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Introduction

This thesis aims to define a logical system corresponding to the type system with intersection and union
types in the perspective of the Curry-Howard isomorphism. The type system with intersection and union
types [2] assigns types built by implication, intersection, and union to terms of the untyped A-calculus;
it is a type system a la Curry. We initially consider a natural deduction presentation for systems in logic
or type theory, i.e. a presentation with introduction and elimination rules for every logical connective or
type constructor, respectively.

The Curry-Howard isomorphism [19] states a correspondence between systems of formal logic as en-
countered in proof theory and computational calculi as found in type theory. For instance, the implicative
fragment of intuitionistic propositional logic corresponds to the simply typed A-calculus a la Church, in
the sense that any proof in the logic corresponds to a typable term a la Church, which thoroughly encodes
the implicational structure of the proof, or to a proof in the A_, Church type system typing this very term.
More precisely, any proof in the logic gives a proof in the type system, if “decorated” with simply typed
terms and, conversely, any proof in the type system gives back a proof in the logic, if terms are erased. In
the direction from the logic to the type system, this is meant modulo the conversion of formulas to types
and the elimination of structural rules; in the direction from the type system to the logic, it is meant
modulo the conversion of types to formulas and the addition of structural rules. In the same manner,
the implicative, conjunctive, and disjunctive fragment of intuitionistic propositional logic corresponds to
the A Church type system through decoration and erasure procedures. In particular, any proof in the
logic provides a proof in the type system, if decorated with typed terms with pairs and injections and,
conversely, any proof in the type system returns a proof in the logic, if terms are erased!; corresponding
proofs in the logic and the type system are such that the term typed by the latter proof records the im-
plicative, conjunctive, and disjunctive structure of the former. Provability of a certain formula translates
to inhabitation of the corresponding type, while normalization of a certain proof translates to reduction of
the corresponding term to normal form. In higher levels of the isomorphism, first-order logic corresponds
to dependent types and second-order logic corresponds to polymorphic types.

As far as the type system with intersection and union types is concerned, we say that we seek a logic
corresponding to it in the perspective of the Curry-Howard isomorphism, since it is a Curry type system
and the isomorphism actually applies to Church type systems. However, adjusting the isomorphism’s
main idea to its case, we seek a logic corresponding to it through a decoration with untyped terms. Such
a logic needs to have logical connectives corresponding to the type constructors of intersection and union,
which implies an interpretation of intersection and union in logical terms.

The literature so far has offered logics corresponding to the type system with intersection types
in the Curry-Howard perspective. The natural question whether intersection is logically interpreted as

1Both directions hold modulo the conversions already mentioned for the correspondence between the implicative logic
and the A, type system.



2 Introduction

conjunction motivates the investigation whether the implicative and conjunctive fragment of intuitionistic
propositional logic corresponds to the type system with intersection types through a decoration with
untyped terms. Such a correspondence is proved unfeasible in [18, 15]; the decoration on the logic needs to
simulate the terms in the type system and therefore to ignore, i.e. not to encode, conjunction introduction,
but such a decoration is impossible on proofs containing conjunction introductions on conjuncts which
are not identically decorated.

Ft:o Ft:T (1) Ft:o Fu:t t=u
Ft:onNT Ft:oNAT

(AD)

It is only a proper subset of this logic that corresponds to intersection types through decoration, namely
the part that admits a decoration which ignores conjunction introduction. Since conjunction introduction
in this part involves identically decorated conjuncts, called “synchronous” conjuncts, we can roughly say
that intersection is logically interpreted as a kind of synchronous conjunction. The logics offered in the
literature for intersection types attempt to express this specific part of the implicative and conjunctive
fragment of intuitionistic logic as an autonomous logical system by internalizing the metatheoretical
condition that conjuncts be identically decorated. The logics in question [18, 15], introduced by S.
Ronchi Della Rocca and her colleagues in the early 2000s, employ intersection (synchronous conjunction)
as a logical connective together with implication. The logic in [18] is called “Intersection Logic” and
uses the structure of full binary trees, called “kits”, to internalize the condition mentioned above. A
refinement of this logic is the system “Intersection Synchronous Logic”, proposed in [15], which linearizes
kits into multisets of statements, called “molecules”.

We aim to offer a logic corresponding to the type system with intersection and union types in the
Curry-Howard perspective, i.e. to study an extended-with-union version of the setup described above.
Besides the type system with intersection and union types, such a version involves the implicative,
conjunctive, and disjunctive fragment of intuitionistic propositional logic, which is the natural candidate
for a logic corresponding to intersection and union types through decoration. As expected, though, this
correspondence is unfeasible; the decoration on the logic needs to simulate the terms in the type system
and therefore to induce a substitution term on disjunction elimination, but such a decoration is impossible
on proofs containing disjunction eliminations with minor premises which are not identically decorated?.

Ft:oUT z:obu:p w:rl—u:p(UE) Ft:ovrT z:obu:p x:Thv:ip u=

2 (vE)
Fult/z] :p Fult/z]:p

The extended version, therefore, includes the proper subset of the implicative, conjunctive, and disjunctive
fragment of intuitionistic logic that indeed corresponds to intersection and union types through decoration,
namely the part that admits a decoration which induces a substitution on disjunction elimination. Since
disjunction elimination in this part involves synchronous minor premises, the logical interpretation of
untion is a kind of synchronous disjunction. We aim to complete the picture in the extended setup with
the logic that expresses this specific part of the implicative, conjunctive, and disjunctive fragment of
intuitionistic logic as an autonomous logical system by internalizing the condition that minor premises in
disjunction elimination be identically decorated. The obvious way to achieve this is to extend the logics
offered by the team of Ronchi with union (synchronous disjunction) as an additional logical connective.

2The decoration on conjunction introduction still needs to be as already described in the restricted, i.e. the union-free,
version of the setup.



Introduction 3

Chapter 1 outlines the research results established before the start of this thesis and familiarizes the
reader with the basic argument modes for the topic. Working in natural deduction style, we present
the type system with intersection types IT and explain why the implicative and conjunctive fragment
of intuitionistic logic, denoted LJ, does not correspond to it through a decoration with untyped terms.
Spotting the proper subset LJns of LJ that indeed corresponds to IT through decoration, we then present
the logics “Intersection Logic” IL and “Intersection Synchronous Logic” ISL, which both aim to express
LJns as an autonomous system. We demonstrate the correspondence between each of these logics and IT
through decoration; in both cases, such a correspondence interrelates a decorated derivation in the logic
with a finite number of derivations in the type system. This chapter summarizes the work in [18, 15].

Chapter 2 illustrates in detail the type system with intersection and union types IUT and its rule or
style variants, as well as its basic properties. First, a natural deduction and a sequent calculus formulation
of the system are presented and proved equivalent, the former being additive and the latter multiplicative.
A sequent calculus formulation is one with left and right introduction rules for every type constructor, and
a cut rule. Then, while the usual subject reduction is shown to fail, a more elaborate kind of reduction,
called parallel reduction, is defined and shown to hold. Further, a cut elimination proof is given for
the sequent calculus formulation of the system, when contraction is explicitly included. Finally, certain
typings in IUT or its rule variants are examined with respect to the properties the typable terms display;
among others, it is deduced that the terms typable in IUT are all and only the strongly normalizing ones.
This chapter combines results in [2] and original work.

Chapter 3 exposes an early stage attempt to define a logic corresponding to intersection and union
types in the Curry-Howard perspective. Working in natural deduction style, we first show that the
implicative, conjunctive, and disjunctive fragment of intuitionistic logic, denoted ML, does not correspond
to the type system IUT through a decoration with untyped terms. We then identify the proper subset
MLns of ML that indeed corresponds to IUT through decoration and aim to represent it as an independent
logic. Toward this end, we extend the logics IL and ISL with union rules to define the logics IULy
and IUL,,, respectively. We show that the extended logics are equivalent and examine whether the
correspondence between the restricted logic (IL or ISL) and IT through decoration can be extended to a
correspondence between the extended logic (IULy or IUL,,) and IUT through decoration. We demonstrate
how the substitution terms in union eliminations hinder the extended correspondence. Finally, we discuss
the advantages of the formalism of molecules over the formalism of kits that arise from comparing the
union elimination rules in the extended logics. This chapter is a revised version of the work in [20].

Chapter 4 introduces a modification® of the logic IUL,, with respect to the definition of “molecule”
and the definition of rules, but still with introduction and elimination rules for implication, intersection,
and union. First, we present the modified structure and rules, drawing attention to the crucial distinction
between global and local rules and to the additiveness of the connectives. Then, we state and prove certain
derivable rules and properties of the logic. We also elaborate on derivable rules and properties of the
type system IUT in natural deduction style. Finally, we define a decoration of the logic with terms that
“copy” the ones in the type system and we interrelate the decorated logic with the type system, so as to
explain how the former is meant to use its structure to depict the latter on a logical level.

Chapter 5 resolves the correspondence between the decorated logic IUL,, and the type system IUT
in natural deduction style. We first define the notion of tree of implications and union eliminations with
terms for both the decorated logic and the type system. In the decorated logic, such trees record the
inferences of rules that are global and have a counterpart in the type system, which are the inferences

3The use of this modification, besides providing a more convenient system, will become clear in the next chapter, where
we exploit it to settle the correspondence between IUL,, and IUT through decoration.
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of implications and union elimination, as well as the decoration terms on these inferences. In the type
system, such trees record the inferences of rules that have a global counterpart in the logic, which are
again the inferences of implications and union elimination, as well as the terms in these inferences. While
every derivation in the decorated logic has such a tree, there are derivations in the type system which do
not have such a tree, as the procedure for such trees in the type system is algorithmic and does not always
terminate. We then state and prove correspondence theorems between the decorated logic and the type
system, i.e. from the decorated IUL,, to IUT and conversely, which interrelate a decorated derivation
in the logic with a finite number of derivations in the type system via restrictions that involve the trees
described above. A derivation in the decorated logic gives finitely many derivations in the type system,
whose trees all exist and are identical and also identical to the tree of the derivation in the decorated
logic. Conversely, finitely many derivations in the type system whose trees all exist and are identical
give back a derivation in the decorated logic with a tree identical to the tree of the derivations in the
type system. We also give a detailed counterexample against the position that the restrictions could be
removed and that we could thus have a correspondence in the manner of the correspondence given in the
first chapter between the decorated IL (or ISL) and IT. Finally, we explicate the definitional factors in
the decorated logic that necessitate the restrictions.

Chapter 6 examines how the method of trees, employed in the previous chapter to describe the
correspondence between the decorated logic IUL,, and the type system IUT, can be adjusted to the
correspondence between the decorated logic IL,, and the type system IT, where the logic IL,, is the
restriction of the logic IUL,, to implication and intersection. As IL,, is a modification of ISL, the
examination of the correspondence in question with the method of trees is actually a re-examination of
the correspondence between the decorated ISL and IT with the method of trees. Adjusting the method
leads to the definition of the notion of tree of implications with terms for both the decorated logic and the
type system. The procedure to attain the trees in the type system is still algorithmic, but we prove that
it always terminates. We then state and prove correspondence theorems between the decorated IL,, and
IT, which revise the correspondence theorems between the decorated ISL and IT in that they add the
fact that each of the trees of the derivations in the type system is identical to the tree of the derivation in
the decorated logic. We finally compare and contrast the two correspondences, i.e. between the decorated
IUL,,, and IUT and between the decorated IL,, and IT, to decide whether IUL,, is indeed a logic for IUT
in the manner that IL,, (or ISL) is a logic for IT.

Chapter 7 presents a sequent calculus formulation of the modified logic IUL,,, which retains the
additive character of the natural deduction formulation. First, we display the sequent calculus rules of
the logic, focusing on the distinction between global and local rules. Then, we prove the equivalence
between the sequent calculus and natural deduction presentations of the logic. We also prove derivable
rules and properties of the sequent calculus logic, which are roughly the same as the ones of the natural
deduction logic. Moreover, we present an additive account of the sequent calculus formulation of the type
system IUT. We prove the equivalence between the sequent calculus and natural deduction formulations of
the type system and also the equivalence between the additive and multiplicative accounts of the sequent
calculus formulation of the type system. We elaborate on derivable rules and properties of the newly
introduced type system, which are similar to the ones of the natural deduction type system. Finally,
working with the sequent calculus logic and type system, we translate into the sequent calculus language
the intended interrelation between the logic and the type system through decoration and the actual
correspondence between the decorated logic and the type system through the notion of trees. Chapters
4 to 7 contain exclusively original work.



CHAPTER 1

A Logic for Intersection Types

The type assignment system with intersection types, denoted IT [18, 15] or D [13], was introduced in the
early eighties by M. Coppo and M. Dezani-Ciancaglini [7, 8] to enhance the typability power of Curry’s
type assignment system A_,. It is very useful as a tool for investigating pure A-calculus, since it has
nice syntactical properties. In particular, we can prove that it assigns types to all and only the strongly
normalizing terms [13].

Due to the peculiar nature of the intersection, IT cannot be used as a model for a programming
language; however, intersection types have been particularly useful in studying the semantics of various
kinds of A-calculi. This can be done by extending the system with suitable sub-typing relations, so that
the type assignment acts as a finitary tool to reason about the interpretation of A-terms in topological
models of A-calculus, like Scott domains, DI-domains and coherence spaces [1, 5, 10, 11].

Definition 1.1 (IT) (i) Terms of the untyped A-calculus A are defined by the grammar: t := x| \z.t|tt.

(ii) The set Tir of intersection types is generated by the grammar Tir 3 0 == a|o — o | o No,
where a belongs to a countable set of type variables. We use a, 3,7, etc. to denote type variables and
o, T, p, etc. to denote types. In omitting parentheses, we assume associativity to the right for implication,
associativity to the left for intersection, and precedence of intersection over implication.

(iii) A basis B is a finite set {x1 : 01,..., T : Om } of assignments of intersection types to distinct
variables. We define dom(B) as the set {z1,...,2y }. We write B, x : o for a basis B U{xz:0}, i.e
for a x & dom(B).

(iv) The type system IT proves statements of the form B &bt : o, where B is a basis, t € A and o is
an intersection type. Its rules are shown in Figure 1.1. We write w :: B -t : 0 to denote a particular
derivation ™ proving BFt: 0.

Proposition 1.2 (i) (Renaming) If w:: B,z : o -t : 7 and y is fresh with respect to m, then there exists
am' :B,y:oktly/z]:T.

(ii) (Weakening) If B&t: o and B C B, where B’ is a basis, then B'Ft: 0.

(iii) (Strengthening) If B+t : o, then FV (t) C dom(B) and B 2O B’ bt : o, where dom(B') = FV (t).

Proof. By induction on the given derivation in each case. Proposition (i) is used to show (ii), while (ii)
is used to show (iii). —

By adding the constant w to Typ and the so-called (w)-rule to the rules of IT, we get the type system
IT,,, denoted D2 in [13]. The (w)-rule is actually an axiom stating that, for any basis B and any term
t,it is Bt : w. The following proposition holds for both IT and IT,,.

5



6 Chapter 1. A Logic for Intersection Types

B,z:obFz:o (ax)
B,x:oFt:T Brt:o—r Bru:o
I —E
BFXx.t:o—rT1 D BbFtu:T =B
BFt:o BrFt:T (1) BFt:onNTt (NE1) BFt:onTt (NE3)
Brt:onNT BtFt:o Btrt:T

Figure 1.1: The type system IT.

Proposition 1.3 (Subject reduction) If BFt: o andt —gt', then Bt : 0.

Proof. A proof can be found in [13]. —

Subject expansion does not hold in IT. For instance, it is Ay.(Az.y)(yy) —p Ay.y and F A\y.y : o — «,
but ¥ Ay.(Az.y)(yy) : @ — a. An explanation of this fact can be found in [13]. On the other hand,
subject expansion does hold in IT,, and is proved in [13]. The most important property of IT, though, is
stated in the following theorem.

Theorem 1.4 A term t € A is typable in 1T if and only if it is strongly normalizing.
Proof. Given in [13] by the reducibility method. —
Remark 1.5 The result of Theorem 1.4 breaks down in IT,,, which may assign the type w to any t € A.

For a proof-theoretical justification of intersection types, we may leave w aside and consider the min-
imal type system with intersection types IT. A first attempt to find a logic corresponding to intersection
types consisted in investigating if and how the implicative and conjunctive fragment of intuitionistic logic,
denoted LJ in [18], could be associated with IT.

In [17, 9] it is argued that intersection types do not correspond to provable formulas of LJ. In par-
ticular, it is shown that the set of all intersection types which are inhabited by a closed term does not
coincide with the set of all provable formulas of LJ, if the type constructor of intersection is converted to
the logical connective of conjunction. A simple counter-example is the type ¢ — 7 — ¢ N 7 which is not
inhabited, while its corresponding formula ¢ — 7 — ¢ A 7 is provable in LJ. The result holds, though,
for the set of all inhabited Curry types and the set of all provable formulas of implicational intuitionistic
logic.

In [18, 15] it is argued that LJ does not correspond to IT through a standard decoration of its
derivations with untyped A-terms. A standard decoration of LJ is one that encodes all logical rules, i.e.
both implication and conjunction. In fact, such a decoration delivers the Curry type system A%,. At this
point, we may recall LJ and \",, and define the decoration which serves as a “bridge” between the two
in the Curry-Howard perspective.
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Figure 1.2: The logic LJ.
B,x:obzx:o (2x)
B,x:okt:T Brt:o—>rT Blu:o
I E
BFMAx.t:o—T =0 BFtu:T (=)
BFt:o BFu:T (AD) BFt:oAT (AE1) BFt:oAT (AE3)
BF (t,u):o AT BbFm(t):o BFm(t): T
Figure 1.3: The type system \",.
Definition 1.6 (LJ) Considering formulas generated by the grammar o == a | o — o | o A o, where

a belongs to a countable set of atomic formulas, the logical system LJ proves statements I' - o, where
the context I' is a finite sequence of formulas and o is a formula. Its rules are displayed in Figure 1.2.
Implication is right associative, while conjunction is left associative and precedes over implication.

Definition 1.7 (\",) Considering types built by implication and conjunction, also known as simple
types, the type system A, proves statements B & t : o, where B is a basis, t belongs to the set Ap
of terms with pairs, i.e. t == x| Az.t|tt] (t,t) |m1(t), m=2(t), and o is a simple type. Its rules are shown in
Figure 1.3.

Definition 1.8 (Standard decoration of LJ) Let 7 =: I' = 01,...,0, F 7 be a derivation in LJ.
By decorating contexts bottom-up with distinct variables starting with the sequence p = x1,...,%, and
then decorating formulas to the right of “F7” top-down with terms in Ap,, we get a decorated derivation
7 TP = :01,..., Ty : o Et: 7. The decoration rules are depicted in Figure 1.4. When decorating



8 Chapter 1. A Logic for Intersection Types

(ax)

r:obx:o

P . P - . q .
pF.#t.TA W) TP y:oyxc:m, ATt p (X)
M, z:okbt:r TP e:my:0 AVt:p
P z:okFt:T PrHt:c—>rT IPFu:o
I E
IPFXe.t:oc—T =D IPrtu:t (=E)
IPFt:o IPFu:7 (AT) IPHt:oANT (AE1) IPHt:oNT (AEs)
IPF (t,u):o AT IPEmt):o TP mo(t): 7

Figure 1.4: Standard decoration of LJ.

contexts bottom-up, the new variable in a (—I)-premise is fresh with respect to the variables in the branch
connecting the (—I)-conclusion to the root.

Any derivation of LJ can be standardly decorated to provide a derivation of A\, if decorated contexts
are seen as sets, formulas are seen as types, and structural rules are ignored. Conversely, any derivation
of A, can be converted to one of LJ, if terms are erased, variable-free bases are seen as sequences, types
are seen as formulas, and structural rules are added, where necessary. The following example shows the
decoration and erasure directions between LJ and A%, .

a—pfFra—p

\4%
O‘—MB;O"_Q—MB( ) ak a decoration
a,a—pBFa—=p %) a,a— BFa (W) - 7
) ) (—)E) [0 [0} (W) —
a,ax— BFB a,a— B Fa (A1) erasure
a,a— BFLi BN
r:a,y:a—>pBry:a—p T, y:a—pBRra (B
—
ria,y:a— By f ria,y:a—>pfFra

(AT)
Tia,yia— B (yr,z) A

Such a connection through decoration and erasure also holds between the implicative fragment of
intuitionistic logic and Curry’s type assignment system A_,.

It is further argued in [18, 15] that even if a so-called non-standard decoration is employed, LJ does
not correspond to IT. The idea for a non-standard decoration that encodes the implication, but ignores
the conjunction, derives from the intersection rules of IT, in which premise and conclusion terms are
identical, and from the fact that we would like a decorated derivation of LJ to provide a derivation of IT,
if conjunction were converted to intersection. The rules for such a decoration are shown in Figure 1.5.



(ax)

r:obx:o

p . P - . q .
pF.#t.TA W) TP y:oyx:m, ATt p (X)
M, z:okbt:r TP e:my:0 AVt:p
P z:okFt:T PrHt:c—>rT IPFu:o
E
IPFXe.t:o—T (=0 IPrtu:r (=)
I"PHt:.o IPHt:r (AT) IPHt:oNT (AE1) IPHt:oNT (AEs)
IPHt:oNT IPHt:o PrHt:r

Figure 1.5: Non-standard decoration of LJ.

It is clear that the decoration terminates only in derivations of LJ in which all (AI)’s are applied to
identically decorated! premises; otherwise, the decoration fails. Identically decorated (sub)derivations
are called isomorphic in [18]. Isomorphic derivations share the same implicative structure.

Consequently, only a proper subset of LJ, denoted LJns, admits a non-standard decoration and it is
this subset that corresponds to IT through decoration and erasure. As when relating the whole of LJ
to A%, a derivation of LJns can be non-standardly decorated to provide a derivation of IT, if decorated
contexts are seen as sets, conjunction is converted to intersection, and structural rules are ignored.
Conversely, a derivation of IT can be converted to one of LJns, if terms are erased, variable-free bases are
seen as sequences, intersection is converted to conjunction, and structural rules are added, if necessary.
An example of derivations in LJns and IT with such a connection follows.

7ﬁ FB (—=1) 7’)’#7 (—I) decoration
ala«a (>1) FB—8 Fy—y (AD) —
Fa—a F@B—=B)A(y—7) —
(AI) erasure
FLams (@ = a) A((B = B) A (v = 7))
x:fFx:p 1) xiykx:iy 1)
z:alFz:a (>1) FAx.x:8— 0 FAv.o:y =~y (1)
FlAx.z:ia—a Flxe.z: (B—=8)N(y—7)

(n1)
Fit de.z: (a—a)N((B—=8)N(y—=7))

Derivations in LJ\LJns do not admit a non-standard decoration. Such a derivation is the one proving
a,a — B F B A a, shown on the previous page. The left and right premises of (AI) are decorated by yz
and z, respectively, if contexts are decorated by x,y, which means that a non-standard decoration cannot
proceed to the conclusion.

1'We mean decorated non-standardly.
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The above discussion testifies that LJ restricted to implication offers a logical foundation to the type
system A_,, while the whole of LJ offers a logical foundation to A’\. It is not the case that LJ is the logic
behind IT through a correspondence by decoration and erasure. If we employ the standard decoration,
we end up corresponding with another type system, namely A%, while, if we employ the non-standard
decoration, only a proper subset of LJ corresponds to IT. This means that intersection cannot be logically
interpreted as conjunction. It is rather a special kind of conjunction between isomorphic or synchronous
conjuncts; it is referred to as synchronous conjunction in [15], while the standard intuitionistic conjunction
is referred to as asynchronous conjunction. The notion of “isomorphism” or “synchronicity” of conjuncts
is a metatheoretical restriction on LJ, as noted in [18], brought to light only by means of the non-standard
decoration. The subset LJns expresses this special kind of conjunction and would serve as a logic for IT,
if it were somehow autonomized and described as a logic by itself. This is exactly what is attempted
in [18] and [15] by introducing the logical systems “Intersection Logic” and “Intersection Synchronous

Logic”, respectively.

1.1 Intersection Logic

Intersection Logic IL works with full binary trees?, called kits, whose leaves are formulas generated by
implication and intersection. It is a natural deduction system which proves judgements in sequent style.
Judgements include kits of the same structure, which are called overlapping. Since IL is intended to
realize the part of LJ where (AI) is applied to isomorphic premises, namely LJns, the rule introducing
the intersection in IL should embody this isomorphism or sameness of premises. This is achieved by
binary trees; in particular, the premises become leaves originating from the same parent-node in a kit, so
that intersection introduction in IL has a single premise. Its conclusion gives a kit where the intersection
of the two leaves is a leaf on the parent-node. As a result, a non-standard decoration of kits, encoding
the implication solely, is free to terminate in any derivation of IL.

Ft:o Ht
Ft:oAT

Ft:lo, 7]

T (AI) in LJ
s Ft:onNT

(NI) in IL

A concise definition of IL and its accompanying notions follows.

Definition 1.9 (IL) (i) A kit is a full binary tree K ::= o | [K, K| whose leaves are formulas generated
by the grammar o := a |0 — o | 0 N o, where « belongs to a countable set of atomic formulas. We use
K,H,L to denote kits and o, T, p, etc. to denote leaves.

(i) Two kits H, K overlap, denoted H ~ K, if they share the same tree structure, but possibly differ
on their leaves.

(iii) A path of length n in a kit is a string of n letters from the set {l,r}, where | stands for “left”
and 1 for “right”, that corresponds to the part of the kit which starts at the root and ends at the node
reached after n left or right steps. We use the letters p and q with subscripts, primes, etc. to denote
paths. The subtree of a kit K at path p, denoted KP, is the subtree of K rooted at the end of p in K.
A terminal path is one that ends at a leaf; the set of terminal paths of a kit K is denoted Pp(K). Two
paths p and q of K are different, if they split at a node of K.

2A full binary tree is a tree in which every node other than the leaves has two child-nodes.
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Hi,....H,vK H~H (1<j<
= (ax) 1, ) ]( J m) (W)

K+ H,,...,H,,H- K
I'Hi,H;,AF K (X) I'=H,,....Hy,F K )
I'Hy,Hi,AF K \P® = Hi\"°,..., H,\P* - K\**
INHEFK I'-H—-K 'tH
- =D (=E)
I'-H—> K 'K
Hl[p:: [01)01]])"'7Hm[p:: [UT’HUW-”FK[p:: [U7T]] (nI)
Hilp:=o01],...,Hnlp :=0on|F K[p:=0nNT]
I'FK[p:=0on I'FK[p:=0n
[P 7 T] (NE1) [P d T] (NE2)
't Klp := o] '+ Kp:=r1]

Figure 1.6: The logic IL.

(iv) If H~ K, then H — K is a kit overlapping with H, K and such that (H — K)? = H? — K?,
for every p € Pyp(H — K)[= Pyr(H) = Pyp(K)).

(v) The notation H[p := K] stands for the kit resulting from the substitution of H? by K in H. If ps
is a path in H, where s € {l,r}, the pruning of H at path ps, denoted H\P*, is defined as H[p := HP®].

(vi) The deductive system IL derives judgements I' - K, where the context I' is a sequence of kits and
K is a kit. It consists of the rules in Figure 1.6.

Remark 1.10 The inclusion of the structural rule of pruning, rule (P) in Figure 1.6, is motivated by
purely technical reasons, i.e. reasons concerning the manipulation of the tree structure.

It is easy to show that all judgements derived in IL include overlapping kits, i.e. if Hy,..., Hy - K,
then H; ~ K (1 <j<m).

The implicative rules affect all terminal paths (or leaves) of (some of) the kits involved and are called
global. On the other hand, the notation “__[p := __]” used in the intersection rules shows that these rules
act on a specific path p. Rules affecting a specific path are called local. Pruning also acts locally on kits.

The system just defined as “Intersection Logic” is actually called “pre-Intersection Logic”, denoted
plIL, in [18]. Then, a derivation of IL proving I' K is defined as an equivalence class of derivations of
pIL, all proving I' = K. The equivalence relation between derivations of plL is introduced to eliminate
unnecessary differentiations resulting from differences in the order of application of consecutive intersec-
tion rules concerning different paths. In practice, though, a derivation of IL is identified with a derivation
of pIL in the specified equivalence class.

To give a correspondence between IL and LJns and also between IL and IT, a non-standard decoration
of IL is defined in [18]. The decoration employs untyped A-terms to keep track of the implicative structure
of derivations.
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z1:Hi,...,e;m HpFt: K

T r— w
r:KFx: K () v1:Hy,...,¢em Hp,e : HFt: K (W)
FTyy:Hl,w:szATll—t;K (X) v1:Hy,...,¢;m HpbFt: K P)
U7, z:Hoy: Hi, A" Ft: K w1 HO\P o @ Hin\P 8 K\
'z :HFt: K I'tt:H—->K I''tw:H
(—TI) (—E)
I'rix.t:H— K I'ktu: K
z1: Hilp:=[o1,01]],--+, Tm : Hulp := [om,om]] F t: K[p := [0, 7]] -
z1:Hijp:=01],..., Zm : Hulp:=ow]| bt : K[p:=0oNT]
I"Fit:Kp:=onr] I"Fit:Kp:=onr]
; (NE1) ; (NE2)
I''+t: Kp:=o] P"Ft:Kp:=r1]

Figure 1.7: Non-standard decoration of IL.

Definition 1.11 (Non-standard decoration of IL) Letw :: ' = Hy,...,H, - K be a derivation in

IL. By decorating contexts bottom-up with distinct variables starting with the sequence 1 = T1,...,Tn,
and then decorating kits to the right of “F7” top-down with terms in A, we get a decorated derivation
a2 T"=ux:Hy,..., Ty : Hy Bt K. The decoration rules are shown in Figure 1.7. When decorating

contezts bottom-up, the new variable in a (—I)-premise is fresh with respect to the variables in the branch
connecting the (—I)-conclusion to the root.

The following theorem connects IL to LJns modulo the conversion of intersection to conjunction. It
states that a derivation in IL projects to a finite number of derivations in LJns that all admit the same
non-standard decoration, namely the non-standard decoration of the IL-derivation.

Theorem 1.12 Let 7w :: Hy,...,Hy F K be a derivation in 1L, s.t. 7% » oy : Hy,..., &y Hp Ft: K.
For every p € Pr(K), there exists a derivation P :: (H1)?,...,(H)? b K? in LJus, such that it admits
the same (non-standard) decoration as w, i.e. such that (wP)* :: x1 : (H1)?,..., &pm : (Hp)P Ht: KP.

Proof. Given in [21] by induction on 7. =

1.1.1 Strong normalization of IL

Derivations in IL are shown to be strongly normalizing in [18, 21]. A normal derivation is one which is
free of the pruning rule and also free of implication and intersection redexes. The pruning rule can be
easily eliminated, since it commutes with every other rule and can thus be shifted up just below axioms,
where it can be ignored. Then, implication and intersection redexes can be reduced as shown below.
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'-H— K m=TEH = S(my,mo) = THK

The notation S(y,mo) stands for the derivation obtained from 7w by substituting specific? instances of
axioms H + H by m; and then possibly eliminating some instances of weakening and exchange.

Hilp:=[o1,01]],..., Hn[p = [om,on]] - Kp := [0, 7]] (nID)
Hilp:=o01),...,Hn[p:=om]F K[p:=0NT] —n
(NE1)
Hilp:=o01],...,Hnlp:=on] b K[p := 0]
Hilp :=[o1,01]],-. ., Hnlp = [om,om]] F K[p := [0, T]] (P) on pi

Hilp:=o01],...,Hnlp:=on] F K[p := 0]

To show that IL is strongly normalizing, Theorem 1.12 and the strong normalization of LJ are used.
Theorem 1.13 A derivation in IL is strongly normalizing.

Proof. A detailed proof is given in [21]. —

1.1.2 Correspondence between IL and IT

The following two theorems are stated and proved in [18]. The first one relates a derivation of IL to a
finite number of derivations in IT through the non-standard decoration of IL. The second one relates a

single derivation of IT to a derivation in IL, whose non-standard decoration are the terms in the derivation
of IT.

Theorem 1.14 Let 7w :: Hy,...,Hy F K be a derivation in 1L, s.t. 7% :: oy : Hy,..., &y Hp Ft: K.
For every p € Pr(K), there exists a derivation 7P :: {@1 : (H1)P,..., xm : (Hp)P }EHt: KP in IT.

Proof. By induction on the IL-derivation 7. -
Theorem 1.15 If 7 :: {@1 : 01,..., Ty : Oy } E t 1 T is a derivation in IT, there exists a derivation
7 i oo1,...,0m B 7 in IL, where o1,...,0m, and T are kits consisting of a single node, such that
(7)Y @y i01, ., g O E T

Proof. By induction on the IT-derivation 7. —

3Instances such that the kit H to the left of “F” does not move to the right of “I” by an (—I) rule.
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1.2 Intersection Synchronous Logic

Intersection Synchronous Logic ISL is a natural deduction system proving multisets, called molecules,
whose members are atoms. Roughly speaking, atoms are intuitionistic statements, where conjunction is
converted to intersection. This logic is also intended to realize LJns, where (AI) is applied to isomorphic
premises, so the rule introducing the intersection embodies this isomorphism, as was the case in IL. This
is achieved by “gathering” isomorphic premises as atoms of the same molecule, so that intersection intro-
duction has again a single premise. Its conclusion gives a molecule where the two atoms, corresponding
to the isomorphic premises, have merged into one atom that contains the intersection of the premises. As
was the case with kits, a non-standard decoration of molecules, encoding the implication solely, is free to
terminate in any derivation of ISL.

Ft:o Ft:T t:[(;0),(;57)]

i I) in ISL
- (AI) in LJns T 0N (NI) in IS
The structural components and the rules of ISL are defined as follows.
Definition 1.16 (ISL) (i) Formulas are generated by the grammar o := «a|o — o | o N o, where a

belongs to a countable set of atomic formulas.

(ii) An atom is a pair (I'; o), where the context ' is a finite sequence of formulas and o is a formula.
We use A, B,C to denote atoms.

(iii) A molecule [Ay,..., Ay] is a finite multiset of atoms that all share the same context cardinality.
We use M, N to denote molecules.

(iv) The deductive systern ISL proves molecules by the rules depicted in Figure 1.8. We use the
notation [(T;; 7;);] for a molecule [(o%,... 0l ; 7) |1 < i < n] and the symbol “U” for multiset union.

It is explained in detail in [15, 21] why it is necessary to define atom-contexts as sequences and have
explicit weakening and exchange in order for ISL to correctly capture the behavior of the intersection
connective.

The rules of ISL can be categorized as global or local according to whether they affect all or some
atoms of the premise molecule(s), respectively. The structural rules of weakening and exchange and the
implication rules are global, while the structural rule of pruning and the intersection rules are local.

A non-standard decoration of ISL is defined in [15]. This decoration is used in [21] to establish a
correspondence between ISL and LJns and is also used in [15] to establish a correspondence between ISL
and IT.

Definition 1.17 (Non-standard decoration of ISL) Let 7 :: M = [(T;; 71)i] = [(0%,...,0% ; 7i)i]
be a derivation in ISL. By decorating contexts bottom-up with distinct variables starting with the sequence
p = T1,...,Ty, and then decorating molecules top-down with terms in A, we get a decorated derivation
ot My =[(Ti5 mi)ilp = [(x1 : 0%, @ 0L 5 73);]. The decoration rules are shown in Figure 1.9.
When decorating contexts bottom-up, the new variable in an (—1I)-premise is fresh with respect to the
variables in the branch connecting the (—1I)-conclusion to the root.

The following theorem is analogous to Theorem 1.12 for IL. It is stated and proved in [21] and connects
ISL to LJns modulo the conversion of intersection to conjunction.
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t:

[(0:; 01)i]

(s, 00, 75, Ais pi)i

[(Ti; )4

(ax) (W)
[(Ti, 005 Ti)i]

(i, 75,00, Ai 5 pi)i

[(Ti, 005 7i)i]

[Fi; o; — Tl)l] =0

[(Ti; 00 = 7i)i]

[(Ti; 00)i]

(=E)

(T35 7))

MU[T; o), (T; 7))

(n1)

MU[T;0NnT)

MU[T; oNT))

MU[(T; o))

MU[T; 0NT))

(NE1)

MU[(T;

Figure 1.8: The logic ISL.

x: (0 09)i]w

(NE2)

7)]

t:[(Ti; m)ilp

(aX) t: [(Fi,O'i; Ti

t:[(Ciyou, 76, Ais pi)ilp,y,z.q t:

(X)

t: [(Fi,Ti,O’i,Ai; pi)i]l’, z,Y,9

[(Ts,00; Ti)ilp,«

(=0

Az.t: [FI y Op — Ti)i]p

t: [(FZ ;0 — Ti)i]p

M, UN,

(w)

)i]p,z
t: M, )

w: [(Ti; 04)ilp

tu: [(T;

t: MpU[T50), (T 7)p

t: M, U[T;0N7)]p

t: My U[T;50N7)]p

t: MpU[(T; 0)]p

; Ti)i]p

(nD)

t: My U[T;0N7)]p

(NE1)

t: MpU

o, )

Figure 1.9: Non-standard decoration of ISL.
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Theorem 1.18 Let 7 :: [(I';; 73)i] be a derivation in ISL, such that «* :: ¢ : [(Ty; 73)i]p. For every i,
there exists a derivation ' :: T'; = 7; in LJns, such that it admits the same (non-standard) decoration as
7, i.e. such that (w9)* = (T;)P -t : 7.

Proof. By induction on 7. -

1.2.1 Strong normalization of ISL

Derivations of ISL are shown to be strongly normalizing in [15, 21], using the notion of “normal deriva-
tion” as defined for IL. Pruning is eliminated by commuting conversions as in IL, and redexes of logical
connectives are reduced as shown below. The substitution notation S(my, o) bears the usual meaning?.

mo = [(Ti, 04 5 Ti)i)

(=1)
[(Fi; g; — Tl)l] T o [(F“ 01)1] (LE) — S(7T1,7T0) = [(Fz7 Tz)z]
[(T5 7i)i]
MU[(T; 0),(T; 7)]
, on MU[T; 0), (T; 7]
MU[T;0NnT) (OB —n MU o)) (P)

MU[T; 0)]

In [15] it is also noted that, in a (P)-free derivation, the structural rules of weakening and exchange
can all be moved up above the logical rules, so that an axiom is followed by a sequence of weakenings,
which is followed by a sequence of exchanges, which is followed by logical rules. Such derivations are
called canonical. It may be necessary to bring a derivation to canonical form for redexes to be properly
revealed. Nonetheless, reduction steps preserve canonical forms, provided that any pruning generated by
reduction is eliminated.

To show the strong normalization of ISL, we use Theorem 1.18 and the strong normalization of LJ.

Theorem 1.19 A derivation in ISL is strongly normalizing.

Proof. A detailed proof is given in [21]. —

1.2.2 Correspondence between ISL and IT

A theorem which gives a correspondence between ISL and IT through the decoration of ISL is stated and
proved in [15].

Theorem 1.20 If «:: [(0f,...,00,; )] is in ISL, then 7 = t: [(0f,. .., 00,5 Ti)il er,..., 2, if and only
if mic{x ok, ., xy ol YRt in IT, for every i.

Proof. The “only if” direction is shown by induction on 7, while the “if” direction is shown by induction
on t. 4

4Here it stands for the derivation obtained from 7o by substituting specific instances of axioms [(o;; ;)] by 71 and
then possibly eliminating some instances of weakening and exchange.



CHAPTER 2

Union Types

We start by presenting a type system with intersection and union types in natural deduction style. The
system assigns intersection and union types to terms of the untyped A-calculus A. It is introduced in [2],
where it is denoted 91, as an extension of IT, with rules for union.

Definition 2.1 (IUT,,) (i) The set Tiyr, of intersection and union types is generated by the grammar
Tiur, 20 i=a|w|o — o|oNo|oUc, where a belongs to a countable set of type variables. As usual, we
use a, 3,7, etc. to denote type variables and o, T, p, etc. to denote types. Implication is right associative,
while intersection and union are left associative and precede over implication.

(ii) A typing statement is an expression t : o, where t € A and o € Tyr,. Term t is called the
subject and type o the predicate of the typing statement. A basic typing statement x : o is a typing
statement whose subject is a variable. A basis is a set of basic typing statements such that the subjects
are pairwise distinct. If B is a basis, then dom(B) denotes the set of term variables which are subjects
of basic typing statements in B.

(iii) The type system IUT,, proves statements B - t : o, where B is a basis and t : o a typing
statement. We call B the assumptions and t : o the succedent of B t:o. The rules of the system are
shown in Figure 2.1.

Remark 2.2 (i) The system is additive, i.e. all rules with more than one premise are context-sharing.
(ii) Contraction (C) is derivable and equivalent to a union redex (UIE), as shown below.

(ax)
B z:o,y:obt:T (UI)
B,w:a}—t[w/y]:r(c) ~ B,r:okFx:oUo B z:o,y:o-t:t B,rx:o,y:obt:T

B, x:oktx/y:T

B,x:obuz:0o

(UE)

The next lemma shows that a cut rule is also derivable.
Lemma 2.3 (Substitution lemma) If B+-t:o0 and B,z : 0+ uw: T, then BF ult/z]: T.

Proof. Shown from hypotheses in [2] by employing a union redex. =

As noted in [2], if one is interested in the proof-theoretical properties of the system, it can be useful
to reformulate it in a sequent calculus style, i.e. to present it with left and right introduction rules and

17
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Briorzio 0 Briw @
B s Y I e en
BlFt:o Btt:71 (1) BrFt:onr (NE1) BrFt:onrt (NE3)
Brt:onT BrFt:o Brt:r
BtFt:oUT B,x:okFu:p B,x:thFu:p (UE)

Bt ult/z]:p

Figure 2.1: The type system IUT,, in natural deduction style.

in a multiplicative manner. The sequent calculus version is presented in Figure 2.2. Statements B+t : o
are now called sequents. We write B, B’ to mean that BUB’ is still a basis, i.e. if & € dom(B)Ndom(B’),
then there is a unique o, such that z : ¢ € B and z : 0 € B’. In (—L), variable y in the conclusion
sequent is fresh with respect to the derivations proving the premise sequents.

B,x:obzx:o (2x) BFt:w (@)

Bbrt:o B z:thu:p B x:obt:T

(—L) (—R)
B,B',y:0—1htulyt/z]:p BrAz.t:o—rT

okt ThHt: : ! :
B,x:oFt:p (OL1) B,xz:tkHt:p (AL2) Bl—t.a/ B'Ft:r (NR)
B,x:onNtkt:p B,xz:ontkt:p B,B'Ft:onNt

. . / . . . .
B,z:oFt:p Biz:tkHt:p (UL) BFt:o (URy) BFt: T (URs)

B, B, x:0cUTkt:p BFt:oUT BFt:oUT

Btt:o B x:ockFu:t
B, B' - ult/z] : T

Figure 2.2: The type system IUT,, in sequent calculus style.
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Remark 2.4 (i) In the sequent calculus formulation, the system is multiplicative, i.e. all the rules with
more than one premise are context-free.
(ii) Contraction (C) is still derivable and equivalent to a cut rule.

