statement as in the 
ut rule. The

set B

′
may also 
ontain basi
 typing statements with predi
ate �. Type � is 
alled the mix-type.

Theorem 2.11 The systems IUT

C

and IUT

′
C

are equivalent.

Proof. It suÆ
es to show that (i) the 
ut rule 
an be derived in IUT

′
C

and (ii) the mix rule 
an be

derived in IUT

C

. Sin
e a 
ut 
an be seen as a spe
ial 
ase of mix, (i) is obvious. For (ii) we show that a

mix 
an be simulated in IUT

C

by 
onse
utive 
ontra
tions followed by a 
ut.

B ⊢ t : �

B

′
; x1 : �; x2 : �; x3 : �; : : : ; x

m

: � ⊢ u : �
(C)

B

′
; x2 : �; x3 : �; : : : ; x

m

: � ⊢ u[x2=x1] : �
(C)

B

′
; x3 : �; : : : ; x

m

: � ⊢ u[x2=x1][x3=x2] : �

.

.

.

B

′
; x

m

: � ⊢ u[x2=x1][x3=x2] : : : [xm=xm−1] : �
(
ut)

B;B

′ ⊢ (u[x2=x1][x3=x2] : : : [xm=xm−1])[t=xm] = u[t=x1; : : : ; t=xm] : �

When the mix involvesm eliminations of basi
 typing statements, the number of 
onse
utive 
ontra
tions

is m− 1. ⊣

Remark 2.12 (i) In IUT

′
C

(resp. IUT

C

) the only rule that 
an generate redexes in the term typed by

its 
on
lusion is the mix-rule (resp. the 
ut-rule). So, a derivation in IUT

′
C

without mix (resp. in IUT

C

without 
ut) types a normal term.
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(ii) A derivation in IUT

′
ùC

=IUT

′
C

+ (ù) without mix (resp. in IUT

ùC

=IUT

C

+ (ù) without 
ut)

does not ne
essarily type a normal term, sin
e the (ù)-rule may introdu
e a term with redexes whi
h are

transfered, modulo substitutions

1

, to the root-term.

It is easy to 
he
k that Proposition 2.7 holds for IUT

′
C

, as well.

Proposition 2.13 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respe
t to �, then there

exists a �

′ :: B; y : � ⊢ t[y=x] : � similar to �.

(ii) (Weakening) If � :: B ⊢ t : � and B ⊆ B

′
, where B

′
is a basis, then there exists a �

′ :: B′ ⊢ t : �
similar to �.

Proof. By indu
tion on � for both (i) and (ii). ⊣

Remark 2.14 The similarity of � and �

′
in Proposition 2.13 implies that, if � is mix-free, then �

′
is

mix-free, too.

De�nition 2.15 (Degree of type) The degree d(�) of a type � ∈ T
IUT

ù

\ {!} is de�ned indu
tively as

follows: (i) d(�) = 0, for every type variable �, and (ii) d(� ∗ �) = d(�) + d(�) + 1, where ∗ ∈ {→;∩;∪}.

De�nition 2.16 (Degree, rank, and measure of mix) Consider a mix with mix-type �.

B ⊢ t : � B

′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

B; B

′ ⊢ u[t=x1; : : : ; t=xm] : �

(i) The degree d of the mix is the degree d(�) of �.
(ii) The left rank lr of the mix is the largest number of 
onse
utive sequents rooted at the left premise,

su
h that ea
h has predi
ate � in the su

edent.

(iii) The right rank rr of the mix is the largest number of 
onse
utive sequents rooted at the right

premise, su
h that ea
h has at least one basi
 typing statement from x1 : �; : : : ; x
m

: � in the assumptions.

(iv) The rank r of the mix is the sum lr + rr of the left and right ranks of the mix.

(v) The measure of the mix is the ordered pair (d; r), where d is the degree and r the rank of the mix.

We note that the smallest possible degree of a mix is 0, while the smallest possible rank is 2.

Example 2.17 Let � = �→ �; � = � → � , and � be the following derivation in IUT

′
C

.

x : � ⊢ x : �
(→R)

∅ ⊢ �x: x : �
x : � ⊢ x : �

(→R)

∅ ⊢ �x: x : �
(∩R)

∅ ⊢ �x: x : � ∩ �

y : � ⊢ y : � w : � ⊢ w : �
(→L)

y : �; z : � ⊢ zy : �
(∩L2)

y : � ∩ �; z : � ⊢ zy : �
(∩L1)

y : � ∩ �; z : � ∩ � ⊢ zy : �
(mix)

� :: ∅ ⊢ (�x: x)(�x:x) : �

The mix has degree d = d(� ∩ �) = 5 and rank r = lr + rr = 1 + 2 = 3. So, its measure is m = (5; 3).

1

These substitutions 
ome from the rules (C) or (→L), but do not generate new redexes.
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The next lemma is the main tool for eliminating the mix in IUT

′
C

.

Lemma 2.18 If � :: B ⊢ t : � is a derivation in IUT

′
C

with a mix as �nal rule and no other mix


ontained, then there is a mix-free derivation �

′ :: B ⊢ t

′ : � in IUT

′
C

, where t ։
�

t

′
. (Remark 2.12(i)

implies that t

′
is normal.)

Proof. In Appendix A. ⊣

De�nition 2.19 (Topmost mix or 
ut) A mix (resp. 
ut) in a derivation � of IUT

′
C

(resp. IUT

C

)

is 
alled topmost, if there is no other mix (resp. 
ut) above it in the tree of �.

Theorem 2.20 (Mix elimination in IUT

′
C

) For every derivation � :: B ⊢ t : � in IUT

′
C

, there is a

mix-free derivation �

′ :: B ⊢ t′ : �, where t։
�

t

′
.

Proof. Using Lemma 2.18, we su

essively eliminate topmost mixes in �. In every elimination of a

topmost mix with subderivation �

h

the term typed by the root-sequent of �

h

redu
es to a normal term,

while the basis and type remain un
hanged. Rules with a single mix-free premise \pass on" the redu
tion

to their 
on
lusion. [Rule (C): If t ։
�

t

′
, then t[x=y] ։

�

t

′[x=y]. Rule (→R): If t ։
�

t

′
, then

�x: t ։
�

�x: t

′
. Rules (∩L),(∪R): If t ։

�

t

′
in the premise, then t ։

�

t

′
in the 
on
lusion.℄ Rules

with two mix-free premises also \pass on" the redu
tion to their 
on
lusion. [Rule (→L): If t։
�

t

′
and

u ։
�

u

′
, then u[yt=x] ։

�

u

′[yt′=x]. Rules (∩R),(∪L): If t ։
�

t0 in the left premise and t ։
�

t1 in the

right premise, then t0 = t1 = t

′
, sin
e mix-free derivations type normal terms and the normal form is

unique; so, we have t ։
�

t

′
in the 
on
lusion.℄ If we run this pro
edure top-down in �, we eliminate all

mixes in a �nite number of steps and obtain a mix-free �

′ :: B ⊢ t′ : �, where t։
�

t

′
. ⊣

Theorem 2.21 (Cut elimination in IUT

C

) For every derivation � :: B ⊢ t : � in IUT

C

, there is a


ut-free derivation �

′ :: B ⊢ t′ : �, where t։
�

t

′
.

Proof. If (IUT

C

)


f

is the system IUT

C

without the 
ut-rule (
ut-free) and (IUT

′
C

)

mf

is the system

IUT

′
C

without the mix-rule (mix-free), then (IUT

C

)


f

=(IUT

′
C

)

mf

. If � :: B ⊢ t : � in IUT

C

, then, by

Theorem 2.11, there is a �0 :: B ⊢ t : � in IUT

′
C

. So, by Theorem 2.20, there is a �

′
0 :: B ⊢ t′ : �, where

t։
�

t

′
, in (IUT

′
C

)

mf

. Sin
e (IUT

′
C

)

mf

=(IUT

C

)


f

, there is a �

′ = �

′
0 :: B ⊢ t′ : � in (IUT

C

)


f

. ⊣

Remark 2.22 The in
lusion of 
ontra
tion is ne
essary for the proof of 
ut elimination. For, if we

attempt to eliminate the 
ut shown below in the system IUT, whi
h is IUT

C

without (C), we see that

the tree with root-sequent x : (� → �) ∩ � ⊢ xx : � fails to 
omplete bottom-up without 
ut and without


ontra
tion. The boxes mark further failures.

x : � ⊢ x : �
(∩L2)

x : (�→ �) ∩ � ⊢ x : �

y : � ⊢ y : � z : � ⊢ z : �
(→L)

x : �→ �; y : � ⊢ xy : �
(∩L1)

x : (�→ �) ∩ �; y : � ⊢ xy : �
(
ut)

x : (�→ �) ∩ � ⊢ xx : �

not an axiom

∅ ⊢ y : � z : � ⊢ z : �
(→L)

x : �→ � ⊢ x x : �
(∩L1)

x : (�→ �) ∩ � ⊢ xx : �

not an axiom

∅ ⊢ x : � z : � ⊢ z : �
(→L)

x : �→ � ⊢ xx : �
(∩L1)

x : (�→ �) ∩ � ⊢ xx : �


annot pro
eed bottom-up

x : � ⊢ xx : �
(∩L2)

x : (�→ �) ∩ � ⊢ xx : �
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In IUT

C

we 
an prove the sequent x : (� → �) ∩ � ⊢ xx : � without 
ut, using the 
ontra
tion-rule.

y : � ⊢ y : � z : � ⊢ z : �
(→L)

x : �→ �; y : � ⊢ xy : �
(∩L1)

x : (�→ �) ∩ �; y : � ⊢ xy : �
(∩L2)

x : (�→ �) ∩ �; y : (�→ �) ∩ � ⊢ xy : �
(C)

x : (�→ �) ∩ � ⊢ xx : �

We 
an establish this derivation-tree, if we 
onsider the 
ut as a spe
ial 
ase of mix that eliminates a single

basi
 typing statement from the right premise and follow the method shown in the proof of Lemma 2.18.

The 
ontra
tion-rule appears in 
ase A : (∩L).

Sin
e we 
an derive the 
ontra
tion-rule in IUT using the 
ut-rule, the 
uts that 
annot be eliminated

in this system are essentially the ones that embody 
ontra
tions.

x : � ⊢ x : � B; x : �; y : � ⊢ t : �
(
ut)

B; x : � ⊢ t[x=y] : �

These 
uts introdu
e substitutions of variables by variables, whi
h do not 
reate redexes, so they are 
learly

\good" 
uts. A derivation in IUT that 
ontains solely \good" 
uts types a normal term. Nonetheless, we


hoose to show a total 
ut elimination in IUT

C

than a partial 
ut elimination in IUT.

Given the ne
essity of 
ontra
tion for the elimination of all 
uts, we 
an now justify the de�nition of

IUT

′
C

and explain why 
ut elimination in IUT

C

was shown through mix elimination in IUT

′
C

. Lemma 2.18


annot be proved for IUT

C

. In parti
ular, with 
ut in pla
e of mix, 
ase B : (C) : a does not work, sin
e

the 
ut-rule eliminates exa
tly one basi
 typing statement from the right premise.

�0 :: B ⊢ t : �

B

′
; x : �; y : � ⊢ u : �

(C)

�1 :: B′
; x : � ⊢ u[x=y] : �

(
ut)

� :: B;B′ ⊢ u[x=y][t=x] : �

,→

�0 :: B ⊢ t : � B

′
; x : �; y : � ⊢ u : �

would need a (
ut)

′

would need a sequent: B;B

′ ⊢ a term v = u[x=y][t=x] : �

On the other hand, trying to eliminate x : �; y : � by two 
onse
utive 
uts, we wouldn't end up with two


uts of less measure than the initial 
ut. A s
hemati
 
ounterexample is shown below.

�0 :: B ⊢ t : �

y : �

x : �; y : �

B

′
; x : �; y : � ⊢ u : �

(C)

�1 :: B′
; x : � ⊢ u[x=y] : �

(
ut), m = (d(�); lr + 3)
� :: B;B′ ⊢ u[x=y][t=x] : �

,→
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�0 :: B ⊢ t : �

�0 :: B ⊢ t : �

y : �

x : �; y : �

B

′
; x : �; y : � ⊢ u : �

(
ut)

′
, m

′ = (d(�); lr + 3) = m

B;B

′
; x : � ⊢ u[t=y] : �

(
ut)

′′
, m

′′ = (d(�); lr + 3) = m

B;B

′ ⊢ u[t=y][t=x] : �

or

�0 :: B ⊢ t : �

�0 :: B ⊢ t : �

y : �

x : �; y : �

B

′
; x : �; y : � ⊢ u : �

(
ut)

′
, m

′ = (d(�); lr + 2) < m

B;B

′
; y : � ⊢ u[t=x] : �

(
ut)

′′
, m

′′ = (d(�); lr + 4) > m

B;B

′ ⊢ u[t=x][t=y] : �

The next remark sustains the ne
essity for ex
lusion of the (ù)-rule in order to gain 
ut elimination.

Remark 2.23 Cut elimination is not valid in IUT

ùC

, sin
e mix elimination is not valid in IUT

′
ùC

.

Lemma 2.18 
annot be proved for IUT

′
ùC

be
ause a mix-free derivation in IUT

′
ùC

does not ne
essarily

type a normal term, as explained in Remark 2.12(ii). For example, in 
ase A : (∪L) : a we would have that

t0 �և u[z=y][t=x
j

] ։
�

t1, but without the restri
tion that t0 and t1 are normal and 
onsequently identi
al.

So, we wouldn't be able to apply (∪L) to �′
0 and �

′
1, as they would (possibly) type di�erent terms. This

problem would also arise in 
ases A : (∪L) : b, B : (∪L) : a, B : (∪L) : b, and B : (∩R).

2.3 Term 
hara
terizations

In this se
tion we show three theorems whi
h 
hara
terize �-terms a

ording to their typings in IUT

ùC

and

one theorem whi
h 
hara
terizes terms that are typable in IUT

C

. The general s
hema of these theorems

is the following: \t is typable in IUT

ùC

(resp. IUT

C

) in su
h and su
h a way if and only if t has su
h and

su
h a property". The theorems for IUT

ùC

also hold for the systems IUT

ù

, IT

ùC

=IT+ (ù)+ (C), and

IT

ù

=IT+ (ù). The theorem for IUT

C

also holds for IUT= IUT

C

− (C), IT

C

=IT+ (C), and IT. The

theorems for IT

ù

and IT have already been proved in [13℄, where the systems are denoted DÙ and D,

respe
tively. Combining the theorems for IUT

ùC

and IT

ù

(resp. IUT

C

and IT), we dedu
e 
on
lusions

of the form \t is typable in IUT

ùC

(resp. in IUT

C

) in a 
ertain way if and only if t is typable in IT

ù

(resp. in IT) in exa
tly the same way if and only if t belongs to a set of �-terms de�ned by a 
ertain


hara
teristi
 property".

All the type systems are 
onsidered in natural dedu
tion style. They 
an be gathered into two

groups: the type systems IUT

ùC

, IUT

C

, IUT

ù

, IUT with interse
tion and union types and the type sys-

tems IT

ùC

, IT

C

, IT

ù

, IT with interse
tion types. Figure 2.3 displays the two re
tangles of type systems

where downward arrows remove 
ontra
tion and rightward arrows remove the (ù)-rule.

We start by re
alling basi
 de�nitions and properties 
on
erning �-terms and sets of �-terms.

Proposition 2.24 Every t ∈ Λ 
an be uniquely written in the form

�x1 : : : �xm: (�) t1 : : : tn (m;n > 0)

where t1; : : : ; tn ∈ Λ and � is either a variable or a redex.
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IUT

ùC

❄

IUT

ù

N in [2℄

✲
IUT

C

❄

IUT

✲
IT

ù

DÙ in [13℄

✲
IT

D in [13℄

IT

ùC

❄

✲
IT

C

❄

Figure 2.3: The type systems.

Proof. In [13℄. ⊣

De�nition 2.25 (Head redu
tion) (i) If t = �x1 : : : �xm: (y) t1 : : : tn, for some variable y, i.e. if the

� in Proposition 2.24 is a variable, then t is in head normal form.

(ii) If t = �x1 : : : �xm: (�x:u) v t1 : : : tn, i.e. if the � in Proposition 2.24 is a redex, then the redex

(�x:u) v is 
alled the head redex of t.

(iii) The head redu
tion of a term t is the (�nite or in�nite) sequen
e t0; t1; : : : ; tn; : : : , su
h that

t0 = t and t

n+1 is obtained from t

n

by 
ontra
tion of the head redex of t

n

, if su
h a redex exists. If t

n

does not have a head redex, then t

n

is in head normal form and the sequen
e ends with t

n

. We write

t→
h

t

′
for a head 
ontra
tion and t։

h

t

′
for a head redu
tion.

By the above de�nition, a �nite head redu
tion ends in head normal form.

De�nition 2.26 (Leftmost redu
tion) The leftmost redu
tion of a term t is the (�nite or in�nite)

sequen
e t0; t1; : : : ; tn; : : : , su
h that t0 = t and t

n+1 is obtained from t

n

by 
ontra
tion of the leftmost

redex of t

n

, if su
h a redex exists. If t

n

does not have a leftmost redex, then t

n

is normal and the sequen
e

ends with t

n

. We write t→
l

t

′
for a leftmost 
ontra
tion and t։

l

t

′
for a leftmost redu
tion.

De�nition 2.27 (Quasi leftmost redu
tion) An in�nite quasi leftmost redu
tion of a term t is a

sequen
e t = t0; t1; : : : ; tn; : : : , su
h that (∀n > 0)[t
n

→
�

t

n+1] and (∀n > 0)(∃p > n)[t
p

→
l

t

p+1].

If X ;Y ⊆ Λ, then Λ ⊇ X → Y is de�ned as follows: (∀t ∈ Λ)[ t ∈ X → Y ⇔ (∀u ∈ X )[tu ∈ Y] ]. It is
easily proved that, if X ′ ⊆ X and Y ⊆ Y ′

, then X → Y ⊆ X ′ → Y ′
.

De�nition 2.28 (Saturated and N -saturated sets) Let X ;N ⊆ Λ.
(i) The set X is 
alled saturated, if for every u; t; x; t1; : : : ; tn ∈ Λ:

(u[t=x]) t1 : : : tn ∈ X ⇒ (�x:u) t t1 : : : tn ∈ X

(ii) The set X is 
alled N -saturated, if for every u; x; t1; : : : ; tn ∈ Λ and t ∈ N :

(u[t=x]) t1 : : : tn ∈ X ⇒ (�x:u) t t1 : : : tn ∈ X

Proposition 2.29 Let X ;Y;N ⊆ Λ.
(i) If Y is saturated (resp. N -saturated), then X → Y is saturated (resp. N -saturated).

(ii) If X ;Y are saturated (resp. N -saturated), then X∩Y and X∪Y are saturated (resp. N -saturated).
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Proof. Easy to show using De�nition 2.28. ⊣

De�nition 2.30 (Interpretation and N -interpretation) (i) An interpretation I is a fun
tion whi
h

asso
iates with ea
h type variable � a saturated |�|I ⊆ Λ.

(ii) If N ⊆ Λ, an N -interpretation I is a fun
tion whi
h asso
iates with ea
h type variable � an

N -saturated |�|I ⊆ Λ.

An interpretation (resp. N -interpretation) I 
an be extended, so that it asso
iates with ea
h type

� a saturated (resp. N -saturated) subset of Λ. Given the images of type variables by de�nition and

letting |!|I = Λ, we extend I indu
tively as follows: |� → � |I = |�|I → |� |I , |� ∩ � |I = |�|I ∩ |� |I , and
|� ∪ � |I = |�|I ∪ |� |I . The soundness of this extension is ensured by Proposition 2.29. From now on,

given an interpretation (resp. N -interpretation) I, we will write |�| instead of |�|I .
The next two lemmas play a key role in proving the four 
entral theorems of this se
tion.

Lemma 2.31 (Adequa
y lemma 1) Let � :: x1 : �1; : : : ; xm : �
m

⊢ u : � be a derivation in IUT

ùC

and I be an interpretation. If t1 ∈ |�1|; : : : ; tm ∈ |�
m

|, then u[t1=x1; : : : ; tm=xm] ∈ |� |.

Proof. By indu
tion on �. For the base 
ase and the 
ases of the impli
ation and interse
tion rules, we

refer to [13℄. We show the rest of the 
ases, writing B for x1 : �1; : : : ; xm : �
m

.

.

B; y : �
m

⊢ u : �
(C)

B ⊢ u[x
m

=y] : �

The IH gives that u[t
j

=x

j

; t

m

=y] ∈ |� |, where \t
j

=x

j

" stands for the substitutions \t1=x1; : : : ; tm=xm".

It is u[x
m

=y][t
j

=x

j

] = u[t
j

=x

j

; t

m

=y] ∈ |� |.

.

B ⊢ u : �
(∪I)

B ⊢ u : � ∪ �

By the IH, we have that u[t
j

=x

j

] ∈ |� | ⊆ |� ∪ �|.

.

B ⊢ t : � ∪ � B; y : � ⊢ u : � B; y : � ⊢ u : �
(∪E)

B ⊢ u[t=y] : �

By the IH, we have that t[t
j

=x

j

] ∈ |� ∪�|. If t[t
j

=x

j

] ∈ |� |, the IH gives that u[t
j

=x

j

; t[t
j

=x

j

]=y] ∈ |�|.
It is then u[t=y][t

j

=x

j

] = u[t
j

=x

j

; t[t
j

=x

j

]=y] ∈ |�|. If t[t
j

=x

j

] ∈ |�|, we pro
eed in a similar manner. ⊣

Lemma 2.32 (Adequa
y lemma 2) Let � :: x1 : �1; : : : ; xm : �
m

⊢ u : � be a derivation in IUT

C

,

N be a subset of Λ, and I be an N -interpretation, su
h that |�| ⊆ N , for every type � 6= !. If

t1 ∈ |�1|; : : : ; tm ∈ |�
m

|, then u[t1=x1; : : : ; tm=xm] ∈ |� |.

Proof. By indu
tion on �. The most interesting 
ase is the (→I) 
ase where the hypothesis \|�| ⊆ N ,

for every type � of IUT

C

" is used (see [13℄). The rest 
ases work as in the proof of Lemma 2.31. ⊣

We 
ontinue with some basi
 de�nitions that 
on
ern interse
tion and union types.
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De�nition 2.33 (Positive and negative o

urren
es) The positive and negative o

urren
es of a

type variable or of ! in a type � are de�ned by indu
tion on � as follows:

1. If � = � (or !), then the o

urren
e of � (or !) in � is positive.

2. If � = � → �, then the positive (resp. negative) o

urren
es of a type variable or ! in � are positive

(resp. negative) o

urren
es in �, while the positive (resp. negative) o

urren
es of a type variable or !

in � are negative (resp. positive) o

urren
es in �.

3. If � = � ∗ �, where ∗ is interse
tion or union, then the positive (resp. negative) o

urren
es of a

type variable or ! in � or � are positive (resp. negative) o

urren
es in �.

De�nition 2.34 (Final o

urren
es) The �nal o

urren
es of a type variable or of ! in a type � are

de�ned by indu
tion on � as follows:

1. If � = � (or !), then the o

urren
e of � (or !) in � is �nal.

2. If � = � → �, then the �nal o

urren
es of a type variable or ! in � are �nal o

urren
es in �.

3. If � = � ∩ �, then the �nal o

urren
es of a type variable or ! in � or � are �nal o

urren
es in �.

4. If � = � ∪ �, then no o

urren
e of a type variable or ! in � is �nal.

De�nition 2.35 (Non-trivial types) A type is 
alled non-trivial, if it 
ontains a �nal o

urren
e of

some type variable; otherwise, it is 
alled trivial.

A

ording to the above de�nitions, the non-trivial types 
an be de�ned indu
tively as follows: (i) all

type variables are non-trivial, (ii) if � is non-trivial, then � → � is non-trivial, for every �, and (iii) if

� or � are non-trivial, then � ∩ � is non-trivial. Similarly, the trivial types 
an be de�ned indu
tively

as follows: (i) ! is trivial, (ii) if � is trivial, then � → � is trivial, for every �, (iii) if � and � are both

trivial, then � ∩ � is trivial, and (iv) � ∪ � is trivial, for every � and � .

We 
an now state the �rst of the four theorems.

Theorem 2.36 (Head normal form theorem) A term t admits a non-trivial type in IUT

ùC

if and

only if its head redu
tion is �nite.

To prove the \only if" dire
tion of the this theorem, we need the following lemma.

Lemma 2.37 Let N0;N ⊆ Λ be su
h that: 1. N0 ⊆ N , 2. N0 ⊆ Λ → N0, 3. N0 → N ⊆ N , and 4. N
is saturated. If I is an interpretation, su
h that |�| = N , for every type variable �, then: (i) N0 ⊆ |�|,
for every type �, and (ii) |�| ⊆ N , for every non-trivial type �.

Proof. (i) By indu
tion on �. We only show the union 
ase and for the other 
ases we refer to [13℄. If

� = � ∪ �, then, using the IH, we have N0 ⊆ |� | ⊆ |�|.
(ii) By indu
tion on the non-trivial �. Sin
e union types are trivial, we refer to [13℄ for the whole

indu
tion. ⊣

For the \if" dire
tion of the head normal form theorem we will use the next two results.

Proposition 2.38 Every term in head normal form admits a non-trivial type in IT

ù

.

Proof. We denote T
IT

ù

the set of types � ::= � | ! | � → � | �∩�. Let u = �x1 : : : �xm: (y) t1 : : : tn be a

term in head normal form and T
IT

ù

∋ � = ! → : : :→ ! → � = !

(n) → �. If B = x1 : �1; : : : ; xm : �
m

, for

some �1; : : : ; �m ∈ T
IT

ù

, we 
an apply impli
ation elimination n times and then impli
ation introdu
tion

m times, as shown below, to type u in IT

ù

by the non-trivial type �1 → : : :→ �

m

→ �.
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B; y : � ⊢ y : � B; y : � ⊢ t1 : !
(→E)

B; y : � ⊢ (y) t1 : ! (n−1) → � B; y : � ⊢ t2 : !
(→E)

B; y : � ⊢ (y) t1t2 : ! (n−2) → �

.

.

.

B; y : � ⊢ (y) t1 : : : tn : �
(→I)

y : � ⊢ u : �1 → : : :→ �

m

→ �

⊣

Theorem 2.39 If B ⊢ t : � in IT

ù

and t =
�

t

′
, then B ⊢ t′ : � in IT

ù

.

Proof. In [13℄. ⊣

We 
an now provide the proof of Theorem 2.36.

Proof of Theorem 2.36. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

ùC

with �

non-trivial. Also, let N0 and N be the following subsets of Λ.

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ Λ }

N = { t ∈ Λ | the head redu
tion of t is �nite }

These N0;N satisfy 
onditions 1-4 of Lemma 2.37 (proof in [13℄). So, if we 
onsider an interpretation

I, su
h that |�| = N , for every type variable �, we have that N0 ⊆ |�
j

|, for every j from 1 to m, and

|� | ⊆ N . Sin
e x

j

∈ N0 ⊆ |�
j

|, Lemma 2.31 (Adequa
y lemma 1) implies that t[x
j

=x

j

] = t ∈ |� | ⊆ N ,

i.e. the head redu
tion of t is �nite.

(⇐): If the head redu
tion of t is �nite, then t ։
h

t

′
, for some t

′
in head normal form. By Proposi-

tion 2.38 we infer that t

′
admits a non-trivial type in IT

ù

, i.e. that B ⊢ t

′ : � in IT

ù

, for some basis B

and some non-trivial type � ∈ T
IT

ù

. Theorem 2.39 then implies that B ⊢ t : � in IT

ù

, so �nally B ⊢ t : �
in IUT

ùC

. ⊣

The head normal form theorem also holds for systems IT

ù

, IT

ùC

, and IUT

ù

, as the following theorem

states.

Theorem 2.40 A term t admits a non-trivial type in IT

ù

(resp. IT

ùC

, IUT

ù

) if and only if its head

redu
tion is �nite.

Proof. If t admits a non-trivial type in IT

ù

(resp. IT

ùC

, IUT

ù

), then it also does in the \bigger" system

IUT

ùC

, so, by Theorem 2.36, its head redu
tion is �nite. Conversely, if the head redu
tion of t is �nite,

then t admits a non-trivial type in IT

ù

, as already shown in the proof of Theorem 2.36, so it also does in

the \bigger" systems IT

ùC

and IUT

ù

. ⊣

Theorems 2.36 and 2.40 imply that IUT

ùC

and IT

ù

assign non-trivial types to exa
tly the same set of

terms, namely to the ones whose head redu
tion is �nite. Although IUT

ùC

is enri
hed with union rules

and 
ontra
tion 
ompared to IT

ù

, it 
annot assign non-trivial types to a larger set of terms than IT

ù

.

This is in a way expe
ted, sin
e union types are themselves trivial. Nonetheless, as the next example

shows, a term with a �nite head redu
tion 
an have additional non-trivial types assigned to it in IUT

ùC

besides the non-trivial types assigned to it in IT

ù

.
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Example 2.41 We 
onsider the term t = �x: (�y: y)zx whose head redu
tion is �nite, sin
e t→
h

�x: zx

and �x: zx is in head normal form. If B = x : �; z : �→ �, term t admits the non-trivial type � → � in

IT

ù

, as shown below.

B; y : �→ � ⊢ y : �→ �

(→I)

B ⊢ �y: y : (�→ �)→ �→ � B ⊢ z : �→ �

(→E)

B ⊢ (�y: y)z : �→ � B ⊢ x : �
(→E)

B ⊢ (�y: y)zx : �
(→I)

z : �→ � ⊢ t : �→ �

This typing is also valid in IUT

ùC

. But in IUT

ùC

we 
an get a se
ond non-trivial typing, as well, if

we substitute � by a union type �1 ∪ �2 in the above derivation.

The next basi
 theorem of this se
tion is the following.

Theorem 2.42 (Leftmost redu
tion theorem) A term t admits a type � in IUT

ùC

in a 
ontext

x1 : �1; : : : ; xm : �
m

, where �1; : : : ; �m 
ontain no negative o

urren
es of ! and � 
ontains no positive

o

urren
es of !, if and only if its leftmost redu
tion is �nite.

For the \only if" dire
tion of this theorem we will need the next lemma.

Lemma 2.43 Let N0;N be subsets of Λ su
h that: 1. N0 ⊆ N , 2. N0 ⊆ N → N0, 3. N0 → N ⊆ N ,

and 4. N is saturated. If I is an interpretation, su
h that N0 ⊆ |�| ⊆ N , for every type variable �, then:

(i) N0 ⊆ |�|, for every type � that 
ontains no negative o

urren
es of !, and (ii) |�| ⊆ N , for every

type � that 
ontains no positive o

urren
es of !.

Proof. We show (i) and (ii) simultaneously by indu
tion on �. We only give the 
ase of union and for

the other 
ases we refer to [13℄. If � = � ∪� and � 
ontains no negative o

urren
es of !, then � 
ontains

no negative o

urren
es of ! and, using the IH for � , we get N0 ⊆ |� | ⊆ |�|. If � = � ∪ � and � 
ontains

no positive o

urren
es of !, then neither � nor � 
ontain positive o

urren
es of ! and, by the IH for �

and �, we have that |� | ⊆ N and |�| ⊆ N , respe
tively. So, we get that |�| = |� | ∪ |�| ⊆ N . ⊣

Corollary 2.44 If N0;N are subsets of Λ that satisfy 
onditions 1-4 of Lemma 2.43 and I is an inter-

pretation, su
h that N0 ⊆ |�| ⊆ N , for every type variable �, then N0 ⊆ |�| ⊆ N , for every type � that


ontains no o

urren
es of !.

For the \if" dire
tion of the leftmost redu
tion theorem we will use the fa
t that every normal term

is typable in IT.

Proposition 2.45 If t is normal, then B ⊢ t : � in IT, for some type � and basis B.

Proof. In [13℄. ⊣

The proof of Theorem 2.42 
an now be supplied.
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Proof of Theorem 2.42. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

ùC

, su
h that

�1; : : : ; �m 
ontain no negative o

urren
es of ! and � 
ontains no positive o

urren
es of !. Also, let N
and N0 be the following subsets of Λ.

N = { t ∈ Λ | the leftmost redu
tion of t is �nite }

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ N }

These N ;N0 satisfy 
onditions 1-4 of Lemma 2.43 (proof in [13℄). So, if we 
onsider an interpretation

I su
h that |�| = N , for every type variable �, we have that N0 ⊆ |�
j

|, for every j from 1 to m, and

|� | ⊆ N . Sin
e x

j

∈ N0 ⊆ |�
j

|, Lemma 2.31 (Adequa
y lemma 1) implies that t[x
j

=x

j

] = t ∈ |� | ⊆ N ,

i.e. the leftmost redu
tion of t is �nite.

(⇐): If the leftmost redu
tion of t is �nite, then t =
�

t

′
, for some normal term t

′
. By Proposition 2.45

we have that x1 : �1; : : : ; xm : �
m

⊢ t

′ : � in IT, for some �1; : : : ; �m, and � in T
IT

. Consequently, we

have that x1 : �1; : : : ; xm : �
m

⊢ t′ : � in IT

ù

, for some �1; : : : ; �m with no negative o

urren
es of ! and

some � with no positive o

urren
es of !. Theorem 2.39 implies that x1 : �1; : : : ; xm : �
m

⊢ t : � in IT

ù

,

whi
h, in turn, implies that x1 : �1; : : : ; xm : �
m

⊢ t : � in the \bigger" system IUT

ùC

. ⊣

The leftmost redu
tion theorem also holds for the systems IT

ù

, IT

ùC

, and IUT

ù

, as was the 
ase with

the head normal form theorem.

Theorem 2.46 A term t admits a type � in IT

ù

(resp. IT

ùC

, IUT

ù

) in a 
ontext x1 : �1; : : : ; xm : �
m

,

where �1; : : : ; �m 
ontain no negative o

urren
es of ! and � 
ontains no positive o

urren
es of !, if

and only if its leftmost redu
tion is �nite.

Proof. If t admits su
h a typing in IT

ù

(resp. IT

ùC

, IUT

ù

), then it also admits su
h a typing in the

\bigger" system IUT

ùC

, so, by Theorem 2.42, its leftmost redu
tion is �nite. Conversely, if the leftmost

redu
tion of t is �nite, then t admits su
h a typing in IT

ù

, as already shown in the proof of Theorem 2.42,

so it also does in the \bigger" systems IT

ùC

and IUT

ù

. ⊣

Obviously, the systems IUT

ùC

and IT

ù

type exa
tly the same terms in this spe
i�
 way, i.e. in a


ontext with types that 
ontain no negative o

urren
es of ! and with a su

edent type that 
ontains no

positive o

urren
es of !. These terms are the ones whose leftmost redu
tion is �nite.

The third basi
 theorem follows.

Theorem 2.47 (Quasi leftmost redu
tion theorem) A term t admits a type � in IUT

ùC

in a 
on-

text x1 : �1; : : : ; xm : �
m

, where �1; : : : ; �m; � 
ontain no o

urren
es of !, if and only there is no in�nite

quasi leftmost redu
tion starting with t.

Proof. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

ùC

, su
h that �1; : : : ; �m; � 
ontain

no o

urren
es of !. Also, let N and N0 be the following subsets of Λ.

N = { t ∈ Λ | there is no in�nite quasi leftmost redu
tion of t }

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ N}

These N ;N0 satisfy 
onditions 1-4 of Lemma 2.43 (proof in [13℄). So, if we 
onsider an interpretation

I, su
h that |�| = N , for every type variable �, we have, by Corollary 2.44, that the interpretations of
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�1; : : : ; �m; � all 
ontain N0 and are 
ontained in N . Sin
e x

j

∈ N0 ⊆ |�
j

|, Lemma 2.31 implies that

t[x
j

=x

j

] = t ∈ |� | ⊆ N , i.e. there is no in�nite quasi leftmost redu
tion of t.

(⇐): If there is no in�nite quasi leftmost redu
tion of t, then the leftmost redu
tion of t is �nite.

So, we have that t =
�

t

′
, for some normal term t

′
, and x1 : �1; : : : ; xm : �

m

⊢ t

′ : � in IT, for some

�1; : : : ; �m; � ∈ T
IT

. Therefore, it is x1 : �1; : : : ; xm : �
m

⊢ t

′ : � in IT

ù

with �1; : : : ; �m; � free of

o

urren
es of !. Theorem 2.39 implies that x1 : �1; : : : ; xm : �
m

⊢ t : � in IT

ù

with �1; : : : ; �m; � free

of o

urren
es of !. Therefore, it is also x1 : �1; : : : ; xm : �
m

⊢ t : � in IUT

ùC

with �1; : : : ; �m; � free of

o

urren
es of !. ⊣

The quasi leftmost redu
tion theorem holds for IT

ù

, IT

ùC

, and IUT

ù

, as well.

Theorem 2.48 A term t admits a type � in IT

ù

(resp. IT

ùC

, IUT

ù

) in a 
ontext x1 : �1; : : : ; xm : �
m

,

where �1; : : : ; �m; � 
ontain no o

urren
es of !, if and only there is no in�nite quasi leftmost redu
tion

starting with t.

Proof. Similar to the proofs of Theorems 2.40 and 2.46. ⊣

By Theorems 2.47 and 2.48, the systems IUT

ùC

and IT

ù

type the same set of �-terms in a way su
h

that the types in the root-statement 
ontain no o

urren
es of !; namely, the terms with no in�nite quasi

leftmost redu
tion. Here again the \bigger" system does not \widen" the set of terms typable in the

spe
i�
 way in question.

The last and most important theorem of this se
tion is the following.

Theorem 2.49 (Strong normalization theorem) A term t is typable in IUT

C

if and only if it is

strongly normalizing.

For the \only if" dire
tion of this theorem we will use the next lemma.

Lemma 2.50 Let N0;N be subsets of Λ su
h that: 1. N0 ⊆ N , 2. N0 ⊆ N → N0, 3. N0 → N ⊆ N ,

and 4. N is N -saturated. If I is an N -interpretation, su
h that N0 ⊆ |�| ⊆ N , for every type variable

�, then N0 ⊆ |�| ⊆ N , for every type T
IUT

C

∋ � ::= � | � → � | � ∩ � | � ∪ �.

Proof. By indu
tion on �. We only show the union 
ase and refer to [13℄ for the other 
ases. If � = � ∪�,
then, using the IH for � and �, we get that N0 ⊆ |� | ⊆ |�| = |� | ∪ |�| ⊆ N . ⊣

Proof of Theorem 2.49. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

C

. Also, let N
and N0 be the following subsets of Λ.

N = { t ∈ Λ | t is strongly normalizing}

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ N }

These N ;N0 satisfy 
onditions 1-4 of Lemma 2.50 (proof in [13℄). So, if we 
onsider an N -interpretation

I, su
h that |�| = N , for every type variable �, we have that N0 ⊆ |�
j

|, for all j from 1 to m, and

|� | ⊆ N . Sin
e x

j

∈ N0 ⊆ |�
j

|, Lemma 2.32 (Adequa
y lemma 2) implies that t[x
j

=x

j

] = t ∈ |� | ⊆ N ,

i.e. t is strongly normalizing.

(⇐): If t is strongly normalizing, then it is typable in IT (see proof in [13℄), so it is also typable in

IUT

C

. ⊣

The strong normalization theorem holds for IT, IT

C

, and IUT, as well.
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Theorem 2.51 A term t is typable in IT (resp. IT

C

, IUT) if and only if it is strongly normalizing.

Proof. If t is typable in IT (resp. IT

C

, IUT), then it is also typable in the \bigger" system IUT

C

, so, by

Theorem 2.49, it is strongly normalizing. Conversely, if t is strongly normalizing, then it is typable in

IT, so it is also typable in the \bigger" systems IT

C

and IUT. ⊣

The systems IUT

C

, IUT on one hand and IT

C

, IT on the other are all equivalent with respe
t to the

set of terms they type, as they all ex
lusively type the strongly normalizing terms. It is worth noting that

union types in IUT

C

and IUT do not type a larger set of terms than interse
tion types in IT

C

and IT.

We 
an, therefore, say that type systems with interse
tion and union types are 
onservative extensions

of 
orresponding type systems with interse
tion types as far as typable terms are 
on
erned.





CHAPTER 3

Toward a Logi
 for Union Types

Working in natural dedu
tion style, the aim of this 
hapter is to �nd a logi
 
orresponding to the minimal

type system with interse
tion and union types IUT in the manner that the logi
s IL and ISL 
orrespond

to the type system IT. Toward this end, we may start by examining whether minimal intuitionisti
 logi
,

denoted ML, would be suitable as su
h a logi
, although the failure in 
orrelating LJ with IT in Chapter

1 for
es us to expe
t a negative result. The logi
 ML is the impli
ative, 
onjun
tive, and disjun
tive

fragment of intuitionisti
 logi
; a
tually, it is the extension of LJ with rules for disjun
tion.

De�nition 3.1 (ML) Considering formulas generated by the grammar � ::= � | � → � | � ∧ � | � ∨ �,
where � belongs to a 
ountable set of atomi
 formulas, the logi
al system ML proves statements Γ ⊢ �,

where Γ is a sequen
e of formulas. Its rules are shown in Figure 3.1. Impli
ation is, as usual, right

asso
iative, while 
onjun
tion and disjun
tion are left asso
iative and pre
ede over impli
ation.

(ax)

� ⊢ �

Γ ⊢ �
(W)

Γ; � ⊢ �

Γ; �; �;∆ ⊢ �
(X)

Γ; �; �;∆ ⊢ �

Γ; � ⊢ �
(→I)

Γ ⊢ � → �

Γ ⊢ � → � Γ ⊢ �
(→E)

Γ ⊢ �

Γ ⊢ � Γ ⊢ �
(∧I)

Γ ⊢ � ∧ �
Γ ⊢ � ∧ �

(∧E1)

Γ ⊢ �
Γ ⊢ � ∧ �

(∧E2)

Γ ⊢ �

Γ ⊢ �
(∨I1)

Γ ⊢ � ∨ �
Γ ⊢ �

(∨I2)
Γ ⊢ � ∨ �

Γ ⊢ � ∨ � Γ; � ⊢ � Γ; � ⊢ �
(∨E)

Γ ⊢ �

Figure 3.1: The logi
 ML.
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ u : �
(∧I)

Γp ⊢ (t; u) : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ �1(t) : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ �2(t) : �

Γp ⊢ t : �
(∨I1)

Γp ⊢ i1(t) : � ∨ �
Γp ⊢ t : �

(∨I2)
Γp ⊢ i2(t) : � ∨ �

Γp ⊢ t : � ∨ � Γp; x : � ⊢ u : � Γp; y : � ⊢ v : �
(∨E)

Γp ⊢ 
ase t of i1(x)→ u ; i2(y)→ v : �

Figure 3.2: Standard de
oration of ML.

Obviously, a standard de
oration of ML with untyped �-terms does not deliver IUT. Su
h a de
o-

ration en
odes all the logi
al 
onne
tives and delivers the Curry type system �

∧∨
→ in the Curry-Howard

perspe
tive.

De�nition 3.2 (Standard de
oration of ML) Let � :: Γ = �1; : : : ; �m ⊢ � be a derivation in ML.

By de
orating 
ontexts bottom-up with distin
t variables starting with the sequen
e p = x1; : : : ; xm and

then de
orating formulas to the right of \⊢" top-down with terms generated by the grammar

t ::= x | �x:t | tt | (t; t) | �1(t); �2(t) | i1(t); i2(t) | 
ase t of i1(x) → t ; i2(x) → t

we get a de
orated derivation �

∗ :: Γp = x1 : �1; : : : ; xm : �
m

⊢ t : � . The de
oration rules are presented

in Figure 3.2. When de
orating 
ontexts bottom-up, the new variable in a (→I) premise or in a (∨E)

minor premise is fresh with respe
t to the variables in the bran
h 
onne
ting the 
on
lusion to the root.

In addition, the fresh variables in two (∨E) minor premises are distin
t.

De�nition 3.3 (�

∧∨
→ ) Considering types built by impli
ation, 
onjun
tion, and disjun
tion, i.e. simple

types extended with disjun
tion, the type system �

∧∨
→ proves statements B ⊢ t : �, where B is a basis,

t belongs to the set of terms generated by the grammar in De�nition 3.2, and � is a type. Its rules are

displayed in Figure 3.3.

The logi
 ML relates to the type system �

∧∨
→ through (standard) de
oration and erasure in the same

way that LJ relates to �

∧
→.
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(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ u : �
(∧I)

B ⊢ (t; u) : � ∧ �
B ⊢ t : � ∧ �

(∧E1)

B ⊢ �1(t) : �
B ⊢ t : � ∧ �

(∧E2)

B ⊢ �2(t) : �

B ⊢ t : �
(∨I1)

B ⊢ i1(t) : � ∨ �
B ⊢ t : �

(∨I2)
B ⊢ i2(t) : � ∨ �

B ⊢ t : � ∨ � B; x : � ⊢ u : � B; y : � ⊢ v : �
(∨E)

B ⊢ 
ase t of i1(x)→ u ; i2(y)→ v : �

Figure 3.3: The type system �

∧∨
→ .

The next step is to attempt a 
orresponden
e between ML and IUT through a non-standard de
oration

of ML. The aim is to de�ne a de
oration of ML that transforms a derivation of ML to one of IUT,

provided the additional 
onversion of 
onjun
tion and disjun
tion to interse
tion and union, respe
tively.

The very rules of IUT di
tate that we introdu
e a de
oration whi
h en
odes the impli
ation, ignores the


onjun
tion and the introdu
tion of disjun
tion, and indu
es a substitution operation in the 
ase of the

elimination of disjun
tion. The rules for su
h a de
oration are shown in Figure 3.4. As in the 
ase of

the non-standard de
oration of LJ, the de
oration terminates only in derivations of ML in whi
h the

(∧I) rule is applied to isomorphi
 premises and the (∨E) rule is applied to isomorphi
 minor premises;

otherwise, the de
oration fails.

Obviously, it is only a proper subset of ML, denoted MLns, that admits a non-standard de
oration

and this subset 
orresponds to IUT through de
oration and erasure.

ML

MLns

IUT

✲
de
oration

✛

erasure

In parti
ular, a derivation of MLns 
an be non-standardly de
orated to provide a derivation of IUT, if

de
orated 
ontexts are seen as sets, 
onjun
tion and disjun
tion are 
onverted to interse
tion and union,
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ t : �
(∧I)

Γp ⊢ t : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ t : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ t : �

Γp ⊢ t : �
(∨I1)

Γp ⊢ t : � ∨ �
Γp ⊢ t : �

(∨I2)
Γp ⊢ t : � ∨ �

Γp ⊢ t : � ∨ � Γp; x : � ⊢ u : � Γp; x : � ⊢ u : �
(∨E)

Γp ⊢ u[t=x] : �

Figure 3.4: Non-standard de
oration of ML.

respe
tively, and stru
tural rules are ignored. Conversely, a derivation of IUT 
an be 
onverted to one of

MLns, if terms are erased, variable-free bases are seen as sequen
es, interse
tion and union are restored

to 
onjun
tion and disjun
tion, respe
tively, and stru
tural rules are added, if ne
essary. The example

below depi
ts this ba
k and forth between MLns and IUT. Dashed lines denote 
onse
utive stru
tural

rules and Γ = (� → �) ∧ (
 → �); � ∨ 
, while B = x : (� → �) ∩ (
 → �); y : � ∪ 
.

� ∨ 
 ⊢ � ∨ 


Γ ⊢ � ∨ 


(� → �) ∧ (
 → �) ⊢ (� → �) ∧ (
 → �)

Γ; � ⊢ (� → �) ∧ (
 → �)
(∧E)

Γ; � ⊢ � → �

� ⊢ �
Γ; � ⊢ �

(→E)

Γ; � ⊢ �

(� → �) ∧ (
 → �) ⊢ (� → �) ∧ (
 → �)

Γ; 
 ⊢ (� → �) ∧ (
 → �)
(∧E)

Γ; 
 ⊢ 
 → �


 ⊢ 


Γ; 
 ⊢ 

(→E)

Γ; 
 ⊢ �
(∨E)

Γ ⊢
MLns

�

de
oration

−→
←−

erasure

B ⊢ y : � ∪ 


B; z : � ⊢ x : (� → �) ∩ (
 → �)
(∩E)

B; z : � ⊢ x : � → � B; z : � ⊢ z : �
(→E)

B; z : � ⊢ xz : �

B; z : 
 ⊢ x : (� → �) ∩ (
 → �)
(∩E)

B; z : 
 ⊢ x : 
 → � B; z : 
 ⊢ z : 

(→E)

B; z : 
 ⊢ xz : �
(∪E)

B ⊢
IUT

xz[y=z] = xy : �
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Derivations in ML\MLns do not admit a non-standard de
oration. An example of su
h a derivation

is shown below, where Γ = � → �; 
 → �; � ∨ 
 and Γ? = x : �→ �; y : 
 → �; w : � ∨ 
.

� ∨ 
 ⊢ � ∨ 


Γ ⊢ � ∨ 


�→ � ⊢ �→ �

Γ; � ⊢ �→ �

� ⊢ �
Γ; � ⊢ �

(→E)

Γ; � ⊢ �


 → � ⊢ 
 → �

Γ; 
 ⊢ 
 → �


 ⊢ 


Γ; 
 ⊢ 

(→E)

Γ; 
 ⊢ �
(∨E)

Γ ⊢ �

de
oration

−→

w : � ∨ 
 ⊢ w : � ∨ 


Γ? ⊢ w : � ∨ 


x : � → � ⊢ x : � → �

Γ?; z : � ⊢ x : � → �

z : � ⊢ z : �

Γ?; z : � ⊢ z : �
(→E)

Γ?; z : � ⊢ xz : �

y : 
 → � ⊢ y : 
 → �

Γ?; z : 
 ⊢ y : 
 → �

z : 
 ⊢ z : 


Γ?; z : 
 ⊢ z : 

(→E)

Γ?; z : 
 ⊢ yz : �
(∨E)

Γ? ⊢ ? : �

We 
on
lude by the above that ML is not a logi
 for IUT via a de
oration-erasure 
orresponden
e.

A
tually, a standard de
oration of ML renders a 
orresponden
e between ML and �

∧∨
→ and a non-standard

de
oration of ML renders a 
orresponden
e between MLns and IUT. This non-standard de
oration marks

out the syn
hronous aspe
t of 
onjun
tion and disjun
tion by presupposing identi
ally de
orated premises

in (∧I) and identi
ally de
orated minor premises in (∨E), respe
tively. The 
orresponden
e between MLns

and IUT manifests that interse
tion and union 
orrespond to syn
hronous 
onjun
tion and disjun
tion,

respe
tively. It remains to examine syn
hronous 
onjun
tion (or interse
tion) and syn
hronous disjun
tion

(or union) as logi
al 
onne
tives. Toward this end, we aim to express MLns as a logi
 of its own by

introdu
ing extensions with union of the logi
al systems IL and ISL.

3.1 Interse
tion and Union Logi
 IUL

k

We de�ne Interse
tion and Union Logi
 IUL

k

as an extension with union of Interse
tion Logi
 IL. The

goal is to a
hieve a 
orresponden
e between IUL

k

and MLns. Sin
e MLns 
orresponds to IUT, this is

equivalent to showing a 
orresponden
e between IUL

k

and IUT.

The following de�nition assumes the notions of overlapping kits and impli
ation between su
h kits, of

paths, subtrees at 
ertain paths, terminal paths, di�erent paths, and of pruning, as given in 1.9.

De�nition 3.4 (IUL

k

) (i) A kit is a binary tree K ::= � | [K;K] with leaves � ::= � |� → � |�∩� |�∪�,
where � belongs to a 
ountable set of atomi
 formulas. We use K;H;L to denote kits and �; �; �, et
. to

denote leaves.

(ii) The notation H [p := K] stands for the kit resulting from the substitution of subtree H

p

by K in

H. If q and p are paths in H and q is terminal, the left doubling of leaf H

q

at path p, denoted H

q

=

pl

, is

de�ned as H [p := [Hq

; H

p]], while the right doubling of leaf H

q

at path p, denoted H

q

=

pr

, is de�ned as

H [p := [Hp

; H

q ]].
(iii) The dedu
tive system IUL

k

derives judgements Γ ⊢ K, where the 
ontext Γ is a sequen
e of kits

and K is a kit. It extends IL with rules for doubling and union, as shown in Figure 3.5. The letter s

stands for either path l or path r and the index j in 
ontexts runs from 1 to m.
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(ax)

K ⊢ K

Γ ⊢ K
(W)

Γ; H ⊢ K
Γ; H1; H2;∆ ⊢ K

(X)

Γ; H2; H1;∆ ⊢ K

Γ ⊢ K
(P)

Γ\ps ⊢ K\ps
Γ ⊢ K

(D)

Γq=
ps

⊢ Kq

=

ps

Γ; H ⊢ K
(→I)

Γ ⊢ H → K

Γ ⊢ H → K Γ ⊢ H
(→E)

Γ ⊢ K

H

j

[p := [�
j

; �

j

]] ⊢ K[p := [�; � ]]
(∩I)

H

j

[p := �

j

] ⊢ K[p := � ∩ � ]

Γ ⊢ K[p := � ∩ � ]
(∩E1)

Γ ⊢ K[p := �]

Γ ⊢ K[p := � ∩ � ]
(∩E2)

Γ ⊢ K[p := � ]

Γ ⊢ K[p := �]
(∪I1)

Γ ⊢ K[p := � ∪ � ]

Γ ⊢ K[p := � ]
(∪I2)

Γ ⊢ K[p := � ∪ � ]

H

j

[p := �

j

] ⊢ K[p := � ∪ � ] H

j

[p := [�
j

; �

j

]]; K[p := [�; � ]] ⊢ L[p := [�; �]]
(∪E)

H

j

[p := �

j

] ⊢ L[p := �]

Figure 3.5: The logi
 IUL

k

.



3.1 Interse
tion and Union Logi
 IUL

k

41

Remark 3.5 (i) The in
lusion of the rule of doubling (D) is motivated by te
hni
al reasons, as was the


ase with the in
lusion of pruning in the �rst pla
e. If q = p, then the (left or right) doubling of leaf

H

q = H

p = � at path p is H

p

=

pl

= H

p

=

pr

= H [p := [�; �]]. This gives the following spe
ial 
ase of the

rule.

H

j

[p := �

j

] ⊢ K[p := � ]
(D)

H

j

[p := [�
j

; �

j

]] ⊢ K[p := [�; � ]]

(ii) If s; s

′ ∈ {l; r}, the following equalities hold.

1. For any 
ontext Γ where p 6= q, it is (Γ\ps)\qs
′

= (Γ\qs
′

)\ps.
2. For any 
ontext Γ where p 6∈ {q; q′} and q is terminal, it is (Γ\ps)q=

q

′
s

′ = (Γq=
q

′
s

′)\ps.
3. For any 
ontext Γ where p; p

′ 6∈ {q; q′} and p; q are terminal, it is (Γp=
p

′
s

)q=
q

′
s

′ = (Γq=
q

′
s

′)p=
p

′
s

.

4. For any 
ontext Γ where p is terminal, it is (Γp=
ps

)\ps = Γ.

Sin
e IUL

k

is intended to realize MLns, where disjun
tion elimination is applied to isomorphi
 minor

premises, i.e. intended to express the syn
hronous aspe
t of disjun
tion as union, the union elimination

rule in IUL

k

in
orporates this isomorphism of minor premises by joining them together in the kit stru
ture.

As was the 
ase with interse
tion introdu
tion, isomorphi
 or same premises o

upy terminal paths in

the same kit, paths whi
h di�er only in the last letter. Therefore, union elimination has a single minor

premise and a non-standard de
oration in IUL

k

always terminates.

: : : ⊢ t : � ∨ � : : : ; x : � ⊢ u : � : : : ; x : � ⊢ u : �
(∨E) in MLns

: : : ⊢ u[t=x] : �

: : : ⊢ t : � ∪ � : : : ; x : [�; � ] ⊢ u : [�; �]
(∪E) in IUL

k

: : : ⊢ u[t=x] : �

As already noted in the dis
ussion of IL, the impli
ative rules a�e
t all terminal paths of 
ertain kits

and are 
alled global. Doubling alters the part of a kit rooted at the end of a spe
i�
 path, so it 
an be


ategorized as lo
al together with pruning. As far as union rules are 
on
erned, the notation \ [p := ]"
used in their presentation urges a pa
kaging with interse
tion rules whi
h are presented likewise. We

are in
lined to say that union rules, as well, a
t on spe
i�
 paths and are therefore lo
al. However, a

more thorough investigation of rule globality and lo
ality will later show that su
h a 
lassi�
ation is not

a

urate in the 
ase of union elimination.

We next de�ne a non-standard de
oration of IUL

k

whi
h en
odes the impli
ation, brings about a

substitution in the 
ase of union elimination, and ignores all other rules. This de
oration a
tually extends

the non-standard de
oration of IL (see De�nition 1.11) to doubling and the union rules.

De�nition 3.6 (Non-standard de
oration of IUL

k

) Suppose that � :: Γ = H1; : : : ; Hm

⊢ K is a

derivation in IUL

k

. By de
orating 
ontexts bottom-up with distin
t variables starting with r = x1; : : : ; xm

and then de
orating kits to the right of \⊢" top-down with terms in Λ, we get a de
orated derivation

�

? :: Γ r = x1 : H1; : : : ; xm : H
m

⊢ t : K. The de
oration rules are demonstrated in Figure 3.6. When

de
orating 
ontexts bottom-up, the new variable in an (→I) premise or in a (∪E) minor premise is fresh

with respe
t to the variables in the bran
h 
onne
ting the 
on
lusion to the root.
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(ax)

x : K ⊢ x : K

Γ r ⊢ t : K
(W)

Γ r; x : H ⊢ t : K

Γ r; y : H1; x : H2; ∆
r

′

⊢ t : K
(X)

Γ r; x : H2; y : H1; ∆
r

′

⊢ t : K

Γ r ⊢ t : K
(P)

(Γ\ps) r ⊢ t : K\ps
Γ r ⊢ t : K

(D)

(Γq=
ps

) r ⊢ t : Kq

=

ps

Γ r; x : H ⊢ t : K
(→I)

Γ r ⊢ �x: t : H → K

Γ r ⊢ t : H → K Γ r ⊢ u : H
(→E)

Γ r ⊢ tu : K

x

j

: H
j

[p := [�
j

; �

j

]] ⊢ t : K[p := [�; � ]]
(∩I)

x

j

: H
j

[p := �

j

] ⊢ t : K[p := � ∩ � ]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E1)

Γ r ⊢ t : K[p := �]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E2)

Γ r ⊢ t : K[p := � ]

Γ r ⊢ t : K[p := �]
(∪I1)

Γ r ⊢ t : K[p := � ∪ � ]

Γ r ⊢ t : K[p := � ]
(∪I2)

Γ r ⊢ t : K[p := � ∪ � ]

x

j

: H
j

[p := �

j

] ⊢ t : K[p := � ∪ � ] x

j

: H
j

[p := [�
j

; �

j

]]; x : K[p := [�; � ]] ⊢ u : L[p := [�; �]]
(∪E)

x

j

: H
j

[p := �

j

] ⊢ u[t=x] : L[p := �]

Figure 3.6: Non-standard de
oration of IUL

k

.

Remark 3.7 We 
an easily show that, if �

? :: Γr ⊢ t : K, then FV (t) ⊆ {r}.