B, x:o,y:obt:r r:okbxz:o (@) B,x:o,y:0obt:T
. . © ~ (cut)
B z:ottlz/y]:T B, z:ottz/yl:T

The following remark, definition, and proposition hold for both formulations of the system.

Remark 2.5 The proposition “if B &t : o is provable, then FV (t) C dom(B)” is not valid due to the
(w)-rule. Removing the (w)-rule, though, retrieves the validity of the proposition.

Definition 2.6 (Similar derivations) A derivation ' is similar to a derivation 7 if and only if 7' can
be obtained from w by adding basic typing statements to the bases or renaming term variables.

Similar derivations share the same derivation tree, i.e. the same sequence of rules, and differ only in
the bases and the term variables.

Proposition 2.7 (i) (Renaming) If m:: B, x : 0 -t : 7 and y is fresh with respect to m, then there exists
an' :B,y:oktly/z]: T similar to w.

(i) (Weakening) If m:: B+t :0 and B C B’, where B’ is a basis, then there exists aw’ :: B'Ft: o
similar to m.

Proof. Either by induction on 7 (for both (i) and (ii)) or as explained in [2]. —

It is shown in detail in [2] that the two formulations of the system are equivalent, i.e. that B+t : o
is proved in natural deduction if and only if B ¢ : ¢ is proved in sequent calculus. It is interesting to
notice that, in order to derive the cut rule in natural deduction, a union redex is employed. If y is fresh
with respect to the derivation proving B’, z : ¢ - u : 7 and y & dom(B), the following is a derivation of
cut in natural deduction.

I —————————:———— Ren w ——————:———:———— Ren W
B,B'-t:oUco “D B,B y:otuly/z]: T (Rem)+(W) B,B y:otuly/z]: T EUE)H—( )

B, B' - uly/z|[t/y] = ult/z] : T

The dashed lines refer to Proposition 2.7 and the terms u[y/z][t/y] and u[t/z] in the final statement are
identical, since y & FV (u).
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2.1 Subject reduction

As argued in [2], the type system IUT,, is not invariant under S-reduction of subjects, meaning that from
Bt t:0 and t -3 u we cannot infer B - u : 0. It is the union elimination rule that is blamed for this
lack of invariance; the substitution that it contains causes the loss of correspondence between subterms
and subderivations. In fact, many occurrences of the same subterm ¢ in the term typed by the conclusion
correspond to a unique subderivation (premise) typing ¢.

BFt:oUT Byz:obF(..z...x...)=u:p Byz:tH(..z...z..)=u:p

(UE)

If one attempted to show subject reduction in IUT, by induction on B + t : o, as is done for IT,,
in [13], the many-to-one correspondence discussed above would induce a problem. For, supposing a redex
in ¢ were reduced, so that ¢ —3 ¢’ and ult/z] =g (... ¢ ... t...), the induction hypothesis would give
B+t :0UT and then an application of union elimination with B F ¢’ : ¢ U T as major premise and the
same minor premises as before would derive B+ (... ¢ ...t ...) = u[t'/z] : p which is obviously not the
required conclusion.

The example given in [2] is that one can assign the type

(c—=o—=1)N(p—=p—=17)2(@a—20Up) sa—T

to both Azyz.z (Aw.w)yz)(Aw.w) yz) and Azyz.xz (yz)(yz), but neither to Azyz.z (yz)(Aw. w) yz),
nor to Azyz. x ((Aw.w) yz)(yz). Hence, the system IUT,, is not invariant under S-expansion of subjects,
either.

The solution proposed in [2] is a different notion of S-reduction, called parallel S-reduction, which,
roughly speaking, allows reductions performed simultaneously on all the occurrences of ¢ in u[t/z]. In
other words, a contraction step in now defined in such a way that u[t/z] — u[t'/z]. The system is proved
to be invariant under parallel S-reduction.

For the precise definition of “parallel reduction”, which is somewhat stronger than the informal de-
scription given above, we need some preliminary definitions.

1. A non-empty set F of redex occurrences in a term t is called uniform, if, for every redex R of ¢,
either all occurrences of R in ¢ are in F or no occurrence of R in ¢ is in F.

2. If t =5 uw and R is a redex occurrence in t, the set of residuals of R in w is the (possibly empty) set
of redexes which are either instances of R or copies of it generated by the reduction.

3. A complete development of (¢, F), where F is a set of redex occurrences in t, is a reduction such
that all and only residuals of redexes in F are reduced.

Formal definitions of these notions can be found in [4].

Definition 2.8 (Parallel Reduction) The reduction relation =, over A-terms is defined as follows:
t = u if and only if there exists a uniform set F of redex occurrences in t, such that (t, F) —cp1 u, where
(t, F) —cpl w is the complete development of (t,F).

Invariance of typing under parallel reduction is then proved in [2] for IUT,,.
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Theorem 2.9 If BFt:o andt =pu, then BFu:o.

The proof is given for the sequent calculus formulation of the system, but the theorem holds for both
formulations, since they are equivalent.

2.2 Cut elimination

In this section we consider the system in Figure 2.2 with the (w)-rule excluded and contraction explicitly
included; let us denote it IUT¢. We will show cut elimination in IUT¢ by means of Gentzen’s method [12].
The need to remove the (e)-rule and admit the contraction rule will be justified after the details of the
proof have been provided. The cut elimination proof will be derived as a consequence of a multicut
elimination proof in the type system IUT{,, which is defined below.

Definition 2.10 (IUT) The type system IUTG is defined by the rules in Figure 2.2, if we exclude the
(w)-rule and include contraction and also substitute the cut rule by a multicut rule, called “mix rule”.

B, x:o,y:ok-t:T BFt:o B,zi:0,....,¢m:0Fu:T .
(©) (mix)
B,z:ottlz/y]:T B, B' - ult/z1,...,t/zm] T

In the mix rule we are allowed to eliminate any number of basic typing statements with predicate o
from the basis of the right premise and not just a single such typing statement as in the cut rule. The
set B’ may also contain basic typing statements with predicate o. Type o is called the miz-type.

Theorem 2.11 The systems IUT¢ and IUTY, are equivalent.

Proof. It suffices to show that (i) the cut rule can be derived in IUT{, and (ii) the mix rule can be
derived in IUT¢. Since a cut can be seen as a special case of mix, (i) is obvious. For (ii) we show that a
mix can be simulated in IUT¢ by consecutive contractions followed by a cut.

B, z1:0,22:0,23:0,...,Tm 0 u:T
7 (©)
B zr:0,03:0,...,0m:0Fufza/zi]: T ©)
B x3:0,...,Tm 0 u[za/z1][ws/z2] i T
Brt:o B’ z,, : 0t u[ra/z1][ws/T2] .. [T /Tim—1] i T
(cut)

B, B’ + (u[va/x1][xs/m2] . . . [xm/Tm—-1])[t/Tm] = w[t/z1,.. . t/zm] T

When the mix involves m eliminations of basic typing statements, the number of consecutive contractions
ism —1. -

Remark 2.12 (i) In IUT{, (resp. IUTc) the only rule that can generate redexes in the term typed by
its conclusion is the miz-rule (resp. the cut-rule). So, a derivation in IUT(, without miz (resp. in IUT¢
without cut) types a normal term.
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(ii) A derivation in IUT!  =IUT( + (w) without miz (resp. in IUT,c =IUT¢ + () without cut)
does not necessarily type a normal term, since the (w)-rule may introduce a term with redexes which are
transfered, modulo substitutions', to the root-term.

It is easy to check that Proposition 2.7 holds for IUTY,, as well.

Proposition 2.13 (i) (Renaming) If 7 :: B, x : o bt : 7 and y is fresh with respect to w, then there
exists a ™ :: B,y : o b tly/x] : T similar to .

(ii) (Weakening) If m:: B+t: o and B C B’, where B’ is a basis, then there exists aw’ = B'Ft:o
similar to .

Proof. By induction on 7 for both (i) and (ii). =

Remark 2.14 The similarity of © and © in Proposition 2.18 implies that, if ™ is miz-free, then 7’ is
mixz-free, too.

Definition 2.15 (Degree of type) The degree d(o) of a type o € Trut, \ {w} is defined inductively as
follows: (i) d(a) =0, for every type variable o, and (i) d(o x7) = d(o) +d(7) + 1, where x € {—,N,U}.

Definition 2.16 (Degree, rank, and measure of mix) Consider a miz with miz-type o.

Bhrt:o Bl zi:0,...,am:0tu:T
B, B' ;- ult/z1,...,t/zm] T

(mix)

(i) The degree d of the miz is the degree d(o) of o.

(ii) The left rank Ir of the miz is the largest number of consecutive sequents rooted at the left premise,
such that each has predicate o in the succedent.

(iii) The right rank rr of the miz is the largest number of consecutive sequents rooted at the right
premise, such that each has at least one basic typing statement from x1 : o,..., T, : 0 in the assumptions.

(iv) The rank r of the miz is the sum lr + rr of the left and right ranks of the miz.

(v) The measure of the miz is the ordered pair (d,r), where d is the degree and r the rank of the mix.

We note that the smallest possible degree of a mix is 0, while the smallest possible rank is 2.

Example 2.17 Let T =a — a, 0 =7 — 7, and 7 be the following derivation in IUT,.

y:ThHy:T w:ThFw:T

(—L)
z:Thx:T (SR) rz:albz:« (5R) y:m,ziobzy:T (NLz)
DEXx.x:0 DX T ("R) y:oNt,z:obzy: 1 (AL1)

OEXz.z:0NT y:oNm, z:oNTkzy: 7 ‘1

(mix)

7 0F Ae.o)Ae.z) : T

The mix has degree d = d(c N7) =5 and rank r =lr +rr =1+ 2 = 3. So, its measure is m = (5, 3).

I These substitutions come from the rules (C) or (—L), but do not generate new redexes.
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The next lemma is the main tool for eliminating the mix in IUTY..

Lemma 2.18 If 7 :: B -t : 0 is a deriwation in IUT{ with a miz as final rule and no other mix
contained, then there is a miz-free derivation ' :: B+ t' : o in IUT(,, where t -3 t'. (Remark 2.12(i)
implies that t' is normal.)

Proof. In Appendix A. -

Definition 2.19 (Topmost mix or cut) A miz (resp. cut) in a derivation m of IUTY (resp. IUT()
is called topmost, if there is no other mix (resp. cut) above it in the tree of .

Theorem 2.20 (Mix elimination in IUTg) For every derivation m :: B+t : o in IUT(, there is a
miz-free derivation ' :: Bt : o, where t —g t'.

Proof. Using Lemma 2.18, we successively eliminate topmost mixes in 7. In every elimination of a
topmost mix with subderivation 7, the term typed by the root-sequent of 7, reduces to a normal term,
while the basis and type remain unchanged. Rules with a single mix-free premise “pass on” the reduction
to their conclusion. [Rule (C): If t —3 t/, then t{x/y] -5 t'[z/y]. Rule (=R): If ¢t -3 ¢/, then
Ar.t -5 Az.t’. Rules (NL),(UR): If ¢t —3 t' in the premise, then ¢ —5 ¢’ in the conclusion.] Rules
with two mix-free premises also “pass on” the reduction to their conclusion. [Rule (—L): If t -3 t' and
u —g v, then ulyt/z] - v'[yt'/z]. Rules (NR),(UL): If ¢ =3 to in the left premise and ¢ —3 t1 in the
right premise, then tg = t; = t/, since mix-free derivations type normal terms and the normal form is
unique; so, we have ¢ -3 t’ in the conclusion.] If we run this procedure top-down in 7, we eliminate all
mixes in a finite number of steps and obtain a mix-free 7’ :: B¢’ : o, where t —4 t'. —

Theorem 2.21 (Cut elimination in IUT¢) For every derivation @ :: Bt : o in IUTq, there is a
cul-free derivation ' :: Bt : o, where t -5 t'.

Proof. If (IUTq)e is the system IUTq without the cut-rule (cut-free) and (IUT( )me is the system
IUT{, without the mix-rule (mix-free), then (IUTq)ct= (IUT()me. If 7 2 B -t : o in IUT¢, then, by
Theorem 2.11, there is a o :: Bt : o in IUT{,. So, by Theorem 2.20, there is a 7( :: B ¢’ : o, where
t g t',in (IUTE)me. Since (IUTH)me= (IUTG)r, thereis a ' =n : BFt' : 0 in (IUT¢)cr. —

Remark 2.22 The inclusion of contraction is necessary for the proof of cut elimination. For, if we
attempt to eliminate the cut shown below in the system IUT, which is IUT¢ without (C), we see that
the tree with root-sequent x : (o = B) Na b zx : B fails to complete bottom-up without cut and without
contraction. The boxes mark further failures.

y:abFy:a z:BFz:p

e Ty 80
r:akFz:a (NLz) r:a—pByratzy:f (NL1)
z:(a—=pB)NakFz:a z:(a—=PB)Na,y:abzy:p (cut)
cu
z:(a—=pB)Natzz: B
not an axiom not an axiom
DHlyl:a z:BFz: B DTz a 2 BFz:f cannot proceed bottom-up
ar 3 (—L) S 3 (=L) z:akFzr:pB (L)
T:ia— z|z]: z|:« T : 2
(L) (NLy) z:(a—=pB)Natzz: B

z:(a=p)Nakzz:f z:(a—=pB)Natkzx: B
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In TUT¢ we can prove the sequent x : (&« — ) NaF zx : f without cut, using the contraction-rule.

y:aby:a z:BkFz:p
r:a—>pB,y:akxzy: B
z:(a—=pB)Na,y:abzy:p ((La)
z:(a=pB)Na,y:(a—=B)Natzy: B ©)
z:(a—=pB)Natzz: B

(—L)
(NL1)

We can establish this derivation-tree, if we consider the cut as a special case of mix that eliminates a single
basic typing statement from the right premise and follow the method shown in the proof of Lemma 2.18.

The contraction-rule appears in case A:(NL).
Since we can derive the contraction-rule in TUT using the cut-rule, the cuts that cannot be eliminated

in this system are essentially the ones that embody contractions.

r:obFx:o B z:oy:obt:T

(cut)
B,z:obtlx/yl:T

These cuts introduce substitutions of variables by variables, which do not create redexes, so they are clearly
“good” cuts. A derivation in IUT that contains solely “good” cuts types a normal term. Nonetheless, we
choose to show a total cut elimination in IUT¢ than a partial cut elimination in IUT.

Given the necessity of contraction for the elimination of all cuts, we can now justify the definition of
IUTY{, and explain why cut elimination in IUT¢ was shown through mix elimination in IUT{,. Lemma 2.18
cannot be proved for IUT¢. In particular, with cut in place of mix, case B: (C):a does not work, since
the cut-rule eliminates exactly one basic typing statement from the right premise.

B x:0,y:0tu:p
moBkFt:o m B x:okulz/yl:p
m B, B+ ulz/y][t/x] : p

(©)

(cut)

————————————— , - —— - - ———— - ———— would need a (cut)’
would need a sequent: B, B’ b a term v = u[z/y][t/z] : p

On the other hand, trying to eliminate z : o, y : 0 by two consecutive cuts, we wouldn’t end up with two
cuts of less measure than the initial cut. A schematic counterexample is shown below.

y:o
T:i0,y:0
B zx:o,y:0ktu:p ©) =
i : 2B r:ok :
miBltio muBiaiobula/ylie o s
™ B, B' Fulz/ylt/x] : p
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y:o
Tio, Y0
moBkFt:o B xz:o,y:0ckFu:p
moBkFt:o B,B,z:okult/y]:p
B B - ult/ylife]

(cut)’, m’ = (d(o),lr +3) =m
(cut)’, m"” = (d(o),lr +3)=m

y:o
Tio, Yo
muBFt:o B x:0,y:0tu:p
moBkFt:o B,B',y:otrut/z]:p
B,B' Fult/z][t/y] : p

(cut)’, m’' = (d(o),lr +2) <m

(cut)’, m" = (d(o),lr +4) >m

The next remark sustains the necessity for exclusion of the (w)-rule in order to gain cut elimination.

Remark 2.23 Cut elimination is not valid in IUT ¢, since miz elimination is not valid in IUT! .
Lemma 2.18 cannot be proved for IUT! . because a miz-free derivation in IUT, . does not necessarily
type a normal term, as explained in Remark 2.12(ii). For example, in case A: (UL):a we would have that
to g« u[z/yl[t/z;] —p t1, but without the restriction that to and t1 are normal and consequently identical.
So, we wouldn’t be able to apply (UL) to |, and 7}, as they would (possibly) type different terms. This
problem would also arise in cases A:(UL):b, B:(UL):a, B: (UL):b, and B: (NR).

2.3 Term characterizations

In this section we show three theorems which characterize A-terms according to their typings in IUT ¢ and
one theorem which characterizes terms that are typable in IUT¢. The general schema of these theorems
is the following: “tis typable in IUT,¢ (resp. IUT¢) in such and such a way if and only if ¢ has such and
such a property”. The theorems for IUT ¢ also hold for the systems IUT,,, IT,c =IT 4 (») + (C), and
IT, =IT + (). The theorem for IUT¢ also holds for IUT =IUT¢ — (C), ITc =IT + (C), and IT. The
theorems for IT,, and IT have already been proved in [13], where the systems are denoted D2 and D,
respectively. Combining the theorems for IUT,¢ and IT,, (resp. IUT¢ and IT), we deduce conclusions
of the form “t is typable in IUT,¢ (resp. in IUT¢) in a certain way if and only if ¢ is typable in IT,,
(resp. in IT) in exactly the same way if and only if ¢ belongs to a set of A-terms defined by a certain
characteristic property”.

All the type systems are considered in natural deduction style. They can be gathered into two
groups: the type systems IUT,c,[UT,IUT,,,IUT with intersection and union types and the type sys-
tems IT,c,ITq,IT,,,IT with intersection types. Figure 2.3 displays the two rectangles of type systems
where downward arrows remove contraction and rightward arrows remove the (w)-rule.

We start by recalling basic definitions and properties concerning A-terms and sets of A-terms.

Proposition 2.24 Every t € A can be uniquely written in the form
AL o Ay (K) 1 .. (m,n > 0)

where t1,...,tn, € A and K is either a variable or a redex.
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IUT,c IUT¢ IT,c IT¢
or, T 1T, IT
M in [2] DQ in [13] D in [13]
Figure 2.3: The type systems.
Proof. In [13]. =

Definition 2.25 (Head reduction) (i) If t = A1 ... Az (y)t1. .. ty, for some variable y, i.e. if the
K in Proposition 2.24 is a variable, then t is in head normal form.

(i5) If t = Az1... Aopm- (Azw) vty ... ty, i.e. if the & in Proposition 2.24 is a redex, then the redex
(Az.u)v is called the head redex of t.

(iii) The head reduction of a term t is the (finite or infinite) sequence to,t1,...,tn,..., such that
to =t and tn41 is obtained from t, by contraction of the head redex of t,, if such a redex exists. If t,
does not have a head redex, then t, is in head normal form and the sequence ends with t,. We write
t —p t' for a head contraction and t —p t' for a head reduction.

By the above definition, a finite head reduction ends in head normal form.

Definition 2.26 (Leftmost reduction) The leftmost reduction of a term t is the (finite or infinite)
sequence to,t1,...,tn,-.., such that to =t and t,+1 is obtained from t, by contraction of the leftmost
redex of ty, if such a redex exists. If t, does not have a leftmost redex, then t, is normal and the sequence
ends with t,. We write t —; t' for a leftmost contraction and t —; t' for a leftmost reduction.

Definition 2.27 (Quasi leftmost reduction) An infinite quasi leftmost reduction of a term t is a
sequence t = to,t1,...,tn,..., such that (Vn = 0)[t, =3 tpy1] and (Yn = 0)(3p = n)[t, = tpta]-

If X, Y CA, then A DX — Y is defined as follows: (Vt e A)[te X =Y & (Vue X)[tue Y]] Itis
easily proved that, if X’ C X and Y C ), then ¥ - Y C X' — ).

Definition 2.28 (Saturated and N -saturated sets) Let X', N C A.
(i) The set X is called saturated, if for every u,t,x,t1,...,t, € A:

(ult/z)t1... th, € X = (Azu)tty...t, € X
(i1) The set X is called N-saturated, if for every u,z,ty,...,t, € A and t € N:
(uft/z)ty...th € X = (Azw)tty...th €X

Proposition 2.29 Let X, Y, N C A.
(i) If Y is saturated (resp. N -saturated), then X — Y is saturated (resp. N -saturated).
(1) If X, are saturated (resp. N -saturated), then XNY and XUY are saturated (resp. N -saturated).



2.3 Term characterizations 27

Proof. Easy to show using Definition 2.28. —

Definition 2.30 (Interpretation and A -interpretation) (i) An interpretation Z is a function which
associates with each type variable a a saturated ||z C A.

(1) If N C A, an N-interpretation Z is a function which associates with each type variable o an
N -saturated |a|z C A.

An interpretation (resp. N-interpretation) Z can be extended, so that it associates with each type
o a saturated (resp. N-saturated) subset of A. Given the images of type variables by definition and
letting |w|z = A, we extend Z inductively as follows: |0 = 7|z = |o|z = ||z, |o N 7|z = |o|z N|7|z, and
o U7|z = |o|z U|r|z. The soundness of this extension is ensured by Proposition 2.29. From now on,
given an interpretation (resp. N -interpretation) Z, we will write |o| instead of |o|z.

The next two lemmas play a key role in proving the four central theorems of this section.

Lemma 2.31 (Adequacy lemma 1) Let m:: 1 : 01,..., &y : O F w7 be a derivation in IUT ;¢
and I be an interpretation. If t1 € |o1],...,tm € |oml, then ulti/x1,... tym/zn] € |7].

Proof. By induction on 7. For the base case and the cases of the implication and intersection rules, we
refer to [13]. We show the rest of the cases, writing B for @1 : 01,..., Ty : O

B,y:ombFu:t

BFulzm/y]: T ©

The IH gives that u[t;/a;,tm/y] € |7|, where “t;/x;” stands for the substitutions “t1/z1,. .., tn/xm”-
16 is ulam [yt /2, = ult; /23, tm 9] € |7,

BFu:rt
—_— (UI
> B}—u:TUp( )

By the IH, we have that ut;/z;] € |7] C |7 U p|.

Brt:tUp B, y:tTFu:¢ B,y:ptu:¢
Bt ult/y] : ¢

(VE)

By the IH, we have that t[t;/z;] € [TUp|. If t[t;/z;] € |7|, the IH gives that u[t;/x;,t[t;/x;]/y] € |@].
It is then u[t/y][t;/;] = ultj/z),t[t;/z;]/y] € |@|. If t[t;/x;] € |p|, we proceed in a similar manner.

Lemma 2.32 (Adequacy lemma 2) Let w :: @1 : 01,..., Ty : O w7 be a derivation in TUT¢,
N be a subset of A, and T be an N -interpretation, such that |¢| C N, for every type ¢ # w. If
t1 € |o1ly. oyt € |loml, then u[tr/z1, ..., tw/2w] € |7].

Proof. By induction on 7. The most interesting case is the (—1I) case where the hypothesis “|¢p| C N,
for every type ¢ of IUT¢” is used (see [13]). The rest cases work as in the proof of Lemma 2.31. -

We continue with some basic definitions that concern intersection and union types.
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Definition 2.33 (Positive and negative occurrences) The positive and negative occurrences of a
type variable or of w in a type o are defined by induction on o as follows:

1. If 0 =« (or w), then the occurrence of a (or w) in o is positive.

2. If 0 =1 — p, then the positive (resp. negative) occurrences of a type variable or w in p are positive
(resp. negative) occurrences in o, while the positive (resp. negative) occurrences of a type variable or w
in T are negative (resp. positive) occurrences in o.

3. If 0 = 1 x p, where x is intersection or union, then the positive (resp. negative) occurrences of a
type variable or w in T or p are positive (resp. negative) occurrences in o.

Definition 2.34 (Final occurrences) The final occurrences of a type variable or of w in a type o are
defined by induction on o as follows:
1. If 0 =« (or w), then the occurrence of a (or w) in o is final.
2. If o =1 — p, then the final occurrences of a type variable or w in p are final occurrences in o.
3. If o =1 Np, then the final occurrences of a type variable or w in T or p are final occurrences in o.
4. If 0 =71Up, then no occurrence of a type variable or w in o is final.

Definition 2.35 (Non-trivial types) A type is called non-trivial, if it contains a final occurrence of
some type variable; otherwise, it is called trivial.

According to the above definitions, the non-trivial types can be defined inductively as follows: (i) all
type variables are non-trivial, (ii) if 7 is non-trivial, then ¢ — 7 is non-trivial, for every o, and (iii) if
o or T are non-trivial, then ¢ N 7 is non-trivial. Similarly, the trivial types can be defined inductively
as follows: (i) w is trivial, (ii) if 7 is trivial, then ¢ — 7 is trivial, for every o, (iii) if o and 7 are both
trivial, then o N7 is trivial, and (iv) o U7 is trivial, for every o and 7.

We can now state the first of the four theorems.

Theorem 2.36 (Head normal form theorem) A term t admits a non-trivial type in IUT,c if and
only if its head reduction is finite.

To prove the “only if” direction of the this theorem, we need the following lemma.

Lemma 2.37 Let No, N C A be such that: 1. Ng CN, 2. Ng CA — Ny, 8. Ng =N CN, and 4. N
is saturated. If T is an interpretation, such that |a| = N, for every type variable a, then: (i) Ny C |o],
for every type o, and (i1) |o| C N, for every non-trivial type o.

Proof. (i) By induction on o. We only show the union case and for the other cases we refer to [13]. If
o = 7 U p, then, using the TH, we have Ny C |7| C |o].

(ii) By induction on the non-trivial . Since union types are trivial, we refer to [13] for the whole
induction. —

For the “if” direction of the head normal form theorem we will use the next two results.
Proposition 2.38 Every term in head normal form admits a non-trivial type in IT,,.

Proof. We denote Tir, the set of types o i=a |w|o = o |oNo. Let u = Ax1... Axy-(y)t1... t, bea
term in head normal form and Tir, 2 7=w — ... 2w — « =w® 5. fB=2g1:01,..., Tm : O, for
some o1,...,0m € TiT,, We can apply implication elimination n times and then implication introduction
m times, as shown below, to type u in IT,, by the non-trivial type 1 — ... = o, — a.
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B y:thy:T B y:tHti 1w

(=E)

B,y:7k ()t :w® Y 5 B,y:TkFty:w
(—E)
B,y:7F (y)tita: w2 5
B,y:7F(y)t1 tn i@
———————————————— (—I)
y:ThFu:or —>... >0om S
_|

Theorem 2.39 If BFt:0 in IT, and t =3 t', then BF 1t : ¢ in IT,,.
Proof. In [13]. =

We can now provide the proof of Theorem 2.36.

Proof of Theorem 2.36. (=): Let 1 : 01,..., & : 0 b ¢ : 7 be a typing of ¢t in IUT,¢ with 7
non-trivial. Also, let Ny and N be the following subsets of A.

No={(@)t1...tp |n>0and t1,...,t, €A}
N = {t € A | the head reduction of ¢ is finite }

These Ny, N satisfy conditions 1-4 of Lemma 2.37 (proof in [13]). So, if we consider an interpretation
Z, such that |a| = N, for every type variable «, we have that Ny C |o;|, for every j from 1 to m, and
|7| € N. Since z; € Ny C ||, Lemma 2.31 (Adequacy lemma 1) implies that t[z;/z;] =t € |[7] C N,
i.e. the head reduction of ¢ is finite.

(«<): If the head reduction of ¢ is finite, then ¢t —, ¢/, for some ¢’ in head normal form. By Proposi-
tion 2.38 we infer that ¢ admits a non-trivial type in IT,, i.e. that B+t : o in IT,,, for some basis B
and some non-trivial type o € Trr,,. Theorem 2.39 then implies that B+t : o in IT,,, so finally B+t : o
in TUT,,c. _

The head normal form theorem also holds for systems IT,,, [T, ¢, and IUT,,, as the following theorem
states.

Theorem 2.40 A term t admits a non-trivial type in 1T, (resp. IT,c,IUT,,) if and only if its head
reduction is finite.

Proof. If ¢ admits a non-trivial type in IT,, (resp. IT,c,IUT,,), then it also does in the “bigger” system
IUT,c, so, by Theorem 2.36, its head reduction is finite. Conversely, if the head reduction of ¢ is finite,
then ¢ admits a non-trivial type in IT,,, as already shown in the proof of Theorem 2.36, so it also does in
the “bigger” systems IT,c and IUT,,. -

Theorems 2.36 and 2.40 imply that IUT,c and IT,, assign non-trivial types to exactly the same set of
terms, namely to the ones whose head reduction is finite. Although IUT,¢ is enriched with union rules
and contraction compared to IT,,, it cannot assign non-trivial types to a larger set of terms than IT,.
This is in a way expected, since union types are themselves trivial. Nonetheless, as the next example
shows, a term with a finite head reduction can have additional non-trivial types assigned to it in IUT ¢
besides the non-trivial types assigned to it in IT,,.
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Example 2.41 We consider the term t = Ax. (Ay.y)zz whose head reduction is finite, since t —p A\x. zx
and \z. zx is in head normal form. If B=x : a, z : a« — 3, term t admits the non-trivial type . — [ in
1T, as shown below.

B y:a—=pFy:a—p (1)
BFMyy:(a—p)—a—p BFz:a—p (o)
BF(Ay.y)z:a—p BFz:a
Bt (M\y.y)zz: B
z:a—=>BFt:a—p

(=E)

(=1

This typing is also valid in IUT ,c. But in IUT,c we can get a second non-trivial typing, as well, if
we substitute o by a union type ay U ag in the above derivation.

The next basic theorem of this section is the following.

Theorem 2.42 (Leftmost reduction theorem) A term t admits a type 7 in IUT,c in a context
L1 01, .-y Ty : O, where o1,...,0, contain no negative occurrences of w and T contains no positive
occurrences of w, if and only if its leftmost reduction is finite.

For the “only if” direction of this theorem we will need the next lemma.

Lemma 2.43 Let Ny, N be subsets of A such that: 1. Ng CN, 2. Ng CN — Ny, 8. Ng = N CN,
and 4. N is saturated. If T is an interpretation, such that Ny C |a] C N, for every type variable , then:
(i) No C |o|, for every type o that contains no negative occurrences of w, and (i) |o| C N, for every
type o that contains no positive occurrences of w.

Proof. We show (i) and (ii) simultaneously by induction on 0. We only give the case of union and for
the other cases we refer to [13]. If 0 = 7Up and o contains no negative occurrences of w, then 7 contains
no negative occurrences of w and, using the IH for 7, we get Ny C |7| C |o|. If 0 = 7 U p and o contains
no positive occurrences of w, then neither 7 nor p contain positive occurrences of w and, by the IH for 7
and p, we have that |7 C N and |p| C N, respectively. So, we get that |o| = |7| U|p| S N. -

Corollary 2.44 If Ny, N are subsets of A that satisfy conditions 1-4 of Lemma 2.43 and T is an inter-
pretation, such that Ny C |a| C N, for every type variable o, then Ny C |o| C N, for every type o that

contains no occurrences of w.

For the “if” direction of the leftmost reduction theorem we will use the fact that every normal term
is typable in IT.

Proposition 2.45 If t is normal, then BFt: o in IT, for some type o and basis B.

Proof. In [13]. -

The proof of Theorem 2.42 can now be supplied.
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Proof of Theorem 2.42. (=): Let 1 : 01,..., Ty : 0y F ¢ : 7 be a typing of ¢ in IUT,,¢, such that
o1,...,0, contain no negative occurrences of w and 7 contains no positive occurrences of w. Also, let N
and Ny be the following subsets of A.

N = {t € A | the leftmost reduction of ¢ is finite }
M={(@)t;...t, | n>0and t1,...,t, €N}

These N, N satisfy conditions 1-4 of Lemma 2.43 (proof in [13]). So, if we consider an interpretation
T such that |a| = N, for every type variable «, we have that Ny C |o;|, for every j from 1 to m, and
|T| € N. Since z; € Ny C |oj|, Lemma 2.31 (Adequacy lemma 1) implies that ¢[z;/z;] =t € |[7| C N,
i.e. the leftmost reduction of ¢ is finite.

(«<): If the leftmost reduction of ¢ is finite, then ¢t =g ¢/, for some normal term ¢'. By Proposition 2.45
we have that x1 : 01,..., T;p : oy B ¢ : 7 in IT, for some o1,...,0,, and 7 in Trr. Consequently, we
have that 1 : 01,..., Ty : oy F ' : 7 in IT,,, for some o1, ..., 0, with no negative occurrences of w and
some 7 with no positive occurrences of w. Theorem 2.39 implies that z1 : 01,..., Ty : o ¢ 7in IT,,
which, in turn, implies that z; : 01,..., ), : 0, F ¢ : 7 in the “bigger” system IUT . —

The leftmost reduction theorem also holds for the systems IT,,, IT,c, and IUT,,, as was the case with
the head normal form theorem.

Theorem 2.46 A term t admits a type 7 in 1T, (resp. IT,c,IUT, ) in a context 1 : 01,..., Tm : Om,
where 01,...,0, contain no negative occurrences of w and T contains no positive occurrences of w, if
and only if its leftmost reduction is finite.

Proof. If ¢t admits such a typing in IT,, (resp. IT,c,IUT,,), then it also admits such a typing in the
“bigger” system IUT ¢, so, by Theorem 2.42, its leftmost reduction is finite. Conversely, if the leftmost
reduction of ¢ is finite, then ¢ admits such a typing in IT,, as already shown in the proof of Theorem 2.42,
so it also does in the “bigger” systems IT,c and IUT,,. -

Obviously, the systems IUT,c and IT,, type exactly the same terms in this specific way, i.e. in a
context with types that contain no negative occurrences of w and with a succedent type that contains no
positive occurrences of w. These terms are the ones whose leftmost reduction is finite.

The third basic theorem follows.

Theorem 2.47 (Quasi leftmost reduction theorem) A term t admits a type 7 in IUT,c in a con-
text 1 : 01,..., Tpy & Om, Where o1,...,0m,T contain no occurrences of w, if and only there is no infinite
quasi leftmost reduction starting with t.

Proof. (=): Let 1 : 01,..., Ty : 0 F ¢ : 7 be a typing of ¢ in IUT ¢, such that o1,...,0,,,7 contain
no occurrences of w. Also, let A/ and Ny be the following subsets of A.

N = {t € A | there is no infinite quasi leftmost reduction of ¢ }
No={(x)t1...tp |n>0and ty,...,t, €N}

These N, Ny satisfy conditions 1-4 of Lemma 2.43 (proof in [13]). So, if we consider an interpretation
Z, such that |a| = N, for every type variable o, we have, by Corollary 2.44, that the interpretations of
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O1,...,0m,T all contain Ny and are contained in N. Since z; € Ny C |oj|, Lemma 2.31 implies that
tlzj/z;] =t € |[r| C N, i.e. there is no infinite quasi leftmost reduction of ¢.
(«=): If there is no infinite quasi leftmost reduction of ¢, then the leftmost reduction of ¢ is finite.

So, we have that t =g ¢/, for some normal term ¢, and 1 : 01,..., Ty : oy F ¢’ 7 in IT, for some
O1,-..,0m,T € Tir. Therefore, it is 1 : 61,..., Tm : o = t' : 7 in IT, with o1,...,0m, 7T free of
occurrences of w. Theorem 2.39 implies that =1 : 01,..., Tm : oy F t 2 7in IT, with o1,...,0p,,7 free
of occurrences of w. Therefore, it is also 1 : 01,..., Ty : oy F t: 7 in IUT,c with o1,..., 0,7 free of
occurrences of w. —

The quasi leftmost reduction theorem holds for IT,, IT,c, and IUT,,, as well.

Theorem 2.48 A term t admits a type T in 1T, (resp. IT,c,IUT,,) in a context x1: 01,. .., T : Om,
where 01,...,0m,T contain no occurrences of w, if and only there is no infinite quasi leftmost reduction
starting with t.

Proof. Similar to the proofs of Theorems 2.40 and 2.46. -

By Theorems 2.47 and 2.48, the systems IUT ¢ and IT,, type the same set of A-terms in a way such
that the types in the root-statement contain no occurrences of w; namely, the terms with no infinite quasi
leftmost reduction. Here again the “bigger” system does not “widen” the set of terms typable in the
specific way in question.

The last and most important theorem of this section is the following.

Theorem 2.49 (Strong normalization theorem) A term t is typable in IUT¢ if and only if it is
strongly normalizing.

For the “only if” direction of this theorem we will use the next lemma.

Lemma 2.50 Let Ny, N be subsets of A such that: 1. No CN, 2. No CN = Ny, 8 Nog = N CN,
and 4. N is N -saturated. If T is an N -interpretation, such that Ny C |a| C N, for every type variable
a, then Ny C |o| C N, for every type Tiur, D0 i=a|o —o|oNo|oUo.

Proof. By induction on 0. We only show the union case and refer to [13] for the other cases. If 0 = 7Up,
then, using the IH for 7 and p, we get that Ny C |7] C |o]| = |7| U |p| C N. —

Proof of Theorem 2.49. (=): Let ©1 : 01,..., Ty : O F ¢ : 7 be a typing of ¢ in IUTq. Also, let N/
and Ny be the following subsets of A.

N ={te A |tis strongly normalizing }
M={(@)t;...tp I n>0and t1,...,t, €N}

These N, Ny satisfy conditions 1-4 of Lemma 2.50 (proof in [13]). So, if we consider an N -interpretation
Z, such that |a| = N, for every type variable a, we have that Ny C |oj|, for all j from 1 to m, and
|T| € N. Since z; € Ny C ||, Lemma 2.32 (Adequacy lemma 2) implies that t[z;/z;] =t € |[7] C N,
i.e. t is strongly normalizing.

(«<): If t is strongly normalizing, then it is typable in IT (see proof in [13]), so it is also typable in
IUTG. -

The strong normalization theorem holds for IT, IT¢, and IUT, as well.
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Theorem 2.51 A term t is typable in IT (resp. ITc,IUT) if and only if it is strongly normalizing.

Proof. If ¢ is typable in IT (resp. IT¢,IUT), then it is also typable in the “bigger” system IUT, so, by
Theorem 2.49, it is strongly normalizing. Conversely, if ¢ is strongly normalizing, then it is typable in
IT, so it is also typable in the “bigger” systems IT¢ and IUT. —

The systems IUTq,IUT on one hand and IT¢,IT on the other are all equivalent with respect to the
set of terms they type, as they all exclusively type the strongly normalizing terms. It is worth noting that
union types in IUT¢ and IUT do not type a larger set of terms than intersection types in IT¢ and IT.
We can, therefore, say that type systems with intersection and union types are conservative extensions
of corresponding type systems with intersection types as far as typable terms are concerned.






CHAPTER 3

Toward a Logic for Union Types

Working in natural deduction style, the aim of this chapter is to find a logic corresponding to the minimal
type system with intersection and union types IUT in the manner that the logics IL and ISL correspond
to the type system IT. Toward this end, we may start by examining whether minimal intuitionistic logic,
denoted ML, would be suitable as such a logic, although the failure in correlating LJ with IT in Chapter
1 forces us to expect a negative result. The logic ML is the implicative, conjunctive, and disjunctive
fragment of intuitionistic logic; actually, it is the extension of LJ with rules for disjunction.

Definition 3.1 (ML) Considering formulas generated by the grammar o == a|o - o |oc Ao |o Vo,
where « belongs to a countable set of atomic formulas, the logical system ML proves statements I' - o,
where T is a sequence of formulas. Its rules are shown in Figure 3.1. Implication is, as usual, right
associative, while conjunction and disjunction are left associative and precede over implication.

(ax)

cko
Fly—‘O'}_}_TT ) % o
T'to 1 (AI) M(/\El) M(/\E2)
THoAT T'ko Er
e I

Figure 3.1: The logic ML.

35
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rioklFx:o (ax)
P . P - . q .
pF.#t.TA W) TP y:oyxc:m, ATt p (X)
M, z:okbt:r TP e:my:0 AVt:p
P z:okFt:T PrHt:c—>rT IPFu:o
I E
IPFXe.t:oc—T =D IPrtu:t (=E)
IPFt:o IPFu:7 (AT) IPHt:oANT (AE1) IPHt:oNT (AEs)
IPF (t,u):o AT IPEmt):o TP mo(t): 7
F{’ Ft:o (V) F’? Ft:r (V12)
I’Fii(t):oVT IPkixt):oVT
P . P . . P . .
IPHt:ovrT I z:0kFu:p I’ y:tkov:p (VE)

I'? Fcase t of i1(z) = u; i2(y) —»v:p

Figure 3.2: Standard decoration of ML.

Obviously, a standard decoration of ML with untyped A-terms does not deliver IUT. Such a deco-
ration encodes all the logical connectives and delivers the Curry type system A% in the Curry-Howard
perspective.

Definition 3.2 (Standard decoration of ML) Let 7 :: I' = 01,...,0p - T be a derivation in ML.
By decorating contexts bottom-up with distinct variables starting with the sequence p = x1,...,&y and
then decorating formulas to the right of “F” top-down with terms generated by the grammar

tu=wx| et |tt| (¢ t) | m(t), m2(t) |i1(t),i2(t) | case t of i1(x) — t;ia(x) >t

we get a decorated derivation 7 TP =x1 : 01,...,&y : o Ft: 7. The decoration rules are presented
in Figure 3.2. When decorating contexts bottom-up, the new variable in a (—I) premise or in a (VE)
minor premise is fresh with respect to the variables in the branch connecting the conclusion to the root.
In addition, the fresh variables in two (VE) minor premises are distinct.

Definition 3.3 (\Y) Considering types built by implication, conjunction, and disjunction, i.e. simple
types extended with disjunction, the type system N\ proves statements B - t : o, where B is a basis,
t belongs to the set of terms generated by the grammar in Definition 3.2, and o is a type. Its rules are
displayed in Figure 3.3.

The logic ML relates to the type system A\’ through (standard) decoration and erasure in the same
way that LJ relates to \%,.
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B,x:obzx:o (2x)

B,z:obt:T BFt:o—T BFu:o
I —E
BFXMe.t:o—T =0 Brtu:r (=)

BFt:o BFu:T (AD) BFt:oAT (AE1) BrEt:oAT (AE3)

BF (t,u):o AT BbFm(t):o BFm(t): T

BI—t:o (V1) BFt:T (V12)

BrFii(t):oVT BFix(t):oVT

Brt:oVvr B,x:okFu:p B,y:tkwv:p
Bl casetofii(z) > u;iz(y) —v:p

(VE)

Figure 3.3: The type system \"Y.

The next step is to attempt a correspondence between ML and IUT through a non-standard decoration
of ML. The aim is to define a decoration of ML that transforms a derivation of ML to one of IUT,
provided the additional conversion of conjunction and disjunction to intersection and union, respectively.
The very rules of IUT dictate that we introduce a decoration which encodes the implication, ignores the
conjunction and the introduction of disjunction, and induces a substitution operation in the case of the
elimination of disjunction. The rules for such a decoration are shown in Figure 3.4. As in the case of
the non-standard decoration of LJ, the decoration terminates only in derivations of ML in which the
(AI) rule is applied to isomorphic premises and the (VE) rule is applied to isomorphic minor premises;
otherwise, the decoration fails.

Obviously, it is only a proper subset of ML, denoted MLns, that admits a non-standard decoration
and this subset corresponds to IUT through decoration and erasure.

ML

IuT

MLns

decoration

erasure

In particular, a derivation of MLns can be non-standardly decorated to provide a derivation of IUT, if
decorated contexts are seen as sets, conjunction and disjunction are converted to intersection and union,
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(ax)

r:obx:o

. P - . q .
Pt r W) TP y:oyxc:m, ATt p (X)
", z:okFt:7 TP e:my:0 AVt:p
TP, z:0bt:T PrHt:c—>rT IPFu:o
I E
IPFXe.t:oc—T (=0 P hFtu:T (=)
I"PHt:.o IPHt:r (AT) IPHt:oNT (AE1) IPFt:o AT (AEs)
IPHt:oNT IPHt:o PrHt:r
IPFt:o IPrHt: 7
— (VI —— (VI
IPHt:oVvrT (Vi) PrHt:oVT (V12)
IPHt:ovrT TP z:okFu:p P z:rhu:p
(VE)

TP Fwlt/z]:p

Figure 3.4: Non-standard decoration of ML.

respectively, and structural rules are ignored. Conversely, a derivation of IUT can be converted to one of
MLus, if terms are erased, variable-free bases are seen as sequences, intersection and union are restored
to conjunction and disjunction, respectively, and structural rules are added, if necessary. The example
below depicts this back and forth between MLns and IUT. Dashed lines denote consecutive structural
rulesand T =(a = ) A(y = 8),aVy,while B=z:(a—=F)N(y—=B),y:aU~.

S R A Gl O O d) @ Brao B e A= h)
Faak(a%ﬁ)/\(’yéﬂ) (/\E) _Oi_'*_()i_ F,’YF(OL—}B)/\(’Y—}B) (/\E) _’Y':’Y_
aVykFaVy Nakta—pg Taka yykFy—p T'ykFy
—————— (—E) (—E)
I'FaVvy Talp F’VFB(\/E)
FFMLnsﬂ
decoration
—
H
erasure
B,z:abtz:(a—=pB)N(y—B) B,z:ykFz:(a—=B8)N(y—B)
(NE) (NE)
B,z:alFz:a—p B,z:al—z:a(HE) B,z:ykFax:vy—p B,z:’y)—z:’y( E)
BFy:aU~xy B,z:aF:B B7zva:ﬁ
(UE)

BFur zzly/zl =2y : B
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Derivations in ML\MLns do not admit a non-standard decoration. An example of such a derivation
is shown below, where ' =a — g,y = f,aVyand " =z:a =8, y: 7y = S, w:aVry.

a=pra=B _akba_ FBFY= B by
aVykFaVy Naba—8 Laka (&) LiyFy—=8 Loy (&) decoration
'FavVvy Iakp IyEB (VE) -
'kp
TiaBra:a—sp _zrabzia y:yzoBry:iyzB _EiybEiy
w:aVykFw:aVy ',z:aktaxz:a—p3 F*,z:al—z:a( E) ', z:vyFy:v— 8 F’,z:’yl—z:’y( E)
__F*_F_w_:;;v__ F*7z:aF:ﬁ F*,z:'yF:ﬁ
(VE)

7] 8

We conclude by the above that ML is not a logic for IUT via a decoration-erasure correspondence.
Actually, a standard decoration of ML renders a correspondence between ML and A" and a non-standard
decoration of ML renders a correspondence between MLns and IUT. This non-standard decoration marks
out the synchronous aspect of conjunction and disjunction by presupposing identically decorated premises
in (AI) and identically decorated minor premises in (VE), respectively. The correspondence between MLns
and IUT manifests that intersection and union correspond to synchronous conjunction and disjunction,
respectively. It remains to examine synchronous conjunction (or intersection) and synchronous disjunction
(or union) as logical connectives. Toward this end, we aim to express MLns as a logic of its own by
introducing extensions with union of the logical systems IL and ISL.

3.1 Intersection and Union Logic ULy

We define Intersection and Union Logic IUL; as an extension with union of Intersection Logic IL. The
goal is to achieve a correspondence between IUL; and MLns. Since MLns corresponds to IUT, this is
equivalent to showing a correspondence between IUL; and IUT.

The following definition assumes the notions of overlapping kits and implication between such kits, of
paths, subtrees at certain paths, terminal paths, different paths, and of pruning, as given in 1.9.

Definition 3.4 (IULy) (i) A kit is a binary tree K ::= o |[K, K| with leaves 0 ::= a|oc — o|ocNo|oUa,
where « belongs to a countable set of atomic formulas. We use K, H, L to denote kits and o, T, p, etc. to
denote leaves.

(i) The notation Hp := K] stands for the kit resulting from the substitution of subtree H? by K in
H. If q and p are paths in H and q is terminal, the left doubling of leaf H? at path p, denoted HYy, is
defined as H[p := [HY, HP]], while the right doubling of leaf HY at path p, denoted H%/,,, is defined as
Hlp:= [H?, H]).

(iii) The deductive system IULy, derives judgements I' = K, where the context I" is a sequence of kits
and K is a kit. It extends IL with rules for doubling and union, as shown in Figure 3.5. The letter s
stands for either path [ or path v and the index j in contexts runs from 1 to m.
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T
%(W) F:H17H27A|_K (X)
TLHFK T,y H,AF K
S N GRS L G
T\ + K\P TYps b KYps
I'N'HFK I'-H - K I'tH
TFa K P IFK o
Hipi= o) F K= o7
Hjljp:=o0;]F Klp:=0nNT]
'FKp:=0nr] (AE1) 'FKp:=0onr] (NE2)
' Klp := o] - Kp:=r7]
' Klp := o] (1) ' Kp:=r7] (L)
' Klp:=0cUT] ' Klp:=0cUT]
Hilp:=oj]F Klp:=oUT] Hilp := [0y, 051 Klp := oy 7l Llp := popll

Hj[p:= o;] = L[p := p]

Figure 3.5: The logic IUL.
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Remark 3.5 (i) The inclusion of the rule of doubling (D) is motivated by technical reasons, as was the
case with the inclusion of pruning in the first place. If q = p, then the (left or right) doubling of leaf
H? = H? = o at path p is H?/,, = H?/,, = H[p := [0,0]]. This gives the following special case of the
rule.

Hjlp:=o0j]F Klp:= 1]
Hjlp :=[0j,05]| - K[p := [, 7]]

(D)

(i) If s,s" € {l,r}, the following equalities hold.

1. For any context ' where p # q, it is (D\P*)\2*" = (I\2")\ s,

2. For any context I where p & {q,q'} and q is terminal, it is (T\P*)Y/y s = (T )\F*.

3. For any context T where p,p’ & {q,q'} and p,q are terminal, it is (TP/ps)Yys = (LY g5 )P/prs-
4. For any context I' where p is terminal, it is (I'P/,5)\P* =T

Since IULy is intended to realize MLns, where disjunction elimination is applied to isomorphic minor
premises, i.e. intended to express the synchronous aspect of disjunction as union, the union elimination
rule in IULy, incorporates this isomorphism of minor premises by joining them together in the kit structure.
As was the case with intersection introduction, isomorphic or same premises occupy terminal paths in
the same kit, paths which differ only in the last letter. Therefore, union elimination has a single minor
premise and a non-standard decoration in IULj always terminates.

...Ft:ov ok Thuw:
grT ToTup T TP 8P (VE) in MLus
. Falt/z]p
..ktiouUT @ o, Tl Fu p, pl

Falt/z]:p (UE) in IULy

As already noted in the discussion of 1L, the implicative rules affect all terminal paths of certain kits
and are called global. Doubling alters the part of a kit rooted at the end of a specific path, so it can be
categorized as local together with pruning. As far as union rules are concerned, the notation “__[p:= __]”
used in their presentation urges a packaging with intersection rules which are presented likewise. We
are inclined to say that union rules, as well, act on specific paths and are therefore local. However, a
more thorough investigation of rule globality and locality will later show that such a classification is not
accurate in the case of union elimination.

We next define a non-standard decoration of IULj; which encodes the implication, brings about a
substitution in the case of union elimination, and ignores all other rules. This decoration actually extends
the non-standard decoration of IL (see Definition 1.11) to doubling and the union rules.

Definition 3.6 (Non-standard decoration of IUL) Suppose that m :: T’ = Hy,...,Hp F K is a
derivation in IULy. By decorating contexts bottom-up with distinct variables starting with r = x1,..., Ty,
and then decorating kits to the right of “F7” top-down with terms in A, we get a decorated derivation
a2 T"=x:H,...,¢m : Hy Ft: K. The decoration rules are demonstrated in Figure 3.6. When
decorating contexts bottom-up, the new variable in an (—I) premise or in a (UE) minor premise is fresh
with respect to the variables in the branch connecting the conclusion to the root.
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r:KFtzr: K (ax)
TFTI—t:K W) F,y:Hl,ac:Hz,A,Ft:K (X)
Ie:HiEt: K 'z :Heyy: Hi, A" Ft: K
"t "t
pl;TthS ) qFTth (D)
(V) bt K\ Te) T 5 K
''ye:HFt: K I'rt:H-> K I'rtuw:H
(—I) - (—E)
I'tXe.t: H—> K I'kFtu: K

zj : Hjlp:=loj,05]]Ft: K[p:=[o,7]]

(nD)
zj: Hij[p:=oj]Ft: Klp:=0nNT]
IP"Ft:Kp:=0nr] (NEx) IP"Ft:Kp:=0nr] (NE2)
I'"+t: Kp:=o] I"+t:Kp:=r1]
I'"tt:K[p:=o] o) I"Ft:Kp:=r1] (UI)
I'tt:Klp:=0cUrT] I"Fit:Kp:=0oUrT]
zj: Hijlp:=oj]Ft: Klp:=0cUT| zj : Hi[p:=[oj,0}]], z: K[p :=[o,7]] Fu: Llp := [p, p]]

(VE)
zj : Hjlp := oj] - uft/z] : Llp := p]

Figure 3.6: Non-standard decoration of IUL.

Remark 3.7 We can easily show that, if 7* :T" Ft: K, then FV(t) C {r}.

We stress the fact that every derivation of IUL; admits a non-standard decoration. This is because
the kit structure has been used to unite the isomorphic premises of (AI), so that (NI) has a single premise,
and also to unite the isomorphic minor premises of (VE), so that (UE) has a single minor premise.

3.1.1 Commutations of local rules

As already mentioned in Chapter 1, a derivation of IL is defined in [18] as an equivalence class of
derivations of pIL which differ only in the order of application of consecutive local rules concerning
different paths. A derivation of IULj can be formally defined in a similar manner provided that (UE)
is not considered local. Thus, if the system introduced by Definition 3.4 is called “pre-Intersection and
Union Logic with kits”, denoted plULg, a more rigorous definition of IULj, can be pursued as follows.
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Definition 3.8 (IUL;, formal) Intersection and Union Logic IULy is the quotient set pIULy/~ of
pIUL; by the equivalence relation “~7” defined below'. Paths p and q are different in commutations that
involve only p and q, whereas p € {q,q'} in commuting (P,D), p,p’ & {q,q¢'} in commuting (D,D), and
q ¢ {p,p'} in commuting (D,NI),(D,NE), (D, Ul).

Tk _ TFE
s s Prs ~ o o
T\P - K\ N\ - K\?

; ; ; ; (
(TAPNE = (BAP2)\® (TAT)NP = (KA )\

(P)gsr

(P)yor 3.5(ii, 1) P),.

'K 'K

T ke O ~ T F K O
\ \ (D), 3.5(ii,2) fa's' ars' P)pe
(F\ps)q/q/s/ F (K\ps)q/q’S’ (Fq/q’s’)\ps F (Kq/q’S’)\ps
N 5 N
I\P* = (Kg := [o, 7]])\" (1) 3.5(ii,1) N+ Klg:=0n7] (P),.
TN - (Klg == o n7])\P? ! (T\“)\"* F (Klg == o n7])\P*
I'-Klg:=0nT] ®)s ' Klg:=0nNT] (nE),
T\’ + (K[g := o NT7])\?* (AE) ~ 't K[qg:= 0] )
P\P* = (K[g := o])\** ! D\” F (K[g:=o])\P* = "
'+ Klg := o] ), '+ Klg := o] D),
M\ + (Klg := o])\"** wn ~ 'Klg:=0UT] ®)
M (Klg=o o T Rl oo
-k (D)., -~ __PFK  (py,

Fp/p’s - Kp/p/s
(Fp/p’S)q/q’S’ = (Kp/p’s)q/q’S’

Fq/q/s/ }_ Kq/q/s/ (D
(Fq/q’é!’)p/p’s = (Kq/q’S’)p/p’S

(D), 3.5(ii,3) )

't Klg :=[o,7]] D),/ N FS}— Klq := [o,7]] (D,
PPps B (Klg := [0, 7]]) /s (1) 3.5(ii,2) N FKlg:=0nT1] (D).,
T s\ B (Klg := 0 N 7])prs ! (O\fprs b (Klg =0 0T s "
'FKlg:=0nT] D),/ Pk Klg:=0nNT] (\E),
P/ B (Klg :=0NT))P/ps B ~ '+ Klg := o] D).,
1—‘p/p/s = (K[ = U])p/p/s ! Ijp/p’s + (K[q = U])p/p’s !

IStrictly speaking, the equivalence relation “~” is the reflexive and transitive closure of the relation given in 3.8.
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'+ Klg := o] D)., ' K[q := o] wn)
Tyrs b (Klq = 0])%ys (:1) ~ Ik K[g:=0UT] "(D) ,
T2/ F (Klg = o UT])%y, ! s b (Klg:=0UT) s ©
O K=ol ool 5 O Kl e ol
I\" + K[p := o Nr]lg := [p,v]] ’ 3.5(ii.1 N+ Klp:[o,7]][g := pNv] :
(nI) (ii,1) (nI)
VN F Kpmonrig=pne] N F K =onillgmpne]
' Kp:=[o,7]][lg:=pNuv] (D) 't Kp:=[o,7]][g:=pNv] (NE)
NP+ Klp:=onNtllg:=pNu] (mE)p '+ Kip = [o,7]][g := p] (D) !
D\» F K[p:=0nNt]lqg:=p ! N\ + K[p:=0onNT]lg:=p] g
L Ep=lole=p IEKp:=lolla=r
I\ + K[p:=onN7llqg:=p] (ui) 'k Klp:=lo,7]][g:=pUn] (mi)
NP+ Klp:=0nN7]lg:=pUv] ! N\ +Klp:=0cnN7]lg:=pUv] !
'k Klp:=0n7]lg:=pNu] (nE) ' Klp:=0cn7]lg:=pNu] (nE)
'+ Kp:=o|lg:=pnu] (nE) ! 't Klp:=0onrt][g:=p] (AE) !
I'F Kp:= ol := p] ! I+ Kp:= ol := p] !
'k K[p:=0on7]lg:=p] (AE), 't Klp:=0on7llg:=p) D),
'+ Kip:=o][g:=p] L) Pk Kp:=0cnrt]lg:=pUn] (AE)
't Kp:=o]|[g:=pUv] ! ' Kp:=ollg:=pUv] !
I'E Klp:o]lg == p] D), I'FKlp:o]lg = p] Y
'k Klp:oUT]lg :=p] (L), 'k Klp:ollg:=pUv] ),

I'Kp:oUT][g:=pUv]

P'FKp:oUT|[g:=pUv]

A derivation w :: I' b K in IULg formally denotes an equivalence class of derivations in pIULy, all
proving I' - K.

Remark 3.9 (i) Since the local rules (P), (D), (NI), (NE), and (UI) are not impressed on the decoration
of a derivation, we can safely say that derivations of pIULy in the same equivalence class admit the
same decoration provided that contexts are identically decorated. This decoration is also the one for the
TULg-derivation representing the equivalence class in question.

(ii) As already remarked for the case of plL and IL in Chapter 1, in practice an equivalence class
of plULg-derivations, i.e. an IULy-derivation, is identified with a specific member of the class, i.e. a
specific plULg-derivation. Thereupon, we can actually ignore Definition 3.8 and confine ourselves to
Definition 3.4.
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Had we considered (UE) local, we would have also had to examine the commutations of the pairs
(P,UE), (D, UE), (NE, UE), (UL, UE), (NI, UE), and (UE, UE).

The first four pairs commute symmetrically, though not without minor restrictions which stem from
the fact that (UE) is a two-premise rule. In particular, for the pair (P,UE), the only case that works is
when both premises of (UE) derive from (P) and this is because this structural rule messes up with the
tree-structure. Cases where only one premise of (UE) derives from (P) do not work. The same holds for

the pair (D,UE).

't Klg:=oUT] ss, Klg := [0, 7] F Lg = [p, p]]

D\P* - (K[g := o UT])\** (" (TY45)\P*, (K (g := [o, T])\"* = (L[g := [p, p]))\** E?E) 3.5?11,2)
P\P¢ = (L[g := p])\** !
' K[g:=0UT] 145, Klg := [o, 7]] = Llg := [p, pl] (UE)
I' Lig == p] ®) ’
D\P* - (L[g = p)\*
I'FKlg:=oUr] D)., Uas, Kla = [o, 7]] F Llg := [p, pl] D)., N
LP/prs H (Klg := o UT])P/prs i (T%4s)" s, (Klq == [0, 7]])"/prs & (Llg == [p, pl])"/p's (UEZ; 3.5(ii,3)
D¥fprs = (Llg := p))/prs !
't Klg:=0UT] I'Yys, Klg := [o, 7]] = Llg := [p, pl] (UE)
I'F Lig = pl (D)., !

U/ a b= (Ll := pl)¥/ps

On the other hand, for the pair (NE,UE), the only case that works is when the minor premise of (UE)
derives from (NE). The same holds for the pair (UI, UE).

I/as, Klg := [o, 7] F Llg == [, m]llp := p N v]

PEKlg=our] U Kg= o La=nalo=o "
I Llg := n][p := p] !
L Klg=oUrl T Kl =lorllF Lo =lnllpi=p0el
PFLg=nlpi=pnv] !
I Llg := nl[p == p] Y
15, Klg := [o, 7] = Lig := [n,m]llp := p] D)
I'-Klg:=0Ur]  T%s Klg:=[o,7)|F Lig:= [nnlllp:=pUv] (UE;

'k Llg = nlp:=pU]
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' Klg=o0UT] I/4s, Klg := [o, 7] F Llq := [0, n]llp := p]
I'F Lig := nllp := p]
I'+Lig:=nllp=pUv]|

(VE),

(LI),

For the last two pairs the interchange relation is not exactly symmetrical, since the cases that work
involve additional structural rules or restrictions on certain leaves. As examples, we show the pair (NI, UE)
in the case where the minor premise of (UE) derives from (NI), which is actually the only case that works
for this pair, and the pair (UE,UE) in the case where again the minor premise of the lower (UE) derives
from the upper (UE). We present the latter pair using a simple kit-structure to avoid heavy formalism.

(I4s)?fos, Klg := [0, 7]][p := [¢, 1] - Lig := [, nlllp := [p, v]] (D)
' Klg:=cUr][p:= ¢ 'Y, Kq := [o,7)][p := ¢] - Llg := [, 7]][p := p N v] s » )
'k Lig:=n]p:=pnuv ? 3.5(i1,3)

't Klg:=cUT|[p:=d¢] D)
Ds FKlg:=oUtllp:=[6,¢l] " (D%ps)%ass Klg = [0, 7lllp := [, ¢l - Llg := [, nl]lp = [p, ]

T Ly = b= lpol]l o
'k Lig :=nllp=pnv]
FT/TN [X’ [P; U” F [U Ur, [¢7 d)” (FT TT)l/lly [[X) X]7 [P; U”’ [[U’ T]7 [¢7 d)” F [[777 77]’ [97 9” (UE),
' [x,pUv] fers [ [, V] F [0, 16, 6] (UE) g
TF [1,6] r 3.5(ii,3)
DEhopUul  Thnlulpul Floun el sce right below
I'Elour, ¢ " waD[loy 7], @1 [Ins ), 6] (UE)
T+ [, l
Ik [x,pUv] (D)
1_\l/” F [[X’ X]’ puU U] W (FT/TT)l/lly [[X: X]7 [P, U]L [[07 T]’ [d)) d)” + [[77’ 77]7 [9’ 9” (X)
Fl/”: [[U: T]: ¢] = [[X: X]: pU U] (FT/TT)l/llz [[07 T]: [¢: ¢]]7 [[X: X]: [P, U” = [[77: 7]]7 [0: 9]] (UE),

Tl 1_‘l/lly [[07 T]:‘M = [[n: 7]]79]

In the case of (UE,UE), the leaves of subtree [¢, ¢] must be identical, so that (UE), can be applied, and
even twice, in the derivation to the right of “~”. This means that a restriction is posed on leaves of the
premises of (UE); in the derivation to the left of “~”, since, in its general case, this rule would be applied
with different such leaves.

The above discussion highlights the peculiar nature of (UE), when compared to the (other) local rules
(P), (D), (NI), (NE), (UI). Besides the fact that union elimination is a two-premise rule, while all the
others are one-premise rules, there are significant abnormalities in commuting union elimination with the
others, while the others commute with each other quite smoothly. The formalism of molecules will later
reveal a certain kind of globality inherent in the union elimination rule which is as yet concealed by the
complex notation of kits. So, fortunately, union elimination will prove to differ from the rules categorized
as “local”, retaining the validity of Definition 3.8.
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3.1.2 Relating IUL; to MLns

Using the non-standard decorations of ML and IULj, we will attain a connection between a single
TULj, derivation and a finite set of MLns derivations modulo the conversion of intersection and union to
conjunction and disjunction, respectively. We will show that any derivation 7 in IULj provides a finite
number of derivations in MLns which all share the decoration of 7. The next theorem is an extension of
Theorem 1.12.

Theorem 3.10 (From IUL; to MLns) Let 7 :: Hy,...,H,, - K be a derivation in IULg, such that
*

7 o oxy  Hy,..., @y : Hyp Bt 2 K. For every terminal path p in Pp(K), there exists a derivation
P (Hy)P,...,(Hp)P = KP in MLns, such that (7P)* @2 @y 0 (H1)P,..., Ty (Hp)P Ft: KP.
Proof. By induction on 7*.
Base: If 7* ::  : K F o : K is an IUL}-axiom and p € Py (K), there is an axiom #? :: K? - K? in
MLus, such that (7P)* :: @ : KP -z : KP.
Induction step: We show the most interesting cases.
j : Hjlp := [0j,05]] Mt : K[p := [0, 7]]

> = (N1)
7 wj Hjlp:ojlbt: Klp:=0oNT|

Let g € Pr(K|[p := [0 N7]). We distinguish two subcases.
1. If g # p, then q € Pp(K|[p := [0, 7]]). So, by the IH, there is a

w8 (Hjlp = [oj,05]) + (K[p := [0, 7]))?
in MLns, such that (7d)* :: L (Hjp = [0,05]))7 - t : (K[p := [o,7]])?. Since (H;[p := [0},0,]))? =
(Hj[p := 0])? and (K [ [ ]])" = (K[p:=0on7])?, it is 7 = 7.

2. If ¢ = p, then pl,pr € Py (K|[p := [0, 7]]). So, by the IH, there exist 7r0l o; F o and 7ror oj T
in MLns, such that (72')* :: zj o Ft:oand (nf ) oxy 0'] - ¢:7. Applying (AI) to 75, 7k", we
get a 7 :: oj F o AT which is in MLns, since both 72 and 74" are in MLns and they are isomorphic.
Moreover, it is (7?)* :: zj 105 Ft: 0 AT,

b gy xj Hi[p:=oj]Ht: K[p:=oUT] 7y xj o Hi[p:=[oj,0;]], x: K[p:=[o,7]] Fu: L[p := [p, p]] o
w* i xj o Hilp:=oj] Fult/z]: Lp := p)

Let g € Pr(L[p := p]), then ¢ € Pyr(K|[p := o U7]). We distinguish two subcases.

1. If ¢ # p, then ¢ € Pr(L[p := [p,p]]). We have that (H[p := [0;,05]])7 = (H;[p = o;])? = ¢;,
(Klp:=lo,7]])? = (K[p:=0cUT7])? =, and (Lp := [p, p]]) (L[p =p])?=¢. By the IH, there exist
78 ¢; F Cand 7] = ¢, ¢ F € in MLns, such that (7d)* :: @ : ¢; F¢: C and (7])* = ¢J,x (Fu:é

It is 77 = S(nd,wl) = ¢, F &, where S(WO, 77) stands for the derivation obtained from 77 by substituting
specific instances of axioms ( F ¢ by ¢ and then possibly eliminating some structural rules. The (non-
standard) decoration of the substitution derivation 77 gives (79)* :: x; : ¢; F u[t/x] : &

2. If ¢ = p, then pl,pr € Pr(L[p := [p, p|]). So, by the IH, there exist 7} :: 0; - oV T, Wfl 0,0 p,
and 7% :: 0,7 F p in MLns, such that (w8)* = z; :o; Ft:oV T, (7P = @j 05,2 :0F u: p, and
(7" wj 04, & TFw: p. Applying (VE) to WO,W{’I,W{'T, we get a P :: o b p which is in MLns, since
cach of ¥, 7% 7P is in MLns and 7%, 7" are isomorphic. Moreover, it is (72)* = x; : oj F ult/a] : p.
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Definition 3.11 Let 7 :: T'F K be a derivation in IUL;, and ML(w) = {#? |p € Pr(K)}. A derivation
7P in ML(7) will be called a projection of m in ML.

Example 3.12 Let o = anB, 7=9N6, and p= (8 =) N —n). If Tog =o,7],[a — 6,p] and
Ty = o, 7], [ = 0,p, 0, o, [0,C]], consider the following derivation w in IULy.

dorFlor 0 lezblpolltla=0lell
Tl Rl bld o BBl
ok [a) 6] (ur) ISRy [a — 9) [6 — 777< — 77” Iy [Oé, [6) C]] (E)
Lo ko, 6 U(] Ty F (6, [, ml] (UE),
o+ [07 7]] (=1)

m o, T [(a—0) = 0,p— 1]

There are two projections 7' and 7" of m in ML. Abstracting the left paths in ©, we arrive at a
substitution operation which is carried out to give w'.

o lhasg O
g, — a —
oo W) ) W) __afa o wx
oa—0Fo o,a = 0,akFa—6 o,a—0,aF«
(AE) (—E)
o, a—0Fa o —0,ak
——————————————————————————————— [substitution]

————————— (WX) .
oa—0Fa—0 mio,a—0Fa

(—E)
S(rh, ) o0 —0F0

(=1
ok (a—0)—0

Abstracting the right paths in @, or, more precisely, the terminal paths whose string starts with r, we
arrive at a (VE) inference in 7"

= =
%(W) S hSE, o™ ?EZE_(W") CH¢
L (/\E) # (/\E) — § ': (i — (WX) # ( E) _____ (WX)
T,pké mp,0Fd o T,p,0 4 et —=n ¢

(VI) (—E) (—E)

TpEdV¢ 001 YIS/ RPN
npEn
- (=1)
Tk p—n

So, the (UE) inference at path r in 7 is translated to a (VE) inference in n".

Given that contexts are decorated by x, derivations w, 7', and 7" are all (non-standardly) decorated
by \y.yx.

It is worth noting that the conclusive judgement [o,7] b [(a« — ) — 0,p — n] of w, which is in the
language of 1L, i.e. it does not involve union, is already provable in IL.
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__le=bprla=0p0 o, 71 [0, 7] w
[0, 7], [ — 6, p] F [ — 8, p] (nE) _[U_,T_],La_—i 6‘_, /i] l_— [_U,_T]_ (nE)
lo,7],[a = 8,p] F e — 0,6 — 7] lo,7],[a — 8, p] F [, 4]

(=E)

[0, 7], [ — 0, p] F [6,7]
o, 7] F (= 0) = 6,p — 7]

(=1

This is an instance of the fact that TULy is a conservative extension of IL. Finally, derivation 7' is also
(non-standardly) decorated by A\y.yz, if the context is decorated by x.

From MLns to IUL.?

The aim of this paragraph is to spotlight the problems evolving in the attempt to prove the inverse of
Theorem 3.10. We will study the simple case where we start off with a single derivation in MLns and try
to attain its corresponding derivation in IULy.

Ifr:01,...,0m F pisin MLns with a non-standard decoration 7* :: @1 : 01,..., T : O F 2 p,
we would like to show that there exists a derivation 7’ :: o1,...,0., F p in IULg, where o1,...,0,,,p are
single-node kits modulo the conversion of connectives, such that (7')* @1 1 : 01,..., Ty : Oy E 2 p.

Supposing we proceed by induction on , let us consider the case of (AI).

MO 5 XL :O0lyene, Tm O Ft:0 T 5 X1:01,eee, Tm i Om T (A1)
T X101, B O FEiOAT
By the IH, we would get derivations «{, :: 01,...,0,, - o and 7} :: 01,...,0, F 7 in IULy, such that
(mo)* k1 101,y T o Et o and ()% g o1,y Tyt oy E E 2 7. So, we would have two

identically decorated derivations in IUL;. We would like to be able to join together these two derivations
with the same decoration, so as to get a single derivation with this very decoration. That is to say, we

would like to be able to merge n, and 7} into a single n(; :: [01,01],...,[0Om,0m] F [0,7], such that
(m)* =+ @1 2 [o1,01),-. 05 T ¢ [Omy0m] B 2 [o,7]. Then, by (NI) on 7}, we would get the required
7o, omb o NT with (7)Y 2101, ., o EEioNT

The crucial step is the unification of two identically decorated derivations of IULj into a single
derivation of IULj with this very decoration. Formally, we would like to prove the following claim.

Claim: Two identically decorated 1ULy-derivations nf :: @1 : Hy,..., Ty : Hp Ft: H and
o ox s Ky, o, ot Ky Bt K can be joined together into a single IULy-derivation
™oy [Hy, K, ooy @ 2 [Hp, K] F t 2 [H, K| with this very decoration.

However, as the next example demonstrates, the substitution term in the decoration of (UE) poses a
serious problem to this unification task.

Example 3.13 Let ¢ = (cUT)Na, 0 =pNoz, T=11Np, and x = (CUE)NS. Consider the identically
decorated TULg-derivations wo and w1, shown below.
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zigtaig o ___FilerdFziler W
b ybreig (;El) =0y Wyl zilorlbzlo]
r:p,y:YpFr:oUT z:[p, 9, y: [, )], z: o, 7] F 2 [p,p] (UE)
o xip,ypzz/Zl=x:p
exre chodreiod
vixyivbeix oo wiboxl iyl 2GR
NI TT 23 pox vl 2 (P et BB

mraix,y:vkzfz/zl=a:p

An attempt to construct a derivation 7 :: x : [, x|, y : [¥,v] F x : [p, B] in a bottom-up manner fails,
as shown below.

(6, X]" - = : [, X] w axiom ?
N s N (N % N S 2 N 0 B s MO
([, x) [, v])"? Fa:[oUr,(UE] (e, &1, Do, X1, ([, ¥), [v, 0], [[o, 7], [C, €I = 7 < [[p, p], [B, Bl]

T x], v [y, vl 7, B

For such an attempt to work, we would, at first, need to have a notion of union elimination allowing
to apply the rule to different paths in parallel. In this example, the variant rule (UE)" applies union
elimination to paths | and r simultaneously. However, even with (UE)', we cannot reach an aziom of
IULy in the right branch. This is because the judgement obtained after having applied the intersection
eliminations does not contain the succedent-kit in the context, i.e. the kit [[o,7],[x, Xx]] is not in the
context [[@, B, [x, X]], [¥, ¥], [v, V], [[o, 7], [, €]]. So, any further attempt to apply structural rules to reach
an axiom fails. This problem derives from the fact that, in the right branch of mo, the kit-sequence
[, 9], [, ], [, 7] entails the kit [o, 7], which is the third member of the sequence, while, in the right
branch of w1, the kit-sequence [x, x], [v,v],[(, €] entails the kit [x,x], which is the first member of the
sequence. Termwise, given that the contexts in the right premises of (UE) in my and 71 are decorated by
the same sequence of variables x,y, z, the kit-situation just described reflects on different terms z and x
decorating the succedent-kits in these premises in wo and 71, respectively. Since z (trivially) contains a free
occurrence of z, while x doesn’t, this translates to two different kinds of substitution in the decorations
of mp and w1 : a proper substitution z[z/z] in my and a phony substitution x[x/z] in m . Hence, the
incompatibility of ©§ and n] essentially reduces to these two different ways of expressing a term, namely
x, as a substitution.

The problem of the twofold decomposition of substitution, depicted in the above example for the case
of the logic IUL, is a problem already spotted in the literature for the case of union types (see [2, 22]).

3.2 Intersection and Union Logic IUL,,

We define Intersection and Union Logic IUL,, as an extension with union of Intersection Synchronous
Logic ISL. This system is also intended as a logical foundation for IUT, i.e. as a logic corresponding
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s o] o
[(Ts5 7)) W) [(T'i, 06,71, A5 pi)i] x)
[(Ti, 005 7)) (Ts, 75,00, Aq 5 pi)i
MUN MU [A]
B VIV
(T, 005 73)i] R (i 00 — 7i)i] [(Ti; 0i)i] N
T oo (55 7] 8
MU[T; 0),(T; 7)] D
MU[T;0NnT)
MU[(F;fﬂT)] (nEY) MU[(F;fﬂT)] (NE2)
MU[(T; 0)] MU [T 7)]
MM U [(.F; )] 1) MU [(.F; 7)] (L)
U[T; cuUT)) MU[T; cUT)
[(Ti; ¢i)i] U[(T5 0UT) [(Ti, ¢i; )il UL, 05 p), (T,7; p)]

(UE)

[(Ti; ¥a)d U[(T5 p)

Figure 3.7: The logic IUL,,.

to IUT through a non-standard decoration of its derivations. Since IUT has been shown to correspond
to MLns through decoration and erasure, we may restrict our study to the relation between IUL,, and
MLns, as was done in the case of TUL.

Presuming the notions of atom and molecule as given in 1.16, we can define IUL,,, as follows.

Definition 3.14 (IUL,,) (i) Formulas are generated by the grammar o 2= a|oc - o|oNo|oUa,
where a belongs to a countable set of atomic formulas.

(ii) The logic IUL,, derives molecules [(o%,... 0l ;7)1 <i<n]=[T;; )i by the rules displayed
in Figure 3.7.

A rule in UL, can be derived from the corresponding rule in IULj by using the following method
for transforming a judgement in IULy to a molecule in IUL,,,. If Hy,..., H,, F K is a judgement in IUL;
and there are n terminal paths p;,...,p, in Hy,..., H,,, K, then the corresponding molecule in IUL,, is
(HY,...,HPV: KPY), ... (HY™,...,HEr; KP~)]. In particular, each terminal path in the kits produces
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an atom in the molecule. This is illustrated by the following example of corresponding union elimination
instances in the two logics.

IULy: [a) 01]) [B: 02] + ['Y) oU T] [a) [017 01]]7 [ﬁ) [027 02]]7 [’77 [07 T” F [6) [p7 p” (UE),
[a) 01]) [B: 02] F [67 p]
IUL,.: [(ayﬂ; 7):(01702; UUT)] [(a7ﬂ77; 6):(01:02:0; P):(UI:U2:T§ P)] (UE)
[(a)ﬁ; 6)) (017 025 p)]
Using the notation “__[p:= __]” of kits, though, the above IUL-instance is written as follows.

Hy[r:=o01),Hz[r :=02) - K[r:=0cUr7|  Hi[r:=[o1,01]], H2[r := [062,02]], K[r := [0, T]] b L[r := [p, pl]
Hy[r := 0], Ha|r := o2] F L[r := p|

(UE),

This kit-notation focuses on the path where union elimination is performed, which is path 7 in the specific
example. So, the substitution operation (cut) that takes place at path [ is ignored. On the other hand,
this substitution is explicitly shown in the notation of molecules where each terminal path is “represented”
by an atom. It is now more than obvious that union elimination cannot be considered local, at least not
in the sense that local rules leave certain atoms completely unchanged.

As pointed out for (UE) in IULg, (UE) in IUL,, also aims to join together the isomorphic minor
premises of (VE) in MLns. This is achieved by placing them both in the same molecule, so that (UE)
has a single minor premise and a non-standard decoration in IUL,,, always terminates.

.o FtiovVT o, xiokFup o, xiThup (VE)
. Falt/z] i p
t:[...,(...;0UT)] w:l...,(c..,z:i0;p),( .., z:T;p)] (UEB)
Wlfal [ (o )

The non-standard decoration of IUL,, is dictated by the very rules of IUT, as was the case with the
non-standard decoration of ML, and actually extends the non-standard decoration of ISL (see 1.17) to
doubling and the union rules. It will be used in the theorems proving the equivalence of IULy and IUL,,
(Theorems 3.18 and 3.21) and also in the theorem relating IUL,, to MLns (Theorem 3.22).

Definition 3.15 (Non-standard decoration of IUL,,) Letw : M = [(T;; 7;)i] = [(of,...,0%, ; T:)i]
be a derivation in IUL,,. By decorating contexts bottom-up with distinct variables, starting with the
sequence p = x1,...,Tm, ond then decorating molecules top-down with terms in A, we get a decorated
derivation 7 = t : M, = [(Ti; )ilp, = [(z1 : 0%, ... 2 2 0,5 7i)i]. The decoration rules are presented
in Figure 3.8. When decorating contexts bottom-up, the new variable in an (—I) premise or in a (UE)
minor premise is fresh with respect to the variables in the branch connecting the conclusion to the root.
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(ax)
x:[(0i; 00)ilw
t:[(Tis m)ilp W) t:[(Ti, 00,70, A5 pi)ilp,y, 2,4 x)
t:[(Ti,005 7)ilp,« t:[(Ti, 7,00, Ais pidilp,z,y,q
t: MpUN, ®) t: MpU[A] D)
t: My t: MpU[A A,
t:[(Ti,00; Ti)ilp, e =1 t[(Ti5 00 = 7i)ilp w: (T 040)ilp (oE)
Ax.t:[Di; 00 = 75)ilp tu: [(Ti; 74)ilp

t: MpU[(T;0),(T; 7))

t: MpU[T;0N7)]p ("D
t: MpU[T;0N7)]p (nEY) t: MpU[T;0N7)p (NE3)
t: My, U[(T; 0)]p ! t: My, U[T; 7)]p :
t: My U[(T; 0)]p (U1 t: My U[T; 7)]p (UL2)
t: Mp,U[T;0UT)]p ! t: MpU[T;0UT)]p ?

t:[(Tis ¢i)ilp UIT; o UT)p w: [(Tiy di 5 %i)ilp, e YT, 05 0), (0,75 p)lp,
wlt/x] : [(Ti; i)ilp UL p)]p

(UE)

Figure 3.8: Non-standard decoration of TUL,,.

Remark 3.16 Obviously, if n* :: t : My, then FV (t) C {p}.

As was the case with IULy, every derivation in IUL,, admits a decoration, since (NI) has a single
premise and (UE) has a single minor premise.

Remark 3.17 The logic IUL,, is formally defined as a quotient set of equivalence classes of derivations,
in the manner of the formal definition of IULy, (see 8.8). The equivalence relation is between derivations
that disagree only in the order of consecutive local rules concerning different atoms. The commutations of
the local rules (P), (D), (NI), (NE), (UI) follow the pattern in 3.8, only in the molecule setup. Derivations
in the same equivalence class admit the same (non-standard) decoration.

3.2.1 Equivalence of IUL, and IUL,,

The logics IUL; and IUL,, are equivalent. This is a desired result, since they were both designed to do
the same job, namely to express MLns as an independent logic. We show a transformation of a decorated
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IULg-derivation into an identically decorated IUL,,-derivation and conversely. In fact, the following
theorem formalizes the method already described for converting a kit-judgement to a molecule.

Theorem 3.18 Let 7* :: 1 : Hy,..., &y : Hy Ft 2 K be in IUL; and Pp(K) = {p1,...,pn}. Then,
there exists a (7')* = ¢ [(HY', ..., HPr s KPY), ... (HY™, ... HPr; KP»)] ., o in IULY,.

Proof. By induction on 7*.
Base: If 7* :: ¢ : K o : K is an IUL}-axiom, then (7’)* :: o : [(K?P*; KP'),...,(KP~; KP")], is an
IULy,-axiom.
Induction step: We show three characteristic cases.
gy x1:Hi, .., o Hpy Bt K

> I I T (P)
o HO\P o o  Hp\P EE K\P

If? Pr(K) = {q,...,qu,plt1,...,plt,, pruy,...,pru.}, then Pr(K\") = {q1,...,q,,pt1,... Dbt
The following equalities hold.

1. (Hj)% = (H;\P")% and K% = (K\P")% for i € {1,...,v}
2. (H;)P' = (H;\PYPti and KP = (K\PYP4 for i € {1,...,p}

By the IH, there exists a (7()* == t : (M UN) 4, 4, in IUL,,, where

m

M = [(HI',.. HE; K9),... (H,.. . H; K®),

1 m 1 m

(HPM L HE S KR (HY L HE T K
No= (HT™ L HE S K)o (T HE 5 P )]

Applying (P) to (w()*, we get a (a')* = t: My, .. 4., where 1 and 2 give
M= [((HN\P)D o (Hp \PYT 5 (ENPYT), o (AP (Hi \PD ™5 (B\P) ),
(CH\PPR o (H \POPE s (BOAPDPR ), (L \PDPo L (Ho \PDPEe 5 (BO\PYPE)]

b wp w1 Hy, ooy xm  HoFt: K (D)
vz Hi Yoty ooy T Hy Y Bt 0 Ky

We consider two subcases.

1) p 7é q: If PT(K) = {q7 q1,-.- ;QIuptl; v 7ptu}; then PT(Kq/pl) = {Q;Qh s ;qV;Pl;PTtla s ;prtu}‘
The following equalities hold.