We stress the fa
t that every derivation of IUL

k

admits a non-standard de
oration. This is be
ause

the kit stru
ture has been used to unite the isomorphi
 premises of (∧I), so that (∩I) has a single premise,

and also to unite the isomorphi
 minor premises of (∨E), so that (∪E) has a single minor premise.

3.1.1 Commutations of lo
al rules

As already mentioned in Chapter 1, a derivation of IL is de�ned in [18℄ as an equivalen
e 
lass of

derivations of pIL whi
h di�er only in the order of appli
ation of 
onse
utive lo
al rules 
on
erning

di�erent paths. A derivation of IUL

k


an be formally de�ned in a similar manner provided that (∪E)

is not 
onsidered lo
al. Thus, if the system introdu
ed by De�nition 3.4 is 
alled \pre-Interse
tion and

Union Logi
 with kits", denoted pIUL

k

, a more rigorous de�nition of IUL

k


an be pursued as follows.
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De�nition 3.8 (IUL

k

formal) Interse
tion and Union Logi
 IUL

k

is the quotient set pIUL

k

=∼ of

pIUL

k

by the equivalen
e relation \∼" de�ned below

1

. Paths p and q are di�erent in 
ommutations that

involve only p and q, whereas p 6∈ {q; q′} in 
ommuting (P,D), p; p

′ 6∈ {q; q′} in 
ommuting (D,D), and

q 6∈ {p; p′} in 
ommuting (D,∩I), (D,∩E), (D,∪I).

Γ ⊢ K
(P)

ps

Γ\ps ⊢ K\ps
(P)

qs

′

(Γ\ps)\qs
′

⊢ (K\ps)\qs
′

∼

3.5(ii,1)

Γ ⊢ K
(P)

qs

′

Γ\qs
′

⊢ K\qs
′

(P)

ps

(Γ\qs
′

)\ps ⊢ (K\qs
′

)\ps

Γ ⊢ K
(P)

ps

Γ\ps ⊢ K\ps
(D)

q

′

(Γ\ps)q=
q

′
s

′ ⊢ (K\ps)q=
q

′
s

′

∼

3.5(ii,2)

Γ ⊢ K
(D)

q

′

Γq=
q

′
s

′ ⊢ Kq

=

q

′
s

′

(P)

ps

(Γq=
q

′
s

′)\ps ⊢ (Kq

=

q

′
s

′)\ps

Γ ⊢ K[q := [�; � ]]
(P)

ps

Γ\ps ⊢ (K[q := [�; � ]])\ps
(∩I)

q

(Γ\ps)\qs ⊢ (K[q := � ∩ � ])\ps

∼

3.5(ii,1)

Γ ⊢ K[q := [�; � ]]
(∩I)

q

Γ\qs ⊢ K[q := � ∩ � ]
(P)

ps

(Γ\qs)\ps ⊢ (K[q := � ∩ � ])\ps

Γ ⊢ K[q := � ∩ � ]
(P)

ps

Γ\ps ⊢ (K[q := � ∩ � ])\ps
(∩E)

q

Γ\ps ⊢ (K[q := �])\ps
∼

Γ ⊢ K[q := � ∩ � ]
(∩E)

q

Γ ⊢ K[q := �]
(P)

ps

Γ\ps ⊢ (K[q := �])\ps

Γ ⊢ K[q := �]
(P)

ps

Γ\ps ⊢ (K[q := �])\ps
(∪I)

q

Γ\ps ⊢ (K[q := � ∪ � ])\ps
∼

Γ ⊢ K[q := �]
(∪I)

q

Γ ⊢ K[q := � ∪ � ]
(P)

ps

Γ\ps ⊢ (K[q := � ∪ � ])\ps

Γ ⊢ K
(D)

p

′

Γp=
p

′
s

⊢ Kp

=

p

′
s

(D)

q

′

(Γp=
p

′
s

)q=
q

′
s

′ ⊢ (Kp

=

p

′
s

)q=
q

′
s

′

∼

3.5(ii,3)

Γ ⊢ K
(D)

q

′

Γq=
q

′
s

′ ⊢ Kq

=

q

′
s

′

(D)

p

′

(Γq=
q

′
s

′)p=
p

′
s

⊢ (Kq

=

q

′
s

′)p=
p

′
s

Γ ⊢ K[q := [�; � ]]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := [�; � ]])p=
p

′
s

(∩I)
q

(Γp=
p

′
s

)\qs ⊢ (K[q := � ∩ � ])p=
p

′
s

∼

3.5(ii,2)

Γ ⊢ K[q := [�; � ]]
(∩I)

q

Γ\qs ⊢ K[q := � ∩ � ]
(D)

p

′

(Γ\qs)p=
p

′
s

⊢ (K[q := � ∩ � ])p=
p

′
s

Γ ⊢ K[q := � ∩ � ]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := � ∩ � ])p=
p

′
s

(∩E)
q

Γp=
p

′
s

⊢ (K[q := �])p=
p

′
s

∼

Γ ⊢ K[q := � ∩ � ]
(∩E)

q

Γ ⊢ K[q := �]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := �])p=
p

′
s

1

Stri
tly speaking, the equivalen
e relation \∼" is the re
exive and transitive 
losure of the relation given in 3.8.
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Γ ⊢ K[q := �]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := �])p=
p

′
s

(∪I)
q

Γp=
p

′
s

⊢ (K[q := � ∪ � ])p=
p

′
s

∼

Γ ⊢ K[q := �]
(∪I)

q

Γ ⊢ K[q := � ∪ � ]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := � ∪ � ])p=
p

′
s

Γ ⊢ K[p := [�; � ]][q := [�; �]]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := [�; �]]
(∩I)

q

(Γ\ps)\qs ⊢ K[p := � ∩ � ][q := � ∩ �]

∼

3.5(ii,1)

Γ ⊢ K[p := [�; � ]][q := [�; �]]
(∩I)

q

Γ\qs ⊢ K[p : [�; � ]][q := � ∩ �]
(∩I)

p

(Γ\qs)\ps ⊢ K[p := � ∩ � ][q := � ∩ �]

Γ ⊢ K[p := [�; � ]][q := � ∩ �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := � ∩ �]
(∩E)

q

Γ\ps ⊢ K[p := � ∩ � ][q := �]

∼

Γ ⊢ K[p := [�; � ]][q := � ∩ �]
(∩E)

q

Γ ⊢ K[p := [�; � ]][q := �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := �]

Γ ⊢ K[p := [�; � ]][q := �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := �]
(∪I)

q

Γ\ps ⊢ K[p := � ∩ � ][q := � ∪ �]

∼

Γ ⊢ K[p := [�; � ]][q := �]
(∪I)

q

Γ ⊢ K[p := [�; � ]][q := � ∪ �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := � ∪ �]

Γ ⊢ K[p := � ∩ � ][q := � ∩ �]
(∩E)

p

Γ ⊢ K[p := �][q := � ∩ �]
(∩E)

q

Γ ⊢ K[p := �][q := �]

∼

Γ ⊢ K[p := � ∩ � ][q := � ∩ �]
(∩E)

q

Γ ⊢ K[p := � ∩ � ][q := �]
(∩E)

p

Γ ⊢ K[p := �][q := �]

Γ ⊢ K[p := � ∩ � ][q := �]
(∩E)

p

Γ ⊢ K[p := �][q := �]
(∪I)

q

Γ ⊢ K[p := �][q := � ∪ �]

∼

Γ ⊢ K[p := � ∩ � ][q := �]
(∪I)

q

Γ ⊢ K[p := � ∩ � ][q := � ∪ �]
(∩E)

p

Γ ⊢ K[p := �][q := � ∪ �]

Γ ⊢ K[p : �][q := �]
(∪I)

p

Γ ⊢ K[p : � ∪ � ][q := �]
(∪I)

q

Γ ⊢ K[p : � ∪ � ][q := � ∪ �]

∼

Γ ⊢ K[p : �][q := �]
(∪I)

q

Γ ⊢ K[p : �][q := � ∪ �]
(∪I)

p

Γ ⊢ K[p : � ∪ � ][q := � ∪ �]

A derivation � :: Γ ⊢ K in IUL

k

formally denotes an equivalen
e 
lass of derivations in pIUL

k

, all

proving Γ ⊢ K.

Remark 3.9 (i) Sin
e the lo
al rules (P), (D), (∩I), (∩E), and (∪I) are not impressed on the de
oration

of a derivation, we 
an safely say that derivations of pIUL

k

in the same equivalen
e 
lass admit the

same de
oration provided that 
ontexts are identi
ally de
orated. This de
oration is also the one for the

IUL

k

-derivation representing the equivalen
e 
lass in question.

(ii) As already remarked for the 
ase of pIL and IL in Chapter 1, in pra
ti
e an equivalen
e 
lass

of pIUL

k

-derivations, i.e. an IUL

k

-derivation, is identi�ed with a spe
i�
 member of the 
lass, i.e. a

spe
i�
 pIUL

k

-derivation. Thereupon, we 
an a
tually ignore De�nition 3.8 and 
on�ne ourselves to

De�nition 3.4.
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Had we 
onsidered (∪E) lo
al, we would have also had to examine the 
ommutations of the pairs

(P,∪E), (D,∪E), (∩E,∪E), (∪I,∪E), (∩I,∪E), and (∪E,∪E).

The �rst four pairs 
ommute symmetri
ally, though not without minor restri
tions whi
h stem from

the fa
t that (∪E) is a two-premise rule. In parti
ular, for the pair (P,∪E), the only 
ase that works is

when both premises of (∪E) derive from (P) and this is be
ause this stru
tural rule messes up with the

tree-stru
ture. Cases where only one premise of (∪E) derives from (P) do not work. The same holds for

the pair (D,∪E).

Γ ⊢ K[q := � ∪ � ]
(P)

ps

Γ\ps ⊢ (K[q := � ∪ � ])\ps
Γq=

qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(P)

ps

(Γq=
qs

)\ps; (K[q := [�; � ]])\ps ⊢ (L[q := [�; �]])\ps
(∪E)

q

Γ\ps ⊢ (L[q := �])\ps

∼

3.5(ii,2)

Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(∪E)

q

Γ ⊢ L[q := �]
(P)

ps

Γ\ps ⊢ (L[q := �])\ps

Γ ⊢ K[q := � ∪ � ]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := � ∪ � ])p=
p

′
s

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(D)

p

′

(Γq=
qs

)p=
p

′
s

; (K[q := [�; � ]])p=
p

′
s

⊢ (L[q := [�; �]])p=
p

′
s

(∪E)
q

Γp=
p

′
s

⊢ (L[q := �])p=
p

′
s

∼

3.5(ii,3)

Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(∪E)

q

Γ ⊢ L[q := �]
(D)

p

′

Γp=
p

′
s

⊢ (L[q := �])p=
p

′
s

On the other hand, for the pair (∩E,∪E), the only 
ase that works is when the minor premise of (∪E)

derives from (∩E). The same holds for the pair (∪I,∪E).

Γ ⊢ K[q := � ∪ � ]

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := � ∩ �]
(∩E)

p

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := �]
(∪E)

q

Γ ⊢ L[q := �][p := �]

∼

Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := � ∩ �]
(∪E)

q

Γ ⊢ L[q := �][p := � ∩ �]
(∩E)

p

Γ ⊢ L[q := �][p := �]

Γ ⊢ K[q := � ∪ � ]

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := �]
(∪I)

p

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := � ∪ �]
(∪E)

q

Γ ⊢ L[q := �][p := � ∪ �]

∼
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Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := �]
(∪E)

q

Γ ⊢ L[q := �][p := �]
(∪I)

p

Γ ⊢ L[q := �][p := � ∪ �]

For the last two pairs the inter
hange relation is not exa
tly symmetri
al, sin
e the 
ases that work

involve additional stru
tural rules or restri
tions on 
ertain leaves. As examples, we show the pair (∩I,∪E)

in the 
ase where the minor premise of (∪E) derives from (∩I), whi
h is a
tually the only 
ase that works

for this pair, and the pair (∪E,∪E) in the 
ase where again the minor premise of the lower (∪E) derives

from the upper (∪E). We present the latter pair using a simple kit-stru
ture to avoid heavy formalism.

Γ ⊢ K[q := � ∪ � ][p := �]

(Γq=
qs

)p=
ps

; K[q := [�; � ]][p := [�; �]] ⊢ L[q := [�; �]][p := [�; �]]
(∩I)

p

Γq=
qs

; K[q := [�; � ]][p := �] ⊢ L[q := [�; �]][p := � ∩ �]
(∪E)

q

Γ ⊢ L[q := �][p := � ∩ �]

?

∼

3.5(ii,3)

Γ ⊢ K[q := � ∪ � ][p := �]
(D)

p

Γp=
ps

⊢ K[q := � ∪ � ][p := [�; �]] (Γp=
ps

)q=
qs

; K[q := [�; � ]][p := [�; �]] ⊢ L[q := [�; �]][p := [�; �]]
(∪E)

q

Γp=
ps

⊢ L[q := �][p := [�; �]]
(∩I)

p

Γ ⊢ L[q := �][p := � ∩ �]

Γ ⊢ [�; � ∪ �]

Γr=
rr

; [�; [�; �]] ⊢ [� ∪ �; [φ;φ]] (Γr=
rr

)l=
ll

; [[�; �]; [�; �]]; [[�; � ]; [φ;φ]] ⊢ [[�; �]; [�; �]]
(∪E)

l

Γr=
rr

; [�; [�; �]] ⊢ [�; [�; �]]
(∪E)

r

Γ ⊢ [�; �]

?

∼

3.5(ii,3)

Γ ⊢ [�; � ∪ �] Γr=
rr

; [�; [�; �]] ⊢ [� ∪ �; [φ;φ]]
(∪E)

r

Γ ⊢ [� ∪ �; �]

see right below

� :: Γl=
ll

; [[�; � ]; �] ⊢ [[�; �]; �]
(∪E)

l

Γ ⊢ [�; �]

Γ ⊢ [�; � ∪ �]
(D)

l

Γl=
ll

⊢ [[�; �]; � ∪ �]
(W)

Γl=
ll

; [[�; � ]; �] ⊢ [[�; �]; � ∪ �]

(Γr=
rr

)l=
ll

; [[�; �]; [�; �]]; [[�; � ]; [φ;φ]] ⊢ [[�; �]; [�; �]]
(X)

(Γr=
rr

)l=
ll

; [[�; � ]; [φ;φ]]; [[�; �]; [�; �]] ⊢ [[�; �]; [�; �]]
(∪E)

r

� :: Γl=
ll

; [[�; � ]; �] ⊢ [[�; �]; �]

In the 
ase of (∪E,∪E), the leaves of subtree [�; �] must be identi
al, so that (∪E)
r


an be applied, and

even twi
e, in the derivation to the right of \∼". This means that a restri
tion is posed on leaves of the

premises of (∪E)
l

in the derivation to the left of \∼", sin
e, in its general 
ase, this rule would be applied

with di�erent su
h leaves.

The above dis
ussion highlights the pe
uliar nature of (∪E), when 
ompared to the (other) lo
al rules

(P), (D), (∩I), (∩E), (∪I). Besides the fa
t that union elimination is a two-premise rule, while all the

others are one-premise rules, there are signi�
ant abnormalities in 
ommuting union elimination with the

others, while the others 
ommute with ea
h other quite smoothly. The formalism of mole
ules will later

reveal a 
ertain kind of globality inherent in the union elimination rule whi
h is as yet 
on
ealed by the


omplex notation of kits. So, fortunately, union elimination will prove to di�er from the rules 
ategorized

as \lo
al", retaining the validity of De�nition 3.8.
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3.1.2 Relating IUL

k

to MLns

Using the non-standard de
orations of ML and IUL

k

, we will attain a 
onne
tion between a single

IUL

k

derivation and a �nite set of MLns derivations modulo the 
onversion of interse
tion and union to


onjun
tion and disjun
tion, respe
tively. We will show that any derivation � in IUL

k

provides a �nite

number of derivations in MLns whi
h all share the de
oration of �. The next theorem is an extension of

Theorem 1.12.

Theorem 3.10 (From IUL

k

to MLns) Let � :: H1; : : : ; Hm

⊢ K be a derivation in IUL

k

, su
h that

�

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K. For every terminal path p in P

T

(K), there exists a derivation

�

p :: (H1)
p

; : : : ; (H
m

)p ⊢ Kp

in MLns, su
h that (�p)? :: x1 : (H1)
p

; : : : ; x

m

: (H
m

)p ⊢ t : Kp

.

Proof. By indu
tion on �

?

.

Base: If �

? :: x : K ⊢ x : K is an IUL

?

k

-axiom and p ∈ P

T

(K), there is an axiom �

p :: Kp ⊢ K

p

in

MLns, su
h that (�p)? :: x : Kp ⊢ x : Kp

.

Indu
tion step: We show the most interesting 
ases.

.

�

?

0 :: x
j

: H
j

[p := [�
j

; �

j

]] ⊢ t : K[p := [�; � ]]
(∩I)

�

? :: x
j

: H
j

[p : �
j

] ⊢ t : K[p := � ∩ � ]

Let q ∈ P

T

(K[p := [� ∩ � ]). We distinguish two sub
ases.

1. If q 6= p, then q ∈ P

T

(K[p := [�; � ]]). So, by the IH, there is a

�

q

0 :: (H
j

[p := [�
j

; �

j

]])q ⊢ (K[p := [�; � ]])q

in MLns, su
h that (�q0)
? :: x

j

: (H
j

[p := [�
j

; �

j

]])q ⊢ t : (K[p := [�; � ]])q . Sin
e (H
j

[p := [�
j

; �

j

]])q =
(H

j

[p := �

j

])q and (K[p := [�; � ]])q = (K[p := � ∩ � ])q , it is �q0 = �

q

.

2. If q = p, then pl; pr ∈ P

T

(K[p := [�; � ]]). So, by the IH, there exist �

pl

0 :: �
j

⊢ � and �

pr

0 :: �
j

⊢ �

in MLns, su
h that (�pl0 )? :: x
j

: �
j

⊢ t : � and (�pr0 )? :: x
j

: �
j

⊢ t : � . Applying (∧I) to �
pl

0 ; �
pr

0 , we

get a �

p :: �
j

⊢ � ∧ � whi
h is in MLns, sin
e both �

pl

0 and �

pr

0 are in MLns and they are isomorphi
.

Moreover, it is (�p)? :: x
j

: �
j

⊢ t : � ∧ � .

.

�

?

0 :: x
j

: H
j

[p := �

j

] ⊢ t : K[p := � ∪ � ] �

?

1 :: x
j

: H
j

[p := [�
j

; �

j

]]; x : K[p := [�; � ]] ⊢ u : L[p := [�; �]]
(∪E)

�

? :: x
j

: H
j

[p := �

j

] ⊢ u[t=x] : L[p := �]

Let q ∈ P

T

(L[p := �]), then q ∈ P

T

(K[p := � ∪ � ]). We distinguish two sub
ases.

1. If q 6= p, then q ∈ P

T

(L[p := [�; �]]). We have that (H
j

[p := [�
j

; �

j

]])q = (H
j

[p := �

j

])q = �

j

,

(K[p := [�; � ]])q = (K[p := � ∪ � ])q = �, and (L[p := [�; �]])q = (L[p := �])q = �. By the IH, there exist

�

q

0 :: �
j

⊢ � and �q1 :: �
j

; � ⊢ � in MLns, su
h that (�q0)
? :: x

j

: �
j

⊢ t : � and (�q1)
? :: x

j

: �
j

; x : � ⊢ u : �.
It is �

q = S(�q0 ; �
q

1) :: �j ⊢ �, where S(�
q

0 ; �
q

1) stands for the derivation obtained from �

q

1 by substituting

spe
i�
 instan
es of axioms � ⊢ � by �

q

0 and then possibly eliminating some stru
tural rules. The (non-

standard) de
oration of the substitution derivation �

q

gives (�q)? :: x
j

: �
j

⊢ u[t=x] : �.

2. If q = p, then pl; pr ∈ P

T

(L[p := [�; �]]). So, by the IH, there exist �

p

0 :: �
j

⊢ � ∨ � , �pl1 :: �
j

; � ⊢ �,

and �

pr

1 :: �
j

; � ⊢ � in MLns, su
h that (�p0)
? :: x

j

: �
j

⊢ t : � ∨ � , (�pl1 )? :: x
j

: �
j

; x : � ⊢ u : �, and

(�pr1 )? :: x
j

: �
j

; x : � ⊢ u : �. Applying (∨E) to �p0 ; �
pl

1 ; �
pr

1 , we get a �

p :: �
j

⊢ � whi
h is in MLns, sin
e

ea
h of �

p

0 ; �
pl

1 ; �
pr

1 is in MLns and �

pl

1 ; �
pr

1 are isomorphi
. Moreover, it is (�p)? :: x
j

: �
j

⊢ u[t=x] : �. ⊣
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De�nition 3.11 Let � :: Γ ⊢ K be a derivation in IUL

k

and ML(�) = {�p | p ∈ P

T

(K)}. A derivation

�

p

in ML(�) will be 
alled a proje
tion of � in ML.

Example 3.12 Let � = � ∩ �, � = 
 ∩ Æ, and � = (Æ → �) ∩ (� → �). If Γ0 = [�; � ]; [� → �; �] and
Γ1 = [�; [�; � ]]; [� → �; [�; �]]; [�; [Æ; �]], 
onsider the following derivation � in IUL

k

.

[�; � ] ⊢ [�; � ]
(W)

Γ0 ⊢ [�; � ]
(∩E)

Γ0 ⊢ [�; Æ]
(∪I)

Γ0 ⊢ [�; Æ ∪ �]

[�→ �; [�; �]] ⊢ [�→ �; [�; �]]
(WX)

Γ1 ⊢ [�→ �; [�; �]]
(∩E)

Γ1 ⊢ [�→ �; [Æ → �; � → �]]

[�; [Æ; �]] ⊢ [�; [Æ; �]]
(WX)

Γ1 ⊢ [�; [Æ; �]]
(→E)

Γ1 ⊢ [�; [�; �]]
(∪E)

r

Γ0 ⊢ [�; �]
(→I)

� :: [�; � ] ⊢ [(�→ �)→ �; �→ �]

There are two proje
tions �

l

and �

r

of � in ML. Abstra
ting the left paths in �, we arrive at a

substitution operation whi
h is 
arried out to give �

l

.

� ⊢ �
(W)

�; �→ � ⊢ �
(∧E)

�

l

0 :: �; �→ � ⊢ �

�→ � ⊢ �→ �

(WX)

�; �→ � ⊢ �→ �

(W)

�; �→ �; � ⊢ �→ �

� ⊢ �
(WX)

�; �→ �; � ⊢ �
(→E)

�

l

1 :: �; �→ �; � ⊢ �
[substitution℄

S(�l0; �
l

1) :: �; �→ � ⊢ �

�→ � ⊢ �→ �

(WX)

�; �→ � ⊢ �→ � �

l

0 :: �; �→ � ⊢ �
(→E)

S(�l0; �
l

1) :: �; �→ � ⊢ �
(→I)

�

l :: � ⊢ (�→ �)→ �

Abstra
ting the right paths in �, or, more pre
isely, the terminal paths whose string starts with r, we

arrive at a (∨E) inferen
e in �

r

.

� ⊢ �
(W)

�; � ⊢ �
(∧E)

�; � ⊢ Æ
(∨I)

�; � ⊢ Æ ∨ �

� ⊢ �
(WX)

�; �; Æ ⊢ �
(∧E)

�; �; Æ ⊢ Æ → �

Æ ⊢ Æ
(WX)

�; �; Æ ⊢ Æ
(→E)

�; �; Æ ⊢ �

� ⊢ �
(WX)

�; �; � ⊢ �
(∧E)

�; �; � ⊢ � → �

� ⊢ �
(WX)

�; �; � ⊢ �
(→E)

�; �; � ⊢ �
(∨E)

�; � ⊢ �
(→I)

�

r :: � ⊢ �→ �

So, the (∪E) inferen
e at path r in � is translated to a (∨E) inferen
e in �

r

.

Given that 
ontexts are de
orated by x, derivations �; �

l

, and �

r

are all (non-standardly) de
orated

by �y:yx.

It is worth noting that the 
on
lusive judgement [�; � ] ⊢ [(� → �) → �; � → �] of �, whi
h is in the

language of IL, i.e. it does not involve union, is already provable in IL.



3.1 Interse
tion and Union Logi
 IUL

k

49

[�→ �; �] ⊢ [�→ �; �]
(WX)

[�; � ]; [�→ �; �] ⊢ [�→ �; �]
(∩E)

[�; � ]; [�→ �; �] ⊢ [�→ �; Æ → �]

[�; � ] ⊢ [�; � ]
(W)

[�; � ]; [�→ �; �] ⊢ [�; � ]
(∩E)

[�; � ]; [�→ �; �] ⊢ [�; Æ]
(→E)

[�; � ]; [�→ �; �] ⊢ [�; �]
(→I)

�

′ :: [�; � ] ⊢ [(�→ �)→ �; �→ �]

This is an instan
e of the fa
t that IUL

k

is a 
onservative extension of IL. Finally, derivation �

′
is also

(non-standardly) de
orated by �y:yx, if the 
ontext is de
orated by x.

From MLns to IUL

k

?

The aim of this paragraph is to spotlight the problems evolving in the attempt to prove the inverse of

Theorem 3.10. We will study the simple 
ase where we start o� with a single derivation in MLns and try

to attain its 
orresponding derivation in IUL

k

.

If � :: �1; : : : ; �m ⊢ � is in MLns with a non-standard de
oration �

? :: x1 : �1; : : : ; xm : �
m

⊢ t : �,
we would like to show that there exists a derivation �

′ :: �1; : : : ; �m ⊢ � in IUL

k

, where �1; : : : ; �m; � are

single-node kits modulo the 
onversion of 
onne
tives, su
h that (�′)? :: x1 : �1; : : : ; xm : �
m

⊢ t : �.
Supposing we pro
eed by indu
tion on �, let us 
onsider the 
ase of (∧I).

�

?

0 :: x1 : �1; : : : ; xm : �
m

⊢ t : � �

?

1 :: x1 : �1; : : : ; xm : �
m

⊢ t : �
(∧I)

�

? :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∧ �

By the IH, we would get derivations �

′
0 :: �1; : : : ; �m ⊢ � and �

′
1 :: �1; : : : ; �m ⊢ � in IUL

k

, su
h that

(�′
0)
? :: x1 : �1; : : : ; xm : �

m

⊢ t : � and (�′
1)
? :: x1 : �1; : : : ; xm : �

m

⊢ t : � . So, we would have two

identi
ally de
orated derivations in IUL

k

. We would like to be able to join together these two derivations

with the same de
oration, so as to get a single derivation with this very de
oration. That is to say, we

would like to be able to merge �

′
0 and �

′
1 into a single �

′
01 :: [�1; �1]; : : : ; [�m; �m] ⊢ [�; � ], su
h that

(�′
01)

? :: x1 : [�1; �1]; : : : ; xm : [�
m

; �

m

] ⊢ t : [�; � ]. Then, by (∩I) on �

′
01, we would get the required

�

′ :: �1; : : : ; �m ⊢ � ∩ � with (�′)? :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∩ � .
The 
ru
ial step is the uni�
ation of two identi
ally de
orated derivations of IUL

k

into a single

derivation of IUL

k

with this very de
oration. Formally, we would like to prove the following 
laim.

Claim: Two identi
ally de
orated IUL

k

-derivations �

?

0 :: x1 : H1; : : : ; xm : H
m

⊢ t : H and

�

?

1 :: x1 : K1; : : : ; xm : K
m

⊢ t : K 
an be joined together into a single IUL

k

-derivation

�

? :: x1 : [H1;K1]; : : : ; xm : [H
m

;K

m

] ⊢ t : [H;K] with this very de
oration.

However, as the next example demonstrates, the substitution term in the de
oration of (∪E) poses a

serious problem to this uni�
ation task.

Example 3.13 Let � = (�∪ �)∩�; � = �∩�2; � = �1 ∩�, and � = (� ∪ �)∩�. Consider the identi
ally
de
orated IUL

k

-derivations �0 and �1, shown below.
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x : � ⊢ x : �
(W)

x : �; y :  ⊢ x : �
(∩E1)

x : �; y :  ⊢ x : � ∪ �

z : [�; � ] ⊢ z : [�; � ]
(WX)

x : [�; �]; y : [ ;  ]; z : [�; � ] ⊢ z : [�; � ]
(∩E)

x : [�; �]; y : [ ;  ]; z : [�; � ] ⊢ z : [�; �]
(∪E)

�

?

0 :: x : �; y :  ⊢ z[x=z] = x : �

x : � ⊢ x : �
(W)

x : �; y : � ⊢ x : �
(∩E1)

x : �; y : � ⊢ x : � ∪ �

x : [�; �] ⊢ x : [�; �]
(W)

x : [�; �]; y : [�; �]; z : [�; �] ⊢ x : [�; �]
(∩E)

x : [�; �]; y : [�; �]; z : [�; �] ⊢ x : [�; �]
(∪E)

�

?

1 :: x : �; y : � ⊢ x[x=z] = x : �

An attempt to 
onstru
t a derivation �

? :: x : [�; �]; y : [ ; �] ⊢ x : [�; �] in a bottom-up manner fails,

as shown below.

[�; �]x ⊢ x : [�; �]
(W)

([�; �]; [ ; �])x;y ⊢ x : [�; �]
(∩E)

([�; �]; [ ; �])x;y ⊢ x : [� ∪ �; � ∪ �]

axiom?

(stru
t.)

([[�; �]; [�; �]]; [[ ;  ]; [�; �]]; [[�; � ]; [�; �]])x;y;z ⊢ ? : [[�; � ]; [�; �]]
(∩E)

([[�; �]; [�; �]]; [[ ;  ]; [�; �]]; [[�; � ]; [�; �]])x;y;z ⊢ ? : [[�; �]; [�; �]]
(∪E)†

�

? :: x : [�; �]; y : [ ; �] ⊢ ? : [�; �]

For su
h an attempt to work, we would, at �rst, need to have a notion of union elimination allowing

to apply the rule to di�erent paths in parallel. In this example, the variant rule (∪E)† applies union

elimination to paths l and r simultaneously. However, even with (∪E)†, we 
annot rea
h an axiom of

IUL

k

in the right bran
h. This is be
ause the judgement obtained after having applied the interse
tion

eliminations does not 
ontain the su

edent-kit in the 
ontext, i.e. the kit [[�; � ]; [�; �]] is not in the


ontext [[�; �]; [�; �]]; [[ ;  ]; [�; �]]; [[�; � ]; [�; �]]. So, any further attempt to apply stru
tural rules to rea
h

an axiom fails. This problem derives from the fa
t that, in the right bran
h of �0, the kit-sequen
e

[�; �]; [ ;  ]; [�; � ] entails the kit [�; � ], whi
h is the third member of the sequen
e, while, in the right

bran
h of �1, the kit-sequen
e [�; �]; [�; �]; [�; �] entails the kit [�; �], whi
h is the �rst member of the

sequen
e. Termwise, given that the 
ontexts in the right premises of (∪E) in �0 and �1 are de
orated by

the same sequen
e of variables x; y; z, the kit-situation just des
ribed re
e
ts on di�erent terms z and x

de
orating the su

edent-kits in these premises in �0 and �1, respe
tively. Sin
e z (trivially) 
ontains a free

o

urren
e of z, while x doesn't, this translates to two di�erent kinds of substitution in the de
orations

of �0 and �1: a proper substitution z[x=z] in �0 and a phony substitution x[x=z] in �1. Hen
e, the

in
ompatibility of �

?

0 and �

?

1 essentially redu
es to these two di�erent ways of expressing a term, namely

x, as a substitution.

The problem of the twofold de
omposition of substitution, depi
ted in the above example for the 
ase

of the logi
 IUL

k

, is a problem already spotted in the literature for the 
ase of union types (see [2, 22℄).

3.2 Interse
tion and Union Logi
 IUL

m

We de�ne Interse
tion and Union Logi
 IUL

m

as an extension with union of Interse
tion Syn
hronous

Logi
 ISL. This system is also intended as a logi
al foundation for IUT, i.e. as a logi
 
orresponding
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(ax)

[(�
i

; �
i

)
i

]

[(Γ
i

; �
i

)
i

]
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[(Γ
i

; �

i

; �
i

)
i
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[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

M∪N
(P)

M

M∪ [A]
(D)

M∪ [A;A]

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

M∪ [(Γ ; �); (Γ ; � )]
(∩I)

M∪ [(Γ ; � ∩ � )]

M∪ [(Γ ; � ∩ � )]
(∩E1)

M∪ [(Γ ; �)]

M∪ [(Γ ; � ∩ � )]
(∩E2)

M∪ [(Γ ; � )]

M∪ [(Γ ; �)]
(∪I1)

M∪ [(Γ ; � ∪ � )]

M∪ [(Γ ; � )]
(∪I2)

M∪ [(Γ ; � ∪ � )]

[(Γ
i

; �
i

)
i

] ∪ [(Γ ; � ∪ � )] [(Γ
i

; �

i

;  
i

)
i

] ∪ [(Γ; � ; �); (Γ; � ; �)]
(∪E)

[(Γ
i

;  
i

)
i

] ∪ [(Γ ; �)]

Figure 3.7: The logi
 IUL

m

.

to IUT through a non-standard de
oration of its derivations. Sin
e IUT has been shown to 
orrespond

to MLns through de
oration and erasure, we may restri
t our study to the relation between IUL

m

and

MLns, as was done in the 
ase of IUL

k

.

Presuming the notions of atom and mole
ule as given in 1.16, we 
an de�ne IUL

m

as follows.

De�nition 3.14 (IUL

m

) (i) Formulas are generated by the grammar � ::= � | � → � | � ∩ � | � ∪ �,
where � belongs to a 
ountable set of atomi
 formulas.

(ii) The logi
 IUL

m

derives mole
ules [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] = [(Γ
i

; �
i

)
i

] by the rules displayed

in Figure 3.7.

A rule in IUL

m


an be derived from the 
orresponding rule in IUL

k

by using the following method

for transforming a judgement in IUL

k

to a mole
ule in IUL

m

. If H1; : : : ; Hm

⊢ K is a judgement in IUL

k

and there are n terminal paths p1; : : : ; pn in H1; : : : ; Hm

;K, then the 
orresponding mole
ule in IUL

m

is

[(Hp1

1 ; : : : ; H

p1
m

; Kp1); : : : ; (Hp

n

1 ; : : : ; H

p

n

m

; Kp

n)]. In parti
ular, ea
h terminal path in the kits produ
es
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an atom in the mole
ule. This is illustrated by the following example of 
orresponding union elimination

instan
es in the two logi
s.

IUL

k

:

[�; �1]; [�; �2] ⊢ [
; � ∪ � ] [�; [�1; �1]]; [�; [�2; �2]]; [
; [�; � ]] ⊢ [Æ; [�; �]]
(∪E)

r

[�; �1]; [�; �2] ⊢ [Æ; �]

IUL

m

:

[(�; � ; 
); (�1; �2 ; � ∪ � )] [(�; �; 
 ; Æ); (�1; �2; � ; �); (�1; �2; � ; �)]
(∪E)

[(�; � ; Æ); (�1; �2 ; �)]

Using the notation \ [p := ]" of kits, though, the above IUL
k

-instan
e is written as follows.

H1[r := �1]; H2[r := �2] ⊢ K[r := � ∪ � ] H1[r := [�1; �1]]; H2[r := [�2; �2]]; K[r := [�; � ]] ⊢ L[r := [�; �]]
(∪E)

r

H1[r := �1]; H2[r := �2] ⊢ L[r := �]

This kit-notation fo
uses on the path where union elimination is performed, whi
h is path r in the spe
i�


example. So, the substitution operation (
ut) that takes pla
e at path l is ignored. On the other hand,

this substitution is expli
itly shown in the notation of mole
ules where ea
h terminal path is \represented"

by an atom. It is now more than obvious that union elimination 
annot be 
onsidered lo
al, at least not

in the sense that lo
al rules leave 
ertain atoms 
ompletely un
hanged.

As pointed out for (∪E) in IUL

k

, (∪E) in IUL

m

also aims to join together the isomorphi
 minor

premises of (∨E) in MLns. This is a
hieved by pla
ing them both in the same mole
ule, so that (∪E)

has a single minor premise and a non-standard de
oration in IUL

m

always terminates.

: : : ⊢ t : � ∨ � : : : ; x : � ⊢ u : � : : : ; x : � ⊢ u : �
(∨E)

: : : ⊢ u[t=x] : �

t : [ : : : ; (: : : ; � ∪ � )] u : [ : : : ; (: : : ; x : � ; �); (: : : ; x : � ; �)]
(∪E)

u[t=x] : [ : : : ; (: : : ; �)]

The non-standard de
oration of IUL

m

is di
tated by the very rules of IUT, as was the 
ase with the

non-standard de
oration of ML, and a
tually extends the non-standard de
oration of ISL (see 1.17) to

doubling and the union rules. It will be used in the theorems proving the equivalen
e of IUL

k

and IUL

m

(Theorems 3.18 and 3.21) and also in the theorem relating IUL

m

to MLns (Theorem 3.22).

De�nition 3.15 (Non-standard de
oration of IUL

m

) Let � :: M = [(Γ
i

; �
i

)
i

] = [(�i1; : : : ; �
i

m

; �
i

)
i

]
be a derivation in IUL

m

. By de
orating 
ontexts bottom-up with distin
t variables, starting with the

sequen
e p = x1; : : : ; xm, and then de
orating mole
ules top-down with terms in Λ, we get a de
orated

derivation �

? :: t : M
p

= [(Γ
i

; �
i

)
i

]
p

= [(x1 : �i1; : : : ; xm : �i
m

; �
i

)
i

]. The de
oration rules are presented

in Figure 3.8. When de
orating 
ontexts bottom-up, the new variable in an (→I) premise or in a (∪E)

minor premise is fresh with respe
t to the variables in the bran
h 
onne
ting the 
on
lusion to the root.
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(ax)

x : [(�
i

; �
i

)
i

]
x

t : [(Γ
i

; �
i

)
i

]
p

(W)

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t :M
p

∪N
p

(P)

t :M
p

t :M
p

∪ [A]
p

(D)

t :M
p

∪ [A;A]
p

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t :M
p

∪ [(Γ ; �); (Γ ; � )]
p

(∩I)
t :M

p

∪ [(Γ ; � ∩ � )]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E1)

t :M
p

∪ [(Γ ; �)]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E2)

t :M
p

∪ [(Γ ; � )]
p

t :M
p

∪ [(Γ ; �)]
p

(∪I1)
t :M

p

∪ [(Γ ; � ∪ � )]
p

t :M
p

∪ [(Γ ; � )]
p

(∪I2)
t :M

p

∪ [(Γ ; � ∪ � )]
p

t : [(Γ
i

; �
i

)
i

]
p

∪ [(Γ ; � ∪ � )]
p

u : [(Γ
i

; �

i

;  
i

)
i

]
p; x

∪ [(Γ; � ; �); (Γ; � ; �)]
p; x

(∪E)
u[t=x] : [(Γ

i

;  
i

)
i

]
p

∪ [(Γ ; �)]
p

Figure 3.8: Non-standard de
oration of IUL

m

.

Remark 3.16 Obviously, if �

? :: t : M
p

, then FV (t) ⊆ {p}.

As was the 
ase with IUL

k

, every derivation in IUL

m

admits a de
oration, sin
e (∩I) has a single

premise and (∪E) has a single minor premise.

Remark 3.17 The logi
 IUL

m

is formally de�ned as a quotient set of equivalen
e 
lasses of derivations,

in the manner of the formal de�nition of IUL

k

(see 3.8). The equivalen
e relation is between derivations

that disagree only in the order of 
onse
utive lo
al rules 
on
erning di�erent atoms. The 
ommutations of

the lo
al rules (P), (D), (∩I), (∩E), (∪I) follow the pattern in 3.8, only in the mole
ule setup. Derivations

in the same equivalen
e 
lass admit the same (non-standard) de
oration.

3.2.1 Equivalen
e of IUL

k

and IUL

m

The logi
s IUL

k

and IUL

m

are equivalent. This is a desired result, sin
e they were both designed to do

the same job, namely to express MLns as an independent logi
. We show a transformation of a de
orated
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IUL

k

-derivation into an identi
ally de
orated IUL

m

-derivation and 
onversely. In fa
t, the following

theorem formalizes the method already des
ribed for 
onverting a kit-judgement to a mole
ule.

Theorem 3.18 Let �

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K be in IUL

?

k

and P

T

(K) = {p1; : : : ; pn}. Then,

there exists a (�′)? :: t : [(Hp1

1 ; : : : ; H

p1
m

; Kp1); : : : ; (Hp

n

1 ; : : : ; H

p

n

m

; Kp

n)]
x1;:::; xm in IUL

?

m

.

Proof. By indu
tion on �

?

.

Base: If �

? :: x : K ⊢ x : K is an IUL

?

k

-axiom, then (�′)? :: x : [(Kp1 ; Kp1); : : : ; (Kp

n ; Kp

n)]
x

is an

IUL

?

m

-axiom.

Indu
tion step: We show three 
hara
teristi
 
ases.

.

�

?

0 :: x1 : H1; : : : ; xm : H
m

⊢ t : K
(P)

�

? :: x1 : H1\
pl

; : : : ; x

m

: H
m

\pl ⊢ t : K\pl

If

2

P

T

(K) = {q1; : : : ; q� ; plt1; : : : ; plt�; pru1; : : : ; pru�}, then P

T

(K\pl) = {q1; : : : ; q� ; pt1; : : : ; pt�}.
The following equalities hold.

1. (H
j

)qi = (H
j

\pl)qi and Kq

i = (K\pl)qi , for i ∈ {1; : : : ; �}

2. (H
j

)plti = (H
j

\pl)pti and Kplt

i = (K\pl)pti , for i ∈ {1; : : : ; �}

By the IH, there exists a (�′
0)
? :: t : (M∪N )

x1;:::; xm in IUL

m

, where

M = [(Hq1

1 ; : : : ; H
q1
m

; Kq1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; Kq

� );

(Hplt1

1 ; : : : ; H

plt1
m

; Kplt1); : : : ; (H
plt

�

1 ; : : : ; H

plt

�

m

; Kplt

�)]

N = [(Hpru1

1 ; : : : ; H

pru1
m

; Kpru1); : : : ; (Hpru

�

1 ; : : : ; H

pru

�

m

; Kpru

�)]

Applying (P) to (�′
0)
?

, we get a (�′)? :: t : M
x1;:::; xm , where 1 and 2 give

M = [((H1\pl)q1 ; : : : ; (Hm

\pl)q1 ; (K\pl)q1 ); : : : ; ((H1\pl)q� ; : : : ; (Hm

\pl)q� ; (K\pl)q� );

((H1\
pl)pt1 ; : : : ; (H

m

\pl)pt1 ; (K\pl)pt1); : : : ; ((H1\
pl)pt� ; : : : ; (H

m

\pl)pt� ; (K\pl)pt�)]

.

�

?

0 :: x1 : H1; : : : ; xm : H
m

⊢ t : K
(D)

�

? :: x1 : H1
q

=

pl

; : : : ; x

m

: H
m

q

=

pl

⊢ t : Kq

=

pl

We 
onsider two sub
ases.

i) p 6= q: If P

T

(K) = {q; q1; : : : ; q� ; pt1; : : : ; pt�}, then PT (K
q

=

pl

) = {q; q1; : : : ; q� ; pl; prt1; : : : ; prt�}.
The following equalities hold.

1. (H
j

)qi = (H
j

q

=

pl

)qi and Kq

i = (Kq

=

pl

)qi , for i ∈ {1; : : : ; �}

2. (H
j

)pti = (H
j

q

=

pl

)prti and Kpt

i = (Kq

=

pl

)prti , for i ∈ {1; : : : ; �}

3. (H
j

)q = (H
j

q

=

pl

)q = (H
j

q

=

pl

)pl and Kq = (Kq

=

pl

)q = (Kq

=

pl

)pl

2

In this proof, we ex
eptionally use the letters t and u to denote paths, so as to avoid heavy notation 
aused by extra

insignia on p or q.
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By the IH, there exists a (�′
0)
? :: t : (M∪ [A])

x1;:::; xm in IUL

m

, where

M = [(Hq1

1 ; : : : ; H
q1
m

; Kq1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; Kq

� );

(Hpt1

1 ; : : : ; H

pt1
m

; Kpt1); : : : ; (H
pt

�

1 ; : : : ; H

pt

�

m

; Kpt

�)]

A = (Hq

1 ; : : : ; H
q

m

; Kq)

Applying (D) to (�′
0)
?

, we get a (�′)? :: t : (M∪ [A;A])
x1;:::; xm , where 1-3 give

M = [((H1
q

=

pl

)q1 ; : : : ; (H
m

q

=

pl

)q1 ; (Kq

=

pl

)q1); : : : ; ((H1
q

=

pl

)q� ; : : : ; (H
m

q

=

pl

)q� ; (Kq

=

pl

)q� );

((H1
q

=

pl

)prt1 ; : : : ; (H
m

q

=

pl

)prt1 ; (Kq

=

pl

)prt1); : : : ; ((H1
q

=

pl

)prt� ; : : : ; (H
m

q

=

pl

)prt� ; (Kq

=

pl

)prt�)]

A;A = ((H1
q

=

pl

)q; : : : ; (H
m

q

=

pl

)q ; (Kq

=

pl

)q); ((H1
q

=

pl

)pl; : : : ; (H
m

q

=

pl

)pl ; (Kq

=

pl

)pl)

ii) p ⊆ q: Without loss of generality, we may assume that P

T

(K) = {q1; : : : ; q� ; q = pt1; : : : ; pt�}.
Then, we have that P

T

(Kq

=

pl

) = {q1; : : : ; q� ; pl; prt1; : : : ; prt�} and get the following equalities.

1. (H
j

)qi = (H
j

q

=

pl

)qi and Kq

i = (Kq

=

pl

)qi , for i ∈ {1; : : : ; �}

2. (H
j

)pti = (H
j

q

=

pl

)prti and Kpt

i = (Kq

=

pl

)prti , for i ∈ {2; : : : ; �}

3. (H
j

)pt1 = (H
j

q

=

pl

)prt1 = (H
j

q

=

pl

)pl and Kpt1 = (Kq

=

pl

)prt1 = (Kq

=

pl

)pl

By the IH, there exists a (�′
0)
? :: t : (M∪ [A])

x1;:::; xm in IUL

m

, where

M = [(Hq1

1 ; : : : ; H
q1
m

; Kq1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; Kq

� );

(Hpt2

1 ; : : : ; H

pt2
m

; Kpt2); : : : ; (H
pt

�

1 ; : : : ; H

pt

�

m

; Kpt

�)]

A = (Hpt1

1 ; : : : ; H

pt1
m

; Kpt1)

Applying (D) to (�′
0)
?

, we get a (�′)? :: t : (M∪ [A;A])
x1;:::; xm , where 1-3 give

M = [((H1
q

=

pl

)q1 ; : : : ; (H
m

q

=

pl

)q1 ; (Kq

=

pl

)q1); : : : ; ((H1
q

=

pl

)q� ; : : : ; (H
m

q

=

pl

)q� ; (Kq

=

pl

)q� );

((H1
q

=

pl

)prt2 ; : : : ; (H
m

q

=

pl

)prt2 ; (Kq

=

pl

)prt2); : : : ; ((H1
q

=

pl

)prt� ; : : : ; (H
m

q

=

pl

)prt� ; (Kq

=

pl

)prt�)]

A;A = ((H1
q

=

pl

)prt1 ; : : : ; (H
m

q

=

pl

)prt1 ; (Kq

=

pl

)prt1); ((H1
q

=

pl

)pl; : : : ; (H
m

q

=

pl

)pl ; (Kq

=

pl

)pl)

.

�

?

0 :: x
j

: H
j

⊢ t : K[p := � ∪ � ] �

?

1 :: x
j

: H
j

p

=

pl

; x : K[p := [�; � ]] ⊢ u : L[p := [�; �]]
(∪E)

�

? :: x
j

: H
j

⊢ u[t=x] : L[p := �]

If P

T

(K[p := � ∪ � ]) = P

T

(L[p := �]) = {q1; : : : ; q� ; p}, then PT (L[p := [�; �]]) = {q1; : : : ; q� ; pl; pr}.
The following equalities hold.

1. (H
j

)qi = (H
j

p

=

pl

)qi , (K[p := � ∪ � ])qi = (K[p := [�; � ]])qi ,

and (L[p := �])qi = (L[p := [�; �]])qi , for i ∈ {1; : : : ; �}

2. H

p

j

= (H
j

p

=

pl

)pl = (H
j

p

=

pl

)pr
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By the IH, there is a (�′
0)
? :: t : (M∪ [(Hp

1 ; : : : ; H
p

m

; � ∪ �)])
x1;:::; xm , where

M = [(Hq1

1 ; : : : ; H
q1
m

; K[p := � ∪ � ]q1 ); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; K[p := � ∪ � ]q� )]

and also, using 2, a (�′
1)
? :: u : (N ∪ [(Hp

1 ; : : : ; H
p

m

; � ; �); (Hp

1 ; : : : ; H
p

m

; � ; �)])
x1;:::; xm; x, where

N = [((H1
p

=

pl

)q1 ; : : : ; (H
m

p

=

pl

)q1 ; (K[p := [�; � ]])q1 ; (L[p := [�; �]])q1 ); : : : ;

((H1
p

=

pl

)q� ; : : : ; (H
m

p

=

pl

)q� ; (K[p := [�; � ]])q� ; (L[p := [�; �]])q� )]
1
= [(Hq1

1 ; : : : ; H
q1
m

;K[p := � ∪ � ]q1 ; L[p := �]q1); : : : ;

(Hq

�

1 ; : : : ; H

q

�

m

;K[p := � ∪ � ]q� ; L[p := �]q� )]

Applying (∪E) to (�′
0)
?

and (�′
1)
?

, we get a (�′)? :: u[t=x] : (M′ ∪ [(Hp

1 ; : : : ; H
p

m

; �)])
x1;:::; xm , where

M′ = [(Hq1

1 ; : : : ; H
q1
m

; L[p := �]q1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; L[p := �]q� )] ⊣

To transform a de
orated IUL

m

-derivation to an identi
ally de
orated IUL

k

-derivation, we need the

following proposition.

Proposition 3.19 Let M = [(�1
1 ; : : : ; �

1
m

; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �
n

)] be a mole
ule of n > 1 atoms of


ontext-
ardinality m > 0. Then, there exists a sequen
e H1; : : : ; Hm

;K of m + 1 overlapping kits with

n terminal paths p1; : : : ; pn, su
h that H

p

i

j

= �

i

j

and K

p

i = �

i

(1 6 i 6 n; 1 6 j 6 m).

Proof. By indu
tion on n. The index j runs from 1 to m.

Base: If M = [(�1; : : : ; �m ; �)], then the m+1 overlapping kits are the single-node kits �1; : : : ; �m; �
with one terminal path, namely the empty path �. It is �

�

j

= �

j

and �

� = � .

Indu
tion step: Let M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n]∪ [(�n+1
1 ; : : : ; �

n+1
m

; �
n+1)]. By the IH, there is

a sequen
e H1; : : : ; Hm

;K of m+1 overlapping kits with n terminal paths p1; : : : ; pn, su
h that H

p

i

j

= �

i

j

and K

p

i = �

i

. In addition, there is a sequen
e �

n+1
1 ; : : : �

n+1
m

; �

n+1 of m+1 single-node kits. We 
onsider

the sequen
e [H1; �
n+1
1 ]; : : : ; [H

m

; �

n+1
m

]; [K; �
n+1] of m + 1 overlapping kits with n + 1 terminal paths

q1= lp1; : : : ; qn= lp

n

; q

n+1= r. For 1 6 i 6 n, it is [H
j

; �

n+1
j

]qi = H

p

i

j

= �

i

j

and [K; �
n+1]

q

i = K

p

i = �

i

.

Also, it is [H
j

; �

n+1
j

]qn+1 = �

n+1
j

and [K; �
n+1]

q

n+1 = �

n+1. ⊣

De�nition 3.20 The sequen
e H1; : : : ; Hm

;K of overlapping kits in Proposition 3.19 will be 
alled a

kit-representation of M.

It is obvious that a kit-representation of a mole
ule M is not unique; di�erent kit-representations of

M may have di�erent tree stru
tures or the same tree stru
ture, but di�erent leaves in 
orresponding

kits.

Theorem 3.21 Let �

? :: t : (M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n])
x1;:::; xm be in IUL

?

m

. Then, for every

kit-representation H1; : : : ; Hm

;K of M, there is a (�′)? :: x1 : H1; : : : ; xm : H
m

⊢ t : K in IUL

?

k

.
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Proof. By indu
tion on �

?

.

Base: If �

? :: x : (M = [(�
i

; �
i

) | 1 6 i 6 n])
x

is an IUL

?

m

-axiom and H;K is a kit-representation of

M, then the kits H;K have n terminal paths p1; : : : ; pn and, for 1 6 i 6 n, it is H

p

i = �

i

and K

p

i = �

i

.

Therefore, it is H = K and there is an IUL

?

k

-axiom (�′)? :: x : K ⊢ x : K.

Indu
tion step: We display the most interesting 
ases, letting j run from 1 to m.

.

�

?

0 :: t : (M∪N )
x1;:::; xm

(P)

�

? :: t :M
x1;:::; xm

where M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] and N = [(�i1; : : : ; �
i

m

; �
i

) | n+ 1 6 i 6 n+ k].

If H1; : : : ; Hm

;K is a kit-representation of M and H

′
1; : : : ; H

′
m

;K

′
is a kit-representation of N , then

[H1; H
′
1]; : : : ; [Hm

; H

′
m

]; [K;K ′] is a kit-representation of M∪N . [Justi�
ation: The kits H1; : : : ; Hm

;K

have n terminal paths p1; : : : ; pn and, for 1 6 i 6 n, it is H

p

i

j

= �

i

j

andK

p

i = �

i

. The kits H

′
1; : : : ; H

′
m

;K

′

have k terminal paths p

n+1; : : : ; pn+k and, for n + 1 6 i 6 n + k, it is (H ′
j

)pi = �

i

j

and (K ′)pi = �

i

.

Therefore, the kits [H1; H
′
1]; : : : ; [Hm

; H

′
m

]; [K;K ′] have n + k terminal paths q1 = lp1; : : : ; qn = lp

n

;

q

n+1 = rp

n+1; : : : ; qn+k = rp

n+k . For 1 6 i 6 n, it is [H
j

; H

′
j

]qi = H

p

i

j

= �

i

j

and [K;K ′]qi = K

p

i = �

i

,

while, for n+ 1 6 i 6 n+ k, it is [H
j

; H

′
j

]qi = (H ′
j

)pi = �

i

j

and [K;K ′]qi = (K ′)pi = �

i

.℄ Hen
e, the IH

gives a (�′
0)
? :: x1 : [H1; H

′
1]; : : : ; xm : [H

m

; H

′
m

] ⊢ t : [K;K ′] in IUL

?

k

. Applying (P)

l

to (�′
0)
?

, we get a

(�′)? :: x1 : H1; : : : ; xm : H
m

⊢ t : K in IUL

?

k

.

.

�

?

0 :: t : (M∪ [A])
x1;:::; xm

(D)

�

? :: t : (M∪ [A;A])
x1;:::; xm

where M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] and A = (�n+1
1 ; : : : ; �

n+1
m

; �
n+1).

If H1; : : : ; Hm

;K is a kit-representation of M ∪ [A;A], the kits H1; : : : ; Hm

;K have n + 2 terminal

paths p1; : : : ; pn; pn+1; pn+2 and, for 1 6 i 6 n, it is H

p

i

j

= �

i

j

andK

p

i = �

i

, while H

p

n+1

j

= H

p

n+2

j

= �

n+1
j

and K

p

n+1 = K

p

n+2 = �

n+1. We may prune all kits in H1; : : : ; Hm

;K at su
h a path, so as to get a

sequen
e H

′
1; : : : ; H

′
m

;K

′
of overlapping kits that have n + 1 terminal paths q1; : : : ; qn; qn+1 and, for

1 6 i 6 n, it is (H ′
j

)qi = �

i

j

and (K ′)qi = �

i

, while (H ′
j

)qn+1 = �

n+1
j

and (K ′)qn+1 = �

n+1. The sequen
e

H

′
1; : : : ; H

′
m

;K

′
is a kit-representation of M∪ [A], so the IH gives a (�′

0)
? :: x1 : H ′

1; : : : ; xm : H ′
m

⊢ t : K ′

in IUL

?

k

. Applying an appropriate (i.e. left or right) doubling at an appropriate path to (�′
0)
?

, so as to

iterate the leaf at the end of q

n+1, we get a (�′)? :: x1 : H1; : : : ; xm : H
m

⊢ t : K in IUL

?

k

.

.

�

?

0 :: t : (M0) x1;:::; xm �

?

1 :: u : (M1) x1;:::; xm; x
(∪E)

�

? :: u[t=x] :M
x1;:::; xm

where M0 = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] ∪ [(�1; : : : ; �m ; � ∪ �)],
M1 = [(�i1; : : : ; �

i

m

; �

i

;  
i

) | 1 6 i 6 n] ∪ [(�1; : : : ; �m; � ; �); (�1; : : : ; �m; � ; �)], and
M = [(�i1; : : : ; �

i

m

;  
i

) | 1 6 i 6 n] ∪ [(�1; : : : ; �m ; �)].

If H1; : : : ; Hm

; L is a kit-representation of M, the kits H1; : : : ; Hm

; L have n + 1 terminal paths

p1; : : : ; pn; q and, for 1 6 i 6 n, it is H

p

i

j

= �

i

j

and L

p

i =  

i

, while H

q

j

= �

j

and L

q = �. Then,

the sequen
e H1; : : : ; Hm

;K[q := � ∪ � ], where K = L[p
i

:= �

i

], is a kit-representation of M0 and the

sequen
e H1
q

=

ql

; : : : ; H

m

q

=

ql

;K[q := [�; � ]]; L[q := [�; �]] is a kit-representation of M1. The IH yields a

(�′
0)
? :: x1 : H1; : : : ; xm : H

m

⊢ t : K[q := � ∪ � ] in IUL

?

k

and also a

(�′
1)
? :: x1 : H1

q

=

ql

; : : : ; x

m

: H
m

q

=

ql

; x : K[q := [�; � ]] ⊢ u : L[q := [�; �]]
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in IUL

?

k

. By (∪E)
q

, we then obtain a (�′)? :: x1 : H1; : : : ; xm : H
m

⊢ u[t=x] : L[q := �] = L in IUL

?

k

. ⊣

As already noted in des
ribing the method to attain a mole
ule from a kit-judgement, Theorem 3.18

indi
ates that ea
h terminal path of the kits in the 
on
lusion of � gives rise to an atom in the mole
ule

proved by �

′
. Conversely, Proposition 3.19 indi
ates that all formulas in an atom of M are leaves at the

same terminal path in a kit-representation of M. Therefore, terminal paths in IUL

k


orrespond to atoms

in IUL

m

. In addition, it is easy to see, in both theorems 3.18 and 3.21, that the 
ontext-
ardinality of

the judgement proved by an IUL

k

-derivation 
oin
ides with the atom 
ontext-
ardinality of the mole
ule

proved by its 
orresponding IUL

m

-derivation.

3.2.2 Relating IUL

m

to MLns

We 
an restate Theorem 3.10 in the mole
ule framework and prove it via the equivalen
e of IUL

k

and

IUL

m

.