L. (H,)% = (H, )% and K% = (K9,)%, for i € {1,...,v}
2. (Hj)P% = (Hj Yp)P™ and KP4 = (K9 )P, for i € {1,...,u}
3. (Hj)® = (H; Yp)? = (Hj Yp)?" and K7 = (K%p)" = (Kp)"

2In this proof, we exceptionally use the letters ¢ and u to denote paths, so as to avoid heavy notation caused by extra
insignia on p or q.
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By the IH, there exists a (7()* :: t: (M UJ[A]) 4, ... 2, in IUL,,, where

M = [(HE,. . HE; K9),... (HF,... Hi; Kv),
(HP', L HPR G KPh) L (HY L HE S KR )]
A = (HY,... H; K9

Applying (D) to (m)*, we get a (7')* o t: (MUI[A, A]) ey..... 2., , where 1-3 give

M= ((H )™,y ()™ 5 4™, (L )y (o)™ 5 (K )™),
(CHE 70 (B P 5 ()™ ), (CE Yy ()5 (%))
A= (H ) B ) (K, (B Y (B )5 ()

ii) p € ¢: Without loss of generality, we may assume that Pr(K) = {q1,-..,¢,,9 = pt1,...,ptu}.
Then, we have that Pr(KYy) = {q1,...,qv,pl,prt1,...,prt,} and get the following equalities.

1. (Hj)% = (HjYu)% and K% = (KYy)%, fori € {1,...,v}
2. (H; Pt = (H, 9y)Prt and KP — (KU,)P% for i € {2, 1)
3. (Hj)P" = (Hj Yfp)P™ = (Hj Yp)P" and KP" = (K%p)P"" = (Kp)"

By the IH, there exists a (7()* = t : (MU [A]) &, ,.. in IUL,,, where

o Tom

M = [(HP, .. HE K0),. .. (HF,. .. Hi; Kv),
1 m 1 m
(HP'2, .. HPz Ktz (HY™ L HE 5 KPte)]
A = (HM,... HPb; Kh)

Applying (D) to (7()*, we get a (7')* iz t : (MU [A, A]) z,,....2,. » where 1-3 give

M= [(H ) ooy (Ho o)™ 5 (K)o (HU )™ (Hon YPot)™ 5 (K p1)™),
((H1 Yp)P2, oy (Hon Yt) P72 5 (K o)), o ((Hy Ypt)P7% o (Ho Yot ) P70 5 (K )77 )]
AA = (H )P (Ho o)™ 5 (K Yp)P™), (Hy Yo)P s (Ho Yot)P 5 (K )P

X mowjHjFt: Kp:=0oUT| w1 @y Hj Py, o2 Klp = [o,7]]| Fu: Llp := [p, p]] (UE)
7 oz Hy b ult/z] : Lp := p]

If Pr(Klp:=oUr])=Pr(Lp:=p]) ={q,---,q,p}, then Pr(L[p := [p,p]]) = {q1,---,qv,pl,pr}.
The following equalities hold.

L. (Hj)% = (H;?/p)%, (K[p:=0UT])% = (K[p:= [0,7]])%,
and (L[p := p))% = (L[p := [p, pl])%, for i € {1,...,v}
2. HY = (Hj*fp)?" = (H; P/p)""
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By the IH, there is a (7()* =+ ¢ : (M U[(HY,...,HE ; 0 UT)])4y....,2,,, Where

) m
M = [(HI,...,HY; K[p:=ocUT]?),...,(HI, ..., Hl* ; K[p:= 0 UT]")]

and also, using 2, a (7})* s w: W U[(HY,...,HE o;p),(HY,...,H2,7; p)]) ar,..., 2, x> Where

7 m?

N = [((H ) (H M) (Kp = (o, 7)™ 5 (Llp = [p, DT, -,
(Hy o)™ oo (Ho P ) s (Kp = [o, 7]])* 5 (Lp == [p, p]))*)]
HI .. ,H Klp:=0cUT|"; Lp:=p|?),...,

HY, .. .,H¥ Klp:=0cUT]%; Llp := p]™)]

(
(
= I
(
Applying (UE) to (()* and (7])*, we get a (7')* :: w[t/z]: M U[(HY,...,HE; p)]) er..... 2, » Where
M = [(HF,...,HZ; Lp:=p|™),...,(H¥,...,H%¥ ; Llp := p]™)] -

To transform a decorated IUL,,-derivation to an identically decorated IULj-derivation, we need the
following proposition.

Proposition 3.19 Let M = [(o},...,0L ;s 711),...,(0},...,0%; )] be a molecule of n > 1 atoms of
context-cardinality m > 0. Then, there ewists a sequence Hy, ..., Hy,, K of m + 1 overlapping kits with

n terminal paths pi1,...,Pn, such that H]p = 0';: and KPi =7, (1<i<n, 1 <j<m).

Proof. By induction on n. The index j runs from 1 to m.

Base: It M ={(01,...,0m; 7)], then the m + 1 overlapping kits are the single-node kits o1,...,0m,7
with one terminal path, namely the empty path €. It is 0§ = 0; and 7° = 7.

J
Induction step: Let M = [(a%,...,0%, ;7)1 <i <n]U[(c7™, ... 0% 7,,1)]. By the IH, there is
a sequence Hy,..., H,,, K of m+1 overlapping kits with n terminal paths p1,...,p,, such that H]p = 0';:
and KP: = 7;. In addition, there is a sequence 0{‘“, oo™ 11 of m+ 1 single-node kits. We consider
the sequence [Hi,o7 ... [Hpm, o], [K, 7ui1] of m + 1 overlapping kits with n + 1 terminal paths
g=1Ip1,..., ¢u=1Ipp, qny1=71. For 1 <i < n, it is [Hj,cr;”rl]ql' = Hj’-" = aj— and [K, T,41]% = KPi = 15.
Also, it is [Hj,a;”“l]q"+1 = cr;”rl and [K, Tp41] 7+ = Tpgq. —

Definition 3.20 The sequence Hy,...,H,,, K of overlapping kits in Proposition 3.19 will be called a
kit-representation of M.

It is obvious that a kit-representation of a molecule M is not unique; different kit-representations of
M may have different tree structures or the same tree structure, but different leaves in corresponding
kits.

Theorem 3.21 Let 7* = t: (M = [(of,...,0% ;1) |1 <i<n])s,. . u, bein IULX . Then, for every

kit-representation Hy,...,Hy, K of M, thereis a (7')* :: «1 : Hy,..., Ty : Hy Ft 2 K in IULJ.
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Proof. By induction on 7*.

Base: If 7% : & : (M =[(0;; 04) |1 < i< n]), is an IULY -axiom and H, K is a kit-representation of
M, then the kits H, K have n terminal paths pi,...,p, and, for 1 <i < n, it is HP* = ¢; and KP' = ¢;.
Therefore, it is H = K and there is an IUL}-axiom (7')* :: ¢ : K F o : K.

Induction step: We display the most interesting cases, letting j run from 1 to m.

where M = [(0%,...,0l ;7)1 <i<n]and N = [(o},...,00,; ) |n+1<i<n+k|.

If Hy,...,Hp, K is a kit-representation of M and Hj,...,H/ K’ is a kit-representation of N, then
[H1,Hy), ... ,[Hm, H},],[K, K'] is a kit-representation of M UN: [Justification: The kits Hy, ..., Hp, K
have n terminal paths pi, ..., p, and, for 1 <i <n,itis H* = o} and K?* = 7;. Thekits Hy,...,H, , K’
have k terminal paths p,i1,...,pnsx and, for n +1 < i < n+k, it is (H))P = Uj- and (K')Pi = 7.
Therefore, the kits [Hy, Hil,...,[Hm, H] ], K, K'] have n + k terminal paths ¢1 = Ip1,...,q, = Ipp,
Gnt1 = TPnt1s- - - Gntk = TPnyk- For 1< i <on, it is [Hy, H}|% = H}" = o} and [K,K'|% = KP' = 7,
while, for n+1 <i < n+k, it is [H;, Hj]% = (H})? = ot and [K,K'|% = (K')* = 7;.] Hence, the IH
gives a (m()* ©: @y : [Hi, HY],..., T : [Hp, H),) -t [K, K'] in IUL;. Applying (P); to (m()*, we get a
(') @y Hy,..., @t Hyy Ft: K in IULE.

ot (MUA]) 2,

p _mo st MUIA e, Ty (D)
it (MUA A 2,

where M = [(o%,... 0t ;1) |1 <i<n]and A= (o0, ... 0% 141).
If Hy,...,H,, K is a kit-representation of M U [A, A], the kits Hy,...,H,,, K have n + 2 terminal
paths pi1, ..., Pn, Put1,Pnt2 and, for 1 < i < n, it is H* = o} and K?* = 7;, while Hf"“ = Hf"” = O';H_l

and KPr+1 = KP»+2 = 7,4, We may prune all kits in Hy,..., H,,, K at such a path, so as to get a
sequence Hi,...,H/ K’ of overlapping kits that have n + 1 terminal paths ¢1,...,qn,gn+1 and, for
1<i<n,itis (H})% = o} and (K')% = 7, while (H})?+ = o™ and (K')%+* = 7,,41. The sequence
Hi,...,H]  K'is akit-representation of MU[A], so the IH gives a (w()* :: #1: H{,..., &y : H, Ft: K’
in IUL;. Applying an appropriate (i.e. left or right) doubling at an appropriate path to (7()*, so as to
iterate the leaf at the end of g,11, we get a (7')* = @1 : Hy,..., @y, : Hp Ft: K in IULE.

where Mo = [(x4,-. -, xb,; @) |1 <i<n]U[(v1,...,0m; 0 UT)],
Ml = [(Xi;;x:na(bz’ 7/11) | 1 gign]u[(vla"';vﬂug; p),('Ul,...,Um,T; p)]; and
M =[(X1 -5 Xn 5 i) [ 1< i <n] U (1,00, 0m 5 p))-

If Hi,...,H,,L is a kit-representation of M, the kits Hy,...,H,,, L have n 4+ 1 terminal paths
P1,-->Pn,q and, for 1 <4 < n, it is H}' = X4 and LP = 1;, while H} = v; and L? = p. Then,
the sequence Hy,...,H,,, K[q := 0 U], where K = L[p; := ¢;], is a kit-representation of Mg and the
sequence Hy Yy, ..., Hy, Yy, Klq := [0, 7]],Llg := [p, p]] is a kit-representation of M;. The IH yields a
(mo)* =t @1t Hi,.o. @yt Hpy Ft: K[g := 0 U] in IUL} and also a

() w1 Hi Yy, oo, @ Hy Yg, v 2 Klg := [0, 7]] b u: Lg := [p, p]]
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in IUL;. By (UE),, we then obtain a (7’)* :: 1 : Hy,..., 2y, : Hp Fult/z] : Lig:= p] = L in IUL;. A

As already noted in describing the method to attain a molecule from a kit-judgement, Theorem 3.18
indicates that each terminal path of the kits in the conclusion of 7 gives rise to an atom in the molecule
proved by 7’. Conversely, Proposition 3.19 indicates that all formulas in an atom of M are leaves at the
same terminal path in a kit-representation of M. Therefore, terminal paths in IUL; correspond to atoms
in IUL,,. In addition, it is easy to see, in both theorems 3.18 and 3.21, that the context-cardinality of
the judgement proved by an IULg-derivation coincides with the atom context-cardinality of the molecule
proved by its corresponding IUL,,-derivation.

3.2.2 Relating IUL,, to MLns

We can restate Theorem 3.10 in the molecule framework and prove it via the equivalence of IUL; and
IUL,,.

Theorem 3.22 (From IUL,, to MLns) Let 7 :: [(of,...,0%, ; 7;)|1 <i < n] be a derivation in TUL,,,

such that 7 = t: [(of,...,08 ;) |1 < i< nlagy,.. - Foreveryi e {1,...,n}, there is a derivation
7wt ol .., 0l b 1oin MLns, such that (7°)* = @1 :0%,..., Ty, 0L, Bt T
Proof. Either by induction on 7 or by theorems 3.21 and 3.10. -

Example 3.23 The IULj-derivation 7 :: [o,7] b [(a¢ = 0) — 0, p — 1] given in Example 3.12, where
oc=anp, r=vN4, and p= (6 = n)N (= n), corresponds to the IUL,,-derivation

7l (a—60)—=0),(1; p—n)

according to Theorem 3.18. We denote I' = o0,a — 0 and A =1, p.

(o5 0), (5 D] ) _Ma=050=0)050,00; 0
(o), A5l o _Mase=0,4,00,AGaA - 0 _e50),(8:0,@ 01 L
[(T50),(A50)] ~ " [(Toas0=0),(8,055 5 m), (A ¢ ) (050, (8,050, (A, G QL
[(T; ), (A;6UQ)] (Ty05 0), (A0 m), (A, Gl

[(T;0), (A3 m)]

P (RN P ) e B

The decoration of 7 is identical to that of w, i.e. it is (7)* = Ay.yx : [(o; (a = 0) = 0),(7; p = n)]e-

This 7@ gives two derivations in MLns, namely 7t =7 moF (a = 0) =0 and 7> =7" =7 p — 1.
The substitution operation carried out to generate 7' is now in full accordance to the substitution (cut)
performed on the atoms (T; ) and (T, «;0) in the premises of (UE).

From MLns to IUL,,?

The problem of the decomposition of substitution, discussed in the subsection “From MLns to IUL?”,
is also met in the attempt to prove the inverse of Theorem 3.22.

Ifn* 29 :01,..., %y ¢ oy F t: pisin MLns*, we would like to show, modulo the conversion
of connectives, that there exists a (7')* == ¢ : [(01,..-,0m; P)e1,...,2,, i IULY,. An induction on 7*,
though, would hit a problem in the (AI) case and also in the (VE) case.
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* * *
o US| Up)
X101,y Tm iOmEtioVT X101, ey, Tm i Om, T 0 U:p wlzal,...,wm:am,w:ﬂ—u:p(E)
v
* L. . . .
T L0, ., T O Euft/z] i p

The IH would give derivations (7())*, (7})*, and (75)* in IULY,, as shown below.

(@) t:i[(o1ye ey 0m; o UT) wy
(@) w0100 05 P) s e
(ﬂ-é)* vous [(017 s Om, T3 p)]xh---,xm,x

We would like to be able to merge the identically decorated 7} and 7% into a single

(71-12)* Tou [(Ula' ce30m,0 3 p)? (Ula' sy Om, T35 p)]wly--wwmwz

* *

so that applying (UE) to (w()* and (7],)* would give a (7')* = wu[t/z] : [(61,...,0m; P)wr,...,z,n- The
claim that two identically decorated derivations can be unified to give a single derivation with this very
decoration is rephrased in the molecule setup as follows.

N .
. am can be combined into a single IUL,,-derivation
with this very decoration.

Claim: Two identically decorated IUL,,-derivations 7§ == ¢t : [(Ti; ) |1 < i < 0]y,
and wF ot [(Tis ) In+1<i <k,
T n b (Do) |1 <6< Kluy,an,
However, as in the case of IULg, there is no natural way to join together two derivations whose decorating
term derives from two different kinds of substitution (see Example 3.13).

3.3 Discussion of kits and molecules

As already explained, the use of molecules reveals the globality inherent in union elimination. Terminal
paths in IUL; correspond to atoms in IUL,, and actually an atom in a molecule is constructed by
abstracting a specific terminal path from a kit-judgement. Thus, the union elimination rule in IUL,,
brings to light the “action” at every terminal path in the corresponding rule in IUL;. This is made clear
in the following corresponding instances of the rule in IUL; and IUL,.

Hjlp:=oj] - K[p:= o U] Hijlp = [0j,0;]], K[p := [0, 7]] - Llp := [p, p]]
terminal paths q1,...,qn,p terminal paths qi,...,qn,pl, pr (UE)
u P
Hjp:=o;]+ L[p = p]
terminal paths q1,...,qn,p
(s ¢i) [1<i<n]U[(oj;0UT)] (> ¢i5 %i) [ 1 <i<n]U[(05,05 p), (05,75 p)]
atoms BY,..., B9 atom A° atoms B},..., B} atoms Al, AL B

[(vi s ¢i) [1<i<n]U (o p)]
——

atoms Bi,..., B, atom A
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In the major premises, leaves at terminal paths g1, . . ., g, translate to atoms BY, ..., BY | respectively, while
leaves at p translate to A°; similar correspondences hold for the minor premises and the conclusions. The
action at paths qi, ..., qy,, which is hidden in the IULj-instance, is brought to light in the IUL,,,-instance.
The latter works locally on atoms A%, Af, AL, where it performs a proper union elimination to render
atom A, and globally on the BY’s and B}’s, where it performs substitutions (cuts) on corresponding atoms
to provide the B;’s. Therefore, union elimination in IUL,, displays both local and global characteristics.

In fact, union elimination in IUL; enjoys both characteristics, as well. The rule can be rewritten as
follows, if we aim to unfold what happens at a path ¢; besides p.

Hjlp = ojllgi =] F K[p=0Urllgi :==¢i]  Hjlp:= [0j,05]llai = v}, K[p := [0y 7]}ai := di] = Lp == [p, plllgi := #i]
Hjlp := ojllai := {1 = Llp := pl[ai := ]

The substitution carried out at ¢; is now designated by the rule. This hidden aspect of union elimination
in IULy, has been actually demonstrated in the proof of Theorem 3.10 (case (UE), subcase 1) and also in
Example 3.12, where a substitution operation was required for the formation of 7!.

The benefit of unveiling locality and globality issues is only one aspect of the more general benefit of
adopting a notation for Intersection and Union Logic that is simpler and easier to handle. The formalism
of kits, which seeks to recreate the geometric structures of trees, can be awkward and vague, as it has so
far been verified. On the other hand, the formalism of molecules, which has arisen from the flattening of
kits by converting (leaves at) terminal paths to atoms, is more clean-cut and explicit.

A different formalism for a logic corresponding to intersection (and union) types is that of hyperformu-
las, proposed in [6]. Hyperformulas also linearize the kit-structure, as molecules do, but are nonetheless
harder to manipulate than molecules. Very roughly speaking, the syntax of hyperformulas is easier than
that of kits, but more complicated than that of molecules. Consequently, hyperformulas also encounter
the problem that molecules (and kits) encounter in corresponding with MLns. We have focused on the
comparison of kits with molecules, leaving hyperformulas aside, so as to better indicate the advantages
of molecules, which bear the most concise formalism among the three.



CHAPTER 4

Natural Deduction IUL,, and IUT®

We present a new version of the logic IUL,, in natural deduction style. This new version involves a
modification of the definition of “molecule”, as well as modifications of rules. In particular, a molecule
is no longer a multiset of atoms, but a sequence of atoms, while the rules of the system undergo the
following changes: (i) the axiom is allowed to contain enriched atom-contexts, (ii) the structural rules
of weakening, pruning, and doubling are eliminated, but are still valid as derivable rules, (iii) the local
rules of intersection (introduction and elimination) and union introduction are allowed to act on several
atoms (or sequences of atoms) of a molecule in one step, and (iv) the union elimination rule is modified
to an explicitly global version. We also present the type system IUT® in natural deduction style. This
system is actually the natural deduction type system IUT,, of Chapter 2 without the (w)-rule. The “®”
sign emphasizes its additive character. We finally interrelate the new natural deduction logic with the
natural deduction type system to show how the former attempts to capture the latter on a logical level.

The changes that the new version of the logic bears, with respect to the version presented in the
previous chapter, can be briefly justified as follows. Change (i) allows the derivability of weakening
(observe the base case in the inductive proof of Proposition 4.5), while change (ii) provides a more
economical, elegant, and handy system. Change (iii) serves the derivability of doubling (see footnote 6
in case 1 of (NI) in the inductive proof of Proposition 4.11(ii)), while change (iv) provides a system with
an explicit categorization of rules as global or local, which lies at the core of the method that will be
used in the next chapter to show correspondence theorems between the logic and the type system (see
Section 5.4 for a detailed justification of this method).

4.1 The logic IUL,, in natural deduction

We redefine the natural deduction logic IUL,,, first introduced in Chapter 3, as follows.

Definition 4.1 (IUL,,) (i) Formulas are generated by the grammar o ::= a|oc — o|oNo|ocUo, where
a belongs to a countable set of atomic formulas. An atom is a pair (T'; o), where the context T is a finite
sequence of formulas.

(i) Molecules are finite sequences of atomns, such that all atoms share the same context cardinality.
A molecule M = [(T'1; 01),...,(Tn; opn)] is also denoted [(T;; 0;)1q] or [(Ts; 0:)}] or just [(Tyi; 04)i).
Sequences of atoms which are subsequences of molecules are denoted by U,V .

(iii) The logical system IUL,, proves molecules in natural deduction style by the rules displayed in
Figure 4.1. The index i in molecules runs from 1 to n.

61
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[(Ts, 04,73, Ai's pi)i]

oo o0d o0 (Wm0 b pi]
[(Ts, 005 73)i] (=1) [(Ti; i = 7i)i] (T 09)i] (E)
[(Ti; 00 = 7i)i] [(Ts5 7)4]
(U, (Ts; 03), (T3 70))i, V] - (U, (Ti; 00N 7i)i, V] (nEY) (U, (Ti5 00N i), V] (NE2)
[u7 (Fi; O—iﬂTi)hv] [u’ (Fi; Ui)i7v] [u’ (Fi; Ti)i7v]
(U, (Ti; 0i)i, V] o) (U, (Ti; 73)i, V] (Ul2)
(U, (Ti; 00 UTi)i, V] (U, (Ti; 00 UTi)i, V]
(T 00 UTi)i [(Ti, 015 pi), i, Ti5 pi))il (UE)
(T pi)il

Figure 4.1: The logic IUL,, in natural deduction style.

Remark 4.2 (i) In the exchange rule (X), the I';’s have the same cardinality.

(i) The intersection (introduction and elimination) and union introduction rules presented in Fig-
ure 4.1 are, in fact, special versions of the actual intersection (introduction and elimination) and union
introduction rules; this is done for simplicity and space economy. The actual (NI) rule is meant as shown
below.

[uly (Fl; Ul): (Fl; 7—1):1/{27 (FQ; 02): (FZ; 7—2):' .. :uﬂy (Fﬂv UTL): (Fn7 Tn):un+1]
[Zxﬁ, (Fl ;01 ﬂTl),Z/{g, (Fz ; 02 ﬂTz), vy Un, (Fn ; On ﬂTn),un+1]

("D

The actual (NE1),(NE2),(UL1), and (UIz) rules can be figured from their special cases in a similar manner.

The categorization of rules as global or local is according to whether they affect all or some atoms in
premise level, respectively. The exchange rule, the implication rules, and the union elimination rule are
global, while the intersection rules and the union introduction rules are local'. Unlike the case of IUL,,
as presented in Chapter 3, where union elimination assembled both global and local characteristics, the
classification of rules as global or local is here very clear and definite.

The connectives of the grammar are all additive. This is done by necessity in the cases of intersection
introduction and union introduction. The claim that atoms in the same molecule should have the same
context cardinality forbids a multiplicative presentation of the intersection introduction rule; a multi-
plicative premise [(E;; )%, (Ti; 03), (Ai; 7))} with |E;| = [T = |A;| = m would give a conclusion
(E;i; ¢0)%, (Ti, Ay 03 N 7)) with |E;| = m, but |T;, A;| = 2m. Moreover, the intuitionistic claim that
atoms should contain exactly one formula to the right of “;” forbids a multiplicative presentation of

Local rules become global to the limit where I/ and V are empty.
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the union introduction rule; a multiplicative premise [U, (I';; o;,7:)i, V] would no longer belong to an
intuitionistic system. On the other hand, the additive style is picked by choice in the cases of implication
elimination and union elimination. Indeed, the implication elimination rule can also be presented in a
multiplicative manner, that is with premises [(T';; o; — 73):], [(As; 04);] and conclusion [(T';, A;; 7;)]. As
far as the union elimination rule is concerned, the choice of additive style refers to both i) the right-premise
“twin” atoms (I';,0;; p;) and (T';, 7;; p;) and ii) the left-premise atom (I'; ; o; U;) and its corresponding
right-premise twin atoms (T';,0;; pi), (Ts, 7 ; pi)- Abolishing the additiveness with respect to (ii) still
yields an acceptable union elimination rule with a mixed multiplicative-additive character (see (UE)?
below), while further abolishing the additiveness with respect to (i) also provides an acceptable union
elimination rule with a purely multiplicative character (see (UE)* below).

[(TisoiUmi)i]  [((Aioi5 pi), (Aiy 75 pi))i] . (TisoiUm)i]  [((Aiyoi5 pi), (B, 7i 5 pi))il .
(T, Ais pi)i] e (T, Ai, Ei 5 pi)i] e

In an IUL,,-derivation, an exchange inference can be moved upward above all the inferences of logical
rules?, so that only an axiom and possibly some other exchange inferences may appear above it. This is
formalized by the next definition and proposition.

Definition 4.3 (Canonical derivation) An IUL,,-derivation © is canonical®, if every exzchange infer-
ence in 7w appears just below an axiom or another exchange inference.

The definition implies that, roughly speaking, a branch in the tree of a canonical derivation consists
of an axiom, which is followed by a (possibly empty) sequence of exchange inferences, which is, in turn,
followed by a (possibly empty) sequence of inferences of logical rules.

Proposition 4.4 For every 7 :: M, there is a canonical @’ :: M.

Proof. This is formally proved by induction on 7. In practice, it suffices to show that the exchange rule
commutes with any logical rule. We show two characteristic cases.

> A local logical rule: (NI)

(i, bis iy Zis xi)V, (D, 00,70, Ais pi)y (Tiy 0,76, Aiy 0i)1]
(i, ¢is iy Zis xi)¥, (Do, 00, 7, Ai's pi N 0i) Y]
(B, ¥iy i, Zis xi)F, (Tiy 1, 00, Ais pi N0i) ]

("D

(X)

(i, bis iy Zis xi)V, (T, 00,70, Ai's pi)y (Diy 0,76, Aiy 0i)1]
(B, i, biy Zis xi)V, (D, iy 00, Ais pi), (Tiy 70,00, Ai s 0i)1]
(Ei, i, i, Zi s xi)V, (Tiy 1, 00, Ai's pi Nwi)7]

2A logical rule is a rule introducing or eliminating a logical connective.
3The term “canonical” is borrowed from [15].
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> A global logical rule: (UE)

(Ts, 00, 7i, Ai 5 pi Uw;)i] [((Ts, 00, 71, Diy pis ¢i), (Tiy 04, Tis Agyvis $0))i)

(UE)
[(Ts, 04,71, Ai'; ¢i)i] x)
(T, 7,00, Ai 5 di)i
[(Ti, 06,75, A5 pi Uwi)i x) [(Ti, 00,75, iy pis i), (Tiy 00,7, Diyvis ¢i))il (X)
(T4, 7,00, A 5 pi U ;)] [(Ti, 7iy 00, A,y pis 1), (D, Tiy 04, Dy vis 04))il (UE)

[(Ts, 71,00, Ai'; ¢i)i)
_|

The structural rules of weakening and contraction are derivable, as the next two propositions show.
Proposition 4.5 Weakening is derivable: if m:: [(Ti; 73):], there exists a ©' 2 [(Ty,04; 7i)il.

Proof. By induction on 7.

Base: If w:: [(T';, 75 ; 7)) is an axiom, then a 7’ :: [(Ty, 74,04 ; 73):] contains an axiom [(Ty, 04, 7; 5 74)i]
and an application of exchange.

Induction step: We show three characteristic cases, denoting [h] the induction hypothesis.

w0 : [(Ti, 7,005 pi)i) [h]

w0 [(Ti, 7i 5 pi)i (X)
(=I) ~ s, 00,755 pi)i
g m o [(Tis = pi)il = [([(F o T-p—)> 1))] (=D
om0 (A ¢i)t, (T m), (Tis pi))i] () ~ o (A, i )1, (Tiy 005 73), (Tiy 005 pi)7] [h] ()
m o [(Ars ¢0), (Tis 7 N i)t 7 (A i s ¢0)F, (Tiy 005 70 pi) T

, Mo [(Ti; 7 Upi)i] my (T, 75 vi), (T, pis vi))i] (UE) ~
m: [(Ti; vi)i]

w1 [((Tiy7iy 005 i), (Di, piy 05 03))i)
w0 [(Tiy 005 7 Upi)i] [h] [(Ti, 00,75 v:), (Ti, 04, pi 5 vi))i
7T/ o [(Fi,ai; ’Ul)l]

h
LTS
(UE)

Proposition 4.6 Contraction is derivable: if 7 :: [(Ty, 04,04 ; 7)), there exists a ' =2 [(Ty, 045 74)4]-

Proof. We derive contraction through an implication redex.

m [(Ti, 00,005 Ti)i)

(—I) —— (ax)
[(Tyi,04; 06 = Ti)i] [(Ti,005 04)4] (&)

7T/ o [(Fi,ai; Tl)l]
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We can check that, if we chose a multiplicative implication elimination rule, the derivability of con-
traction through an implication redex would fail. A proof by induction on 7 would also fail. —

We next define the notions of tree (of a derivation) and of derivation height, which will be used in
subsequent propositions.

Definition 4.7 (Tree) The tree T (or T ) of a derivation w is defined inductively as follows.

> If 7 is an axiom, the tree T consists of a single node.

> If © derives from my with tree Ty by a one-premise rule R, then the root of tree T has a single
child-node, namely the root of Tj.

Tp

T

> If 7 derives from my and m with trees Ty and T4, respectively, by a two-premise rule R, then the
root of tree T has two child-nodes, namely the roots of Ty and T1.

To T
T m
. ] 1 . N \z/
T

> If * 7 derives from mo, 71, and T with trees Ty, Ty, and Ts, respectively, by a three-premise rule R,
then the root of tree T has three child-nodes, namely the roots of Ty, T1, and Ts.

Ty T, T
o "R o~ \/
T

In the induction cases, the node associated to the rule R is the root of T'.

Definition 4.8 (Derivation height) The derivation height h (or h;) of a derivation w is the height
of the tree of m, i.e. the maximal length of the branches in the tree, where the length of a branch is the
number of nodes in the branch minus 1.

4We include the case of a three-premise rule in preparation for the presentation of the type system IUT®, whose (UE)
rule has three premises.
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Remark 4.9 For any derivations m and 7', we have that T =T' = h="h, but h=h » T =T".

Before we establish the derivability of the structural rules of pruning and doubling, we need to show
that atoms can be exchanged in provable molecules.

Proposition 4.10 If w:: [U, A, B,V], there exists a n’" :: [U, B, A, V] withT' =T.

Proof. By induction on 7.
Base: If 7 :: [U, A, B,V] is an axiom, then 7’ :: [U,B,A,V] is an axiom, as well. Both T" and 7’
consist of a single node.
Induction step: We present two characteristic cases.
> A local rule: (NI)
o .t [Z/{o,Ao,Al,Bo,B1,V0]

C 1:
ase o U A BV 0

where |U| < |[Up| and |V| < |V
Applying the IH four times®, we get a m, :: [Uo, Bo, B1, Ao, A1, Vo] with T} = Tp. By (NI), we then
getan [U,B,AV] withT' =T.
mo = [Uo, Ao, A1, B, Vo]

Case 2: I
e m (U, A B, V] "0

where |U| < |[Up| and |V| < | Vo]
Applying the IH twice, we obtain a [, :: [Up, B, Ao, A1, Vo] with T) = Tp. By (NI), we then get a
7 (U B, A V] with T =T.
o . [Z/{o,.A, B,Vo]

C 3: 1
we s — A By] P

where either (JU| < [Up| and |V| < | Vo) or ([U| < |Uo| and V] < Vo)
The IH gives a w(, :: [Up, B, A, Vo] with T = Tp. By (NI), we then get a 7’ :: [U, B, A, V] with T' =T.
> A global rule: (UE)

mo 2 [Uo, Ao, Bo, Vo] m = [Un, Aro, A1r, Bio, Bii, V1]

(UE)
m (U, A BV

where |U1| = 2|Uy| and |[U| = |Up|

The IH on mg gives a @, :: [Uo, Bo, Ao, Vo] with T§ = Tp. Starting with 7 and applying the IH four
times, we get a 7} :: [U1, Bio, B11, A0, A11, V1| with T] = Ty. Then, applying (UE) to m, and 7}, we
obtain a 7’ :: [U,B, A, V] with T =T. —

Proposition 4.11 (i) Pruning is derivable: if w:: [U,V], there exists a «' :: [U] with b’ < h.
(i) Doubling is derivable: if 7 :: [U, A], there exists a 7’ :: [U,2A] with T' =T, where 24 = A, A.

5We can have multiple applications of the IH, as the exchange of atoms leaves the tree, and hence the height, unaltered.
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Proof. (i) By induction on 7.
Base: If 7 :: [U, V] is an axiom, then 7" :: [U/] is an axiom, as well, and both heights equal 0.
Induction step: We demonstrate two characteristic cases.
> A global rule: (—E)

o - [Uo,Vo] ™o [U1,V1]
e [U, V]

(—E)

where [Up| = |Uh] = U]

The IH gives a m(, :: [Up] with h(y < ho and a 7] :: [Us] with h] < hy. By (=E), we then get a7’ :: [U]
with b’ = max (hy, h}) + 1 < max (ho,h1) +1 = h.

> A local rule: (NI)

Case 1: M (mI)
m (U, V]
where |U| < |Uo|
The IH gives a m, :: [Up] with hy < ho. By (NI), we then get aw’ :: [U] with B’ = hyy+1 < ho+1 = h.
Case 2: M (QI)
w (U, V]

where |V| < [V

The IH gives a «(, :: [U] with hy < ho. It is 7’ = 7}, and b’ = h{, < h.

(ii) By induction on 7.

Base: If 7 :: [U,A] is an axiom, then 7’ :: [U,2A] is an axiom, as well, and both trees consist of a
single node.

Induction step: We expose two characteristic cases.

> A local rule: (NI)

mo 2 [Uo, Ao, A1]

Case 1: o UA] (@))

where [U| < |Uo|

The IH gives a n(, :: [Uo, Ao, 2.41] with T} = Tp. Then, by two applications of 4.10, we obtain a
7e i [Up, 241, Ag) with T¢ = Tp. By the IH once again®, we get a 7§ :: [Up, 241, 2.40] with 7§ = Tp.
Starting with 73 and applying 4.10 three times, we derive a 7§ :: [Uo, 2(Ao, A1)] with T} = Tp. Finally,
applying (NI) to 74, we get a 7' 2 [U,2A] with T" = T.

6To apply the IH once again and double Ag after having doubled A1, which is an important step for the derivability of
doubling in this case, we need to have the conclusion that 77 = T in the statement of the derivability of doubling and also
in the statement of the derivability of atom exchange. In the case of the derivability of doubling, though, this conclusion is
not be maintained, if the local rules of intersection (introduction and elimination) and union introduction are not allowed
to act on more than one atom (or sequence of atoms) in one step. The reader may easily verify this by attempting the
current case of (NI) with a version of the rule acting solely on one sequence of atoms Ag,.A; or the corresponding case of
(NE) (resp. (UI)) with a version of the rule acting solely on one atom Ag.
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Case 2. 0 LU0 AL
m (U, Al
where |U| < |Uo|

The IH yields a 7 :: [Uy, 2.A] with Tj, = Tp. By (NI), we then get a 7’ :: [U,2A] with T" =T
> A global rule: (UE)

o i [Uo,Ao] = [Ur, Ado, Aid]
[U A]

(VE)

The IH on g gives a m}, :: [Up, 2A0] with Tj) = Ty, while the IH on m yields a «f :: [Us, A1g, 2.411]
with T = T3. Starting with 7] and applying 4.10 twice, we get a 7 :: [Uz, 2411, A1) with T2 = Ty. The
IH on 7% glves a s [Up,2A11,2A50) with TP = Ty. Starting with 75 and applying 4.10 three times, we
derive a 7 :: [Uy,2(A10, A11)] with T = T4. Finally, applying (UE) to 7 and 7, we get a 7’ :: [U, 2A]
with T =T. -

Remark 4.12 An alternative phrasing for the derivability of weakening and contraction, which includes
the notion of “tree”, is the following.

(i) Weakening is derivable: if 7 :: [(Ti,As; 71)i], where the T';’s have the same cardinality and the
A;’s are non-empty, there exists a 7' [(1"“0“ il Tz)i] withT' =T.

(ii) Contraction is derivable: if 7 :: [(T;, 04,04, A¢; 75)i], where the T';’s have the same cardinality and
the A;’s are non-empty, there exists a ' :: [(Ty, 04, A¢; 7)) with T' =T

For both (i) and (ii), the proof is by induction on w. If the A;’s are empty in (i), the induction works,
only if the conclusion T’ = T is removed (see Proposition 4.5). If the A;’s are empty in (ii), the induction
does mot work. We can only derive contraction through an implication redex (see Proposition 4.6), in
which case the conclusion T' =T does not hold.

If we consider a union elimination rule (UE)’ that resembles the union elimination rule of the pre-
sentation of IUL,, given in Chapter 3, we can show that it is derivable in the current presentation of
IUL,,

[(Ass ¢0)5, (Tis 0 UT)Y] [(Ai, ¢i; 9 )'1; (UE)/

((Ts,0:; pi), (Ti, 75 pi))T]
[( lvwl)l)(rl7pl ]

)
n
1

We use the derivable rule (UE)’ in Chapter 7, where we introduce a sequent calculus presentation of IUL,,,
to facilitate the proof of equivalence between the natural deduction and sequent calculus presentations

of IUL,, (see Theorem 7.2).
Proposition 4.13 The rule (UE)’ is derivable: if
mo i [(Ai; ¢0)f, (Dis s U] and m s [(Ag, 65 ¥0)F, (T, 045 pi), (Ti, 75 pi)1]

there exists a m :: [(A;; i)k, (Tis pi)}-
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Proof. We derive (UE)’ through a union redex, with the aid of Propositions 4.10 and 4.11(ii).

mo (A ¢i)1, (Ti; 0 UT)

¥ T m s [(Ady s Y)Y, (T, 005 pi), (Tiy 75 pi))T]
[(Ai; ¢ Ui)k, (Tis 0 Umi)T

]] (U - oL MDA R R A T UL [4.10, 4.11(ii)]

[((Ai, dis i), (Ai, dis wi))E, (T, 005 pi), (Tiy 75 i)
m i [(Ass )Y, (Tas pi)t]

(VE)

_|

Having redefined the logic and established its basic properties, we move on to present the type system
and demonstrate some (new) properties of it.

4.2 The type system IUT? in natural deduction

As already mentioned, the type system IUT® in natural deduction style is the natural deduction type
system IUT,, of Chapter 2 without the («)-rule. It assigns types ¢ :=a|oc — 0o |ocNo|oUo to terms
t € A according to the rules in Figure 4.2.

(ax)

B,x:obzx:o

B,z:obFt:T (1) BFt:o—T BFu:o (SE)
BFXMe.t:o—T BFtu:T

BFt:o BFEt:T (1) BFt:onNTt (NE1) BFt:onNnTt

(NE2)
BFt:onNTt Bhrt:o Brt:T

BFt:o BrFt:T
v I _— I
Brt:oUT (V1) BkFt:oUT (U12)

BFt:oUT B, z:okFu:p B z:thu:p
BFult/z]:p

(VUE)

Figure 4.2: The type system IUT® in natural deduction style.

Let us denote V, (or just V) the set of all term variables appearing in a derivation 7 of TUT®.
The next proposition establishes that renaming” of a term variable, weakening and strengthening of the
assumptions, and contraction of basic typing statements are all admissible in IUT®.

“The term “renaming” is very common in the literature, when speaking of a variable change in the assumptions (e.g.
see [2]). Although we use this terminology to be in accordance with the majority of authors, it is important to stress that
the change in question does not actually concern the name of the variable, but the variable itself.
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Proposition 4.14 (i) (Renaming) If 7 :: B, x : o -t : 7 and y is fresh with respect to m, there exists a
7 B,y:obtly/z]:T, such that V! = (V\{z})U{y} and T' =T.

(ii) (Weakening) If © :: B&Et: 7 and x is fresh with respect to w, there exists a #’ :: B,z :o b t: 7,
such that V' =V U{z} and T' =T.

(iii) (Strengthening) If @ :: B,z : o Ft:7 and x & FV(t), there exists a ' :: B+t : 7, such that
x g€ V' GV and b < h.

(iv) (Contraction) If w :: B, x : o,y : o -t : 7, there exists a ' :: B,z : o & t[x/y] : T, such that
V=V \{y} and T' =T.

Proof. (i) By induction on .

Base: If 7 is an axiom, we distinguish two cases.

Case I: If 7 :: B,z : o 2 : 0 with V = dom(B) U {z}, there is an axiom 7’ :: B,y : 0 F y : 0, such
that V' = dom(B)U{y} = (V\{z})U{y} and T" =T.

Case 2: f m =B, z:1,wv:0b z:7 with V =dom(B’) U{z,z}, there is an axiom

7B z:T,y:okz:T

such that V' = dom(B")U{z,y} = (V\{z}) U{y} and T" =T.

Induction step: We demonstrate two typical cases.

mouB,xiokFt:T—p m B, x:iokbFu:T
> (—E)
muByzioktu:p

Supposing that V;, = Vo U {z} and Vi, = V5 U {z}, we get that V = V5 U V7 U {z}. The IH gives a
7 B, y:obtly/z]: T — p,such that Vi = VoU{y} and T§ = Tp, and a7} :: B, y : 0 - ufy/z] : 7, such
that V{ = V1 U{y} and T{ = T}. By (—E), we then get a7’ :: B, y : 0 F (t[y/z])(uly/z]) = (tu)[y/] : p,
such that V' =VjuV/ =1 UV U{y} = (V\{z}hU{y} and T' =T.
mo B, x:obt:TUp muB,x:io,z:THFu:¢ muB,xio,z:plhu:g¢

g muB,xv:okut/z]: ¢ (F)

Supposing that Vi, = V; U {«z} (¢ = 0,1,2), we have that V = |J; Vi, = (U; Vi) U {z}. The IH gives
amyByy:obtly/x]:TUp,an 2 B,y:0,z:THuly/z]:¢p,andarwh B,y o, z:pkuly/z]: o,
such that V/ = V; U {y} and T] = T;. Applying (UE) to 7(,, 7}, and 75, we then obtain a

x B,y ot (uly/a)tly/c)/2] = (ult/=])ly/a] : ¢

such that V' = J; Vi = (U; Vi) U{y} = (V\{z}) U {y} and T" =T
For the rest of the proof, it is V; =V, (i =0,1,2).
(ii) By induction on 7.

Base: If 7 :: B,y : 7+ y : 7 is an axiom, there is an axiom ' :: B, y : 7, z : 0 - y : 7, such that
V'=dom(B)U{y,z} =V U{z}and T =T.