Theorem 3.22 (From IUL

m

to MLns) Let � :: [(�i1; : : : ; �
i

m

; �
i

)|1 6 i 6 n] be a derivation in IUL

m

,

su
h that �

? :: t : [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n]
x1;:::; xm . For every i ∈ {1; : : : ; n}, there is a derivation

�

i :: �i1; : : : ; �
i

m

⊢ �
i

in MLns, su
h that (�i)? :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

.

Proof. Either by indu
tion on � or by theorems 3.21 and 3.10. ⊣

Example 3.23 The IUL

k

-derivation � :: [�; � ] ⊢ [(� → �) → �; � → �] given in Example 3.12, where

� = � ∩ �, � = 
 ∩ Æ, and � = (Æ → �) ∩ (� → �), 
orresponds to the IUL

m

-derivation

�̃ :: [(� ; (� → �) → �); (� ; �→ �)]

a

ording to Theorem 3.18. We denote Γ = �; � → � and ∆ = �; �.

[(� ; �); (� ; �)]
(W)

[(Γ ; �); (∆ ; �)]
(∩E)

[(Γ ; �); (∆ ; Æ)]
(∪I)

[(Γ ; �); (∆ ; Æ ∪ �)]

[(� → � ; � → �); (� ; �); (� ; �)]
(WX)

[(Γ; � ; � → �); (∆; Æ ; �); (∆; � ; �)]
(∩E)

[(Γ; � ; � → �); (∆; Æ ; Æ → �); (∆; � ; � → �)]

[(� ; �); (Æ ; Æ); (� ; �)]
(WX)

[(Γ; � ; �); (∆; Æ ; Æ); (∆; � ; �)]
(→E)

[(Γ; � ; �); (∆; Æ ; �); (∆; � ; �)]
(∪E)

[(Γ ; �); (∆ ; �)]
(→I)

�̃ :: [(� ; (� → �) → �); (� ; � → �)]

The de
oration of �̃ is identi
al to that of �, i.e. it is (�̃)? :: �y: yx : [(� ; (� → �) → �); (� ; �→ �)]
x

.

This �̃ gives two derivations in MLns, namely �̃

1 = �

l :: � ⊢ (� → �) → � and �̃

2 = �

r :: � ⊢ �→ �.

The substitution operation 
arried out to generate �̃

1
is now in full a

ordan
e to the substitution (
ut)

performed on the atoms (Γ;�) and (Γ; �; �) in the premises of (∪E).

From MLns to IUL

m

?

The problem of the de
omposition of substitution, dis
ussed in the subse
tion \From MLns to IUL

k

?",

is also met in the attempt to prove the inverse of Theorem 3.22.

If �

? :: x1 : �1; : : : ; xm : �
m

⊢ t : � is in MLns

?

, we would like to show, modulo the 
onversion

of 
onne
tives, that there exists a (�′)? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm in IUL

?

m

. An indu
tion on �

?

,

though, would hit a problem in the (∧I) 
ase and also in the (∨E) 
ase.
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�

?

0

x1 : �1; : : : ; xm : �
m

⊢ t : � ∨ �

�

?

1

x1 : �1; : : : ; xm : �
m

; x : � ⊢ u : �

�

?

2

x1 : �1; : : : ; xm : �
m

; x : � ⊢ u : �
(∨E)

�

? :: x1 : �1; : : : ; xm : �
m

⊢ u[t=x] : �

The IH would give derivations (�′
0)
?

; (�′
1)
?

, and (�′
2)
?

in IUL

?

m

, as shown below.

(�′
0)
? :: t : [(�1; : : : ; �m ; � ∪ �)]

x1;:::; xm

(�′
1)
? :: u : [(�1; : : : ; �m; � ; �)]x1;:::; xm; x

(�′
2)
? :: u : [(�1; : : : ; �m; � ; �)]x1;:::; xm; x

We would like to be able to merge the identi
ally de
orated �

′
1 and �

′
2 into a single

(�′
12)

? :: u : [(�1; : : : ; �m; � ; �); (�1; : : : ; �m; � ; �)]x1;:::; xm; x

so that applying (∪E) to (�′
0)
?

and (�′
12)

?

would give a (�′)? :: u[t=x] : [(�1; : : : ; �m ; �)]
x1;:::; xm . The


laim that two identi
ally de
orated derivations 
an be uni�ed to give a single derivation with this very

de
oration is rephrased in the mole
ule setup as follows.

Claim: Two identi
ally de
orated IUL

m

-derivations �

?

0 :: t : [(Γ
i

; �
i

) | 1 6 i 6 n]
x1;:::; xm

and �

?

1 :: t : [(Γ
i

; �
i

) | n+ 1 6 i 6 k]
x1;:::; xm 
an be 
ombined into a single IUL

m

-derivation

�

? :: t : [(Γ
i

; �
i

) | 1 6 i 6 k]
x1;:::; xm with this very de
oration.

However, as in the 
ase of IUL

k

, there is no natural way to join together two derivations whose de
orating

term derives from two di�erent kinds of substitution (see Example 3.13).

3.3 Dis
ussion of kits and mole
ules

As already explained, the use of mole
ules reveals the globality inherent in union elimination. Terminal

paths in IUL

k


orrespond to atoms in IUL

m

and a
tually an atom in a mole
ule is 
onstru
ted by

abstra
ting a spe
i�
 terminal path from a kit-judgement. Thus, the union elimination rule in IUL

m

brings to light the \a
tion" at every terminal path in the 
orresponding rule in IUL

k

. This is made 
lear

in the following 
orresponding instan
es of the rule in IUL

k

and IUL

m

.

H

j

[p := �

j

] ⊢ K[p := � ∪ � ]
︸ ︷︷ ︸

terminal paths q1; : : : ; qn; p

H

j

[p := [�
j

; �

j

]]; K[p := [�; � ]] ⊢ L[p := [�; �]]
︸ ︷︷ ︸

terminal paths q1; : : : ; qn; pl; pr
(∪E)

p

H

j

[p := �

j

] ⊢ L[p := �]
︸ ︷︷ ︸

terminal paths q1; : : : ; qn; p

[(
i
j

; �
i

) | 1 6 i 6 n

︸ ︷︷ ︸

atoms B0
1 ; : : : ;B

0
n

] ∪ [(�
j

; � ∪ � )
︸ ︷︷ ︸

atom A0

] [(
i
j

; �

i

;  
i

) | 1 6 i 6 n

︸ ︷︷ ︸

atoms B1
1 ; : : : ;B

1
n

] ∪ [(�
j

; � ; �); (�
j

; � ; �)
︸ ︷︷ ︸

atoms A1
1;A

1
2

]

(∪E)

[(
i
j

;  
i

) | 1 6 i 6 n

︸ ︷︷ ︸

atoms B1; : : : ;Bn

] ∪ [(�
j

; �)
︸ ︷︷ ︸

atom A

]
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In the major premises, leaves at terminal paths q1; : : : ; qn translate to atoms B0
1; : : : ;B

0
n

, respe
tively, while

leaves at p translate to A0
; similar 
orresponden
es hold for the minor premises and the 
on
lusions. The

a
tion at paths q1; : : : ; qn, whi
h is hidden in the IUL

k

-instan
e, is brought to light in the IUL

m

-instan
e.

The latter works lo
ally on atoms A0
;A1

1;A
1
2, where it performs a proper union elimination to render

atom A, and globally on the B0
i

's and B1
i

's, where it performs substitutions (
uts) on 
orresponding atoms

to provide the B
i

's. Therefore, union elimination in IUL

m

displays both lo
al and global 
hara
teristi
s.

In fa
t, union elimination in IUL

k

enjoys both 
hara
teristi
s, as well. The rule 
an be rewritten as

follows, if we aim to unfold what happens at a path q

i

besides p.

H

j

[p := �

j

][q
i

:= 


i

j

] ⊢ K[p := � ∪ � ][q
i

:= �

i

] H

j

[p := [�
j

; �

j

]][q
i

:= 


i

j

];K[p := [�; � ]][q
i

:= �

i

] ⊢ L[p := [�; �]][q
i

:=  

i

]

H

j

[p := �

j

][q
i

:= 


i

j

] ⊢ L[p := �][q
i

:=  

i

]

The substitution 
arried out at q

i

is now designated by the rule. This hidden aspe
t of union elimination

in IUL

k

has been a
tually demonstrated in the proof of Theorem 3.10 (
ase (∪E), sub
ase 1) and also in

Example 3.12, where a substitution operation was required for the formation of �

l

.

The bene�t of unveiling lo
ality and globality issues is only one aspe
t of the more general bene�t of

adopting a notation for Interse
tion and Union Logi
 that is simpler and easier to handle. The formalism

of kits, whi
h seeks to re
reate the geometri
 stru
tures of trees, 
an be awkward and vague, as it has so

far been veri�ed. On the other hand, the formalism of mole
ules, whi
h has arisen from the 
attening of

kits by 
onverting (leaves at) terminal paths to atoms, is more 
lean-
ut and expli
it.

A di�erent formalism for a logi
 
orresponding to interse
tion (and union) types is that of hyperformu-

las, proposed in [6℄. Hyperformulas also linearize the kit-stru
ture, as mole
ules do, but are nonetheless

harder to manipulate than mole
ules. Very roughly speaking, the syntax of hyperformulas is easier than

that of kits, but more 
ompli
ated than that of mole
ules. Consequently, hyperformulas also en
ounter

the problem that mole
ules (and kits) en
ounter in 
orresponding with MLns. We have fo
used on the


omparison of kits with mole
ules, leaving hyperformulas aside, so as to better indi
ate the advantages

of mole
ules, whi
h bear the most 
on
ise formalism among the three.



CHAPTER 4

Natural Dedu
tion IUL

m

and IUT

⊕

We present a new version of the logi
 IUL

m

in natural dedu
tion style. This new version involves a

modi�
ation of the de�nition of \mole
ule", as well as modi�
ations of rules. In parti
ular, a mole
ule

is no longer a multiset of atoms, but a sequen
e of atoms, while the rules of the system undergo the

following 
hanges: (i) the axiom is allowed to 
ontain enri
hed atom-
ontexts, (ii) the stru
tural rules

of weakening, pruning, and doubling are eliminated, but are still valid as derivable rules, (iii) the lo
al

rules of interse
tion (introdu
tion and elimination) and union introdu
tion are allowed to a
t on several

atoms (or sequen
es of atoms) of a mole
ule in one step, and (iv) the union elimination rule is modi�ed

to an expli
itly global version. We also present the type system IUT

⊕
in natural dedu
tion style. This

system is a
tually the natural dedu
tion type system IUT

ù

of Chapter 2 without the (ù)-rule. The \⊕"
sign emphasizes its additive 
hara
ter. We �nally interrelate the new natural dedu
tion logi
 with the

natural dedu
tion type system to show how the former attempts to 
apture the latter on a logi
al level.

The 
hanges that the new version of the logi
 bears, with respe
t to the version presented in the

previous 
hapter, 
an be brie
y justi�ed as follows. Change (i) allows the derivability of weakening

(observe the base 
ase in the indu
tive proof of Proposition 4.5), while 
hange (ii) provides a more

e
onomi
al, elegant, and handy system. Change (iii) serves the derivability of doubling (see footnote 6

in 
ase 1 of (∩I) in the indu
tive proof of Proposition 4.11(ii)), while 
hange (iv) provides a system with

an expli
it 
ategorization of rules as global or lo
al, whi
h lies at the 
ore of the method that will be

used in the next 
hapter to show 
orresponden
e theorems between the logi
 and the type system (see

Se
tion 5.4 for a detailed justi�
ation of this method).

4.1 The logi
 IUL

m

in natural dedu
tion

We rede�ne the natural dedu
tion logi
 IUL

m

, �rst introdu
ed in Chapter 3, as follows.

De�nition 4.1 (IUL

m

) (i) Formulas are generated by the grammar � ::= � |� → � |�∩� |�∪�, where
� belongs to a 
ountable set of atomi
 formulas. An atom is a pair (Γ ; �), where the 
ontext Γ is a �nite

sequen
e of formulas.

(ii) Mole
ules are �nite sequen
es of atoms, su
h that all atoms share the same 
ontext 
ardinality.

A mole
ule M = [(Γ1 ; �1); : : : ; (Γn ; �n)] is also denoted [(Γ
i

; �
i

)n
i=1] or [(Γ

i

; �
i

)n1 ] or just [(Γ
i

; �
i

)
i

].
Sequen
es of atoms whi
h are subsequen
es of mole
ules are denoted by U ;V.

(iii) The logi
al system IUL

m

proves mole
ules in natural dedu
tion style by the rules displayed in

Figure 4.1. The index i in mole
ules runs from 1 to n.

61
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m

and IUT

⊕

(ax)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

[U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
(∩I)

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E1)

[U ; (Γ
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E2)

[U ; (Γ
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪I1)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪I2)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[(Γ
i

; �
i

∪ �
i

)
i

] [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �
i

)
i

]

Figure 4.1: The logi
 IUL

m

in natural dedu
tion style.

Remark 4.2 (i) In the ex
hange rule (X), the Γ
i

's have the same 
ardinality.

(ii) The interse
tion (introdu
tion and elimination) and union introdu
tion rules presented in Fig-

ure 4.1 are, in fa
t, spe
ial versions of the a
tual interse
tion (introdu
tion and elimination) and union

introdu
tion rules; this is done for simpli
ity and spa
e e
onomy. The a
tual (∩I) rule is meant as shown

below.

[U1; (Γ1 ; �1); (Γ1 ; �1);U2; (Γ2 ; �2); (Γ2 ; �2); : : : ;Un; (Γn ; �n); (Γn ; �n);Un+1]
(∩I)

[U1; (Γ1 ; �1 ∩ �1);U2; (Γ2 ; �2 ∩ �2); : : : ;Un; (Γn ; �n ∩ �n);Un+1]

The a
tual (∩E1),(∩E2),(∪I1), and (∪I2) rules 
an be �gured from their spe
ial 
ases in a similar manner.

The 
ategorization of rules as global or lo
al is a

ording to whether they a�e
t all or some atoms in

premise level, respe
tively. The ex
hange rule, the impli
ation rules, and the union elimination rule are

global, while the interse
tion rules and the union introdu
tion rules are lo
al

1

. Unlike the 
ase of IUL

m

as presented in Chapter 3, where union elimination assembled both global and lo
al 
hara
teristi
s, the


lassi�
ation of rules as global or lo
al is here very 
lear and de�nite.

The 
onne
tives of the grammar are all additive. This is done by ne
essity in the 
ases of interse
tion

introdu
tion and union introdu
tion. The 
laim that atoms in the same mole
ule should have the same


ontext 
ardinality forbids a multipli
ative presentation of the interse
tion introdu
tion rule; a multi-

pli
ative premise [(E
i

; �
i

)k1 ; ((Γi ; �i); (∆i

; �
i

))n1 ] with |E
i

| = |Γ
i

| = |∆
i

| = m would give a 
on
lusion

[(E
i

; �
i

)k1 ; (Γi;∆i

; �
i

∩ �
i

)n1 ] with |E
i

| = m, but |Γ
i

;∆
i

| = 2m. Moreover, the intuitionisti
 
laim that

atoms should 
ontain exa
tly one formula to the right of \;" forbids a multipli
ative presentation of

1

Lo
al rules be
ome global to the limit where U and V are empty.
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the union introdu
tion rule; a multipli
ative premise [U ; (Γ
i

; �
i

; �

i

)
i

;V ] would no longer belong to an

intuitionisti
 system. On the other hand, the additive style is pi
ked by 
hoi
e in the 
ases of impli
ation

elimination and union elimination. Indeed, the impli
ation elimination rule 
an also be presented in a

multipli
ative manner, that is with premises [(Γ
i

; �
i

→ �

i

)
i

]; [(∆
i

; �
i

)
i

] and 
on
lusion [(Γ
i

;∆
i

; �
i

)
i

]. As
far as the union elimination rule is 
on
erned, the 
hoi
e of additive style refers to both i) the right-premise

\twin" atoms (Γ
i

; �

i

; �
i

) and (Γ
i

; �

i

; �
i

) and ii) the left-premise atom (Γ
i

; �
i

∪ �
i

) and its 
orresponding

right-premise twin atoms (Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

). Abolishing the additiveness with respe
t to (ii) still

yields an a

eptable union elimination rule with a mixed multipli
ative-additive 
hara
ter (see (∪E)2

below), while further abolishing the additiveness with respe
t to (i) also provides an a

eptable union

elimination rule with a purely multipli
ative 
hara
ter (see (∪E)3 below).

[(Γ
i

; �
i

∪ �
i

)
i

] [((∆
i

; �

i

; �
i

); (∆
i

; �

i

; �
i

))
i

]
(∪E)2

[(Γ
i

;∆
i

; �
i

)
i

]

[(Γ
i

; �
i

∪ �
i

)
i

] [((∆
i

; �

i

; �
i

); (E
i

; �

i

; �
i

))
i

]
(∪E)3

[(Γ
i

;∆
i

; E

i

; �
i

)
i

]

In an IUL

m

-derivation, an ex
hange inferen
e 
an be moved upward above all the inferen
es of logi
al

rules

2

, so that only an axiom and possibly some other ex
hange inferen
es may appear above it. This is

formalized by the next de�nition and proposition.

De�nition 4.3 (Canoni
al derivation) An IUL

m

-derivation � is 
anoni
al

3

, if every ex
hange infer-

en
e in � appears just below an axiom or another ex
hange inferen
e.

The de�nition implies that, roughly speaking, a bran
h in the tree of a 
anoni
al derivation 
onsists

of an axiom, whi
h is followed by a (possibly empty) sequen
e of ex
hange inferen
es, whi
h is, in turn,

followed by a (possibly empty) sequen
e of inferen
es of logi
al rules.

Proposition 4.4 For every � :: M, there is a 
anoni
al �

′ :: M.

Proof. This is formally proved by indu
tion on �. In pra
ti
e, it suÆ
es to show that the ex
hange rule


ommutes with any logi
al rule. We show two 
hara
teristi
 
ases.

. A lo
al logi
al rule: (∩I)

[(E
i

; �

i

;  

i

; Z

i

; �
i

)k1 ; ((Γi; �i; �i;∆i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �
i

))n1 ]
(∩I)

[(E
i

; �

i

;  

i

; Z

i

; �
i

)k1 ; (Γi; �i; �i;∆i

; �
i

∩ �
i

)n1 ]
(X)

[(E
i

;  

i

; �

i

; Z

i

; �
i

)k1 ; (Γi; �i; �i;∆i

; �
i

∩ �
i

)n1 ]

❀

[(E
i

; �

i

;  

i

; Z

i

; �
i

)k1 ; ((Γi; �i; �i;∆i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �
i

))n1 ]
(X)

[(E
i

;  

i

; �

i

; Z

i

; �
i

)k1 ; ((Γi; �i; �i;∆i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �
i

))n1 ]
(∩I)

[(E
i

;  

i

; �

i

; Z

i

; �
i

)k1 ; (Γi; �i; �i;∆i

; �
i

∩ �
i

)n1 ]

2

A logi
al rule is a rule introdu
ing or eliminating a logi
al 
onne
tive.

3

The term \
anoni
al" is borrowed from [15℄.
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. A global logi
al rule: (∪E)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

∪ �
i

)
i

] [((Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

❀

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

∪ �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

∪ �
i

)
i

]

[((Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

))
i

]
(X)

[((Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
⊣

The stru
tural rules of weakening and 
ontra
tion are derivable, as the next two propositions show.

Proposition 4.5 Weakening is derivable: if � :: [(Γ
i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. By indu
tion on �.

Base: If � :: [(Γ
i

; �

i

; �
i

)
i

] is an axiom, then a �

′ :: [(Γ
i

; �

i

; �

i

; �
i

)
i

] 
ontains an axiom [(Γ
i

; �

i

; �

i

; �
i

)
i

]
and an appli
ation of ex
hange.

Indu
tion step: We show three 
hara
teristi
 
ases, denoting [h℄ the indu
tion hypothesis.

.

�0 :: [(Γ
i

; �

i

; �
i

)
i

]
(→I)

� :: [(Γ
i

; �
i

→ �

i

)
i

]
❀

�

′
0 :: [(Γ

i

; �

i

; �

i

; �
i

)
i

] [h℄

(X)

[(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→I)

�

′ :: [(Γ
i

; �

i

; �
i

→ �

i

)
i

]

.

�0 :: [(∆
i

; �
i

)k1 ; ((Γi ; �i); (Γi ; �i))
n

1 ]
(∩I)

� :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∩ �i)
n

1 ]
❀

�

′
0 :: [(∆

i

;  

i

; �
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ] [h℄

(∩I)

�

′ :: [(∆
i

;  

i

; �
i

)k1 ; (Γi; �i ; �i ∩ �i)
n

1 ]

.

�0 :: [(Γ
i

; �
i

∪ �
i

)
i

] �1 :: [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
(∪E)

� : [(Γ
i

; �
i

)
i

]
❀

�

′
0 :: [(Γ

i

; �

i

; �
i

∪ �
i

)
i

] [h℄

�

′
1 :: [((Γ

i

; �

i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

; �
i

))
i

] [h℄

(X)

[((Γ
i

; �

i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

; �
i

))
i

]
(∪E)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]
⊣

Proposition 4.6 Contra
tion is derivable: if � :: [(Γ
i

; �

i

; �

i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. We derive 
ontra
tion through an impli
ation redex.

� :: [(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �

i

; �
i

→ �

i

)
i

]
(ax)

[(Γ
i

; �

i

; �
i

)
i

]
(→E)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]
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We 
an 
he
k that, if we 
hose a multipli
ative impli
ation elimination rule, the derivability of 
on-

tra
tion through an impli
ation redex would fail. A proof by indu
tion on � would also fail. ⊣

We next de�ne the notions of tree (of a derivation) and of derivation height, whi
h will be used in

subsequent propositions.

De�nition 4.7 (Tree) The tree T (or T

�

) of a derivation � is de�ned indu
tively as follows.

. If � is an axiom, the tree T 
onsists of a single node.

. If � derives from �0 with tree T0 by a one-premise rule R, then the root of tree T has a single


hild-node, namely the root of T0.

�0
R

�

❀

•
T

•
T0

R

. If � derives from �0 and �1 with trees T0 and T1, respe
tively, by a two-premise rule R, then the

root of tree T has two 
hild-nodes, namely the roots of T0 and T1.

�0 �1
R

�

❀

•
T0

◗
◗
◗
◗◗•

T

R

✑
✑
✑
✑✑

•
T1

. If

4

� derives from �0; �1, and �2 with trees T0; T1, and T2, respe
tively, by a three-premise rule R,

then the root of tree T has three 
hild-nodes, namely the roots of T0; T1, and T2.

�0 �1 �2
R

�

❀

•
T0

◗
◗
◗
◗◗•

T

R

•
T1

✑
✑
✑
✑✑

•
T2

In the indu
tion 
ases, the node asso
iated to the rule R is the root of T .

De�nition 4.8 (Derivation height) The derivation height h (or h

�

) of a derivation � is the height

of the tree of �, i.e. the maximal length of the bran
hes in the tree, where the length of a bran
h is the

number of nodes in the bran
h minus 1.

4

We in
lude the 
ase of a three-premise rule in preparation for the presentation of the type system IUT

⊕
, whose (∪E)

rule has three premises.
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Remark 4.9 For any derivations � and �

′
, we have that T = T

′ ⇒ h = h

′
, but h = h

′ ; T = T

′
.

Before we establish the derivability of the stru
tural rules of pruning and doubling, we need to show

that atoms 
an be ex
hanged in provable mole
ules.

Proposition 4.10 If � :: [U ;A;B;V ], there exists a �

′ :: [U ;B;A;V ] with T ′ = T .

Proof. By indu
tion on �.

Base: If � :: [U ;A;B;V ] is an axiom, then �

′ :: [U ;B;A;V ] is an axiom, as well. Both T and T

′


onsist of a single node.

Indu
tion step: We present two 
hara
teristi
 
ases.

. A lo
al rule: (∩I)

Case 1:

�0 :: [U0;A0;A1;B0;B1;V0]
(∩I)

� :: [U ;A;B;V ]

where |U| 6 |U0| and |V| 6 |V0|

Applying the IH four times

5

, we get a �

′
0 :: [U0;B0;B1;A0;A1;V0] with T

′
0 = T0. By (∩I), we then

get a �

′ :: [U ;B;A;V ] with T ′ = T .

Case 2:

�0 :: [U0;A0;A1;B;V0]
(∩I)

� :: [U ;A;B;V ]

where |U| 6 |U0| and |V| 6 |V0|

Applying the IH twi
e, we obtain a �

′
0 :: [U0;B;A0;A1;V0] with T

′
0 = T0. By (∩I), we then get a

�

′ :: [U ;B;A;V ] with T ′ = T .

Case 3:

�0 :: [U0;A;B;V0]
(∩I)

� :: [U ;A;B;V ]

where either (|U| < |U0| and |V| 6 |V0|) or (|U| 6 |U0| and |V| < |V0|)

The IH gives a �

′
0 :: [U0;B;A;V0] with T

′
0 = T0. By (∩I), we then get a �

′ :: [U ;B;A;V ] with T ′ = T .

. A global rule: (∪E)

�0 :: [U0;A0;B0;V0] �1 :: [U1;A10;A11;B10;B11;V1]
(∪E)

� :: [U ;A;B;V ]

where |U1| = 2|U0| and |U| = |U0|

The IH on �0 gives a �

′
0 :: [U0;B0;A0;V0] with T

′
0 = T0. Starting with �1 and applying the IH four

times, we get a �

′
1 :: [U1;B10;B11;A10;A11;V1] with T

′
1 = T1. Then, applying (∪E) to �′

0 and �

′
1, we

obtain a �

′ :: [U ;B;A;V ] with T ′ = T . ⊣

Proposition 4.11 (i) Pruning is derivable: if � :: [U ;V ], there exists a �

′ :: [U ] with h′ 6 h.

(ii) Doubling is derivable: if � :: [U ;A ], there exists a �

′ :: [U ; 2A ] with T ′ = T , where 2A = A;A.

5

We 
an have multiple appli
ations of the IH, as the ex
hange of atoms leaves the tree, and hen
e the height, unaltered.



4.1 The logi
 IUL

m

in natural dedu
tion 67

Proof. (i) By indu
tion on �.

Base: If � :: [U ;V ] is an axiom, then �

′ :: [U ] is an axiom, as well, and both heights equal 0.

Indu
tion step: We demonstrate two 
hara
teristi
 
ases.

. A global rule: (→E)

�0 :: [U0;V0] �1 :: [U1;V1]
(→E)

� :: [U ;V ]

where |U0| = |U1| = |U|

The IH gives a �

′
0 :: [U0] with h

′
0 6 h0 and a �

′
1 :: [U1] with h

′
1 6 h1. By (→E), we then get a �

′ :: [U ]
with h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

. A lo
al rule: (∩I)

Case 1:

�0 :: [U0;V0]
(∩I)

� :: [U ;V ]

where |U| < |U0|

The IH gives a �

′
0 :: [U0] with h

′
0 6 h0. By (∩I), we then get a �

′ :: [U ] with h′ = h

′
0+1 6 h0+1 = h.

Case 2:

�0 :: [U ;V0]
(∩I)

� :: [U ;V ]

where |V| < |V0|

The IH gives a �

′
0 :: [U ] with h′0 6 h0. It is �

′ = �

′
0 and h

′ = h

′
0 < h.

(ii) By indu
tion on �.

Base: If � :: [U ;A] is an axiom, then �

′ :: [U ; 2A] is an axiom, as well, and both trees 
onsist of a

single node.

Indu
tion step: We expose two 
hara
teristi
 
ases.

. A lo
al rule: (∩I)

Case 1:

�0 :: [U0;A0;A1]
(∩I)

� :: [U ;A ]

where |U| 6 |U0|

The IH gives a �

′
0 :: [U0;A0; 2A1] with T

′
0 = T0. Then, by two appli
ations of 4.10, we obtain a

�

2
0 :: [U0; 2A1;A0] with T

2
0 = T0. By the IH on
e again

6

, we get a �

3
0 :: [U0; 2A1; 2A0] with T

3
0 = T0.

Starting with �

3
0 and applying 4.10 three times, we derive a �

4
0 :: [U0; 2(A0;A1)] with T

4
0 = T0. Finally,

applying (∩I) to �4
0 , we get a �

′ :: [U ; 2A] with T ′ = T .

6

To apply the IH on
e again and double A0 after having doubled A1, whi
h is an important step for the derivability of

doubling in this 
ase, we need to have the 
on
lusion that T

′ = T in the statement of the derivability of doubling and also

in the statement of the derivability of atom ex
hange. In the 
ase of the derivability of doubling, though, this 
on
lusion is

not be maintained, if the lo
al rules of interse
tion (introdu
tion and elimination) and union introdu
tion are not allowed

to a
t on more than one atom (or sequen
e of atoms) in one step. The reader may easily verify this by attempting the


urrent 
ase of (∩I) with a version of the rule a
ting solely on one sequen
e of atoms A0;A1 or the 
orresponding 
ase of

(∩E) (resp. (∪I)) with a version of the rule a
ting solely on one atom A0.
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Case 2:

�0 :: [U0;A ]
(∩I)

� :: [U ;A ]

where |U| < |U0|

The IH yields a �

′
0 :: [U0; 2A ] with T ′

0 = T0. By (∩I), we then get a �

′ :: [U ; 2A ] with T ′ = T .

. A global rule: (∪E)

�0 :: [U0;A0] �1 :: [U1;A10;A11]
(∪E)

� :: [U ;A]

The IH on �0 gives a �

′
0 :: [U0; 2A0] with T

′
0 = T0, while the IH on �1 yields a �

′
1 :: [U1;A10; 2A11]

with T

′
1 = T1. Starting with �

′
1 and applying 4.10 twi
e, we get a �

2
1 :: [U1; 2A11;A10] with T

2
1 = T1. The

IH on �

2
1 gives a �

3
1 :: [U1; 2A11; 2A10] with T

3
1 = T1. Starting with �

3
1 and applying 4.10 three times, we

derive a �

4
1 :: [U1; 2(A10;A11)] with T

4
1 = T1. Finally, applying (∪E) to �

′
0 and �

4
1 , we get a �

′ :: [U ; 2A]
with T

′ = T . ⊣

Remark 4.12 An alternative phrasing for the derivability of weakening and 
ontra
tion, whi
h in
ludes

the notion of \tree", is the following.

(i) Weakening is derivable: if � :: [(Γ
i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same 
ardinality and the

∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

] with T ′ = T .

(ii) Contra
tion is derivable: if � :: [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same 
ardinality and

the ∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

] with T ′ = T .

For both (i) and (ii), the proof is by indu
tion on �. If the ∆
i

's are empty in (i), the indu
tion works,

only if the 
on
lusion T

′ = T is removed (see Proposition 4.5). If the ∆
i

's are empty in (ii), the indu
tion

does not work. We 
an only derive 
ontra
tion through an impli
ation redex (see Proposition 4.6), in

whi
h 
ase the 
on
lusion T

′ = T does not hold.

If we 
onsider a union elimination rule (∪E)′ that resembles the union elimination rule of the pre-

sentation of IUL

m

given in Chapter 3, we 
an show that it is derivable in the 
urrent presentation of

IUL

m

.

[(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ] [(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
(∪E)′

[(∆
i

;  
i

)k1 ; (Γi ; �i)
n

1 ]

We use the derivable rule (∪E)′ in Chapter 7, where we introdu
e a sequent 
al
ulus presentation of IUL
m

,

to fa
ilitate the proof of equivalen
e between the natural dedu
tion and sequent 
al
ulus presentations

of IUL

m

(see Theorem 7.2).

Proposition 4.13 The rule (∪E)′ is derivable: if

�0 :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ] and �1 :: [(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]

there exists a � :: [(∆
i

;  
i

)k1 ; (Γi ; �i)
n

1 ].
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Proof. We derive (∪E)′ through a union redex, with the aid of Propositions 4.10 and 4.11(ii).

�0 :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ]
(∪I)

[(∆
i

; �
i

∪ �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ]

�1 :: [(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
[4.10, 4.11(ii)℄

[((∆
i

; �

i

;  
i

); (∆
i

; �

i

;  
i

))k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
(∪E)

� :: [(∆
i

;  
i

)k1 ; (Γi ; �i)
n

1 ]

⊣

Having rede�ned the logi
 and established its basi
 properties, we move on to present the type system

and demonstrate some (new) properties of it.

4.2 The type system IUT

⊕
in natural dedu
tion

As already mentioned, the type system IUT

⊕
in natural dedu
tion style is the natural dedu
tion type

system IUT

ù

of Chapter 2 without the (ù)-rule. It assigns types � ::= � | � → � | � ∩ � | � ∪ � to terms

t ∈ Λ a

ording to the rules in Figure 4.2.

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

B ⊢ t : �
(∪I1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪I2)
B ⊢ t : � ∪ �

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

B ⊢ u[t=x] : �

Figure 4.2: The type system IUT

⊕
in natural dedu
tion style.

Let us denote V

�

(or just V ) the set of all term variables appearing in a derivation � of IUT

⊕
.

The next proposition establishes that renaming

7

of a term variable, weakening and strengthening of the

assumptions, and 
ontra
tion of basi
 typing statements are all admissible in IUT

⊕
.

7

The term \renaming" is very 
ommon in the literature, when speaking of a variable 
hange in the assumptions (e.g.

see [2℄). Although we use this terminology to be in a

ordan
e with the majority of authors, it is important to stress that

the 
hange in question does not a
tually 
on
ern the name of the variable, but the variable itself.
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Proposition 4.14 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respe
t to �, there exists a

�

′ :: B; y : � ⊢ t[y=x] : � , su
h that V

′ = (V \ {x}) ∪ {y} and T

′ = T .

(ii) (Weakening) If � :: B ⊢ t : � and x is fresh with respe
t to �, there exists a �

′ :: B; x : � ⊢ t : � ,
su
h that V

′ = V ∪ {x} and T

′ = T .

(iii) (Strengthening) If � :: B; x : � ⊢ t : � and x 6∈ FV (t), there exists a �

′ :: B ⊢ t : � , su
h that

x 6∈ V

′  V and h

′ 6 h.

(iv) (Contra
tion) If � :: B; x : �; y : � ⊢ t : � , there exists a �

′ :: B; x : � ⊢ t[x=y] : � , su
h that

V

′ = V \ {y} and T

′ = T .

Proof. (i) By indu
tion on �.

Base: If � is an axiom, we distinguish two 
ases.

Case 1: If � :: B; x : � ⊢ x : � with V = dom(B) ∪ {x}, there is an axiom �

′ :: B; y : � ⊢ y : �, su
h
that V

′ = dom(B) ∪ {y} = (V \{x}) ∪ {y} and T ′ = T .

Case 2: If � :: B′
; z : �; x : � ⊢ z : � with V = dom(B′) ∪ {z; x}, there is an axiom

�

′ :: B′
; z : �; y : � ⊢ z : �

su
h that V

′ = dom(B′) ∪ {z; y} = (V \{x}) ∪ {y} and T ′ = T .

Indu
tion step: We demonstrate two typi
al 
ases.

.

�0 :: B; x : � ⊢ t : � → � �1 :: B; x : � ⊢ u : �
(→E)

� :: B; x : � ⊢ tu : �

Supposing that V

�0 = V0 ∪ {x} and V

�1 = V1 ∪ {x}, we get that V = V0 ∪ V1 ∪ {x}. The IH gives a

�

′
0 :: B; y : � ⊢ t[y=x] : � → �, su
h that V

′
0 = V0∪{y} and T ′

0 = T0, and a �

′
1 :: B; y : � ⊢ u[y=x] : � , su
h

that V

′
1 = V1 ∪ {y} and T ′

1 = T1. By (→E), we then get a �

′ :: B; y : � ⊢ (t[y=x])(u[y=x]) = (tu)[y=x] : �,
su
h that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \{x}) ∪ {y} and T ′ = T .

.

�0 :: B; x : � ⊢ t : � ∪ � �1 :: B; x : �; z : � ⊢ u : � �2 :: B; x : �; z : � ⊢ u : �
(∪E)

� :: B; x : � ⊢ u[t=z] : �

Supposing that V

�

i

= V

i

∪ {x} (i = 0; 1; 2), we have that V =
⋃

i

V

�

i

= (
⋃

i

V

i

) ∪ {x}. The IH gives

a �

′
0 :: B; y : � ⊢ t[y=x] : � ∪ �, a �′

1 :: B; y : �; z : � ⊢ u[y=x] : �, and a �

′
2 :: B; y : �; z : � ⊢ u[y=x] : �,

su
h that V

′
i

= V

i

∪ {y} and T

′
i

= T

i

. Applying (∪E) to �′
0; �

′
1, and �

′
2, we then obtain a

�

′ :: B; y : � ⊢ (u[y=x])[t[y=x]=z] = (u[t=z])[y=x] : �

su
h that V

′ =
⋃

i

V

′
i

= (
⋃

i

V

i

) ∪ {y} = (V \{x}) ∪ {y} and T ′ = T .

For the rest of the proof, it is V

i

= V

�

i

(i = 0; 1; 2).

(ii) By indu
tion on �.

Base: If � :: B′
; y : � ⊢ y : � is an axiom, there is an axiom �

′ :: B′
; y : �; x : � ⊢ y : � , su
h that

V

′ = dom(B′) ∪ {y; x} = V ∪ {x} and T

′ = T .

Indu
tion step: We on
e more demonstrate the 
ases of (→E) and (∪E).
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.

�0 :: B ⊢ t : � → � �1 :: B ⊢ u : �
(→E)

� :: B ⊢ tu : �

The IH yields a �

′
0 :: B; x : � ⊢ t : � → �, su
h that V

′
0 = V0 ∪ {x} and T

′
0 = T0, and also a

�

′
1 :: B; x : � ⊢ u : � , su
h that V

′
1 = V1 ∪ {x} and T

′
1 = T1. Applying (→E) to �

′
0 and �

′
1, we then get a

�

′ :: B; x : � ⊢ tu : �, su
h that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {x} = V ∪ {x} and T

′ = T .

.

�0 :: B ⊢ t : � ∪ � �1 :: B; y : � ⊢ u : � �2 :: B; y : � ⊢ u : �
(∪E)

� :: B ⊢ u[t=y] : �

The IH gives a �

′
0 :: B; x : � ⊢ t : � ∪�, a �′

1 :: B; y : �; x : � ⊢ u : �, and a �

′
2 :: B; y : �; x : � ⊢ u : �,

su
h that V

′
i

= V

i

∪ {x} and T

′
i

= T

i

(i = 0; 1; 2). Applying (∪E) to �

′
0; �

′
1, and �

′
2, we obtain a

�

′ :: B; x : � ⊢ u[t=y] : �, su
h that V

′ =
⋃

i

V

′
i

= (
⋃

i

V

i

) ∪ {x} = V ∪ {x} and T

′ = T .

(iii) By indu
tion on �.

Base: If � :: B′
; y : �; x : � ⊢ y : � is an axiom, there is an axiom �

′ :: B′
; y : � ⊢ y : � , su
h that

x 6∈ V

′ = dom(B′) ∪ {y}  dom(B′) ∪ {y; x} = V and h

′ = h = 0.

Indu
tion step: We show two distin
tive 
ases.

.

�0 :: B; x : �; y : � ⊢ t : �
(→I)

� :: B; x : � ⊢ �y: t : � → �

Sin
e x 6∈ FV (�y: t) and x 6= y, we have that x 6∈ FV (�y: t) ∪ {y} = FV (t). Hen
e, the IH yields a

�

′
0 :: B; y : � ⊢ t : �, su
h that x 6∈ V

′
0  V0 and h

′
0 6 h0. By (→I), we then get a �

′ :: B ⊢ �y: t : � → �,

su
h that x 6∈ V

′ = V

′
0  V0 = V and h

′ = h

′
0 + 1 6 h0 + 1 = h.

.

�0 :: B; x : � ⊢ t : � ∪ � �1 :: B; x : �; y : � ⊢ u : � �2 :: B; x : �; y : � ⊢ u : �
(∪E)

� :: B; x : � ⊢ u[t=y] : �

We suppose that x 6∈ FV (u[t=y]) and distinguish two 
ases.

Case 1: y 6∈ FV (u) ⇒ u[t=y] = u. The IH on �1 gives a �

′
1 :: B; x : � ⊢ u : �, su
h that y 6∈ V

′
1  V1

and h

′
1 6 h1. Sin
e h

′
1 6 h1 < h and x 6∈ FV (u[t=y] = u), the IH on �

′
1 yields a �

′ :: B ⊢ u = u[t=y] : �,
su
h that x 6∈ V

′  V

′
1  V1 ⊆ V0 ∪ V1 ∪ V2 = V and h

′ 6 h

′
1 < h.

Case 2: y ∈ FV (u) ⇒ x 6∈ FV (t) and x 6∈ FV (u). The IH gives derivations

�

′
0 :: B ⊢ t : � ∪ �; �′

1 :: B; y : � ⊢ u : �; and �′
2 :: B; y : � ⊢ u : �

su
h that x 6∈ V

′
i

 V

i

and h

′
i

6 h

i

(i = 0; 1; 2). By (∪E), we obtain a �

′ :: B ⊢ u[t=y] : �, su
h that

x 6∈ V

′ =
⋃

i

V

′
i

 
⋃

i

V

i

= V and h

′ = max

i

(h′
i

) + 1 6 max

i

(h
i

) + 1 = h.

(iv) By indu
tion on �.

Base: If � is an axiom, we distinguish three 
ases.

Case 1: If � :: B; x : �; y : � ⊢ x : � with V = dom(B) ∪ {x; y}, there is an axiom

�

′ :: B; x : � ⊢ x[x=y] = x : �

su
h that V

′ = dom(B) ∪ {x} = V \ {y} and T ′ = T .

Case 2: If � :: B; x : �; y : � ⊢ y : � with V = dom(B) ∪ {x; y}, there is an axiom

�

′ :: B; x : � ⊢ y[x=y] = x : �
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su
h that V

′ = dom(B) ∪ {x} = V \ {y} and T ′ = T .

Case 3: If � :: B′
; z : �; x : �; y : � ⊢ z : � with V = dom(B′) ∪ {z; x; y}, there is an axiom

�

′ :: B′
; z : �; x : � ⊢ z[x=y] = z : �

su
h that V

′ = dom(B′) ∪ {z; x} = V \ {y} and T ′ = T .

Indu
tion step: We show two 
hara
teristi
 
ases.

.

�0 :: B; x : �; y : � ⊢ t : � → � �1 :: B; x : �; y : � ⊢ u : �
(→E)

� :: B; x : �; y : � ⊢ tu : �

The IH yields a �

′
0 :: B; x : � ⊢ t[x=y] : � → �, su
h that V

′
0 = V0 \ {y} and T

′
0 = T0, and also a

�

′
1 :: B; x : � ⊢ u[x=y] : � , su
h that V

′
1 = V1 \ {y} and T ′

1 = T1. Applying (→E) to �
′
0 and �

′
1, we obtain

a �

′ :: B; x : � ⊢ (t[x=y])(u[x=y]) = (tu)[x=y] : �, su
h that V

′ = V

′
0 ∪ V ′

1 = (V0 \ {y}) ∪ (V1 \ {y}) =
(V0 ∪ V1) \ {y} = V \ {y} and T ′ = T .

.

�0 :: B; x : �; y : � ⊢ t : � ∪ � �1 :: B; x : �; y : �; z : � ⊢ u : � �2 :: B; x : �; y : �; z : � ⊢ u : �
(∪E)

� :: B; x : �; y : � ⊢ u[t=z] : �

The IH gives derivations

�

′
0 :: B; x : � ⊢ t[x=y] : � ∪ �; �′

1 :: B; x : �; z : � ⊢ u[x=y] : �; and �′
2 :: B; x : �; z : � ⊢ u[x=y] : �

su
h that V

′
i

= V

i

\ {y} and T

′
i

= T

i

(i = 0; 1; 2). By (∪E), we then get a

�

′ :: B; x : � ⊢ (u[x=y])[t[x=y]=z] = (u[t=z])[x=y] : �

su
h that V

′ =
⋃

i

V

′
i

=
⋃

i

(V
i

\ {y}) = (
⋃

i

V

i

) \ {y} = V \ {y} and T ′ = T . ⊣

Remark 4.15 Contrary to IUL

m

, where 
ontra
tion is derivable through an impli
ation redex, we 
annot

derive 
ontra
tion in IUT

⊕
through an impli
ation redex.

� :: B; x : �; y : � ⊢ t : �
(→I)

B; x : � ⊢ �y: t : � → �

(ax)

B; x : � ⊢ x : �
(→E)

�

′ :: B; x : � ⊢ (�y: t)x : �

As shown above, su
h an attempt provides a �

′
typing the redex (�y: t)x instead of the 
ontra
tum t[x=y]

and, as argued in Se
tion 2.1, the type system is not invariant under �-redu
tion of subje
ts. On the other

hand, as already shown in Remark 2.2(ii), we 
an derive 
ontra
tion in IUT

⊕
through a union redex.

The following proposition de
lares that the sets of free and bound variables of a term typable in IUT

⊕

are disjoint.

Proposition 4.16 If B ⊢ t : �, then dom(B) ∩BV (t) = ∅, Consequently, sin
e8 FV (t) ⊆ dom(B), it is
FV (t) ∩BV (t) = ∅.

8

See Remark 2.5.
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Proof. By indu
tion on B ⊢ t : �.

Base: If B

′
; x : � ⊢ x : �, then (dom(B′) ∪ {x}) ∩BV (x) = (dom(B′) ∪ {x}) ∩ ∅ = ∅.

Indu
tion step: We show the most notable 
ases.

.

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

We have that x 6∈ dom(B) and also, by the IH, that (dom(B)∪{x})∩BV (t) = ∅. Therefore, the sets
dom(B); {x}, and BV (t) are pairwise disjoint, whi
h implies that dom(B) ∩ (BV (t) ∪ {x}) = ∅, i.e. that
dom(B) ∩BV (�x: t) = ∅.

.

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

The IH gives that dom(B) ∩ BV (t) = ∅ and that dom(B) ∩ BV (u) = ∅. Therefore, we have that

dom(B) ∩ (BV (t) ∪BV (u)) = ∅, i.e. that dom(B) ∩BV (tu) = ∅.

.

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

B ⊢ u[t=x] : �

The IH gives that dom(B)∩BV (t) = ∅ and that (dom(B)∪{x})∩BV (u) = ∅. The latter implies that
dom(B)∩BV (u) = ∅. Therefore, it is dom(B) ∩ (BV (u)∪BV (t)) = ∅, i.e. dom(B)∩BV (u[t=x]) = ∅. ⊣

The next proposition 
on
erns the top-down development of 
ertain variables in a derivation.

Proposition 4.17 Let � be a derivation in IUT

⊕
, R be a rule in �, and B1; : : : ; Bn be the bases in the

bran
h 
onne
ting the 
on
lusion of R to the root of �.

(i) If R is (→I) and x is the variable bounded in the 
ourse of R, then x 6∈
⋃
n

i=1 dom(B
i

).
(ii) If R is (∪E) and x is the variable substituted in the 
ourse of R, then x 6∈

⋃
n

i=1 dom(B
i

).

Proof. We use indu
tion on n for both (i) and (ii). We show (ii) below, noting that (i) is dealt with in

a similar manner.

Base: If n = 1, we have the following pi
ture.

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
R = (∪E)

� :: B1 = B ⊢ u[t=x] : �

By the de�nition of \basis", we have that x 6∈ dom(B) = dom(B1).

Indu
tion step: We suppose that x 6∈
⋃
n

i=1 dom(B
i

) and seek to show that x 6∈
⋃
n+1
i=1 dom(B

i

).
If a one-premise rule among (→I),(∩E), or (∪I) intervenes between B

n

and B

n+1 with Bn being the

basis of the premise, it is

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). If a two-premise rule among (→E) or (∩I)

intervenes between B

n

and B

n+1 with Bn being the basis of either the left or the right premise, it is on
e

again

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). In all these 
ases, the result follows from the IH.

We examine the 
ase of the three-premise (∪E) rule between B

n

and B

n+1 a bit more 
losely. If

a (∪E) intervenes between B

n

and B

n+1 with B

n

being the basis of the major premise, we have the

following pi
ture.
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B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
R = (∪E)

B1 = B ⊢ u[t=x] : �

.

.

.

�0 :: B
n

⊢ t′ : � ∪  �1 :: B
n

; y : � ⊢ u′ : � �2 :: B
n

; y :  ⊢ u′ : �
(∪E)

� :: B
n+1 = B

n

⊢ u′[t′=y] : �

Sin
e B

n+1 = B

n

, we have that

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). Hen
e, the IH that x 6∈
⋃
n

i=1 dom(B
i

)
a
tually says that x 6∈

⋃
n+1
i=1 dom(B

i

). [We note that the IH entails that x 6∈ dom(B
n

), so that it may

be y = x.℄ If a (∪E) intervenes between B
n

and B

n+1 with B

n

being the basis of a minor premise, the

pi
ture is reformed as follows.

�0 :: B′ ⊢ t′ : � ∪  

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
R = (∪E)

B1 = B ⊢ u[t=x] : �

.

.

.

�1 :: B
n

= B

′ ∪ { y : � } ⊢ u′ : � �2 :: B′
; y :  ⊢ u′ : �

(∪E)
� :: B

n+1 = B

′ ⊢ u′[t′=y] : �

Sin
e B

n+1 = B

′ ( B

n

, we on
e more have that

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

), whi
h implies the

result. [We note that the IH entails that x 6∈ dom(B
n

) = dom(B′) ∪ {y}, so that y 6= x.℄ ⊣

4.3 Relating IUL

m

to IUT

⊕
in natural dedu
tion

Having 
ompleted the presentation of both the logi
 IUL

m

and the type system IUT

⊕
in natural dedu
tion

style, we des
ribe how the logi
 sets about a

omplishing its de�nitional goal, whi
h is the depi
tion of

the type system on a logi
al level. To do this, we need the de�nitions of non-standard de
oration for

derivations in the logi
 and of term-statement for statements in the type system.

The so-
alled \non-standard" de
oration of the logi
 is a de
oration that does not en
ode every logi
al

rule; it is a
tually di
tated by the very rules of the type system

9

and hen
e en
odes the impli
ation, ignores

the interse
tion (introdu
tion and elimination) and the union introdu
tion, and indu
es a substitution in

the 
ase of union elimination. Its formal de�nition is along the line given in 3.15 and its rules are shown

in Figure 4.3.

De�nition 4.18 (Term-statement) Given a statement B = {x1 : �1; : : : ; xm : �
m

} ⊢ t : � in IUT

⊕
,

we de�ne the term-statement deriving from it to be {x1; : : : ; xm} ⊢ t, abbreviated x1; : : : ; xm ⊢ t.

To depi
t the type system IUT

⊕
on a logi
al level, we needed to de�ne a logi
 with impli
ation,

interse
tion, and union, su
h that it admits a de
oration en
oding the impli
ation, ignoring the interse
-

tion (introdu
tion and elimination) and the union introdu
tion, and indu
ing a substitution in the 
ase of

9

This is be
ause this de
oration is in essen
e de�ned to a
hieve a 
orresponden
e between the logi
 and the type system

in the perspe
tive of a Curry-Howard 
orresponden
e. This 
orresponden
e is examined in detail in Chapter 5.
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(ax)

x : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [(Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t : [U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
p

(∩I)
t : [U ; (Γ

i

; �
i

∩ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E1)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E2)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

(∪I1)
t : [U ; (Γ

i

; �
i

∪ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

(∪I2)
t : [U ; (Γ

i

; �
i

∪ �
i

)
i

;V ]
p

t : [(Γ
i

; �
i

∪ �
i

)
i

]
p

u : [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
p; x

(∪E)
u[t=x] : [(Γ

i

; �
i

)
i

]
p

Figure 4.3: Non-standard de
oration of natural dedu
tion IUL

m

.

union elimination. For su
h a de
oration to be feasible, the logi
 needed to have an (∩I) rule with a single

premise and a (∪E) rule with a single minor-premise

10

. Indeed, the logi
 IUL

m

, as de�ned in 4.1 and

de
orated in 4.3, uses the mole
ule stru
ture to join together statements in the type system that share

the same term-statement

11

. In the 
ase of interse
tion introdu
tion, the (de
orated) logi
 merges into

the same (de
orated) mole
ule the left and right IUT

⊕
-premises, in parallel for multiple rule instan
es

that share the same term-statement

12

.

x1 : �1
1 ; : : : ; xm : �1

m

⊢ t : �1 x1 : �1
1 ; : : : ; xm : �1

m

⊢ t : �1
(∩I)1

x1 : �1
1 ; : : : ; xm : �1

m

⊢ t : �1 ∩ �1

.

.

.

x1 : �n1 ; : : : ; xm : �n
m

⊢ t : �
n

x1 : �n1 ; : : : ; xm : �n
m

⊢ t : �
n

(∩I)
n

x1 : �n1 ; : : : ; xm : �n
m

⊢ t : �
n

∩ �
n

❀

10

If the logi
 had an (∩I) with two premises, a de
oration ignoring it would pro
eed only under the metatheoreti
al


ondition that the two premises are identi
ally de
orated. A similar remark holds for a (∪E) with two minor premises.

11

This should be kept in mind with a small asterisk, as in the following two 
hapters we establish that it is not every set

of (derivations proving) statements sharing the same term-statement that 
an be joined into a single (derivation proving

a) de
orated mole
ule, whi
h a
tually renders IUL

m

inappropriate as a logi
 for IUT

⊕
(see Se
tion 6.3). It would be

more a

urate at this point to say that we assume that, as in the 
ase of the interse
tion mole
ule-logi
 with respe
t to

the interse
tion type system, the interse
tion-and-union mole
ule-logi
 IUL

m

uses the mole
ule stru
ture to join together

statements in the interse
tion-and-union type system IUT

⊕
that share the same term-statement.

12

Obviously, the term-statement of an (∩I) instan
e with premises B ⊢ t : �; B ⊢ t : � and 
on
lusion B ⊢ t : � ∩ �, where
dom(B) = {x1; : : : ; xm}, is meant to be x1; : : : ; xm ⊢ t.
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t : [U ; (�1
1 ; : : : ; �

1
m

; �1); (�
1
1 ; : : : ; �

1
m

; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �
n

); (�n1 ; : : : ; �
n

m

; �
n

);V ]
x1;:::; xm

(∩I)
t : [U ; (�1

1 ; : : : ; �
1
m

; �1 ∩ �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �
n

∩ �
n

);V ]
x1;:::; xm

Likewise, in the 
ase of union elimination, the (de
orated) logi
 merges into the same (de
orated) mole
ule

the left and right minor IUT

⊕
-premises, in parallel for multiple rule instan
es whose 
orresponding

statements share the same term-statement.

B1 ⊢ t : �1 ∪ �1 B1; x : �1 ⊢ u : �1 B1; x : �1 ⊢ u : �1
(∪E)1

B1 = { x1 : �1
1 ; : : : ; xm : �1

m

} ⊢ u[t=x] : �1

.

.

.

B

n

⊢ t : �
n

∪ �
n

B

n

; x : �
n

⊢ u : �
n

B

n

; x : �
n

⊢ u : �
n

(∪E)
n

B

n

= { x1 : �n1 ; : : : ; xm : �n
m

} ⊢ u[t=x] : �
n

❀

t : [(Γ1 ; �1 ∪ �1); : : : ; (Γn ; �n ∪ �n)]p u : [(Γ1; �1 ; �1); (Γ1; �1 ; �1); : : : ; (Γn; �n ; �n); (Γn; �n ; �n)]p; x
(∪E)

u[t=x] : [(Γ1 = �

1
1 ; : : : ; �

1
m

; �1); : : : ; (Γn = �

n

1 ; : : : ; �
n

m

; �
n

)]
p=x1;:::; xm

A similar note is given in Chapter 3 to explain how the (∪E) in IUL

m

, as IUL

m

is presented there,

uses the mole
ule stru
ture to join together the isomorphi
 minor premises of the (∨E) in MLns (see p.

52).

Considering the logi
 and the type system as presented in this 
hapter, we (re)examine their 
or-

responden
e in the following 
hapter. We there re
onsider the handling of substitution terms, an issue

that blo
ked a 
omplete solution to the 
orresponden
e problem ba
k in Chapter 3 (see subse
tions 3.1.2

and 3.2.2).



CHAPTER 5

Corresponden
e between IUL

m

and IUT

⊕

We aim to a
hieve a 
orresponden
e between the natural dedu
tion logi
 IUL

m

and the natural dedu
tion

type system IUT

⊕
through the non-standard de
oration of the logi
, given in the previous 
hapter.

Toward this end, we �rst de�ne the notions \tree with terms" and \tree of impli
ations and union

eliminations with terms" for both the de
orated logi
 and the type system. We then state and prove

theorems of 
orresponden
e, whi
h strongly depend on restri
tions involving the latter notion. We �nally

examine if and to what extent we 
an get rid of these restri
tions.

5.1 Trees of iue with terms

To obtain some kind of 
orresponden
e between the de
orated logi
 IUL

?

m

and the type system IUT

⊕
,

we will need the auxiliary notion of tree of impli
ations and union eliminations with terms, de�ned for

both IUL

?

m

and IUT

⊕
. The de�nition of this notion is based on the de�nition of the notion of tree with

terms, for both systems.

De�nition 5.1 (IUL

?

m

: Tree with terms T

t

) (i) Given a de
orated mole
ule t : M
p

in IUL

?

m

, we

de�ne the de
oration-statement deriving from it to be the statement {p} ⊢ t with set-
ontext {p }. We

may abbreviate the de
oration-statement as p ⊢ t.
(ii) Given the tree T of a derivation �

?

in IUL

?

m

and the fa
t that ea
h node of the tree represents a

de
orated mole
ule in �

?

, the tree with terms T

t

of �

?

is T with ea
h node de
orated by the de
oration-

statement deriving from the node's de
orated mole
ule.

De�nition 5.2 (IUL

?

m

: Tree of impli
s and union elimins with terms T

t

iue

) We derive the tree

of impli
ations and union eliminations with terms T

t

iue

of a derivation �

?

in IUL

?

m

from the tree with

terms T

t

of �

?

by erasing all nodes and 
orresponding de
oration-statements asso
iated to the rules

(X),(∩IE), and (∪I).

Remark 5.3 The pro
edure of erasing nodes and 
orresponding de
oration-statements asso
iated to the

rules (X),(∩IE), and (∪I) is well-de�ned, sin
e these rules provide, when de
orated, the same de
oration-

statement in premise and 
on
lusion. This fa
t also implies that the tree T

t

iue

displays at the root the

same de
oration-statement as the tree T

t

.

Example 5.4 (IUL

?

m

: T

t

and T

t

iue

) If � = (�∪ �)∩ (�∪ 
) and � = (�→ Æ ∩ ")∩ (� → Æ)∩ (
 → "),
we 
onsider the IUL

?

m

-derivation �

? :: �y: yx : [(� ; (� → Æ ∩ ") ∪ �)]
x

, exhibited below, and present its

77
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trees T

t

and T

t

iue

. For spa
e e
onomy, we denote �1 the type (�→ Æ ∩ ")∩ (� → Æ) and �?11 the de
orated

axiom z : [(�; �; � ; �); (�; �; � ; �); (�; �; � ; �); (�; �; 
 ; 
)]
x; y; z

.

x : [(�; � ; �); (�; � ; �)]
y;x

(∩E1)

x : [(�; � ; � ∪ �); (�; � ; �)]
y;x

(∩E2)

x : [(�; � ; � ∪ �); (�; � ; � ∪ 
)]
y;x

(X)

�

?