Induction step: We once more demonstrate the cases of (—E) and (UE).
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mBEt:T—p muBrFu:T
> (—E)
T BFtu:p

The IH yields a 7y : B,z : 0 b ¢t : 7 — p, such that Vj = Vy U {z} and T = Ty, and also a
7 = B,z 0ot w:7, such that V{ = V3 U {z} and T| = T;. Applying (—E) to 7, and 7}, we then get a
7' B,z :0 b tu:p,such that V' =VjuV/ =V uWu{z}=VU{z}and T =T.

moBEt:TUp maBiy:thu:¢ m B yipFu:e
m BEult/y]: ¢

(VUE)

TheIH givesany =B, z:obt:7Up,an = B,y:17,z:0Fu:¢,andan, B, y:p,z:0Fu:¢,
such that V/ = V; U{z} and T}/ = T; (i = 0,1,2). Applying (UE) to m(,n}, and 75, we obtain a
w2 B,x:obult/y]: ¢, such that V! = J; V/ = (J; Vi) U{e} =V U{z} and T" =T

(iii) By induction on 7.

Base: If 7 :: B,y : 7,z : 0 vy : 7 is an axiom, there is an axiom «’ :: B’, y : 7 - y : 7, such that
z gV =dom(B")U{y} ¢ dom(B')U{y,z} =V and ' = h = 0.

Induction step: We show two distinctive cases.

mouB,xio,y:ThHtp

> I
TuB,xiokFAyt:T—p =0

Since © ¢ FV(\y.t) and x # y, we have that « & FV(Ay.t) U {y} = FV (). Hence, the IH yields a
7o B,y THt:p, such that « ¢ Vj C Vj and hyy < hg. By (—I), we then get a «’ : BF Ay.t: 7 — p,
suchthat 2 ¢ V' =Vy G Vo=V and M =hy+1< ho+1=h.

mo B, x:okt:TUp muB,xioy:thu:¢ meuB,xio,y:plu:g

g m:B,x:okuft/y]: ¢ ")

We suppose that © ¢ FV (u[t/y]) and distinguish two cases.

Case 1: y € FV(u) = u[t/y] = u. The IH on 7y givesa ) :: B,x: 0t u: ¢, such that y € V{ ¢ 1
and hf < hy. Since b} < hy < h and « ¢ FV (u[t/y] = u), the IH on #] yields a 7’ :: B+ u = uft/y] : ¢,
suchthatxg{V’gV{QVl QVOUV1UV2:Vandh’§h’1 < h.

Case 2: y € FV(u) = x & FV(t) and « ¢ FV (u). The IH gives derivations

myuBEt:TUp, myuBy:Thu:¢, andwh B, y:ptu:g

such that « ¢ V/ ¢ V; and A} < h; (i = 0,1,2). By (UE), we obtain a ' :: B F u[t/y] : ¢, such that
zg V' =U; Vi € U; Vi =V and b’ = max;(h}) + 1 < max;(h;) +1 = h.

(iv) By induction on .

Base: If 7 is an axiom, we distinguish three cases.

Case l: fm B,z :0,y:0F x:0 with V =dom(B) U {z,y}, there is an axiom

7B r:obtxz/y=x:0

such that V' = dom(B)U{z} =V \{y} and T" =T.
Case2: 7B, z:0,y:0Fy:o with V =dom(B) U {x,y}, there is an axiom

muBx:okylzfyl=z:0
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such that V' = dom(B)U{z} =V \{y} and T" =T.
Case3: InuB z:1,x:0,y:0F z: 7 with V =dom(B’')U{z,x,y}, there is an axiom

7 uB i, viobzzfyl=2:7

such that V' = dom(B")U{z,z} =V \{y}and T =T.
Induction step: We show two characteristic cases.

> moB,x:o,y:obt:T—p muB,x:o,y:obFu:T (LE)
muB o, y:ot-tu:p

The IH yields a |, :: B,z : 0 F t[z/y] : 7 — p, such that Vj = Vu \ {y} and T = Tp, and also a
7 = B,z o Fulz/y]: 7, such that V] = Vi \ {y} and T{ = T1. Applying (—E) to m(, and 7, we obtain
an' B,z : ot (tlx/y])(ulz/y]) = (tu)[z/y] : p, such that V! = Vj UV = (Vo \ {y}) U (V1 \{y}) =
(VoUVi)\ {y} = V\ {y} and " = T.
mouB,xio,y:obt:TUp muB,xio,y:o,z:THu: ¢ mpuBixio,yio,z:phu¢

> muB,x:o,y:otult/z]: ¢ “"

The TH gives derivations
nyuB,xiobtlz/yl:TUp, B, xio, z:Thulz/yl: ¢, andwh B, w0,z pbtulz/y]: ¢
such that V/ = V;\ {y} and T/ =T; (i = 0,1,2). By (UE), we then get a
7B, ot (ule/y)lta/y)/2] = (ult/2))lz/y] : 6
such that V' = (J; V/ = Us(Vi \ {w}) = (Us Vo) \ {w} = V \ {y} and 7" = T. |
Remark 4.15 Contrary to IUL,,, where contraction is derivable through an implication redex, we cannot

derive contraction in IUT® through an implication redex.

muBxio,y:io-t:T

(=) — (ax)
B,x:obFMXyt:oc—r1 B,xz:obuz:o
(—E)

7 uB,xiok(My.t)w:T

As shown above, such an attempt provides a ' typing the redex (\y.t) x instead of the contractum t[z/y]
and, as argued in Section 2.1, the type system is not invariant under B-reduction of subjects. On the other
hand, as already shown in Remark 2.2(ii), we can derive contraction in TUT® through a union redex.

The following proposition declares that the sets of free and bound variables of a term typable in IUT®
are disjoint.

Proposition 4.16 If B+ t: o, then dom(B) N BV (t) = 0, Consequently, since® FV (t) C dom(B), it is
FV(t)n BV (t) = 0.

8See Remark 2.5.
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Proof. By induction on B+ t: o.
Base: If B, x : 0 F x : 0, then (dom(B')U{z}) N BV (z) = (dom(B")U{z})N0
Induction step: We show the most notable cases.

I
=

B, x:oFt:T
BFXe.t:o—T

(=1)

We have that = ¢ dom(B) and also, by the IH, that (dom(B)U{z})N BV (t) =
dom(B),{xz}, and BV (t) are pairwise disjoint, which implies that dom(B) N (BV (¢
dom(B) N BV (Az.t) = 0.

(). Therefore, the sets
YU{z}) =0, i.e. that

BFt:o—rT1 BFu:o
Bhrtu:t

(—E)

The TH gives that dom(B) N BV (t) = () and that dom(B) N BV (u) = (. Therefore, we have that
dom(B) N (BV (t) U BV (u)) = 0, i.e. that dom(B) N BV (tu) = 0.

Brt:oUT B,x:oku:p B,x:tkFu:p
Btrult/z]:p

(VUE)

The IH gives that dom(B)NBV (t) = () and that (dom(B)U{z}) ﬂ V(u
ie.

(). The latter implies that
dom(B) N BV (u) = 0. Therefore, it is dom(B) N (BV (u) UBV (t)) = i (

) =
dom(B) N BV (u[t/z]) = 0. H
The next proposition concerns the top-down development of certain variables in a derivation.

Proposition 4.17 Let m be a derivation in IUT®, R be a rule in m, and By, ..., B, be the bases in the
branch connecting the conclusion of R to the root of m.

(i) If R is (—1I) and x is the variable bounded in the course of R, then x ¢ | J;—, dom(B;).

(ii) If R is (UE) and x is the variable substituted in the course of R, then x & | Ji—, dom(B;).

Proof. We use induction on n for both (i) and (ii). We show (ii) below, noting that (i) is dealt with in
a similar manner.

Base: If n = 1, we have the following picture.

Brt:oUT B,x:obwu:p B,x:thu:p
m: By =Btult/z]:p

= (UE)

By the definition of “basis”, we have that « ¢ dom(B) = dom/(B).

Induction step: We suppose that = ¢ | JI_; dom(B;) and seek to show that = ¢ |JI' dom(B;).

If a one-premise rule among (—1I),(NE), or (UI) intervenes between B,, and B,,;1 with B,, being the
basis of the premise, it is |J/1y' dom(B;) = |Ji; dom(B;). If a two-premise rule among (—E) or (NI)
intervenes between B, and B, with B,, being the basis of either the left or the right premise, it is once
again | dom(B;) = U, dom(B;). In all these cases, the result follows from the TH.

We examine the case of the three-premise (UE) rule between B,, and B,y; a bit more closely. If
a (UE) intervenes between B,, and B,,;; with B, being the basis of the major premise, we have the
following picture.
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Brt:oUT B,x:okbu:p B,x:tFu:p

B, =Bt uft/z]:p =8

mo = By Ft iU m = Bn,y:pbu v mo i Bn,y i bu iv
T Bpy1 =B F W[t fy] v

(UE)

Since B,11 = By, we have that | JI1)' dom(B;) = |Ji_; dom(B;). Hence, the IH that = ¢ |, dom(B;)
actually says that = ¢ |J}' dom(B;). [We note that the IH entails that = ¢ dom(B,,), so that it may
be y = x.] If a (UE) intervenes between B,, and B,,; with B,, being the basis of a minor premise, the
picture is reformed as follows.

Brt:oUT B,x:obu:p B,z:thu:p
B, =Bt uft/z]:p

R = (UE)

mo B FtipUY m B, =B U{y:¢}Fu :v m B yiphu v
m: Bpp1 =B Fu[t/y] v

(VUE)

Since Bny1 = B’ C B,, we once more have that (JI")' dom(B;) = |JI; dom(B;), which implies the
result. [We note that the IH entails that = & dom(B,,) = dom(B’) U {y}, so that y # x.] —

4.3 Relating IUL,, to IUT? in natural deduction

Having completed the presentation of both the logic IUL,,, and the type system IUT® in natural deduction
style, we describe how the logic sets about accomplishing its definitional goal, which is the depiction of
the type system on a logical level. To do this, we need the definitions of non-standard decoration for
derivations in the logic and of term-statement for statements in the type system.

The so-called “non-standard” decoration of the logic is a decoration that does not encode every logical
rule; it is actually dictated by the very rules of the type system® and hence encodes the implication, ignores
the intersection (introduction and elimination) and the union introduction, and induces a substitution in
the case of union elimination. Its formal definition is along the line given in 3.15 and its rules are shown
in Figure 4.3.

Definition 4.18 (Term-statement) Given a statement B = {z1 : 01,..., Ty, : 0y} ¢ 7 in TUTY,
we define the term-statement deriving from it to be {x1,..., 2} t, abbreviated x1, ..., 2, Ft.

To depict the type system IUT® on a logical level, we needed to define a logic with implication,
intersection, and union, such that it admits a decoration encoding the implication, ignoring the intersec-
tion (introduction and elimination) and the union introduction, and inducing a substitution in the case of

9This is because this decoration is in essence defined to achieve a correspondence between the logic and the type system
in the perspective of a Curry-Howard correspondence. This correspondence is examined in detail in Chapter 5.
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t:[(Tiyou,7i, Ais pi)ilp,y,z.q

(ax) (X)
x: [(Ti,005 0)ilp, e t:[(Ti, 7,00, Ais pidilp, e, y,q
t:[(Ti,00; Ti)ilp, e (=1) t:[(Tis 00 = 7i)ilp u: [(Ti; 0:)ilp (LE)
Ax.t: [(Ti; 06 = 7)ilp tu: [(Ti; 7)ilp
t:[U,((T;0:),Ti; 7)), Vip - t:[U,(Ti; 00N7)i, V]p (nEY) t:[U,(Ti;00NT)i,V]p (NE2)
t:[U,(Ti; 00N 1), V]p t:[U,Ti;5 00, V]p t: (U, T )i, V]p

t: [u7 (Fl ; Ui)i)v]P (ULL) t: [u) (F17 Ti)i7v]P (UL)

t:[u,(Fi;aiun)i,V]p t:[u,(ri;aiUTi)i,V]p

t:[(Ti; 00 UT)ilp w: [(Ts,005 pi), (T, 75 pi))ilp,
ult/x] : [(Ti; pi)ilp

(UE)

Figure 4.3: Non-standard decoration of natural deduction ITUL,.

union elimination. For such a decoration to be feasible, the logic needed to have an (NI) rule with a single
premise and a (UE) rule with a single minor-premise!’. Indeed, the logic IUL,,, as defined in 4.1 and
decorated in 4.3, uses the molecule structure to join together statements in the type system that share
the same term-statement!. In the case of intersection introduction, the (decorated) logic merges into
the same (decorated) molecule the left and right TUT®-premises, in parallel for multiple rule instances
that share the same term-statement!?.

1 1 1 1
L1101, ey Tm 0 EE:T1 L1107,y T O E 1 (1)
1
L1 L1 .
$1.0'1,...,$m.0mkt.7'1ﬂp1
>
. n . n . . n B n .

T1:01,. .., &m0y Et:Ty X1:07,.., Tm Ot pn (1)
n

T1:07,e T iOp Et T Npy

101f the logic had an (NI) with two premises, a decoration ignoring it would proceed only under the metatheoretical
condition that the two premises are identically decorated. A similar remark holds for a (UE) with two minor premises.

1 This should be kept in mind with a small asterisk, as in the following two chapters we establish that it is not every set
of (derivations proving) statements sharing the same term-statement that can be joined into a single (derivation proving
a) decorated molecule, which actually renders IUL,, inappropriate as a logic for IUT® (see Section 6.3). It would be
more accurate at this point to say that we assume that, as in the case of the intersection molecule-logic with respect to
the intersection type system, the intersection-and-union molecule-logic IUL,, uses the molecule structure to join together
statements in the intersection-and-union type system IUT® that share the same term-statement.

120bviously, the term-statement of an (NI) instance with premises B -t : 7, B I t: p and conclusion B It : 7N p, where
dom(B) = {z1,...,Tm}, is meant to be z1,...,Tm - ¢t
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t: [u:(giy"':oﬁn;Tl):(o'%:“':o';n;p1)7"'7(0 :"'70'77711; Tn):(U{L:---:U;LﬁPn):v]m,---,wm

n
1
t:[u)(a%)"'yo—}n; Tlmpl)y"w(o—?)"'yo—:;.; Tnﬂpn)7v]11,---,1m

(nD)

Likewise, in the case of union elimination, the (decorated) logic merges into the same (decorated) molecule
the left and right minor IUT®-premises, in parallel for multiple rule instances whose corresponding
statements share the same term-statement.

BiFt:mUp: Bi,z:mibFu:vr Bi,z:prFu:v

1 1 (UE)
By ={z1:01,..., Tm : 05, } Fuft/z] : v1

B,Ft:mUpy, B, z:mFu:v, B,,x:pptFu:v,

B,={z1:07,...,Tm 0 } Fult/z]: v,

(VE),

t: [(Fl; 1 Up1)7 ) (Fn7 Tn Upn)]? u: [(Fth; Ul): (FI:P1§ Ul)y LR (FﬂyTn; Un): (Fnapn§ Un)]p,w

ult/z] [Ty =01, 0m501), o, (Cn =07, 005 U)o =010 2

(VE)

A similar note is given in Chapter 3 to explain how the (UE) in IUL,,, as IUL,, is presented there,
uses the molecule structure to join together the isomorphic minor premises of the (VE) in MLns (see p.
52).

Considering the logic and the type system as presented in this chapter, we (re)examine their cor-
respondence in the following chapter. We there reconsider the handling of substitution terms, an issue
that blocked a complete solution to the correspondence problem back in Chapter 3 (see subsections 3.1.2
and 3.2.2).



CHAPTER 5

Correspondence between IUL,, and IUT?

We aim to achieve a correspondence between the natural deduction logic IUL,, and the natural deduction
type system IUT® through the non-standard decoration of the logic, given in the previous chapter.
Toward this end, we first define the notions “tree with terms” and “tree of implications and union
eliminations with terms” for both the decorated logic and the type system. We then state and prove
theorems of correspondence, which strongly depend on restrictions involving the latter notion. We finally
examine if and to what extent we can get rid of these restrictions.

5.1 Trees of iue with terms

To obtain some kind of correspondence between the decorated logic IULY, and the type system IUT®,
we will need the auxiliary notion of tree of implications and union eliminations with terms, defined for
both IULY, and IUT®. The definition of this notion is based on the definition of the notion of tree with
terms, for both systems.

Definition 5.1 (IUL},: Tree with terms T'') (i) Given a decorated molecule t : M, in TULYX,, we
define the decoration-statement deriving from it to be the statement {p} b t with set-context {p}. We
may abbreviate the decoration-statement as p - t.

(ii) Given the tree T of a derivation 7 in IULY, and the fact that each node of the tree represents a
decorated molecule in 7, the tree with terms T't of 7* is T with each node decorated by the decoration-
statement deriving from the node’s decorated molecule.

Definition 5.2 (IULZ,: Tree of implics and union elimins with terms T}!) We derive the tree
of implications and union eliminations with terms T}., of a derivation ©* in IUL}, from the tree with
terms Tt of @ by erasing all nodes and corresponding decoration-statements associated to the rules
(X),(NIE), and (UI).

Remark 5.3 The procedure of erasing nodes and corresponding decoration-statements associated to the
rules (X),(NIE), and (UI) is well-defined, since these rules provide, when decorated, the same decoration-
statement in premise and conclusion. This fact also implies that the tree Ti., displays at the root the
same decoration-statement as the tree T't.

Example 5.4 (IULY: T% and Ti!,) If o = (aUB)N(aUy) and 7= (@ = dNe)N (B — 6)N(y — &),
we consider the TULY, -derivation 7 :: \y.yx : [(0; (1 — 0 Ne)U()] ., exhibited below, and present its

77
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trees T' and T\%,. For space economy, we denote 71 the type (o — dNe)N (B — 6) and ©fy the decorated
aa:iom z [(O',T,Oé; CM), (UaTaﬂ; ﬁ)a (O',T,Oé ) Oé), (0—77—77; 7)]7573}72'

€T [(T,O'; U): 7,0 U)]y,w

( (ﬂE1)
x:[(T7U;aUﬁ ,(T,O';O']y,z
(ﬂEz)
z:[(r,0;0Up), (1,05 aUY)]y0 (X) see below
7T6 R [(U:T; O‘UB):(U:T; OZU’Y)]w,y ﬂ'f AR [(O',T,O[; 5)7(07T7ﬂ; 6):(077—:0‘; 6)7(077-77; 6)]17,%/7 (UE)
yZ[QZ/Z] =Yyxr: [(0—77—; 6)7 (0-77—; E)]E,y (ﬁI)
yo : [(o,75 0N )y
(=1
Ay.yx : [(o; 7= dNe)a 1)
7 Ayeyz (o (T—=dNe) U]
Y [(0’,&,7’;T),(O',ﬁ,T;T),(U,Q,T;T),(U,’Y,T; T)]a:,z,y
(NE1)
Yy [(O',Oé,T; Tl):(gaﬂyT; Tl),(O',Oé,T; Tl):(U:’Y:T; T)]T/,Z y (NE:)
Y [(U,Q,T;a-)(;m&'),(o’,ﬁyT;Tl),(U,ayT;a—)(smf),(o’,’y,’r;T)];;,;y 1(ﬂE)
y: [(O',Oé,T; a—)&ﬂ&:),(a,ﬂ,r; B—)(S):(Uya:T; a—>6m6):(077:7—; 7—>6)]$,Z Y (X)2
y:[(U,T,a;a—)&ﬂe),(a,r,ﬂ;,6’—)5),(0,7',&;a—>(506),(0,7‘,’y;’y—>6)]w,y,; a,XiOIIlﬂ'{l ( E)
—

Yz [(U7Tyaa 605)7(0)7—7ﬁ; 5),(0’,7’,&; 605))(0)7—)'7; E)]ﬂ?ay,ff (ﬂE )

Yz [(O',T,Oé; 6):(0:7—:/3; 6),(0’,T,O¢; (SQE),(O',T,’Y; 5)]x,y,z :

(NE2)

ﬂ-f RNEE [(0-77—7&; 6)7(U7T)B; 6))(0-)T)a; 5)7(0-77—7’7; E)]z,y,z

To facilitate the layout, the trees T and Tit, of ©* are displayed on the next page in Figure 5.1,

where S denotes the set {x,y} and S,z the set {x,y,z}.

We next define the tree with terms of a derivation in IUT® and then provide an algorithm for
constructing the tree of implications and union eliminations with terms of such a derivation, given its
tree with terms.

Definition 5.5 (IUT?: Tree with terms T'") Given the tree T of a derivation © in IUT® and the
fact that each node of the tree represents a statement in m, the tree with terms T' of m is T' with each
node decorated by the term-statement deriving from the node’s statement.

Definition 5.6 (IUT®: Tree of implics and union elimins with terms T}!.) We derive the tree
of implications and union eliminations with terms T}, of a derivation m in IUT® from the tree with
terms T't of m by the following algorithm.

> We choose a topmost (NI) or (UE) in the tree with terms of m, i.e. an (NI) or (UE) that has no
other (NI) or (UE) above it. Then, we erase all nodes and corresponding term-statements associated to
(NE) or (UI) in the trees with terms of all premises. If the topmost rule-inference chosen is an (NI)
and the resulting premise trees of implications with terms are identical, i.e. if they share the same rule
structure and the same term-statements at corresponding nodes, we identify them and erase the node and
corresponding term-statement associated to the (NI). If the topmost rule-inference chosen is a (UE) and
the resulting minor-premise trees of implications with terms are identical, we identify them and keep a
single minor-premise tree of implications with terms, so that the node associated to the (UE) becomes a
two-children node.



o
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&
S, zky S
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S,zFy e i
NEq =
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Skax
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Figure 5.1: The trees 7't and T3}

ive Of ™ in Example 5.4.

6.
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> We iterate the above procedure for the tree with terms resulting from the previous step. At any
step n > 1, we ignore any two-children (UE)’s, when choosing the step’s topmost (NI) or (UE), and the
trees with terms resulting from the premises of the topmost (NI) or (UE) chosen—after erasing nodes and
corresponding term-statements associated to (NE) or (UI)—are, in general, trees of implications and
unton eliminations with terms, not merely trees of implications with terms, as they were at step 1.

> When all the (NI)’s and (UE)’s have been dealt with, we make a final step to erase any remaining
nodes and corresponding term-statements associated to (NE) or (UI).

Remark 5.7 Since the rules (NE) and (UI) display the same term-statement in premise and conclusion,
a tree of implications and union eliminations with terms attained from a topmost-(NI) or a topmost-(UE)
premise, after erasing nodes and corresponding term-statements associated to (NE) or (UI), is well-
defined and has a term-statement at the root which is identical to the term-statement at the root of the
premise’s tree with terms. Moreover, since the (NI) rule displays the same term-statement in premises
and conclusion, a tree of implications and union eliminations with terms attained from a topmost-(NI)
tree with terms, after identifying matching premise trees of implications and union eliminations with
terms and erasing the (NI) node and its corresponding term-statement, has a term-statement at the root
which is identical to the term-statement at the root of the topmost-(NI) tree with terms in question. Given
a topmost-(UE) tree with terms, there is obviously no alteration in the term-statement at the root, after
identifying matching minor-premise trees of implications and union eliminations with terms. The fact
that (NE) and (UI) display the same term-statement in premise and conclusion is once more used to argue
that a final algorithmic step concerning such rule-inferences does not alter the term-statement at the root
or anywhere else. So, in conclusion, the procedure described by the algorithm in 5.6 is well-defined and
the final tree TiL  attained, if the algorithm terminates, has a term-statement at the root identical to the

lue
term-statement at the root of the original tree T't.

Example 5.8 (IUT®: Tt and TI}!,) If o = (v > a)N(y = B) Ny and 7 = (§ = o) N, we consider
the TUT®-derivation m :: O = Az.zz (zz) : (1 — anB)Ue, as shown below. We denote o1 the type
(y = a)N(y — B) and B the basis {z : 7,y : 0 }. We then demonstrate the tree T* of © and the
procedure to attain the tree T\l of m from it in four steps. In trees, the letter S stands for the set {z,y},
while the topmost (NI) or (UE) chosen is enclosed in a box.

BrFy:o BFy:o
—— 2 (NEy) ———— (NE1)
BlFy:o:1 Blry:o BlFy:o1 Blry:o
BFyiroa ™ Bryy ™) BE o5 ™ Ry, )
yiy—a Vi g vy YT g
see below BFyy:a BFuyy:B (1)
Mo rx:THFzr:0UO muB={z:1,y:0}Fyy:anp l(uE)
w:rl—yy[ww/y]:a?w(wa?):aﬂﬂ( 5
N
Ok Ae.xx (zx) T —anpf
(UIl)

w0 Ar.zx(zz): (T > anpP)Ue

R (NE1) R (NE3)
v:TFx:0 >0 v:ThHx:0
(—E)
v:7ThHax: o0

o x:ThHTr:0UCO

(LuD)
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zhzx NE2

z b zz (zx)

0k Ae.xx (zx) o

0 F Az. zz (zx)
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Step 2:

rhkax rhkax

z bk zz(zx)
—I

0F . vx (vx)

0+ . vx (zx)

Step 3:

Tk Tk Sty Sky

z b zz (zx)

0 F Ae.xx (vx)

0+ Az.zz (zx)
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Step 4:

rhx rhx Sty Sty

0+ Az.zz (zx)

Tt

iue

The algorithm in 5.6 stops in case the trees of implications and union eliminations with terms attained
from the premises of a topmost (NI) or from the minor premises of a topmost (UE)—after erasing nodes
and corresponding term-statements associated to (NE) or (UI)—do not coincide. The next example puts
up an IUT®-derivation for which the algorithm does not terminate.

Example 5.9 (IUT®: no T}!,) If o= (y = a)N((d = B)N(E—=B)), 7= —=v)N({ — dUe), and
B={x:0,y:7,2:(}, we consider the ITUT® -derivation 7w :: B+ z (yz) : N B, as shown below. We
denote oo the type (6 — B) N (e = B).

see below see below

m = BFz(yz): « m = BFx(yz): 6

(n1)
T BFx(yz):anp
BFy:t
- Brycoq ™ Braig
. : z:
BlFz:o (NE1) Y Y (—E)
BFz:v—a« BFyz:vy
(—E)
mo Bz (yz): a
B,w:dtz:0o B,w:ektz:o
——————— (NE2) ——— (NEy)
BFy:T B,w:0Fx:o02 B,w:ekx:02
——— (NEy) (NEy) (NE2)
BFy:(—dUe BFz:( B,w:dFz:d—>p B,w:dFw:6 B,w:ebz:e—p B,w:eltw:e
BFyz:0Ue (—E) B,w:dFazw:p (—E) B,w:ekFzw:p (—E)

(UE)
m Bl (yz): B

The tree Tt of = is displayed on the next page, where S denotes the set {x,y,z}. We then elaborate

on the steps of the algorithm in 5.6 in order to spot the problem in obtaining a tree T}., of .
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Step 1:

Step 2:

Sty Stz Swhkx S,wkw

Stuyz S,wk zw

Stw(yz) St x(yz)
(Eltle)o (T’iltle)l

Step 2 cannot be completed, as the trees of implications and union eliminations with terms obtained from
the premises of (NI) are not identical, i.e. it is (I\t.)o # (Tit.)1. Therefore, the algorithm stops and

: ¢
there is no tree T, of .

5.2 Restricted correspondence theorems

Having defined the notion “tree of implications and union eliminations with terms” for both the decorated
logic and the type system, we can now use it to state and prove theorems of correspondence between the
two systems. The inevitable restriction! which the use of this notion? poses on the correspondence forces
us to call these theorems “restricted correspondence theorems”.

IThe restriction is meant in comparison to the correspondence achieved in Chapter 1 between the decorated logic ISL
and the type system IT (see Theorem 1.20).
2A detailed justification of this notion’s necessity in securing the correspondence is offered in Section 5.4.



5.2 Restricted correspondence theorems

Theorem 5.10 (From IUL,, to IUT®
tion in IUL,,, there are derivations m; ::
1. (TiL.)i emists, 2. (TiL.)i = (Tik.); (1

1ue 1ue l1ue

Proof. We proceed by induction on 7*, denoting S the set {x1,. ..

Base: If 7*
m T 0%, ..,

Do [(al,... ol T T
T iob T FxT(

term-statement S x F x, so that conclusions 1 and 2 hold. The tree (

<i#j<n), andé’(

87

t:[(of,..

T : O

.‘,O'm i 7)™l wr,. z, 05 @ decorated deriva-

ikt (1 <i<n)in IUT®, such that

)i = (Tie)n

1ue
s T }-
)iilai,....am,2 15 @ decorated axiom, then there exist axioms
1<i<n)in IUT®. The tree (Ti,); is a single node with the

1ue
T.lo)=+ is a single node with the

) If w*
T ZO’{,..

T

lue

decoration-statement S,z - z, so that conclusion 3 holds, too.

Induction step: We show the most demanding cases, abbreviating [h] the induction hypothesis.

om0k o ) Bl
T tu (0.
The [h] gives derivations mo; :: @1 :

i
Ols---

em o u:[(giz---ygi,z;Ti)?:l]xl ----- Tm (SE)
:Uin 5 pi) ?:1] 1., Tm
s T oh Ftir = (1<i < n), such that (T;}, )o; exists,

(Tit)oi = (Tlfle)oj, and (T3 )oi = (Tife)x; Tt also gives my; i Ty 0L, .., Ty ol FuiT (1<i < n),
such that (Ti%,)1; exists, (L)1 = (Tme)lj, and (Tl )1 = (Tike) s Applylng (—>E) to mp; and my;, we
obtain m; it @1 1 0l, ..., @y 10l Ftu p; (1 <i<n). Since the trees (7if,)o; and (Ti%,)1; exist, the tree
(T;t,): also exists, as shown below.
(Tile)oi [h] (Tite)ri b
Skt Sku
—E
SHtu
t
(Tige )i
Since (Tnie) i = (Tlue)oj and (Tlue)r = (Tiltle)lj’ we get, that (Tme) = (Tiltle)]'? as displayed below.
(Tiie)oi (Tife )i (Tiie)oj (Tite )1
Skt Sku Skt Sku
[b]
—E - —E
SFtu SHtu
t t
(Tige)i (Tise);
Finally, since (Ti\.)oi = (Tile)n; and (Tif )1 = (Tile)x:, we obtain that (Til,); = (Til.)x+, as shown

below.
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(Tiltle)Oi (Tiltle)li (Tntle)ﬁo (Zfle)ﬂ'l
Skt Stu Skt Stu
[h]

—E — —E
St tu SFtu
t t
(Tive)i (Tie) s

t[((ﬁzl,,(f) d))z 1:((‘7%;---#7%;Ti):(Ui;~~~:Uin§Pi))?:k+1]w1 ----- Tm
t:[(¢17"'7¢ d))z 1:(01:"'70577.;Timpi)?:k+1]$1 ----- Tm

For 1 < i < k, the [h] yields derivations mo; ©: 21 : ¢4, ..., Ty 1 ¢, b ¢ 10;, such that the trees (T}%,)o;

1

exist and are 1dentlcal and (T3l )oi = (Tihe)ms- It is m = moi, s0 the trees (T3, )i[= (Tih)oi] exist and are

identical. Moreover, it is (7i!.): = (Til)oi = (Tife)xs = (Tiie)n+- For k+1 <i < n, the [h] gives

1ue 1ue 1ue 1ue
Toi0 2 X1 :07,---, Tm 0t and mo @y ioy, ..., T o, EEp;

such that the trees (T3, )oi0, (T3, )oi1 exist and are identical. Applying (NI) to mo and mo;1, we get

iue iue

it @10, Ty ot E T N opg. Since (T3 )oio = (Tik.)oi, the tree (T3f,); exists and is identical

to (Til,)oio. Hence, the trees (Ti%.); are identical. For 1 < i < k and k+ 1 < j < n, the [h] yields

1ue

that (Ti%.)oi = (Tike)ojo, which implies that (T3f,); = (TiL.);. Therefore, we altogether have that, for

lue lue lue

1 < i < n, the trees (Tit,.); exist and are identical. Consequently, the already established equality

lue

(Tt = (T-t ), where 1 < i < k, also holds for 1 <14 < n.

lue lue

N m ot (ol ok T Up) e m o w (01, 00, Tis i), (0, O, pi Vi) P lp e (UE)
ut/a] (o8, 0m 5 Vi) il =21, om
The [h] gives derivations mo; :: @1 : 0%, ..., @y 108 Ft: 7 Up; (1 < i< n),such that (7}L,)o; exists,

(Tife)oi = (Tiie)oj, and (Tife)oi = (Tike)x; - 1t also gives

1ue 1ue 1ue 1ue

T140 o8 X1 :ai,...,xm:afn,;v:nku:vi and 71 ::;v1:ai,...,xm:afn,x:piku:vi
for 1 <4 < n, such that (T3),)1i0, (Tie)ra exist, (Ti5e)1j0 = (Tihe)1io = ('inttle)lila and (T3 o)1io = (Tike) s -
Applylng (UE) to moi, T1i0, and 41, we obtain m; it 21 1 0l ..., @y 1ol Fuft/2] s v; (1 <i < n). Since

the tree (Ti%,)o; exists and the trees (Ti%. )10, (Til,)1i1 exist and are 1dent1ca1 [(Tme)le = (it )i =

1ue 1ue 1ue

(T:t )1i], the tree (T3, ); also exists according to the algorithm in 5.6.

lue lue

(T (THio  (THia (Tife)oi [h] (Tife)1i [h]
Skt S,cFu S,cFu Skt S,k u
T 5.6
UE - UE
Sk oult/x] St ult/x]
(Tt)l (jjutle)
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Since (Ti}o)oi = (Tihe)oj and (Tit )1 = (Tih)iio = (Tike)ijo = (Tike)1j, we get that (Ti.): = (Til,);, as
displayed below.

(Tigie)oi (Tie)ri (Tite)oj (L)1
Skt S,z u Skt Sxhu
[h]

UE = UE
S Foult/x] St oult/x]

(Tite)i (Tite)i

Finally, since (Ti}.)oi = (Tile)x; and (Tiko)1i = (Tife)io = (Tike)x:, we obtain that (Ti.): = (Ti,e)-, as

1ue 1ue 1ue 1ue lue 1ue
shown below.

(Tlue)OZ (1—'1138) (Tifle)ﬁf) (Zfle)ﬂ'l
Skt S,z u Skt S,chku
[h]

UE = UE
S Fouft/x] St ult/z]

(Tige)i (Tige) s

The (—I) case is similar to the (—E) case, while the cases of (NE) and (UI) are similar to the (NI)
case. —

Corollary 5.11 If 7* : t : [(01,..+,0m; T)]u,....x, 15 @ derivation in IULY, . there exists a derivation
ML T 101, Ty Oy Bt 7 in TUT® | such that 1. (Ti,)1 exists and 2. ( 1ue)1 = (1.t )n

1ue 1ue

Proof. By Theorem 5.10, for n = 1. —

The next example illustrates the formalities in Theorem 5.10.

Example 5.12 We consider * :: Ay.yx : [(0; 7 — 8),(0; T — €)] 4, as displayed below, where o, 1,7,
and 77 are as in Ezample 5.4.

7T6 LT [(U)T; OéUﬁ),(U,T; aU’Y)]Zay ﬂ_{ Tyze [(U)Tya; 6)7(0—77—)B; 6))(0)7—)05; 5)7(0—77—7’7; E)]E,%Z
ya : [(0,750),(0,7;5€)]ay
™ Ayyr (o517 = 0),(0; 7= ¢e)]a

(VE)

(=1)
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There are two derivations ™1 == x : 0 F Ay.yz : T = d and 7 = x: 0 F Ay.yr : T — € in IUT?,
such that the trees (Tt,)1 and (Ti!,)2 both exist and are identical and also identical to the tree (T}L,)r.
Roughly speaking, we derive w1 and mo from 7* by tracing the decorated “ancestors” of the 1st and 2nd
decorated atoms in the conclusion of ©*, respectively. We denote B the basis {x : 0,y : 7} and S the set

dom(B) = {x,y}.

B,z:akFy:T

— 7 (nEy)
B,z:akFy:7 B,z:pFy:T
(NEq) ——— (NEy)
B,z:aFy:a—dNe B,z:akz:a( £ B,z:fFy:71 (nEs)
—
Bro:o B,z:alyz:0Ne B,z:fry:B—0  B,z:BFz:8
— 5 (NE1) (NE1) (—E)
BtFz:aUp B,z:akFyz:9d B,z:ﬂl—yz:(s(E)
]
B:{x:a,y:T}FgﬂU:&( )
—1I
muT:iokFAy.yr:T—0
B,z:aFy:T(mEl)
B,z:aklFy:m nED
B,z:aFy:a—dNe ! B,z:akFz:a B,z:ykFy:T
(—E) (NE2)
Blz:o B,z:akFyz:0N¢ B,z:yFy:y—e¢ B,z:yFz:y
—  —  (NEj) (NE3) (—E)
BFz:aUy B,z:alyz:¢ B,z:'ykyzze(UE)

B={z:0,y:7}tyx:¢€

(=D
Mok Ay yr:T —>¢

S,zky S,zF z

Ay .yx
(Tiltle>1 = (Tiltle>2 = (ﬂﬁe)ﬁ*

The inverse of 5.10 can now be phrased and proved as follows.

Theorem 5.13 (From IUT® to IUL,,) If m; : 1 :0%,..., 2y 10l Ft:7 (1 <i < n) are deriva-
tions in IUT®, such that 1. (T}L,); emists and 2. (TiL.); = (Tit,); (1 < i # j < n), then there is a
decorated derivation 7 :: t: [(of,...,0% s 7)) " 1] er,.. 2. @0 ULy, such that (Tt ). = (T3t.):.

Proof. For the sake of simplicity, we consider two derivations 71 :: ©1 : 01,..., Ty : O = t : 7 and

Mo it X1 1 Ply---y Tyt Pm -t 210, and we proceed by induction on 7. Nonetheless, we still consider that
the [h] can be applied to any finite number of derivations. We denote S the set {x1,...,Zn}-
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Base: If my & @ : 7, @1 : 01,..., Ty, : Oy b @ 1 7 is an axiom, then, since (TiL,)2 = (Tif, )1, derivation
mo may only contain rule inferences among (NI),(NE), and (UI).

S,ckFw
(jjiltle)l = (7-}11;18)2

Mol & TP, L1 Py, Tm i Pm TP Mok 32 TP, T1:Ply--, Tm i Pm T
(NIE), (UI)

M2 TP, X1 Ply oy Tm i P X0

We achieve a 7* :: z: [(1,01, .., 0m; 7), (0, P15+ s P s ) &, 01,..., 2, DY MELGING 71, 721, . . ., Toy iNtO
an axiom of the (decorated) logic and then applying exchanges® and the logical (NIE),(UI) inferences that
correspond? to the (NIE),(UI) inferences in 7.

€T : [(017"':07’”77-; T);(Plz--~;l’m;¢; ¢)ik:1]1;1,---a$ma1;

(X)’s

€T [(Ty Oly--+3,0m; T):(¢7p17 sy Pmo ¢)§:1]x,w1,...,wm

(NIE),(UIL)

*

™ T [(T,O’1,...,0'm; T):(¢:Ply-~~;l’m; ¢)]$awla---a$m

Since 7* does not contain implications or union eliminations, the tree (7i%,),- is a single node with the

1ue
decoration-statement S,z b @, i.e. it is (T3L,) = (Tite)1-

3The number of these exchanges is the least possible, as we choose not to interfere with the 1-to-m order in axiom level.

41t may be the case that a number of inferences of the same kind in the type-system level are translated as a single
inference of this very kind in the logical level; e.g. a number of (NE1)’s in w2 may render a single (NE;) in 7*. This is
because the local rules of the logic, i.e. (NIE) and (UI), are allowed to act on several atoms (or sequences of atoms) in one
step.
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Induction step: We show the most important cases.

> MO T1:01,...,Tm Om Etix =T M1 X1 :01,eee, Tm Om FULYX (LE)
ML L1001,y T O FtU T

The tree (7i!,)1 with root-node accompanied by the term-statement S + tu derives by (—E) from
the trees (T}!,)10 and (7}!,)11 with root-nodes accompanied by S I ¢ and S I u, respectively. Since the

1ue 1ue

tree (Ti%,)2 exists and is identical to the tree (T}!,)1, derivation m has the form shown below, where, for

1 <@ <k, the trees (T3, )2i0, (T3, )2i1 all exist and it is (T3¢ )20 = (T3, )10 and (T, )2i1 = (Tt )11-

1ue 1ue l1ue 1ue 1ue 1ue

w210 i B2t 1 — Y1 ma11 : Ba Fu: ¢1 B Toko : Ba Ft: ¢ — Yy okl o B2 Fu: ¢ B
21 1 Ba - tu : 1 Trog : Ba F tu : Yy
(NIE), (UD)
w2t Bo={x1:p1,..., Tm : pm }Htu:p
The [h] OIl 10,2105« + + 5 T2k0O gives a
* .. . . . k
UIORY t: [(017"'707717 X — T)a(pla"'apma ¢l — I/)i)izl]xl,...,zm
such that ( lue) = (Ti%,)10- In addition, the [h] on 711, 211, .. ., T2k1 gives a

*

T u [(Ula"-agm; X)a(pla---;pm; ¢i)?:1]w1,---7$m
with (Tife)rs = (Tl )11. We then derive a 7* 2 tu: [(01,...,0m; 7), (P15, Pms )] es..... 2, a8 fOllows.