0 :: x : [(�; � ; � ∪ �); (�; � ; � ∪ 
)]
x; y

see below

�

?

1 :: yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; "); (�; �; 
 ; ")]
x; y; z

(∪E)
yz[x=z] = yx : [(�; � ; Æ); (�; � ; ")]

x; y

(∩I)
yx : [(�; � ; Æ ∩ ")]

x; y

(→I)

�y: yx : [(� ; � → Æ ∩ ")]
x

(∪I)
�

? :: �y: yx : [(� ; (� → Æ ∩ ") ∪ �)]
x

y : [(�; �; � ; � ); (�; �; � ; � ); (�; �; � ; � ); (�; 
; � ; � )]
x; z; y

(∩E1)

y : [(�; �; � ; �1); (�; �; � ; �1); (�; �; � ; �1); (�; 
; � ; � )] x; z; y
(∩E1)

y : [(�; �; � ; �→ Æ ∩ "); (�; �; � ; �1); (�; �; � ; �→ Æ ∩ "); (�; 
; � ; � )]
x; z; y

(∩E2)

y : [(�; �; � ; �→ Æ ∩ "); (�; �; � ; � → Æ); (�; �; � ; �→ Æ ∩ "); (�; 
; � ; 
 → ")]
x; z; y

(X)

y : [(�; �; � ; �→ Æ ∩ "); (�; �; � ; � → Æ); (�; �; � ; �→ Æ ∩ "); (�; �; 
 ; 
 → ")]
x; y; z

axiom �

?

11
(→E)

yz : [(�; �; � ; Æ ∩ "); (�; �; � ; Æ); (�; �; � ; Æ ∩ "); (�; �; 
 ; ")]
x; y; z

(∩E1)

yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; Æ ∩ "); (�; �; 
 ; ")]
x; y; z

(∩E2)

�

?

1 :: yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; "); (�; �; 
 ; ")]
x; y; z

To fa
ilitate the layout, the trees T

t

and T

t

iue

of �

?

are displayed on the next page in Figure 5.1,

where S denotes the set {x; y} and S; z the set {x; y; z}.

We next de�ne the tree with terms of a derivation in IUT

⊕
and then provide an algorithm for


onstru
ting the tree of impli
ations and union eliminations with terms of su
h a derivation, given its

tree with terms.

De�nition 5.5 (IUT

⊕
: Tree with terms T

t

) Given the tree T of a derivation � in IUT

⊕
and the

fa
t that ea
h node of the tree represents a statement in �, the tree with terms T

t

of � is T with ea
h

node de
orated by the term-statement deriving from the node's statement.

De�nition 5.6 (IUT

⊕
: Tree of impli
s and union elimins with terms T

t

iue

) We derive the tree

of impli
ations and union eliminations with terms T

t

iue

of a derivation � in IUT

⊕
from the tree with

terms T

t

of � by the following algorithm.

. We 
hoose a topmost (∩I) or (∪E) in the tree with terms of �, i.e. an (∩I) or (∪E) that has no

other (∩I) or (∪E) above it. Then, we erase all nodes and 
orresponding term-statements asso
iated to

(∩E) or (∪I) in the trees with terms of all premises. If the topmost rule-inferen
e 
hosen is an (∩I)

and the resulting premise trees of impli
ations with terms are identi
al, i.e. if they share the same rule

stru
ture and the same term-statements at 
orresponding nodes, we identify them and erase the node and


orresponding term-statement asso
iated to the (∩I). If the topmost rule-inferen
e 
hosen is a (∪E) and

the resulting minor-premise trees of impli
ations with terms are identi
al, we identify them and keep a

single minor-premise tree of impli
ations with terms, so that the node asso
iated to the (∪E) be
omes a

two-
hildren node.
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.
1

T
r
e
e
s
o
f
i
u
e
w
i
t
h
t
e
r
m
s

7
9

S ⊢ x

•
∩E1

•S ⊢ x

∩E2

•S ⊢ x

X

•S ⊢ x

◗
◗
◗
◗
◗
◗◗•

∪E

S ⊢ yx ✑
✑

✑
✑
✑
✑✑

∩I

•S ⊢ yx

→I

•x ⊢ �y: yx

∪I

•

x ⊢ �y: yx

T

t

•

S; z ⊢ y

∩E1

•S; z ⊢ y

∩E1

•S; z ⊢ y

∩E2

•S; z ⊢ y

X

•S; z ⊢ y

◗
◗
◗◗•
→E

S; z ⊢ yz ✑
✑
✑✑

•

S; z ⊢ z

∩E1

•S; z ⊢ yz

∩E2

•S; z ⊢ yz

S ⊢ x

•
◗
◗
◗
◗
◗
◗◗•

∪E

S ⊢ yx ✑
✑
✑
✑
✑
✑✑

→I

•

x ⊢ �y: yx

T

t

iue

•

S; z ⊢ y

◗
◗
◗◗•

→E

S; z ⊢ yz ✑
✑
✑✑

•

S; z ⊢ z

Figure 5.1: The trees T

t

and T

t

iue

of �

?

in Example 5.4.
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. We iterate the above pro
edure for the tree with terms resulting from the previous step. At any

step n > 1, we ignore any two-
hildren (∪E)'s, when 
hoosing the step's topmost (∩I) or (∪E), and the

trees with terms resulting from the premises of the topmost (∩I) or (∪E) 
hosen|after erasing nodes and


orresponding term-statements asso
iated to (∩E) or (∪I)|are, in general, trees of impli
ations and

union eliminations with terms, not merely trees of impli
ations with terms, as they were at step 1.

. When all the (∩I)'s and (∪E)'s have been dealt with, we make a �nal step to erase any remaining

nodes and 
orresponding term-statements asso
iated to (∩E) or (∪I).

Remark 5.7 Sin
e the rules (∩E) and (∪I) display the same term-statement in premise and 
on
lusion,

a tree of impli
ations and union eliminations with terms attained from a topmost-(∩I) or a topmost-(∪E)

premise, after erasing nodes and 
orresponding term-statements asso
iated to (∩E) or (∪I), is well-

de�ned and has a term-statement at the root whi
h is identi
al to the term-statement at the root of the

premise's tree with terms. Moreover, sin
e the (∩I) rule displays the same term-statement in premises

and 
on
lusion, a tree of impli
ations and union eliminations with terms attained from a topmost-(∩I)

tree with terms, after identifying mat
hing premise trees of impli
ations and union eliminations with

terms and erasing the (∩I) node and its 
orresponding term-statement, has a term-statement at the root

whi
h is identi
al to the term-statement at the root of the topmost-(∩I) tree with terms in question. Given

a topmost-(∪E) tree with terms, there is obviously no alteration in the term-statement at the root, after

identifying mat
hing minor-premise trees of impli
ations and union eliminations with terms. The fa
t

that (∩E) and (∪I) display the same term-statement in premise and 
on
lusion is on
e more used to argue

that a �nal algorithmi
 step 
on
erning su
h rule-inferen
es does not alter the term-statement at the root

or anywhere else. So, in 
on
lusion, the pro
edure des
ribed by the algorithm in 5.6 is well-de�ned and

the �nal tree T

t

iue

attained, if the algorithm terminates, has a term-statement at the root identi
al to the

term-statement at the root of the original tree T

t

.

Example 5.8 (IUT

⊕
: T

t

and T

t

iue

) If � = (
 → �) ∩ (
 → �) ∩ 
 and � = (Æ → �) ∩ Æ, we 
onsider

the IUT

⊕
-derivation � :: ∅ ⊢ �x: xx (xx) : (� → � ∩ �) ∪ ", as shown below. We denote �1 the type

(
 → �) ∩ (
 → �) and B the basis { x : �; y : � }. We then demonstrate the tree T

t

of � and the

pro
edure to attain the tree T

t

iue

of � from it in four steps. In trees, the letter S stands for the set {x; y},
while the topmost (∩I) or (∪E) 
hosen is en
losed in a box.

see below

�0 :: x : � ⊢ xx : � ∪ �

B ⊢ y : �
(∩E1)

B ⊢ y : �1
(∩E1)

B ⊢ y : 
 → �

B ⊢ y : �
(∩E2)

B ⊢ y : 

(→E)

B ⊢ yy : �

B ⊢ y : �
(∩E1)

B ⊢ y : �1
(∩E2)

B ⊢ y : 
 → �

B ⊢ y : �
(∩E2)

B ⊢ y : 

(→E)

B ⊢ yy : �
(∩I)

�1 :: B = {x : �; y : � } ⊢ yy : � ∩ � �1
(∪E)

x : � ⊢ yy[xx=y] = xx (xx) : � ∩ �
(→I)

∅ ⊢ �x: xx (xx) : � → � ∩ �
(∪I1)

� :: ∅ ⊢ �x: xx (xx) : (� → � ∩ �) ∪ "

x : � ⊢ x : �
(∩E1)

x : � ⊢ x : Æ → �

x : � ⊢ x : �
(∩E2)

x : � ⊢ x : Æ
(→E)

x : � ⊢ xx : �
(∪I)

�0 :: x : � ⊢ xx : � ∪ �
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1

T
r
e
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u
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8
1

x ⊢ x

•
∩E1

•x ⊢ x

◗
◗
◗◗•x ⊢ xx

→E

✑
✑
✑✑

•x ⊢ x

•

x ⊢ x

∩E2

∪I

•x ⊢ xx

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗•

∪E

x ⊢ xx (xx)
→I

•∅ ⊢ �x: xx (xx)
∪I1

•
∅ ⊢ �x: xx (xx)

T

t

S ⊢ y

•
∩E1

•S ⊢ y

∩E1

•S ⊢ y

◗
◗
◗◗•
→E

S ⊢ yy ✑
✑
✑✑

•S ⊢ y

•

S ⊢ y

∩E2

◗
◗
◗
◗
◗
◗
◗•

S ⊢ yy

(T t)1

∩I

✑
✑
✑
✑
✑
✑
✑

•

S ⊢ y

∩E1

•S ⊢ y

∩E2

•S ⊢ y

◗
◗
◗◗•S ⊢ yy

→E

✑
✑
✑✑

•S ⊢ y

•

S ⊢ y

∩E2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

✑
✑
✑
✑
✑✑

•

S ⊢ yy

(T t)1



8
2

C
h
a
p
t
e
r
5
.
C
o
r
r
e
s
p
o
n
d
e
n


e
b
e
t
w
e
e
n
I
U
L

m

a
n
d
I
U
T

⊕

Step 1:

•

x ⊢ x

∩E1

•x ⊢ x

◗
◗
◗◗•x ⊢ xx

→E

✑
✑
✑✑

•x ⊢ x

•

x ⊢ x

∩E2

∪I

•x ⊢ xx

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗•

∪E

x ⊢ xx (xx)

→I

•∅ ⊢ �x: xx (xx)

∪I1

•
∅ ⊢ �x: xx (xx)

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑

•

S ⊢ y

◗
◗
◗◗•S ⊢ yy

→E

✑
✑
✑✑

•

S ⊢ y

•

S ⊢ y

∩E1

•S ⊢ y

∩E1

•S ⊢ y

◗
◗
◗◗•S ⊢ yy

→E

✑
✑
✑✑

•S ⊢ y

•

S ⊢ y

∩E2

◗
◗
◗
◗
◗
◗
◗•S ⊢ yy

∩I

✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•

S ⊢ y

∩E1

•S ⊢ y

∩E2

•S ⊢ y
◗
◗
◗◗✑

✑
✑✑

•

S ⊢ y

∩E2

•S ⊢ y
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Step 2:

•
x ⊢ x

∩E1

•x ⊢ x
◗
◗
◗◗•x ⊢ xx
→E

✑
✑
✑✑

•x ⊢ x

•
x ⊢ x

∩E2

∪I

•x ⊢ xx
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•x ⊢ xx (xx)

∪E

→I

•∅ ⊢ �x: xx (xx)
∪I1

•
∅ ⊢ �x: xx (xx)

•
S ⊢ y

◗
◗
◗◗•S ⊢ yy
→E

✑
✑
✑✑

•
S ⊢ y

✑
✑
✑

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ y

Step 3:

•
x ⊢ x

◗
◗
◗◗•x ⊢ xx
→E

✑
✑
✑✑

•
x ⊢ x

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•x ⊢ xx (xx)
∪E

→I

•∅ ⊢ �x: xx (xx)

∪I1

•
∅ ⊢ �x: xx (xx)

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ y
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⊕

Step 4:

•
x ⊢ x

◗
◗
◗◗•x ⊢ xx
→E

✑
✑
✑✑

•
x ⊢ x

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•x ⊢ xx (xx)
∪E

→I

•
∅ ⊢ �x: xx (xx)

T

t

iue

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ y

The algorithm in 5.6 stops in 
ase the trees of impli
ations and union eliminations with terms attained

from the premises of a topmost (∩I) or from the minor premises of a topmost (∪E)|after erasing nodes

and 
orresponding term-statements asso
iated to (∩E) or (∪I)|do not 
oin
ide. The next example puts

up an IUT

⊕
-derivation for whi
h the algorithm does not terminate.

Example 5.9 (IUT

⊕
: no T

t

iue

) If � = (
 → �) ∩ ((Æ → �)∩ ("→ �)); � = (� → 
)∩ (� → Æ ∪ "), and
B = { x : �; y : �; z : � }, we 
onsider the IUT

⊕
-derivation � :: B ⊢ x (yz) : � ∩ �, as shown below. We

denote �2 the type (Æ → �) ∩ ("→ �).

see below

�0 :: B ⊢ x (yz) : �

see below

�1 :: B ⊢ x (yz) : �
(∩I)

� :: B ⊢ x (yz) : � ∩ �

B ⊢ x : �
(∩E1)

B ⊢ x : 
 → �

B ⊢ y : �
(∩E1)

B ⊢ y : � → 
 B ⊢ z : �
(→E)

B ⊢ yz : 

(→E)

�0 :: B ⊢ x (yz) : �

B ⊢ y : �
(∩E2)

B ⊢ y : � → Æ ∪ " B ⊢ z : �

B ⊢ yz : Æ ∪ " (→E)

B; w : Æ ⊢ x : �
(∩E2)

B; w : Æ ⊢ x : �2
(∩E1)

B; w : Æ ⊢ x : Æ → � B; w : Æ ⊢ w : Æ

B; w : Æ ⊢ xw : � (→E)

B; w : " ⊢ x : �
(∩E2)

B; w : " ⊢ x : �2
(∩E2)

B; w : " ⊢ x : "→ � B; w : " ⊢ w : "

B; w : " ⊢ xw : � (→E)

(∪E)
�1 :: B ⊢ x (yz) : �

The tree T

t

of � is displayed on the next page, where S denotes the set {x; y; z}. We then elaborate

on the steps of the algorithm in 5.6 in order to spot the problem in obtaining a tree T

t

iue

of �.
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1

T
r
e
e
s
o
f
i
u
e
w
i
t
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t
e
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m
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8
5

•

S ⊢ x

∩E1

•S ⊢ x

◗
◗
◗
◗◗•S ⊢ x (yz)

→E

(T t)0

✑
✑
✑
✑✑

•S ⊢ yz

→E

•

S ⊢ y

∩E1

•S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•

S ⊢ z

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•

S ⊢ x (yz)

T

t

∩I

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•

∪E

S ⊢ x (yz)

(T t)1

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑

•

S ⊢ y

∩E2

•S ⊢ y

◗
◗
◗◗•S ⊢ yz

→E

✑
✑
✑✑

•

S ⊢ z

◗
◗
◗
◗
◗
◗

◗
◗
◗
◗
◗
◗
◗◗

•

S;w ⊢ x

∩E2

•S;w ⊢ x

∩E1

•S;w ⊢ x

◗
◗
◗◗•S;w ⊢ xw

→E

✑
✑
✑✑

•

S; w ⊢ w

•

S;w ⊢ x

∩E2

•S;w ⊢ x

∩E2

•S;w ⊢ x
◗
◗
◗◗•S;w ⊢ xw

→E

✑
✑
✑✑

•

S;w ⊢ w
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Step 1:

•
S ⊢ x

∩E1

•S ⊢ x
◗
◗
◗
◗◗•S ⊢ x (yz)

→E

(T t)0

✑
✑
✑
✑✑

•S ⊢ yz
→E

•
S ⊢ y

∩E1

•S ⊢ y
◗
◗
◗◗✑

✑
✑✑

•
S ⊢ z

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗•
S ⊢ x (yz)

∩I

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑
•S ⊢ x (yz)
∪E

(T t

iue

)1

•
S ⊢ y

◗
◗
◗◗•S ⊢ yz
→E

✑
✑
✑✑

•
S ⊢ z

◗
◗
◗
◗◗✑

✑
✑
✑✑

•S;w ⊢ xw
→E

•
S;w ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S;w ⊢ w

Step 2:

•
S ⊢ x

◗
◗
◗
◗◗•
S ⊢ x (yz)

→E

(T t

iue

)0

✑
✑
✑
✑✑

•S ⊢ yz
→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ z

6=

•
S ⊢ y

◗
◗
◗◗•S ⊢ yz
→E

✑
✑
✑✑

•
S ⊢ z

◗
◗
◗
◗◗•
S ⊢ x (yz)

∪E

(T t

iue

)1

✑
✑
✑
✑✑

•S;w ⊢ xw
→E

•
S;w ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S;w ⊢ w

Step 2 
annot be 
ompleted, as the trees of impli
ations and union eliminations with terms obtained from

the premises of (∩I) are not identi
al, i.e. it is (T t

iue

)0 6= (T t

iue

)1. Therefore, the algorithm stops and

there is no tree T

t

iue

of �.

5.2 Restri
ted 
orresponden
e theorems

Having de�ned the notion \tree of impli
ations and union eliminations with terms" for both the de
orated

logi
 and the type system, we 
an now use it to state and prove theorems of 
orresponden
e between the

two systems. The inevitable restri
tion

1

whi
h the use of this notion

2

poses on the 
orresponden
e for
es

us to 
all these theorems \restri
ted 
orresponden
e theorems".

1

The restri
tion is meant in 
omparison to the 
orresponden
e a
hieved in Chapter 1 between the de
orated logi
 ISL

and the type system IT (see Theorem 1.20).

2

A detailed justi�
ation of this notion's ne
essity in se
uring the 
orresponden
e is o�ered in Se
tion 5.4.
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Theorem 5.10 (From IUL

m

to IUT

⊕
) If �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a de
orated deriva-

tion in IUL

m

, there are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
, su
h that

1. (T t

iue

)
i

exists, 2. (T t

iue

)
i

= (T t

iue

)
j

(1 6 i 6= j 6 n), and 3. (T t

iue

)
i

= (T t

iue

)
�

?

.

Proof. We pro
eed by indu
tion on �

?

, denoting S the set {x1; : : : ; xm}.

Base: If �

? :: x : [(�i1; : : : ; �
i

m

; �

i

; �
i

)n
i=1]x1;:::; xm; x is a de
orated axiom, then there exist axioms

�

i

:: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ x : �
i

(1 6 i 6 n) in IUT

⊕
. The tree (T t

iue

)
i

is a single node with the

term-statement S; x ⊢ x, so that 
on
lusions 1 and 2 hold. The tree (T t

iue

)
�

?

is a single node with the

de
oration-statement S; x ⊢ x, so that 
on
lusion 3 holds, too.

Indu
tion step: We show the most demanding 
ases, abbreviating [h℄ the indu
tion hypothesis.

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

; �
i

→ �

i

)n
i=1] x1;:::; xm �

?

1 :: u : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

(→E)

�

? :: tu : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

The [h℄ gives derivations �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

→ �

i

(1 6 i 6 n), su
h that (T t

iue

)0i exists,
(T t

iue

)0i = (T t

iue

)0j , and (T t

iue

)0i = (T t

iue

)
�

?

0
. It also gives �1i :: x1 : �i1; : : : ; xm : �i

m

⊢ u : �
i

(1 6 i 6 n),
su
h that (T t

iue

)1i exists, (T
t

iue

)1i = (T t

iue

)1j , and (T t

iue

)1i = (T t

iue

)
�

?

1
. Applying (→E) to �0i and �1i, we

obtain �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ tu : �
i

(1 6 i 6 n). Sin
e the trees (T t

iue

)0i and (T t

iue

)1i exist, the tree
(T t

iue

)
i

also exists, as shown below.

(T t

iue

)0i [h℄

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1i [h℄

Sin
e (T t

iue

)0i = (T t

iue

)0j and (T t

iue

)1i = (T t

iue

)1j , we get that (T
t

iue

)
i

= (T t

iue

)
j

, as displayed below.

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)0j

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
j

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1j

Finally, sin
e (T t

iue

)0i = (T t

iue

)
�

?

0
and (T t

iue

)1i = (T t

iue

)
�

?

1
, we obtain that (T t

iue

)
i

= (T t

iue

)
�

?

, as shown

below.
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⊕

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗

◗◗•
S ⊢ tu

(T t

iue

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)
�

?

0

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
�

?

→E

✑
✑
✑

✑✑
•

S ⊢ u

(T t

iue

)
�

?

1

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; ((�

i

1; : : : ; �
i

m

; �
i

); (�i1; : : : ; �
i

m

; �
i

))n
i=k+1] x1;:::; xm

(∩I)

�

? :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; (�

i

1; : : : ; �
i

m

; �
i

∩ �
i

)n
i=k+1] x1;:::; xm

For 1 6 i 6 k, the [h℄ yields derivations �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t :  
i

, su
h that the trees (T t

iue

)0i
exist and are identi
al and (T t

iue

)0i = (T t

iue

)
�

?

0
. It is �

i

= �0i, so the trees (T
t

iue

)
i

[= (T t

iue

)0i] exist and are

identi
al. Moreover, it is (T t

iue

)
i

= (T t

iue

)0i = (T t

iue

)
�

?

0
= (T t

iue

)
�

?

. For k + 1 6 i 6 n, the [h℄ gives

�0i0 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

and �0i1 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

su
h that the trees (T t

iue

)0i0; (T
t

iue

)0i1 exist and are identi
al. Applying (∩I) to �0i0 and �0i1, we get

�

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

∩ �
i

. Sin
e (T t

iue

)0i0 = (T t

iue

)0i1, the tree (T t

iue

)
i

exists and is identi
al

to (T t

iue

)0i0. Hen
e, the trees (T t

iue

)
i

are identi
al. For 1 6 i 6 k and k + 1 6 j 6 n, the [h℄ yields

that (T t

iue

)0i = (T t

iue

)0j0, whi
h implies that (T t

iue

)
i

= (T t

iue

)
j

. Therefore, we altogether have that, for

1 6 i 6 n, the trees (T t

iue

)
i

exist and are identi
al. Consequently, the already established equality

(T t

iue

)
i

= (T t

iue

)
�

?

, where 1 6 i 6 k, also holds for 1 6 i 6 n.

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

; �
i

∪ �
i

)n
i=1]p �

?

1 :: u : [((�i1; : : : ; �
i

m

; �

i

; �
i

); (�i1; : : : ; �
i

m

; �

i

; �
i

))n
i=1]p; x

(∪E)

�

? :: u[t=x] : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]p= x1;:::; xm

The [h℄ gives derivations �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

∪ �
i

(1 6 i 6 n), su
h that (T t

iue

)0i exists,
(T t

iue

)0i = (T t

iue

)0j , and (T t

iue

)0i = (T t

iue

)
�

?

0
. It also gives

�1i0 :: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ u : �
i

and �1i1 :: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ u : �
i

for 1 6 i 6 n, su
h that (T t

iue

)1i0; (T
t

iue

)1i1 exist, (T
t

iue

)1j0 = (T t

iue

)1i0 = (T t

iue

)1i1, and (T t

iue

)1i0 = (T t

iue

)
�

?

1
.

Applying (∪E) to �0i; �1i0, and �1i1, we obtain �i :: x1 : �i1; : : : ; xm : �i
m

⊢ u[t=x] : �
i

(1 6 i 6 n). Sin
e
the tree (T t

iue

)0i exists and the trees (T t

iue

)1i0; (T
t

iue

)1i1 exist and are identi
al [(T t

iue

)1i0 = (T t

iue

)1i1 =
(T t

iue

)1i], the tree (T t

iue

)
i

also exists a

ording to the algorithm in 5.6.

(T t)0i

S ⊢ t
•
◗
◗
◗

◗◗•
S ⊢ u[t=x]

(T t)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t)1i0

•
S; x ⊢ u

(T t)1i1

✲
5.6

•
S ⊢ t

(T t

iue

)0i [h℄

◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1i [h℄
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Sin
e (T t

iue

)0i = (T t

iue

)0j and (T t

iue

)1i = (T t

iue

)1i0 = (T t

iue

)1j0 = (T t

iue

)1j , we get that (T
t

iue

)
i

= (T t

iue

)
j

, as

displayed below.

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)0j

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
j

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1j

Finally, sin
e (T t

iue

)0i = (T t

iue

)
�

?

0
and (T t

iue

)1i = (T t

iue

)1i0 = (T t

iue

)
�

?

1
, we obtain that (T t

iue

)
i

= (T t

iue

)
�

?

, as

shown below.

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)
�

?

0

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
�

?

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)
�

?

1

The (→I) 
ase is similar to the (→E) 
ase, while the 
ases of (∩E) and (∪I) are similar to the (∩I)


ase. ⊣

Corollary 5.11 If �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm is a derivation in IUL

?

m

, there exists a derivation

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � in IUT

⊕
, su
h that 1. (T t

iue

)1 exists and 2. (T t

iue

)1 = (T t

iue

)
�

?

.

Proof. By Theorem 5.10, for n = 1. ⊣

The next example illustrates the formalities in Theorem 5.10.

Example 5.12 We 
onsider �

? :: �y: yx : [(� ; � → Æ); (� ; � → ")]
x

, as displayed below, where �; �; �

?

0 ,

and �

?

1 are as in Example 5.4.

�

?

0 :: x : [(�; � ; � ∪ �); (�; � ; � ∪ 
)]
x; y

�

?

1 :: yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; "); (�; �; 
 ; ")]
x; y; z

(∪E)
yx : [(�; � ; Æ); (�; � ; ")]

x; y

(→I)

�

? :: �y: yx : [(� ; � → Æ); (� ; � → ")]
x
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⊕

There are two derivations �1 :: x : � ⊢ �y: yx : � → Æ and �2 :: x : � ⊢ �y: yx : � → " in IUT

⊕
,

su
h that the trees (T t

iue

)1 and (T t

iue

)2 both exist and are identi
al and also identi
al to the tree (T t

iue

)
�

?

.

Roughly speaking, we derive �1 and �2 from �

?

by tra
ing the de
orated \an
estors" of the 1st and 2nd

de
orated atoms in the 
on
lusion of �

?

, respe
tively. We denote B the basis { x : �; y : � } and S the set

dom(B) = {x; y}.

B ⊢ x : �
(∩E1)

B ⊢ x : � ∪ �

B; z : � ⊢ y : �
(∩E1)

B; z : � ⊢ y : �1
(∩E1)

B; z : � ⊢ y : � → Æ ∩ " B; z : � ⊢ z : �
(→E)

B; z : � ⊢ yz : Æ ∩ "
(∩E1)

B; z : � ⊢ yz : Æ

B; z : � ⊢ y : �
(∩E1)

B; z : � ⊢ y : �1
(∩E2)

B; z : � ⊢ y : � → Æ B; z : � ⊢ z : �
(→E)

B; z : � ⊢ yz : Æ
(∪E)

B = {x : �; y : � } ⊢ yx : Æ
(→I)

�1 :: x : � ⊢ �y: yx : � → Æ

B ⊢ x : �
(∩E2)

B ⊢ x : � ∪ 


B; z : � ⊢ y : �
(∩E1)

B; z : � ⊢ y : �1
(∩E1)

B; z : � ⊢ y : � → Æ ∩ " B; z : � ⊢ z : �
(→E)

B; z : � ⊢ yz : Æ ∩ "
(∩E2)

B; z : � ⊢ yz : "

B; z : 
 ⊢ y : �
(∩E2)

B; z : 
 ⊢ y : 
 → " B; z : 
 ⊢ z : 

(→E)

B; z : 
 ⊢ yz : "
(∪E)

B = {x : �; y : � } ⊢ yx : "
(→I)

�2 :: x : � ⊢ �y: yx : � → "

S ⊢ x
•
◗
◗
◗
◗
◗
◗◗•S ⊢ yx

∪E

→I

•
x ⊢ �y: yx

(T t

iue

)1 = (T t

iue

)2 = (T t

iue

)
�

?

✑
✑
✑
✑
✑
✑✑

•S; z ⊢ yz
→E

•
S; z ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S; z ⊢ z

The inverse of 5.10 
an now be phrased and proved as follows.

Theorem 5.13 (From IUT

⊕
to IUL

m

) If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are deriva-

tions in IUT

⊕
, su
h that 1. (T t

iue

)
i

exists and 2. (T t

iue

)
i

= (T t

iue

)
j

(1 6 i 6= j 6 n), then there is a

de
orated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

, su
h that (T t

iue

)
�

? = (T t

iue

)
i

.

Proof. For the sake of simpli
ity, we 
onsider two derivations �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � and

�2 :: x1 : �1; : : : ; xm : �
m

⊢ t :  , and we pro
eed by indu
tion on �1. Nonetheless, we still 
onsider that

the [h℄ 
an be applied to any �nite number of derivations. We denote S the set {x1; : : : ; xm}.
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Base: If �1 :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x : � is an axiom, then, sin
e (T t

iue

)2 = (T t

iue

)1, derivation
�2 may only 
ontain rule inferen
es among (∩I),(∩E), and (∪I).

•
S; x ⊢ x

(T t

iue

)1 = (T t

iue

)2

�21 :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x : � . . . �2k :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x : �

.

.

.

(∩IE); (∪I) .

.

.

�2 :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x :  

We a
hieve a �

? :: x : [(�; �1; : : : ; �m ; �); (�; �1; : : : ; �m ;  )]
x; x1;:::; xm by merging �1; �21; : : : ; �2k into

an axiom of the (de
orated) logi
 and then applying ex
hanges

3

and the logi
al (∩IE),(∪I) inferen
es that


orrespond

4

to the (∩IE),(∪I) inferen
es in �2.

x : [(�1; : : : ; �m; � ; � ); (�1; : : : ; �m; � ; �)
k

i=1
︸ ︷︷ ︸

]
x1;:::; xm; x

.

.

.

(X)'s

.

.

.

x : [(�; �1; : : : ; �m ; � ); (�; �1; : : : ; �m ; �)k
i=1

︸ ︷︷ ︸
]
x; x1;:::; xm

.

.

.

(∩IE),(∪I)

.

.

.

�

? :: x : [(�; �1; : : : ; �m ; � ); (�; �1; : : : ; �m ;  )]
x; x1;:::; xm

Sin
e �

?

does not 
ontain impli
ations or union eliminations, the tree (T t

iue

)
�

?

is a single node with the

de
oration-statement S; x ⊢ x, i.e. it is (T t

iue

)
�

? = (T t

iue

)1.

3

The number of these ex
hanges is the least possible, as we 
hoose not to interfere with the 1-to-m order in axiom level.

4

It may be the 
ase that a number of inferen
es of the same kind in the type-system level are translated as a single

inferen
e of this very kind in the logi
al level; e.g. a number of (∩E1)'s in �2 may render a single (∩E1) in �

?

. This is

be
ause the lo
al rules of the logi
, i.e. (∩IE) and (∪I), are allowed to a
t on several atoms (or sequen
es of atoms) in one

step.
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⊕

Indu
tion step: We show the most important 
ases.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �→ � �11 :: x1 : �1; : : : ; xm : �
m

⊢ u : �
(→E)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ tu : �

The tree (T t

iue

)1 with root-node a

ompanied by the term-statement S ⊢ tu derives by (→E) from

the trees (T t

iue

)10 and (T t

iue

)11 with root-nodes a

ompanied by S ⊢ t and S ⊢ u, respe
tively. Sin
e the
tree (T t

iue

)2 exists and is identi
al to the tree (T t

iue

)1, derivation �2 has the form shown below, where, for

1 6 i 6 k, the trees (T t

iue

)2i0; (T
t

iue

)2i1 all exist and it is (T t

iue

)2i0 = (T t

iue

)10 and (T t

iue

)2i1 = (T t

iue

)11.

�210 :: B2 ⊢ t : �1 →  1 �211 :: B2 ⊢ u : �1
(→E)

�21 :: B2 ⊢ tu :  1
. . .

�2k0 :: B2 ⊢ t : �
k

→  

k

�2k1 :: B2 ⊢ u : �
k

(→E)

�2k :: B2 ⊢ tu :  
k

.

.

.

(∩IE); (∪I) .

.

.

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ tu :  

The [h℄ on �10; �210; : : : ; �2k0 gives a

�

?

0 :: t : [(�1; : : : ; �m ; �→ �); (�1; : : : ; �m ; �
i

→  

i

)k
i=1]x1;:::; xm

su
h that (T t

iue

)
�

?

0
= (T t

iue

)10. In addition, the [h℄ on �11; �211; : : : ; �2k1 gives a

�

?

1 :: u : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �
i

)k
i=1]x1;:::; xm

with (T t

iue

)
�

?

1
= (T t

iue

)11. We then derive a �

? :: tu : [(�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm as follows.

�

?

0 �

?

1
(→E)

tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  
i

)k
i=1

︸ ︷︷ ︸
]
x1;:::; xm

.

.

.

(∩IE),(∪I)

.

.

.

�

? :: tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  )]
x1;:::; xm

Sin
e (T t

iue

)
�

?

0
= (T t

iue

)10 and (T t

iue

)
�

?

1
= (T t

iue

)11, we infer that (T
t

iue

)
�

? = (T t

iue

)1.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : � �11 :: x1 : �1; : : : ; xm : �
m

⊢ t : �
(∩I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∩ �

Sin
e the tree (T t

iue

)1 exists, the trees (T t

iue

)10 and (T t

iue

)11 both exist and are identi
al, so that

(T t

iue

)1 = (T t

iue

)10 = (T t

iue

)11. Moreover, sin
e (T t

iue

)1 = (T t

iue

)2, we have that (T
t

iue

)10 = (T t

iue

)11 = (T t

iue

)2.
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We 
an therefore apply the [h℄ on �10; �11; �2 to get a

�

?

0 :: t : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm

su
h that (T t

iue

)
�

?

0
= (T t

iue

)10. By (∩I), we then obtain a

�

? :: t : [(�1; : : : ; �m ; � ∩ �); (�1; : : : ; �m ;  )]
x1;:::; xm

su
h that (T t

iue

)
�

? = (T t

iue

)
�

?

0
= (T t

iue

)10 = (T t

iue

)1.

.

�10 :: B1 ⊢ t : � ∪ � �110 :: B1; x : � ⊢ u : � �111 :: B1; x : � ⊢ u : �
(∪E)

�1 :: B1 = { x1 : �1; : : : ; xm : �
m

} ⊢ u[t=x] : �

The tree (T t

iue

)1 with root-node a

ompanied by the term-statement S ⊢ u[t=x] derives by (∪E) from
the trees (T t

iue

)10 and (T t

iue

)11, where (T t

iue

)11 = (T t

iue

)110 = (T t

iue

)111, with root-nodes a

ompanied by

S ⊢ t and S; x ⊢ u, respe
tively. The hypothesis that the tree (T t

iue

)2 exists and is identi
al to the tree

(T t

iue

)1 implies the following. Derivation �2 has the form depi
ted below, where, for 1 6 i 6 k, it is

�2i0 :: B2 ⊢ t : �
i0 ∪ �

i1; �2i10 :: B2; x : �
i0 ⊢ u :  

i

, and �2i11 :: B2; x : �
i1 ⊢ u :  

i

. The trees

(T t

iue

)2i0; (T
t

iue

)2i10; (T
t

iue

)2i11 all exist and it is (T t

iue

)2i10 = (T t

iue

)2i11 [= (T t

iue

)2i1]; (T t

iue

)2i0 = (T t

iue

)10,
and (T t

iue

)2i1 = (T t

iue

)11.

�210 �2110 �2111
(∪E)

�21 :: B2 ⊢ u[t=x] :  1
. . .

�2k0 �2k10 �2k11
(∪E)

�2k :: B2 ⊢ u[t=x] :  
k

.

.

.

(∩IE); (∪I) .

.

.

�2 :: B2 = { x1 : �1; : : : ; xm : �
m

} ⊢ u[t=x] :  

If Γ = �1; : : : ; �m and ∆ = �1; : : : ; �m, the [h℄ on �10; �210; : : : ; �2k0 gives a

�

?

0 :: t : [(Γ ; � ∪ �); (∆ ; �
i0 ∪ �i1)

k

i=1]x1;:::; xm

su
h that (T t

iue

)
�

?

0
= (T t

iue

)10, while the [h℄ on �110; �111; �2110; �2111; : : : ; �2k10; �2k11 gives a

�

?

1 :: u : [(Γ; � ; �); (Γ; � ; �); ((∆; �
i0 ;  i); (∆; �i1 ;  i))

k

i=1]x1;:::; xm; x

su
h that (T t

iue

)
�

?

1
= (T t

iue

)11. We then derive a �

? :: u[t=x] : [(Γ ; �); (∆ ;  )]
x1;:::; xm as follows.

�

?

0 �

?

1
(∪E)

u[t=x] : [(Γ ; �); (∆ ;  
i

)k
i=1

︸ ︷︷ ︸
]
x1;:::; xm

.

.

.

(∩IE),(∪I)

.

.

.

�

? :: u[t=x] : [(Γ ; �); (∆ ;  )]
x1;:::; xm
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The identities (T t

iue

)
�

?

0
= (T t

iue

)10 and (T t

iue

)
�

?

1
= (T t

iue

)11 imply that (T t

iue

)
�

? = (T t

iue

)1. ⊣

Corollary 5.14 If �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � is a derivation in IUT

⊕
, su
h that (T t

iue

)1 exists,

there is a de
orated derivation �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm in IUL

m

, su
h that (T t

iue

)
�

? = (T t

iue

)1.

Proof. By Theorem 5.13, for n = 1. ⊣

Remark 5.15 (i) A more a

urate phrasing of Theorem 5.13 would be the following.

If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations in IUT

⊕
, s.t. 1. (T t

iue

)
i

exists

and 2. (T t

iue

)
i

= (T t

iue

)
j

(1 6 i 6= j 6 n), then, for every bije
tion b : {1; : : : ;m} → {1; : : : ;m},
there is a de
orated derivation �

? :: t : [(�i
b(1); : : : ; �

i

b(m) ; �i)
n

i=1]x
b(1);:::; xb(m)

in IUL

m

with

(T t

iue

)
�

? = (T t

iue

)
i

.

In 5.13 we 
onsider the identity bije
tion for simpli
ity.

(ii) In the base 
ase of the indu
tive proof of 5.13, we present the axiom �1 somewhat awkwardly as

x : �; B ⊢ x : � , where B = { x1 : �1; : : : ; xm : �
m

}, in order to demonstrate that there might be need for

some ex
hange inferen
es in �

?

. Had we 
hosen the usual presentation

5

B; x : � ⊢ x : � , this fa
t would
not have been illustrated. The need for ex
hanges be
omes expli
it in Example 5.16 right below.

The next example is a 
on
rete instan
e of the (∪E) 
ase displayed in the proof of 5.13.

Example 5.16 If � = (� → 
) ∪ (� → 
); � = (� → �1 ∩ �2) ∪ (� → �1 ∩ �2), where �1 = Æ ∩ " and

�2 = � ∩ �, and � = (" ∩ �) ∪ �, we 
onsider the IUT

⊕
-derivations �1 :: B = { x : �; y : � ∩ � } ⊢ xy : 


and �2 :: B′ = { y : � ∩ �; x : � } ⊢ xy : �, as shown below.

B ⊢ x : �

B; z : � → 
 ⊢ z : � → 


B; z : � → 
 ⊢ y : � ∩ �
(∩E1)

B; z : � → 
 ⊢ y : �
(→E)

B; z : � → 
 ⊢ zy : 


B; z : � → 
 ⊢ z : � → 


B; z : � → 
 ⊢ y : � ∩ �
(∩E2)

B; z : � → 
 ⊢ y : �
(→E)

B; z : � → 
 ⊢ zy : 

(∪E)

�1 :: B = {x : �; y : � ∩ � } ⊢ xy : 


see �2i (i = 1; 2) below

�21 :: B′ ⊢ xy : �1
(∩E2)

B

′ ⊢ xy : "

see �2i (i = 1; 2) below

�22 :: B′ ⊢ xy : �2
(∩E2)

B

′ ⊢ xy : �
(∩I)

B

′ ⊢ xy : " ∩ �
(∪I1)

�2 :: B′ = { y : � ∩ �; x : � } ⊢ xy : �

B

′ ⊢ x : �

B

′
1 ⊢ z : �→ �1 ∩ �2

B

′
1 ⊢ y : � ∩ �

(∩E1)

B

′
1 ⊢ y : �

(→E)

B

′
1 ⊢ zy : �1 ∩ �2

(∩E
i

)

B

′
1 = B

′ ∪ { z : �→ �1 ∩ �2 } ⊢ zy : �
i

B

′
2 ⊢ z : � → �1 ∩ �2

B

′
2 ⊢ y : � ∩ �

(∩E2)

B

′
2 ⊢ y : �

(→E)

B

′
2 ⊢ zy : �1 ∩ �2

(∩E
i

)

B

′
2 = B

′ ∪ { z : � → �1 ∩ �2 } ⊢ zy : �
i

(∪E)
�2i :: B

′ = { y : � ∩ �; x : � } ⊢ xy : �
i

5

There is no a
tual di�eren
e between the two presentations, as bases are sets, but 5.13 ta
itly presumes an order in

bases, the same in all n of them, whi
h is the order aimed at in (the 
on
lusion of) �

?

.
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We attain the tree (T t

iue

)1 from the tree (T t)1 in one step, whi
h is a
hieved by the fa
t that (T t

iue

)110 =
(T t

iue

)111 [= (T t

iue

)11]. We then attain the (T t

iue

)2 from the tree (T t)2 in four steps: the 1st and 2nd steps

are a

omplished by the tree-identity (T t

iue

)2i10 = (T t

iue

)2i11 [= (T t

iue

)2i1] for i = 1 and i = 2, respe
tively,
while the 3rd step is a

omplished by the tree-identities (T t

iue

)210 = (T t

iue

)220 [= (T t

iue

)2i0] and (T t

iue

)211 =
(T t

iue

)221 [= (T t

iue

)2i1]. Finally, we see that (T t

iue

)1 = (T t

iue

)2 from the fa
ts that (T t

iue

)10 = (T t

iue

)2i0 and

(T t

iue

)11 = (T t

iue

)2i1. In the trees below, the letter S denotes the set {x; y}.

(T t

iue

)11 = (T t

iue

)2i1

(T t

iue

)211 = (T t

iue

)221

(T t

iue

)2i10 = (T t

iue

)2i11

(T t

iue

)110 = (T t

iue

)111

S; z ⊢ zy

•

S; z ⊢ z
•
◗
◗
◗◗
→E

✑
✑
✑✑

•
S; z ⊢ y

(T t

iue

)10 = (T t

iue

)2i0

(T t

iue

)210 = (T t

iue

)220

S ⊢ x

•
S ⊢ x
•
◗
◗
◗
◗
◗
◗◗•
S ⊢ xy

(T t

iue

)1 = (T t

iue

)2

∪E

✑
✑
✑
✑
✑
✑✑

•S; z ⊢ zy
→E

•
S; z ⊢ z

◗
◗
◗◗✑

✑
✑✑

•
S; z ⊢ y

Derivations �1 and �2 satisfy the hypotheses of 5.13; so, for x = x1 and y = x2, there is a de
orated

derivation �

? :: xy : [(�; � ∩ � ; 
); (�; � ∩ � ; �)]
x; y

with (T t

iue

)
�

? = (T t

iue

)1. If Γ = �; � ∩ � and

∆ = �; �∩ �, we write Γ
�

= Γ; �→ 
; Γ
�

= Γ; � → 
; ∆
�

= ∆; �→ �1 ∩ �2, and ∆
�

= ∆; � → �1 ∩ �2.

x : [(� ∩ �; � ; �); 2(� ∩ �; � ; � )]
y;x

(X)

x : [(Γ ; �); 2(∆ ; � )]
x; y

�

?

10 (see below) �

?

11 (see below)

(→E)

zy : [(Γ
�

; 
); (Γ
�

; 
); 2((∆
�

; �1 ∩ �2); (∆
�

; �1 ∩ �2))] x; y; z
(∩E1;2)

zy : [(Γ
�

; 
); (Γ
�

; 
); ((∆
�

; �
i

); (∆
�

; �
i

))2
i=1] x; y; z

(∪E)
xy : [(Γ ; 
); (∆ ; �1); (∆ ; �2)] x; y

(∩E2)

xy : [(Γ ; 
); (∆ ; "); (∆ ; �)]
x; y

(∩I)
xy : [(Γ ; 
); (∆ ; " ∩ �)]

x; y

(∪I1)
�

? :: xy : [(Γ ; 
); (∆ ; �)]
x; y

�

?

10 :: z : [(Γ
�

; �→ 
); (Γ
�

; � → 
); 2((∆
�

; �→ �1 ∩ �2); (∆
�

; � → �1 ∩ �2))] x; y; z

y : [(�; � → 
; � ∩ � ; � ∩ �); (�; � → 
;� ∩ � ; � ∩ �); 2((�;� → �1 ∩ �2; � ∩ � ; � ∩ �); (�; � → �1 ∩ �2; � ∩ � ; � ∩ �))]
x; z; y

(X)

y : [(Γ
�

; � ∩ �); (Γ
�

; � ∩ �); 2((∆
�

; � ∩ �); (∆
�

; � ∩ �))]
x; y; z

(∩E1;2)

�

?

11 :: y : [(Γ
�

; �); (Γ
�

; �); 2((∆
�

; �); (∆
�

; �))]
x; y; z

Two ex
hange inferen
es, just below two axioms, are ne
essary in �

?

. If we 
hose to name y = x1 and

x = x2, we would get a �

? :: xy : [(� ∩ �; � ; 
); (� ∩ �; � ; �)]
y; x

. This is a
tually in a

ordan
e with

Remark 5.15(i). In this 
ase, we would also need two ex
hange inferen
es, but both (
onse
utively) below

the same axiom. For the �

?

shown above, it is easy to verify that the tree (T t

iue

)
�

?

is identi
al to the tree

(T t

iue

)1.
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The question that now arises is the following. Can a �nite number of IUT

⊕
-derivations that share

the same term-statement at the root, but are su
h that the 
onjun
tion of hypotheses 1 and 2 in 5.13

fails, be transformed to derivations that prove the same statements and are su
h that 1 and 2 both hold?

To simplify the situation, let us 
onsider two IUT

⊕
-derivations �1 :: B1 = { x1 : �1; : : : ; xm : �

m

} ⊢ t : �
and �2 :: B2 = { x1 : �1; : : : ; xm : �

m

} ⊢ t :  that share the term-statement {x1; : : : ; xm} ⊢ t at the root
and are su
h that the 
onjun
tion of 1 and 2 fails [notation: ¬(1∧ 2)

�1;�2 ℄, i.e. it is not the 
ase that the

trees (T t

iue

)1 and (T t

iue

)2 both exist and are identi
al. Can we �nd transformed derivations �

′
1 :: B1 ⊢ t : �

and �

′
2 :: B2 ⊢ t :  for whi
h 1 and 2 hold [notation: (1 ∧ 2)

�

′
1;�

′
2
℄, i.e. for whi
h the trees (T t

iue

)′1 and

(T t

iue

)′2 both exist and are identi
al? As the next se
tion illustrates, this is not always possible.

5.3 A transformation 
ounterexample

Consider the following �-terms.

u

′ = xx1 v

′ = x1x

u

′′ = x2yy v

′′ = y (x2x1)

u = x2x1x1 v = x1(x2x1)

If s = x2x1 and r = x1, it is u = u

′[s=x] = u

′′[r=y] and v = v

′[s=x] = v

′′[r=y]. Moreover, if s

′ = x2y, the

following �-term relations hold.

u

′ = xr v

′ = rx

u

′′ = s

′
y v

′′ = ys

u = sr v = rs

If � = (� → 
 → �) ∩ Æ; � = (" → � → �) ∩ �, and � = (Æ → 
) ∩ (� → �) ∩ � ∩ ", 
onsider the
IUT

⊕
-derivation �1 :: B1 = { x1 : �; x2 : � → � ∪ � } ⊢ uv : � and its tree (T t

iue

)1, as shown below. The

letter S denotes the set {x1; x2}.

B1 ⊢ x2 : � → � ∪ �

B1 ⊢ x1 : �
(∩E)

B1 ⊢ x1 : �
(→E)

�10 :: B1 ⊢ x2x1 = s : � ∪ �

see below

�11 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �

see below

�12 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �
(∪E)

�1 :: B1 ⊢ sr (rs) = uv : �

B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : � → 
 → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : �
(→E)

�110 :: B1; x : � ⊢ xx1 : 
 → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : Æ → 


B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : Æ
(→E)

�111 :: B1; x : � ⊢ x1x : 

(→E)

�11 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �

B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : "→ � → �

B1; x : � ⊢ x1 : �
(∩E2)

B1; x : � ⊢ x1 : "
(→E)

�120 :: B1; x : � ⊢ xx1 : � → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : � → �

B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : �
(→E)

�121 :: B1; x : � ⊢ x1x : �
(→E)

�12 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �
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S ⊢ x2

•
◗
◗
◗◗•S ⊢ s
→E

✑
✑
✑✑

•
S ⊢ x1

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)1

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•

→E

S; x ⊢ u′
v

′

•S; x ⊢ u′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•S; x ⊢ v′

→E

•
S; x ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x1

•
S; x ⊢ x1

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x

If � = � → �;  = � → 
; � = (�∪ )∩ ", and � = (� → �→ � → �)∩ ( →  → 
 → �)∩ ("→ �),

onsider the IUT

⊕
-derivation �2 :: B2 = { x1 : �; x2 : � } ⊢ uv : � and its tree (T t

iue

)2, as demonstrated
below. For spa
e e
onomy, we denote B

�

and B

 

the bases B2; y : � and B2; y :  , respe
tively.

B2 ⊢ x1 = r : �
(∩E)

�20 :: B2 ⊢ r : � ∪  

see below

�21 :: B2; y : � ⊢ x2yy (ys) = u

′′
v

′′ : �

see below

�22 :: B2; y :  ⊢ x2yy (ys) = u

′′
v

′′ : �
(∪E)

�2 :: B2 ⊢ sr (rs) = uv : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : �→ � → � → � B

�

⊢ y : �
(→E)

B

�

⊢ x2y : �→ � → � B

�

⊢ y : �
(→E)

�210 :: B2; y : � ⊢ x2yy : � → �

B

�

⊢ y : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : "→ �

B

�

⊢ x1 : �
(∩E)

B

�

⊢ x1 : "
(→E)

B

�

⊢ x2x1 = s : �
(→E)

�211 :: B2; y : � ⊢ ys : �
(→E)

�21 :: B2; y : � ⊢ x2yy (ys) = u

′′
v

′′ : �

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 :  →  → 
 → � B

 

⊢ y :  
(→E)

B

 

⊢ x2y :  → 
 → � B

 

⊢ y :  
(→E)

�220 :: B2; y :  ⊢ x2yy : 
 → �

B

 

⊢ y :  

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 : "→ �

B

 

⊢ x1 : �
(∩E)

B

 

⊢ x1 : "
(→E)

B

 

⊢ x2x1 = s : �
(→E)

�221 :: B2; y :  ⊢ ys : 

(→E)

�22 :: B2; y :  ⊢ x2yy (ys) = u

′′
v

′′ : �
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S ⊢ r
•
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗

◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S; y ⊢ u′′

v

′′

→E

•S; y ⊢ u′′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•

→E

S; y ⊢ v′′

•S; y ⊢ s′
→E

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ y

◗
◗
◗◗✑

✑
✑✑

•S; y ⊢ s
→E

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ x1

It is obvious that (T t

iue

)1 6= (T t

iue

)2, so that ¬(1 ∧ 2)
�1;�2 . Before attempting to transform �1 and �2

to �

′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : �, respe
tively, so that (1∧ 2)

�

′
1;�

′
2
, some preliminary notes are in

order.

Note 1. The 
omplexity 
(t) of a �-term t is de�ned indu
tively as follows.


(x) = 1 
(�x: t) = 
(t) + 1 
(tu) = 
(t) + 
(u)

We write 6



(<



;=



) to mean 6 (<;=) with respe
t to 
omplexity. Obviously, for any term t, it is

t >



1, and, for any non-variable term t, it is t >




1. The next lemma states term-
omplexity relations

and properties we will be using later on.

Lemma 5.17 For any terms t; u; v, and any variable x free in u, we have that: (i) t <




tu and u <




tu,

(ii) if t <




u, then tv <




uv and vt <




vu, and (iii) if x <




t, then u = u(x) <



u(t) = u[t=x].

Proof. (i) It is tu =



t+ u >



t+ 1 >



t and tu =



t+ u >



1 + u >




u.

(ii) It is tv =



t+ v

[t<



u]
<




u+ v =



uv and vt =



v + t

[t<



u]
<




v + u =



vu.

(iii) By indu
tion on u(x). Base: If u(x) = x, then u(t) = t, so that u(x) <



u(t) by hypothesis.

Indu
tion step: If u(x) = (�y: u1)(x) = �y: u1(x), then u1(x)
[h℄

<




u1(t), so that u(x) = �y: u1(x) =



u1(x) + 1 <



u1(t) + 1 =



�y: u1(t) = u(t). If u(x) = (u1u2)(x), then x is free in u1 or free in u2, so we

need to 
onsider three 
ases: a) x free in u1, but not free in u2, b) x free in u2, but not free in u1, and


) x free in both u1 and u2. For 
ase a), it is u(x) = (u1(x))u2, so that u1(x)
[h℄

<




u1(t), whi
h implies that
u(x) = (u1(x))u2 <
 (u1(t))u2 = u(t) by (ii). The other two 
ases are dealt with in a similar manner. ⊣
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Note 2. In the attempted transformations, we only 
onsider (∪E)'s where a proper substitution o

urs,

as a (∪E) where a phony substitution o

urs is eliminable.

�0 :: B ⊢ t : � ∪ � �1 :: B; x : � ⊢ u : � �2 :: B; x : � ⊢ u : �
(∪E)

proper

[x ∈ FV (u)]
� :: B ⊢ u[t=x] 6= u : �

�0 :: B ⊢ t : � ∪ � �1 :: B; x : � ⊢ u : � �2 :: B; x : � ⊢ u : �
(∪E)

phony

[x 6∈ FV (u)]
� :: B ⊢ u[t=x] = u : �

Considering �1 :: B; x : � ⊢ u : � in (∪E)
phony

and using Proposition 4.14(iii), we get that there exists a

�

′
1 :: B ⊢ u : � with x 6∈ V

′
1  V1 and h

′
1 6 h1. A
tually, as 
an be determined from the proof of 4.14(iii),

derivation �

′
1 derives from �1 by eliminating some (possibly none) rules in �1. Therefore, the set of rules

proving B ⊢ u : � in �

′
1 is a subset of the set of rules in �1, whi
h implies that we 
an prove B ⊢ u : �

without the phony (∪E) in question.

It 
an further be shown that, if the transformed derivations �

′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : � we

are looking for 
ontain phony (∪E)'s, then, eliminating the phony (∪E)'s from �

′
1 and �

′
2 and obtaining

�

′′
1 :: B1 ⊢ uv : � and �

′′
2 :: B2 ⊢ uv : �, respe
tively, we still have that (1 ∧ 2)

�

′′
1
;�

′′
2
. Hen
e, if there are

transformed �

′
1 and �

′
2 with (1 ∧ 2)

�

′
1
;�

′
2
, whi
h in
lude phony (∪E)'s, then there are also transformed

�

′′
1 and �

′′
2 with (1 ∧ 2)

�

′′
1 ;�

′′
2
, whi
h ex
lude phony (∪E)'s. Consequently, if there are not transformed

�

′′
1 and �

′′
2 with (1 ∧ 2)

�

′′
1
;�

′′
2
, whi
h ex
lude phony (∪E)'s, then there are not transformed �

′
1 and �

′
2

with (1 ∧ 2)
�

′
1;�

′
2
, whi
h in
lude phony (∪E)'s. In other words, in
luding phony (∪E)'s would not alter a

negative out
ome in the sear
h for transformations.

In the following notes, unless otherwise indi
ated, we 
onsider an arbitrary term uv built from variables

by appli
ations.

Note 3. A derivation that proves a statement typing uv and that 
ontains only proper

6

(∪E)'s 
annot


ontain an (→I). Sin
e all the rules, ex
ept phony (∪E)'s, 
arry a �-abstra
tion from premise-level to


on
lusion, if the derivation 
ontained an (→I), then the �-abstra
tion formed by it would have to appear

in uv, whi
h is a 
ontradi
tion.

B ⊢ �y: t : � ∪ � B; x : � ⊢ u(x) : � B; x : � ⊢ u(x) : �
(∪E)

proper

B ⊢ u(�y: t) : �

B ⊢ �y: t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

phony

B ⊢ u : �

Hen
e, we will be trying to 
onstru
t derivations �

′
1 and �

′
2 that 
ontain only (→E)'s and proper (∪E)'s,

as far as rules re
orded in a tree T

t

iue

are 
on
erned.

Note 4. Supposing that the �rst bottom-up rule-inferen
e among inferen
es of (→E) and of proper

(∪E) in a derivation proving B ⊢ uv : �, where B is an appropriate

7


ontext and � is a type variable, is

an (→E), then this (→E) is the �rst bottom-up rule-inferen
e at all in a derivation proving B ⊢ uv : !,

6

We mean that all the (∪E)'s that appear in it are proper. It may, of 
ourse, 
ontain other rules besides (∪E)'s.
7

The 
ontext B is \appropriate" in the sense that its domain 
ontains the free variables of uv.



100 Chapter 5. Corresponden
e between IUL

m

and IUT

⊕

where

8

! is either � or an interse
tion type with a fa
tor

9

�. The type ! 
annot be an impli
ation type,

e.g. of the form !

′ → �, be
ause then an (→E), lying below the lowest (→E) in B ⊢ uv : �, would be

required to \extra
t" � from !. The type ! 
an neither be a union type, e.g. of the form (!′∩�)∪(�∩!′′),
be
ause then a proper (∪E), lying below the lowest proper (∪E) in B ⊢ uv : �, would be required to

eliminate the union and deliver � at the root. If ! 6= �, we need only 
onsider (∩E)'s in between the

(→E) in question and the root B ⊢ uv : �. This is be
ause � is a type variable, so rules like (∩I) or (∪I),

whi
h in
rease a type's 
omplexity, are not appropriate

10

.

B ⊢ u : !1 → ! B ⊢ v : !1
(→E)

B ⊢ uv : !
(∩E)

B ⊢ uv : �

Supposing that the �rst bottom-up rule-inferen
e among inferen
es of (→E) and of proper (∪E) in a

derivation proving B ⊢ uv : �, where B is an appropriate 
ontext and � is a type variable, is a proper

(∪E), then this proper (∪E) 
an be 
onsidered as the �rst bottom-up rule-inferen
e at all in B ⊢ uv : �.
The �rst step is to argue, as in the 
ase of an (→E) above, that this proper (∪E) is the �rst bottom-up

rule-inferen
e at all in a derivation proving B ⊢ uv : !, where ! is either � or an interse
tion type with a

fa
tor �. However, in this 
ase, any (∩E) in between the proper (∪E) in question and the root B ⊢ uv : �

an be shifted above the proper (∪E) in question.