1ue 1ue

) i
. (=B)
tu: [(01:---70'7%;T):(p1:'~~:pm§¢i)i:1]x1 ----- Tm
(NIE),(uI)
7‘-* wtu [(01)' c0m T),(Pl,---,Prrﬁ 1/))]11,---,171»
Since (Tlfle) = (Tlue) 10 and ( 1ue) = (Tittle)lh we infer that ( 1ue) (Tutle)
o MO @101y, Tm Om FE:T M1 @1 :01,..., Tm :Om FT:1x (1)
ML T1:01,...,Tm O EEtiTNY

Since the tree (T!.); exists, the trees (Ti!,)10 and (Ti,)11 both exist and are identical, so that

1ue 1ue

(Tit)1 = (Tit )10 = (T )1 Moreover since (Tit,)1 = (Tt.)2, we have that (Tit,)10 = (T3t )11 = (T)t,)s.

lue lue lue lue lue lue lue lue



5.2 Restricted correspondence theorems 93

We can therefore apply the [h] on 719,711, 72 to get a

mo st [(0n e 0m T), (01, 0w XD, (PL s P V)]
such that (Ti},)r; = (Tile)10- By (NI), we then obtain a

1ue
™t (o1, oms TOX), (01, Pm V) ar
such that (T}¢ )~ = (Tt Jrs = (Tife)10 = (Tiko)1-

1ue 1ue 1ue

mo = BikFt:TUy miwo B, rx:TFu:v mn B,z xkFu:v
> (UE)
m B ={z1:01,..., Tm:0on } Fult/z]:v

The tree (T”ﬁe)l with root-node accompanied by the term-statement S F u[t/z] derives by (UE) from

the trees (Tit.)10 and (Tit,)11, where (Tif.)11 = (Tit.)110 = (T3, )111, with root-nodes accompanied by

lue lue lue lue 1ue
S+t and S,z b u, respectively. The hypothesis that the tree (T}!,)2 exists and is identical to the tree
(it )1 implies the following. Derivation m has the form depicted below, where, for 1 < i < k, it is
mi0 = Ba Bt gio U din, maino B2, @t ¢io b ou i thy, and moin it Ba, @ ¢ B ow io4pi. The trees
(Tiﬁe)zio,(ﬂﬁe)mo,(Tme)mll all exist and it is (T)aio = (Blo)ain [= (Do) (Biaio = (Tieo,

and (Tt )21'1 = (T )11

1ue l1ue

7210 72110 72111 (UE) T2k0 T2k10 T2k11

(UE)
21 it Ba b aft/a] : Yn ok =t Ba Fult/z] : Yy

(NIE), (UI)

me i Ba={x1:p1,..., Tm : pm } Fuft/z] ¢

Il =o01,...,0m and A = py,..., pm, the [h] on w19, 7210, - . ., T2k gives a
m ot (T 7UX), (A5 o U ¢i1)?:1]x1,---,xm
such that (Tme) * = (Tifle)lo’ Whﬂe the [h] OIl 7110, 7111, 72110, 721115+ -5 T2k10, T2k11 gives a

7Ti( Luc [(FaT; U): (F7X7 U): ((Aa ¢i0 5 wz)a (Aa ¢i1 5 wl))le] L1,y T, &
= (TiL,)11. We then derive a 7* =2 u[t/z] : [(T'; v), (A; ¥)] 4y, .. as follows.

1ue

such that (

1ue)

*
o 1

u[t/w] : [(F; U): (A, 1,/%)?:1]“ ----- Tm
N———

(VE)

(NIE),(UI)
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The identities (Tjj,)r; = (Tije)10 and (Tije)r; = (Tiie)11 imply that (Tig, )z = (Tije)r- -
Corollary 5.14 If w1 = @1 : 01,..., Ty : O B t 2 T is a derivation in IUT®, such that (T}},)1 exists,
there is a decorated derivation 7 :: t: [(01,...,0m; T)] a1, zm n IULy,, such that (L) = (Tit)1-

Proof. By Theorem 5.13, for n = 1. —

Remark 5.15 (i) A more accurate phrasing of Theorem 5.13 would be the following.

If i m ol . zy ol Ftom (1<i<n) are derivations in IUT®, s.t. 1. (T}L.); exists
and 2. (Tit,); = (Tit,); (1 <i# j < n), then, for every bijection b: {1,...,m} — {1,...,m},
there is a decorated derivation 7 :: t : [(02(1)7 . .,crg(m) 5 Ti) i1l 2y o 2y 0 1ULp, with

(T't )77* = (T't )z

1ue 1ue

In 5.13 we consider the identity bijection for simplicity.

(ii) In the base case of the inductive proof of 5.13, we present the aziom w1 somewhat awkwardly as
x:7, Bbax:7, where B={w1:01,..., Tm : Om }, in order to demonstrate that there might be need for
some exchange inferences in 7. Had we chosen the usual presentation® B, x : T - x : T, this fact would
not have been illustrated. The need for exchanges becomes explicit in Exvample 5.16 right below.

The next example is a concrete instance of the (UE) case displayed in the proof of 5.13.
Example 5.16 If 0 = (¢« = y)U (B = 7), 7 = (@ = p1 Np2) U (B — p1 N p2), where pg = Ne and

p2=CNn, and p= (eNn) U, we consider the IUT®-derivations m; : B={z:0,y:anNB}Fzy:v
and e = B'={y:anp, x:7}Fwy:p, as shown below.

B,z:a—wyky:aﬂﬂ(ms) B,z:ﬁ—)’yky:aﬂﬂ(ms)
B,z:a—>yFz:a—7y B,z:a—yFy:a ! B,z:—>~yFz:—v B,z:B—>7yFy:p 2
(—E) (—E)
BrFaxz:o B,z:a—vykFzy:y B,z:ﬁ—)’yl—zy:’y(E)
]

muB={z:0,y:anB}ray:y

see mo; (i = 1,2) below see ma; (1 = 1,2) below
.. / . .. / .
mo1 i B' oy p1 (AE») w2 it B'Fay : pa (AE»)
B'bFuay:e B'Fay:n
. (NI
B'Fzy:enn on)
m B ={y:anp,z:T}Fay:p '
B{Fy:aﬂﬁ(ﬂEl) BéFy:aﬂﬁ(ﬂEz)
BiFz:a—piNps B{l—y:a(_}E) By z:8— p1Np2 Bé}—y:ﬂ(_)E)
BilFzy:piNp2 (nE:) By zy:p1Np2 (AE:)
B'rz:r By=BU{z:a—piNp}tzy:p ' By, =B U{z:B8—piNp2}tzy:p; '

/ (UE)
mu B ={y:anB,z:7}tFxy:p;

5There is no actual difference between the two presentations, as bases are sets, but 5.13 tacitly presumes an order in
bases, the same in all n of them, which is the order aimed at in (the conclusion of) 7*.



5.2 Restricted correspondence theorems 95

We attain the tree (Tit,)1 from the tree (T't); in one step, which is achieved by the fact that (T\!,)110 =

1ue 1ue

(Tit)111 [= (Tii)11]. We then attain the (T.L,)2 from the tree (Tt)g in four steps: the 1st and 2nd steps

lue lue

are accomplished by the tree-identity (T.t.)2i10 = (Tit.)2i11 [= (T3, )2i1] for i =1 and i = 2, respectively,

lue lue lue

while the 3rd step is accomplished by the tree-identities (T}, )210 = (Tile)220 [= (Tike)2i0] and (Tt )211 =
(Tutw)zgl [= (Tlfle)%l] Finally, we see that (Ti},)1 = (TiL,)2 from the facts that (T, )10 = (TiL,)2i0 and

(Tt )11 = (TiL,)2i1. In the trees below, the letter S denotes the set {z,y}.

1ue 1ue

S,z z S,zky S,z z S,zkFy
\}/‘ Stz —E
o S,z Fzy
S,z zy Stz
(Tih) 110 = (Tife)in (Tihe)210 = (T3 )220 UE
(TiLe)2it0 = (Tike)2inn (Tike)10 = (Tife)2i0 "
#
(Tihe)211 = (Tike)221 ry
t t
( 1ue) ( )2@1 (ﬂue) (ﬂue)

Derivations w1 and mo satisfy the hypotheses of 5.13; so, for © = x1 and y = x2, there is a decorated
derivation ™ : zy : [(o,a N B57),(T,a N B p)a,y with (Lk) = (Tl ). If T = o,an B and

1ue 1ue

A=r1,anp,wewritel'y =T a—=y, I's=T,8=7v Ays=A7,a—=p1Np2, and Ag=A,8 = p1 Np2.

1o (see below) 11 (see below) (5E)
z:l(@npo; o) Aanbrinlye o Wi Tai),Cos5 ), 20 AaiprNp), (Bai 0o Dleyz (g
z:[(T50),2(A5 7).y 2y [(Ta; ), (Ts57), (Aa; pi), (Ap5 pi))icilay, - (UE) ’

Iy‘[( i), (A5 p1), (A5 p2)le,

(ﬂEg)
v 0. o) Bimley
v D0y

s zy: (T 9), (A5 p)a,y

o 2 [(Ta; a—=7),(Ts; 8= 7),2((Aas @ — p1 Np2),(Ag; B— p1Np2))]e,y,-

y:llo,a—=v,anp;anp), (o, —v,anf;anp),2((t,a = p1Np2,anNB;anp),(r,8 = p1Np2,aNB;anp))a, -y
y:[(l"a;aﬂﬁ),(f‘ggaﬂﬁ) 2((Aq; anp), (AB amﬂ))}xyz
7";1 Ty [(Fa; a)a(rﬂ ) ﬂ)a ((AOM )a(AB 3 6))]33,%2

(X)

Two exchange inferences, just below two axioms, are necessary in 7. If we chose to name y = x1 and
T = T2, we would get a 7 :: xy : [(aNB,0;7),(@nNB,7;p)ly . This is actually in accordance with
Remark 5.15(i). In this case, we would also need two exchange inferences, but both (consecutively) below
the same aziom. For the m shown above, it is easy to verify that the tree (T\L, )+ is identical to the tree
(:Fifle)l'
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The question that now arises is the following. Can a finite number of TUT®-derivations that share
the same term-statement at the root, but are such that the conjunction of hypotheses 1 and 2 in 5.13
fails, be transformed to derivations that prove the same statements and are such that 1 and 2 both hold?
To simplify the situation, let us consider two IUT®-derivations 7y :: By = {x1 :01,..., Tm :om } Ft: 7T
and mo :: Bo ={ @1 :p1,.-., Tm : pm } - t: 9 that share the term-statement {1, ...,z } F t at the root
and are such that the conjunction of 1 and 2 fails [notation: —(1 A 2)x, ], i.e. it is not the case that the
trees (Ti!,)1 and (Ti!,)2 both exist and are identical. Can we find transformed derivations 7} :: By Ft: 7

lue

and 75 :: By =t : 1) for which 1 and 2 hold [notation: (1 A 2),s ], i.e. for which the trees (T}t.)] and
2 172 1

1ue

(T:t,)5 both exist and are identical? As the next section illustrates, this is not always possible.

5.3 A transformation counterexample

Consider the following A-terms.

u = xxy v =z

"_ "_
U = T2yy v =y (r271)
U = ToT1T1 v =x1(x2m1)

If s = zox1 and r =z, it is u = u/[s/x] = u”[r/y] and v = v'[s/z] = v"[r/y]. Moreover, if s’ = x2y, the
following A-term relations hold.

u =Ir v =TT
u”:S’y v”:ys
u = sr V=TS

fo=F—->7y—=>a)nNd, r=E—=>C—>a)Nn,and p=(d = v)N(p = ()N BNe, consider the
IUT®-derivation 71 :: By = {@1 : p, w2 : B = o U7} Fuv: « and its tree (T%,)1, as shown below. The
letter S denotes the set {z1,2z2}.

BiF oz (nE)
————— n
BibFx2:8—>0UT Bll—wl:ﬁ(HE) see below see below
o BT =s:0UT w1 B, z:obar(re) =uv :a 7712::B1,x:TFxr(rx):u’v’:o¢( )
UE
m i Biksr(rs) =uv:
B oz B ok : B ok : B ok x:
LX:oFT:o (NE1) _1_’{_0_ fl_f(mE) __1_’_3’;_0__{1_8_ (NE) Lr:or?T U(QEQ)
Bi,z:okFaz:f—>7—>« Bl,wzal—wlzﬂ( E) Bi,z:0Fz1:6 7 Bl,w:o}—w:(S( E)
— —
mio B, xiobkxri iy 2« 7r111::B1,ac:UFac1ac:'y( E)
N
w1 B, xio b xzi(ziz) = v
B,x:7kHx: By, x:7kFx: Bi,z:7kFx: B,x:7kHx:
L T T (NE;) L T ! P(QEQ) _OLETEETL P (NE) #(mﬂ:@)
Bi,x:tFr:e—>(—« Bi,x:17kFxi:€ Bi,z:tkxz1:n—¢ Bi,xz:17hx
(—E) (—E)
mi2 B, x:ThzE (=« wlgl::Bl,ac:TFaclac:Q“( E)
N

w2 B,z T Fazi (i) = vt



5.3 A transformation counterexample 97

S,xkzx S,x -z S,z x1 S,z x

S+ uv
(ﬂfle)l

fo=C—a¢p=C=7x=(@U¢)Ne,andv=(p == a—=p)N{H =9 —=7—B)N(E — (),
consider the IUT®-derivation my :: By = {@1 : X, #2 : v} F uv : B and its tree (T}%,)2, as demonstrated
below. For space economy, we denote By and By, the bases By, y : ¢ and Ba, y : ), respectively.

Bybxi=r:x ("E) see below see below
o0 i BabrigpUy mo1 = Ba, y:p b xoyy (ys) =u'v" : 8 wao i Ba,y: Yk wayy (ys) = u’v” 1 B (UEB)
w2 Ba b sr(rs)=wv:p
B¢|—a:2:v B¢|—a;2:v B¢|—a:1:x
———————————— (NE) (NE) (NE)
ByFaza:9p—=9p—a—p BybFy:¢ BybFx2:e—( Bybx1:e
(—E) (—E)
BybFazoy:9p—a—p Bd,l—y:(b(HE) BybFy:¢ B¢|—a:2$1:szg( .
w210 it Be,y: ok xoyy:a — B 7r211::Bg,y:¢l—ys:a(HE)
mo1  Ba, y 1 ¢ b wayy (ys) = w'v” 1 B
Bwl—atz:v Bd,l—a:z:v Bd,l—ajlzx
———————————— (NE) (NE) (NE)
Bytza:p—>p—vy—8 BybFy:vy BylFza:e—( Byltuzi:e
(—E) (—E)
By Fxoy:p—v— B Bwi—y:szE) BybFy:y Bd)szwl:s;((am
ma20 it Bo, y: Y Fxoyy iy — B rzzl::Bz,yzwl—ys:’y(ﬁ\E)

1,11

o2 it Ba, y Y woyy (ys) =uv" 1 B
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S,y b xo Syty S,y z2 S,y x1

SkEr
S, y o

S+ uv
(ﬂﬁe)Q

It is obvious that (Ti%.)1 # (Ti%,)2, so that —(1 A 2)x, ,. Before attempting to transform m and o
tomy = Bi b uv:aand m i Ba b uv B, respectively, so that (1A 2)q/ s, some preliminary notes are in
order.

Note 1. The complezity c(t) of a A-term t is defined inductively as follows.
elz) =1 c(Az.t) =c(t)+1 e(tu) = c(t) + c(u)

We write <. (<, =.) to mean < (<,=) with respect to complexity. Obviously, for any term ¢, it is
t >, 1, and, for any non-variable term ¢, it is ¢ >, 1. The next lemma states term-complexity relations
and properties we will be using later on.

Lemma 5.17 For any terms t,u,v, and any variable © free in u, we have that: (i) t <. tu and u <. tu,
(i) if t <. u, then tv <. uwv and vt <. vu, and (iii) if © <.t, then u = u(z) <. u(t) = ult/z].

Proof. (i) Itis tu=,t+u>.t+1>.t and tu = t+u >, 1+ u >, u.

i\ T s [t<cu] [t<cu]
(i) Itis tv=ct+v <. utv=cuv and vt =c v+t <. v+u=;vu.
(iii) By induction on u(z). Base: If u(z) = z, then u(t) = ¢, so that u(z) <. u(t) by hypothesis.

h
Induction step: If u(z) = (\y.u1)(x) = Ay.ui(z), then uq(x) [<]c u1(t), so that u(z) = A\y.u1(z) =,
ur(@) + 1 <cur(t) + 1 =¢ Ay.ur(t) = u(t). If u(z) = (uruz)(x), then x is free in uy or free in us, so we
need to consider three cases: a) z free in uq, but not free in ug, b) z free in uq, but not free in uq, and

h
¢) x free in both uy and us. For case a), it is u(z) = (u1(x))usg, so that uy (z) [<]c u1(t), which implies that
w(x) = (u1())uz < (u1(t))uz = u(t) by (ii). The other two cases are dealt with in a similar manner. =



5.3 A transformation counterexample 99

Note 2. In the attempted transformations, we only consider (UE)’s where a proper substitution occurs,
as a (UE) where a phony substitution occurs is eliminable.

moBFt:oUT muB,x:okbu:p m i B,r:iThHu:p

E)proper [z € FV(u
m BlRult/z] £ u:p (UE)proper [z € FV (u)]

o BkFt:oUT muB,z:oku:p
e BlRut/zl=u:p

m B, x:Thuw:p (VE)phony [@ & FV ()]

Considering 71 :: B, x : 0 F u : p in (UE)phony and using Proposition 4.14(iii), we get that there exists a
7w = BFu:pwithx € V) ¢ Vi and hf < hy. Actually, as can be determined from the proof of 4.14(iii),
derivation 7f derives from m; by eliminating some (possibly none) rules in ;. Therefore, the set of rules
proving B F w : p in 7} is a subset of the set of rules in 7y, which implies that we can prove B F w : p
without the phony (UE) in question.

It can further be shown that, if the transformed derivations 7} :: By - wv : @ and 7 :: Bo Fuv : § we
are looking for contain phony (UE)’s, then, eliminating the phony (UE)’s from 7} and 7 and obtaining
m = Bi k- uv: aand 7y i By - uo : B, respectively, we still have that (1 A 2).y .». Hence, if there are
transformed 7} and 7, with (1 A 2)./ o/, which include phony (UE)’s, then there are also transformed
mf and 7 with (1 A 2).v v, which exclude phony (UE)’s. Consequently, if there are not transformed
mi and 7 with (1 A 2).z or, which ezclude phony (UE)’s, then there are not transformed m; and 7
with (1 A 2)ﬁ17,ré, which include phony (UE)’s. In other words, including phony (UE)’s would not alter a
negative outcome in the search for transformations.

In the following notes, unless otherwise indicated, we consider an arbitrary term wwv built from variables
by applications.

Note 3. A derivation that proves a statement typing uv and that contains only proper® (UE)’s cannot
contain an (—I). Since all the rules, except phony (UE)’s, carry a A-abstraction from premise-level to
conclusion, if the derivation contained an (—I), then the A-abstraction formed by it would have to appear
in wv, which is a contradiction.

BFMy.t:oUT B,z:oFu(z):p B,z:17hFu(x):p

UE
BFu(Ay.t):p (UB)proper

BFAy.t:ocUT B,x:okFu:p B,x:tkFu:p E
BFu:p (“®phony

Hence, we will be trying to construct derivations 7] and 7} that contain only (—E)’s and proper (UE)’s,
as far as rules recorded in a tree T}, are concerned.

Note 4. Supposing that the first bottom-up rule-inference among inferences of (—E) and of proper
(UE) in a derivation proving B I~ uv : a, where B is an appropriate” context and « is a type variable, is

an (—E), then this (—E) is the first bottom-up rule-inference at all in a derivation proving B F uv : w,

6We mean that all the (UE)’s that appear in it are proper. It may, of course, contain other rules besides (UE)’s.
“The context B is “appropriate” in the sense that its domain contains the free variables of uv.
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where® w is either a or an intersection type with a factor? a. The type w cannot be an implication type,
e.g. of the form w’ — «, because then an (—E), lying below the lowest (—=E) in B F uv : a, would be
required to “extract” a from w. The type w can neither be a union type, e.g. of the form (v’ Na)U(aNw”),
because then a proper (UE), lying below the lowest proper (UE) in B  wv : «, would be required to
eliminate the union and deliver « at the root. If w # «a, we need only consider (NE)’s in between the
(—E) in question and the root B F uv : a. This is because « is a type variable, so rules like (NI) or (UI),
which increase a type’s complexity, are not appropriate!®.

BFru:w —w BFov:w
(—E)
BFuv:w (NE)
BFuv:«

Supposing that the first bottom-up rule-inference among inferences of (—E) and of proper (UE) in a
derivation proving B - uv : a, where B is an appropriate context and « is a type variable, is a proper
(UE), then this proper (UE) can be considered as the first bottom-up rule-inference at all in B - uv : a.
The first step is to argue, as in the case of an (—E) above, that this proper (UE) is the first bottom-up
rule-inference at all in a derivation proving B F uv : w, where w is either « or an intersection type with a
factor . However, in this case, any (NE) in between the proper (UE) in question and the root B F uv : «
can be shifted above the proper (UE) in question.

BFt:wiUws B, z:wibs(z):w B, z:wts(z):w
(UE)
BlFuv=s(t):w ~r
————————— (NE)
BFuv=st):a
Biziobs@iw 0 Beiwts@ie o
BbFt:wi Uws B, z:wilts(z):a B,z:w bt s(z):a (UE)
BlFuv=s(t):a
Note 5. Examining bottom-up whether wv is typable in an appropriate context B ={..., x;:0;,...}

by some type'! w, i.e. examining whether bottom-up completion of a potential typing B  uv : w is
possible, not all the rules from the set {(—=E), (UE)proper, (NI), (NE), (UI)} have the same status, when
considered at the first bottom-up position. The essence of bottom-up completion of a potential typing
B F wv : w lies in the decomposition of uv to terms of smaller complexity in succedents higher up, so
that we eventually reach variables in the succedents of axioms, and also in the decomposition of union

8The letter w here bears no connection to the type constant w of Chapter 2.

9Saying that w is an intersection type with a factor a, we roughly mean that w has the form f; Nfy, where f; and fy are
the factors of the intersection and (f; = a or f2 = a). The word “roughly” implies the fact that a factor of an intersection
type may itself be an intersection type with factors which are intersection types and so forth. That is to say, the intersection
aNfz (or f1 N ), mentioned above, may be nested into a “bigger” intersection type.

101f there was a (NI) in between the (—E) and the root, it would have to be followed by an (NE), so it would be eliminable.
On the other hand, there couldn’t be a (UI) in between the (—E) and the root, as it would have to be followed by a proper
(UE), which would lie below the lowest proper (UE).

"' The type w may be either a specific type, e.g. a certain type variable , or a type which is loosely specified by a certain
description, e.g. an intersection type with a factor a or an implication type, or just an arbitrary type.
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types assigned to variables in B to their components'? in contexts higher up and the decomposition of
intersection types in uv : w to their factors in succedents higher up. There are two categories of rules from
the above set; one with rules that meaningfully contribute to the bottom-up completion of a potential
typing of a term uv and another one with rules that just shift a potential typing of a term uv (or a version
of it that is harder to bottom-up complete) upward. Before elaborating on the two categories of rules, let
us first define four categories of proper (UE). Distinguishing between the various kinds of proper (UE) is
necessary in order to distinguish the two categories of rules.

A category-1 proper (UE) is one whose major premise types a proper, non-variable subterm ¢ of uwv,
denoted (UE)[1,¢]. A category-2 proper (UE) is one whose major premise assigns to a variable subterm
x; of uv a union type wi U ws, such that o; = wy Uwsy or g; is an intersection type with a factor
w1 Uwsg; we denote it (UE)[2,z;]. A category-3 proper (UE) is one whose major premise types uv itself,
denoted (UE)[3]. Finally, a category-4 proper (UE) is one whose major premise assigns to a variable
subterm x; of uv a union type w; U wy, such that o; is not a union type or an intersection type with
a union factor and w; = o;; we denote it (UE)[4,x;]. Taking uv = xowix1(x1(xaw1)) = sr(rs) and
B =By ={x1:(pU¢)Ne, zz: v}, we give some examples in each of the categories 1-4. The word
“same” in place of the right minor premise of a union elimination indicates a recurrence of the left minor
premise.

By bk s:wi Uws By, z:wi bar(rs):w By, w:we b ar(rs):w

By Fuv=sr(rs):w (VE)[L, s] ()

By b s:wi Uws By, z:wibar(re):w By, z:webar(rz) :w

By uv=sr(rs):w (BT <10

ByFzi:9pUYW By, x: ¢ F xoxzi(vi(waw)) t w By, x: Y F xozvxr (v1(waw))  w

By Fuv = zoz1z1(z1(2221)) W

(VE)[2, 4] (8)

Byt zi:9pUY By, x:¢pF xozx (v (x2w)) t w By, x: ¢ Fxozx (x (z2w)) t w

By Fuv = zoz1z1(z1(2221)) W

(UE)[2, 1] (4)

Ba Fuv w1 Uws Byyz:wibz:w By wiwrbwiw (UE)[3]
BolFuv:w

BakFz2:vU B tv bk :

sFza:vUL 2, T 10 F zamiza (1 (221)) s w B (B4, e

By - uv = zoz1z1 (1 (2221)) t W

Since s has two occurrences in uv = sr(rs), there are three possible (UE)[1,s]’s according to which
occurrences of s in uv are substituted by z to form the subject in the minor premises. This subject may
be either xr (rs) (see the (UE)[L, s] (i) above) or sr (rz) or ar (rz) (see the (UE)[L, s] (ii) above). A similar

12The components of a union type c1 Uco are the types c1 and c2. We use the word “factor” exclusively for intersections
and the word “component” exclusively for unions.



102 Chapter 5. Correspondence between 1UL,,, and IUT®

argument holds for the (UE)[2,z:], which has fifteen different instances, and for the (UE)[4, z2], which
has three different instances. Obviously, a category-1 union elimination may only be considered, if there
exists a proper, non-variable subterm t of uv. To consider a category-2 union elimination, there must
exist a variable subterm x; of uv, such that ¢; is a union type or an intersection type with a union factor;
on the other hand, to consider a category-4 union elimination, there must exist a variable subterm x; of
uw, such that o; is a type variable or an implication type or an intersection type with no union factor.

Before presenting the two categories of rules, we also need some notes on comparable potential typings
of uv. We say that (i) o is a subtype of 7, denoted 0 < 7, if and only if z : 0 - = : 7, (ii) o is equal
to 7, denoted o = 7, if and only if (¢ < 7 and 7 < o), and (iii) o is a proper subtype of 7, denoted
o < 7, if and only if (¢ < 7 and o # 7). Adopting a set-theoretical view for types, which roughly means
considering a type as a set of terms with this type, if 0 < 7, then the property defining ¢ is more specific
than the one defining 7, i.e. o carries more information than 7. Let us now consider two potential typings
X101, eee, Ty i O Fuv:w (typing A) and @1 : 71, ..., Ty : Ty F wv : W (typing B) of uv and an index
i from 1 to m. We distinguish three cases. Case a: if [Vi (7; = 0;) and (w’ = w)], then the two typings are
equal. Case b: if either 1. [Vi(1; < 0;) and Ji(1; < 0;) and (W' =w)] or 2. [Vi(1; = 0;) and (W' > w)],
then typing B is easier than typing A. If 1 holds, typing B displays stronger assumptions and an equal
succedent with respect to typing A, i.e. it provides more information in the assumptions to derive the
information in the succedent. If 2 holds, typing B displays equal assumptions and a weaker succedent
with respect to typing A, i.e. it is called to derive less information in the succedent from the information
in the assumptions. Obviously, in either case, typing B is an easier version of typing A. Case c: if either
1. [Vi(r; 2 0;) and Ji(1; > 0;) and (W' =w)] or 2. [Vi(1; = 0;) and (W' < w)], then typing B is harder
than typing A. If 1 holds, typing B displays weaker assumptions and an equal succedent with respect to
typing A, i.e. it provides less information in the assumptions to derive the information in the succedent.
If 2 holds, typing B displays equal assumptions and a stronger succedent with respect to typing A, i.e.
it is called to derive more information in the succedent from the information in the assumptions. This
time, in either case, typing B is a harder version of typing A. A bottom-up rule which advances from a
potential typing of wv at the conclusion to an easier version of it at the premise-level certainly promotes
the bottom-up search. On the other hand, a bottom-up rule which advances from a potential typing of uv
at the conclusion to a harder version of it at the premise-level hinders the bottom-up search. Finally, let
us consider two potential typings 1 : 01,..., Ty i om, 0o Fw=(w)(z)=(...z...zx...2...) 1w
and 1 T, T Ty T, yipE sy, ) =(...y ... x ...y ...):w of uv and s(y, ), respectively,
where all the free occurrences of x in wv are marked and s(y, «) derives from (uv)(z) by substituting some
(possibly none or all) free occurrence of = by y. If [Vi(r; = 0;) and (7 =) and (p =) and (v’ = w)],
the two typings are equivalent. Equal typings are equivalent, but the inverse is not true.

The first rule-category is the set {(=E), (UE)[1], (UE)[2], (NI)}. These rules meaningfully contribute
to the bottom-up completion of a potential typing B F uv : w, when considered at the first bottom-up
position. An implication elimination decomposes uv to the smaller-complexity terms u and v in the left
and right premise, respectively. A category-1 union elimination decomposes uv to smaller-complexity
terms ¢ and s(z) in the major and minor premises, respectively.

BFt:w Uws Byz:wi b s(z):w B,z:w b s(z):w
BFuv=s(t):w

(UE)[1,¢]

Since t is a proper subterm of wwv, it is t <. uv. Moreover, since t is not a variable, it is ¢z =. 1 <, ¢,
which implies that s(z) <. s(t) = uv by 5.17(iii). A category-2 union elimination decomposes a union
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type w1 Uws in (the context of) the conclusion to its components w; and ws in (the context of) the left
minor premise and (the context of) the right minor premise, respectively.

BlFzx;:wi Uws B,z:w b s(z,z;) rw B,z:w2 b s(z,z;) 1w
B={...,zi:wi1Uwsz,...} Fuv = (w)(z;) : w

(UE)[2, z;]

This decomposition actually conveys the very purpose of a union elimination rule, which is the elimination
of union, in a bottom-up manner. If w; and we are not comparable, we have that w; < wi Uwsy and
w2 < wi Uwy. This implies that each of the minor-premise typings is easier than the conclusion typing!3,
which promotes the bottom-up search. If w; < we, then wy = w1 U wse, which implies that the typing at
the right minor-premise is equivalent to the conclusion typing, and w; < w; Uws, which implies that the
typing at the left minor-premise is easier than the conclusion typing. If wy = ws, then w; = wy Uwe = wy,
which implies that each of the minor-premise typings is equivalent to the conclusion typing. If wq > ws,
then wy = wy Uws, which implies that the typing at the left minor-premise is equivalent to the conclusion
typing, and ws < wi U ws, which implies that the typing at the right minor-premise is easier than the
conclusion typing. In any case, what is important for the bottom-up completion in a category-2 union
elimination is the decomposition of a union context-type to its components. An intersection introduction
decomposes an intersection type wy Nwe in (the succedent of) the conclusion to its factors wy and wsy
in (the succedent of) the left premise and (the succedent of) the right premise, respectively. If w; and
wo are not comparable, we have that w; > w; Nwe and we > wy; Nwo. This implies that each of the
premise typings is easier than the conclusion typing, which promotes the bottom-up search. If w; < wa,
then w; = wj N weg, which implies that the left-premise typing is equivalent to the conclusion typing,
and wg > wy Nws, which implies that the right-premise typing is easier than the conclusion typing. If
w) = ws, then w; = w1 Nwy = wso, which implies than each of the premise typings is equivalent to
the conclusion typing. If w; > we, then we = w; Nws, which implies that the right-premise typing is
equivalent to the conclusion typing, and w; > wj Nws, which implies that the left-premise typing is easier
than the conclusion typing. In any case, though, what is important for the bottom-up completion in an
intersection introduction is the decomposition of an intersection succedent-type to its factors.

The second rule-category is the set {(UE)[3], (UE)[4], (NE), (UI)}. These rules just shift a potential
typing B + uv : w (or a harder version of it) one level up, when considered at the first bottom-up
position. A category-3 union elimination displays an equivalent or harder version of B - uv : w, namely
B F uv : wq Uws, at the major premise.

Bt uv:w Uws B,x:wibFx:w B, x:wbFx:w
BFuv:w

(VE)[3]

The type w1 Uws is such that  : wi F o : w and x : wy F x : w, from which, by an appropriate union
elimination application, we get that y : w1 Uws F y : w, i.e. that wy Uws < w. If wy Uwy = w, then
B F uv : wy Uws is equivalent to B + uv : w; if wy Uws < w, then B F uv : w; Uwsy is harder than
Bt uv : w. It is easy to check that a category-4 union elimination displays minor premises which are
equivalent to the conclusion.

3For example, B, © : w1 F s(x, ;) : w is easier than B, = : w1 Uwa - s(z,x;) : w, which is equivalent to B F (uv)(x;) : w.
Therefore, B,  : w1 F s(x,z;) : w is easier than B + (uwv)(x;) : w. This is a natural extension of the concept “easier”,
defined on the preceding page for comparing potential typings.

14We should note that the necessary and sufficient condition to consider an intersection introduction at the first bottom-up
position of a potential typing B I uv : w is that w is specified as an intersection type w1 Nwa.
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BlFz;:o;Uo; B,z:0iF s(z,z:) :w same
B={...,zi:0i,...} Fuv=(w)(z;) :w

(UE)[4, z;]

An intersection elimination displays an equivalent or harder version of B F wv : w, namely B F uv : wNw/,
at the premise. In general, we have that wNw' < w. f wNw' = w, then B - uv : wNw' is equivalent
to BFuv: w;if wNw < w, then BF uv : wNw' is harder than B + uv : w. A union introduction also
displays an equivalent or harder version of B F uv : w = wy Uws, namely B F uv : wi, at the premise.
In general, we have that w; < w; Uws. If w; = w1 Uws, then B uv : w; is equivalent to B - uv : w; if
w1 < w1 Uws, then B F wv : w; is harder than B F uv : w.

We conclude that in order to decide whether bottom-up completion of a potential typing B - uv : w
is possible, we only need to examine rules from the first set at the first bottom-up position. Rules from
the second set do not meaningfully contribute to the bottom-up search and can be ignored in making
this decision; shifting the typing upward just defers the decision to a later bottom-up step, while shifting
a harder version of the typing upward may even mislead to a negative decision. However, if the typing
is indeed possible, it may be the case that the actual first bottom-up rule belongs to the second set, e.g.
is an (NE) (see note 4 where (NE)’s cannot be shifted above an (—E)), but this can be easily settled at
the end, i.e. after a positive decision has been made. If all the rules from the first set fail at the first
bottom-up position, which may require to further bottom-up examine rules from the first set at first
bottom-up positions, then the typing is not possible.

Note 6. If uv = wox121 (x1(2221)), the transformed derivations 7] :: By Fuv : « and 75 :: Bo Fuv : 8
with identical trees Ti%, that we are looking for must i) type uv in contexts By and By, respectively, by a
and 3, respectively, and ii) resemble each other with respect to the structure of (—E)’s and proper (UE)’s
and their term-statements. Working the trees (Ti%,); and (T}f,)5 bottom-up, a first bottom-up step of a
shared (—E) or a shared proper (UE) must prove progress with respect to the typing in at least one of
7} and 75; there is no point in trying a step where the typing (or a harder version of it) is shifted upward
in both 7] and 75. Among (—E)’s and proper (UE)’s, the set {(—E), (UE)[1], (UE)[2]} proves progress
with respect to the typing, while the set {(UE)[3], (UE)[4]} does not (see note 5). So, a first bottom-up
step of a shared (UE)[3] or a shared (UE)[4] is excluded; a first bottom-up step of a shared proper (UE)
where one of the derivations displays a (UE)[3] and the other one displays a (UE)[4] does not even deliver
matching term-statements, so it is excluded anyway. If there is progress with respect to the typing in
both 7} and 7%, then the step involves a shared (—E) (see case 1 below) or a shared (UE)[1] (see case
2 below) or a shared (UE)[2] (see case 3 below). We cannot consider a step of a shared proper (UE)
where one of the derivations displays a (UE)[1] and the other one displays a (UE)[2], as this combination
does not deliver matching term-statements. If there is progress with respect to the typing in either 7} or
74, then the step involves a shared proper (UE) and the derivation in which progress is made displays a
(UE)[2], while the other one displays a (UE)[4] (see case 4 below); this is the only combination between
the progress-set {(UE)[1], (UE)[2]} and the non-progress-set {(UE)[3], (UE)[4]} which delivers matching
term-statements.

In constructing 7] and 75, the general idea is to make a first bottom-up transformation step which
gives an identical bottom-part in trees of implications and union eliminations with terms and also makes
enough bottom-up progress with respect to the typing, so that the remaining transformation needs to be
done on finite sets of derivations, each of which contains derivations proving statements that type a term
of smaller complexity than uv.

Having in mind the preliminary notes 1-6 given above, we need to examine the following cases of a
first bottom-up step for the trees (1i!,); and (Ti%,)5.
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1. Can we construct 77 and 75, such that the trees (T}!,)] and (T}f,)5 both exist and share a bottom
(—E), as shown below?

Sku Skov

—E

SFuv

We want a 7} :: By F uv : a with the following bottom part.

Bitu:w —w BikFwv:w

(—E)

However, the term w is not typable in context B; by an implication type. We outline below the bottom-up
search with root By F u : w; — w. In this bottom-up search and others to follow, we only consider rules
from the set {(—E), (UE)[1], (UE)[2],(NI)} at the first bottom-up position (recall note 5). The symbol
“x” next to a rule-sign indicates that such a rule-application at the first bottom-up position cannot
deliver the required root-typing, in which case we use a dotted horizontal line in-between the premise and
conclusion levels. Further, the shorthand “not” next to a rule-sign indicates that such a rule-application
cannot be considered at the first bottom-up position due to inappropriate form of the context-types or
the subject or the predicate of the required root-typing. We also use the gray color for succedent-types
which are initially desirable in a bottom-up search, but finally prove impossible.

i) Cousidering an (—E) at the first bottom-up position of a potential typing B; F v : wi — w, we see
that it does not work.

by (—E), see w10
[(UE)[1, 2] not, (NI) not]
By Fs:o0UT # implication type'® right premise
Bilru=sr:w —w

ii) Considering the only possible (UE)[1], which is the (UE)[1, s] shown below, at the first bottom-up
position of a potential typing B; F u : w; — w, we see that it does not work.

by (—E), see m110 by (—E), see m120
[(UE)[1, 2] not, (NI) not| [(UE)[1, 2] not, (NI) not]
BiFs:oUT Bi,xz:okFbzxi:w ww=vy =« Bi,z:1thrriw »w=_(—a«a

............................................................................................... (UE)[L, s] x

15We cannot extract o (and then the implication type 8 — v — «) from ¢ U7 by a (UE)-application with major premise
B1Fs:o0UT and conclusion Bi F s: o, as such an application would require a right minor premise By,  : 7 - x : o, which
is not possible. A similar argument shows that we can neither extract 7.
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iii) We cannot consider a (UE)[2] at the first bottom-up position of a potential typing By F u : w1 — w,
as the only variable subterms z; and x2 of u are assigned p=(6 > v)N(n =>¢)NFNeand = oUT,
respectively, in By. We can neither consider an (NI) at the first bottom-up position of a potential typing
By F u:w; — w, as the succedent-type is not specified as an intersection type.

We gather that a 7} with an (—E) bottom part is not feasible; so, there is no need to examine if
such a 7} is doable. Still, if we achieved 7} and 7} whose trees (Tutw)' and (T%,)5 existed and shared a

bottom (—E), the transformation would reduce to further transforming =, and w5, which would type
u <. uv, and also to further transforming 7}, and w5, which would type v <. uv.

(Tite) 10 (Tite) 11 (Tiie)20 (Tite )21
Stu Skwv Stu Skwv
—E —E
S+ uv S+ uv

t o\ t \/
(Tiie ) (Tiie)2

2. Can we construct a 7} and 75, such that the trees (7i%,)}] and (7}!,)5 both exist and share a bottom
(UE)[1]? We distinguish three cases.

2a. A bottom (UE)[1,s]. Since s has two occurrences in uv = sr(rs), there are three possible
(UE)[1,s]’s. We examine the case with subject xr (r&) = w'v’ in the minor premises, which, since m;
already displays such a bottom part, amounts to examining if we can construct a w5, such that the tree
(T:t.), exists and has the following bottom part.

lue

Sks S,z v

UE

S Fuv

We want a 74 :: Ba Fuv : § with the following bottom part.

by (—=E): w1 Uwz =(U(
by (UE)[2,z1]: w1 Uw2 = ¢ag U,p
[(UE)[1] not, (NI) not]
Bo b s:wi Uws By, z:wi bar(re) =uv' : B By, z:wsbar(rz) =u'v' : B
m 2 Bo b uv = sr(rs) : 8

(UE)1, s]

The type wi Uws may be either ¢og U 1),g, where ¢og = ¢ = o — f and ,3 =9 — v — §, or (UC(.
We outline below how the ¢,5 U,z case fails. The (U ¢ case fails, as well.
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see 1), ii), and iii) below

by (UE)[2,z1], see right below [(NI) not]
Bzt s ag Uthyg Ba, x: pop - xr(rr) =u'v' : B Ba, x:pyg b xr(rz) =u'v' : B8 (UE)L s
U , 8
my  Bo bk uv = sr(rs): 8
R o DR Y] .. Fxov
————————— (NE) TS (nE)
...szzd)—)qﬁaﬂ ...Fy:d)(%E) ...sz:’l/)—}'l,ll,yﬂ ...Fy:w(HE)
BobFxy:y Bo,y: ¢t z2y: dap Ba, y: a2y by
—— (NEy) (UIp) (UI2)
BabFx1:9pUY B2, y:pF a2y dap Uthyp B2, y: ¥ F 22y dapUtng (UE)[2, 21]
2

Ba b x2w1 = 5 ¢ap Uhqpg

i) Considering an (—E) at the first bottom-up position of a potential typing Ba, x : ¢op F u'v' : 3,
we see that it does not work. The abbreviations “lmp” and “rmp” stand for “left minor premise” and
“right minor premise”, respectively. Likewise, the abbreviations “lp” and “rp” stand for “left premise”
and “right premise”, respectively.

B2, @ gap a1 X ki a— B by
(NE{) | e ettt e (—E)X [(UE)[1, 2] not, (NI) not]
B2, x:¢poptx1:0UY Imp Bo,x:bap,y:bbay:w—p
................................. ~l--~~--~~~--~~--~~--~~---~~--~~--~(UE)[2,:E1]><[(HE)X,(UE)[I]not,(ﬁl)not]
Bo,x:¢optu =10 — r

ii) Considering a (UE)[1] at the first bottom-up position of a potential typing Ba, & : ¢pus - u'v’ : 3,
we find that it does not work. The (UE)[1, ] does not work, since a typing B,  : ¢op F v/ : w1 Uws is
not possible; the bottom-up search for such a typing is similar to the one shown in i) above for a typing
B, & : ¢pop - u' 1 w— B. We present the failure of the (UE)[1,v'] below.