B ⊢ t : !1 ∪ !2 B; x : !1 ⊢ s(x) : ! B; x : !2 ⊢ s(x) : !
(∪E)

B ⊢ uv = s(t) : !
(∩E)

B ⊢ uv = s(t) : �

❀

B ⊢ t : !1 ∪ !2

B; x : !1 ⊢ s(x) : !
(∩E)

B; x : !1 ⊢ s(x) : �

B; x : !2 ⊢ s(x) : !
(∩E)

B; x : !2 ⊢ s(x) : �
(∪E)

B ⊢ uv = s(t) : �

Note 5. Examining bottom-up whether uv is typable in an appropriate 
ontext B = { : : : ; x
i

: �
i

; : : : }
by some type

11

!, i.e. examining whether bottom-up 
ompletion of a potential typing B ⊢ uv : ! is

possible, not all the rules from the set {(→E), (∪E)
proper

, (∩I), (∩E), (∪I)} have the same status, when


onsidered at the �rst bottom-up position. The essen
e of bottom-up 
ompletion of a potential typing

B ⊢ uv : ! lies in the de
omposition of uv to terms of smaller 
omplexity in su

edents higher up, so

that we eventually rea
h variables in the su

edents of axioms, and also in the de
omposition of union

8

The letter ! here bears no 
onne
tion to the type 
onstant ! of Chapter 2.

9

Saying that ! is an interse
tion type with a fa
tor �, we roughly mean that ! has the form f1 ∩ f2, where f1 and f2 are

the fa
tors of the interse
tion and (f1 = � or f2 = �). The word \roughly" implies the fa
t that a fa
tor of an interse
tion

type may itself be an interse
tion type with fa
tors whi
h are interse
tion types and so forth. That is to say, the interse
tion

� ∩ f2 (or f1 ∩ �), mentioned above, may be nested into a \bigger" interse
tion type.

10

If there was a (∩I) in between the (→E) and the root, it would have to be followed by an (∩E), so it would be eliminable.

On the other hand, there 
ouldn't be a (∪I) in between the (→E) and the root, as it would have to be followed by a proper

(∪E), whi
h would lie below the lowest proper (∪E).
11

The type ! may be either a spe
i�
 type, e.g. a 
ertain type variable �, or a type whi
h is loosely spe
i�ed by a 
ertain

des
ription, e.g. an interse
tion type with a fa
tor � or an impli
ation type, or just an arbitrary type.
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types assigned to variables in B to their 
omponents

12

in 
ontexts higher up and the de
omposition of

interse
tion types in uv : ! to their fa
tors in su

edents higher up. There are two 
ategories of rules from

the above set; one with rules that meaningfully 
ontribute to the bottom-up 
ompletion of a potential

typing of a term uv and another one with rules that just shift a potential typing of a term uv (or a version

of it that is harder to bottom-up 
omplete) upward. Before elaborating on the two 
ategories of rules, let

us �rst de�ne four 
ategories of proper (∪E). Distinguishing between the various kinds of proper (∪E) is

ne
essary in order to distinguish the two 
ategories of rules.

A 
ategory-1 proper (∪E) is one whose major premise types a proper, non-variable subterm t of uv,

denoted (∪E)[1; t]. A 
ategory-2 proper (∪E) is one whose major premise assigns to a variable subterm

x

i

of uv a union type !1 ∪ !2, su
h that �

i

= !1 ∪ !2 or �

i

is an interse
tion type with a fa
tor

!1 ∪ !2; we denote it (∪E)[2; xi]. A 
ategory-3 proper (∪E) is one whose major premise types uv itself,

denoted (∪E)[3]. Finally, a 
ategory-4 proper (∪E) is one whose major premise assigns to a variable

subterm x

i

of uv a union type !1 ∪ !1, su
h that �

i

is not a union type or an interse
tion type with

a union fa
tor and !1 = �

i

; we denote it (∪E)[4; x
i

]. Taking uv = x2x1x1(x1(x2x1)) = sr (rs) and

B = B2 = { x1 : (� ∪  ) ∩ "; x2 : � }, we give some examples in ea
h of the 
ategories 1-4. The word

\same" in pla
e of the right minor premise of a union elimination indi
ates a re
urren
e of the left minor

premise.

B2 ⊢ s : !1 ∪ !2 B2; x : !1 ⊢ xr (rs) : ! B2; x : !2 ⊢ xr (rs) : !
(∪E)[1; s] (i)

B2 ⊢ uv = sr (rs) : !

B2 ⊢ s : !1 ∪ !2 B2; x : !1 ⊢ xr (rx) : ! B2; x : !2 ⊢ xr (rx) : !
(∪E)[1; s] (ii)

B2 ⊢ uv = sr (rs) : !

B2 ⊢ x1 : � ∪  B2; x : � ⊢ x2xx1(x1(x2x)) : ! B2; x :  ⊢ x2xx1(x1(x2x)) : !
(∪E)[2; x1] (i)

B2 ⊢ uv = x2x1x1(x1(x2x1)) : !

B2 ⊢ x1 : � ∪  B2; x : � ⊢ x2xx (x (x2x)) : ! B2; x :  ⊢ x2xx (x (x2x)) : !
(∪E)[2; x1] (ii)

B2 ⊢ uv = x2x1x1(x1(x2x1)) : !

B2 ⊢ uv : !1 ∪ !2 B2; x : !1 ⊢ x : ! B2; x : !2 ⊢ x : !
(∪E)[3]

B2 ⊢ uv : !

B2 ⊢ x2 : � ∪ � B2; x : � ⊢ x2x1x1(x1(xx1)) : ! same

(∪E)[4; x2]
B2 ⊢ uv = x2x1x1(x1(x2x1)) : !

Sin
e s has two o

urren
es in uv = sr (rs), there are three possible (∪E)[1; s]'s a

ording to whi
h

o

urren
es of s in uv are substituted by x to form the subje
t in the minor premises. This subje
t may

be either xr (rs) (see the (∪E)[1; s] (i) above) or sr (rx) or xr (rx) (see the (∪E)[1; s] (ii) above). A similar

12

The 
omponents of a union type 
1 ∪ 
2 are the types 
1 and 
2. We use the word \fa
tor" ex
lusively for interse
tions

and the word \
omponent" ex
lusively for unions.
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argument holds for the (∪E)[2; x1], whi
h has �fteen di�erent instan
es, and for the (∪E)[4; x2], whi
h

has three di�erent instan
es. Obviously, a 
ategory-1 union elimination may only be 
onsidered, if there

exists a proper, non-variable subterm t of uv. To 
onsider a 
ategory-2 union elimination, there must

exist a variable subterm x

i

of uv, su
h that �

i

is a union type or an interse
tion type with a union fa
tor;

on the other hand, to 
onsider a 
ategory-4 union elimination, there must exist a variable subterm x

i

of

uv, su
h that �

i

is a type variable or an impli
ation type or an interse
tion type with no union fa
tor.

Before presenting the two 
ategories of rules, we also need some notes on 
omparable potential typings

of uv. We say that (i) � is a subtype of � , denoted � 6 � , if and only if x : � ⊢ x : � , (ii) � is equal

to � , denoted � = � , if and only if (� 6 � and � 6 �), and (iii) � is a proper subtype of � , denoted

� < � , if and only if (� 6 � and � 6= �). Adopting a set-theoreti
al view for types, whi
h roughly means


onsidering a type as a set of terms with this type, if � < � , then the property de�ning � is more spe
i�


than the one de�ning � , i.e. � 
arries more information than � . Let us now 
onsider two potential typings

x1 : �1; : : : ; xm : �
m

⊢ uv : ! (typing A) and x1 : �1; : : : ; xm : �
m

⊢ uv : !′
(typing B) of uv and an index

i from 1 to m. We distinguish three 
ases. Case a: if [ ∀ i (�
i

= �

i

) and (!′ = !) ℄, then the two typings are
equal. Case b: if either 1. [ ∀ i (�

i

6 �

i

) and ∃ i (�
i

< �

i

) and (!′ = !) ℄ or 2. [∀ i (�
i

= �

i

) and (!′
> !) ℄,

then typing B is easier than typing A. If 1 holds, typing B displays stronger assumptions and an equal

su

edent with respe
t to typing A, i.e. it provides more information in the assumptions to derive the

information in the su

edent. If 2 holds, typing B displays equal assumptions and a weaker su

edent

with respe
t to typing A, i.e. it is 
alled to derive less information in the su

edent from the information

in the assumptions. Obviously, in either 
ase, typing B is an easier version of typing A. Case 
: if either

1. [ ∀ i (�
i

> �

i

) and ∃ i (�
i

> �

i

) and (!′ = !) ℄ or 2. [ ∀ i (�
i

= �

i

) and (!′
< !) ℄, then typing B is harder

than typing A. If 1 holds, typing B displays weaker assumptions and an equal su

edent with respe
t to

typing A, i.e. it provides less information in the assumptions to derive the information in the su

edent.

If 2 holds, typing B displays equal assumptions and a stronger su

edent with respe
t to typing A, i.e.

it is 
alled to derive more information in the su

edent from the information in the assumptions. This

time, in either 
ase, typing B is a harder version of typing A. A bottom-up rule whi
h advan
es from a

potential typing of uv at the 
on
lusion to an easier version of it at the premise-level 
ertainly promotes

the bottom-up sear
h. On the other hand, a bottom-up rule whi
h advan
es from a potential typing of uv

at the 
on
lusion to a harder version of it at the premise-level hinders the bottom-up sear
h. Finally, let

us 
onsider two potential typings x1 : �1; : : : ; xm : �
m

; x : � ⊢ uv = (uv)(x) = ( : : : x : : : x : : : x : : : ) : !
and x1 : �1; : : : ; xm : �

m

; x : �; y : � ⊢ s(y; x) = ( : : : y : : : x : : : y : : : ) : !′
of uv and s(y; x), respe
tively,

where all the free o

urren
es of x in uv are marked and s(y; x) derives from (uv)(x) by substituting some
(possibly none or all) free o

urren
e of x by y. If [ ∀ i (�

i

= �

i

) and (� = �) and (� = �) and (!′ = !) ℄,
the two typings are equivalent. Equal typings are equivalent, but the inverse is not true.

The �rst rule-
ategory is the set {(→E), (∪E)[1], (∪E)[2], (∩I)}. These rules meaningfully 
ontribute

to the bottom-up 
ompletion of a potential typing B ⊢ uv : !, when 
onsidered at the �rst bottom-up

position. An impli
ation elimination de
omposes uv to the smaller-
omplexity terms u and v in the left

and right premise, respe
tively. A 
ategory-1 union elimination de
omposes uv to smaller-
omplexity

terms t and s(x) in the major and minor premises, respe
tively.

B ⊢ t : !1 ∪ !2 B; x : !1 ⊢ s(x) : ! B; x : !2 ⊢ s(x) : !
(∪E)[1; t]

B ⊢ uv = s(t) : !

Sin
e t is a proper subterm of uv, it is t <




uv. Moreover, sin
e t is not a variable, it is x =



1 <



t,

whi
h implies that s(x) <



s(t) = uv by 5.17(iii). A 
ategory-2 union elimination de
omposes a union
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type !1 ∪ !2 in (the 
ontext of) the 
on
lusion to its 
omponents !1 and !2 in (the 
ontext of) the left

minor premise and (the 
ontext of) the right minor premise, respe
tively.

B ⊢ x
i

: !1 ∪ !2 B; x : !1 ⊢ s(x; xi) : ! B; x : !2 ⊢ s(x; xi) : !
(∪E)[2; x

i

]
B = { : : : ; x

i

: !1 ∪ !2 ; : : : } ⊢ uv = (uv)(x
i

) : !

This de
omposition a
tually 
onveys the very purpose of a union elimination rule, whi
h is the elimination

of union, in a bottom-up manner. If !1 and !2 are not 
omparable, we have that !1 < !1 ∪ !2 and

!2 < !1 ∪!2. This implies that ea
h of the minor-premise typings is easier than the 
on
lusion typing

13

,

whi
h promotes the bottom-up sear
h. If !1 < !2, then !2 = !1 ∪ !2, whi
h implies that the typing at

the right minor-premise is equivalent to the 
on
lusion typing, and !1 < !1 ∪ !2, whi
h implies that the

typing at the left minor-premise is easier than the 
on
lusion typing. If !1 = !2, then !1 = !1∪!2 = !2,

whi
h implies that ea
h of the minor-premise typings is equivalent to the 
on
lusion typing. If !1 > !2,

then !1 = !1∪!2, whi
h implies that the typing at the left minor-premise is equivalent to the 
on
lusion

typing, and !2 < !1 ∪ !2, whi
h implies that the typing at the right minor-premise is easier than the


on
lusion typing. In any 
ase, what is important for the bottom-up 
ompletion in a 
ategory-2 union

elimination is the de
omposition of a union 
ontext-type to its 
omponents. An interse
tion introdu
tion

de
omposes an interse
tion type !1 ∩ !2 in (the su

edent of) the 
on
lusion

14

to its fa
tors !1 and !2

in (the su

edent of) the left premise and (the su

edent of) the right premise, respe
tively. If !1 and

!2 are not 
omparable, we have that !1 > !1 ∩ !2 and !2 > !1 ∩ !2. This implies that ea
h of the

premise typings is easier than the 
on
lusion typing, whi
h promotes the bottom-up sear
h. If !1 < !2,

then !1 = !1 ∩ !2, whi
h implies that the left-premise typing is equivalent to the 
on
lusion typing,

and !2 > !1 ∩ !2, whi
h implies that the right-premise typing is easier than the 
on
lusion typing. If

!1 = !2, then !1 = !1 ∩ !2 = !2, whi
h implies than ea
h of the premise typings is equivalent to

the 
on
lusion typing. If !1 > !2, then !2 = !1 ∩ !2, whi
h implies that the right-premise typing is

equivalent to the 
on
lusion typing, and !1 > !1∩!2, whi
h implies that the left-premise typing is easier

than the 
on
lusion typing. In any 
ase, though, what is important for the bottom-up 
ompletion in an

interse
tion introdu
tion is the de
omposition of an interse
tion su

edent-type to its fa
tors.

The se
ond rule-
ategory is the set {(∪E)[3], (∪E)[4], (∩E), (∪I)}. These rules just shift a potential

typing B ⊢ uv : ! (or a harder version of it) one level up, when 
onsidered at the �rst bottom-up

position. A 
ategory-3 union elimination displays an equivalent or harder version of B ⊢ uv : !, namely
B ⊢ uv : !1 ∪ !2, at the major premise.

B ⊢ uv : !1 ∪ !2 B; x : !1 ⊢ x : ! B; x : !2 ⊢ x : !
(∪E)[3]

B ⊢ uv : !

The type !1 ∪ !2 is su
h that x : !1 ⊢ x : ! and x : !2 ⊢ x : !, from whi
h, by an appropriate union

elimination appli
ation, we get that y : !1 ∪ !2 ⊢ y : !, i.e. that !1 ∪ !2 6 !. If !1 ∪ !2 = !, then

B ⊢ uv : !1 ∪ !2 is equivalent to B ⊢ uv : !; if !1 ∪ !2 < !, then B ⊢ uv : !1 ∪ !2 is harder than

B ⊢ uv : !. It is easy to 
he
k that a 
ategory-4 union elimination displays minor premises whi
h are

equivalent to the 
on
lusion.

13

For example, B; x : !1 ⊢ s(x; x
i

) : ! is easier than B; x : !1 ∪ !2 ⊢ s(x; x
i

) : !, whi
h is equivalent to B ⊢ (uv)(x
i

) : !.
Therefore, B; x : !1 ⊢ s(x; x

i

) : ! is easier than B ⊢ (uv)(x
i

) : !. This is a natural extension of the 
on
ept \easier",

de�ned on the pre
eding page for 
omparing potential typings.

14

We should note that the ne
essary and suÆ
ient 
ondition to 
onsider an interse
tion introdu
tion at the �rst bottom-up

position of a potential typing B ⊢ uv : ! is that ! is spe
i�ed as an interse
tion type !1 ∩ !2.
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B ⊢ x
i

: �
i

∪ �
i

B; x : �
i

⊢ s(x; x
i

) : ! same

(∪E)[4; x
i

]
B = { : : : ; x

i

: �
i

; : : : } ⊢ uv = (uv)(x
i

) : !

An interse
tion elimination displays an equivalent or harder version of B ⊢ uv : !, namely B ⊢ uv : !∩!′
,

at the premise. In general, we have that ! ∩ !′ 6 !. If ! ∩ !′ = !, then B ⊢ uv : ! ∩ !′
is equivalent

to B ⊢ uv : !; if ! ∩ !′
< !, then B ⊢ uv : ! ∩ !′

is harder than B ⊢ uv : !. A union introdu
tion also

displays an equivalent or harder version of B ⊢ uv : ! = !1 ∪ !2, namely B ⊢ uv : !1, at the premise.

In general, we have that !1 6 !1 ∪ !2. If !1 = !1 ∪ !2, then B ⊢ uv : !1 is equivalent to B ⊢ uv : !; if
!1 < !1 ∪ !2, then B ⊢ uv : !1 is harder than B ⊢ uv : !.

We 
on
lude that in order to de
ide whether bottom-up 
ompletion of a potential typing B ⊢ uv : !
is possible, we only need to examine rules from the �rst set at the �rst bottom-up position. Rules from

the se
ond set do not meaningfully 
ontribute to the bottom-up sear
h and 
an be ignored in making

this de
ision; shifting the typing upward just defers the de
ision to a later bottom-up step, while shifting

a harder version of the typing upward may even mislead to a negative de
ision. However, if the typing

is indeed possible, it may be the 
ase that the a
tual �rst bottom-up rule belongs to the se
ond set, e.g.

is an (∩E) (see note 4 where (∩E)'s 
annot be shifted above an (→E)), but this 
an be easily settled at

the end, i.e. after a positive de
ision has been made. If all the rules from the �rst set fail at the �rst

bottom-up position, whi
h may require to further bottom-up examine rules from the �rst set at �rst

bottom-up positions, then the typing is not possible.

Note 6. If uv = x2x1x1(x1(x2x1)), the transformed derivations �

′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : �

with identi
al trees T

t

iue

that we are looking for must i) type uv in 
ontexts B1 and B2, respe
tively, by �

and �, respe
tively, and ii) resemble ea
h other with respe
t to the stru
ture of (→E)'s and proper (∪E)'s

and their term-statements. Working the trees (T t

iue

)′1 and (T t

iue

)′2 bottom-up, a �rst bottom-up step of a

shared (→E) or a shared proper (∪E) must prove progress with respe
t to the typing in at least one of

�

′
1 and �

′
2; there is no point in trying a step where the typing (or a harder version of it) is shifted upward

in both �

′
1 and �

′
2. Among (→E)'s and proper (∪E)'s, the set {(→E), (∪E)[1], (∪E)[2]} proves progress

with respe
t to the typing, while the set {(∪E)[3], (∪E)[4]} does not (see note 5). So, a �rst bottom-up

step of a shared (∪E)[3] or a shared (∪E)[4] is ex
luded; a �rst bottom-up step of a shared proper (∪E)

where one of the derivations displays a (∪E)[3] and the other one displays a (∪E)[4] does not even deliver

mat
hing term-statements, so it is ex
luded anyway. If there is progress with respe
t to the typing in

both �

′
1 and �

′
2, then the step involves a shared (→E) (see 
ase 1 below) or a shared (∪E)[1] (see 
ase

2 below) or a shared (∪E)[2] (see 
ase 3 below). We 
annot 
onsider a step of a shared proper (∪E)

where one of the derivations displays a (∪E)[1] and the other one displays a (∪E)[2], as this 
ombination

does not deliver mat
hing term-statements. If there is progress with respe
t to the typing in either �

′
1 or

�

′
2, then the step involves a shared proper (∪E) and the derivation in whi
h progress is made displays a

(∪E)[2], while the other one displays a (∪E)[4] (see 
ase 4 below); this is the only 
ombination between

the progress-set {(∪E)[1], (∪E)[2]} and the non-progress-set {(∪E)[3], (∪E)[4]} whi
h delivers mat
hing

term-statements.

In 
onstru
ting �

′
1 and �

′
2, the general idea is to make a �rst bottom-up transformation step whi
h

gives an identi
al bottom-part in trees of impli
ations and union eliminations with terms and also makes

enough bottom-up progress with respe
t to the typing, so that the remaining transformation needs to be

done on �nite sets of derivations, ea
h of whi
h 
ontains derivations proving statements that type a term

of smaller 
omplexity than uv.

Having in mind the preliminary notes 1-6 given above, we need to examine the following 
ases of a

�rst bottom-up step for the trees (T t

iue

)′1 and (T t

iue

)′2.
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1. Can we 
onstru
t �

′
1 and �

′
2, su
h that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom

(→E), as shown below?

•
S ⊢ u

◗
◗
◗
◗◗•

→E

S ⊢ uv

✑
✑
✑
✑✑

•
S ⊢ v

We want a �

′
1 :: B1 ⊢ uv : � with the following bottom part.

B1 ⊢ u : !1 → ! B1 ⊢ v : !1
(→E)

B1 ⊢ uv : !
(∩E)

�

′
1 :: B1 ⊢ uv : �

However, the term u is not typable in 
ontext B1 by an impli
ation type. We outline below the bottom-up

sear
h with root B1 ⊢ u : !1 → !. In this bottom-up sear
h and others to follow, we only 
onsider rules

from the set {(→E), (∪E)[1], (∪E)[2], (∩I)} at the �rst bottom-up position (re
all note 5). The symbol

\×" next to a rule-sign indi
ates that su
h a rule-appli
ation at the �rst bottom-up position 
annot

deliver the required root-typing, in whi
h 
ase we use a dotted horizontal line in-between the premise and


on
lusion levels. Further, the shorthand \not" next to a rule-sign indi
ates that su
h a rule-appli
ation


annot be 
onsidered at the �rst bottom-up position due to inappropriate form of the 
ontext-types or

the subje
t or the predi
ate of the required root-typing. We also use the gray 
olor for su

edent-types

whi
h are initially desirable in a bottom-up sear
h, but �nally prove impossible.

i) Considering an (→E) at the �rst bottom-up position of a potential typing B1 ⊢ u : !1 → !, we see

that it does not work.

by (→E), see �10

[(∪E)[1; 2] not, (∩I)not℄

B1 ⊢ s : � ∪ � 6= impli
ation type

15

right premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1 ⊢ u = sr : !1 → !

ii) Considering the only possible (∪E)[1], whi
h is the (∪E)[1; s] shown below, at the �rst bottom-up

position of a potential typing B1 ⊢ u : !1 → !, we see that it does not work.

B1 ⊢ s : � ∪ �

by (→E), see �110

[(∪E)[1; 2] not, (∩I)not℄

B1; x : � ⊢ xx1 : !1 → ! = 
 → �

by (→E), see �120

[(∪E)[1; 2] not, (∩I)not℄

B1; x : � ⊢ xx1 : !1 → ! = � → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B1 ⊢ u = sx1 : !1 → !

15

We 
annot extra
t � (and then the impli
ation type � → 
 → �) from � ∪ � by a (∪E)-appli
ation with major premise

B1 ⊢ s : �∪ � and 
on
lusion B1 ⊢ s : �, as su
h an appli
ation would require a right minor premise B1; x : � ⊢ x : �, whi
h
is not possible. A similar argument shows that we 
an neither extra
t � .
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iii) We 
annot 
onsider a (∪E)[2] at the �rst bottom-up position of a potential typing B1 ⊢ u : !1 → !,

as the only variable subterms x1 and x2 of u are assigned � = (Æ → 
) ∩ (� → �) ∩ � ∩ " and � → � ∪ � ,
respe
tively, in B1. We 
an neither 
onsider an (∩I) at the �rst bottom-up position of a potential typing

B1 ⊢ u : !1 → !, as the su

edent-type is not spe
i�ed as an interse
tion type.

We gather that a �

′
1 with an (→E) bottom part is not feasible; so, there is no need to examine if

su
h a �

′
2 is doable. Still, if we a
hieved �

′
1 and �

′
2 whose trees (T t

iue

)′1 and (T t

iue

)′2 existed and shared a

bottom (→E), the transformation would redu
e to further transforming �

′
10 and �

′
20, whi
h would type

u <




uv, and also to further transforming �

′
11 and �

′
21, whi
h would type v <




uv.

(T t

iue

)′10

S ⊢ u
•
◗
◗
◗
◗◗•

→E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•
S ⊢ v

(T t

iue

)′11 (T t

iue

)′20

S ⊢ u
•
◗
◗
◗
◗◗•

→E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
S ⊢ v

(T t

iue

)′21

2. Can we 
onstru
t a �

′
1 and �

′
2, su
h that the trees (T

t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom
(∪E)[1]? We distinguish three 
ases.

2a. A bottom (∪E)[1; s]. Sin
e s has two o

urren
es in uv = sr (rs), there are three possible

(∪E)[1; s]'s. We examine the 
ase with subje
t xr (rx) = u

′
v

′
in the minor premises, whi
h, sin
e �1

already displays su
h a bottom part, amounts to examining if we 
an 
onstru
t a �

′
2, su
h that the tree

(T t

iue

)′2 exists and has the following bottom part.

S ⊢ s
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; x ⊢ u′

v

′

We want a �

′
2 :: B2 ⊢ uv : � with the following bottom part.

by (→E): !1 ∪ !2 = � ∪ �

by (∪E)[2; x1]: !1 ∪ !2 = �

��

∪  

�

[(∪E)[1] not, (∩I)not℄

B2 ⊢ s : !1 ∪ !2 B2; x : !1 ⊢ xr (rx) = u

′
v

′ : � B2; x : !2 ⊢ xr (rx) = u

′
v

′ : �
(∪E)[1; s]

�

′
2 :: B2 ⊢ uv = sr (rs) : �

The type !1 ∪ !2 may be either �

��

∪  

�

, where �

��

= � → � → � and  


�

=  → 
 → �, or � ∪ �.
We outline below how the �

��

∪  

�


ase fails. The � ∪ � 
ase fails, as well.
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by (∪E)[2; x1], see right below

B2 ⊢ s : �
��

∪  

�

see i), ii), and iii) below

[(∩I)not℄

B2; x : �
��

⊢ xr (rx) = u

′
v

′ : � B2; x :  

�

⊢ xr (rx) = u

′
v

′ : �
(∪E)[1; s]

�

′
2 :: B2 ⊢ uv = sr (rs) : �

B2 ⊢ x1 : �
(∩E1)

B2 ⊢ x1 : � ∪  

: : : ⊢ x2 : �
(∩E)

: : : ⊢ x2 : �→ �

��

: : : ⊢ y : �
(→E)

B2; y : � ⊢ x2y : �
��

(∪I1)

B2; y : � ⊢ x2y : �
��

∪  

�

: : : ⊢ x2 : �
(∩E)

: : : ⊢ x2 :  →  


�

: : : ⊢ y :  
(→E)

B2; y :  ⊢ x2y :  

�

(∪I2)

B2; y :  ⊢ x2y : �
��

∪  

�

(∪E)[2; x1]

B2 ⊢ x2x1 = s : �
��

∪  

�

i) Considering an (→E) at the �rst bottom-up position of a potential typing B2; x : �
��

⊢ u

′
v

′ : �,
we see that it does not work. The abbreviations \lmp" and \rmp" stand for \left minor premise" and

\right minor premise", respe
tively. Likewise, the abbreviations \lp" and \rp" stand for \left premise"

and \right premise", respe
tively.

B2; x : �
��

⊢ x1 : �
(∩E1)

B2; x : �
��

⊢ x1 : � ∪  lmp

· · · ⊢ x : � → � → � · · · ⊢ y :  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄

B2; x : �
��

; y :  ⊢ xy : ! → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1]× [(→E)×, (∪E)[1] not, (∩I)not℄

B2; x : �
��

⊢ u′ = xx1 : ! → � rp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×

B2; x : �
��

⊢ u′v′ : �

ii) Considering a (∪E)[1] at the �rst bottom-up position of a potential typing B2; x : �
��

⊢ u′v′ : �,
we �nd that it does not work. The (∪E)[1; u′] does not work, sin
e a typing B; x : �

��

⊢ u′ : !1 ∪ !2 is

not possible; the bottom-up sear
h for su
h a typing is similar to the one shown in i) above for a typing

B; x : �
��

⊢ u′ : ! → �. We present the failure of the (∪E)[1; v′] below.

(∪E)[2; x1]×, see right below

[(→E)×, (∪E)[1] not, (∩I)not℄

B2; x : �
��

⊢ v′ = x1x : !1 ∪ !2 left minor premise right minor premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; v′] ×
B2; x : �

��

⊢ u′
v

′ : �

B2; x : �
��

⊢ x1 : � ∪  

· · · ⊢ y : � · · · ⊢ x : �
��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄
B2; x : �

��

; y : � ⊢ yx : !1 ∪ !2 rmp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×
B2; x : �

��

⊢ v′ = x1x : !1 ∪ !2

iii) Considering a (∪E)[2] at the �rst bottom-up position of a potential typing B2; x : �
��

⊢ u′v′ : �,
we also �nd that it does not work. We illustrate the failure of one of the three possible (∪E)[2; x1]'s below.

The other two fail, as well.
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B2; x : �
��

⊢ x1 : � ∪  left minor premise

(∪E)[2; x1]×, see right below

[(→E)×, (∪E)[1]×, (∩I)not℄

B2; x : �
��

; y :  ⊢ xy (x1x) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×
B2; x : �

��

⊢ u′
v

′ = xx1(x1x) : �

B2; x : �
��

; y :  ⊢ x1 : � ∪  lmp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)×, (∪E)[1]× [(∪E)[2] not, (∩I)not℄

B2; x : �
��

; y :  ; z :  ⊢ xy (zx) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×

B2; x : �
��

; y :  ⊢ xy (x1x) : �

We 
on
lude that a �

′
2 with a bottom (∪E)[1; s], whi
h is identi
al (with respe
t to term-statements) to

the bottom (∪E)[1; s] in �1, is not possible. Yet, if we a
hieved a �
′
2 with a tree (T

t

iue

)′2 bottom-identi
al to
the tree (T t

iue

)1, the transformation would redu
e to further transforming �10 and �
′
20, whi
h would type

s <




sr = u <




uv, and also to further transforming �11; �12; �
′
21, and �

′
22, whi
h would type u

′
v

′
<




uv.

(T t

iue

)10

S ⊢ s
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)1

✑
✑
✑
✑✑

•
S; x ⊢ u′

v

′

(T t

iue

)11 (T t

iue

)′20

S ⊢ s
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
S; x ⊢ u′

v

′

(T t

iue

)′21

For ea
h of the other two possible (∪E)[1; s]'s, at least one of �′
1 and �

′
2 fails.

2b. A bottom (∪E)[1; u]. We seek derivations �

′
1 and �

′
2 whose trees (T

t

iue

)′1 and (T t

iue

)′2 both exist and

share the following bottom part.

S ⊢ u
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; x ⊢ xv

So, we seek a �

′
1 :: B1 ⊢ uv : � with the following bottom part.

by (∪E)[1; s], see right below

[(→E)×, (∪E)[2]not, (∩I)not℄

B1 ⊢ u : (
 → �) ∪ (� → �)

see i) and ii) below

[(∪E)[2] not, (∩I) not℄

B1; x : 
 → � ⊢ xv : � B1; x : � → � ⊢ xv : �
(∪E)[1; u]

�

′
1 :: B1 ⊢ uv : �
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B1 ⊢ s : � ∪ �

: : : ⊢ y : �
(∩E1)

: : : ⊢ y : � → 
 → �

: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : �
(→E)

B1; y : � ⊢ yx1 : 
 → �

(∪I1)

B1; y : � ⊢ yx1 : (
 → �) ∪ (� → �)

: : : ⊢ y : �
(∩E1)

: : : ⊢ y : "→ � → �

: : : ⊢ x1 : �
(∩E2)

: : : ⊢ x1 : "
(→E)

B1; y : � ⊢ yx1 : � → �

(∪I2)

B1; y : � ⊢ yx1 : (
 → �) ∪ (� → �)
(∪E)[1; s]

B1 ⊢ sx1 = u : (
 → �) ∪ (� → �)

i) Considering an (→E) at the �rst bottom-up position of a potential typing B1; x : 
 → � ⊢ xv : �,
we see that it does not work.

B1; x : 
 → � ⊢ x : 
 → �

(∪E)[1; s]×, see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B1; x : 
 → � ⊢ v = x1s : 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1; x : 
 → � ⊢ xv : �

B

′
1 ⊢ s : � ∪ �

: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : Æ → 


: : : ⊢ y : �
(∩E2)

: : : ⊢ y : Æ
(→E)

B

′
1; y : � ⊢ x1y : 
 = 


: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : � → �

: : : ⊢ y : �
(∩E2)

: : : ⊢ y : �
(→E) [(∪E)[1; 2] not, (∩I)not℄

B

′
1; y : � ⊢ x1y : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×

B

′
1 = B1 ∪ {x : 
 → � } ⊢ v = x1s : 


ii) Considering an (∪E)[1] at the �rst bottom-up position of a potential typing B1; x : 
 → � ⊢ xv : �,
we �nd that it does not work. We examine the two possible (∪E)[1]'s, the (∪E)[1; v] and the (∪E)[1; s].

by (∪E)[1; s], see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B1; x : 
 → � ⊢ v : 
 ∪ � lmp

· · · ⊢ x : 
 → � · · · ⊢ y : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄
B1; x : 
 → �; y : � ⊢ xy : �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; v] ×
B1; x : 
 → � ⊢ xv : �

B

′
1 ⊢ s : � ∪ �

B

′
1; y : � ⊢ x1 : �

(∩E)

B

′
1; y : � ⊢ x1 : Æ → 


B

′
1; y : � ⊢ y : �

(∩E2)

B

′
1; y : � ⊢ y : Æ

(→E)

B

′
1; y : � ⊢ x1y : 


(∪I1)

B

′
1; y : � ⊢ x1y : 
 ∪ �

B

′
1; y : � ⊢ x1 : �

(∩E)

B

′
1; y : � ⊢ x1 : � → �

B

′
1; y : � ⊢ y : �

(∩E2)

B

′
1; y : � ⊢ y : �

(→E)

B

′
1; y : � ⊢ x1y : �

(∪I2)

B

′
1; y : � ⊢ x1y : 
 ∪ �

(∪E)[1; s]

B

′
1 = B1 ∪ {x : 
 → � } ⊢ x1s = v : 
 ∪ �

B1; x : 
 → � ⊢ s : � ∪ � left minor premise

(∪E)[1; x1y]×, see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B1; x : 
 → �; y : � ⊢ x (x1y) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B1; x : 
 → � ⊢ xv = x (x1s) : �
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: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : � → �

: : : ⊢ y : �
(∩E2)

: : : ⊢ y : �
(→E)

B

′′
1 ⊢ x1y : �

(∪I)

B

′′
1 ⊢ x1y : � ∪ �

· · · ⊢ x : 
 → � · · · ⊢ z : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄

B

′′
1 ; z : � ⊢ xz : � same

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x1y] ×

B

′′
1 = B1 ∪ {x : 
 → �; y : � } ⊢ x (x1y) : �

Sin
e su
h a �

′
1 is not possible, there is no need to look for su
h a �

′
2. Still, if we a
hieved �

′
1 and �

′
2

whose trees (T t

iue

)′1 and (T t

iue

)′2 existed and shared a bottom (∪E)[1; u], the transformation would redu
e

to transforming �

′
10 and �

′
20, whi
h would type u <




uv, and also to transforming �

′
11; �

′
12; �

′
21, and �

′
22,

whi
h would type xv <




uv.

(T t

iue

)′10

S ⊢ u
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•
S; x ⊢ xv

(T t

iue

)′11 (T t

iue

)′20

S ⊢ u
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
S; x ⊢ xv

(T t

iue

)′21

2
. A bottom (∪E)[1; v]. This 
ase also fails.

3. Can we 
onstru
t �

′
1 and �

′
2, su
h that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom

(∪E)[2]? This 
ase is not possible, as the types assigned to x1 and x2 in B1 do not permit the 
onsideration

of a �rst bottom-up (∪E)[2] in a �

′
1 :: B1 ⊢ uv : �.

4. Can we 
onstru
t �

′
1 and �

′
2, su
h that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom

proper (∪E), whi
h is a �rst bottom-up (∪E)[2] in one of the derivations and a �rst bottom-up (∪E)[4]

in the other? We distinguish two 
ases.

4a. A bottom (∪E)[2] in �′
1 and a bottom (∪E)[4] in �′

2. Su
h a 
ase is not possible be
ause, as already

explained in 3, we 
annot 
onsider a �rst bottom-up (∪E)[2] in �′
1.

4b. A bottom (∪E)[4] in �′
1 and a bottom (∪E)[2] in �′

2. Starting from a root B2 ⊢ uv : � and working

bottom-up, there are �fteen di�erent 
ases of a (∪E)[2; x1], a

ording to whi
h o

urren
es of x1 in uv

are substituted by a variable y 6∈ {x1; x2} to form the subje
t in the minor premises, and no 
ase of a

(∪E)[2; x2]. So, there are �fteen di�erent 
ases of a �rst bottom-up (∪E)[4; x1] in �
′
1 and a �rst bottom-up

(∪E)[2; x1] in �
′
2 with mat
hing 
orresponding term-statements. We examine two su
h 
ases 4b1 and 4b2,

showing the failure of �

′
1 in the former and the failure of �

′
2 in the latter.

4b1. The 
ase with subje
t x2yy (y (x2x1)) = s

′
y (ys) = u

′′
v

′′
in the minor premises. Sin
e �2 already

displays su
h a bottom part, the 
ase redu
es to examining if we 
an 
onstru
t a �

′
1, su
h that the tree

(T t

iue

)′1 exists and has the following bottom part.



5.3 A transformation 
ounterexample 111

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; y ⊢ u′′

v

′′

We seek a �

′
1 :: B1 ⊢ uv : � with the following bottom part.

B1 ⊢ x1 : � ∪ �

see i) and ii) below

[(∪E)[2]not, (∩I)not℄

B1; y : � ⊢ x2yy (y (x2x1)) = u

′′
v

′′ : � same

(∪E)[4; x1]
�

′
1 :: B1 ⊢ uv = x2x1x1(x1(x2x1)) : �

i) Considering an (→E) at the �rst bottom-up position of a potential typing B1; y : � ⊢ u′′v′′ : �, we
see that it does not work.

(∪E)[1; s′]×, see right below

[(→E)×, (∪E)[2] not, (∩I) not℄

B1; y : � ⊢ u′′ = s

′
y : !→ � right premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1; y : � ⊢ u′′

v

′′ : �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : � ⊢ s′ = x2y : � ∪ �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : � ⊢ xy : ! → � = 
 → �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : � ⊢ xy : ! → � = � → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s′] ×

B1; y : � ⊢ u′′ = s

′
y : ! → �

If the (→E) worked and the tree (T t

iue

)′1 existed, we would have the following trees (T t

iue

)′1 and

(T t

iue

)2. The transformation would then redu
e to transforming �

′
110; �

′
120; �210, and �220, whi
h would

type u

′′ =



u <




uv, and also to transforming �

′
111; �

′
121; �211, and �221, whi
h would type v

′′ =



v <




uv.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ u′′
v

′′

→E

•
S; y ⊢ u′′

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)′111

•
S ⊢ r

◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)2

✑
✑
✑
✑✑

•
→E

S; y ⊢ u′′
v

′′

•
S; y ⊢ u′′

(T t

iue

)210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)211
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ii) Considering a (∪E)[1] at the �rst bottom-up position of a potential typing B1; y : � ⊢ u

′′
v

′′ : �,
we �nd that it does not work. We present the failure of the (∪E)[1; s′] below. The other three possible

(∪E)[1]'s fail, as well.

B1; y : � ⊢ s′ : � ∪ �

see a), b), 
), and d) below

[(∪E)[2] not, (∩I) not℄

B1; y : �; x : � ⊢ xy (ys) : � right minor premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s′] ×
B1; y : � ⊢ u′′

v

′′ = s

′
y (ys) : �

B1; y : �; x : � ⊢ xy : 
 → �

(∪E)[1; s]×, see right below

[(→E)×, (∪E)[2]not, (∩I)not℄

B1; y : �; x : � ⊢ ys : 

a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1; y : �; x : � ⊢ xy (ys) : �

B1; y : �; x : � ⊢ s : � ∪ �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : �; z : � ⊢ yz : 
 = 


by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : �; z : � ⊢ yz : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B1; y : �; x : � ⊢ ys : 


B1; y : �; x : � ⊢ xy : (
 → �) ∪ (
 → �)

(∪E)[1; s]×, see right below

[(→E)×, (∪E)[1; ys]×, (∪E)[2]not, (∩I)not℄

B1; y : �; x : �; z : 
 → � ⊢ z (ys) : � same

b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; xy] ×
B1; y : �; x : � ⊢ xy (ys) : �

B

′
1 ⊢ s : � ∪ � lmp

B

′
1; w : � ⊢ z : 
 → �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B

′
1; w : � ⊢ yw : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; yw]×, (∪E)[2]not, (∩I)not℄
B

′
1; w : � ⊢ z (yw) : �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B

′
1 = B1 ∪ { y : �; x : �; z : 
 → � } ⊢ z (ys) : �

by (∪E)[1; s], see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B

′′
1 ⊢ ys : 
 ∪ � lmp

B

′′
1 ; z : � ⊢ xy : 
 → � B

′′
1 ; z : � ⊢ z : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; xy]×, (∪E)[2] not, (∩I)not℄

B

′′
1 ; z : � ⊢ xyz : �


)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; ys] ×

B

′′
1 = B1 ∪ { y : �; x : � } ⊢ xy (ys) : �

B

′′
1 ⊢ s : � ∪ �

B

′′
1 ; z : � ⊢ y : �

(∩E)

B

′′
1 ; z : � ⊢ y : Æ → 


B

′′
1 ; z : � ⊢ z : �

(∩E2)

B

′′
1 ; z : � ⊢ z : Æ

(→E)

B

′′
1 ; z : � ⊢ yz : 


(∪I1)

B

′′
1 ; z : � ⊢ yz : 
 ∪ �

B

′′
1 ; z : � ⊢ y : �

(∩E)

B

′′
1 ; z : � ⊢ y : � → �

B

′′
1 ; z : � ⊢ z : �

(∩E2)

B

′′
1 ; z : � ⊢ z : �

(→E)

B

′′
1 ; z : � ⊢ yz : �

(∪I2)

B

′′
1 ; z : � ⊢ yz : 
 ∪ �

(∪E)[1; s]

B

′′
1 = B1 ∪ { y : �; x : � } ⊢ ys : 
 ∪ �
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B

′′
1 ⊢ s : � ∪ � lmp

B

′′
1 ; z : � ⊢ xy : 
 → �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B

′′
1 ; z : � ⊢ yz : 
 6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; xy]×, (∪E)[1; yz]×, (∪E)[2] not, (∩I) not℄

B

′′
1 ; z : � ⊢ xy (yz) : �

d)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×

B

′′
1 = B1 ∪ { y : �; x : � } ⊢ xy (ys) : �

If the (∪E)[1; s′] worked and the tree (T t

iue

)′1 existed, we would have the following tree (T t

iue

)′1.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ u′′
v

′′

∪E

•
S; y ⊢ s′

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xyv′′

(T t

iue

)′111

We would then transform �2 to a �
′
2 :: B2 ⊢ uv : �, su
h that the tree (T t

iue

)′2 exists and is bottom-identi
al
to the tree (T t

iue

)′1. We denote \�(w)" a weakened version of a derivation �.

B2 ⊢ x1 = r : �
(∩E1)

B2 ⊢ r : � ∪  

see below

�

′
21 :: B2; y : � ⊢ x2yy (ys) = u

′′
v

′′ : �

see below

�

′
22 :: B2; y :  ⊢ x2yy (ys) = u

′′
v

′′ : �
(∪E)

�

′
2 :: B2 ⊢ sr (rs) = uv : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : �→ �

��

B

�

⊢ y : �
(→E)

B

�

⊢ x2y : �
��

(∪I)

�

′
210 :: B

�

⊢ x2y = s

′ : �
��

∪ �
��

: : : ⊢ x : �
��

: : : ⊢ y : �
(→E)

B

�

; x : �
��

⊢ xy : � → �

�211(w)

B

�

; x : �
��

⊢ ys : �
(→E)

�

′
211 :: B

�

; x : �
��

⊢ xy (ys) : � same

(∪E)[1; s′]

�

′
21 :: B

�

= B2 ∪ { y : � } ⊢ x2yy (ys) = u

′′
v

′′ : �

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 :  →  


�

B

 

⊢ y :  
(→E)

B

 

⊢ x2y :  

�

(∪I)

�

′
220 :: B

 

⊢ x2y = s

′ :  

�

∪  

�

: : : ⊢ x :  

�

: : : ⊢ y :  
(→E)

B

 

; x :  

�

⊢ xy : 
 → �

�221(w)

B

 

; x :  

�

⊢ ys : 

(→E)

�

′
221 :: B

 

; x :  

�

⊢ xy (ys) : � same

(∪E)[1; s′]

�

′
22 :: B

 

= B2 ∪ { y :  } ⊢ x2yy (ys) = u

′′
v

′′ : �
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⊕

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•S; y ⊢ u′′
v

′′

∪E

•
S; y ⊢ s′

(T t

iue

)′210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xyv′′

(T t

iue

)′211

The transformation would thus redu
e to �

′
110; �

′
120; �

′
210, and �

′
220, whi
h would type s

′
<




u <




uv, and

also to �

′
111; �

′
112; �

′
121; �

′
122; �

′
211; �

′
212; �

′
221, and �

′
222, whi
h would type xyv

′′
<




u

′′
v

′′ =



uv.

4b2. The 
ase with subje
t x2x1y (y (x2x1)) = sy (ys) = syv

′′
in the minor premises. We seek to


onstru
t �

′
1 and �

′
2, su
h that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom (∪E), as

shown below.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; y ⊢ syv′′

We want a �

′
2 :: B2 ⊢ uv : � with the following bottom part.

B2 ⊢ x1 : � ∪  

see i), ii), and iii) below

[(∩I)not℄

B2; y : � ⊢ x2x1y (y (x2x1)) = sy (ys) : � right minor premise

(∪E)[2; x1]
�

′
2 :: B2 ⊢ uv = x2x1x1(x1(x2x1)) : �

i) Considering an (→E) at the �rst bottom-up position of a potential typing B2; y : � ⊢ sy (ys) : �,
we see that it does not work.

(∪E)[2; x1]×, see right below

[(→E)×, (∪E)[1; s]×, (∩I)not℄

B2; y : � ⊢ sy : ! → � right premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B2; y : � ⊢ sy (ys) : �
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B2; y : � ⊢ x1 : � ∪  lmp

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

· · · ⊢ x2x :  → 
 → � · · · ⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; x2x]×, (∪E)[2] not, (∩I)not℄

B2; y : �; x :  ⊢ x2xy : ! → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×

B2; y : � ⊢ sy = x2x1y : ! → �

If the (→E) worked in �

′
2 right above the (∪E)[2; x1] and also in �

′
1 right above the

16

(∪E)[4; x1] and

the trees (T t

iue

)′1 and (T t

iue

)′2 existed, the transformation would redu
e to �

′
110; �

′
120; �

′
210, and �

′
220, whi
h

would type sy =



u <




uv, and also to �

′
111; �

′
121; �

′
211, and �

′
221, whi
h would type v

′′ =



v <




uv.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ syv′′
→E

•
S; y ⊢ sy

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)′111

•
S ⊢ r

◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
→E

S; y ⊢ syv′′

•
S; y ⊢ sy

(T t

iue

)′210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)′211

ii) Considering a (∪E)[1] at the �rst bottom-up position of a potential typing B2; y : � ⊢ sy (ys) : �,
we �nd that it does not work. We show the failure of one of the six

17

possible (∪E)[1; s]'s. The other

�ve, as well as the (∪E)[1; sy] and the (∪E)[1; ys], also fail.

B2; y : � ⊢ s : �
��

∪  

�

see a), b), and 
) below

[(∪E)[2] not, (∩I) not℄

B2; y : �; x : �
��

⊢ xy (yx) : � right minor premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B2; y : � ⊢ sy (ys) : �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B2; y : �; x : �
��

⊢ xy : ! → � = � → �

· · · ⊢ y : � = � → � · · · ⊢ x : � 6= �

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄

B2; y : �; x : �
��

⊢ yx : �
a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×

B2; y : �; x : �
��

⊢ xy (yx) : �

B2; y : �; x : �
��

⊢ xy : (�→ �) ∪ (�→ �)

(→E)×, see right below

[(∪E)[1; yx]×, (∪E)[2] not, (∩I) not℄

B2; y : �; x : �
��

; z : �→ � ⊢ z (yx) : � same

b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; xy] ×
B2; y : �; x : �

��

⊢ xy (yx) : �

16

It 
an be shown that in a �

′
1 with a �rst bottom-up (∪E)[4; x1], the (→E) right above the (∪E)[4; x1] does not work.

17

There are six possible (∪E)[1; s]'s, as there are three 
hoi
es for the subje
t in the minor premises [xy (ys) or sy (yx) or
xy (yx)℄ and two 
hoi
es for the union predi
ate in the major premise [�

��

∪  

�

or � ∪ �℄.



116 Chapter 5. Corresponden
e between IUL

m

and IUT

⊕

B

′
2 ⊢ z : �→ �

B

′
2 ⊢ y : � = � → � B

′
2 ⊢ x : � 6= �

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I) not℄
B

′
2 ⊢ yx : �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B

′
2 = B2 ∪ { y : �; x : �

��

; z : �→ � } ⊢ z (yx) : �

· · · ⊢ y : � = � → � · · · ⊢ x : � 6= �

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I) not℄
B2; y : �; x : �

��

⊢ yx : !1 ∪ !2 lmp rmp


)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; yx] ×
B2; y : �; x : �

��

⊢ xy (yx) : �

If this (∪E)[1; s] worked and the tree (T t

iue

)′2 existed, we would have the following tree (T t

iue

)′2.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•S; y ⊢ sy (ys)
∪E

•
S; y ⊢ s

(T t

iue

)′210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xy (yx)

(T t

iue

)′211

We would then 
onstru
t a �

′
1 :: B1 ⊢ uv : �, su
h that the tree (T t

iue

)′1 exists and is bottom-identi
al to

the tree (T t

iue

)′2.

B1 ⊢ x1 = r : �
(∪I)

B1 ⊢ r : � ∪ �

see right below

�

′
11 :: B1; y : � ⊢ sy (ys) : �

same

(∪E)[4; x1]
�

′
1 :: B1 ⊢ sr (rs) = uv : �

by (→E)

�

′
110 :: B1; y : � ⊢ x2x1 = s : � ∪ �

see below

�

′
111 :: B1; y : �; x : � ⊢ xy (yx) : �

see below

�

′
112 :: B1; y : �; x : � ⊢ xy (yx) : �

(∪E)[1; s]

�

′
11 :: B1; y : � ⊢ sy (ys) : �

by (→E)

B1; y : �; x : � ⊢ xy : 
 → �

by (→E)

B1; y : �; x : � ⊢ yx : 

(→E)

�

′
111 :: B1; y : �; x : � ⊢ xy (yx) : �

by (→E)

B1; y : �; x : � ⊢ xy : � → �

by (→E)

B1; y : �; x : � ⊢ yx : �
(→E)

�

′
112 :: B1; y : �; x : � ⊢ xy (yx) : �
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S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ sy (ys)
∪E

•
S; y ⊢ s

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xy (yx)

(T t

iue

)′111

The transformation would thus redu
e to �

′
110; �

′
120; �

′
210, and �

′
220, whi
h would type s <




uv, and also

to �

′
111; �

′
112; �

′
121; �

′
122; �

′
211; �

′
212; �

′
221, and �

′
222, whi
h would type xy (yx) <




uv.

iii) Considering a (∪E)[2] at the �rst bottom-up position of a potential typing B2; y : � ⊢ sy (ys) : �,
we also �nd that it does not work. We lay out the failure of one of the three possible (∪E)[2; x1]'s. The

other two fail, as well.

B2; y : � ⊢ x1 : � ∪  left minor premise

see a), b), 
), and d) below

[(∪E)[2] not, (∩I) not℄

B2; y : �; x :  ⊢ x2xy (y (x2x)) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×
B2; y : � ⊢ sy (ys) = x2x1y (y (x2x1)) : �

by (→E)

[(∪E)[1; 2] not, (∩I) not℄

B

′
2 ⊢ x2x :  → 
 → � B

′
2 ⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; x2x]×, (∪E)[2] not, (∩I)not℄
B

′
2 ⊢ x2xy : ! → � right premise

a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

If the (→E) worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two (∪E)[2; r]'s

and one (→E), and if there was a �

′
1 with an identi
al bottom part in its tree (T t

iue

)′1, the transformation
would redu
e to transforming eight derivations typing x2xy <
 uv and another eight derivations typing

y (x2x) <
 uv.

B

′
2 ⊢ x2x :  


�

∪  

�

[(→E)×, (∪E)[1; 2] not, (∩I)not℄

B

′
2; z :  


�

⊢ zy : !1 ∪ !2 same

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x2x]× [(→E)×, (∪E)[2] not, (∩I)not℄

B

′
2 ⊢ x2xy : !1 ∪ !2 lmp rmp

b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x2xy] ×

B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

If the (∪E)[1; x2xy] worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two

(∪E)[2; r]'s and one (∪E)[1; x2xy], and if there was a �
′
1 with an identi
al bottom part in its tree (T t

iue

)′1, the
transformation would redu
e to transforming eight derivations typing x2xy <
 uv and sixteen derivations

typing z (y (x2x)) <
 uv.
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⊕

B

′
2 ⊢ y : � = � → � B

′
2 ⊢ x2x : � 6=  


�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; x2x]×, (∪E)[2] not, (∩I)not℄
B

′
2 ⊢ y (x2x) : !1 ∪ !2 lmp rmp


)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; y (x2x)] ×
B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

If the (∪E)[1; y (x2x)] worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two

(∪E)[2; r]'s and one (∪E)[1; y (x2x)], and if there was a �

′
1 with an identi
al bottom part in its tree (T t

iue

)′1,
the transformation would redu
e to transforming eight derivations typing y (x2x) <
 uv and sixteen

derivations typing x2xyz <
 uv.

B

′
2 ⊢ x2x :  


�

∪  

�

(∪E)[1; zy]×, see right below

[(→E)×, (∪E)[1; yz]×, (∪E)[2] not, (∩I) not℄

B

′
2; z :  


�

⊢ zy (yz) : � same

d)

18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x2x] ×
B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

B

′
2; z :  


�

⊢ z :  → 
 → � B

′
2; z :  


�

⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄
B

′
2; z :  


�

⊢ zy : !1 ∪ !2 lmp rmp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; zy] ×
B

′
2; z :  


�

⊢ zy (yz) : �

If this (∪E)[1; x2x] worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two

(∪E)[2; r]'s and one (∪E)[1; x2x], and if there was a �
′
1 with an identi
al bottom part in its tree (T t

iue

)′1, the
transformation would redu
e to transforming eight derivations typing x2x <
 uv and sixteen derivations

typing zy (yz) <



uv.

Besides 
ases 4b1 and 4b2, the other thirteen possible 
ases of a �rst bottom-up (∪E)[4; x1] in �
′
1 and

a �rst bottom-up (∪E)[2; x1] in �
′
2 also fail

19

.

Cases 1 to 4 all fail. There seems to be no other meaningful �rst bottom-up step to \equalize" �1 and

�2 with respe
t to trees of impli
ations and union eliminations with terms. We therefore 
on
lude that we


annot transform �1 and �2 to �
′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : �, respe
tively, su
h that (1∧ 2)

�

′
1
;�

′
2
.

Yet, we urge the reader to further examine the two derivations and propose any transformation we may

have missed.

18

This is one of the three possible (∪E)[1; x2x]'s. The other two do not work, either.

19

This is an appropriate point to elaborate a bit on the intention of a 
ategory-4 proper (∪E) and how it is a
tually

realized in its de�nition in Note 5. We intend to de�ne a bottom-up (∪E)[4; x
i

] as a union elimination that does not

de
ompose a union type !1 ∪ !2 in �

i

, that 
ould be
ome the predi
ate in the major premise, to its 
omponents !1 and

!2 in the (
ontext of the) left and the (
ontext of the) right minor premise, respe
tively. This is be
ause we want to have

a union elimination that mat
hes a (∪E)[2; x
i

] termwise without o�ering progress with respe
t to the typing. However,

the de�nition of a (∪E)[4; x
i

] in Note 5 only 
overs the 
ases where �

i

is not a union type or an interse
tion type with a

union fa
tor, i.e. the 
ases where �

i


ontains no union type that 
ould be
ome the predi
ate in the major premise. This is

be
ause these 
ases suÆ
e to handle the bottom-up sear
h for transforming the spe
i�
 derivations �1 :: B1 ⊢ uv : � and

�2 :: B2 ⊢ uv : � of this se
tion. As explained in 
ase 4 of the bottom-up sear
h, starting from a root B1 ⊢ uv : � and a root

B2 ⊢ uv : � and examining whether we 
an have a �rst bottom-up step involving a (∪E)[2] and a (∪E)[4], the only possible


ase is a �rst bottom-up (∪E)[4; x1] 
on
luding B1 ⊢ uv : � and a �rst bottom-up (∪E)[2; x1] 
on
luding B2 ⊢ uv : �. As

the type � assigned to x1 in B1 is not a union type or an interse
tion type with a union fa
tor, it suÆ
es to de�ne a

(∪E)[4; x
i

] for a �
i

whi
h is not a union type or an interse
tion type with a union fa
tor. If we had a di�erent pair of roots

to start from, e.g. roots whi
h would both admit a �rst bottom-up (∪E)[2; x
i

], we would need to extend the de�nition of a

(∪E)[4; x
i

] to 
over all the 
ases of �

i

.
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In 
ontrast to the transformation 
ounterexample given so far, there are quite many transformation

examples, i.e. examples of derivations �1 :: B1 ⊢ t : � and �2 :: B2 ⊢ t :  , where dom(B1) = dom(B2),
su
h that ¬(1 ∧ 2)

�1;�2 , whi
h are transformable to �

′
1 :: B1 ⊢ t : � and �

′
2 :: B2 ⊢ t :  , respe
tively, so

that (1 ∧ 2)
�

′
1
;�

′
2
. These examples range from very simple ones, i.e. involving simple derivations �1 and

�2, to signi�
antly 
omplex ones. A 
omplex one, whi
h is a
tually a variation of the 
ounterexample,


an be found in Appendix B.

5.4 Non-restri
ted 
orresponden
e theorems?

It remains to examine whether the 
orresponden
e between IUL

?

m

and IUT

⊕

an be sustained, if the

auxiliary notion \T

t

iue

" is removed. This amounts to examining 1. whether Theorem 5.10 
an be refor-

mulated

20

to just saying \if �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a de
orated derivation in IUL

m

, there

are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
" and 2. whether Theorem 5.13 
an

be reformulated to just saying \if �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations in IUT

⊕
,

there is a de
orated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

", so that the 
orrespon-

den
e between IUL

?

m

and IUT

⊕
is in a

ordan
e to the 
orresponden
e between ISL

?

and IT, introdu
ed

in Chapter 1 (see Theorem 1.20). Obviously, given a derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in

IUL

?

m

, there are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
; this is already proved

in 5.10. But what about the inverse? Given derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in
IUT

⊕
, without any additional information about their potential trees T

t

iue

, is there always a derivation

�

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

?

m

? To answer this question, we should re
e
t on the features

the �

i

's need to share, so that their \merging" into a single �

?

is se
ured. Is the 
ommon term-statement

x1; : : : ; xm ⊢ t at the root a suÆ
ient 
ondition for merging, besides being a ne
essary one? The answer

is negative, as the following example

21

indi
ates.