(UE)[2, 1] x, see right below
[(—E) x, (UE)[1] not, (NI) not]

Bo, x:pap v =z1w w1 Uws left minor premise right minor premise
.............................................. S S (UE) L] X
Ba, z:papt-uv : 3
F Fx
........ y¢¢o‘ﬁ (—E)x [(UE)[1, 2] not, (NI) not]
By, x:¢apbari:p Uy By, x:ap, y: P yx:wi Uws p
................................................................................................. (UE)[2, 21] x

Bo, ¥ dap v =z12 w1 Uws

iii) Considering a (UE)[2] at the first bottom-up position of a potential typing Ba, x : ¢pos F u'v' : 3,
we also find that it does not work. We illustrate the failure of one of the three possible (UE)[2, z1]’s below.
The other two fail, as well.
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(UE)[2, z1] X, see right below
[(=E)x, (UE)[1] X, (NI) not]
By, z:papbx1:9pUY left minor premise By, x: pop, y: Y xy (1) :

.................................... (—E)X, (UE)[1] X [(UE)[2] not, (NI) not]

........................................................................... L (UEB)2, w1] X

B2, x: ¢ap, y: ¥ Fay(z12):

We conclude that a 7 with a bottom (UE)[1, s], which is identical (with respect to term-statements) to

the bottom (UE)[1, s] in 7y, is not possible. Yet, if we achieved a 7} with a tree (Z},)} bottom-identical to

the tree (Ti%,)1, the transformation would reduce to further transforming ¢ and 75,, which would type

s <¢ s =1u <. uv, and also to further transforming w11, m12, 74, and 75y, which would type u'v’ <. uv.

(Tite)10 (Tiie)1n (Tite)20 (Tiie)2n
Stks S,z kv Stks S,z kv
UE UE
S uv S uv
t t
(T’iue)l (T’iue)é

For each of the other two possible (UE)[1, s]’s, at least one of 7} and =} fails.

2b. A bottom (UE)[1,u]. We seek derivations 7} and 7, whose trees (T;!,)} and (7;!,)5 both exist and
share the following bottom part.

Sku S,x - zv

UE

S uv

So, we seek a 7} :: By F uv : a with the following bottom part.

by (UE)[1, s], see right below see i) and ii) below
[(=E)x, (UE)[2] not, (NI) not] [(UE)[2] not, (NI) not]
Bitu:(y—=>a)U({—a) Bi,z:y—alkav:a Bi,z:(—vaFwv:a

UE)]1,
muBiFu (B, )
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L hyo oo Fap o FyeT R
Y (NE1) o TP (NE) Y (NEy) 71[)0“52)
LRy oy —a o Fx B o Fyre=a (o oo Fxye
(—E) (—E)
Bi,y:okFyz1:v7v =« i) Bi,y:7Fyr1: (=« 1)
U U
Bits:oUT Bi,y:obtyzi:(y > a)U(( — a) ! Bi,y:ThFyzr1:(y 2 a)U(( = ) ?

(UE)[1, 5]
Bitszi=u:(y—=a)U(( — a)

i) Considering an (—E) at the first bottom-up position of a potential typing B1, z : v — at zv : «a,
we see that it does not work.

(UE)[1, s]x, see right below
[(=E) X, (UE)[2] not, (NI) not|

Bi,z:y—>atz:y—a Bi,z:y—>akFv=x15:7
............................................................. (—)E)X
Bi,x:y—=>abzv:a
A e N e TR A e R e TR
B G L (™ QUL Ay
Fx1:0 =7y oo Fyid o Fzrin—=( . Fy:in
, ; (—E) ; (—E) [(UE)[1, 2] not, (NI) not]
BiFs:ouUrT Bl,y:okFziy:v=7 Bl,y:Thz1y:7 #¢
.................................................................................... (UE)[IS]X

Bl =BiU{z:y—a}lFuv=ux1s:"

ii) Considering an (UE)[1] at the first bottom-up position of a potential typing B1, z : v — a F zv : o,
we find that it does not work. We examine the two possible (UE)[1]’s, the (UE)[1,v] and the (UE)[1, s].

by (UE)[1, s], see right below

[(=E)x, (UE)[2] not, (NI) not] F:c'y —>a ...... F ¥y ;AC (—E)x [(UE)[1, 2] not, (NI) not]
Bi,z:y—>aklv:yU( lmp Bi,z:y—>a,y:(Fay:w (UE)(L, ] x
.......................................................................... v

Bi,z:y—atFazv: o

Bl,y:obFxz1:p Bl,y:okFy:0o Bl,y:tFz1:p Bl,y:tkFy:7
B aiorz 55" B o iores U B o b ST e Y
LYo wid =y vyioby: LYITETIIn = LY:ThY:n
- (—E) - (—E)
Bl,y:akxly:'y Bl,y:TFxly:C
(UIy) (LUIz)
BiFs:oUT Bl,y:0bFz1y:yU(¢ Bi,y:Tl—wly:’yUC( -
UE)[1, s

Bl =BiU{z:y—=a}rzis=v:7U(

(UE)[1, z1y] X, see right below
[(—E)x, (UE)[2] not, (NI) not]
Bi,z:y—>aks:oUr left minor premise Bi,z:y—>a,y:7THx(r1y):

Bi,z:y—>atzv=x(x1s):
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[ A
e Y T (e
Fai:n—¢ T ey
B Faxy:¢ Fo:iy—a Fz:y#¢
[€5] 5 T I (—E)X [(UE)[1, 2] not, (NI) not]
B Fxy:CUC B, z:(Fuxz:« same

............................................................................................. (UE)[1, 2qy] x

B! =B1U{z:y—=a,y:7}Fxz(z1y):

Since such a 7 is not possible, there is no need to look for such a 5. Still, if we achieved 7] and
whose trees (T3!,)] and (Ti%,)} existed and shared a bottom (UE)[1,u], the transformation would reduce
to transforming 7}, and w5, which would type u <. uv, and also to transforming m};,7},, 75, and mhs,

which would type zv <. uv.

(1133)10 (jzﬁe)ﬁl (1133)50 (jzﬁe)él
Stu S,z Fav Stu S,z Fav
UE UE
SFuv SFuv
t t
(Tie ) (Tie )2

2c. A bottom (UE)[1,v]. This case also fails.

3. Can we construct 7} and 75, such that the trees (T!,); and (Ti%,), both exist and share a bottom
(UE)[2]? This case is not possible, as the types assigned to 1 and x5 in By do not permit the consideration

of a first bottom-up (UE)[2] in a 7] :: By Fuv : a.

4. Can we construct 7] and 75, such that the trees (T\%,)} and (T}!,)5 both exist and share a bottom

proper (UE), which is a first bottom-up (UE)[2] in one of the derivations and a first bottom-up (UE)[4]
in the other? We distinguish two cases.

4a. A bottom (UE)[2] in 7] and a bottom (UE)[4] in 5. Such a case is not possible because, as already
explained in 3, we cannot consider a first bottom-up (UE)[2] in 7.

4b. A bottom (UE)[4] in 7] and a bottom (UE)[2] in 7. Starting from a root By F uwv : 8 and working
bottom-up, there are fifteen different cases of a (UE)[2, z1], according to which occurrences of z7 in uwv
are substituted by a variable y & {x1,z2} to form the subject in the minor premises, and no case of a
(UE)[2, z2]. So, there are fifteen different cases of a first bottom-up (UE)[4, z1] in 7} and a first bottom-up
(UE)[2, z1] in 74 with matching corresponding term-statements. We examine two such cases 4b; and 4b,,
showing the failure of 7] in the former and the failure of 7} in the latter.

4b;. The case with subject zayy (v (z221)) = s’y (ys) = u”v” in the minor premises. Since w4 already

displays such a bottom part, the case reduces to examining if we can construct a 7, such that the tree
(T:t,)] exists and has the following bottom part.

1ue
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Skr S,y u’v”

UE

S+ uv

We seek a 7 :: By F uv : a with the following bottom part.

see i) and ii) below
[(UE)[2] not, (NI) not]

i

Bitzi:pUp Bi,y:pt zayy (y(z2z1)) =u'v" : « same

7 (UE)[4,CE1]
m i Bi bk uv = zozizi (z1(z2z1)) @

i) Considering an (—E) at the first bottom-up position of a potential typing By, y : p - u”v” : «, we
see that it does not work.

(UE)[1, s'] x, see right below
[(—E) x, (UE)[2] not, (NI) not]

Bi,y:ptu' =sy:w—a right premise (SE)
................................................. X
Bi,y:pku"v :a
by (~E) by (—E) by (—E)
[(UE)[1, 2] not, (NI) not] [(UE)I[1, 2] not, (NI) not] [(UE)[1, 2] not, (NI) not]

Bi,y:pts =xzy:ocUT Bi,y:p,r:obazy:w—a=7 =« Bi,y:p,z:ThFay:w—-a=(—=>« ,
...................................................................................................... (UE)[1,s] x

If the (—E) worked and the tree (T.f.)] existed, we would have the following trees (7if.); and

iue iue
(Tit.)2. The transformation would then reduce to transforming 7}, 790, 7210, and w20, which would

type v’ =¢ u <. uv, and also to transforming 71, 741, 7211, and w221, which would type v/ =, v <. uv.

(T'ifle)1110 (I‘ifle)/lll (I‘ifle)210 (1—;36)211
S,y b S,y v S,y u” S,y v

Skr Skr

S,y u’v” S,y u"v’

S+ uv S uv
(jjutle)/l (T’iltle)Q
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ii) Considering a (UE)[1] at the first bottom-up position of a potential typing By, y : p F u/v" : a,

we find that it does not work. We present the failure of the (UE)[1,s’] below. The other three possible
(UE)[1]’s fail, as well.

see a), b), ¢), and d) below
[(UE)[2] not, (NI) not]
Bi,y:pks :oUrT Bi,y:p,x:0bFxy(ys): « right minor premise
(UE)[1, '] x

", 1

Bi,y:pka v =5y(ys): «

(UE)[1, s]x, see right below
[(—=E)x, (UE)[2] not, (NI) not]

Bi,y:p,riobay:v—« Bi,y:p,x:0bys:y
a) ............................................................ (—E) x
Bi,y:p,x:0tay(ys): «
by (—E) by (—E)
[(UE)[1, 2] not, (NI) not] [(UE)[1, 2] not, (NI) not]

Bi,y:pyr:obs:oUrT Bi,y:p,x:o,z:0Fyz:v=r Bl,y:p,wza,zzr}—yz:“#f(UE)[LS]X

Bi,y:p,x:otys:y

(UE)[1, s]x, see right below
[((—=E)x, (UE)[1, ys] X, (UE)[2] not, (NI) not]
Bi,y:p,z:otzy:(y—=a)U(y—a) Bi,y:p,x:o,z:y—=akFz(ys):a same
) ............................................................................................. (UE)[1, zy] X
Bi,y:p,x:0kzy(ys):a

by (—E)
[(UE)[1, 2] not, (NI) not]

Bpwithziyzo  Bhwirhyw:y#¢ (=E)x [(UE)[1, yw]x, (UE)[2] not, (NI) not]

by (UE)[1, s], see right below
Bl,z:(Fay:v—=a B, z:(Fz:v#¢(

[(=E)x, (UE)[2] not, (NI) not]
L R R T (—E)x [(UE)[1, y] X, (UE)[2] not, (NI) not]
Bl Fys:yU( Imp B, z:(Fayz:a

C)// ............................................. (UE)[1, ys] x

Bl =B1U{y:p,z:0}Faxy(ys):

Bl,z:0Fy:p B!, z:0kFz:0 Bl,z:tky:p B, z:tkz:7
————————— ("E) ———  (NEg) — — = ———=—— (NE) ——— (NEj)
Bl,z:0bFy:0—=7 Bi’,z:al—z:(s( . Bl,z:tFy:n—=¢ Bi’,z:Tl—z:n( o

— —
BY,z:0bFyz:y BY,z:7Fyz:¢
1 m (VI1) m (LI2)
BFs:oUrT B, z:0kFyz:yU( B,z:7hFyz:yU(
(UE)[1, 5]

B! =B1U{y:p,x:0}Fys:yU(
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by (—E)
[(UE)[1, 2] not, (NI) not]

Bl,z:1Fay:y—a B, z:17hyz:v#(
............................................ (—E)X [(UE)[1, zy] X, (UE)[1, yz] X, (UE)[2] not, (NI) not]

If the (UE)[1, s'] worked and the tree (T}f,); existed, we would have the following tree (T}f,)].

l1ue 1ue

(T'ifle)lllO (1—;38)111
S,y s S,y,x - zyv”

Skr
S,y uv”

S+ uv
t \/
(jjiue)l
We would then transform mo to a mh :: By v : 3, such that the tree (Ti%,)} exists and is bottom-identical
to the tree (7f,);. We denote “m(w)” a weakened version of a derivation 7.
Bolxi=r:yx (ME1) see below see below
- . .. 1
Bobr:gpUy w1 i B,y b xoyy (ys) =u'v" : 8 why i Ba,y: b xoyy(ys) =u'v" 1 B (UE)
m i Ba b sr(rs) =uv: 3
B¢. Faxo v
————————— (NE)
B¢FI2:¢)—)¢QB Bd)'*yid)( 5) quﬁaﬁ '*y(]ﬁ( E) 7r211(w)
— —
By F 2y : ¢ap wn By, T :daptay:a—p B¢.,a::¢a5Fys:o¢(HE)
Thio By F oy = 5" papg U dag Thiy i By, & pap Fxy (ys) : B same —
mhy i By = B2 U{y: ¢} Faayy (ys) = u'v" : B ’
Bw Faxo v
————————— (NE)
Bd,l*xgi’l/)—)’l/),yg Bd,'*yi’l/)(‘)E) Fx'x/),ﬂ; ...'*y!’l/)(HE) 71'221(W)
By Fx2y g wn By,z:¢gbay:vy— 0 Bw,:v:'x/),ygkys:'y(ﬂE)
Thoo i By Fxay =" 1,5 Uhyp Thoy i By, ¥y Fay(ys) : B same —_—

Tho i By = Ba U{y: ¥} F xayy (ys) =u"v” :
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(Tite)210 (Tiie)211
S,y s S,y,x - zyv”

Skr
S,y u’v”

S Fuv

(Tiie)5

iue

The transformation would thus reduce to m}1q, Tia0, Th10, ad Theq, which would type s’ <. u <. wv, and

/ / / / / / / / 3 " /P
also to )11, T12, T1a1s T122, To11s 12, Ta1, and Thee, which would type zyv” <. v'v" =, uv.

4bo. The case with subject zaz1y (y (xox1)) = sy (ys) = syv” in the minor premises. We seek to
construct m} and 75, such that the trees (Ti%,)] and (Tif,)5 both exist and share a bottom (UE), as
shown below.

Skr S,y - syv”

UE

S+ uv

We want a 75 :: By b uv : 8 with the following bottom part.

see i), ii), and iii) below

[(NI) not]

Bolkzi:pUWY By, y: ¢ b zoxiy (y (z2z1)) = sy (ys) : B right minor premise
7 (VE)[2, 2]

m 2 Bo b uv = zoxiwi(z1(z271))

i) Considering an (—E) at the first bottom-up position of a potential typing Ba, y : ¢ F sy (ys) : S,
we see that it does not work.

(UE)[2, z1] X, see right below
[(—E)x, (UE)[1, s]x, (NI) not]
By, y:pbtsy:w— [ right premise
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by (—E)
[(UE)[1, 2] not, (NI) not]
a5y — e Ry
........... wvﬂy 75(]5 (—E)X [(UE)[1, zgz] X, (UE)[2] not, (NI) not]
By,y:pFx1:0UY lmp By, y:¢,x: ¢ zoxy:w —

o
............................................... R AR R (UE)[2,21] X
B, y:¢9tFsy=x2z1y:w — [

If the (—E) worked in 7} right above the (UE)[2,z1] and also in 7} right above the'® (UE)[4,z:] and
the trees (T.!,)} and (T}f,)} existed, the transformation would reduce to ), 7190, Th10, and mhsg, which
would type sy =, u <. uv, and also to 741, 7191, 7911, and mhyy, which would type v =, v <. uv.

(:rifle)/llO (zjifle)/lll (jjifle)élo (1}36)/211
S,y sy S,y kv’ S,y sy S,y kv

S+ uv S uv
(Tie)1 (Tite)a

ii) Considering a (UE)[1] at the first bottom-up position of a potential typing Be, y : ¢ F sy (ys) : £,
we find that it does not work. We show the failure of one of the six!” possible (UE)[1,s]’s. The other
five, as well as the (UE)[1, sy] and the (UE)[1, ys], also fail.

see a), b), and c¢) below
[(UE)[2] not, (NI) not]
By, y:pbs:pagUthyp By, y:d,x: pap b xy(yz): 5 right minor premise

by (—E)
[(UE)[1, 2] not, (NI) not] e hyip=C—a e R CF dap
S A A R AR AR (%E)X [(UE)[1,2] not,(ml)not]
Bo,y:¢,x:Papbxy:w—pB=a—p B2,y :¢,T:dap - yx:
) ............................................................................. (—E) x

B2, y:¢,x: dap by (ys):

(—E) X, see right below
[(UE)[1, yz] x, (UE)[2] not, (NI) not]
py Bnyidzitestoy: (@U@ B)  Bay:dwides ziamflzlyn):f same
Bz,y:qﬁ,z:qﬁagl—a:y(ya:):i 7

161t can be shown that in a w) with a first bottom-up (UE)[4, 1], the (—E) right above the (UE)[4,z:1] does not work.
7 There are six possible (UE)[1, s]’s, as there are three choices for the subject in the minor premises [xy (ys) or sy (yz) or
xy (yz)] and two choices for the union predicate in the major premise [¢pqp Uty or (U (].
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sy = 5 1 F# Pa
B2y¢§—> a ...... B 2#xg¢¢ﬂ (—E)x [(UE)[1, 2] not, (NI) not]

.................................................... (*)E) X
B, =By U{y:¢,0:ap,z:a—B}Fz(yx): 3
F = F o
....... g . ¢ C —>a .. |— e :DUQ# ¢ ﬂ (%E)X [(UE)[L 2] not, (mI) not]
o DY Pas b YT iUl mp TP el x

Bg,y:q&,w:qﬁagl—a?y(ya?): 3

If this (UE)[1, s] worked and the tree (T}%,)} existed, we would have the following tree (T}%,)5.

e e
(1—;33)/210 (1}36)/211
S,yks S,y,z b+ zy (yr)

Skr
S,y sy (ys)

S Fuv

(Tine)s

iue

We would then construct a 7} :: By F uv : «, such that the tree (7}f,)] exists and is bottom-identical to
the tree (Tif,)5.

1ue

BitFazi=r:p wr see right below
Stz rep o
BikFr:pUp ) w1 2B,y :pksy(ys):a same (U4, 24]
, T
m uBiksr(rs)=w:a !
by (—E) see below see below

Tho 2 Bl,y:phmar1 =s:oUT T 2B,y p, ok ay(yT) - Tl B,y p,z:THay(yz) : a

/ (UE)[1, s]
i, 2B,y pksy(ys):a

by (—E) by (—E) by (—E) by (—E)

Bi,y:p,r:obazy:vy—>a Bl,y:p,x:akyx:'y(HE) Bi,y:p,x:7hay:(—a Bl,y:p,x:TFyx:C(HE)
w2 B, yp,xobkay(yx) o T Bl,y:ip,x: Ty (yr)  «
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(T'ifle)1110 (I‘ifle)/lll
S,yks Sy, x - xy (yx)

Skr

S,y sy (ys)

S Fuv
(Tiee)t

The transformation would thus reduce to ¢, 720, Ta10, and mheo, which would type s <. uv, and also
tO 111, M1, Tio1s T2, To11, Ma12, Toa1, and mhyy, which would type zy (yz) <. uv.

iii) Considering a (UE)[2] at the first bottom-up position of a potential typing Ba, y : ¢ F sy (ys) : 5,
we also find that it does not work. We lay out the failure of one of the three possible (UE)[2,z4]’s. The
other two fail, as well.

see a), b), ¢), and d) below
[(UE)[2] not, (NI) not]
By,y:pFxi:pUY left minor premise By, y: ¢, x: ¢ xoxy (y (z2x)) : 3

........................................................................................ (UE)[2, z1] %
Ba, y: ¢t sy(ys) = zazry (y (v221)) : 4
by (—=E)
[(UE)[1, 2] not, (NI) not]
Babmz:yoy=B Bory:v#¢ (=E)x [(UE)[1,z22] %, (UE)[2] not, (NI) not]
yBibmamyiw o B e, right premise

B, =BoU{y: ¢, x: ¢} xowy (y(x2x)): 3

If the (—E) worked, so that the tree (T}!,)5 existed and displayed a bottom part of two (UE)[2,7]’s
and one (—E), and if there was a ] with an identical bottom part in its tree (T}%,)}, the transformation
would reduce to transforming eight derivations typing xoxy <. wv and another eight derivations typing
y (z2) <. uv.

[(=E)x, (UE)[1, 2] not, (NI) not)

Bl xox Uty Bh,z:ipygtzy:wi Uws same

b) ................................................................................... (UE)[1, zgzy] X

B, =BaU{y:¢,x:¢}Fxxy(y(v2w)): f

If the (UE)[1,zozy] worked, so that the tree (7i!.)} existed and displayed a bottom part of two

1ue

(UE)[2,7]’s and one (UE)[1, z2zy], and if there was a w] with an identical bottom part in its tree (T}t,)], the

iue
transformation would reduce to transforming eight derivations typing zezy <. uv and sixteen derivations

typing z (y (z2x)) <. uv.
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B, T w1 U ws 1
o Befylean) iU ] M2 TP By (e20)] X

If the (UE)[1,y (z2z)] worked, so that the tree (T}!,)5 existed and displayed a bottom part of two
(UE)[2,7)’s and one (UE)[1,y (z2)], and if there was a 7 with an identical bottom part in its tree (T3f,)],
the transformation would reduce to transforming eight derivations typing y (z2z) <. wv and sixteen

derivations typing zoxyz <. uv.

(UE)[1, zy] x, see right below
[(=E)x, (UE)[1, yz]x, (UE)[2] not, (NI) not]

aps BelewivasUbs Bypzivypbzya):d SAE o, aaa] ¢

B}, z: Fzy:w Uws lm rm
REIN 1'/} B Y .. P P (UE)[1, 2y] x

By, z by 2y (yz)

If this (UE)[1,z22] worked, so that the tree (T}!,); existed and displayed a bottom part of two
(UE)[2,7)’s and one (UE)[1, z2x], and if there was a 7} with an identical bottom part in its tree (73%,)}, the

transformation would reduce to transforming eight derivations typing zez <. uv and sixteen derivations
typing zy (yz) <. uv.

Besides cases 4b; and 4bg, the other thirteen possible cases of a first bottom-up (UE)[4, z1] in 7} and
a first bottom-up (UE)[2, z1] in 7} also fail'?.

Cases 1 to 4 all fail. There seems to be no other meaningful first bottom-up step to “equalize” m; and
w9 with respect to trees of implications and union eliminations with terms. We therefore conclude that we
cannot transform 71 and 72 to ) :: By b uv : a and 75 i By - uv : 3, respectively, such that (1A 2)./ .
Yet, we urge the reader to further examine the two derivations and propose any transformation we may
have missed.

18 This is one of the three possible (UE)[1, z2z]’s. The other two do not work, either.

19This is an appropriate point to elaborate a bit on the intention of a category-4 proper (UE) and how it is actually
realized in its definition in Note 5. We intend to define a bottom-up (UE)[4,z;] as a union elimination that does not
decompose a union type wi Uwsz in o;, that could become the predicate in the major premise, to its components w; and
wa in the (context of the) left and the (context of the) right minor premise, respectively. This is because we want to have
a union elimination that matches a (UE)[2,z;] termwise without offering progress with respect to the typing. However,
the definition of a (UE)[4, z;] in Note 5 only covers the cases where o; is not a union type or an intersection type with a
union factor, i.e. the cases where o; contains no union type that could become the predicate in the major premise. This is
because these cases suffice to handle the bottom-up search for transforming the specific derivations 71 :: B1 F uv : a and
o :: Ba F uw : B of this section. As explained in case 4 of the bottom-up search, starting from a root By + uv : @ and a root
B> - uv : 8 and examining whether we can have a first bottom-up step involving a (UE)[2] and a (UE)[4], the only possible
case is a first bottom-up (UE)[4,z1] concluding B F uv : @ and a first bottom-up (UE)[2, z1] concluding B F uv : 8. As
the type p assigned to z1 in Bjp is not a union type or an intersection type with a union factor, it suffices to define a
(UE)[4, z;] for a o; which is not a union type or an intersection type with a union factor. If we had a different pair of roots
to start from, e.g. roots which would both admit a first bottom-up (UE)[2, z;], we would need to extend the definition of a
(UE)[4, z;] to cover all the cases of ;.
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In contrast to the transformation counterexample given so far, there are quite many transformation
examples, i.e. examples of derivations m :: By F ¢t : 7 and 7o :: By bt : ¢, where dom(B;) = dom(Bs),
such that =(1 A 2)x, r,, which are transformable to 7] :: By F ¢ : 7 and 7} :: Bo ¢ : 1), respectively, so
that (1 A 2),r;7ﬂé. These examples range from very simple ones, i.e. involving simple derivations 7; and
o, to significantly complex ones. A complex one, which is actually a variation of the counterexample,
can be found in Appendix B.

5.4 Non-restricted correspondence theorems?

It remains to examine whether the correspondence between IUL*, and IUT® can be sustained, if the
auxiliary notion “T;%.” is removed. This amounts to examining 1. whether Theorem 5.10 can be refor-
mulated?® to just saying “if 7* 2 t: [(of,..., 0% 7)™ 1] er,... o 8 a decorated derivation in IUL,,, there
are derivations mw; i1 Tq : U{, ceny Ty an Ft:m (1<i<n)in IUT®” and 2. whether Theorem 5.13 can
be reformulated to just saying “if m; == x1 : 0%, ..., Ty 10l Ft 7 (1 <i < n) are derivations in TUT?,
there is a decorated derivation 7 :: t : [(o%,...,0% ;s 7)™ 1) 41,z in IUL,”, so that the correspon-
dence between IULY and IUT® is in accordance to the correspondence between ISL* and IT, introduced
in Chapter 1 (see Theorem 1.20). Obviously, given a derivation 7* :: ¢ : [(o%,...,0% s 7)" 1)1 e, I
IUL%,, there are derivations m; :: @1 : 0%,..., Ty 1 08 Ft: 7 (1 <i < n)in IUT®; this is already proved
in 5.10. But what about the inverse? Given derivations m; :: @1 : 0%,..., &y 10l Ft:7 (1 <i<n)in
IUT®, without any additional information about their potential trees T}! ., is there always a derivation
ot (ol 08 s 7)™ ]y e, in IULX? To answer this question, we should reflect on the features
the m;’s need to share, so that their “merging” into a single 7* is secured. Is the common term-statement
1,.-.,T,m F t at the root a sufficient condition for merging, besides being a necessary one? The answer

is negative, as the following example?! indicates.

Example 5.18 Let ¢ = (cUT)Na, 0 = pNog, 7T =711 Np, and x = (CUE) NB. Consider the
IUT® -derivations m1 = {x:d,y: Y} rax:pandm = {x:x,y: v} z:05, as shown below.

c:p,y:YpkFa:¢ (nE1) r:p,y:Y,z:0kbz:0 (NE1) r:p,y: Y, z:ThHz:T (ME2)
rx:p,y:YrxrxioUT r:p,y:Y,z:0oz:p x:p,y:,z:Thzp (UE)
proper
mu{z:p,y:}rzz/zl=x:p
Tix,y:vkzTyx ("E1) rix,y:v,z:(Hxiy (AE2) rix,y:v,z: T x (ME2)
rix,y:vkaxz:CUE rix,y:v,z:(Hx:p rix,y:v,z:EFa:
(UE)phony

mu{z:x,y:vtkzz/zl=x:p

Derivations m and wo share the term-statement x,y = © at the root. However, they cannot be naturally
merged®? into a single 7™ = x : [(,¢; p), (X, B)|z,y- Any bottom-up attempt®® for such a merging
fails, as displayed below.

20Such a reformulated theorem is qualitatively same to Theorems 3.10 and 3.22.

21T his is actually Example 3.13 customized to the current context.

22Nonetheless, as we will later explicate, we may transform 72 to a mh = {x:x,y:v}F x: B containing a proper (UE),
so that 71 and #/, are compatible and mergeable into a (7')* :: @ : [(¢,7; p), (X, v; B)] 2, y-

23There are two different bottom-up ways to (naturally) merge w1 and 72 into a (canonical) 7* depending on the order
of application of (NE:1) and (NE2) in the right branch.
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(ax) cannot reach an axiom
€T [(¢7¢7 ¢):(U7X; X)]y,:c (X) T
z: (695 0), (6 v; Xy ("Ey) 7 (¢ 9,05 0), (6,9, 75 7), (0,65 %), 06U, €5 X)] ey, 2 (NE4).(NE2)
€ : [(¢7¢7 UUT):(va; CUf)]w,y ? : [(¢7¢:U; p)y((f):d):T; P):(X:U:C; ﬂ):(X:U:S; ﬂ)]w,y

"~ (UE)

w = [2] 16w p) (v B)] e

As already noted in Example 3.13, the failure is due to the incompatibility of the proper (UE) in my
and the phony (UE) in ma.

The above example suggests that the m;’s need to share more than the term-statement at the root, if
they are to be merged into a single 7*. The additional common features required are actually dictated
by features of the decorated logic and are the following.

I. The m;’s should have a common structure of rules that are global in the logic’s level, i.e. they should
have a common structure of implications and union eliminations. Roughly speaking, the root-statement S;
of 7; is meant to correspond to the (decorated) atom A4; at the root of 7* and, moreover, the rule structure
of 7; is meant to impress upon the ancestor-atoms of A; in 7*. But, since the global rule-inferences in
7*, i.e. the implications and the union eliminations, “scan” all the atoms in the premise molecule(s), it
follows that, for i # j, the structure of implications and union eliminations read off from the ancestors of
A; should be the same as the structure of implications and union eliminations read off from the ancestors
of Aj;, i.e. that m; and 7; should have a common structure of implications and union eliminations. On
the other hand, the 7;’s may differ with respect to rules that are local in the logic’s level, i.e. with respect
to intersections and union introductions, as these rules may impress upon ancestors of A; without at the
same time impressing upon ancestors of A;.

1
SiO

g0 =R o, 520 g
i0 < 0 R,—(—E) 117311112:(%}3) g20 21
20 Ry=(—1) L Ry=(-1) " Ro=(—E)
i0 1 R,—(NI) 5 Ra=(1) ~
N T ot S, N R o S]' , -
[oos Ay AL
Ri=(NE)
[ A A=Al A=A ] [, AT A7 AR
RQ:(%E)
[y Ay Al AR
1 R,'gZ(*)I)
[ AN ]
" 1 R4:(m1)
s term: [ L., AL Aj = AT ] sequence

Is a common structure of implications and union eliminations enough, though? Derivations 71 and
of Example 5.18 have such a common structure, which consists of a single union elimination, but cannot
be naturally integrated into a #*. Studying the example carefully, we see that the term-statements in
the (UE) of m; do not match the corresponding term-statements in the (UE) of mo. In particular, if
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S = {xz,y}, the term-statement S,z F z in the minor premises of m; does not match the term-statement
S,z F x in the minor premises of mo; this is what the incompatibility of the proper (UE) in m and the
phony (UE) in 7y reduces to. Going back to the m;’s, we reason that a second common feature is required
for a natural merging to be possible.

II. Corresponding implications or union eliminations in the common (with respect to implications and
union eliminations) structure of the m;’s should have matching corresponding term-statements. Roughly
speaking, the term-statements in 7; are meant to become the decoration in 7*. But, since the decoration
“scans” all atoms in a molecule and the only rules in the logic—among the ones that have a counterpart
in the type system, i.e. among the introduction and elimination rules—where the decoration is modified
are the implications and the union elimination, it follows that, for i # j, the modification of decoration
(by an implication or a union elimination) in ancestors of A; should be the same as the modification
of decoration in ancestors of A;, i.e. that corresponding implications or union eliminations in 7; and 7;
should have matching corresponding term-statements.

r:ai,y:aékt:pi—mﬁ r:ai,y:aéku:pi( E)r:ai,y:aékt:dyﬁwi m:ai,y:aéku:qﬁi( .
T:ioy, Yoyt rioy, Yoy tui;

- - [G)))
- mnrioy, yiosbtuiug N =T

P < ) O
1,.01,y.02|—t.pj—>-’rj -1,.01,y.02|—u.p] o -
. wpnaioy, Yol btu:Ty ) e
t:ef..., R yoes Ly 05 = 15)s e layy wil..., R ,...,(Fj;pj),...}l‘_y( .
5
tu:[..., , yees @i 7)5 e ey
— (n1)
o ntus [, A= (0 = (0,05) 7). A = (T =(07,08) 5 75), - ey

As the above two sketches of m; reveal, features I and II should hold not only for two distinct 7;’s,
but also for premises of an (NI) (and minor premises of a (UE)) within a single m;. This is because such
premises, which share the same term-statement, are also merged into the same molecule in 7*, exactly
as the root-statements of the m;’s are merged into the root-molecule of 7*. In general, the merging of
statements into the same molecule goes through (NI) or (UE) inferences within each of the ;’s, creating
nesting phenomena.

Putting features I and II together, we conclude that the 7;’s should have a common structure of
implications and union eliminations, in which corresponding implications or union eliminations should
have matching corresponding term-statements; this should, of course, hold modulo multiple nestings due
to (NI) or (UE) inferences within each of the m;’s. The definition of trees of implications and union
eliminations with terms for derivations in IUT® (Definition 5.6) and the demand that the m;’s have
existing®* and identical such trees in order to be compatible for merging into a single 7* (hypotheses 1
and 2 in Theorem 5.13) put in formal status the conclusion just stated.

The “restriction” that the m;’s have existing and identical trees T}, in order to be compatible for
merging into a single 7* could serve as a means for checking if the ;’s, for which the only common feature
given is the term-statement at the root, are indeed compatible or if they could be made compatible. In

24The “existing” part takes care of the nestings.
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particular, if the trees (T}.,)1, ..., (Ti%,)n all exist and are identical, then the 7;’s are naturally compatible

for merging into a single 7*. If not, we could check if there are transformed =}’s, where ; transforms to 7}

which proves the same statement as 7;, such that the trees (T}!,)], ..., (TiL,)}, all exist and are identical.

If so, then the 7;’s can be made compatible through transformations to the w/’s, which are themselves
naturally compatible for merging into a single (7/)*, proving the desired decorated molecule. Derivations
w1 and 72 of Example 5.18 are not naturally compatible, as it is (T}f,)1 # (Ti%,)2, but can, nonetheless,

be made compatible by transforming 75 to a 75 : {x : x, y : v } F z : B8, such that (T.{.)} = (Tit,)1.

1ue 1ue

rix,y:vkx:x (ME2)

zix,y:vkxz:p wI)

rix,y:vkx: UL rix,y:v,z:BFz:8 rix,y:v,z:BFz: 0
mu{zix,y:v}kzz/z]=x:8

(UE)proper

If there were appropriate transformations for every case of 7;’s which are not naturally compatible,
we would have a non-restricted (i.e. without any reference to trees Ti%.) inverse theorem modulo trans-
formations, i.e. a theorem from IUT® to IULX, saying “if m = @1 :0%,..., &y 0l Ft:7m (1<i<n)
are derivations in IUT® there is a decorated derivation 7 :: t : [(of,... 0 s 7)) 1] ey 2, in IUL,,
modulo appropriate transformations of the m;’s”. The proof of such a theorem would use the notion of
trees T} ,—the so-called “restriction”—to consider two cases: (i) the case where the 7;’s are naturally
compatible, which would point to the proof of 5.13 and (ii) the case where the 7;’s are not naturally
compatible, which would need a proof that there is always a transformation to w}’s, which are naturally
compatible. However, as the counterexample section clearly shows, it is not always possible to per-
form transformations which adjust the compatibility. Therefore, we cannot have a non-restricted inverse
theorem modulo transformations.

Removing restrictions, imposed through the notion of trees T;!,, from the direct theorem, i.e. the
theorem from IULZ, to IUT®, we see that, although a non-restricted direct theorem is possible, it does
not offer a complete account of the projection—if we may call it so—of IULX, into IUT®. This is
because it does not document the features of #* that impress upon each of the m;’s and constitute their
common attributes. The notion of trees T}!,, employed for both IUL, and IUT® in conclusions 1-3 of the
restricted theorem 5.10, serves exactly the purpose of describing these features?® of 7*, thus formalizing
the projection to its full extent.

Conclusively, it is preferred to stick to a restricted direct theorem, while it is necessary to stick to a

restricted inverse theorem.

25Inverting the analysis about common features of compatible 7;’s, the features of 7* impressed upon each of the derived
m;’s are L. the structure of implications and union eliminations and II. the decoration (of implications and union eliminations).
The trace of I and II on the m;’s should, of course, be considered modulo nestings due to (NI)’s or (UE)’s within each of
them.



CHAPTER 6

Correspondence between IL,, and IT%

We examine how the method of trees, i.e. the method employed in Chapter 5 to describe the corre-
spondence between IULX, and IUT® with the aid of trees T}, applies to the correspondence between
the union-excluded systems ILX, and IT®. Toward this end, we first define the notion “tree of impli-
cations with terms”, denoted Ti!, for both the decorated logic ILX and the type system IT®. We then
state and prove theorems of correspondence between IL%, and IT® that revise, with the aid of trees T},
the correspondence between ISL* and IT, given in Chapter 1. We finally discuss the correspondences
IUL},+> IUT® and ILf <> IT® to decide to what extent the logics IUL,, and IL,, indeed correspond,

through decoration, to the type systems IUT® and IT®, respectively.

6.1 Trees of i with terms

We start by defining the logic IL,,, and its decoration and also the type system IT®, all as restrictions of
definitions given in Chapter 4. We then adjust the method of trees to the restricted systems by defining
the notion of tree of implications with terms for both the decorated logic and the type system.

The natural deduction logic IL,,, exposed in Figure 6.1, derives from the natural deduction logic IUL,,,,
if we exclude the union rules. The exchange rule and the implication rules are global, while the intersection
rules are local. The system is additive, which is necessitated in the case of intersection introduction, but
chosen in the case of implication elimination. It is easy to check that Propositions 4.4-4.6, 4.10, and 4.11,
which are all shown for IUL,, in Chapter 4, also hold for the “smaller” system IL,,. The decoration of
IL,,,, shown in Figure 6.2, is the restriction of the decoration of IUL,, to the rules of IL,,.

The natural deduction type system IT®, depicted in Figure 6.3, derives from the natural deduction
type system IUT®, if we exclude the union rules. It coincides with the system IT of Chapter 1 and
also with the system deriving from the natural deduction system IUT, of Chapter 2, if we exclude the
(w)-rule and the union rules. It is easy to verify that Propositions 4.14, 4.16, and 4.17(i), which are all
shown for IUT® in Chapter 4, also hold for the “smaller” system IT®.

Remark 6.1 (i) Since subject reduction is valid in IT® (recall Proposition 1.8), contraction can be
derived in IT® through an implication redex along with subject reduction.

B,x:o,y:obt:T

(—TI) — (ax)
B,z:obFAyt:o—r B,x:obzxz:o
(=E) 1.3
B,z:okF My t)z: 7 = B z:ottz/yl:T

123



124 Chapter 6. Correspondence between 1L,, and IT®

(Ts, 00,73, A5 pi)i]

— (ax) (X)
[(Ti,00; 04)4) [(Ti, 71,00, Ai; pi)i
(i, 005 7i)i =D (T 00 — 7i)i] [(Ti; 0:)i] (oE)
Ti; 08 — 74)i] [(Ts; 78)4]
(U, (Ts; 03), (Ts5 78))i, V] D [U,(Ti; 00N 7i)i, V] (NEx) (U, (Ti; 00N Ti)i, V] (NE2)
(U, (Ti; 00N 71)i, V] (U, (Ti5 0:)i, V] (U, (Ti5 1:)i, V]

Figure 6.1: The logic IL,, in natural deduction style.

t:[(Tiyou, 76, Ais pi)ilp,y,z.q

(ax) (X)
x: [(Ti,005 0)ilp, e t:[(Ti, 71,00, Ais pi)ilp, e, y,q
t:[(Ti,045 Ti)ilp, (=1) t:[(Ti; 00 = Ti)ilp w: [(Ti; 04)ilp (E)
Ax.t:[Di; 00 = 75)ilp tu: [(Tis 7i)ilp
t:[U, (T 0:),(Ti5 7)), Vp - t:[U,(Ti; 00N1)i, V]p (nEY) t:[U,(Ti;00NT)i,V]p (NE2)
t:[U,(Ti; 00N 1)i, V]p t:[U,Ti;5 00, V]p t: (U, T )i, V]p

Figure 6.2: Non-standard decoration of natural deduction IL,,.

B,x:obzx:o (ax)
B,xz:obFt:T Brt:o—r Bru:o
I —E
BFXx.t:o—T1 =D BbFtu:T =B
BFt:o BrFt:T (1) BFt:onNTt (NE1) BFt:onNnTt (NE3)
Brt:onNT BtFt:o BkFt:T

Figure 6.3: The type system I'T® in natural deduction style.
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(ii) An implication redex along with subject reduction can also derive a cut-like rule in IT®.

B,x:obu:Tt
(=D
BFXMe.u:o—T BFt:o
(=E) 1.3
BE (Az.u)t: T = BlFult/z]: T

In the natural deduction IUT®, where subject reduction is not valid, a cut-like rule can be derived
through a union redex; this will be shown in the next chapter (see Theorem 7.9(i)).

The method of trees in Chapter 5 uses trees with terms that encode only the implications and the
union eliminations, i.e. these logical rules that are global and have a counterpart in the type system. In
the current context, the logical rules that are global and have a counterpart in the type system are the
implications solely, so we need to define trees with terms that encode only the implications.

As far as IL, is concerned, considering the “tree with terms” as expected!, we define the “tree of
implications with terms” as follows.

Definition 6.2 (IL},: Tree of implics with terms 7}') The tree of implications with terms T* of a
derivation 7 in IL¥, derives from the tree with terms T'' of ™, if we erase all nodes and corresponding
decoration-statements associated to the rules (X) and (NIE).

As in the case of IULY,, the procedure of erasing nodes and corresponding decoration-statements
associated to the rules (X) and (NIE) is well-defined, and the tree 7}' displays at the root the same
decoration-statement as the tree T'%.

As far as IT® is concerned, considering the “tree with terms” as expected?, we define the “tree of
implications with terms” as follows.

Definition 6.3 (IT®: Tree of implics with terms 7}') We derive the tree of implications with terms
Tit of a derivation 7 in IT® from the tree with terms Tt of © by the following algorithm.

> We choose a topmost (NI) in the tree with terms of w and erase all nodes and corresponding
term-statements associated to (NE) in the trees with terms of both premises. If the resulting premise
trees of implications with terms are identical, we identify them and erase the node and corresponding
term-statement associated to the (NI).

> We iterate the above procedure for the tree with terms resulting from the previous step.

> When all the (NI)’s are eliminated, we make a final step to erase any remaining nodes and corre-
sponding term-statements associated to (NE).