Example 5.18 Let � = (� ∪ �) ∩ �; � = � ∩ �2; � = �1 ∩ �, and � = (� ∪ �) ∩ �. Consider the

IUT

⊕
-derivations �1 :: { x : �; y :  } ⊢ x : � and �2 :: { x : �; y : � } ⊢ x : �, as shown below.

x : �; y :  ⊢ x : �
(∩E1)

x : �; y :  ⊢ x : � ∪ �

x : �; y :  ; z : � ⊢ z : �
(∩E1)

x : �; y :  ; z : � ⊢ z : �

x : �; y :  ; z : � ⊢ z : �
(∩E2)

x : �; y :  ; z : � ⊢ z : �
(∪E)

proper

�1 :: {x : �; y :  } ⊢ z[x=z] = x : �

x : �; y : � ⊢ x : �
(∩E1)

x : �; y : � ⊢ x : � ∪ �

x : �; y : �; z : � ⊢ x : �
(∩E2)

x : �; y : �; z : � ⊢ x : �

x : �; y : �; z : � ⊢ x : �
(∩E2)

x : �; y : �; z : � ⊢ x : �
(∪E)

phony

�2 :: {x : �; y : � } ⊢ x[x=z] = x : �

Derivations �1 and �2 share the term-statement x; y ⊢ x at the root. However, they 
annot be naturally

merged

22

into a single �

? :: x : [(�;  ; �); (�; � ; �)]
x; y

. Any bottom-up attempt

23

for su
h a merging

fails, as displayed below.

20

Su
h a reformulated theorem is qualitatively same to Theorems 3.10 and 3.22.

21

This is a
tually Example 3.13 
ustomized to the 
urrent 
ontext.

22

Nonetheless, as we will later expli
ate, we may transform �2 to a �

′
2 :: {x : �; y : � } ⊢ x : � 
ontaining a proper (∪E),

so that �1 and �

′
2 are 
ompatible and mergeable into a (�′)? :: x : [(�;  ; �); (�; � ; �)]

x; y

.

23

There are two di�erent bottom-up ways to (naturally) merge �1 and �2 into a (
anoni
al) �

?

depending on the order

of appli
ation of (∩E1) and (∩E2) in the right bran
h.
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(ax)

x : [( ; � ; �); (�; � ; �)]
y;x

(X)

x : [(�;  ; �); (�; � ; �)]
x; y

(∩E1)

x : [(�;  ; � ∪ � ); (�; � ; � ∪ �)]
x; y


annot rea
h an axiom

↑

? : [(�;  ; � ; �); (�; ; � ; � ); (�; �; � ; �); (�; �; � ; �)]
x; y; z

(∩E1),(∩E2)

? : [(�;  ; � ; �); (�;  ; � ; �); (�; �; � ; �); (�; �; � ; �)]
x; y; z

(∪E)

�

? :: ? : [(�;  ; �); (�; � ; �)]
x; y

As already noted in Example 3.13, the failure is due to the in
ompatibility of the proper (∪E) in �1

and the phony (∪E) in �2.

The above example suggests that the �

i

's need to share more than the term-statement at the root, if

they are to be merged into a single �

?

. The additional 
ommon features required are a
tually di
tated

by features of the de
orated logi
 and are the following.

I. The �

i

's should have a 
ommon stru
ture of rules that are global in the logi
's level, i.e. they should

have a 
ommon stru
ture of impli
ations and union eliminations. Roughly speaking, the root-statement S

i

of �

i

is meant to 
orrespond to the (de
orated) atom A
i

at the root of �

?

and, moreover, the rule stru
ture

of �

i

is meant to impress upon the an
estor-atoms of A
i

in �

?

. But, sin
e the global rule-inferen
es in

�

?

, i.e. the impli
ations and the union eliminations, \s
an" all the atoms in the premise mole
ule(s), it

follows that, for i 6= j, the stru
ture of impli
ations and union eliminations read o� from the an
estors of

A
i

should be the same as the stru
ture of impli
ations and union eliminations read o� from the an
estors

of A
j

, i.e. that �

i

and �

j

should have a 
ommon stru
ture of impli
ations and union eliminations. On

the other hand, the �

i

's may di�er with respe
t to rules that are lo
al in the logi
's level, i.e. with respe
t

to interse
tions and union introdu
tions, as these rules may impress upon an
estors of A
i

without at the

same time impressing upon an
estors of A
j

.

. . . ,

S

1
i0

R1=(∩E)

S

20
i0 S

21
i0

R2=(→E)

S

3
i0

R3=(→I)

S

4
i0

S

20
i1 S

21
i1

R2=(→E)

S

3
i1

R3=(→I)

S

4
i1

R4=(∩I)
�

i

:: S
i

, . . . ,

S

20
j

S

21
j

R2=(→E)

S

3
j

R3=(→I)

�

j

:: S
j

, . . .

❀

[ : : : ;A1
i0;A

1
i1; : : : ;A

1
j

; : : : ]
R1=(∩E)

[ : : : ;A20
i0 ;A

20
i1 = A1

i1; : : : ;A
20
j

= A1
j

; : : : ] [ : : : ;A21
i0 ;A

21
i1 ; : : : ;A

21
j

; : : : ]
R2=(→E)

[ : : : ;A3
i0;A

3
i1; : : : ;A

3
j

; : : : ]
R3=(→I)

[ : : : ;A4
i0;A

4
i1; : : : ;A

4
j

; : : : ]
R4=(∩I)

�

? :: term : [ : : : ;A
i

; : : : ;A
j

= A4
j

; : : : ]
sequen
e

Is a 
ommon stru
ture of impli
ations and union eliminations enough, though? Derivations �1 and �2

of Example 5.18 have su
h a 
ommon stru
ture, whi
h 
onsists of a single union elimination, but 
annot

be naturally integrated into a �

?

. Studying the example 
arefully, we see that the term-statements in

the (∪E) of �1 do not mat
h the 
orresponding term-statements in the (∪E) of �2. In parti
ular, if
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S = {x; y}, the term-statement S; z ⊢ z in the minor premises of �1 does not mat
h the term-statement

S; z ⊢ x in the minor premises of �2; this is what the in
ompatibility of the proper (∪E) in �1 and the

phony (∪E) in �2 redu
es to. Going ba
k to the �i's, we reason that a se
ond 
ommon feature is required

for a natural merging to be possible.

II. Corresponding impli
ations or union eliminations in the 
ommon (with respe
t to impli
ations and

union eliminations) stru
ture of the �

i

's should have mat
hing 
orresponding term-statements. Roughly

speaking, the term-statements in �

i

are meant to be
ome the de
oration in �

?

. But, sin
e the de
oration

\s
ans" all atoms in a mole
ule and the only rules in the logi
|among the ones that have a 
ounterpart

in the type system, i.e. among the introdu
tion and elimination rules|where the de
oration is modi�ed

are the impli
ations and the union elimination, it follows that, for i 6= j, the modi�
ation of de
oration

(by an impli
ation or a union elimination) in an
estors of A
i

should be the same as the modi�
ation

of de
oration in an
estors of A
j

, i.e. that 
orresponding impli
ations or union eliminations in �

i

and �

j

should have mat
hing 
orresponding term-statements.

. . . ,

x : �i1; y : �i2 ⊢ t : �
i

→ �

i

x : �i1; y : �i2 ⊢ u : �
i

(→E)

x : �i1; y : �i2 ⊢ tu : �
i

x : �i1; y : �i2 ⊢ t : �
i

→  

i

x : �i1; y : �i2 ⊢ u : �
i

(→E)

x : �i1; y : �i2 ⊢ tu :  
i

(∩I)

�

i

:: x : �i1; y : �i2 ⊢ tu : �
i

∩  
i

= �

i

, . . .

. . . ,

x : �j1; y : �j2 ⊢ t : �
j

→ �

j

x : �j1; y : �j2 ⊢ u : �
j

(→E)

�

j

:: x : �j1; y : �j2 ⊢ tu : �
j

, . . .

❀

t : [ : : : ; (Γ
i

; �
i

→ �

i

); (Γ
i

; �
i

→  

i

); : : : ; (Γ
j

; �
j

→ �

j

); : : : ]
x; y

u : [ : : : ; (Γ
i

; �
i

); (Γ
i

; �
i

); : : : ; (Γ
j

; �
j

); : : : ]
x; y

(→E)

tu : [ : : : ; (Γ
i

; �
i

); (Γ
i

;  
i

); : : : ; (Γ
j

; �
j

); : : : ]
x; y

(∩I)

�

? :: tu : [ : : : ;A
i

= (Γ
i

= (�i1; �
i

2) ; �i); : : : ;Aj = (Γ
j

= (�j1; �
j

2) ; �j); : : : ] x; y

As the above two sket
hes of �

i

reveal, features I and II should hold not only for two distin
t �

i

's,

but also for premises of an (∩I) (and minor premises of a (∪E)) within a single �

i

. This is be
ause su
h

premises, whi
h share the same term-statement, are also merged into the same mole
ule in �

?

, exa
tly

as the root-statements of the �

i

's are merged into the root-mole
ule of �

?

. In general, the merging of

statements into the same mole
ule goes through (∩I) or (∪E) inferen
es within ea
h of the �

i

's, 
reating

nesting phenomena.

Putting features I and II together, we 
on
lude that the �

i

's should have a 
ommon stru
ture of

impli
ations and union eliminations, in whi
h 
orresponding impli
ations or union eliminations should

have mat
hing 
orresponding term-statements; this should, of 
ourse, hold modulo multiple nestings due

to (∩I) or (∪E) inferen
es within ea
h of the �

i

's. The de�nition of trees of impli
ations and union

eliminations with terms for derivations in IUT

⊕
(De�nition 5.6) and the demand that the �

i

's have

existing

24

and identi
al su
h trees in order to be 
ompatible for merging into a single �

?

(hypotheses 1

and 2 in Theorem 5.13) put in formal status the 
on
lusion just stated.

The \restri
tion" that the �

i

's have existing and identi
al trees T

t

iue

in order to be 
ompatible for

merging into a single �

?


ould serve as a means for 
he
king if the �

i

's, for whi
h the only 
ommon feature

given is the term-statement at the root, are indeed 
ompatible or if they 
ould be made 
ompatible. In

24

The \existing" part takes 
are of the nestings.
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parti
ular, if the trees (T t

iue

)1; : : : ; (T
t

iue

)
n

all exist and are identi
al, then the �

i

's are naturally 
ompatible

for merging into a single �

?

. If not, we 
ould 
he
k if there are transformed �

′
i

's, where �

i

transforms to �

′
i

whi
h proves the same statement as �

i

, su
h that the trees (T t

iue

)′1; : : : ; (T
t

iue

)′
n

all exist and are identi
al.

If so, then the �

i

's 
an be made 
ompatible through transformations to the �

′
i

's, whi
h are themselves

naturally 
ompatible for merging into a single (�′)?, proving the desired de
orated mole
ule. Derivations

�1 and �2 of Example 5.18 are not naturally 
ompatible, as it is (T t

iue

)1 6= (T t

iue

)2, but 
an, nonetheless,
be made 
ompatible by transforming �2 to a �

′
2 :: { x : �; y : � } ⊢ x : �, su
h that (T t

iue

)′2 = (T t

iue

)1.

x : �; y : � ⊢ x : �
(∩E2)

x : �; y : � ⊢ x : �
(∪I)

x : �; y : � ⊢ x : � ∪ � x : �; y : �; z : � ⊢ z : � x : �; y : �; z : � ⊢ z : �
(∪E)

proper

�

′
2 :: {x : �; y : � } ⊢ z[x=z] = x : �

If there were appropriate transformations for every 
ase of �

i

's whi
h are not naturally 
ompatible,

we would have a non-restri
ted (i.e. without any referen
e to trees T

t

iue

) inverse theorem modulo trans-

formations, i.e. a theorem from IUT

⊕
to IUL

?

m

saying \if �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n)
are derivations in IUT

⊕
, there is a de
orated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

modulo appropriate transformations of the �

i

's". The proof of su
h a theorem would use the notion of

trees T

t

iue

|the so-
alled \restri
tion"|to 
onsider two 
ases: (i) the 
ase where the �

i

's are naturally


ompatible, whi
h would point to the proof of 5.13 and (ii) the 
ase where the �

i

's are not naturally


ompatible, whi
h would need a proof that there is always a transformation to �

′
i

's, whi
h are naturally


ompatible. However, as the 
ounterexample se
tion 
learly shows, it is not always possible to per-

form transformations whi
h adjust the 
ompatibility. Therefore, we 
annot have a non-restri
ted inverse

theorem modulo transformations.

Removing restri
tions, imposed through the notion of trees T

t

iue

, from the dire
t theorem, i.e. the

theorem from IUL

?

m

to IUT

⊕
, we see that, although a non-restri
ted dire
t theorem is possible, it does

not o�er a 
omplete a

ount of the proje
tion|if we may 
all it so|of IUL

?

m

into IUT

⊕
. This is

be
ause it does not do
ument the features of �

?

that impress upon ea
h of the �

i

's and 
onstitute their


ommon attributes. The notion of trees T

t

iue

, employed for both IUL

?

m

and IUT

⊕
in 
on
lusions 1-3 of the

restri
ted theorem 5.10, serves exa
tly the purpose of des
ribing these features

25

of �

?

, thus formalizing

the proje
tion to its full extent.

Con
lusively, it is preferred to sti
k to a restri
ted dire
t theorem, while it is ne
essary to sti
k to a

restri
ted inverse theorem.

25

Inverting the analysis about 
ommon features of 
ompatible �

i

's, the features of �

?

impressed upon ea
h of the derived

�

i

's are I. the stru
ture of impli
ations and union eliminations and II. the de
oration (of impli
ations and union eliminations).

The tra
e of I and II on the �

i

's should, of 
ourse, be 
onsidered modulo nestings due to (∩I)'s or (∪E)'s within ea
h of

them.



CHAPTER 6

Corresponden
e between IL

m

and IT

⊕

We examine how the method of trees, i.e. the method employed in Chapter 5 to des
ribe the 
orre-

sponden
e between IUL

?

m

and IUT

⊕
with the aid of trees T

t

iue

, applies to the 
orresponden
e between

the union-ex
luded systems IL

?

m

and IT

⊕
. Toward this end, we �rst de�ne the notion \tree of impli-


ations with terms", denoted T

t

i

, for both the de
orated logi
 IL

?

m

and the type system IT

⊕
. We then

state and prove theorems of 
orresponden
e between IL

?

m

and IT

⊕
that revise, with the aid of trees T

t

i

,

the 
orresponden
e between ISL

?

and IT, given in Chapter 1. We �nally dis
uss the 
orresponden
es

IUL

?

m

↔ IUT

⊕
and IL

?

m

↔ IT

⊕
to de
ide to what extent the logi
s IUL

m

and IL

m

indeed 
orrespond,

through de
oration, to the type systems IUT

⊕
and IT

⊕
, respe
tively.

6.1 Trees of i with terms

We start by de�ning the logi
 IL

m

and its de
oration and also the type system IT

⊕
, all as restri
tions of

de�nitions given in Chapter 4. We then adjust the method of trees to the restri
ted systems by de�ning

the notion of tree of impli
ations with terms for both the de
orated logi
 and the type system.

The natural dedu
tion logi
 IL

m

, exposed in Figure 6.1, derives from the natural dedu
tion logi
 IUL

m

,

if we ex
lude the union rules. The ex
hange rule and the impli
ation rules are global, while the interse
tion

rules are lo
al. The system is additive, whi
h is ne
essitated in the 
ase of interse
tion introdu
tion, but


hosen in the 
ase of impli
ation elimination. It is easy to 
he
k that Propositions 4.4-4.6, 4.10, and 4.11,

whi
h are all shown for IUL

m

in Chapter 4, also hold for the \smaller" system IL

m

. The de
oration of

IL

m

, shown in Figure 6.2, is the restri
tion of the de
oration of IUL

m

to the rules of IL

m

.

The natural dedu
tion type system IT

⊕
, depi
ted in Figure 6.3, derives from the natural dedu
tion

type system IUT

⊕
, if we ex
lude the union rules. It 
oin
ides with the system IT of Chapter 1 and

also with the system deriving from the natural dedu
tion system IUT

ù

of Chapter 2, if we ex
lude the

(ù)-rule and the union rules. It is easy to verify that Propositions 4.14, 4.16, and 4.17(i), whi
h are all

shown for IUT

⊕
in Chapter 4, also hold for the \smaller" system IT

⊕
.

Remark 6.1 (i) Sin
e subje
t redu
tion is valid in IT

⊕
(re
all Proposition 1.3), 
ontra
tion 
an be

derived in IT

⊕
through an impli
ation redex along with subje
t redu
tion.

B; x : �; y : � ⊢ t : �
(→I)

B; x : � ⊢ �y: t : � → �

(ax)

B; x : � ⊢ x : �
(→E)

B; x : � ⊢ (�y: t)x : �
1.3

=⇒
B; x : � ⊢ t[x=y] : �

123
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⊕

(ax)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

[U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
(∩I)

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E1)

[U ; (Γ
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E2)

[U ; (Γ
i

; �
i

)
i

;V ]

Figure 6.1: The logi
 IL

m

in natural dedu
tion style.

(ax)

x : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t : [U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
p

(∩I)
t : [U ; (Γ

i

; �
i

∩ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E1)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E2)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

Figure 6.2: Non-standard de
oration of natural dedu
tion IL

m

.

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

Figure 6.3: The type system IT

⊕
in natural dedu
tion style.
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(ii) An impli
ation redex along with subje
t redu
tion 
an also derive a 
ut-like rule in IT

⊕
.

B; x : � ⊢ u : �
(→I)

B ⊢ �x: u : � → � B ⊢ t : �
(→E)

B ⊢ (�x: u)t : �
1.3

=⇒
B ⊢ u[t=x] : �

In the natural dedu
tion IUT

⊕
, where subje
t redu
tion is not valid, a 
ut-like rule 
an be derived

through a union redex; this will be shown in the next 
hapter (see Theorem 7.9(i)).

The method of trees in Chapter 5 uses trees with terms that en
ode only the impli
ations and the

union eliminations, i.e. these logi
al rules that are global and have a 
ounterpart in the type system. In

the 
urrent 
ontext, the logi
al rules that are global and have a 
ounterpart in the type system are the

impli
ations solely, so we need to de�ne trees with terms that en
ode only the impli
ations.

As far as IL

?

m

is 
on
erned, 
onsidering the \tree with terms" as expe
ted

1

, we de�ne the \tree of

impli
ations with terms" as follows.

De�nition 6.2 (IL

?

m

: Tree of impli
s with terms T

t

i

) The tree of impli
ations with terms T

t

i

of a

derivation �

?

in IL

?

m

derives from the tree with terms T

t

of �

?

, if we erase all nodes and 
orresponding

de
oration-statements asso
iated to the rules (X) and (∩IE).

As in the 
ase of IUL

?

m

, the pro
edure of erasing nodes and 
orresponding de
oration-statements

asso
iated to the rules (X) and (∩IE) is well-de�ned, and the tree T

t

i

displays at the root the same

de
oration-statement as the tree T

t

.

As far as IT

⊕
is 
on
erned, 
onsidering the \tree with terms" as expe
ted

2

, we de�ne the \tree of

impli
ations with terms" as follows.

De�nition 6.3 (IT

⊕
: Tree of impli
s with terms T

t

i

) We derive the tree of impli
ations with terms

T

t

i

of a derivation � in IT

⊕
from the tree with terms T

t

of � by the following algorithm.

. We 
hoose a topmost (∩I) in the tree with terms of � and erase all nodes and 
orresponding

term-statements asso
iated to (∩E) in the trees with terms of both premises. If the resulting premise

trees of impli
ations with terms are identi
al, we identify them and erase the node and 
orresponding

term-statement asso
iated to the (∩I).

. We iterate the above pro
edure for the tree with terms resulting from the previous step.

. When all the (∩I)'s are eliminated, we make a �nal step to erase any remaining nodes and 
orre-

sponding term-statements asso
iated to (∩E).

As in the 
ase of IUT

⊕
, the pro
edure des
ribed by the above algorithm is well-de�ned, and the �nal

tree T

t

i

attained has a term-statement at the root whi
h is identi
al to the term-statement at the root

of the original tree T

t

. However, unlike the algorithm in 5.6, the algorithm in 6.3 always terminates. To

show this, we need the following lemma.

Lemma 6.4 If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations in IT

⊕
that share the same

term-statement x1; : : : ; xm ⊢ t at the root, then the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist and are identi
al.

1

This is as given in 5.1, but with IL

?

m

in pla
e of IUL

?

m

.

2

This is as given in 5.5, but with IT

⊕
in pla
e of IUT

⊕
.
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Proof. We take two derivations �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � and �2 :: x1 : �1; : : : ; xm : �
m

⊢ t :  ,
and we pro
eed by indu
tion on �1. We allow the [h℄ apply to any �nite number of derivations and denote

S the set {x1; : : : ; xm}.

Base: If �1 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � is an axiom, then �2 
ontains only interse
tions.

�21 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � . . . �2k :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : �

.

.

.

(∩IE) .

.

.

�2 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x :  

The tree (T t

i

)1 is a single node with term-statement S; x ⊢ x. The algorithm for the tree (T t

i

)2
goes as follows. At any step where a topmost (∩I) is 
hosen, after erasing nodes and 
orresponding

term-statements asso
iated to (∩E), we get identi
al premise-trees T

t

i

, whi
h 
onsist of a single node

with term-statement S; x ⊢ x. Identifying them and erasing the node and 
orresponding term-statement

asso
iated to the (∩I) results to a single node with term-statement S; x ⊢ x in pla
e of the tree with

terms rooted at the topmost (∩I). When all the (∩I)'s are eliminated, we are left with a tree with terms

whi
h is a bran
h of (∩E)'s with all nodes \
arrying" the term-statement S; x ⊢ x. Erasing the nodes

and 
orresponding term-statements asso
iated to the (∩E)'s yields the tree (T t

i

)2, whi
h is a single node

with term-statement S; x ⊢ x. Sin
e both trees (T t

i

)1 and (T t

i

)2 are a single node with term-statement

S; x ⊢ x, they are identi
al.

Indu
tion step: We show the most important 
ases.

.

�10 :: x1 : �1; : : : ; xm : �
m

; x : �1 ⊢ t : �2
(→I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ �x: t : �1 → �2

Sin
e a �-abstra
tion 
an be generated only by an (→I), derivation �2 has the following form.

�210 :: x1 : �1; : : : ; xm : �
m

; x : �1 ⊢ t :  1
(→I)

�21 :: x1 : �1; : : : ; xm : �
m

⊢ �x: t : �1 →  1
. . .

�2k0 :: x1 : �1; : : : ; xm : �
m

; x : �
k

⊢ t :  
k

(→I)

�2k :: x1 : �1; : : : ; xm : �
m

⊢ �x: t : �
k

→  

k

.

.

.

(∩I) .

.

.

�2 :: x1 : �1; : : : ; xm : �
m

⊢ �x: t :  

We take that there are no (∩E)'s in the part of �2 below �21; : : : ; �2k , as we 
annot apply an (∩E) to a

statement whose predi
ate is an impli
ation type �

i

→  

i

(1 6 i 6 k), so that any (∩E) must be roughly
following an (∩I), in whi
h 
ase it 
an be eliminated.

The [h℄ on �10; �210; : : : ; �2k0 implies that the trees (T t

i

)10; (T
t

i

)210; : : : ; (T
t

i

)2k0 all exist and are

identi
al. The existen
e of the tree (T t

i

)10 entails the existen
e of the tree (T t

i

)1, whi
h has the form

shown below.
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(T t

i

)10 [h℄

S; x ⊢ t
•

→I

•
S ⊢ �x: t

(T t

i

)1

Denoting (T t

i

)210 the 
ommon tree of impli
ations with terms of �210; : : : ; �2k0, the algorithm for the tree

(T t

i

)2 goes as follows. At any step where a topmost (∩I) is 
hosen, we get identi
al premise-trees T t

i

of

the form displayed below.

(T t

i

)210

S; x ⊢ t
•

→I

•
S ⊢ �x: t

Identifying them and erasing the node and 
orresponding term-statement asso
iated to the (∩I) results

to a tree T

t

i

of the above form in pla
e of the tree with terms rooted at the topmost (∩I). Therefore,

when all the (∩I)'s are eliminated, we are left with a tree (T t

i

)2, as shown below.

(T t

i

)210 [h℄

S; x ⊢ t
•

→I

•
S ⊢ �x: t

(T t

i

)2

Sin
e (T t

i

)10 = (T t

i

)210, we get that (T
t

i

)1 = (T t

i

)2.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �1 → � �11 :: x1 : �1; : : : ; xm : �
m

⊢ u : �1
(→E)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ tu : �

Sin
e an appli
ation-term 
an only arise from an (→E), derivation �2 is s
hemati
ally depi
ted as

shown below.
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�210 :: B2 ⊢ t : �1 →  1 �211 :: B2 ⊢ u : �1
(→E)

�21 :: B2 ⊢ tu :  1
. . .

�2k0 :: B2 ⊢ t : �
k

→  

k

�2k1 :: B2 ⊢ u : �
k

(→E)

�2k :: B2 ⊢ tu :  
k

.

.

.

(∩IE) .

.

.

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ tu :  

The [h℄ on �10; �210; : : : ; �2k0 implies that the trees (T t

i

)10; (T
t

i

)210; : : : ; (T
t

i

)2k0 all exist and are

identi
al, while the [h℄ on �11; �211; : : : ; �2k1 gives that the trees (T
t

i

)11; (T
t

i

)211; : : : ; (T
t

i

)2k1 all exist and
are identi
al. The existen
e of the trees (T t

i

)10 and (T t

i

)11 entails the existen
e of the tree (T t

i

)1, whi
h
has the following form.

(T t

i

)10 [h℄

S ⊢ t
•
◗
◗
◗
◗◗•

→E

S ⊢ tu

(T t

i

)1

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)11 [h℄

Denoting (T t

i

)210 the 
ommon tree of impli
ations with terms of �210; : : : ; �2k0 and (T t

i

)211 the 
ommon
tree of impli
ations with terms of �211; : : : ; �2k1, the algorithm for the tree (T t

i

)2 pro
eeds as follows.

At any step where a topmost (∩I) is 
hosen, after erasing nodes and 
orresponding term-statements

asso
iated to (∩E), we get identi
al premise-trees T t

i

of the following form.

(T t

i

)210

S ⊢ t
•
◗
◗
◗
◗◗•

→E

S ⊢ tu

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)211

Identifying them and erasing the node and 
orresponding term-statement asso
iated to the (∩I) results

to a tree T

t

i

of the above form in pla
e of the tree with terms rooted at the topmost (∩I). When all

the (∩I)'s are eliminated, we are left with a tree with terms whi
h is the tree T

t

i

shown above with a

bran
h of (∩E)'s pasted on its root. Erasing the nodes and 
orresponding term-statements asso
iated to

the (∩E)'s, we obtain the following tree (T t

i

)2.
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(T t

i

)210 [h℄

S ⊢ t
•
◗
◗
◗
◗◗•

→E

S ⊢ tu

(T t

i

)2

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)211 [h℄

Sin
e (T t

i

)10 = (T t

i

)210 and (T t

i

)11 = (T t

i

)211, we get that (T
t

i

)1 = (T t

i

)2.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �1 �11 :: x1 : �1; : : : ; xm : �
m

⊢ t : �2
(∩I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : �1 ∩ �2

The [h℄ on �10; �11; �2 implies that the trees (T t

i

)10; (T
t

i

)11, and (T t

i

)2 exist and are identi
al. Sin
e

(T t

i

)10 = (T t

i

)11, the algorithm for the tree (T t

i

)1 terminates and gives (T t

i

)1 = (T t

i

)10. Therefore, it is
(T t

i

)1 = (T t

i

)2. ⊣

Corollary 6.5 The algorithm in 6.3 always terminates, i.e. any derivation in IT

⊕
has a tree T

t

i

.

Proof. By Lemma 6.4, for n = 1. If � :: x1 : �1; : : : ; xm : �
m

⊢ t : � is a derivation in IT

⊕
, then the tree

(T t

i

)
�

exists. ⊣

The notion of tree of impli
ations with terms for derivations in IT

⊕
is a
tually a revision of the notion

of skeleton, introdu
ed in [15℄ for derivations of an extended natural dedu
tion type system, 
alled NJR.

In [15℄, derivations displaying the same skeleton are 
alled syn
hronous and it is shown that two derivations

proving statements that type the same term are syn
hronous. In the 
urrent 
ontext, syn
hroni
ity refers

to derivations proving statements that share the same term-statement, whi
h are shown to display the

same tree T

t

i

by Lemma 6.4.

6.2 Revised 
orresponden
e theorems

Having done the preliminary work, i.e. having introdu
ed the trees T

t

i

for derivations in the de
orated

logi
 IL

?

m

and in the type system IT

⊕
, we 
an now relate IL

?

m

to IT

⊕
in a way that is 
ompatible with

the way IUL

?

m

is related to IUT

⊕
in Chapter 5 and, furthermore, revises the theorem relating ISL

?

to IT

in Chapter 1.

Theorem 6.6 (From IL

m

to IT

⊕
) If �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a de
orated derivation

in IL

m

, then there exist derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IT

⊕
, su
h that

(T t

i

)
i

= (T t

i

)
�

?

.

Proof. Given the �

i

's (1 6 i 6 n) in IT

⊕
, Lemma 6.4 guarantees that the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist

and are identi
al, so that the identity (T t

i

)
i

= (T t

i

)
�

?

is meaningful. The proof is by indu
tion on �

?

,

letting S denote the set {x1; : : : ; xm}.
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Base: If �

? :: x : [(�i1; : : : ; �
i

m

; �

i

; �
i

)n
i=1]x1;:::; xm; x is a de
orated axiom, then there exist axioms

�

i

:: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ x : �
i

(1 6 i 6 n) in IT

⊕
. It is (T t

i

)
i

= (T t

i

)
�

?

, sin
e both trees are a

single node with S; x ⊢ x.

Indu
tion step: We show two 
hara
teristi
 
ases.

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

; �
i

→ �

i

)n
i=1] x1;:::; xm �

?

1 :: u : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

(→E)

�

? :: tu : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

The [h℄ gives �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �1 → �

i

(1 6 i 6 n), su
h that (T t

i

)0i = (T t

i

)
�

?

0
, and

also �1i :: x1 : �i1; : : : ; xm : �i
m

⊢ u : �
i

(1 6 i 6 n), su
h that (T t

i

)1i = (T t

i

)
�

?

1
. Applying (→E) to

�0i and �1i, we obtain �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ tu : �
i

(1 6 i 6 n). Sin
e (T t

i

)0i = (T t

i

)
�

?

0
and

(T t

i

)1i = (T t

i

)
�

?

1
, we get that (T t

i

)
i

= (T t

i

)
�

?

.

(T t

i

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

i

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)1i

=
[h℄

(T t

i

)
�

?

0

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

i

)
�

?

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)
�

?

1

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; ((�

i

1; : : : ; �
i

m

; �
i

); (�i1; : : : ; �
i

m

; �
i

))n
i=k+1] x1;:::; xm

(∩I)

�

? :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; (�

i

1; : : : ; �
i

m

; �
i

∩ �
i

)n
i=k+1] x1;:::; xm

For 1 6 i 6 k, the [h℄ yields �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t :  
i

, su
h that (T t

i

)0i = (T t

i

)
�

?

0
. It is

�

i

= �0i, so that (T t

i

)16i6k = (T t

i

)0i = (T t

i

)
�

?

0
= (T t

i

)
�

?

. For k + 1 6 i 6 n, the [h℄ gives derivations

�0i0 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

and �0i1 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

from whi
h, by (∩I), we derive

�

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

∩ �
i

. The trees (T t

i

)1; : : : ; (T
t

i

)
k

; (T t

i

)
k+1; : : : ; (T

t

i

)
n

are all identi
al

(Lemma 6.4), so it is (T t

i

)16i6n = (T t

i

)16i6k = (T t

i

)
�

?

. ⊣

Corollary 6.7 If �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm is a de
orated derivation in IL

m

, there is a derivation

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � in IT

⊕
, su
h that (T t

i

)1 = (T t

i

)
�

?

.

Proof. By Theorem 6.6, for n = 1. ⊣

Theorem 6.8 (From IT

⊕
to IL

m

) If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations

in IT

⊕
, there is a de
orated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IL

m

, su
h that (T t

i

)
�

? =
(T t

i

)
i

.

Proof. Lemma 6.4 guarantees that the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist and are identi
al, so that the

identity (T t

i

)
�

? = (T t

i

)
i

is meaningful. We 
onsider two derivations �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � and

�2 :: x1 : �1; : : : ; xm : �
m

⊢ t :  and pro
eed by indu
tion on �1, allowing the [h℄ apply to any �nite

number of derivations. The letter S stands on
e more for the set {x1; : : : ; xm}.
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Base: If �1 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � is an axiom, then �2 may only 
ontain interse
tions.

�21 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � . . . �2k :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : �

.

.

.

(∩IE) .

.

.

�2 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x :  

We obtain a �

? :: x : [(�1; : : : ; �m; � ; �); (�1; : : : ; �m; � ;  )]x1;:::; xm; x by merging �1; �21; : : : ; �2k into

an axiom of the (de
orated) logi
 and then applying ex
hanges, if ne
essary, and the (∩IE) inferen
es in

the logi
 that 
orrespond to the (∩IE) inferen
es in �2.

x : [(�1; : : : ; �m; � ; � ); (�1; : : : ; �m; � ; �)
k

i=1
︸ ︷︷ ︸

]
x1;:::; xm; x

.

.

.

(∩IE)

.

.

.

�

? :: x : [(�1; : : : ; �m; � ; � ); (�1; : : : ; �m; � ;  )] x1;:::; xm; x

The tree (T t

i

)
�

?

is a single node with de
oration-statement S; x ⊢ x, i.e. it is (T t

i

)
�

? = (T t

i

)1.

Indu
tion step: We show the most typi
al 
ases.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �→ � �11 :: x1 : �1; : : : ; xm : �
m

⊢ u : �
(→E)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ tu : �

Sin
e tu 
an only be generated by an (→E) in IT

⊕
, derivation �2 has the form shown below.

�210 :: B2 ⊢ t : �1 →  1 �211 :: B2 ⊢ u : �1
(→E)

�21 :: B2 ⊢ tu :  1
. . .

�2k0 :: B2 ⊢ t : �
k

→  

k

�2k1 :: B2 ⊢ u : �
k

(→E)

�2k :: B2 ⊢ tu :  
k

.

.

.

(∩IE) .

.

.

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ tu :  

The [h℄ on �10; �210; : : : ; �2k0 gives a

�

?

0 :: t : [(�1; : : : ; �m ; �→ �); (�1; : : : ; �m ; �
i

→  

i

)k
i=1]x1;:::; xm
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⊕

su
h that (T t

i

)
�

?

0
= (T t

i

)10, while the [h℄ on �11; �211; : : : ; �2k1 yields a

�

?

1 :: u : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �
i

)k
i=1]x1;:::; xm

su
h that (T t

i

)
�

?

1
= (T t

i

)11. We then get a �

? :: tu : [(�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm as follows.

�

?

0 �

?

1
(→E)

tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  
i

)k
i=1

︸ ︷︷ ︸
]
x1;:::; xm

.

.

.

(∩IE)

.

.

.

�

? :: tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  )]
x1;:::; xm

Sin
e (T t

i

)
�

?

0
= (T t

i

)10 and (T t

i

)
�

?

1
= (T t

i

)11, we infer that (T
t

i

)
�

? = (T t

i

)1.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : � �11 :: x1 : �1; : : : ; xm : �
m

⊢ t : �
(∩I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∩ �

The [h℄ on �10; �11; �2 gives a �
?

0 :: t : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm , su
h

that (T t

i

)
�

?

0
= (T t

i

)10. By (∩I), we then get a �

? :: t : [(�1; : : : ; �m ; � ∩�); (�1; : : : ; �m ;  )]
x1;:::; xm , su
h

that (T t

i

)
�

? = (T t

i

)
�

?

0
= (T t

i

)10
6:4
= (T t

i

)1. ⊣

Corollary 6.9 If �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � is a derivation in IT

⊕
, then there is a de
orated

derivation �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm in IL

m

, su
h that (T t

i

)
�

? = (T t

i

)1.

Proof. By Theorem 6.8, for n = 1. ⊣

Putting aside the small dissimilarities between the (de
orated) logi
s IL

m

and ISL, Theorem 6.6

revises the \only if" dire
tion of Theorem 1.20 in that it puts forth the additional fa
t that the �

i

's and

�

?

share the same impli
ative stru
ture (with terms), whi
h is expressed by the identity (T t

i

)
i

= (T t

i

)
�

?

.

Moreover, Theorem 6.8 revises the \if" dire
tion of Theorem 1.20 by adding the fa
t that �

?

displays the

same impli
ative stru
ture (with terms) as the �

i

's, whi
h is expressed by the identity (T t

i

)
�

? = (T t

i

)
i

.

Comparing Theorem 6.6 (from IL

m

to IT

⊕
) to Theorem 5.10 (from IUL

m

to IUT

⊕
), we see that, due

to Lemma 6.4, there is no need for 
on
lusions of the form \(T t

i

)
i

exists and (T t

i

)
i

= (T t

i

)
j

(i 6= j)"
in the former, as there are in the latter

3

. Furthermore, 
omparing Theorem 6.8 (from IT

⊕
to IL

m

) to

Theorem 5.13 (from IUT

⊕
to IUL

m

), we �nd that, due to the same lemma, there is no need for hypotheses

of the form \(T t

i

)
i

exists and (T t

i

)
i

= (T t

i

)
j

(i 6= j)" in the former, as there are in the latter

4

.

3

This is meant modulo the di�erentiation in the rules do
umented by the trees in the latter.

4

See footnote 3.
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6.3 Dis
ussion of the 
orresponden
es

Looking at the 
orresponden
e between IL

?

m

and IT

⊕
, let S

IT

⊕
be the set of �nite sets of IT

⊕
-derivations

that share the same term-statement at the root. Obviously, the set S

IT

⊕
is a proper subset of the pow-

erset P( IT⊕) of IT⊕
. Lemma 6.4 implies that a member {�1; : : : ; �n} of S

IT

⊕
is su
h that the trees

(T t

i

)1; : : : ; (T
t

i

)
n

all exist and are identi
al. Theorems 6.6 and 6.8 establish a one-to-one 
orresponden
e

between IL

?

m

and S

IT

⊕
. In parti
ular, Theorem 6.6 mat
hes a �

?

in IL

?

m

, 
onsidered modulo the number

and position of ex
hange inferen
es and also modulo the number and order of appli
ation of 
onse
utive

lo
al rule-inferen
es, to a set {�1; : : : ; �n} in S

IT

⊕
, su
h that (T t

i

)16i6n = (T t

i

)
�

?

. Conversely, Theo-

rem 6.8 mat
hes a set {�1; : : : ; �n} in S

IT

⊕
to a �

?

in IL

?

m

, 
onsidered modulo the things mentioned

above, su
h that (T t

i

)
�

? = (T t

i

)16i6n.
The question we now have to ta
kle is if we also have a one-to-one 
orresponden
e between IUL

?

m

and

S

IUT

⊕
, where S

IUT

⊕
is the set of �nite sets of IUT

⊕
-derivations that share the same term-statement at

the root. The set S

IUT

⊕
is a proper subset of the powerset P( IUT⊕) of IUT⊕

. The situation here is

a bit more 
omplex and we need to also de�ne two subsets C1 and C2 of S

IUT

⊕
to get the pi
ture. Let

C1 ⊆ S

IUT

⊕
be su
h that, for any set A = {�1; : : : ; �n} in C1, the trees (T

t

iue

)1; : : : ; (T
t

iue

)
n

all exist and

are identi
al, i.e. hypotheses 1 and 2 of Theorem 5.13 hold for the members of A [notation: (1 ∧ 2)
A

℄.

Further, let C2 ⊆ S

IUT

⊕
be su
h that, for any set B = {�1; : : : ; �n} in C2, it is not the 
ase that the trees

(T t

iue

)1; : : : ; (T
t

iue

)
n

all exist and are identi
al [notation: ¬(1∧ 2)
B

℄, but there is a transformation to a set

A = {�′
1; : : : ; �

′
n

} in C1, where �i transforms to �
′
i

whi
h proves the same statement as �

i

(1 6 i 6 n).
To use the terminology introdu
ed in Chapter 5, the members of a set in C1 are \naturally 
ompatible",

while the members of a set in C2 are \
ompatible through transformations"; the 
hoi
e of the letter \C"

for the subsets of S

IUT

⊕
derives from the word \
ompatible". The fa
ts that (1 ∧ 2)

A

and ¬(1 ∧ 2)
B

,

for any A in C1 and B in C2, imply that C1 ∩ C2 = ∅. Moreover, if C = C1 ∪ C2, the transformation


ounterexample in Se
tion 5.3 shows that there is a set {�1; �2} in S

IUT

⊕ \ C, i.e. that C  S

IUT

⊕
.

What we have shown in Chapter 5 is a one-to-one 
orresponden
e between IUL

?

m

and C1, whi
h

mat
hes a �

?

in IUL

?

m

, 
onsidered modulo the number and position of ex
hange inferen
es and also

modulo the number and order of appli
ation of 
onse
utive lo
al rule-inferen
es, to a set {�1; : : : ; �n} in

C1, su
h that (T t

iue

)16i6n = (T t

iue

)
�

?

. Theorem 5.10 states the dire
tion from �

?

to {�1; : : : ; �n}, while
Theorem 5.13 states the inverse. However, we 
an also 
onsider one-to-many 
orresponden
es from IUL

?

m

to C and from C to IUL

?

m

. A one-to-many 
orresponden
e from IUL

?

m

to C mat
hes a �

?

in IUL

?

m

,


onsidered modulo the usual, not only to its one-to-one equivalent set {�1; : : : ; �n} in C1, but also to

all the sets {�′
1; : : : ; �

′
n

} in C2, su
h that �

′
i

proves the same statement as �

i

(1 6 i 6 n). Two distin
t

IUL

?

m

-derivations �

?

and (�′)? are not ne
essarily mat
hed to distin
t subsets of C. This is the 
ase

when �

?

and (�′)? prove the same de
orated mole
ule

5

. A one-to-many 
orresponden
e from C to IUL

?

m

mat
hes a {�1; : : : ; �n} in C1 to its one-to-one equivalent derivation �
?

in IUL

?

m

and a {�1; : : : ; �n} in C2

to the subset of IUL

?

m

in
luding all (�′)? whose one-to-one equivalent set {�′
1; : : : ; �

′
n

} in C1 is su
h that

�

′
i

proves the same statement as �

i

(1 6 i 6 n). Obviously, distin
t sets in C1 are mat
hed to distin
t

derivations in IUL

?

m

, but distin
t sets in C2 are not ne
essarily mat
hed to distin
t subsets of IUL

?

m

. We


an spe
ify the latter 
ase, if we 
onsider two sets A = {�1; �2} and A

′ = {�′
1; �

′
2} in C2, su
h that �

′
1

5

Derivations �

?

and (�′)? 
orrespond|via the one-to-one 
orresponden
e between IUL

?

m

and C1|to two distin
t sets

A = {�1; : : : ; �n} and A

′ = {�′
1; : : : ; �

′
n

} in C1, respe
tively. The fa
t that �
?

and (�′)? prove the same de
orated mole
ule

implies that �

′
i

proves the same statement as �

i

(1 6 i 6 n). The �
i

's all display the same tree T

t

iue

as �

?

, while the �

′
i

's

all display the same tree T

t

iue

as (�′)?; these trees are distin
t, sin
e �? and (�′)? are distin
t. Therefore, there exists a set

B = {�1; : : : ; �
k

; �

′
k+1; : : : ; �

′
n

} in C2, where 1 6 k < n. This set B belongs to both the subset of C mat
hed to �

?

and the

subset of C mat
hed to (�′)?.
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⊕

and �

′
2 prove the same statements as �1 and �2, respe
tively, the trees (T

t

iue

)1; (T
t

iue

)2; (T
t

iue

)′1; (T
t

iue

)′2 all

exist, and it is

6 (T t

iue

)1 = (T t

iue

)′2 6= (T t

iue

)2 = (T t

iue

)′1. It is 
lear that the 
orresponden
es just des
ribed
di�er from the intended one, i.e. from a one-to-one 
orresponden
e between IUL

?

m

and S

IUT

⊕
. Figure 6.4

illustrates the one-to-one 
orresponden
es in the interse
tion and interse
tion-and-union 
ontexts. In

addition, Figure 6.5 demonstrates the subsets of S

IUT

⊕
with respe
t to hypotheses 1 and 2 of 5.13 and

shows the paths from a member of S

IUT

⊕ to a member of IUL

?

m

.

The failure of a one-to-one 
orresponden
e between IUL

?

m

and S

IUT

⊕

onfutes the very de�nition of

IUL

m

as a logi
 for IUT

⊕
. As explained at the end of Se
tion 4.2, in de�ning IUL

m

we have assumed|

following the pattern in the de�nition of IL

m

(or ISL) as a logi
 for IT

⊕
|that the mole
ule stru
ture

serves the purpose of \joining together" statements in IUT

⊕
that share the same term-statement, so

that the premises of an (∩I) in IUT

⊕
provide a single (∩I)-premise in IUL

m

and the minor premises

of a (∪E) in IUT

⊕
provide a single (∪E)-minor-premise in IUL

m

, thus allowing a de
oration for IUL

m

that simulates the terms in IUT

⊕
. However, this amounts to assuming a one-to-one 
orresponden
e

between IUL

?

m

and S

IUT

⊕ , whi
h is not the 
ase. As shown so far, statements in IUT

⊕
sharing the

same term-statement, e.g. the premises of an (∩I) in IUT

⊕
, must either be naturally 
ompatible, i.e. in

C1, or, at most, 
ompatible through transformations, i.e. in C2, in order to be mergeable into the same

de
orated mole
ule in IUL

?

m

. Premises

7

of an (∩I) in S

IUT

⊕ \ C 
annot be joined together in IUL

?

m

,

whi
h means that we have assumed more than is a
tually the 
ase in de�ning IUL

m

. On the other hand,

the one-to-one 
orresponden
e between IL

?

m

and S

IT

⊕

on�rms the de�nition of IL

m

as a logi
 for IT

⊕
;

Lemma 6.4 ensures that the premises of any (∩I) in IT

⊕
are naturally 
ompatible for merging into the

same de
orated mole
ule in IL

?

m

. So, unfortunately, although the logi
 IL

m

indeed expresses the type

system IT

⊕
on a logi
al level, its extension with union IUL

m

is not appropriate to express (the whole

of) IUT

⊕
on a logi
al level. It a
tually expresses the proper subset of IUT

⊕
where premises of an (∩I)

and minor premises of a (∪E) belong to C, i.e. where premises of an (∩I) and minor premises of a (∪E)

display, modulo transformations, the same tree T

t

iue

.

6

The set B = {�1; �′
2} is in C1 and is su
h that �1 and �

′
2 prove the same statements as �1 and �2, respe
tively, and

also the same statements as �

′
1 and �

′
2, respe
tively. If �

?

is the one-to-one equivalent derivation of B in IUL

?

m

, then �

?

belongs to both the subset of IUL

?

m

mat
hed to A and the subset of IUL

?

m

mat
hed to A

′
.

7

The 
ounterexample derivations �1 :: x1 : �; x2 : � → � ∪ � ⊢ uv : � and �2 :: x1 : �; x2 : � ⊢ uv : � (see Se
tion 5.3),

whi
h are in S

IUT

⊕ \ C, are not eligible for premises of an (∩I). So, one might wonder if there a
tually exist premises of

an (∩I) in S
IUT

⊕ \ C. However, we believe that modifying �1 to �̃1 :: x1 : � ∩ �; x2 : (� → � ∪ �) ∩ � ⊢ uv : � and �2

to �̃2 :: x1 : � ∩ �; x2 : (� → � ∪ �) ∩ � ⊢ uv : �, so that we get derivations whi
h are eligible for premises of an (∩I), we

still have a pair in S

IUT

⊕ \C. Derivations �̃1 and �̃2 di�er from �1 and �2, respe
tively, only in additional (∩E) inferen
es

at the top, whi
h implies that (T t
iue

)̃1 = (T t
iue

)1 and (T t
iue

)̃2 = (T t
iue

)2, whi
h, in turn, implies that {�̃1; �̃2} 6∈ C1. To

justify that {�̃1; �̃2} 6∈ C2, we follow the pattern given in 5.3 to justify that {�1; �2} 6∈ C2, although the work required is


onsiderably in
reased.
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Figure 6.4: One-to-one 
orresponden
es.
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⊕

S

IUT

⊕

A = {�1; �2 }

�1 :: B1 = {x1 : �1; : : : ; xm : �
m

} ⊢ t : �

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ t :  

A ∈ C1

(1 ∧ 2)
A

5.13

for �1; �2

IUL

?

m

�

? :: t : [A;B ]
x1;:::; xm

A = (�1; : : : ; �m ; � )

B = (�1; : : : ; �m ;  )

A ∈ S

IUT

⊕ \ C1

¬ (1 ∧ 2)
A

A ∈ C2

(1 ∧ 2)
A

′

A

′ = {�′
1; �

′
2 } ∈ C1

�

′
1 :: B1 ⊢ t : �

�

′
2 :: B2 ⊢ t :  

5.13

for �

′
1; �

′
2

IUL

?

m

(�′)? :: t : [A;B ]
x1;:::; xm

A = (�1; : : : ; �m ; � )

B = (�1; : : : ; �m ;  )

A ∈ S

IUT

⊕ \ C


annot transform to

A

′ = {�′
1; �

′
2 } ∈ C1


annot prove

t : [A;B ]
x1;:::; xm

in IUL

?

m

Figure 6.5: Subsets of S

IUT

⊕
and paths from S

IUT

⊕
to IUL

?

m

.



CHAPTER 7

Sequent Cal
ulus IUL

m

and IUT

⊕

We present the logi
 IUL

m

and the type system IUT

⊕
in sequent 
al
ulus style, retaining the additive


hara
ter of their natural dedu
tion presentations. For both the logi
 and the type system, we show that

the two styles of presentation are equivalent and that the basi
 natural dedu
tion properties (derivability

properties, et
.) hold in the sequent 
al
ulus 
ontext, as well. We also prove that the additive and

multipli
ative

1

sequent 
al
ulus presentations of the type system are equivalent. We �nally elaborate

on how the sequent 
al
ulus logi
 attempts to represent the sequent 
al
ulus type system on a logi
al

level and sket
h how the sequent 
al
ulus 
orresponden
e between the logi
 and the type system 
an be

studied with tools analogous to the ones used to study the natural dedu
tion 
orresponden
e between

the logi
 and the type system.

7.1 The logi
 IUL

m

in sequent 
al
ulus

Keeping (i) and (ii) of De�nition 4.1 as it is, the sequent 
al
ulus logi
 IUL

m

proves mole
ules by the

rules displayed in Figure 7.1.

Remark 7.1 (i) In the ex
hange rule (X), the Γ
i

's have the same 
ardinality.

(ii) As was the 
ase in the natural dedu
tion presentation, the (left and right) interse
tion and (left

and right) union rules demonstrated in Figure 7.1 are only spe
ial versions of the a
tual (left and right)

interse
tion and (left and right) union rules. The a
tual (∪L) is meant as follows.

[U1; (Γ1; �1 ; �1); (Γ1; �1 ; �1);U2; (Γ2; �2 ; �2); (Γ2; �2 ; �2); : : : ;Un; (Γn; �n ; �n); (Γn; �n ; �n);Un+1 ]
(∪L)

[U1; (Γ1; �1 ∪ �1 ; �1);U2; (Γ2; �2 ∪ �2 ; �2); : : : ;Un; (Γn; �n ∪ �n ; �n);Un+1 ]

The a
tual (∩L1),(∩L2),(∩R),(∪R1), and (∪R2) 
an be �gured from their spe
ial versions in a similar

manner.

The 
ategorization of rules as global or lo
al is still a

ording to whether they a�e
t all or some atoms

in premise level, respe
tively. The ex
hange rule, the impli
ation rules, and the 
ut rule are global, while

the interse
tion and union rules are lo
al.

1

We remind the reader that the multipli
ative sequent 
al
ulus version of the type system is studied in Chapter 2.
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(ax)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(→L)

[Γ
i

; �

i

→ �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �
i

)
i

]
(→R)

[(Γ
i

; �
i

→ �

i

)
i

]

[U ; (Γ
i

; �

i

; �
i

)
i

;V ]
(∩L1)

[U ; (Γ
i

; �

i

∩ �
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �

i

; �
i

)
i

;V ]
(∩L2)

[U ; (Γ
i

; �

i

∩ �
i

; �
i

)
i

;V ]

[U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
(∩R)

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]

[U ; ((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

;V ]
(∪L)

[U ; (Γ
i

; �

i

∪ �
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪R1)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪R2)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(
ut)

[(Γ
i

; �
i

)
i

]

Figure 7.1: The logi
 IUL

m

in sequent 
al
ulus style.

The 
onne
tives of the grammar are all additive. This is done by ne
essity in the 
ases of interse
tion

and union. The 
laim that atoms in the same mole
ule should have the same 
ontext 
ardinality forbids

a multipli
ative presentation of the interse
tion rules and the left union rule. Considering the left inter-

se
tion, a multipli
ative premise [(∆
i

; �
i

)k1 ; (Γi; �i; �i ; �i)
n

1 ] with |∆
i

| = |Γ
i

; �

i

; �

i

| = m+ 2 would give a


on
lusion [(∆
i

; �
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ] with |∆
i

| = m+ 2, but |Γ
i

; �

i

∩ �
i

| = m+ 1. Similar arguments
hold for the right interse
tion and the left union. Moreover, the intuitionisti
 
laim that atoms should


ontain exa
tly one formula to the right of \;" forbids a multipli
ative presentation of the right union;

a multipli
ative premise [U ; (Γ
i

; �
i

; �

i

)
i

;V ] would no longer belong to an intuitionisti
 system. On the

other hand, the additive presentation is pi
ked by 
hoi
e in the 
ase of impli
ation. This is be
ause the

left impli
ation 
an also be given multipli
atively with premises [(Γ
i

; �
i

)
i

]; [(∆
i

; �

i

; �
i

)
i

] and 
on
lusion

[(Γ
i

;∆
i

; �

i

→ �

i

; �
i

)
i

]. The 
ut rule is additive by 
hoi
e, as well.

The sequent 
al
ulus presentation of IUL

m

is equivalent to the natural dedu
tion presentation of

IUL

m

, given in Chapter 4.

Theorem 7.2 (i) If � :: M in sequent 
al
ulus style, there is a �

′ :: M in natural dedu
tion style.

(ii) If � :: M in natural dedu
tion style, there is a �

′ :: M in sequent 
al
ulus style.

Proof. For both (i) and (ii), the formal proof is by indu
tion on �.

(i) In pra
ti
e, the indu
tive proof redu
es to showing that the sequent 
al
ulus rules are derivable

in the natural dedu
tion system. The axiom and the ex
hange rule are 
ommon in both presentations,

while the sequent 
al
ulus right rules 
orrespond to the natural dedu
tion introdu
tion rules. Hen
e, it

remains to show the derivability of the left rules and the 
ut rule in natural dedu
tion.

.

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
❀
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[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

]
[4.5℄

[(Γ
i

; �

i

→ �

i

; �
i

→ �

i

)
i

]

(ax)

[(Γ
i

; �

i

→ �

i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

)
i

]
[4.5℄

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
(→E)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
(→E)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]

.

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ; �i)
n

1 ]
(∩L1)

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ]
❀

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ; �i)
n

1 ]
(→I)

[(∆
i

; �
i

→  

i

)k1 ; (Γi ; �i → �

i

)n1 ]
[4.5℄

[(∆
i

; �

i

; �
i

→  

i

)k1 ; (Γi; �i ∩ �i ; �i → �

i

)n1 ]

(ax)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∩ �i ; �i ∩ �i)
n

1 ]
(∩E1)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ]
(→E)

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ]

.

[(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
(∪L)

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∪ �i ; �i)
n

1 ]
❀

(ax)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∪ �i ; �i ∪ �i)
n

1 ]

[(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
[4.5℄

[(∆
i

; �

i

; �

i

;  
i

)k1 ; ((Γi; �i; �i ∪ �i ; �i); (Γi; �i; �i ∪ �i ; �i))
n

1 ]
(X)

[(∆
i

; �

i

; �

i

;  
i

)k1 ; ((Γi; �i ∪ �i; �i ; �i); (Γi; �i ∪ �i; �i ; �i))
n

1 ]
(∪E)′

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∪ �i ; �i)
n

1 ]

.

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(
ut)

[(Γ
i

; �
i

)
i

]
❀

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

(ii) The indu
tive proof redu
es to showing that the natural dedu
tion rules are derivable in the sequent


al
ulus system. Sin
e the introdu
tion rules translate to the 
orresponding right rules, it remains to

show the derivability of the elimination rules in sequent 
al
ulus.

.

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]
❀ [(Γ

i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

)
i

]
(ax)

[(Γ
i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
(
ut)

[(Γ
i

; �
i

)
i

]

.

[(∆
i

; �
i

)k1 ; (Γi ; �i ∩ �i)
n

1 ]
(∩E1)

[(∆
i

; �
i

)k1 ; (Γi ; �i)
n

1 ]
❀ [(∆

i

; �
i

)k1 ; (Γi ; �i ∩ �i)
n

1 ]

(ax)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i �i)
n

1 ]
(∩L1)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∩ �i �i)
n

1 ]
(
ut)

[(∆
i

; �
i

)k1 ; (Γi ; �i)
n

1 ]

.

[(Γ
i

; �
i

∪ �
i

)
i

] [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �
i

)
i

]
❀ [(Γ

i

; �
i

∪ �
i

)
i

]

[((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
(∪L)

[(Γ
i

; �

i

∪ �
i

; �
i

)
i

]
(
ut)

[(Γ
i

; �
i

)
i

]
⊣
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Following the equivalen
e of the two presentations of the logi
, we expe
t that the propositions

on derivability, shown in Chapter 4 for the natural dedu
tion presentation (Propositions 4.5, 4.6, 4.10,

and 4.11), also hold for the sequent 
al
ulus presentation. The next two propositions show that weakening

and 
ontra
tion are derivable.

Proposition 7.3 Weakening is derivable: if � :: [(Γ
i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. Either by Theorem 7.2 and Proposition 4.5 or dire
tly by indu
tion on �. We show three indu
tive


ases of the dire
t proof.

.

�0 :: [(Γ
i

; �
i

)
i

] �1 :: [(Γ
i

; �

i

; �
i

)
i

]
(→L)

� :: [(Γ
i

; �

i

→ �

i

; �
i

)
i

]
❀

�

′
0 :: [(Γ

i

; �

i

; �
i

)
i

] [h℄

�

′
1 :: [(Γ

i

; �

i

; �

i

; �
i

)
i

] [h℄

(X)

[(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

; �

i

→ �

i

; �
i

)
i

]
(X)

�

′ :: [(Γ
i

; �

i

→ �

i

; �

i

; �
i

)
i

]

.

�0 :: [(∆
i

; �
i

)k1 ; (Γi ; �i)
n

1 ]
(∪R1)

� :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ]
❀

�

′
0 :: [(∆

i

;  

i

; �
i

)k1 ; (Γi; �i ; �i)
n

1 ] [h℄

(∪R1)

�

′ :: [(∆
i

;  

i

; �
i

)k1 ; (Γi; �i ; �i ∪ �i)
n

1 ]

.

�0 :: [(Γ
i

; �
i

)
i

] �1 :: [(Γ
i

; �

i

; �
i

)
i

]
(
ut)

� :: [(Γ
i

; �
i

)
i

]
❀

�

′
0 :: [(Γ

i

; �

i

; �
i

)
i

] [h℄

�

′
1 :: [(Γ

i

; �

i

; �

i

; �
i

)
i

] [h℄

(X)

[(Γ
i

; �

i

; �

i

; �
i

)
i

]
(
ut)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]
⊣

Proposition 7.4 Contra
tion is derivable: if � :: [(Γ
i

; �

i

; �

i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. Either by Theorem 7.2 and Proposition 4.6 or dire
tly through the 
ut rule.

(ax)

[(Γ
i

; �

i

; �
i

)
i

] � :: [(Γ
i

; �

i

; �

i

; �
i

)
i

]
(
ut)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]

It is easy to 
he
k that, if we 
hose a multipli
ative 
ut rule, the derivability of 
ontra
tion through


ut would fail. A proof by indu
tion on � would also fail. ⊣

Before showing that pruning and doubling are derivable, we need to establish the ex
hange of atoms

within provable mole
ules. The de�nitions of tree and derivation height remain as given in 4.7 and 4.8,

respe
tively.

Proposition 7.5 If � :: [U ;A;B;V ], there exists a �

′ :: [U ;B;A;V ] with T ′ = T .
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Proof. By indu
tion on �. We show two 
hara
teristi
 general 
ases of the indu
tion step.

. A global rule (R): e.g. (→L) or (
ut)

�0 :: [U0;A0;B0;V0] �1 :: [U1;A1;B1;V1]
(R)

� :: [U ;A;B;V ]

where |U0| = |U1| = |U|

The IH gives a �

′
0 :: [U0;B0;A0;V0] with T

′
0 = T0 and a �

′
1 :: [U1;B1;A1;V1] with T

′
1 = T1. Applying

(R) to �

′
0 and �

′
1, we get a �

′ :: [U ;B;A;V ] with T ′ = T .

. A lo
al rule (R): e.g. (∩L) or (∪R)

Case 1:

�0 :: [U0;A;B;V0]
(R)

� :: [U ;A
R

;B
R

;V ]

where |U0| = |U|, and A
R

and B
R

derive from A and B, respe
tively, by (R)

The IH gives a �

′
0 :: [U0;B;A;V0] with T

′
0 = T0. Applying (R) to �

′
0, we get a �

′ :: [U ;B
R

;A
R

;V ]
with T

′ = T .

Case 2:

�0 :: [U0;A;B;V0]
(R)

� :: [U ;A
R

;B;V ]

where |U0| = |U|

The IH yields a �

′
0 :: [U0;B;A;V0] with T

′
0 = T0. Applying (R) to �

′
0, we obtain a �

′ :: [U ;B;A
R

;V ]
with T

′ = T .

Case 3:

�0 :: [U0(n; C
k);A;B;V0]

(R)

� :: [U(n; Ck
R

);A;B;V ]

where U0(n; Ck) denotes a sequen
e U0 of n atoms, whi
h 
ontains an atom C at position k 6 n

and U(n; Ck
R

) denotes a sequen
e U of n atoms, whi
h 
ontains an atom C
R

at position k

The IH gives a �

′
0 :: [U0(n; Ck);B;A;V0] with T

′
0 = T0. By (R), we then get a �

′ :: [U(n; Ck
R

);B;A;V ]
with T

′ = T .

The lo
al rules of (∩R) and (∪L) are dealt with as (∩I) in the proof of 4.10. ⊣

Proposition 7.6 (i) Pruning is derivable: if � :: [U ;V ], there exists a �

′ :: [U ] with h′ 6 h.

(ii) Doubling is derivable: if � :: [U ;A ], there exists a �

′ :: [U ; 2A ] with T ′ = T .

Proof. (i) By indu
tion on �. We demonstrate two typi
al general 
ases of the indu
tion step.

. A global rule (R): e.g. (X) or (→R)

�0 :: [U0;V0]
(R)

� :: [U ;V ]

where |U0| = |U|

The IH gives a �

′
0 :: [U0] with h

′
0 6 h0. By (R), we obtain a �

′ :: [U ] with h′ = h

′
0 + 1 6 h0 + 1 = h.
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The global rules of (→L) and (
ut) are dealt with as (→E) in the proof of 4.11(i).

. A lo
al rule (R): e.g. (∩L) or (∪R)

Case 1:

�0 :: [U0(n;A
k);V0]

(R)

� :: [U(n;Ak
R

);V ]

The IH gives a �

′
0 :: [U0(n;A

k)] with h′0 6 h0. Applying (R) to �

′
0, we obtain a �

′ :: [U(n;Ak

R

)] with
h

′ = h

′
0 + 1 6 h0 + 1 = h.

Case 2:

�0 :: [U ;V0(n;A
k)]

(R)

� :: [U ;V(n;Ak
R

)]

The IH gives a �

′
0 :: [U ] with h′0 6 h0. It is �

′ = �

′
0 and h

′ = h

′
0 < h.

The lo
al rules of (∩R) and (∪L) are dealt with as (∩I) in the proof of 4.11(i).

(ii) By indu
tion on �. We exhibit two typi
al general 
ases of the indu
tion step.

. A global rule (R): e.g. (→L) or (
ut)

�0 :: [U0;A0] �1 :: [U1;A1]
(R)

� :: [U ;A ]

The IH gives a �

′
0 :: [U0; 2A0] with T

′
0 = T0 and a �

′
1 :: [U1; 2A1] with T

′
1 = T1. Applying (R) to �

′
0

and �

′
1, we obtain a �

′ :: [U ; 2A ] with T ′ = T .

. A lo
al rule (R): e.g. (∩L) or (∪R)

Case 1:

�0 :: [U0;A ]
(R)

� :: [U ;A
R

]

The IH gives a �

′
0 :: [U0; 2A ] with T ′

0 = T0. By (R), we then get a �

′ :: [U ; 2A
R

] with T ′ = T .

Case 2:

�0 :: [U0(n;B
k);A ]

(R)

� :: [U(n;Bk
R

);A ]

The IH yields a �

′
0 :: [U0(n;Bk); 2A ] with T ′

0 = T0. Applying (R) to �

′
0, we get a �

′ :: [U(n;Bk
R

); 2A ]
with T

′ = T .

The lo
al rules of (∩R) and (∪L) are dealt with as (∩I) in the proof of 4.11(ii). In these two 
ases,

we need to use Proposition 7.5. ⊣

Remark 7.7 In the sequent 
al
ulus 
ontext, the following alternative phrasings for the derivability of

weakening and 
ontra
tion are provable.

(i) Weakening is derivable: if � :: [(Γ
i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same 
ardinality and the

∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

].
(ii) Contra
tion is derivable: if � :: [(Γ

i

; �

i

; �

i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same 
ardinality and

the ∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

].
Compared to the natural dedu
tion alternative phrasings in Remark 4.12, the 
on
lusion that T

′ = T has

been removed from both (i) and (ii).
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For (i), the proof is by indu
tion on �. A sub
ase of the (→L) 
ase, shown below, illustrates why a


on
lusion that T

′ = T is no longer attainable.

.

�0 :: [(Γ′
i

; �

i

; �
i

)
i

] �1 :: [(Γ′
i

; �

i

; �

i

; �
i

)
i

]
(→L)

� :: [(Γ
i

= (Γ′
i

; �

i

);∆
i

= �

i

→ �

i

; �
i

)
i

]

The indu
tion hypothesis gives a �

′
0 :: [(Γ′

i

; �

i

; �

i

; �
i

)
i

] and a �′
1 :: [(Γ′

i

; �

i

; �

i

; �

i

; �
i

)
i

]. We then obtain

a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

], as follows.

�

′
0 :: [(Γ′

i

; �

i

; �

i

; �
i

)
i

]
(X)

[(Γ′
i

; �

i

; �

i

; �
i

)
i

]
�

′
1 :: [(Γ′

i

; �

i

; �

i

; �

i

; �
i

)
i

]
(→L)

�

′ :: [(Γ
i

= (Γ′
i

; �

i

); �
i

;∆
i

= �

i

→ �

i

; �
i

)
i

]

Even if we assume that T

′
0 = T0 and T

′
1 = T1, the ex
hange inferen
e forbids a 
on
lusion that T

′ = T .

For (ii), the proof is by indu
tion on �, with the aid of Proposition 7.4. We show the same sub
ase

of the (→L) 
ase below.

.

�0 :: [(Γ
i

; �

i

; �

i

; �
i

)
i

] �1 :: [(Γ
i

; �

i

; �

i

; �

i

; �
i

)
i

]
(→L)

� :: [(Γ
i

; �

i

; �

i

;∆
i

= �

i

→ �

i

; �
i

)
i

]

By 7.4, there is a �

′
0 :: [(Γ

i

; �

i

; �
i

)
i

], while the indu
tion hypothesis gives a �

′
1 :: [(Γ

i

; �

i

; �

i

; �
i

)
i

].
Applying (→L) to �′

0 and �

′
1, we obtain a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

]. Even if we assume that T

′
1 = T1, the

fa
t that T

′
0 6= T0 (see the proof of 7.4) forbids a 
on
lusion that T

′ = T .

If the ∆
i

's are empty in (i) and (ii), we fall ba
k to Propositions 7.3 and 7.4, respe
tively.

Remark 7.8 Proposition 4.4 does not hold in the sequent 
al
ulus 
ontext, i.e. not every sequent 
al
ulus

IUL

m

-derivation has a 
anoni
al form. This is be
ause the ex
hange rule does not always 
ommute with

a left rule, as shown below.

[(Γ
i

; �

i

; �
i

)
i

] [(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

; �

i

→ �

i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

→ �

i

; �

i

; �
i

)
i

]

❀

[(Γ
i

; �

i

; �
i

)
i

]
. . . . . . . . . . . . . .

(X) ×
[(Γ

i

; �

i

; �

i

; �
i

)
i

]
. . . . . . . . . . . . . . . . . .

(X) ×

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→L) ×

The formula �

i

→ �

i

, whi
h is to be ex
hanged with �

i

, is not yet formed in the premises of (→L);

therefore, an (X)-appli
ation involving �

i

and �

i

→ �

i


annot be performed before the (→L)-appli
ation

introdu
ing �

i

→ �

i

.

Having 
ompleted the sequent 
al
ulus presentation of the logi
, we move on to the additive sequent


al
ulus presentation of the type system.
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(ax)

B; x : � ⊢ x : �

B ⊢ t : � B; x : � ⊢ u : �
(→L)

B; y : � → � ⊢ u[yt=x] : �

B; x : � ⊢ t : �
(→R)

B ⊢ �x: t : � → �

B; x : � ⊢ t : �
(∩L1)

B; x : � ∩ � ⊢ t : �

B; x : � ⊢ t : �
(∩L2)

B; x : � ∩ � ⊢ t : �
B ⊢ t : � B ⊢ t : �

(∩R)
B ⊢ t : � ∩ �

B; x : � ⊢ t : � B; x : � ⊢ t : �
(∪L)

B; x : � ∪ � ⊢ t : �
B ⊢ t : �

(∪R1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪R2)

B ⊢ t : � ∪ �

B ⊢ t : � B; x : � ⊢ u : �
(
ut)

B ⊢ u[t=x] : �

Figure 7.2: The type system IUT

⊕
in sequent 
al
ulus style.

7.2 The type system IUT

⊕
in sequent 
al
ulus

The type system IUT

⊕
in sequent 
al
ulus style is the sequent 
al
ulus type system IUT

ù

of Chapter 2,

presented additively and without the (ù)-rule. The additive presentation serves the proof of (restri
ted)


orresponden
e theorems between it and the additive sequent 
al
ulus logi
 (see Se
tion 7.3). It assigns

types built by impli
ation, interse
tion, and union to terms of the untyped �-
al
ulus a

ording to the

rules in Figure 7.2. As was emphasized for IUT

ù

in Chapter 2, the new variable in the 
on
lusion of an

(→L) inferen
e is fresh with respe
t to the derivations proving the premises.

The additive sequent 
al
ulus IUT

⊕
of the 
urrent se
tion is equivalent to the additive natural dedu
-

tion IUT

⊕
of Chapter 4. We remind the reader that we denote V

�

(or just V ) the set of all term variables

appearing in a derivation � of the type system.

Theorem 7.9 (i) If � :: B ⊢ t : � in sequent 
al
ulus and x1; : : : ; xn 6∈ V , there is a �

′ :: B ⊢ t : � in

natural dedu
tion, su
h that x1; : : : ; xn 6∈ V

′ ⊇ V .

(ii) If � :: B ⊢ t : � in natural dedu
tion, there is a �

′ :: B ⊢ t : � in sequent 
al
ulus, su
h that

V

′ ⊇ V .

Proof. (i) By indu
tion on �.

Base: If � :: B′
; x : � ⊢ x : � is an axiom, then �

′ = � and x1; : : : ; xn 6∈ V

′ = V .

Indu
tion step: Sin
e the right rules translate to the 
orresponding introdu
tion rules, we demonstrate

the 
ut 
ase and the 
ases of left rules.

.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(
ut)

� :: B ⊢ u[t=x] : �
❀
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�

′
0 :: B ⊢ t : � [h℄

(∪I)
B ⊢ t : � ∪ � �

′
1 :: B; x : � ⊢ u : � [h℄ �

′
1 :: B; x : � ⊢ u : � [h℄

(∪E)
�

′ :: B ⊢ u[t=x] : �

If x1; : : : ; xn 6∈ V = V0 ∪ V1, the IH yields that x1; : : : ; xn 6∈ V

′ = V

′
0 ∪ V ′

1 ⊇ V0 ∪ V1 = V .

.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(→L)

� :: B; y : � → � ⊢ u[yt=x] : �
❀

(ax)

B; y : � → � ⊢ y : � → �

�

′
0 :: B ⊢ t : � [h℄

[4.14(ii)℄

�

′′
0 :: B; y : � → � ⊢ t : �

(→E)

B; y : � → � ⊢ yt : �

�

′
1 :: B; x : � ⊢ u : � [h℄

[4.14(ii)℄

�

′′
1 :: B; y : � → �; x : � ⊢ u : �

(∪IE)
�

′ :: B; y : � → � ⊢ u[yt=x] : �

If x1; : : : ; xn 6∈ V , then x1; : : : ; xn; y 6∈ V0 ∪ V1. The IH gives that x1; : : : ; xn; y 6∈ V

′
0 ∪ V ′

1 ⊇ V0 ∪ V1.
Sin
e y 6∈ V

′
0 ∪ V ′

1 , we 
an apply 4.14(ii) to �

′
0 and �

′
1 to get �

′′
0 and �

′′
1 , respe
tively, su
h that

x1; : : : ; xn 6∈ V

′ = V

′′
0 ∪ V ′′

1 = V

′
0 ∪ V ′

1 ∪ {y} ⊇ V0 ∪ V1 ∪ {y} = V

.

�0 :: B; x : � ⊢ t : �
(∩L1)

� :: B; x : � ∩ � ⊢ t : �
❀

(ax)

B; x : � ∩ � ⊢ x : � ∩ �
(∩E1)

B; x : � ∩ � ⊢ x : �

�

′
0 :: B; x : � ⊢ t : � [h℄

[4.14(i)℄

�

′′
0 :: B; y : � ⊢ t[y=x] : �

[4.14(ii)℄

�

′′′
0 :: B; x : � ∩ �; y : � ⊢ t[y=x] : �

(∪IE)

�

′ :: B; x : � ∩ � ⊢ (t[y=x])[x=y]
y 6∈FV (t)

= t : �

If x1; : : : ; xn 6∈ V = V0, the IH gives that x1; : : : ; xn 6∈ V

′
0 ⊇ V0. If y is su
h that x1; : : : ; xn 6= y 6∈ V

′
0 ,

we 
an apply 4.14(i) to �

′
0 to get �

′′
0 with x1; : : : ; xn; x 6∈ V

′′
0 = (V ′

0 \ {x}) ∪ {y}. Sin
e x 6∈ V

′′
0 , we 
an

further apply 4.14(ii) to �

′′
0 to get �

′′′
0 with x1; : : : ; xn 6∈ V

′′′
0 = V

′′
0 ∪ {x} = V

′
0 ∪ {y}. Sin
e y 6∈ V

′
0 ⊇ V0,

we �nally get that x1; : : : ; xn 6∈ V

′ = V

′′′
0 ⊇ V0 ∪ {y} ! V0 = V .

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : � ⊢ t : �
(∪L)

� :: B; x : � ∪ � ⊢ t : �
❀

(ax)

B; x : � ∪ � ⊢ x : � ∪ �

�

′
0 :: B; x : � ⊢ t : � [h℄

[4.14(i)℄

�

′′
0 :: B; y : � ⊢ t[y=x] : �

[4.14(ii)℄

�

′′′
0 :: B; x : � ∪ �; y : � ⊢ t[y=x] : �

�

′
1 :: B; x : � ⊢ t : � [h℄

[4.14(i)℄

�

′′
1 :: B; y : � ⊢ t[y=x] : �

[4.14(ii)℄

�

′′′
1 :: B; x : � ∪ �; y : � ⊢ t[y=x] : �

(∪E)

�

′ :: B; x : � ∪ � ⊢ (t[y=x])[x=y]
y 6∈FV (t)

= t : �

If x1; : : : ; xn 6∈ V = V0 ∪ V1, the IH gives that x1; : : : ; xn 6∈ V

′
0 ∪ V

′
1 ⊇ V0 ∪ V1. If y is su
h that

x1; : : : ; xn 6= y 6∈ V

′
0 ∪ V ′

1 , we 
an apply 4.14(i) to �

′
0 and �

′
1 to get �

′′
0 and �

′′
1 , respe
tively, su
h that

x1; : : : ; xn; x 6∈ V

′′
0 ∪V ′′

1 = ((V ′
0 ∪V

′
1) \ {x})∪{y}. Sin
e x 6∈ V

′′
0 ∪V ′′

1 , we 
an apply 4.14(ii) to �

′′
0 and �

′′
1

to get �

′′′
0 and �

′′′
1 , respe
tively, su
h that x1; : : : ; xn 6∈ V

′′′
0 ∪V ′′′

1 = V

′′
0 ∪V ′′

1 ∪{x} = V

′
0 ∪V

′
1 ∪{y}. Sin
e

y 6∈ V

′
0 ∪ V ′

1 ⊇ V0 ∪ V1, we �nally get that x1; : : : ; xn 6∈ V

′ = V

′′′
0 ∪ V ′′′

1 ⊇ V0 ∪ V1 ∪ {y} ! V0 ∪ V1 = V .
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(ii) By indu
tion on �.

Base: If � :: B′
; x : � ⊢ x : � is an axiom, then �

′ = � and V

′ = V .

Indu
tion step: Sin
e the introdu
tion rules 
orrespond to the right rules, we show the 
ases of

elimination rules.

.

�0 :: B ⊢ t : � → � �1 :: B ⊢ u : �
(→E)

� :: B ⊢ tu : �
❀

�

′
0 :: B ⊢ t : � → � [h℄

�

′
1 :: B ⊢ u : � [h℄

(ax)

B; x : � ⊢ x : �
(→L)

B; y : � → � ⊢ yu : �
(
ut)

�

′ :: B ⊢ tu : �

It is V

′ = V

′
0 ∪ V

′
1 ∪{x; y}

[h℄

⊇ V0 ∪V1 ∪{x; y} ⊇ V0 ∪ V1 = V . [Example 7.10 illustrates one 
ase where

V

′ ! V and another 
ase where V

′ = V .℄

.

�0 :: B ⊢ t : � ∩ �
(∩E1)

� :: B ⊢ t : �
❀

�

′
0 :: B ⊢ t : � ∩ � [h℄

(ax)

B; x : � ⊢ x : �
(∩L1)

B; x : � ∩ � ⊢ x : �
(
ut)

�

′ :: B ⊢ t : �

It is V

′ = V

′
0 ∪ {x}

[h℄

⊇ V0 ∪ {x} ⊇ V0 = V .

.

�0 :: B ⊢ t : � ∪ � �1 :: B; x : � ⊢ u : � �2 :: B; x : � ⊢ u : �
(∪E)

� :: B ⊢ u[t=x] : �
❀

�

′
0 :: B ⊢ t : � ∪ � [h℄

�

′
1 :: B; x : � ⊢ u : � [h℄ �

′
2 :: B; x : � ⊢ u : � [h℄

(∪L)
B; x : � ∪ � ⊢ u : �

(
ut)

�

′ :: B ⊢ u[t=x] : �

It is V

′ = V

′
0 ∪ V ′

1 ∪ V ′
2

[h℄

⊇ V0 ∪ V1 ∪ V2 = V . ⊣

Example 7.10 (i) Consider the following natural dedu
tion derivation � :: z : � → �; w : � ⊢ zw : � .

�0 :: z : � → �; w : � ⊢ z : � → � �1 :: z : � → �; w : � ⊢ w : �
(→E)

� :: z : � → �; w : � ⊢ zw : �

Following the method in the proof of 7.9(ii), derivation � transforms to the following sequent 
al
ulus

derivation �

′ :: z : � → �; w : � ⊢ zw : � .

�

′
0 :: z : � → �; w : � ⊢ z : � → �

�

′
1 :: z : � → �; w : � ⊢ w : � z : � → �; w : �; x : � ⊢ x : �

(→L)

z : � → �; w : �; y : � → � ⊢ yw : �
(
ut)

�

′ :: z : � → �; w : � ⊢ zw : �
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The de�nition of \basis" implies that x 6= z; w and the de�nition of (→L) implies that y 6= z; w; x. Hen
e,

it is V

′ = {z; w; x; y} ! {z; w} = V .

(ii) Consider the following natural dedu
tion derivation � :: B = { z : (�∩�)∪ (�∩ �) } ⊢ z (�x: x) : �,
where � = (� → �) → �.

B ⊢ z : (� ∩ �) ∪ (� ∩ �)

B; y : � ∩ � ⊢ y : � ∩ �
(∩E2)

B; y : � ∩ � ⊢ y : �

B; y : � ∩ � ⊢ y : � ∩ �
(∩E1)

B; y : � ∩ � ⊢ y : �
(∪E)

�0 :: B ⊢ z : �

B; x : � ⊢ x : �
(→I)

�1 :: B ⊢ �x: x : � → �

(→E)

� :: B = { z : (� ∩ �) ∪ (� ∩ �) } ⊢ z (�x: x) : �

Following the method in the proof of 7.9(ii), derivation � transforms to the following sequent 
al
ulus

derivation �

′ :: B = { z : (� ∩ �) ∪ (� ∩ �) } ⊢ z (�x: x) : �.

B ⊢ z : (� ∩ �) ∪ (� ∩ �)

see below

�

′
01 :: B; y : (� ∩ �) ∪ (� ∩ �) ⊢ y : �

(
ut)

�

′
0 :: B ⊢ z : �

B; x : � ⊢ x : �
(→R)

�

′
1 :: B ⊢ �x: x : � → � B; x : � ⊢ x : �

(→L)

B; y : � ⊢ y (�x: x) : �
(
ut)

�

′ :: B = { z : (� ∩ �) ∪ (� ∩ �) } ⊢ z (�x: x) : �

B; y : � ∩ � ⊢ y : � ∩ �

B; y : � ∩ �; x : � ⊢ x : �
(∩L2)

B; y : � ∩ �; x : � ∩ � ⊢ x : �
(
ut)

B; y : � ∩ � ⊢ y : �

B; y : � ∩ � ⊢ y : � ∩ �

B; y : � ∩ �; x : � ⊢ x : �
(∩L1)

B; y : � ∩ �; x : � ∩ � ⊢ x : �
(
ut)

B; y : � ∩ � ⊢ y : �
(∪L)

�

′
01 :: B; y : (� ∩ �) ∪ (� ∩ �) ⊢ y : �

The premises B; y : � ∩ � ⊢ y : � and B; y : � ∩ � ⊢ y : � of (∪L) 
an also be derived from the axiom

B; y : � ⊢ y : � by (∩L2) and (∩L1), respe
tively; in fa
t, this is the easiest way to derive them in sequent


al
ulus. However, we 
hoose to sti
k to the method of 7.9(ii) in obtaining �

′
from �. We observe that it

is V

′ = {z; y; x} = V .

The equivalen
e of the two presentations of IUT

⊕
implies that the derivability of renaming, weakening,

strengthening, and 
ontra
tion, shown in Chapter 4 for the natural dedu
tion presentation, must also

hold for the sequent 
al
ulus presentation. We next elaborate on these derivabilities and explain how the

derivability of 
ontra
tion in sequent 
al
ulus di�ers qualitatively and quantitatively from the derivability

of 
ontra
tion in natural dedu
tion.

Proposition 7.11 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respe
t to �, there exists a

�

′ :: B; y : � ⊢ t[y=x] : � , su
h that V

′ = (V \ {x}) ∪ {y} and T

′ = T .

(ii) (Weakening) If � :: B ⊢ t : � and x is fresh with respe
t to �, there exists a �

′ :: B; x : � ⊢ t : � ,
su
h that V

′ = V ∪ {x} and T

′ = T .

(iii) (Strengthening) If � :: B; x : � ⊢ t : � and x 6∈ FV (t), there exists a �

′ :: B ⊢ t : � , su
h that

x 6∈ V

′  V and h

′ 6 h.

(iv) (Contra
tion) If � :: B; x : �; y : � ⊢ t : � , there exists a �

′ :: B; x : � ⊢ t[x=y] : � .
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Proof. Throughout the proof, unless otherwise stated, it is V0 = V

�0 and V1 = V

�1 .

(i) By indu
tion on �. We demonstrate three 
ases of the indu
tion step.

.

�0 :: B; z : � ⊢ t : � �1 :: B; z : �; w : � ⊢ u : �
(→L)

� :: B; z : �; x : � → � ⊢ u[xt=w] : �

Case 1: rename x to y. We have that V = V0 ∪ V1 ∪ {x}. Sin
e y is fresh with respe
t to �, it is

also fresh with respe
t to �0 and �1; hen
e, we 
an apply (→L) to �0 and �1 with y in pla
e of x to

get a �

′ :: B; z : �; y : � → � ⊢ u[yt=w] : �. Sin
e x 6∈ FV (t) ∪ FV (u), it is u[yt=w] = (u[xt=w])[y=x].
Moreover, it it V

′ = V0 ∪ V1 ∪ {y} = (V \ {x}) ∪ {y} and T

′ = T .

Case 2: rename z to y. If V

�0 = V0 ∪{z} and V
�1 = V1 ∪{z}, then V = V0 ∪V1 ∪{z; x}. The IH gives

a �

′
0 :: B; y : � ⊢ t[y=z] : �, su
h that V

′
0 = V0 ∪ {y} and T

′
0 = T0, and a �

′
1 :: B; y : �; w : � ⊢ u[y=z] : �,

su
h that V

′
1 = V1 ∪ {y} and T

′
1 = T1. Sin
e x 6∈ V0 ∪ V1 [by de�nition of the (→L) whi
h yields �℄ and

x 6= y [by hypothesis℄, we have that x 6∈ V0 ∪ V1 ∪ {y} = V

′
0 ∪ V ′

1 and we 
an apply an x-introdu
ing

(→L) to �′
0 and �

′
1 to get a �

′ :: B; y : �; x : � → � ⊢ (u[y=z])[x(t[y=z])=w] = (u[xt=w])[y=z] : �. It is

V

′ = V

′
0 ∪ V ′

1 ∪ {x} = V0 ∪ V1 ∪ {y; x} = (V \ {z}) ∪ {y} and T ′ = T .

.

�0 :: B; z : �; x : � ⊢ t : � �1 :: B; z : �; x : � ⊢ t : �
(∪L)

� :: B; z : �; x : � ∪ � ⊢ t : �

Case 1: rename x to y. If V

�0 = V0 ∪{x} and V
�1 = V1 ∪{x}, then V = V0 ∪V1 ∪{x}. The IH gives a

�

′
0 :: B; z : �; y : � ⊢ t[y=x] : �, su
h that V ′

0 = V0∪{y} and T ′
0 = T0, and a �

′
1 :: B; z : �; y : � ⊢ t[y=x] : �,

su
h that V

′
1 = V1 ∪ {y} and T ′

1 = T1. By (∪L), we then obtain a �

′ :: B; z : �; y : � ∪ � ⊢ t[y=x] : �, su
h
that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \ {x}) ∪ {y} and T ′ = T .

Case 2: rename z to y. If V

�0 = V0 ∪ {z} and V
�1 = V1 ∪ {z}, then V = V0 ∪ V1 ∪ {z}. The IH gives a

�

′
0 :: B; y : �; x : � ⊢ t[y=z] : �, su
h that V ′

0 = V0∪{y} and T
′
0 = T0, and a �

′
1 :: B; y : �; x : � ⊢ t[y=z] : �,

su
h that V

′
1 = V1 ∪ {y} and T

′
1 = T1. By (∪L), we then get a �

′ :: B; y : �; x : � ∪ � ⊢ t[y=z] : �, su
h
that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \ {z}) ∪ {y} and T

′ = T .

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : �; z : � ⊢ u : �
(
ut)

� :: B; x : � ⊢ u[t=z] : �

If V

�0 = V0∪{x} and V
�1 = V1∪{x}, then V = V0∪V1∪{x}. The IH gives a �

′
0 :: B; y : � ⊢ t[y=x] : � ,

su
h that V

′
0 = V0 ∪ {y} and T

′
0 = T0, and a �

′
1 :: B; y : �; z : � ⊢ u[y=x] : �, su
h that V

′
1 = V1 ∪ {y}

and T

′
1 = T1. Applying (
ut) to �

′
0 and �

′
1, we get a �

′ :: B; y : � ⊢ (u[y=x])[t[y=x]=z] = (u[t=z])[y=x] : �,
su
h that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \ {x}) ∪ {y} and T ′ = T .

(ii) By indu
tion on �. We develop the most notable 
ases of the indu
tion step.

.

�0 :: B ⊢ t : � �1 :: B; z : � ⊢ u : �
(→L)

� :: B; y : � → � ⊢ u[yt=z] : �

It is V = V0 ∪V1 ∪{y}. The IH provides a �

′
0 :: B; x : � ⊢ t : � , su
h that V

′
0 = V0 ∪{x} and T ′

0 = T0,

and a �

′
1 :: B; z : �; x : � ⊢ u : �, su
h that V

′
1 = V1 ∪ {x} and T

′
1 = T1. Sin
e y 6∈ V0 ∪ V1 [by de�nition

of the (→L) whi
h yields �℄ and y 6= x [by hypothesis℄, we have that y 6∈ V0 ∪ V1 ∪ {x} = V

′
0 ∪ V

′
1 and we


an apply a y-introdu
ing (→L) to �′
0 and �

′
1 to get a �

′ :: B; x : �; y : � → � ⊢ u[yt=z] : �, su
h that

V

′ = V

′
0 ∪ V ′

1 ∪ {y} = V0 ∪ V1 ∪ {x; y} = V ∪ {x} and T

′ = T .
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.

�0 :: B; y : � ⊢ t : � �1 :: B; y : � ⊢ t : �
(∪L)

� :: B; y : � ∪ � ⊢ t : �

It is V = V0 ∪ V1. The IH gives a �

′
0 :: B; y : �; x : � ⊢ t : �, su
h that V

′
0 = V0 ∪ {x} and T

′
0 = T0,

and a �

′
1 :: B; y : �; x : � ⊢ t : �, su
h that V

′
1 = V1 ∪ {x} and T

′
1 = T1. Applying (∪L) to �

′
0 and �

′
1, we

get a �

′ :: B; y : � ∪ �; x : � ⊢ t : �, su
h that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {x} = V ∪ {x} and T

′ = T .

.

�0 :: B ⊢ t : � �1 :: B; y : � ⊢ u : �
(
ut)

� :: B ⊢ u[t=y] : �

It is V = V0 ∪ V1. The IH yields a �

′
0 :: B; x : � ⊢ t : � , su
h that V

′
0 = V0 ∪ {x} and T

′
0 = T0,

and a �

′
1 :: B; y : �; x : � ⊢ u : �, su
h that V

′
1 = V1 ∪ {x} and T

′
1 = T1. By (
ut), we then obtain a

�

′ :: B; x : � ⊢ u[t=y] : �, su
h that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {x} = V ∪ {x} and T

′ = T .

(iii) By indu
tion on �. We show three 
hara
teristi
 
ases of the indu
tion step.

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : �; z : � ⊢ u : �
(→L)

� :: B; x : �; y : � → � ⊢ u[yt=z] : �

Case 1: y 6∈ FV (u[yt=z]) ⇒ z 6∈ FV (u) ⇒ u[yt=z] = u. Applying the IH to �1, we obtain a derivation

�

′ :: B; x : � ⊢ u[yt=z] : �, su
h that V

′  V1  V0 ∪ V1 ∪ {y} = V and h

′ 6 h1 < h. Sin
e y 6∈ V1 ! V

′
,

we have that y 6∈ V

′  V .

Case 2: x 6∈ FV (u[yt=z]). We distinguish two sub
ases.

Sub
ase 2i: z 6∈ FV (u) ⇒ u[yt=z] = u. The IH on �1 yields a �
′
1 :: B; x : � ⊢ u : �, su
h that V

′
1  V1

and h

′
1 6 h1. Sin
e h

′
1 6 h1 < h and x 6∈ FV (u[yt=z] = u), the IH on �

′
1 gives a �

′′
1 :: B ⊢ u[yt=z] : �,

su
h that x 6∈ V

′′
1  V

′
1 and h

′′
1 6 h

′
1. Sin
e y 6∈ V1 ! V

′′
1 , we have that y 6∈ V

′′
1 , i.e. that y is fresh with

respe
t to �

′′
1 , so that (ii) gives a �

′ :: B; y : � → � ⊢ u[yt=z] : �, su
h that V

′ = V

′′
1 ∪ {y} and T

′ = T

′′
1 .

It is x 6∈ V

′′
1 and x 6= y, so that x 6∈ V

′ = V

′′
1 ∪ {y}  V1 ∪ {y} ⊆ V0 ∪ V1 ∪ {y} = V . Moreover, sin
e

T

′ = T

′′
1 , it is h

′ = h

′′
1 < h.

Sub
ase 2ii: z ∈ FV (u) ⇒ x 6∈ FV (t) and x 6∈ FV (u). The IH on �0 gives a �
′
0 :: B ⊢ t : � , su
h that

x 6∈ V

′
0  V0 and h

′
0 6 h0, while the IH on �1 gives a �

′
1 :: B; z : � ⊢ u : �, su
h that x 6∈ V

′
1  V1 and

h

′
1 6 h1. Sin
e y 6∈ V0∪V1 ! V

′
0 ∪V

′
1 , we have that y 6∈ V

′
0 ∪V

′
1 and we 
an apply a y-introdu
ing (→L) to

�

′
0 and �

′
1 to get a �

′ :: B; y : � → � ⊢ u[yt=z] : �, su
h that x 6∈ V

′ = V

′
0 ∪ V

′
1 ∪ {y}  V0 ∪ V1 ∪ {y} = V

and h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

.

�0 :: B; x : �; y : � ⊢ t : � �1 :: B; x : �; y : � ⊢ t : �
(∪L)

� :: B; x : �; y : � ∪ � ⊢ t : �

Case 1: y 6∈ FV (t). The IH on �0 gives a �

′ :: B; x : � ⊢ t : �, su
h that y 6∈ V

′  V0 ⊆ V0 ∪ V1 = V

and h

′ 6 h0 < h.

Case 2: x 6∈ FV (t). The IH gives a �

′
0 :: B; y : � ⊢ t : �, su
h that x 6∈ V

′
0  V0 and h

′
0 6 h0, and a

�

′
1 :: B; y : � ⊢ t : �, su
h that x 6∈ V

′
1  V1 and h

′
1 6 h1. By (∪L), we then get a �

′ :: B; y : � ∪ � ⊢ t : �,
su
h that x 6∈ V

′ = V

′
0 ∪ V ′

1  V0 ∪ V1 = V and h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : �; z : � ⊢ u : �
(
ut)

� :: B; x : � ⊢ u[t=z] : �

If x 6∈ FV (u[t=z]), we distinguish two 
ases.
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Case 1: z 6∈ FV (u) ⇒ u[t=z] = u. The IH on �1 yields a �

′
1 :: B; x : � ⊢ u : �, su
h that V

′
1  V1 and

h

′
1 6 h1. Sin
e h

′
1 6 h1 < h and x 6∈ FV (u[t=z] = u), the IH on �

′
1 gives a �

′ :: B ⊢ u[t=z] : �, su
h that

x 6∈ V

′  V

′
1  V1 ⊆ V0 ∪ V1 = V and h

′ 6 h

′
1 < h.

Case 2: z ∈ FV (u) ⇒ x 6∈ FV (t) and x 6∈ FV (u). The IH yields a �

′
0 :: B ⊢ t : � , su
h that

x 6∈ V

′
0  V0 and h

′
0 6 h0, and a �

′
1 :: B; z : � ⊢ u : �, su
h that x 6∈ V

′
1  V1 and h

′
1 6 h1. Applying

(
ut) to �

′
0 and �

′
1, we obtain a �

′ :: B ⊢ u[t=z] : �, su
h that x 6∈ V

′ = V

′
0 ∪ V ′

1  V0 ∪ V1 = V and

h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

(iv) We distinguish two 
ases.

Case 1: y 6∈ FV (t) ⇒ t[x=y] = t. Applying (iii) to �, we get a �

′ :: B; x : � ⊢ t[x=y] : � , su
h that

y 6∈ V

′  V and h

′ 6 h.

Case 2: y ∈ FV (t). In this 
ase, we derive 
ontra
tion through the 
ut rule.

(ax)

B; x : � ⊢ x : � � :: B; x : �; y : � ⊢ t : �
(
ut)

�

′ :: B; x : � ⊢ t[x=y] : �

It is V

′ = V

ax

∪ V = V and h

′ = h+ 1 > h. ⊣

Remark 7.12 (i) Contrary to IUL

m

, where 
ontra
tion is derivable only through an additive 
ut, 
on-

tra
tion is still derivable in 
ase 2 of 7.11(iv), if we 
onsider a multipli
ative 
ut (re
all Remark 2.4).

(ii) The derivability of 
ontra
tion in sequent 
al
ulus di�ers qualitatively from the derivability of


ontra
tion in natural dedu
tion. This is be
ause, in sequent 
al
ulus, we 
annot prove it by indu
tion on

�, as we do in natural dedu
tion. If we attempt an indu
tion on � in sequent 
al
ulus, there are 
ertain

sub
ases of the indu
tion step that 
annot pro
eed, e.g. the following (∪L) sub
ase.

�0 :: B; x : �1 ∪ �2; y : �1 ⊢ t : � �1 :: B; x : �1 ∪ �2; y : �2 ⊢ t : �
(∪L)

� :: B; x : �1 ∪ �2; y : �1 ∪ �2 ⊢ t : �

This sub
ase 
annot pro
eed, as we 
annot apply the indu
tion hypothesis to the premises, where x and y

are not assigned the same type.

(iii) The derivability of 
ontra
tion in sequent 
al
ulus also di�ers quantitatively from the derivability

of 
ontra
tion in natural dedu
tion. This is be
ause, in sequent 
al
ulus, we 
annot prove that V

′ = V \{y}
and T

′ = T , as we do in natural dedu
tion. Case 2 of 7.11(iv), where V

′ 6= V \ {y} and T

′ 6= T , justi�es

this 
laim.

(iv) As far as renaming, weakening, and strengthening are 
on
erned, the derivability in sequent


al
ulus displays no qualitative or quantitative di�eren
e from the derivability in natural dedu
tion.

It is easy to 
he
k that, if B ⊢ t : � is provable in the sequent 
al
ulus IUT

⊕
, then FV (t) ⊆ dom(B).

We 
an thus show that Proposition 4.16 still holds in the sequent 
al
ulus 
ontext.

Proposition 7.13 If B ⊢ t : �, then dom(B) ∩BV (t) = ∅, Consequently, sin
e FV (t) ⊆ dom(B), it is
FV (t) ∩BV (t) = ∅.



7.2 The type system IUT

⊕
in sequent 
al
ulus 151

Proof. By indu
tion on B ⊢ t : �. We show the most remarkable 
ases of the indu
tion step.

.

B ⊢ t : � B; x : � ⊢ u : �
(→L)

B; y : �→ � ⊢ u[yt=x] : �

The IH implies that dom(B) ∩ BV (t) = ∅ and that dom(B) ∩ BV (u) = ∅. Therefore, we get that

dom(B)∩ (BV (u)∪BV (t)) = ∅. Sin
e y 6∈ BV (u)∪BV (t) by de�nition of the (→L), we further get that

(dom(B) ∪ {y}) ∩ (BV (u) ∪BV (t)) = ∅. This is the required result, as BV (u) ∪BV (t) = BV (u[yt=x]).

.

B ⊢ t : � B; x : � ⊢ u : �
(
ut)

B ⊢ u[t=x] : �

The IH implies that dom(B) ∩ BV (t) = ∅ and that dom(B) ∩ BV (u) = ∅. Therefore, we get that

dom(B) ∩ (BV (u) ∪BV (t)) = ∅. This is the required result, as BV (u) ∪BV (t) = BV (u[t=x]). ⊣

The sequent 
al
ulus 
ounterpart of Proposition 4.17 is stated and proved as follows.

Proposition 7.14 Let � be a derivation in IUT

⊕
, R be a rule in �, and B1; : : : ; Bn be the bases in the

bran
h 
onne
ting the 
on
lusion of R to the root of �.

(i) If R is (→L) or (
ut) and x is the variable substituted in the 
ourse of R, then x 6∈
⋃
n

i=1 dom(B
i

).
(ii) If R is (→R) and x is the variable bounded in the 
ourse of R, then x 6∈

⋃
n

i=1 dom(B
i

).

Proof. We use indu
tion on n for both (i) and (ii). We show the (→L) 
ase, noting that the other two


ases are dealt with in a similar manner.

Base: If n = 1, the pi
ture is as shown below.

B ⊢ t : � B; x : � ⊢ u : �
R=(→L)

� :: B1 = B ∪ { y : � → � } ⊢ u[yt=x] : �

By the de�nition of \basis", we have that x 6∈ dom(B); moreover, by the de�nition of (→L), we have

that x 6= y. Therefore, we get that x 6∈ dom(B) ∪ {y} = dom(B1).

Indu
tion step: We suppose that x 6∈
⋃
n

i=1 dom(B
i

) and seek to show that x 6∈
⋃
n+1
i=1 dom(B

i

).
If a one-premise rule among (→R),(∩L), or (∪R) intervenes between B

n

and B

n+1 with Bn being the

basis of the premise, it is

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). If a two-premise rule among (∩R),(∪L), or

(
ut) intervenes between B

n

and B

n+1 with Bn being the basis of either the left or the right premise, it

is on
e again

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). In all these 
ases, the result follows from the IH.

We elaborate on the 
ase of an (→L) between B
n

and B

n+1. If an (→L) intervenes between B
n

and

B

n+1 with Bn being the basis of the left premise, we have the following pi
ture.

B ⊢ t : � B; x : � ⊢ u : �
R=(→L)

B1 = B ∪ { y : � → � } ⊢ u[yt=x] : �

.

.

.

�0 :: B
n

⊢ t′ : � �1 :: B
n

; z : � ⊢ u′ :  
(→L)

� :: B
n+1 = B

n

∪ {w : �→ � } ⊢ u′[wt′=z] :  
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By the de�nition of (→L), variable w is fresh with respe
t to �0 and therefore w 6= x. Hen
e, we have

that x 6∈ (
⋃
n

i=1 dom(B
i

)) ∪ {w} =
⋃
n+1
i=1 dom(B

i

). [We note that the IH entails that x 6∈ dom(B
n

), so
that we may have z = x.℄ If an (→L) intervenes between B

n

and B

n+1 with B

n

being the basis of the

right premise, the pi
ture is reformed as follows.

�0 :: B′ ⊢ t′ : �

B ⊢ t : � B; x : � ⊢ u : �
R=(→L)

B1 = B ∪ { y : � → � } ⊢ u[yt=x] : �

.

.

.

�1 : B
n

= B

′ ∪ { z : � } ⊢ u′ :  
(→L)

� :: B
n+1 = B

′ ∪ {w : � → � } ⊢ u′[wt′=z] :  

By the de�nition of (→L), variable w is fresh with respe
t to �1 and therefore w 6= x. Hen
e, we have

that x 6∈ (
⋃
n

i=1 dom(B
i

)) ∪ {w} =
⋃
n+1
i=1 dom(B

i

). [The IH entails that x 6∈ dom(B
n

) = dom(B′) ∪ {z},
so that z 6= x.℄ ⊣

Remark 7.15 Propositions 7.13 and 7.14 do not hold in the multipli
ative sequent 
al
ulus IUT of

Chapter 2. The following derivation is a 
ounterexample for both.

x : � ⊢ x : �

x : � ⊢ x : �
(→R)

∅ ⊢ �x: x : � → �

x : � ⊢ x : � x : � ⊢ x : �
(→L)1

B1 = { x : �; y : � → � } ⊢ yx : �
(
ut)

B2 = { x : � } ⊢ (�x: x)x : �
(→L)2

� :: B = B3 = {x : �; z : � → � } ⊢
IUT

t = (�x: x)(zx) : �

Proposition 7.13 is 
ontradi
ted, as it is dom(B) ∩ BV (t) = FV (t) ∩ BV (t) = {x; z} ∩ {x} 6= ∅.
Proposition 7.14 is 
ontradi
ted in two instan
es: i) the variable substituted in the 
ourse of (→L)1,

namely x, belongs to

⋂3
i=1 dom(B

i

) ⊆
⋃3
i=1 dom(B

i

), and ii) the variable substituted in the 
ourse of

(→L)2, whi
h is x again, belongs to dom(B).

The additive sequent 
al
ulus IUT

⊕
is equivalent to the multipli
ative sequent 
al
ulus IUT, as the

next theorem shows.

Theorem 7.16 (i) If � :: B ⊢ t : � in IUT

⊕
, there exists a �

′ :: B ⊢ t : � in IUT, su
h that V

′ = V

and T

′ = T .

(ii) If � :: B ⊢ t : � in IUT and x1; : : : ; xn 6∈ V , there exists a �

′ :: B ⊢ t

′ =
�

t : � in IUT

⊕
, su
h

that x1; : : : ; xn 6∈ V

′ ⊇ V and T

′ = T .

Proof. (i) By indu
tion on the IUT

⊕
-derivation �.

Base: Sin
e an IUT

⊕
-axiom is also an IUT-axiom, if � is an axiom, then �

′ = �.

Indu
tion step: We show two representative 
ases.
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.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(→L)

� :: B; y : � → � ⊢ u[yt=x] : �

The IH gives a �

′
0 :: B ⊢ t : � in IUT, su
h that V

′
0 = V0 and T

′
0 = T0, and also a �

′
1 :: B; x : � ⊢ u : �

in IUT, su
h that V

′
1 = V1 and T

′
1 = T1. Sin
e y 6∈ V0 ∪ V1 = V

′
0 ∪ V ′

1 , we 
an apply a y-introdu
ing,

multipli
ative (→L) to �′
0 and �

′
1 to get a �

′ :: B; y : � → � ⊢ u[yt=x] : � in IUT, s.t. V ′ = V

′
0 ∪V

′
1 ∪{y} =

V0 ∪ V1 ∪ {y} = V and T

′ = T .

.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(
ut)

� :: B ⊢ u[t=x] : �

The IH yields a �

′
0 :: B ⊢ t : � in IUT, su
h that V

′
0 = V0 and T

′
0 = T0, and also a �

′
1 :: B; x : � ⊢ u : �

in IUT, su
h that V

′
1 = V1 and T

′
1 = T1. Applying a multipli
ative (
ut) to �

′
0 and �

′
1, we obtain a

�

′ :: B ⊢ u[t=x] : � in IUT, su
h that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 = V and T

′ = T .

(ii) By indu
tion on the IUT-derivation �.

Base: Sin
e an IUT-axiom is also an IUT

⊕
-axiom, if � is an axiom, then �

′ = �.

Indu
tion step: We elaborate on two 
hara
teristi
 
ases, assuming that dom(B) ∩ dom(B′) = ∅.

.

�0 :: B ⊢ t : � �1 :: B′
; z : � ⊢ u : �

(→L)

� :: B; B′
; y : � → � ⊢ u[yt=z] : �

We suppose that x1; : : : ; xn 6∈ V = V0 ∪ V1 ∪ {y}, so that x1; : : : ; xn 6∈ V0 ∪ V1 and y 6= x1; : : : ; xn.

Sin
e y 6∈ V0 ∪ V1 [by de�nition of the (→L)℄, we have that x1; : : : ; xn; y =∈ V0 and x1; : : : ; xn; y 6∈ V1.

The IH gives a �

′
0 :: B ⊢ t

′ =
�

t : � in IUT

⊕
, su
h that x1; : : : ; xn; y 6∈ V

′
0 ⊇ V0 and T

′
0 = T0, and a

�

′
1 :: B′

; z : � ⊢ u′ =
�

u : � in IUT

⊕
, su
h that x1; : : : ; xn; y 6∈ V

′
1 ⊇ V1 and T

′
1 = T1. If

V

′
0 ∩ dom(B′) = S

′
0

we rename the set

2

S

′
0 in �

′
0 to a fresh-with-respe
t-to-(V

′
0 ∪ dom(B′) ∪ {x1; : : : ; xn; y}) set to attain

a �

2
0 :: B ⊢ t

′′ =
�

t

′ : �, su
h that the sets V

2
0 ; dom(B′), and {x1; : : : ; xn; y} are pairwise disjoint and

T

2
0 = T0. Su

essive appli
ations of weakening to �

2
0 by elements in B

′
provide a �

3
0 :: B; B′ ⊢ t′′ =

�

t : �,
su
h that x1; : : : ; xn; y 6∈ V

3
0 = V

2
0 ∪ dom(B′) ! V

′
0 ∪ dom(B′) and T 3

0 = T0. If

V

′
1 ∩ dom(B) = S

′
1 ∋ z

we rename the set

3

S

′
1 in �

′
1 to a fresh-with-respe
t-to-(V

′
1 ∪ dom(B) ∪ {x1; : : : ; xn; y}) set to attain a

�

2
1 :: B′

; w : � ⊢ u

′′ =
�

u

′[w=z] : �, su
h that the sets V

2
1 ; dom(B), and {x1; : : : ; xn; y} are pairwise

disjoint and T

2
1 = T1. Weakening �

2
1 by elements in B, we get a �

3
1 :: B; B′

; w : � ⊢ u

′′ =
�

u[w=z] : �,
su
h that x1; : : : ; xn; y 6∈ V

3
1 = V

2
1 ∪ dom(B) ! V

′
1 ∪ dom(B) and T 3

1 = T1. Sin
e y 6∈ V

3
0 ∪ V 3

1 , we 
an

apply a y-introdu
ing, additive (→L) to �3
0 and �

3
1 to obtain a

�

′ :: B; B′
; y : � → � ⊢ u′′[yt′′=w] =

�

(u[w=z])[yt=w] = u[yt=z] : �

2

Sin
e dom(B) ∩ dom(B′) = ∅, a variable of dom(B′) whi
h is in V

′
0 may appear bound in t

′
or elsewhere in the body

of �

′
0, where the \body" of a derivation 
onsists of all sequents in the derivation besides the 
on
lusion.

3

Sin
e dom(B) ∩ dom(B′) = ∅, a variable of dom(B) whi
h is in V

′
1 may appear either (in the pla
e of z) or (bound in

u

′
or elsewhere in the body of �

′
1).
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, where the term-equality (u[w=z])[yt=w] = u[yt=z] is justi�ed by the fa
t that w 6∈ V (u′), whi
h

implies that w 6∈ FV (u). It is x1; : : : ; xn 6∈ V

′ = V

3
0 ∪V 3

1 ∪{y} ! (V ′
0 ∪dom(B′))∪ (V ′

1 ∪dom(B))∪{y} =
V

′
0 ∪ V ′

1 ∪ {y} ⊇ V0 ∪ V1 ∪ {y} = V and T

′ = T .

.

�0 :: B; x : � ⊢ t : � �1 :: B′
; x : � ⊢ t : �

(∪L)
� :: B; B′

; x : � ∪ � ⊢ t : �

We suppose that x1; : : : ; xn 6∈ V = V0 ∪ V1. The IH yields a �

′
0 :: B; x : � ⊢ t

′
0 =

�

t : � in IUT

⊕
,

su
h that x1; : : : ; xn 6∈ V

′
0 ⊇ V0 and T

′
0 = T0, and a �

′
1 :: B′

; x : � ⊢ t

′
1 =

�

t : � in IUT

⊕
, su
h that

x1; : : : ; xn 6∈ V

′
1 ⊇ V1 and T

′
1 = T1. We 
an a
tually have t

′
0 = t

′
1 = t

′
(see Example 7.17 below), so

we assume that �

′
0 :: B; x : � ⊢ t

′ =
�

t : � and �

′
1 :: B′

; x : � ⊢ t

′ =
�

t : �. If V

′
0 ∩ dom(B′) = S

′
0,

we rename the set

4

S

′
0 in �

′
0 to a fresh-with-respe
t-to-(V

′
0 ∪ dom(B′) ∪ {x1; : : : ; xn}) set to attain a

�

2
0 :: B; x : � ⊢ t

′ =
�

t : �, su
h that the sets V

2
0 ; dom(B′), and {x1; : : : ; xn} are pairwise disjoint and

T

2
0 = T0. Weakening �

2
0 by B

′
, we get a �

3
0 :: B; B′

; x : � ⊢ t

′ =
�

t : �, su
h that x1; : : : ; xn 6∈ V

3
0 =

V

2
0 ∪ dom(B′) ! V

′
0 ∪ dom(B′) and T 3

0 = T0. If V

′
1 ∩ dom(B) = S

′
1, we rename the set S

′
1 in �

′
1 to a

fresh-with-respe
t-to-(V

′
1 ∪ dom(B) ∪ {x1; : : : ; xn}) set to attain a �

2
1 :: B′

; x : � ⊢ t′ =
�

t : �, su
h that

V

2
1 ; dom(B), and {x1; : : : ; xn} are pairwise disjoint and T

2
1 = T1. Weakening �

2
1 by elements in B, we

obtain a �

3
1 :: B; B′

; x : � ⊢ t′ =
�

t : �, su
h that x1; : : : ; xn 6∈ V

3
1 = V

2
1 ∪ dom(B) ! V

′
1 ∪ dom(B) and

T

3
1 = T1. Applying an additive (∪L) to �3

0 and �

3
1 , we then obtain a �

′ :: B; B′
; x : � ∪ � ⊢ t′ =

�

t : � in
IUT

⊕
, su
h that x1; : : : ; xn 6∈ V

′ = V

3
0 ∪ V 3

1 ! (V ′
0 ∪ dom(B′))∪ (V ′

1 ∪ dom(B)) = V

′
0 ∪ V

′
1 ⊇ V0 ∪ V1 = V

and T

′ = T . ⊣

The next example illustrates the transition from the multipli
ative IUT to the additive IUT

⊕
in

sequent 
al
ulus.

Example 7.17 Let � = (� → �) → �;  = (� → �) → � and 
onsider

� :: x : � ∪  ; y : �→ � ⊢ t = y (x (�y: y)) : �

in IUT, as shown below.

see below

�0 :: x : �; y : �→ � ⊢ y (x (�y: y)) : �

see below

�1 :: x :  ; y : �→ � ⊢ y (x (�y: y)) : �
(∪L)

� :: x : � ∪  ; y : �→ � ⊢
IUT

t = y (x (�y: y)) : �

x : � ⊢ x : �

y : � ⊢ y : �
(→R)

�010 :: ∅ ⊢ �y: y : � → �

x : � ⊢ x : � x : � ⊢ x : �
(→L)

�011 :: x : �; y : �→ � ⊢ yx : � [z 6∈ V011]
(→L)

�01 :: y : �→ �; z : � ⊢ y (z (�y: y)) : �
(
ut)

�0 :: x : �; y : �→ � ⊢
IUT

y (x (�y: y)) : �

4

Sin
e dom(B′) ∩ (dom(B) ∪ {x} ∪ BV (t′)) = ∅, a variable of dom(B′) whi
h is in V

′
0 may only appear in the body of

�

′
0. A similar note holds for a variable of dom(B) whi
h is in V

′
1 .
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y : �→ � ⊢ y : �→ �

y : � ⊢ y : �
(→R)

∅ ⊢ �y: y : � → � y : � ⊢ y : �
(→L)

�110 :: x :  ⊢ x (�y: y) : � x : � ⊢ x : �
(→L)

�11 :: x :  ; z : �→ � ⊢ z (x (�y: y)) : �
(
ut)

�1 :: x :  ; y : �→ � ⊢
IUT

y (x (�y: y)) : �

To transform � to a �

′ :: x : � ∪  ; y : � → � ⊢ t

′ =
�

t : � in IUT

⊕
, we need to transform �0 to a

�

′
0 :: x : �; y : � → � ⊢ t′0 =

�

t : � in IUT

⊕
and �1 to a �

′
1 :: x :  ; y : � → � ⊢ t′1 =

�

t : � in IUT

⊕
, so

that t

′
0 = t

′
1 = t

′
. The transformation of �0 to �

′
0 pro
eeds top-down as follows. We �rst transform �011

to a �

′
011 :: x : �; y : � → � ⊢ yx : � in IUT

⊕
, su
h that z 6∈ V

′
011. To do this, we need to rename x in

x : � ⊢ x : � to a fresh-wrt-{x; z; y} variable w and weaken by x : �.

x : � ⊢ x : � x : �; w : � ⊢ w : �
(→L)

⊕

�

′
011 :: x : �; y : �→ � ⊢ yx : � [z 6∈ V ′

011]

We then transform �01 to a �

′
01 :: y : � → �; z : � ⊢ t

′
01 =

�

y (z (�y: y)) : � in IUT

⊕
. To do this, we

need to rename y in �010 to a fresh-wrt-{y; z} variable x and weaken by y : �→ �.

y : �→ �; x : � ⊢ x : �
(→R)

y : �→ � ⊢ �x: x : � → � �

′
011 :: x : �; y : �→ � ⊢ yx : �

(→L)

⊕

�

′
01 :: y : �→ �; z : � ⊢ y (z (�x: x)) : �

To attain �

′
0, we further need to rename x in �

′
01 to a fresh-wrt-{x; y; z; w} variable v and weaken by x : �

and also to weaken x : � ⊢ x : � by y : �→ �.

x : �; y : � → � ⊢ x : �

x : �; y : � → �; v : � ⊢ v : �
(→R)

x : �; y : � → � ⊢ �v: v : � → �

x : �; v : � ⊢ v : � x : �; v : �; w : � ⊢ w : �
(→L)

x : �; y : �→ �; v : � ⊢ yv : �
(→L)

x : �; y : � → �; z : � ⊢ y (z (�v: v)) : �
(
ut)

⊕

�

′
0 :: x : �; y : � → � ⊢

IUT

⊕ t

′ = y (x (�v: v)) =
�

t : �

To top-down transform �1 to �

′
1, we observe that �110 is already in IUT

⊕
and we pro
eed to transform

�11 to a �

′
11 :: x :  ; z : � → � ⊢ t

′
11 =

�

z (x (�y: y)) : � in IUT

⊕
. To do this, we need to rename x in

x : � ⊢ x : � to a fresh-wrt-{x; z} variable y and weaken by x :  .

�110 :: x :  ⊢ x (�y: y) : � x :  ; y : � ⊢ y : �
(→L)

⊕

�

′
11 :: x :  ; z : �→ � ⊢ z (x (�y: y)) : �

To attain �

′
1, we then need to rename y in �

′
11 to a fresh-wrt-{x; y; z} variable v and weaken by y : � → �

and also to weaken y : �→ � ⊢ y : � → � by x :  .
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x :  ; y : � → � ⊢ y : � → �

y : � → �; v : � ⊢ v : �
(→R)

y : � → � ⊢ �v: v : � → � y : � → �; v : � ⊢ v : �
(→L)

y : � → �; x :  ⊢ x (�v: v) : � y : � → �; x :  ; v : � ⊢ v : �
(→L)

x :  ; y : � → �; z : �→ � ⊢ z (x (�v: v)) : �
(
ut)

⊕

�

′
1 :: x :  ; y : � → � ⊢

IUT

⊕ t

′ = y (x (�v: v)) =
�

t : �

We �nally obtain �

′
by applying an additive (∪L) to �′

0 and �

′
1.

�

′
0 :: x : �; y : �→ � ⊢ t′ : � �

′
1 :: x :  ; y : �→ � ⊢ t′ : �

(∪L)⊕

�

′ :: x : � ∪  ; y : �→ � ⊢
IUT

⊕ t

′ =
�

t : �

It is V

′ = {x; y; z; w; v} ! {x; y; z} = V and T

′ = T . In transforming �0 and �1 to �
′
0 and �

′
1, respe
tively,

we 
hoose the new names (new variables), so that we have i) the least possible number of new variables

in V

′
and ii) t

′
0 = t

′
1 = t

′
.

Combining Theorems 7.16 and 7.9, we see that the three di�erent presentations of the type system

with interse
tion and union types are equivalent. We abbreviate \nd" and \s
" the natural dedu
tion

style and the sequent 
al
ulus style, respe
tively.

nd IUT

⊕
7:9
⇐⇒ s
 IUT

⊕
7:16
⇐⇒ s
 IUT

The sequent 
al
ulus IUT

⊕
does not enjoy 
ut elimination, at least not a total 
ut elimination, as it

does not 
ontain an expli
it 
ontra
tion rule. Remark 2.22 for the sequent 
al
ulus IUT holds for the

sequent 
al
ulus IUT

⊕
, as well, if modi�ed appropriately.

7.3 Relating IUL

m

to IUT

⊕
in sequent 
al
ulus

As in the natural dedu
tion 
ase, the sequent 
al
ulus logi
 IUL

m

is intended to 
apture the sequent


al
ulus type system IUT

⊕
on a logi
al level. In order to elaborate on how the logi
 attempts to a

omplish

this goal, we need the notions of non-standard de
oration of the logi
 and of term-sequent of a sequent.

A de
oration of the logi
 di
tated by the very rules of the type system en
odes the impli
ation, but

does not embody the interse
tion or the union; it is therefore a \non-standard" de
oration. Its formal

de�nition is on
e more along the line given in 3.15 and its rules are displayed in Figure 7.3. When

de
orating 
ontexts bottom-up, the new variable in an (→L) right premise or an (→R) premise or a

(
ut) right premise is fresh with respe
t to the variables in the bran
h 
onne
ting the 
on
lusion to the

root. The term-sequent of a given sequent derives from the given sequent exa
tly as the term-statement

of a given statement derives from the given statement in natural dedu
tion (re
all De�nition 4.18).

For a de
oration di
tated by the type system to be possible, whi
h is essential in examining a 
orre-

sponden
e between the logi
 and the type system, the logi
 needs to have a single-premise (∩R) and a

single-premise (∪L). This is a
hieved by the mole
ule stru
ture, whi
h joins together in the same (de
o-

rated) mole
ule sequents that share the same term-sequent

5

. The right interse
tion 
ase 
oin
ides with

5

As in the natural dedu
tion 
ase, this should only be kept in mind as a wishful intention. It 
an be shown in the sequent


al
ulus 
ontext, as well, that not every set of (derivations proving) sequents sharing the same term-sequent 
an be joined

into a single (derivation proving a) de
orated mole
ule.
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(ax)

x : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t : [(Γ
i

; �
i

)
i

]
p

u : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→L)

u[yt=x] : [(Γ
i

; �

i

→ �

i

; �
i

)
i

]
p; y

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→R)

�x: t : [(Γ
i

; �
i

→ �

i

)
i

]
p

t : [U ; (Γ
i

; �

i

; �
i

)
i

;V ]
p; x

(∩L1)

t : [U ; (Γ
i

; �

i

∩ �
i

; �
i

)
i

;V ]
p; x

t : [U ; (Γ
i

; �

i

; �
i

)
i

;V ]
p; x

(∩L2)

t : [U ; (Γ
i

; �

i

∩ �
i

; �
i

)
i

;V ]
p; x

t : [U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
p

(∩R)
t : [U ; (Γ

i

; �
i

∩ �
i

)
i

;V ]
p

t : [U ; ((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

;V ]
p; x

(∪L)
t : [U ; (Γ

i

; �

i

∪ �
i

; �
i

)
i

;V ]
p; x

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

(∪R1)

t : [U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

(∪R2)

t : [U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]
p

t : [(Γ
i

; �
i

)
i

]
p

u : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(
ut)

u[t=x] : [(Γ
i

; �
i

)
i

]
p

Figure 7.3: Non-standard de
oration of sequent 
al
ulus IUL

m

.

the interse
tion introdu
tion 
ase in natural dedu
tion. In the 
ase of left union, the (de
orated) logi


merges into the same (de
orated) mole
ule the left and right IUT

⊕
-premises, in parallel for multiple rule

instan
es that share the same term-sequent

6

.

x1 : �1
1 ; : : : ; xm : �1

m

; x : �1 ⊢ t : �1 x1 : �1
1 ; : : : ; xm : �1

m

; x : �1 ⊢ t : �1
(∪L)1

x1 : �1
1 ; : : : ; xm : �1

m

; x : �1 ∪ �1 ⊢ t : �1

.

.

.

x1 : �n1 ; : : : ; xm : �n
m

; x : �
n

⊢ t : �
n

x1 : �n1 ; : : : ; xm : �n
m

; x : �
n

⊢ t : �
n

(∪L)
n

x1 : �n1 ; : : : ; xm : �n
m

; x : �
n

∪ �
n

⊢ t : �
n

❀

t : [U ; (�1
1 ; : : : ; �

1
m

; �1 ; �1); (�
1
1 ; : : : ; �

1
m

; �1 ; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �

n

; �
n

); (�n1 ; : : : ; �
n

m

; �

n

; �
n

);V ]
x1;:::; xm; x

(∪L)

t : [U ; (�1
1 ; : : : ; �

1
m

; �1 ∪ �1 ; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �

n

∪ �
n

; �
n

);V ]
x1;:::; xm; x

It should be obvious by now that the sequent 
al
ulus presentation of the logi
 and the type system

is sus
eptible to remarks, 
on
erning the relation of the two systems, whi
h are 
ompletely analogous to

6

The term-sequent of a (∪L) instan
e with premises B; x : � ⊢ t : �; B; x : � ⊢ t : � and 
on
lusion B; x : � ∪ � ⊢ t : �,
where dom(B) = {x1; : : : ; xm} is meant to be x1; : : : ; xm; x ⊢ t.
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ulus IUL

m

and IUT

⊕

the ones given for the natural dedu
tion presentation. Taking this argument further, we expe
t that a

sequent 
al
ulus notion analogous to the natural dedu
tion notion of tree T

t

iue

assists the sequent 
al
ulus

IUL

m

-IUT

⊕

orresponden
e.

In natural dedu
tion, we stated and proved 
orresponden
e theorems between IUL

m

and IUT

⊕
, using

the restri
tive notion of trees T

t

iue

. Looking at the logi
, the impli
ations and the union elimination are

the global rules whi
h have a 
ounterpart in the type system. In sequent 
al
ulus, the global rules whi
h

have a 
ounterpart in the type system are the impli
ations and the 
ut. De�ning trees of impli
ations

and 
uts with terms, denoted T

t

i


, for both the de
orated logi
 IUL

?

m

and the type system IUT

⊕
, we 
an

state and prove restri
ted 
orresponden
e theorems in sequent 
al
ulus, as well. We outline the basi


points below.

De�nition 7.18 (IUL

?

m

: T

t

and T

t

i


) (i) Given a de
orated mole
ule t : M
p

in IUL

?

m

, the de
oration-

sequent deriving from it is the sequent {p} ⊢ t, abbreviated p ⊢ t.
(ii) Given the tree T of a derivation �

?

in IUL

?

m

, the tree with terms T

t

of �

?

is T with ea
h node

de
orated by the de
oration-sequent deriving from the de
orated mole
ule that 
orresponds to it.

(iii) Given the tree T

t

of a derivation �

?

in IUL

?

m

, we derive the tree of impli
ations and 
uts with

terms T

t

i


of �

?

from it by erasing all nodes and 
orresponding de
oration-sequents asso
iated to the rules

(X),(∩LR), and (∪LR).

De�nition 7.19 (IUT

⊕
: T

t

and T

t

i


) (i) Given the tree T of a derivation � in IUT

⊕
, the tree with

terms T

t

of � is T with ea
h node de
orated by the term-sequent deriving from the sequent that 
orresponds

to it.

(ii) Given the tree T

t

of a derivation � in IUT

⊕
, we derive the tree of impli
ations and 
uts with

terms T

t

i


of � from it by the following algorithm.

. We 
hoose a topmost (∩R) or (∪L) in the tree with terms of � and erase all nodes and 
orrespond-

ing term-sequents asso
iated to (∩L) or (∪R) in the trees with terms of the premises. If the resulting

premise trees of impli
ations and 
uts with terms are identi
al, we identify them and erase the node and


orresponding term-sequent asso
iated to the (∩R) or (∪L).

. We iterate the above pro
edure for the tree with terms resulting from the previous step.

. When all the (∩R)'s and (∪L)'s have been dealt with, we make a �nal step to erase any remaining

nodes and 
orresponding term-sequents asso
iated to (∩L) or (∪R).

As in the natural dedu
tion 
ase, the algorithm in 7.19(ii) does not always terminate.

Theorem 7.20 (From IUL

m

to IUT

⊕
) If �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a de
orated deriva-

tion in IUL

m

, there are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
, su
h that

1. (T t

i


)
i

exists, 2. (T t

i


)
i

= (T t

i


)
j

(1 6 i 6= j 6 n), and 3. (T t

i


)
i

= (T t

i


)
�

?

.

Theorem 7.21 (From IUT

⊕
to IUL

m

) If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are deriva-

tions in IUT

⊕
, su
h that 1. (T t

i


)
i

exists and 2. (T t

i


)
i

= (T t

i


)
j

(1 6 i 6= j 6 n), then there is a de
orated

derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

, su
h that (T t

i


)
�

? = (T t

i


)
i

.

The proofs of 7.20 and 7.21 are the sequent 
al
ulus 
ounterparts of the proofs of 5.10 and 5.13, re-

spe
tively. They have been 
he
ked, but are not exposed here. The (→L) 
ase in 7.20 is quite demanding,

while 7.21 requires a quite di�erent handling of the ex
hange inferen
es 
ompared to 5.13 (Remark 7.8 is

relevant).



7.3 Relating IUL

m

to IUT

⊕
in sequent 
al
ulus 159

At this point, we 
an explain why an additive presentation of the sequent 
al
ulus type system is


hosen. If we attempted the (restri
ted) 
orresponden
e theorems, stated above, with the multipli
ative

(sequent 
al
ulus) type system instead of the additive (sequent 
al
ulus) type system, we would dis
over

the following. The theorem from the logi
 to the type system would work �ne, as the additive logi


would proje
t additively to the type-system level and the multipli
ative type system behaves exa
tly as

the additive one, given additive premises. On the other hand, the theorem from the type system to the

logi
 would not work. Although the hypothesis that the trees (T t

i


)1; : : : ; (T
t

i


)
n

all exist would restri
t

the (∩R) and (∪L) rule-inferen
es in �1; : : : �n to additive versions, the (still) multipli
ative (→L) and

(
ut) rule-inferen
es in �1; : : : ; �n would only return to multipli
ative (→L) and (
ut) rule-inferen
es in

the logi
. For both theorems to work, we either need a logi
 with multipli
ative versions of (→L) and

(
ut) opposite the multipli
ative type system or the additive logi
 introdu
ed in Se
tion 7.1 opposite the

additive type system.

Following the natural dedu
tion 
ase, we estimate

7

that a set of derivations �1; : : : ; �n, sharing the

same term-sequent at the root and su
h that it is not the 
ase that the trees (T t

i


)1; : : : ; (T
t

i


)
n

all exist and

are identi
al, is not always transformable to a set of derivations �

′
1; : : : ; �

′
n

, proving the same sequents as

�1; : : : ; �n, respe
tively, and su
h that the trees (T t

i


)′1; : : : ; (T
t

i


)′
n

all exist and are identi
al. Given this

estimate, the 
laims in Se
tions 5.4 and 6.3 about non-restri
ted 
orresponden
e theorems and the a
tual

su

ess of IUL

m

as a logi
 for IUT

⊕
, respe
tively, 
an also be sustained in sequent 
al
ulus, modulo the


onversion of natural dedu
tion notions or rules to the 
orresponding sequent 
al
ulus notions or rules.

7

We use the verb \estimate", as we have not attempted to establish a transformation 
ounterexample in sequent 
al
ulus.

It would be interesting to translate the natural dedu
tion derivations �1 and �2 of Se
tion 5.3 in sequent 
al
ulus style,

examine their 
ompatibility with respe
t to trees T

t

i


, and de
ide whether they 
onstitute a transformation 
ounterexample

in sequent 
al
ulus, as well.





Con
lusions and Future Work

The main aim of this thesis was to o�er a logi
 
orresponding to the type system with interse
tion and

union types IUT through de
oration, in the manner that the logi
s o�ered in [18, 15℄ 
orrespond to the

type system with interse
tion types IT through de
oration. We modi�ed and extended with union the

logi
 ISL in [15℄ to de�ne the logi
 IUL

m

as a logi
 intended to 
orrespond to IUT through de
oration.

De
orating IUL

m

with untyped terms that simulate the terms in IUT, we proved restri
ted 
orresponden
e

theorems between the de
orated IUL

m

and IUT. The restri
tions involve the trees of impli
ations and

union eliminations with terms T

t

iue

, whi
h are de�ned for both the de
orated IUL

m

and IUT. A de
orated

derivation �

?

in IUL

m

with de
oration-statement x1; : : : ; xm ⊢ t at the root 
orresponds to a �nite number
of derivations �1; : : : ; �n in IUT that share the term-statement x1; : : : ; xm ⊢ t at the root, and the trees

T

t

iue

of all these derivations �

?

; �1; : : : ; �n are identi
al (re
all Theorems 5.10 and 5.13). More pre
isely,

in the dire
tion from IUT to the de
orated IUL

m

, it is only under the 
ondition that the trees T

t

iue

of

�1; : : : ; �n all exist and are identi
al that we 
an merge �1; : : : ; �n into a single �

?

with this very tree T

t

iue

(re
all the intuitive justi�
ation of this fa
t in Se
tion 5.4). Sin
e it is not always the 
ase that derivations

�1; : : : ; �n that share the same term-statement at the root have existing and identi
al trees T
t

iue

or, at least,


an be transformed into derivations �

′
1; : : : ; �

′
n

that prove the same statements as �1; : : : ; �n, respe
tively,

and have existing and identi
al trees T

t

iue

(re
all the transformation 
ounterexample in Se
tion 5.3),

the 
ondition that se
ures that �1; : : : ; �n 
an be merged into a single �

?

is indeed a restri
tion. This

restri
tion does not agree with the original de�nition of IUL

m

as a logi
 meant to 
orrespond to IUT

through de
oration; this is be
ause the de�nition assumed that any statements in IUT that share the

same term-statement 
an be merged into a single de
orated mole
ule in IUL

m

, so that the two-premise

(∩I) and the two-minor-premise (∪E) in IUT translate into a single-premise (∩I) and a single-minor-

premise (∪E) in the de
orated IUL

m

, respe
tively, allowing the de
oration to simulate the terms in IUT

without the in
lusion of metatheoreti
al 
onditions (re
all Se
tion 4.3). Therefore, the logi
 IUL

m

does

not a
tually meet the expe
tations of its de�nition as a logi
 for IUT in the manner that the logi
 ISL (or

its modi�ed version IL

m

) meets the expe
tations of its de�nition as a logi
 for IT (re
all the dis
ussion

in Se
tion 6.3). This is a negative result that raises questions about the adequa
y of stru
tures like kits

or mole
ules to des
ribe logi
s that 
orrespond to interse
tion (and union) types, in the sense that an

adequate logi
 would need to retain its good properties under extension. It may be the 
ase that the

logi
al foundation of interse
tion (and union) types requires a drasti
ally di�erent treatment than what

is studied in this thesis.

However, besides the interrelation between IUL

m

and IUT, we studied IUT in itself, both in natural

dedu
tion and sequent 
al
ulus styles, and provided many interesting results about it. We proved 
ut

elimination in the sequent 
al
ulus IUT

C

and emphasized the ne
essity of an expli
it 
ontra
tion rule for

the elimination of all 
uts (re
all Theorem 2.21 and Remark 2.22). We extended the theorems in [13℄

that 
hara
terize �-terms a

ording to their typings in IT

ù

and IT to theorems that 
hara
terize �-terms

161
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a

ording to their typings in IUT

ùC

and IUT

C

, respe
tively, to 
on
lude that the 
orresponden
es between

typings and 
hara
terizations remain un
hanged under the extension of the type systems with 
ontra
tion

and union (re
all Theorems 2.36, 2.42, 2.47, and 2.49). We also elaborated on properties of IUT, enri
hing

already established ones with new information and also proving additional ones; this was done for both the

natural dedu
tion and sequent 
al
ulus formulations of the system (re
all Propositions 4.14, 4.16, and 4.17

in natural dedu
tion and their 
ounterparts 7.11, 7.13, and 7.14, respe
tively, in sequent 
al
ulus).

Thoughts for future work in
lude the examination of 
ut elimination in the sequent 
al
ulus IUL

m

.

Some work has already been done in this dire
tion, although it is not in
orporated in this thesis. In

parti
ular, we have shown 
ut elimination in the sequent 
al
ulus IL

m

by means of Gentzen's method [12℄

and, together with S. Ron
hi Della Ro

a, Y. Stavrinos, and A. Saurin, have re
orded some serious

eviden
e that the property breaks down in IUL

m

. If we turn this eviden
e into proof, we will have

another argument against the adequa
y of the mole
ule stru
ture to des
ribe logi
s for interse
tion (and

union) types.

Another interesting related study, whi
h is a
tually a work in progress with Stavrinos, is the study

of a new version IUL

∧
m

of IUL

m

with rules for 
onjun
tion and with (∪E)′ in pla
e of (∪E) (re
all

Proposition 4.13) in juxtaposition with intuitionisti
 linear logi
 ILL [14℄, so that the relation between

interse
tion (or syn
hronous 
onjun
tion) and 
onjun
tion (or asyn
hronous 
onjun
tion) in the former

logi
 is investigated under the light of the relation between additive and multipli
ative 
onjun
tion in the

latter. The extended logi
 IUL

∧
m


ontains an introdu
tion rule and a general elimination rule [16℄ for 
on-

jun
tion, whi
h are asyn
hronous and multipli
ative, whereas the rules for interse
tion and union remain

syn
hronous and therefore additive. We have de�ned a translation of formulas of IUL

∧
m

into formulas

of ILL by interpreting 
onjun
tion ∧, interse
tion ∩, and union ∪ in the former logi
 as multipli
ative


onjun
tion ⊗, additive 
onjun
tion &, and additive disjun
tion ⊕ in the latter, respe
tively. We have

further noted that interse
tion implies 
onjun
tion in IUL

∧
m

and not 
onversely, while the translation

of 
onjun
tion implies the translation of interse
tion in ILL and not 
onversely; this non-monotoni
ity

of the translation reveals a duality of the ∩-∧ relation to the &-⊗ relation. De
orating IUL

∧
m

and ILL

with untyped terms, so that impli
ation and 
onjun
tion are the only 
onne
tives en
oded in the former

logi
 and their 
orresponding 
onne
tives through the translation are the only 
onne
tives en
oded in the

latter, we have then proved a full embedding of IUL

∧
m

into ILL. Future work may in
lude i) examining the

faithfulness of the embedding through an inverse translation from ILL into IUL

∧
m

, ii) further examining

interpretations, properties, and relations of the 
onne
tives in IUL

∧
m

through interpretations, properties,

and relations of their 
orresponding 
onne
tives in ILL, iii) investigating normalization in IUL

∧
m

through

normalization in ILL, iv) a 
ategori
al study of the embedding, viewing the two logi
s as 
ategories and

the translation as a 
ontravariant fun
tor, and v) a semanti
al 
omparative study of the two logi
s.



APPENDIX A

Proof of Lemma 2.18

A fully detailed proof of Lemma 2.18 follows.

Lemma A.1 (Lemma 2.18) If � :: B ⊢ t : � is a derivation in IUT

′
C

with a mix as �nal rule and no

other mix 
ontained, then there is a mix-free derivation �

′ :: B ⊢ t′ : � in IUT

′
C

, where t։
�

t

′
.

Proof. Writing \mf" for \mix-free" and \ t=x

j

" for the substitutions in parallel \ t=x1; : : : ; t=xm", we


an display the �nal mix of � as follows.

mf

�0 :: B ⊢ t : �

mf

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d; r)

� :: B; B′ ⊢ u[t=x
j

] : �

We pro
eed by trans�nite indu
tion on the measure m of the mix, 
onsidering the lexi
ographi
 order

for measures.

Base: If m = (0; 2), then: (i) d = 0 ⇒ � = �, for some type variable � ⇒ the �nal rule of �1 is not

a left rule introdu
ing � and (ii) r = 2 ⇒ rr = 1 ⇒ the �nal rule of �1 is not a right rule or a left rule

introdu
ing some type in B

′
or 
ontra
tion in B

′
or 
ontra
tion of �. So, �1 must be an axiom and we

distinguish the following 
ases.

Case 1: The term typed by �1 belongs to {x1; : : : ; xm}.

mf

�0 :: B ⊢ t : �
(ax)

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ x
j

: �
(mix)

� :: B;B′ ⊢ t : �

,→
�0 +Lemma 2.13(ii)

mf

�

′ :: B;B′ ⊢ t : �

Case 2: The term typed by �1 does not belong to {x1; : : : ; xm}.

�0 :: B ⊢ t : �
(ax)

�1 :: B′
; y : �; x1 : �; : : : ; x

m

: � ⊢ y : �
(mix)

� :: B;B′
; y : � ⊢ y : �

,→
(ax)

�

′ :: B;B′
; y : � ⊢ y : �

163
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Indu
tion step for limit points: If m = (d; 2) with d > 0, then: (i) lr = 1 ⇒ �0 is an axiom or

its �nal rule is a right rule and (ii) rr = 1 ⇒ �1 is an axiom or its �nal rule is a left rule introdu
ing �

with m = 1. From (i) and (ii) we have the following 
ases.

Case 1: If �1 is an axiom, we refer to the base 
ase.

Case 2: If �0 is an axiom, it suÆ
es to show the 
ase where the �nal rule of �1 is a left rule introdu
ing

� with m = 1.

(ax)

�0 :: B; y : � ⊢ y : �

mf

�1 :: B′
; x : � ⊢ u : �

(mix)

� :: B;B′
; y : � ⊢ u[y=x] : �

,→
�1 +Lemma 2.13 mf

�

′ :: B;B′
; y : � ⊢ u[y=x] : �

Case 3: Derivations �0; �1 have (→R),(→L) as �nal rules, respe
tively.

B; y : � ⊢ v : �
(→R)

�0 :: B ⊢ �y: v : � → �

B

′ ⊢ t : � B

′′
; z : � ⊢ u : �

(→L)

�1 :: B′
; B

′′
; x : � → � ⊢ u[xt=z] : �

(mix), m = (d(� → �); 2)
� :: B;B′

; B

′′ ⊢ u[xt=z][�y:v=x] : �

,→

B

′ ⊢ t : � B; y : � ⊢ v : �
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ v[t=y] : �
[IH: m

′
< m℄

B;B

′ ⊢ t0 : � (mf) B

′′
; z : � ⊢ u : �

(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′
; B

′′ ⊢ u[t0=z] : �
[IH: m

′′
< m℄

�

′ :: B;B′
; B

′′ ⊢ t1 : � (mf)

By the IH, we have v[t=y] ։
�

t0 and u[t0=z] ։�

t1. Sin
e x is not free in u, we get u[xt=z][�y:v=x] =
u[(�y:v)t=z] ։

�

u[v[t=y]=z] ։
�

u[t0=z] ։�

t1.

Case 4: Derivations �0; �1 have (∩R),(∩L) as �nal rules, respe
tively.

B ⊢ v : � B

′ ⊢ v : �
(∩R)

�0 :: B;B′ ⊢ v : � ∩ �

B

′′
; x : � ⊢ u : �

(∩L)
�1 :: B′′

; x : � ∩ � ⊢ u : �
(mix), m = (d(� ∩ �); 2)

� :: B;B′
; B

′′ ⊢ u[v=x] : �

,→

B ⊢ v : � B

′′
; x : � ⊢ u : �

(mix)

′
, m

′ = (d(�); r′)
B;B

′′ ⊢ u[v=x] : �
[IH: m

′
< m℄

B;B

′′ ⊢ t0 : � (mf)

[Lemma 2.13(ii)℄

�

′ :: B;B′
; B

′′ ⊢ t0 : � (mf)

By the IH, we have u[v=x] ։
�

t0.

Case 5: If �0; �1 have (∪R),(∪L) as �nal rules, respe
tively, the 
ase is very similar to 
ase 4.
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Indu
tion step for su

essor points: If m = (d; r) with r > 2, then: A) lr > 1 or B) rr > 1.

Case A: lr > 1 ⇒ the �nal rule of �0 is a 
ontra
tion or a left rule.

Case (C): In what follows, we 
onsider z fresh with respe
t to �1; otherwise, we substitute it by a

fresh (wrt �1) w, using Lemma 2.13(i).

B; y : �; z : � ⊢ t : �
(C)

�0 :: B; y : � ⊢ t[y=z] : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ⊢ u[t[y=z]=x

j

] : �

,→

B; y : �; z : � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : �; z : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : �; z : � ⊢ t0 : � (mf)

(C)

�

′ :: B;B′
; y : � ⊢ t0[y=z] : �

By the IH, we have u[t=x
j

] ։
�

t0. Sin
e z is not free in u, we get u[t[y=z]=x
j

] = u[t=x
j

][y=z] ։
�

t0[y=z].

Case (→L): In what follows, we 
onsider z; y fresh with respe
t to �1 and � 6= �.

B ⊢ t : � B

′
; z : � ⊢ v : �

(→L)

�0 :: B;B′
; y : � → � ⊢ v[yt=z] : � �1 :: B′′

; x1 : �; : : : ; x
m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � → � ⊢ u[v[yt=z]=x

j

] : �

,→

B ⊢ t : �

B

′
; z : � ⊢ v : � �1 :: B′′

; x1 : �; : : : ; x
m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B

′
; B

′′
; z : � ⊢ u[v=x

j

] : �
[IH: m

′
< m℄

B

′
; B

′′
; z : � ⊢ t0 : � (mf)

(→L)

�

′ :: B;B′
; B

′′
; y : � → � ⊢ t0[yt=z] : �

By the IH, we have u[v=x
j

] ։
�

t0. Sin
e z is not free in u, we get u[v[yt=z]=x
j

] = u[v=x
j

][yt=z] ։
�

t0[yt=z].

Case (∩L): If the �nal rule of �0 is a left interse
tion

B; y : � ⊢ t : �
(∩L)

�0 :: B; y : � ∩ � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ∩ � ⊢ u[t=x

j

] : �

we distinguish two sub
ases a

ording to whether y : � ∩ � belongs to B

′
or not.

Sub
ase a: Suppose that B

′ = B

′′
; y : � ∩�. In what follows, we 
onsider z fresh with respe
t to both

�1 and �0.
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B; y : � ⊢ t : �
(∩L)

�0 :: B; y : � ∩ � ⊢ t : � �1 :: B′′
; y : � ∩ �; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′′
; y : � ∩ � ⊢ u[t=x

j

] : �

,→

B; y : � ⊢ t : �

�1 :: B′′
; y : � ∩ �; x1 : �; : : : ; x

m

: � ⊢ u : � (mf)

[Lemma 2.13(i)℄

B

′′
; z : � ∩ �; x1 : �; : : : ; x

m

: � ⊢ u[z=y] : � (mf)

(mix)

′
, m

′ = (d(�); r − 1)
B;B

′′
; y : �; z : � ∩ � ⊢ u[z=y][t=x

j

] : �
[IH: m

′
< m℄

B;B

′′
; y : �; z : � ∩ � ⊢ t0 : � (mf)

(∩L)
B;B

′′
; y : � ∩ �; z : � ∩ � ⊢ t0 : �

(C)

�

′ :: B;B′′
; y : � ∩ � ⊢ t0[y=z] : �

By the IH, we have u[z=y][t=x
j

] ։
�

t0. As z is not free in u or t, we get u[t=xj ] = u[z=y][t=x
j

][y=z] ։
�

t0[y=z].

Sub
ase b: Suppose that y : � ∩ � 6∈ B

′
.

B; y : � ⊢ t : �
(∩L)

�0 :: B; y : � ∩ � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ∩ � ⊢ u[t=x

j

] : �

,→

B; y : � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : � ⊢ t0 : � (mf)

(∩L)
�

′ :: B;B′
; y : � ∩ � ⊢ t0 : �

By the IH, we have u[t=x
j

] ։
�

t0.

Case (∪L): If the �nal rule of �0 is a left union

B; y : � ⊢ t : � B

′
; y : � ⊢ t : �

(∪L)
�0 :: B;B′

; y : � ∪ � ⊢ t : �
�1 :: B′′

; x1 : �; : : : ; x
m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ∪ � ⊢ u[t=x

j

] : �

we again distinguish two sub
ases a

ording to whether y : � ∪ � belongs to B

′′
or not.

Sub
ase a: Suppose that B

′′ = B

′′′
; y : � ∪�. In what follows, we write \x

j

: �" for x1 : �; : : : ; x
m

: �
and 
onsider z fresh with respe
t to �1 and �0.

B; y : � ⊢ t : � B

′
; y : � ⊢ t : �

(∪L)
�0 :: B;B′

; y : � ∪ � ⊢ t : � �1 :: B′′′
; y : � ∪ �; x

j

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′′
; y : � ∪ � ⊢ u[t=x

j

] : �

,→
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�

′
0 :: B;B′′′

; y : �; z : � ∪ � ⊢ t0 : � (mf) �

′
1 :: B′

; B

′′′
; y : �; z : � ∪ � ⊢ t1 : � (mf)

(∪L)
B;B

′
; B

′′′
; y : � ∪ �; z : � ∪ � ⊢ t′(= t0 = t1) : �

(C)

�

′ :: B;B′
; B

′′′
; y : � ∪ � ⊢ t′[y=z] : �

We derive �

′
0; �

′
1 as shown below.

B; y : � ⊢ t : �

�1 :: B′′′
; y : � ∪ �; x

j

: � ⊢ u : � (mf)

[Lemma 2.13(i)℄

B

′′′
; z : � ∪ �; x

j

: � ⊢ u[z=y] : � (mf)

(mix)

′
, m

′ = (d(�); r′)
B;B

′′′
; y : �; z : � ∪ � ⊢ u[z=y][t=x

j

] : �
[IH: r

′
< r ⇒ m

′
< m℄

�

′
0 :: B;B′′′

; y : �; z : � ∪ � ⊢ t0 : � (mf)

B

′
; y : � ⊢ t : �

�1 :: B′′′
; y : � ∪ �; x

j

: � ⊢ u : � (mf)

[Lemma 2.13(i)℄

B

′′′
; z : � ∪ �; x

j

: � ⊢ u[z=y] : � (mf)

(mix)

′′
, m

′′ = (d(�); r′′)
B

′
; B

′′′
; y : �; z : � ∪ � ⊢ u[z=y][t=x

j

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

�

′
1 :: B′

; B

′′′
; y : �; z : � ∪ � ⊢ t1 : � (mf)

By the IH, we have t0 �և u[z=y][t=x
j

] ։
�

t1. But t0 and t1 are normal terms (Remark 2.12(i)), so,

by uniqueness of the normal form, we get t0 = t1 = t

′
. Finally, sin
e z is not free in u or t, we have

u[t=x
j

] = u[z=y][t=x
j

][y=z] ։
�

t

′[y=z].

Sub
ase b: Suppose that y : � ∪ � 6∈ B

′′
.

�00 :: B; y : � ⊢ t : � �01 :: B′
; y : � ⊢ t : �

(∪L)
�0 :: B;B′

; y : � ∪ � ⊢ t : � �1 :: B′′
; x

j

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ∪ � ⊢ u[t=x

j

] : �

,→

�00 �1
(mix)

′
, m

′ = (d(�); r′)
B;B

′′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′′
; y : � ⊢ t0 : � (mf)

�01 �1
(mix)

′′
, m

′′ = (d(�); r′′)
B

′
; B

′′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′′
< m℄

B

′
; B

′′
; y : � ⊢ t1 : � (mf)

(∪L)
�

′ :: B;B′
; B

′′
; y : � ∪ � ⊢ t′(= t0 = t1) : �

By the IH and using the uniqueness of normal form, we get u[t=x
j

] ։
�

t

′
.

Case B: rr > 1 ⇒ the �nal rule of �1 is a 
ontra
tion or a left rule or a right rule.

Case (C): We distinguish two sub
eses.

Sub
ase a: The mix-type is 
ontra
ted.

�0 :: B ⊢ t : �

B

′
; x0 : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(C)

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u[x1=x0] : �
(mix), m = (d(�); r)

� :: B;B′ ⊢ u[x1=x0][t=xj ] : �

,→
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�0 :: B ⊢ t : � B

′
; x0 : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′ ⊢ u[t=x0; t=xj ] : �
[IH: m

′
< m℄

�

′ :: B;B′ ⊢ t0 : � (mf)

It is u[x1=x0][t=xj ] = u[t=x0; t=xj ]
[IH]
։
�

t0.

Sub
ase b: A type di�erent from the mix-type is 
ontra
ted. In what follows, we 
onsider z fresh

with respe
t to �0.

�0 :: B ⊢ t : �

B

′
; y : �; z : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(C)

�1 :: B′
; y : �; x1 : �; : : : ; x

m

: � ⊢ u[y=z] : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ⊢ u[y=z][t=x

j

] : �

,→

�0 :: B ⊢ t : � B

′
; y : �; z : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : �; z : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : �; z : � ⊢ t0 : � (mf)

(C)

�

′ :: B;B′
; y : � ⊢ t0[y=z] : �

Sin
e z is not free in t, we have u[y=z][t=x
j

] = u[t=x
j

][y=z]
[IH]
։
�

t0[y=z].

Case (→L): We distinguish two sub
ases.

Sub
ase a: The mix-type is introdu
ed by (→L). In what follows, it is 1 6 g 6 k; k+1 6 h 6 m− 1,
and z; x

m

fresh with respe
t to �0.

�0 :: B ⊢ t : �

�10 :: B′
; x1 : �; : : : ; x

k

: � ⊢ v : �1 �11 :: B′′
; x

k+1 : �; : : : ; x
m−1 : �; z : �2 ⊢ u : �

(→L)

�1 :: B′
; B

′′
; x1 : �; : : : ; x

m−1 : �; x
m

: � ⊢ u[x
m

v=z] : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′ ⊢ u[x
m

v=z][t=x
j

] : �

,→
�0

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ v[t=x
g

] : �1
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′ ⊢ t0 : �1 (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′
; z : �2 ⊢ u[t=x

h

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′
; z : �2 ⊢ t1 : � (mf)

(→L)

B;B

′
; B

′′
; x

m

: � ⊢ t1[xmt0=z] : �
(mix)

′′′
, m

′′′ = (d(�); r′′′)
B;B

′
; B

′′ ⊢ t1[xmt0=z][t=xm] : �
[IH: r

′′′
< r ⇒ m

′′′
< m℄

�

′ :: B;B′
; B

′′ ⊢ t2 : � (mf)

It is r

′′′ = lr

′′′ + rr

′′′ = lr + 1 < lr + rr = r. By the IH, we have v[t=x
g

] ։
�

t0; u[t=xh] ։�

t1, and

t1[xmt0=z][t=xm] ։�

t2. Sin
e z; xm are not free in t, we get

u[x
m

v=z][t=x
j

] = u[t=x
h

][x
m

(v[t=x
g

])=z][t=x
m

] ։
�

t1[xmt0=z][t=xm] ։�

t2

Sub
ase b: A type di�erent from the mix-type is introdu
ed by (→L). In what follows, it is 1 6 g 6 k,

k + 1 6 h 6 m, and z; y fresh with respe
t to �0.
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�0 :: B ⊢ t : �

�10 :: B′
; x1 : �; : : : ; x

k

: � ⊢ v : �1 �11 :: B′′
; x

k+1 : �; : : : ; x
m

: �; z : �2 ⊢ u : �
(→L)

�1 :: B′
; B

′′
; x1 : �; : : : ; x

m

: �; y : � ⊢ u[yv=z] : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ⊢ u[yv=z][t=x

j

] : �

,→

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ v[t=x
g

] : �1
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′ ⊢ t0 : �1 (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′
; z : �2 ⊢ u[t=x

h

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′
; z : �2 ⊢ t1 : � (mf)

(→L)

�

′ :: B;B′
; B

′′
; y : � ⊢ t1[yt0=z] : �

By the IH, we have v[t=x
g

] ։
�

t0 and u[t=x
h

] ։
�

t1. As z is not free in t, we get u[yv=z][t=x
j

] =
u[t=x

h

][y(v[t=x
g

])=z] ։
�

t1[yt0=z].

Case (∪L): We distinguish two sub
ases.

Sub
ase a: The mix-type is introdu
ed by (∪L). In what follows, it is 1 6 g 6 m− 1 and we 
onsider

{x1; : : : ; xm} ⊆ FV (u) and x
m

fresh with respe
t to �0.

�0 :: B ⊢ t : �

�10

B

′
; x1 : �; : : : ; x

m−1 : �; x
m

: �1 ⊢ u : �

�11

B

′′
; x1 : �; : : : ; x

m−1 : �; x
m

: �2 ⊢ u : �
(∪L)

�1 :: B′
; B

′′
; x1 : �; : : : ; x

m−1 : �; x
m

: � ⊢ u : �
(mix), m = (d(�); r) ,→

� :: B;B′
; B

′′ ⊢ u[t=x
j

] : �

�0

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′
; x

m

: �1 ⊢ u[t=xg ] : �
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′
; x

m

: �1 ⊢ t0 : � (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′
; x

m

: �2 ⊢ u[t=xg ] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′
; x

m

: �2 ⊢ t1 : � (mf)

(∪L)
B;B

′
; B

′′
; x

m

: � ⊢ t′(= t0 = t1) : �
(mix)

′′′
, m

′′′ = (d(�); r′′′)
B;B

′
; B

′′ ⊢ t′[t=x
m

] : �
[IH: r

′′′
< r ⇒ m

′′′
< m℄

�

′ :: B;B′
; B

′′ ⊢ t2 : � (mf)

It is r

′′′ = lr

′′′ + rr

′′′ = lr + 1 < lr + rr = r. By the IH, we have t0 �

և u[t=x
g

] ։
�

t1 and

t

′[t=x
m

] ։
�

t2. The terms t0; t1 are normal (Remark 2.12(i)) and by uniqueness of normal form, we get

t0 = t1 = t

′
. Finally, sin
e x

m

is not free in t, we get u[t=x
j

] = u[t=x
g

][t=x
m

] ։
�

t

′[t=x
m

] ։
�

t2.

Sub
ase b: A type di�erent from the mix-type is introdu
ed by (∪L). In what follows, we write

\x

j

: �" for x1 : �; : : : ; x
m

: � and 
onsider {x1; : : : ; xm} ⊆ FV (u) and z fresh with respe
t to �10; �11,

and �0.

�0 :: B; y : � ⊢ t : �

�10 :: B′
; x

j

: �; y : �1 ⊢ u : � �11 :: B′′
; x

j

: �; y : �2 ⊢ u : �
(∪L)

�1 :: B′
; B

′′
; x

j

: �; y : � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ⊢ u[t=x

j

] : �

,→
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�0

�10 :: B′
; x

j

: �; y : �1 ⊢ u : � (mf)

[2.13(i)℄

B

′
; x

j

: �; z : �1 ⊢ u[z=y] : � (mf)

(mix)

′
, m

′

B;B

′
; y : �; z : �1 ⊢ u[z=y][t=xj ] : �

[IH: m

′
< m℄

B;B

′
; y : �; z : �1 ⊢ t0 : � (mf)

�0

�11 :: B′′
; x

j

: �; y : �2 ⊢ u : � (mf)

[2.13(i)℄

B

′′
; x

j

: �; z : �2 ⊢ u[z=y] : � (mf)

(mix)

′′
, m

′′

B;B

′′
; y : �; z : �2 ⊢ u[z=y][t=xj ] : �

[IH: m

′′
< m℄

B;B

′′
; y : �; z : �2 ⊢ t1 : � (mf)

(∪L)
B;B

′
; B

′′
; y : �; z : � ⊢ t′(= t0 = t1) : �

(C)

�

′ :: B;B′
; B

′′
; y : � ⊢ t′[y=z] : � (mf)

By the IH, we have t0 �և u[z=y][t=x
j

] ։
�

t1. As z is not free in t and t0; t1 are identi
al, sin
e they

are both normal, we get u[t=x
j

] = u[z=y][t=x
j

][y=z] ։
�

t

′[y=z].

Case (∩L): This 
ase is handled in a manner similar to the two left-rule 
ases shown above. It is even

easier, sin
e the rule in question has a single premise.

Case (→R): We 
onsider y fresh with respe
t to �0.

�0 :: B ⊢ t : �

B

′
; x1 : �; : : : ; x

m

: �; y : � ⊢ u : �
(→R)

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ �y: u : � → �

(mix), m = (d(�); r)
� :: B;B′ ⊢ (�y: u)[t=x

j

] : � → �

,→

�0 :: B ⊢ t : � B

′
; x1 : �; : : : ; x

m

: �; y : � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : � ⊢ t0 : � (mf)

(→R)

�

′ :: B;B′ ⊢ �y: t0 : � → �

By the IH, we have u[t=x
j

] ։
�

t0, so (�y: u)[t=x
j

] = �y: u[t=x
j

] ։
�

�y: t0.

Case (∩R): We 
onsider {x1; : : : ; xm} ⊆ FV (u) and write \x

j

: �" for x1 : �; : : : ; x
m

: �.

�0 :: B ⊢ t : �

�10 :: B′
; x

j

: � ⊢ u : � �11 :: B′′
; x

j

: � ⊢ u : �
(∩R)

�1 :: B′
; B

′′
; x

j

: � ⊢ u : � ∩ �
(mix), m = (d(�); r)

� :: B;B′
; B

′′ ⊢ u[t=x
j

] : � ∩ �

,→

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ u[t=x
j

] : �
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′ ⊢ t0 : � (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′ ⊢ u[t=x
j

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′ ⊢ t1 : � (mf)

(∩R)
�

′ :: B;B′
; B

′′ ⊢ t′(= t0 = t1) : � ∩ �

By the IH, we have t0 �և u[t=x
j

] ։
�

t1. But t0; t1 are normal and the normal form is unique, so

t0 = t1 = t

′
and u[t=x

j

] ։
�

t

′
.

Case (∪R): Very straightforward, even easier than the two right-rule 
ases shown above. ⊣

Remark A.2 In Lemma A.1 we 
ould have also in
luded the fa
t that �

′
does not 
ontain any fresh-

with-respe
t-to-� variables. This fa
t is ta
itly used in the proof, in 
ases A : (→L) and B : (→L).



APPENDIX B

A Transformation Example

Consider the following �-terms.

u

′ = xx1 v

′ = x1x

u

′′ = x2yy v

′′ = y(x2y)

u = x2x1x1 v = x1(x2x1)

If s = x2x1 and r = x1, it is u = u

′[s=x] = u

′′[r=y] and v = v

′[s=x] = v

′′[r=y]. Moreover, if s

′ = x2y, the

following �-term relations hold.

u

′ = xr v

′ = rx

u

′′ = s

′
y v

′′ = ys

′

u = sr v = rs

If � = (� → 
 → �) ∩ Æ; � = (" → � → �) ∩ �, and � = (Æ → 
) ∩ (� → �) ∩ � ∩ ", 
onsider the
IUT

⊕
-derivation �1 :: B1 = { x1 : �; x2 : � → � ∪ � } ⊢ uv : � and its tree (T t

iue

)1, exa
tly as given in the

transformation 
ounterexample of Chapter 6. The letter S denotes the set {x1; x2}.

B1 ⊢ x2 : � → � ∪ �

B1 ⊢ x1 : �
(∩E)

B1 ⊢ x1 : �
(→E)

B1 ⊢ x2x1 = s : � ∪ �

see below

�11 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �

see below

�12 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �
(∪E)

�1 :: B1 ⊢ sr (rs) = uv : �

B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : � → 
 → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : �
(→E)

B1; x : � ⊢ xx1 : 
 → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : Æ → 


B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : Æ
(→E)

B1; x : � ⊢ x1x : 

(→E)

�11 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �

171
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B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : "→ � → �

B1; x : � ⊢ x1 : �
(∩E2)

B1; x : � ⊢ x1 : "
(→E)

B1; x : � ⊢ xx1 : � → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : � → �

B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : �
(→E)

B1; x : � ⊢ x1x : �
(→E)

�12 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �

S ⊢ x2

•
◗
◗
◗◗•S ⊢ s
→E

✑
✑
✑✑

•
S ⊢ x1

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)1

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•

→E

S; x ⊢ u′
v

′

•S; x ⊢ u′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•S; x ⊢ v′

→E

•
S; x ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x1

•
S; x ⊢ x1

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x

If � = (� → �) ∩ ";  = (� → 
) ∩ "; � = � ∪  , and � = (� → �

��

) ∩ ( →  


�

) ∩ (" → �), where
�

��

= � → � → � and  


�

=  → 
 → �, 
onsider also �2 :: B2 = { x1 : �; x2 : � } ⊢ uv : � and its

tree (T t

iue

)2, as demonstrated below. For spa
e e
onomy, we denote B

�

and B

 

the bases B2; y : � and

B2; y :  , respe
tively.

B2 ⊢ x1 = r : � ∪  

see below

�21 :: B2; y : � ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �

see below

�22 :: B2; y :  ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �
(∪E)

�2 :: B2 ⊢ x2rr (r (x2r)) = uv : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : �→ �

��

B

�

⊢ y : �
(→E)

B

�

⊢ x2y : �
��

B

�

⊢ y : �
(→E)

B2; y : � ⊢ x2yy : � → �

B

�

⊢ y : �
(∩E1)

B

�

⊢ y : � → �

B

�

⊢ x2 : �
(∩E2)

B

�

⊢ x2 : "→ �

B

�

⊢ y : �
(∩E2)

B

�

⊢ y : "
(→E)

B

�

⊢ x2y : �
(→E)

B2; y : � ⊢ y (x2y) : �
(→E)

�21 :: B2; y : � ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 :  →  


�

B

 

⊢ y :  
(→E)

B

 

⊢ x2y :  

�

B

 

⊢ y :  
(→E)

B2; y :  ⊢ x2yy : 
 → �

B

 

⊢ y :  
(∩E1)

B

 

⊢ y : � → 


B

 

⊢ x2 : �
(∩E2)

B

 

⊢ x2 : "→ �

B

 

⊢ y :  
(∩E2)

B

 

⊢ y : "
(→E)

B

 

⊢ x2y : �
(→E)

B2; y :  ⊢ y (x2y) : 

(→E)

�22 :: B2; y :  ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �
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S ⊢ r
•
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S; y ⊢ u′′

v

′′

→E

•S; y ⊢ u′′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•

→E

S; y ⊢ v′′

•S; y ⊢ s′
→E

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ y

◗
◗
◗◗✑

✑
✑✑

•S; y ⊢ s′
→E

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

Trying to bottom-up transform �1, so that its bottom (∪E) is like the one in �2, i.e. with term-

statements S ⊢ r and S; y ⊢ u

′′
v

′′
at the major and minor premises, respe
tively, we end up with the

following �

′
1.

B1 ⊢ x1 : �
(∪I)

B1 ⊢ r = x1 : � ∪ �

�

′
110 (see below)

B

′
1 ⊢ s′ = x2y : � ∪ �

�

′
111 (see below)

B

′
1; x : � ⊢ xy (yx) : �

�

′
112 (see below)

B

′
1; x : � ⊢ xy (yx) : �

(∪E)[1; s′]

B

′
1 = B1 ∪ { y : � } ⊢ x2yy (y (x2y)) = s

′
y (ys′) = u

′′
v

′′ : � same

(∪E)[4; r]

�

′
1 :: B1 ⊢ uv = x2rr (r (x2r)) : �

B1; y : � ⊢ x2 : � → � ∪ �

B1; y : � ⊢ y : �
(∩E)

B1; y : � ⊢ y : �
(→E)

�

′
110 :: B1; y : � ⊢ s′ = x2y : � ∪ �

B

′
1; x : � ⊢ x : �

(∩E1)

B

′
1; x : � ⊢ x : � → 
 → �

B

′
1; x : � ⊢ y : �

(∩E)
B

′
1; x : � ⊢ y : �

(→E)

B

′
1; x : � ⊢ xy : 
 → �

B

′
1; x : � ⊢ y : �

(∩E)
B

′
1; x : � ⊢ y : Æ → 


B

′
1; x : � ⊢ x : �

(∩E2)

B

′
1; x : � ⊢ x : Æ

(→E)

B

′
1; x : � ⊢ yx : 


(→E)

�

′
111 :: B′

1; x : � ⊢ xy (yx) : �

B

′
1; x : � ⊢ x : �

(∩E1)

B

′
1; x : � ⊢ x : "→ � → �

B

′
1; x : � ⊢ y : �

(∩E2)

B

′
1; x : � ⊢ y : "

(→E)

B

′
1; x : � ⊢ xy : � → �

B

′
1; x : � ⊢ y : �

(∩E)
B

′
1; x : � ⊢ y : � → �

B

′
1; x : � ⊢ x : �

(∩E2)

B

′
1; x : � ⊢ x : �

(→E)

B

′
1; x : � ⊢ yx : �

(→E)

�

′
112 :: B′

1; x : � ⊢ xy (yx) : �
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It is worth noting that the (∪E)[1; s′] 
onsidered right above the (∪E)[4; r] is the only rule-appli
ation that

works at that point. The (→E), the (∪E)[1; u′′], the (∪E)[1; v′′], and the other two possible (∪E)[1; s′]'s all

fail. We 
annot 
onsider a (∪E)[2] or an (∩I). Comparing this transformation of �1 with its 
ounterpart

in the transformation 
ounterexample of Chapter 6 (see 
ase 4b1), we observe the following.


ounterexample example

u

′′
v

′′ = s

′
y (ys) u

′′
v

′′ = s

′
y (ys′)

rule out
ome rule out
ome

(→E) × (→E) ×

(∪E)[1; u′′] × (∪E)[1; u′′] ×

(∪E)[1; v′′] × (∪E)[1; v′′] ×

(∪E)[1; s′] ×

(∪E)[1; s′] (i)
×

[xy (ys′) ]

(∪E)[1; s′] (ii)
×

[ s′y (yx) ]

(∪E)[1; s′] (iii)
X

[xy (yx) ]

(∪E)[1; s] × (∪E)[1; s] not

(∪E)[2] not (∪E)[2] not

(∩I) not (∩I) not

We then a

ordingly transform �2 to �
′
2, still working bottom-up.

B2 ⊢ r = x1 : � ∪  

�

′
21 (see below)

B2; y : � ⊢ x2yy (y (x2y)) = s

′
y (ys′) : �

�

′
22 (see below)

B2; y :  ⊢ x2yy (y (x2y)) = s

′
y (ys′) : �

(∪E)[2; r]

�

′
2 :: B2 ⊢ uv = x2rr (r (x2r)) : �

see below

�

′
210 :: B2; y : � ⊢ s′ : (�

��

∩ �) ∪ (�
��

∩ �)

see below

�

′
211 :: B2; y : �; x : �

��

∩ � ⊢ xy (yx) : � same

(∪E)[1; s′]
�

′
21 :: B2; y : � ⊢ s′y (ys′) : �

B2; y : � ⊢ x2 : �
(∩E)

B2; y : � ⊢ x2 : �→ �

��

B2; y : � ⊢ y : �
(→E)

B2; y : � ⊢ x2y : �
��

B2; y : � ⊢ x2 : �
(∩E2)

B2; y : � ⊢ x2 : "→ �

B2; y : � ⊢ y : �
(∩E2)

B2; y : � ⊢ y : "
(→E)

B2; y : � ⊢ x2y : �
(∩I)

B2; y : � ⊢ x2y : �
��

∩ �
(∪I)

�

′
210 :: B2; y : � ⊢ x2y = s

′ : (�
��

∩ �) ∪ (�
��

∩ �)
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B

′
2 ⊢ x : �

��

∩ �
(∩E1)

B

′
2 ⊢ x : �

��

B

′
2 ⊢ y : �

(→E)

B

′
2 ⊢ xy : �→ �

B

′
2 ⊢ y : �

(∩E1)

B

′
2 ⊢ y : � → �

B

′
2 ⊢ x : �

��

∩ �
(∩E2)

B

′
2 ⊢ x : �

(→E)

B

′
2 ⊢ yx : �

(→E)

�

′
211 :: B′

2 = B2 ∪ { y : �; x : �
��

∩ � } ⊢ xy (yx) : �

see below

�

′
220 :: B2; y :  ⊢ s′ : ( 


�

∩ �) ∪ ( 

�

∩ �)

see below

�

′
221 :: B2; y :  ; x :  


�

∩ � ⊢ xy (yx) : � same

(∪E)[1; s′]
�

′
22 :: B2; y :  ⊢ s′y (ys′) : �

B2; y :  ⊢ x2 : �
(∩E)

B2; y :  ⊢ x2 :  →  


�

B2; y :  ⊢ y :  
(→E)

B2; y :  ⊢ x2y :  

�

B2; y :  ⊢ x2 : �
(∩E2)

B2; y :  ⊢ x2 : "→ �

B2; y :  ⊢ y :  
(∩E2)

B2; y :  ⊢ y : "
(→E)

B2; y :  ⊢ x2y : �
(∩I)

B2; y :  ⊢ x2y :  

�

∩ �
(∪I)

�

′
220 :: B2; y :  ⊢ x2y = s

′ : ( 

�

∩ �) ∪ ( 

�

∩ �)

B

′′
2 ⊢ x :  


�

∩ �
(∩E1)

B

′′
2 ⊢ x :  


�

B

′′
2 ⊢ y :  

(→E)

B

′′
2 ⊢ xy : 
 → �

B

′′
2 ⊢ y :  

(∩E1)

B

′′
2 ⊢ y : � → 


B

′′
2 ⊢ x :  


�

∩ �
(∩E2)

B

′′
2 ⊢ x : �

(→E)

B

′′
2 ⊢ yx : 


(→E)

�

′
221 :: B′′

2 = B2 ∪ { y :  ; x :  

�

∩ � } ⊢ xy (yx) : �

The trees (T t

iue

)′1 and (T t

iue

)′2 both exist and are identi
al, as required.

S ⊢ r
•
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)′1 = (T t

iue

)′2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S; y ⊢ u′′

v

′′

∪E

•
S; y ⊢ x2

◗
◗
◗◗•S; y ⊢ s′
→E

✑
✑
✑✑

•
S; y ⊢ y

◗
◗
◗
◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑
✑
✑
✑✑

•S; y; x ⊢ xy (yx)
→E

•
S; y; x ⊢ x

◗
◗
◗◗•S; y; x ⊢ xy
→E

✑
✑
✑✑

•
S; y; x ⊢ y

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•

→E

S; y; x ⊢ yx

•
S; y; x ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S; y; x ⊢ x
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Investigating 
losely the transformation 
ounterexample in Chapter 6 and the transformation example

given here, we note the following. In the 
ounterexample, the terms u

′
and v

′
are symmetri
 with respe
t

to appli
ation (u

′ = xr; v

′ = rx), while u

′′
and v

′′
are not (u

′′ = s

′
y; v

′′ = ys). On the 
ontrary, in

the example, both u

′
; v

′
and u

′′
; v

′′
are symmetri
 with respe
t to appli
ation (u

′ = xr; v

′ = rx and

u

′′ = s

′
y; v

′′ = ys

′
). If (u′v′)[s=x] = sr (rs) = uv = x2rr (r (x2r)) = (u′′v′′)[r=y], there are three

di�erent 
hoi
es for u

′
v

′
, one of whi
h employs symmetri
-with-respe
t-to-appli
ation u

′
and v

′
, and

�fteen di�erent 
hoi
es for u

′′
v

′′
, three of whi
h employ symmetri
 u

′′
and v

′′
.

u

′
v

′
symmetry

1 xr (rs) no

2 sr (rx) no

3 xr (rx) X

u

′′
v

′′
symmetry

1 x2yr (r (x2r)) = s

′
r (rs) no

2 x2ry (r (x2r)) = sy (rs) no

3 x2rr (y (x2r)) = sr (ys) no

4 x2rr (r (x2y)) = sr (rs′) no

5 x2yy (r (x2r)) = s

′
y (rs) no

6 x2yr (y (x2r)) = s

′
r (ys) no

7 x2yr (r (x2y)) = s

′
r (rs′) X

8 x2ry (y (x2r)) = sy (ys) X

9 x2ry (r (x2y)) = sy (rs′) no

10 x2rr (y (x2y)) = sr (ys′) no

11 x2ry (y (x2y)) = sy (ys′) no

12 x2yr (y (x2y)) = s

′
r (ys′) no

13 x2yy (r (x2y)) = s

′
y (rs′) no

14 x2yy (y (x2r)) = s

′
y (ys) no

15 x2yy (y (x2y)) = s

′
y (ys′) X

It would be interesting to further examine if all the 
ombinations whi
h involve symmetry for both u

′
v

′

and u

′′
v

′′

an provide transformation examples, i.e. if, besides 
ombination 3-15, whi
h is met in the

example presented here, 
ombinations 3-7 and 3-8 
an also provide transformation examples. It would
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also be interesting to test if all the rest 
ombinations 
an deliver transformation 
ounterexamples; the


ounterexample in Chapter 6 uses 
ombination 3-14. These 
onje
tures and their likely 
onsequen
es are

left open for future study.
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