As in the case of IUT®, the procedure described by the above algorithm is well-defined, and the final
tree T, attained has a term-statement at the root which is identical to the term-statement at the root
of the original tree T't. However, unlike the algorithm in 5.6, the algorithm in 6.3 always terminates. To

show this, we need the following lemma.

Lemma 6.4 If 7; = 21 :0%,..., 2 10l Ft:7 (1 <i<n) are derivations in IT® that share the same
term-statement 1, . .., T, -t at the root, then the trees (I,')1,...,(T\")y all exist and are identical.

I This is as given in 5.1, but with IL*, in place of IUL%, .
2This is as given in 5.5, but with IT® in place of TUT®.
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Proof. We take two derivations my :: &1 : 01,..., Ty o Ft T and et X1 i p1, ., Tyt P E T,
and we proceed by induction on 7. We allow the [h] apply to any finite number of derivations and denote
S the set {z1,..., %}

Base: If 7y :: @1 1 01,..., Ty : O, 2 T x: 7 is an axiom, then 75 contains only intersections.

Mol 28 L1 Plyeey T S Pm, T O TP Mok 32 L1 Plyey Tm Pm, TP T ¢
(NIE)

M2 L1 Plyeeey Tm P Pm, T QT

The tree (1%); is a single node with term-statement S,z + x. The algorithm for the tree (7}')s
goes as follows. At any step where a topmost (NI) is chosen, after erasing nodes and corresponding
term-statements associated to (NE), we get identical premise-trees 7%, which consist of a single node
with term-statement S, z - 2. Identifying them and erasing the node and corresponding term-statement
associated to the (NI) results to a single node with term-statement S,z F z in place of the tree with
terms rooted at the topmost (NI). When all the (NI)’s are eliminated, we are left with a tree with terms
which is a branch of (NE)’s with all nodes “carrying” the term-statement S,z - x. Erasing the nodes
and corresponding term-statements associated to the (NE)’s yields the tree (7})2, which is a single node
with term-statement S,z - x. Since both trees (7}%); and (1.!)2 are a single node with term-statement

1
S,z F x, they are identical.

Induction step: We show the most important cases.

> M0 2 L1 01, .o, Tm i Om, T:T1 F 172 (1)
ML L1001,y Tm i Om ATt T — T2

Since a A-abstraction can be generated only by an (—1I), derivation w9 has the following form.

M210 12 X1 Plye-ny Tt Pm, T P1 EE Y 1) M2k0 22 L1 Plyeeey Tm b Pm, T Op E Yy
Mol i1 L1 Ply-ey Tt Pm ATt p1 — Y ok TPy Tm i P ATt P — Y

(=D

(nD)

M2 L1 Plyey Tm i Pm E AT Y

We take that there are no (NE)’s in the part of o below ma1, ..., 72k, as we cannot apply an (NE) to a
statement whose predicate is an implication type ¢; — v; (1 < i < k), so that any (NE) must be roughly
following an (NI), in which case it can be eliminated.

The [h] on g, m210,...,72k0 implies that the trees (Ti%)iq, (Ti")210,- .., (1}*)2ko all exist and are
identical. The existence of the tree (Ti)o entails the existence of the tree (7}%);, which has the form
shown below.
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(Ti")10 [h]
S,xkHt

—1I

SEAx.t
(')

Denoting (T'it)glo the common tree of implications with terms of w219, . . ., Tk, the algorithm for the tree

(Ti%)2 goes as follows. At any step where a topmost (NI) is chosen, we get identical premise-trees T}* of
the form displayed below.

(T%)210
S,xht

—I

SEA.t

Identifying them and erasing the node and corresponding term-statement associated to the (NI) results
to a tree Ti* of the above form in place of the tree with terms rooted at the topmost (NI). Therefore,

when all the (NI)’s are eliminated, we are left with a tree (T}!)2, as shown below.

(Ti*)210 [h]
S,chkt

—I

St Azt
(13")2

Since (T-t)lo = (Tit)2107 we get that (Tit)l = (T-lt)g.

1

> MO X1 01y, Tm :Om bt T =T M1 X101y, Tm Om b u:m (LE)
—
ML L1 01, eeey T O Ftu:T

Since an application-term can only arise from an (—E), derivation 7y is schematically depicted as
shown below.
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210 it Bao -t g1 — Y1 w211t Ba Fw: ¢1 Toko :: Ba Ft: ¢ — Yy Tog1 ot Ba Fuw: ¢
(—E) (—E)
mo1 it Ba - tu 1 Top :: Ba Ftu @ ¢y

(NIE)

w2 Bo={x1:p1,. s Tm i pm }Htu:p

The [h] on w9, m210,...,72k0 implies that the trees (Ti%)10, (Ti")210,- .., (T})2ko all exist and are
identical, while the [h] on 71,7211, . .., T2k1 gives that the trees (T3)11, (T:%)211, . . ., (T3)2k1 all exist and
are identical. The existence of the trees (T}!)1o and (7});; entails the existence of the tree (7}%);, which

1 1 1
has the following form.

(Ti)10 [b] (T;)11 [h]
Skt Stu
—E
St tu
(T
Denoting (Tit)zlo the common tree of implications with terms of 219, ..., T2ro and (T'it)gll the common
tree of implications with terms of ma11,..., 72,1, the algorithm for the tree (7%)s proceeds as follows.

At any step where a topmost (NI) is chosen, after erasing nodes and corresponding term-statements
associated to (NE), we get identical premise-trees T}" of the following form.

(T3")210 (T;%)211
SkEt Stu

—E

Sk tu

Identifying them and erasing the node and corresponding term-statement associated to the (NI) results
to a tree Ti* of the above form in place of the tree with terms rooted at the topmost (NI). When all
the (NI)’s are eliminated, we are left with a tree with terms which is the tree 7\ shown above with a
branch of (NE)’s pasted on its root. Erasing the nodes and corresponding term-statements associated to

the (NE)’s, we obtain the following tree (1}"),.
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(T3")210 [h] (Ti*)211 [h]
Skt Sku
—E
SFtu
(T3")2

Since (Tit)lo = (Tt)210 and (Tit)ll = (Tvt)zll, we get that (Tit)l = (Tit)z.

1 1

> MO @1 :01,. ., Tm :Om Ft:7T1 M1 L1 01y, Tm :Om b 1T:T2 (1)
ML L1 :01,.0.., Tm :0m Et:T1 NT2

The [h] on 719,711, 72 implies that the trees (7}%)10, (7}!)11, and (7%)2 exist and are identical. Since

(T:%)10 = (T:)11, the algorithm for the tree (7i!); terminates and gives (7i!); = (1}%)10. Therefore, it is

1 1

(T = (T3")2- .

1

Corollary 6.5 The algorithm in 6.3 always terminates, i.e. any derivation in IT® has a tree T}t

Proof. By Lemma 6.4, forn =1. If 7 :: @1 : 01,..., Ty : 0y F 1 7 is a derivation in IT®, then the tree
(T}%), exists. -

The notion of tree of implications with terms for derivations in IT® is actually a revision of the notion
of skeleton, introduced in [15] for derivations of an extended natural deduction type system, called NJR.
In [15], derivations displaying the same skeleton are called synchronous and it is shown that two derivations
proving statements that type the same term are synchronous. In the current context, synchronicity refers
to derivations proving statements that share the same term-statement, which are shown to display the
same tree T}’ by Lemma 6.4.

6.2 Revised correspondence theorems

Having done the preliminary work, i.e. having introduced the trees T* for derivations in the decorated
logic IL*, and in the type system IT®, we can now relate IL* to IT® in a way that is compatible with
the way IULZ, is related to IUT® in Chapter 5 and, furthermore, revises the theorem relating ISL* to IT
in Chapter 1.

Theorem 6.6 (From IL,, to IT®) If 7* = ¢ : [(of,...,0% s 7)™ 1]y, 2. 1S a decorated derivation
in L, then there exist derivations m; :: @1 : 0%, ..., Ty 20l Ft o7 (1< i < n)in IT®, such that
(Tlt)z = (Tit)W*-

Proof. Given the 7;’s (1 < i < n) in IT®, Lemma 6.4 guarantees that the trees (T}%)1,..., (T}*), all exist

and are identical, so that the identity (7}%); = (T}%),- is meaningful. The proof is by induction on 7*,
letting S denote the set {z1,...,Zm}-
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Base: If 7* == @ : [(0f,...,08, 75 )" 1] er,.... 2., 15 @ decorated axiom, then there exist axioms
Mmooyl r i brin (1<i<n)in IT® Itis (T}Y); = (Ti!)x-, since both trees are a
single node with S,z - z.

Induction step: We show two characteristic cases.

Lo o tilo s omi T p) e e i us[(of, o0 T) P e e

The [h] gives mo; = 21 2 0f,.., T 2 05, F 71— pi (1 < i <), such that (T})o; = (T})xy, and

1

i < n), such that (7i*)1; = (T}*)r:. Applying (—E) to

'_
also my; = @yt ol .,y o, FurTr (1< : :

m

i
7o; and m1;, we obtain m; @y ol ..., @y ol Ftu o p; (1 < i < n). Since (Tit)o; = (Tit)ﬂ;) and
(T)1i = (T;" )y, we get that (T7%); = (T;) -

1 1 1

(Ti")oi (Ti") 1 (T;")ms (T3 ) s
Skt Sku Skt Stu
[h]
—E — —E
Sk tu St tu
(T;t)l (ﬂt>ﬁ*
> 71'5 wt [(¢117:¢1m7 d)i)i'c:l:((gi:"-yain; Ti),(O’i,...,Uin;pi))?:k+1]wl ----- Tm (1)

Tt [((f)lly sy (f)zm ) /‘l)i)i'c:l: (Ui: s 70'577. 5 Ti mpi)?:k?+1]wl ----- Tm

For 1 < i < k, the [h] yields mo; = @1 : @%,..., Tm @ @& F ¢ : 1)y, such that (T}9)g; = (T}}) . It is
1 m 0

1 1
m; = moi, 50 that (11 )1<ick = (1i%)oi = (1Y)r; = (I*)z+. For k41 < i < n, the [h] gives derivations
o0 2 X1 : 0{,..., Ty - Uﬁn Ft:7 and w1 2 21 0{,..., Ty - Uﬁn Ft: p; from which, by (NI), we derive
T Ty oL, ., Ty ol N pi. The trees (Ti)1, ..., (T k, (T k41, - - -, (T}Y),, are all identical

(Lemma 64), so it is (T-t)lgign = (Tit)lgigk = (Tit)ﬁ*. =

1

Corollary 6.7 If 7 :: ¢t : [(01,-..,0m; T)| w1,...,x,, 05 a decorated derivation in IL,,, there is a derivation
TS 101,y Ty O Et 7 in IT®, such that (T}%)1 = (1}") g+ .

Proof. By Theorem 6.6, for n = 1. —
Theorem 6.8 (From IT® to IL,,) If m; = @1 : 04, xpm o', Ft: 7 (1 <i < n) are derivations
in 1T®, there is a decorated derivation 7 :: t: [(o%,...,0L s 7)™ 114, 2 @0 Iy, such that (1}t) . =
(T3");-

Proof. Lemma 6.4 guarantees that the trees (7}%)y,..., (Ti"), all exist and are identical, so that the
identity (Tit),r* = (Tlt)z is meaningful. We consider two derivations 71 :: 1 : 01,..., Ty 1 0y Ft 7 and
T 1t X1t Plye-vy Ty ¢ Pm -t Y and proceed by induction on 71, allowing the [h] apply to any finite

number of derivations. The letter S stands once more for the set {z1,...,2Zn}.
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Base: If 71 :: ©1 :01,..., Ty : O, T : T x: 7 is an axiom, then 7 may only contain intersections.
Mol 32 L1 Py T i Pm, T O TP Mok 32 L1 Plyey Tm Pm, TP T ¢
(NIE)

M2 L1 Plyeeey Tm P Pm, T QT

We obtain a 7% =2 : [(01,.«+,0m, 75 T), (P15, P @5 V)] ..., = DY Mmerging m, mo1, .. ., g into
an axiom of the (decorated) logic and then applying exchanges, if necessary, and the (NIE) inferences in
the logic that correspond to the (NIE) inferences in 7o.

€ : [(017"':07’”77-; T);(Plz--~;l’m;¢; ¢)ik:1]1;1,---a$ma1;

(NIE)

ﬂ'* R [(01:"':07’7177-; T):(P1:~~~:Pm:¢§ "l))]wl,...,wm,x

The tree (1i!),+ is a single node with decoration-statement S,z b , i.e. it is (1}%),+ = (T3%)1.
Induction step: We show the most typical cases.
MO T1:01,..., Tm :Om Ftix =T M1 X101, eee, Tm Om FULYX

> (—E)
ML L1001,y T O FtU T

Since tu can only be generated by an (—E) in IT®, derivation 7y has the form shown below.

210 it Ba -t g1 — Y1 w211t Ba Fw: ¢ (B Toko :: B2 Ft: ¢ — Yy Tog1 o Ba Fuw: ¢ (B
ma1 it Ba Ftu Tog : Ba b tu : ¢y
(NIE)
w2 i Bo={x1:p1,-., Tm :pm }Htu:p
The [h] OIl 110, 72105« + + 5 T2kO gives a

7]'6 wt [(017"'70777«; X — T):(pla"'apm; ¢l — I/)i)?ZI]ﬁl,...7zm
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such that (Tit)ﬂa = (Ti%)10, while the [h] on 11,7211, ..., T2k1 yields a
ﬂ-f Huc [(017 s 0m; X): (Pl: - Pms ¢l)f:l] T1yeeny Tom

such that (T")x: = (13*)11. We then get a 7* = tu: [(01,.-.,0m; 7), (P15 Pm; V) ar,.. 2, as follows.

) T

- (—E)
tu;[(01)"'70-777-;T))(pl)'--;pm§’l/)i)i:1]a:1 ..... Ton

(NIE)

T tu (01, 0m; ), (1 P V) e

Since (1)x: = (1i")10 and (1;"): = (Ti*)11, we infer that (T3*)r- = (T;)1.

1 1

MO @101y, Tm :Om EE:T M1 L1 01, ., Tm :0m FT:1x

> (nD)
ML T1:01,...,Tm O EEtiTNY

The [h] on 7m0, w11, 72 givesand it t: (01, ,0m 5 T), (01,5 0m 3 X)s (P15 s Pm s V)] an,n., 2 » SUCH

that (Ti")r: = (T;")10. By (NI), we then get a 7 =2 t: [(00,...,0m; TOX), (P15 5 Pm; V)l ar,.... 2> SUCK
6.4

that (I}')z- = ([;")x; = ()10 = (L)1 -
Corollary 6.9 If 7 2 1 : 01,..., Tyy : O F t 2 T is a derivation in IT®, then there is a decorated
derivation 7™ :: t: [(01, .+, 0m; T) ev, 2 0 Wiy, such that (T}%) .+ = (T3%);.
Proof. By Theorem 6.8, for n = 1. —

Putting aside the small dissimilarities between the (decorated) logics IL,, and ISL, Theorem 6.6
revises the “only if” direction of Theorem 1.20 in that it puts forth the additional fact that the m;’s and
7* share the same implicative structure (with terms), which is expressed by the identity (7}¢); = (7}¢) .
Moreover, Theorem 6.8 revises the “if” direction of Theorem 1.20 by adding the fact that 7* displays the
same implicative structure (with terms) as the m;’s, which is expressed by the identity (7}%),- = (Ti%);.

Comparing Theorem 6.6 (from IL,, to IT?®) to Theorem 5.10 (from IUL,, to IUT®), we see that, due
to Lemma 6.4, there is no need for conclusions of the form “(T}"); exists and (T}'); = (T3%); (i # j)”
in the former, as there are in the latter3. Furthermore, comparing Theorem 6.8 (from IT® to IL,,) to
Theorem 5.13 (from IUT® to IUL,,), we find that, due to the same lemma, there is no need for hypotheses

of the form “(T}%); exists and (T;*); = (T}*); (i # j)” in the former, as there are in the latter?.

1

3This is meant modulo the differentiation in the rules documented by the trees in the latter.
4See footnote 3.
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6.3 Discussion of the correspondences

Looking at the correspondence between ILY, and IT®, let S;pe be the set of finite sets of IT®-derivations
that share the same term-statement at the root. Obviously, the set S;pe is a proper subset of the pow-
erset P(ITP) of IT®. Lemma 6.4 implies that a member {my,...,m,} of Sipe is such that the trees
(T:%)1,...,(Ti"), all exist and are identical. Theorems 6.6 and 6.8 establish a one-to-one correspondence
between IL}, and S;e. In particular, Theorem 6.6 matches a 7* in IL},, considered modulo the number
and position of exchange inferences and also modulo the number and order of application of consecutive
local rule-inferences, to a set {m1,...,m,} in Sipe, such that (T}")1<i<n = (T3%)x+. Conversely, Theo-
rem 6.8 matches a set {m,..., 7} in Sire to a 7* in IL},, considered modulo the things mentioned
above, such that (I}") = (T.")1<i<n-

The question we now have to tackle is if we also have a one-to-one correspondence between IULY and
Siure, where Sjyre is the set of finite sets of IUT®-derivations that share the same term-statement at
the root. The set Siyre is a proper subset of the powerset Z?(IUT®) of IUT®. The situation here is
a bit more complex and we need to also define two subsets C1 and C3 of Siype to get the picture. Let
Cy C Sjype be such that, for any set A = {my,...,m,} in C1, the trees (IiL,)1,. .., (TiL,)n all exist and
are identical, i.e. hypotheses 1 and 2 of Theorem 5.13 hold for the members of A [notation: (1 A 2)4].
Further, let Cy C Sj;pe be such that, for any set B = {m,...,m,} in Cs, it is not the case that the trees
(Tit)1, -, (Tik,)n all exist and are identical [notation: —(1 A 2)g], but there is a transformation to a set
A= {ri,...,m} in Ci, where m; transforms to 7, which proves the same statement as m; (1 < < n).
To use the terminology introduced in Chapter 5, the members of a set in C; are “naturally compatible”,
while the members of a set in Cy are “compatible through transformations”; the choice of the letter “C”
for the subsets of S; ;e derives from the word “compatible”. The facts that (1 A 2)4 and —(1 A 2)p,
for any A in Cy and B in Cbs, imply that C; N Ce = (). Moreover, if C' = C; U Cs, the transformation
counterexample in Section 5.3 shows that there is a set {7, 72} in Sjype \ C, i.e. that C' & Sjyre.

What we have shown in Chapter 5 is a one-to-one correspondence between IULY, and C;, which
matches a 7* in IULY,, considered modulo the number and position of exchange inferences and also
modulo the number and order of application of consecutive local rule-inferences, to a set {m1,...,m,} in
Ch, such that (T3l )1<i<n = (Tife)r+. Theorem 5.10 states the direction from 7* to {m1,...,m,}, while
Theorem 5.13 states the inverse. However, we can also consider one-to-many correspondences from IUL%,
to C and from C to IULy,. A one-to-many correspondence from IULY to C matches a 7* in IUL},
considered modulo the usual, not only to its one-to-one equivalent set {m1,...,7,} in Cq, but also to
all the sets {n{,..., 7} in Cs, such that 7} proves the same statement as m; (1 < i < n). Two distinct
IUL?,-derivations 7* and (#')* are not necessarily matched to distinct subsets of C'. This is the case
when 7* and (7/)* prove the same decorated molecule®. A one-to-many correspondence from C to IUL%,
matches a {my,...,m,} in C; to its one-to-one equivalent derivation 7* in IUL* and a {m1,...,m,} in Cs
to the subset of IULY, including all (7’)* whose one-to-one equivalent set {7}, ..., 7} in C; is such that
7, proves the same statement as m; (1 < i < n). Obviously, distinct sets in Cy are matched to distinct
derivations in IULY, , but distinct sets in Cy are not necessarily matched to distinct subsets of IUL},. We
can specify the latter case, if we consider two sets A = {m,m2} and A’ = {x], 74} in Cs, such that 7}

5Derivations 7* and (7')* correspond—via the one-to-one correspondence between IUL%, and C1—to two distinct sets
A={m1,...,mp} and A’ = {n],..., 7, } in C1, respectively. The fact that 7* and (7’)* prove the same decorated molecule
implies that 7 proves the same statement as m; (1 < ¢ < n). The m;’s all display the same tree T}!_ as 7*, while the 7}’s
all display the same tree T as (7’)*; these trees are distinct, since 7* and (7')* are distinct. Therefore, there exists a set
B ={m1,... ’”k’”;wrl’ ...,m,} in Ca, where 1 < k < n. This set B belongs to both the subset of C' matched to 7* and the

subset of C' matched to (7)*.
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and 7/ prove the same statements as m and 7o, respectively, the trees (Ti%, )1, (T3 )2, (1)1, (Tik,)5 all

exist, and it is® (TiL,)1 = (TiL,)5 # (Tit.)2 = (Tik.)}. It is clear that the correspondences just described
differ from the intended one, i.e. from a one-to-one correspondence between IULY, and S|;;;e. Figure 6.4
illustrates the one-to-one correspondences in the intersection and intersection-and-union contexts. In
addition, Figure 6.5 demonstrates the subsets of Sjyre with respect to hypotheses 1 and 2 of 5.13 and
shows the paths from a member of Sj;pe to a member of IULY,.

The failure of a one-to-one correspondence between IULY, and S ;e confutes the very definition of
IUL,, as a logic for IUT®. As explained at the end of Section 4.2, in defining IUL,,, we have assumed—
following the pattern in the definition of IL,, (or ISL) as a logic for IT®—that the molecule structure
serves the purpose of “joining together” statements in IUT® that share the same term-statement, so
that the premises of an (NI) in IUT® provide a single (NI)-premise in IUL,, and the minor premises
of a (UE) in IUT® provide a single (UE)-minor-premise in IUL,,, thus allowing a decoration for IUL,,
that simulates the terms in IUT®. However, this amounts to assuming a one-to-one correspondence
between IULY, and S;;pe, which is not the case. As shown so far, statements in IUT® sharing the
same term-statement, e.g. the premises of an (NI) in [UT®, must either be naturally compatible, i.e. in
C1, or, at most, compatible through transformations, i.e. in Cs, in order to be mergeable into the same
decorated molecule in IULX,. Premises” of an (NI) in Sjype \ C cannot be joined together in IULY,,
which means that we have assumed more than is actually the case in defining IUL,,,. On the other hand,
the one-to-one correspondence between IL}, and S;pe confirms the definition of IL,, as a logic for IT®;
Lemma 6.4 ensures that the premises of any (NI) in IT® are naturally compatible for merging into the
same decorated molecule in ILY, . So, unfortunately, although the logic IL,, indeed expresses the type
system IT® on a logical level, its extension with union IUL,, is not appropriate to express (the whole
of) IUT® on a logical level. It actually expresses the proper subset of IUT® where premises of an (NI)
and minor premises of a (UE) belong to C, i.e. where premises of an (NI) and minor premises of a (UE)

display, modulo transformations, the same tree T},.

6The set B = {7r1,7r§} is in C71 and is such that 71 and 7r§ prove the same statements as w1 and w2, respectively, and
also the same statements as 7] and 7}, respectively. If 7* is the one-to-one equivalent derivation of B in IUL}, , then #*
belongs to both the subset of IUL%, matched to A and the subset of IUL?, matched to A’.

"The counterexample derivations w1 :: @1 :p, 2 : 8 = ocUTFwv:aand 72 :: @1 : X, T2 : v uv : B (see Section 5.3),
which are in S, .@ \ C, are not eligible for premises of an (NI). So, one might wonder if there actually exist premises of
an (NI) in S;ype \ C. However, we believe that modifying 71 to 71 = 1 : pNx, 22 : (B = o UT)Nv F wv: a and 72
tome k1 pNx, x2: (B = ocUT)Nvk wv: B, so that we get derivations which are eligible for premises of an (NI), we
still have a pair in S| ;1@ \ C. Derivations 71 and 72 differ from 71 and w2, respectively, only in additional (NE) inferences
at the top, which implies that (T}!.); = (T}{,)1 and (T3%,), = (Ti%,)2, which, in turn, implies that {71,72} & C1. To
justify that {71,72} & C2, we follow the pattern given in 5.3 to justify that {m1,72} ¢ C2, although the work required is
considerably increased.
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Intersection
ILy, 6.6 Syre
6.8
Intersection and Union
IUL:,L SIUTG
e ) 4 N
5 - \
.Z,
\f )\
Cy
5.13 L J

Figure 6.4: One-to-one correspondences.
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SIUTEB

A={m,m}
muBi={z1:01,...,Tmiom }Et:T

meuBa={z1:p1,.- ., Tm ipm Tt

(LA2)a - (1A2)a
5.13 A€y Ae Syre \C
for 71, w2
IUL:n (1 A 2)A’ cannot transform to

! / 7
Al:{wiywé}e Ci A'={m,m} e Ci

m Bl Ft:T
A=(o1,...,0m; T) ,
my it Ba bty
B:(pl) :Pma¢)
5.13
for w},mh cannot prove
t: [A)B]ﬂ?l ----- Tm
in IUL;,
*
TUL?,

Figure 6.5: Subsets of S|, e and paths from S e to IUL,.



CHAPTER 7

Sequent Calculus IUL,, and IUT®

We present the logic IUL,, and the type system IUT® in sequent calculus style, retaining the additive
character of their natural deduction presentations. For both the logic and the type system, we show that
the two styles of presentation are equivalent and that the basic natural deduction properties (derivability
properties, etc.) hold in the sequent calculus context, as well. We also prove that the additive and
multiplicative! sequent calculus presentations of the type system are equivalent. We finally elaborate
on how the sequent calculus logic attempts to represent the sequent calculus type system on a logical
level and sketch how the sequent calculus correspondence between the logic and the type system can be
studied with tools analogous to the ones used to study the natural deduction correspondence between
the logic and the type system.

7.1 The logic IUL,, in sequent calculus

Keeping (i) and (ii) of Definition 4.1 as it is, the sequent calculus logic IUL,, proves molecules by the
rules displayed in Figure 7.1.

Remark 7.1 (i) In the exchange rule (X), the I';’s have the same cardinality.

(i) As was the case in the natural deduction presentation, the (left and right) intersection and (left
and right) union rules demonstrated in Figure 7.1 are only special versions of the actual (left and right)
intersection and (left and right) union rules. The actual (UL) is meant as follows.

(U, (T1,01; p1), (L1, 715 p1),Us, (T2,025 p2), (T2, 725 p2), -« s Un, (T, 00 pr), Ty Tns p)s Ung1 ]
[Ur,(T1,01 UT1; p1),Usz, (T2,02UT2; p2)y-e s Uny, (Tryon UTn s pn), Unt1]

(uL)

The actual (NL1),(NL2),(NR),(UR4), and (UR2) can be figured from their special versions in a similar
manner.

The categorization of rules as global or local is still according to whether they affect all or some atoms
in premise level, respectively. The exchange rule, the implication rules, and the cut rule are global, while
the intersection and union rules are local.

1We remind the reader that the multiplicative sequent calculus version of the type system is studied in Chapter 2.

137
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(Ts, 00,73, A5 pi)i]

——— (ax) (xX)
(T3, 005 04)i] (Ts, 73,00, Ai s pi)il
[(Tyi; o) [(Ts, 75 pi)il (L) [(Ti, 005 )i (R)
[Ti, 06 = T35 pi)il [(Ti; 00 = 7))
(U, (Ti,005 pi)i, V] (L)) (U, (Ti, 75 pi)i, V] (NLa) (U, (Ti; 03),(Ti; 73))i, V] ("R)
(U, (Ti,0: N Ti; pi)i, V] (U, (Ti,00 N Ti5 pi)iy V] (U, (Ti; 00N 1), V]
(U, (Tiy0i5 pi), (TiyTi; pi))iy V] (L) (U, (Ti; 00)i, V] (UR) (U, (Ti; 1), V] (URa)
(U, (Tiy o0 UTi5 pi)iy V] [U,(Ti; 0:UTi)i, V] [U,(Ti; 0:UTi)i, V]
i 04)i Tiyo0; )i
(T 04)i] (Ts,0 T)](cut)
[(Ti; 7i)i]

Figure 7.1: The logic IUL,, in sequent calculus style.

The connectives of the grammar are all additive. This is done by necessity in the cases of intersection
and union. The claim that atoms in the same molecule should have the same context cardinality forbids
a multiplicative presentation of the intersection rules and the left union rule. Considering the left inter-
section, a multiplicative premise [(A;; )%, (Di, 05,75 pi)}] with |A;| = Ty, 04, 7i] = m + 2 would give a
conclusion [(A;; @)%, (Ti, 00 N 735 pi)¥] with [A;] = m + 2, but |T;,0; N 7;| = m + 1. Similar arguments
hold for the right intersection and the left union. Moreover, the intuitionistic claim that atoms should
contain exactly one formula to the right of “;” forbids a multiplicative presentation of the right union;
a multiplicative premise [U, (T';; 0;,7)i, V] would no longer belong to an intuitionistic system. On the
other hand, the additive presentation is picked by choice in the case of implication. This is because the
left implication can also be given multiplicatively with premises [(T';; 0;):], [(Ai, 7i 5 pi)i] and conclusion
[(Ts, Aj, 07 — 745 pi)i). The cut rule is additive by choice, as well.

The sequent calculus presentation of IUL,, is equivalent to the natural deduction presentation of
IUL,,, given in Chapter 4.

Theorem 7.2 (i) If m:: M in sequent calculus style, there is a 7’ :: M in natural deduction style.
(i) If 7 :: M in natural deduction style, there is a © :: M in sequent calculus style.

Proof. For both (i) and (ii), the formal proof is by induction on .

(i) In practice, the inductive proof reduces to showing that the sequent calculus rules are derivable
in the natural deduction system. The axiom and the exchange rule are common in both presentations,
while the sequent calculus right rules correspond to the natural deduction introduction rules. Hence, it
remains to show the derivability of the left rules and the cut rule in natural deduction.

[(Ti; 04)i] [(Ti, 755 pi)i]
g [(Ti,oi = 715 pi)i] =0




7.1 The logic IUL,, in sequent calculus 139

(Comisp)] PR (G L DD I
[(Fi; Ti —> z)z] [(Fi,O'i — Ti; O — Tz)z] [(Fi,O'i — Ti} Uz)z]
p
———————————— [4.5] (—E)
[(Ti, 08 = 705 Ti = pi)i] [(Ti, 08 = 705 70)i]
(—E)

[(Ts,00 = 705 pi)il

(A, i 5 )k, (T, 005 pi)t]
[(Ai, i s ¥i)i, Tiyo0 N1 pi)T]

(NLy)  ~

[(Aiy i )i, (Tiy 005 pi) ] (o) (ax)
_ Mgt Moo pt] 0 [(Badi o0 (Coinrs o nm)t]
[(Ai, @i i — i), (Ti,o0 N5 00 — pi)t] [(Ai, pi5 ¢i)Y, (Di,o0 N 15 03)T] (5E)

[(Ai, ¢i5 i), (i, 00 N 75 pi)7]

[(Ai, i s )i, (T, 005 pi), (Diy i3 pi))7E]
[(Ai, ¢i5 ¥i)T, Ti 00 UTis pi)T]

(UL) ~

(ax)

[(Ai, i i), (Ti,o0 UTis pi)t]

(T3, 005 7i)i
[(Fi; m)i] [(Fi,m; Tl)z] T (—I) o
> [(1_‘1 : Tl)z] (cut) [(Fz ;0 — z)[z(]r . T)] [(Fl N 1)1] (SE)

(ii) The inductive proof reduces to showing that the natural deduction rules are derivable in the sequent
calculus system. Since the introduction rules translate to the corresponding right rules, it remains to
show the derivability of the elimination rules in sequent calculus.

Ty oi— )i T 00); (T 5 03)i] [(Ciy7i5 7))
b (Ts; 01 — T)‘]. _ [(Ti; 04)d) B~ ([0 7] oe—— (L)
[(Fla Tl) ] [(F ) ] (cut)
i Ti)i
(B 615 0%, Covas a0t]
JRNORY N \n i, Pis Pi)y,Li, 00 04
[(Ali ¢z)1;l(€1—\z y Og ﬂTz)l} ("B - [(AI ) ¢l)k (Fi o) ﬂTi)n] [(Al ¢1 - ¢l)k (Fi o Uli)n] (NLy)
[(Ais ¢i)T, (Ti; 00)7] IRALR A [(Al TR ’ )’n} ISR L (cut)
iy Qi)1, i 04)y
((Tiyo05 pi), TiyTis pi))il
[(Tis;oi Umi)il (T, 005 pi), (Ta,7i 5 pi))il U — U o) (L)
[(T:: po)il (UE)  ~» [(Ti; 03 UTi)i] [(Ti, o0 UTi; pi)il (cuty

[(Ti5 pi)il
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Following the equivalence of the two presentations of the logic, we expect that the propositions
on derivability, shown in Chapter 4 for the natural deduction presentation (Propositions 4.5, 4.6, 4.10,
and 4.11), also hold for the sequent calculus presentation. The next two propositions show that weakening
and contraction are derivable.

Proposition 7.3 Weakening is derivable: if m:: [(T;; 7;):], there exists a @' :: [(Ts, 045 7))

Proof. Either by Theorem 7.2 and Proposition 4.5 or directly by induction on w. We show three inductive
cases of the direct proof.

my i (T4, piy o5 vi)i] [h]

, (X)
X mo = [(Tis 1)) moo (T, pis vi)i] wo 2 [(Ti, 005 70):) [h] [(Ti, 04, pi; vi)i
(—L) ~ (—L)
7 (Do, i = pis vi)i (T3, 00, i = pi; vi)i]
: (X)
w2 (D1 = piyois Vi)i
> mo it [(Ai; qu)If, (Ti; 7)1 (UR1)  ~» Wf) = [(A i s ¢i)f, (I'i, 005 7)7] [h] (UR1)
i [(Ais )1, (Tis 7 U pi)i] ' [(Asy s @)1, Tiy 005 7 U pi)T]
my i (T, 7,005 pi)i] [h]
2 (T 71i)i (L s pi)i
o o[ mi)d]  mon (Ui 7i5 pi)i] (cut) ~  wh o [(Ti,00; 7)i] [h] (T, 00,7i 5 pi)i -
m o [T pi)il ; (cut)
' [(Ti, 045 pi)i 4

Proposition 7.4 Contraction is derivable: if 7 :: [(Ty, 04,04 ; 7)), there exists a " =2 [(Ty, 045 74)4]-

Proof. Either by Theorem 7.2 and Proposition 4.6 or directly through the cut rule.

(Ts,00; 0i)i @ (Ui, 06,045 Ti)i

7' (T, 005 7i)i

(cut)

It is easy to check that, if we chose a multiplicative cut rule, the derivability of contraction through
cut would fail. A proof by induction on 7 would also fail. —

Before showing that pruning and doubling are derivable, we need to establish the exchange of atoms
within provable molecules. The definitions of tree and derivation height remain as given in 4.7 and 4.8,
respectively.

Proposition 7.5 If 7 :: [U, A, B,V], there exists a ' :: [U,B, A, V] withT' =T.
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Proof. By induction on 7. We show two characteristic general cases of the induction step.
> A global rule (R): e.g. (—L) or (cut)

o [U(),Ao,B(),V()] Ty ot [ul,Al,Bl,vl]
m (U, A B, V]

(R)

where |Uy| = [Uy| = |U|
The IH gives a 7(, :: [Uo, Bo, Ao, Vo] with T = Ty and a «} :: [Us, By, A1, V1] with T} = Ty. Applying
(R) to m, and 7, we get a " :: [U, B, A, V] with T" =T.
> A local rule (R): e.g. (NL) or (UR)
mo i [Uo, A, B, Vo]

Case 1: (R)
m: [U, Ar, Br, V]

where |Uy| = ||, and Ag and Bg derive from A and B, respectively, by (R)
The IH gives a w(, :: [Up, B, A, Vo] with T) = Ty. Applying (R) to 7, we get a 7’ = [U,Br, Ar, V]
with 77 =T.
mo :: [Uo, A, B, Vo]

Case 2: (R)
m e [U, Ar, B, V]

where |Up| = U]
The IH yields a 7( :: [Uo, B, A, Vo] with T} = Ty. Applying (R) to w(,, we obtain a 7’ :: [U, B, Ar, V]
with T/ =T.
o :: [Uo(n,C*), A, B, Vo)

Case 3: (R)
7 [U(n,Ch), A, B, V]

where Uy(n,C*) denotes a sequence Uy of n atoms, which contains an atom C at position k < n

and U (n,Cﬁ) denotes a sequence U of n atoms, which contains an atom Cg at position k

The IH gives a 7 :: [Uy(n,C*), B, A, Vo] with T} = To. By (R), we then get a 7’ :: [U(n,CE), B, A, V]
with T/ =T.

The local rules of ("R) and (UL) are dealt with as (NI) in the proof of 4.10. —

Proposition 7.6 (i) Pruning is derivable: if m :: [U,V], there exists a 7' :: [U] with h' < h.
(i) Doubling is derivable: if 7 :: [U, A], there exists a ©' :: [U,2A] with T' =T.

Proof. (i) By induction on . We demonstrate two typical general cases of the induction step.
> A global rule (R): e.g. (X) or (—R)

= [Uo, V
mo :: [Uo, Vo )
w (U, V]
where |[Uy| = |U]

The IH gives a 7(, :: [Up] with hy < ho. By (R), we obtain a " :: [U/] with A’ = h{+ 1< ho+ 1= h.
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The global rules of (—L) and (cut) are dealt with as (—E) in the proof of 4.11(i).
> A local rule (R): e.g. (NL) or (UR)

mo = [Uo(n, A¥), Vo]
o [Un, AR), V]

Case 1:

(R)

The IH gives a m{, :: [Up(n, A¥)] with h{ < ho. Applying (R) to 7, we obtain a 7’ :: [U(n, A% )] with
W= b+ 1< ho+1=h,

.. k
Case 2: 2 [U; Vo(n, A7)] (R)

(U, V(n, AR))

The IH gives a () :: [U] with h{ < ho. It is 7’ = () and b’ = by < h.

The local rules of ("R) and (UL) are dealt with as (NI) in the proof of 4.11(i).
(ii) By induction on 7. We exhibit two typical general cases of the induction step.
> A global rule (R): e.g. (—L) or (cut)

mo :: [Uo, Ao] m o [Us, A
m (U, Al

(R)

The IH gives a m( :: [Up, 2A0] with T§ = Ty and a « :: [Us, 2.A;] with T{ = T7. Applying (R) to =)
and 7}, we obtain a 7’ :: [U,2A] with T =T.

> A local rule (R): e.g. (NL) or (UR)
mo i [Uo, A]

Case 1: ————————
ase m (U, AR] )

The IH gives a m), :: [Up, 2A] with T) = Ty. By (R), we then get a 7’ :: [U,2AR] with T/ =T

.. k
Case 2: 0" [Uo(n, B), A] (R)

m [Un, B, A]

The IH yields a n§y : [Up(n, B¥),2A] with Tj = Ty. Applying (R) to m}, we get a 7’ :: [U(n, BE),2.A]
with T/ =T.

The local rules of (NR) and (UL) are dealt with as (NI) in the proof of 4.11(ii). In these two cases,
we need to use Proposition 7.5. —

Remark 7.7 In the sequent calculus context, the following alternative phrasings for the derivability of
weakening and contraction are provable.

(i) Weakening is derivable: if m :: [(Ty, A;; 71):], where the T';’s have the same cardinality and the
A;’s are non-empty, there exists a 7 :: [(Ty, 04, Ay ; n)i].

(ii) Contraction is derivable: if 7 :: [(T;, 04,04, A¢; 75)i], where the T';’s have the same cardinality and
the A;’s are non-empty, there exists a @ :: [(Ty, 04, A5 7))
Compared to the natural deduction alternative phrasings in Remark 4.12, the conclusion that T' =T has
been removed from both (i) and (ii).
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For (i), the proof is by induction on w. A subcase of the (—L) case, shown below, illustrates why a
conclusion that T' = T is no longer attainable.

mo = (T, @i ; 7i)i] w1 (T, @iy pi s 0i)i
m (T = (T, ¢i), Ai = Ti = pi; vi)i]

(=L)

ITh(E(induction hyp)o]thesis gives a )y = [T}, 04, ¢i; 71)i] and a w2 (T}, ¢i, 04, pi; vi)i]. We then obtain
a7’ (T, 04, Af; vi)i], as follows.

mo 2 (15, 06y fi 5 73)i] x)
[(T%, @iy 045 73)i] w1 (T, @iy 00y pis vi)i
w2 (T = (T, ¢4),00, Ai = 70 = pi; vi)il

(=L)

Even if we assume that T} = Ty and T{ = Ty, the exchange inference forbids a conclusion that T' =T .
For (i), the proof is by induction on w, with the aid of Proposition 7.4. We show the same subcase
of the (—L) case below.

mo 2 [(Ti, 04,005 Ti)i m : [(Ti, 04,00, pis vi)i]
> (—L)
T [(Fi,ai,Ui,Ai =T — Pi; UI)I]

By 7.4, there is a w)) 2 [(T'i,04; 7i)i], while the induction hypothesis gives a w) :: [(Ty, 04, pi; vi)i.
Applying (—L) to | and 7}, we obtain a ' :: [(Ti,04,A;; v;);]. Even if we assume that T] = T4, the
fact that T} # Ty (see the proof of 7.4) forbids a conclusion that T’ =T.

If the A;’s are empty in (i) and (i), we fall back to Propositions 7.8 and 7.4, respectively.

Remark 7.8 Proposition 4.4 does not hold in the sequent calculus context, i.e. not every sequent calculus
IUL,, -derivation has a canonical form. This is because the exchange rule does not always commute with
a left rule, as shown below.

[(Ti, 045 7:)i] [(Ti, 04, pi 5 vi)i] [(Ti, 005 7i)i) [(Ti, i, pi s vi)i]

L (=L) IR R (X) x ol TR (X) x
(s, 06,78 — pi; vi)i] (X) (=L) x

[(Ts, 7 = pi, 045 vi)i

The formula 7; — p;, which is to be exchanged with o;, is not yet formed in the premises of (—L);
therefore, an (X)-application involving o; and T; — p; cannot be performed before the (—L)-application
introducing T; — p;-

Having completed the sequent calculus presentation of the logic, we move on to the additive sequent
calculus presentation of the type system.
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B,z:obFz:o (ax)
Bhrt:o B,x:tkFu:p B,z:obFt:T
(—L) (—R)
B, y:o—ttulyt/z]:p BtX.t:o—T
okt : : : :
B,z:oFt:p (L) B,x:tkHt:p (AL2) Bkrt:o : Brt:7 (MR)
B, x:onNthkt:p B,x:onNthkt:p Brt:onrt
B,xz:obkt:p B,x:tkFt:p BFt:o BkFt:T
L —— (UR —— (UR.
B,xz:oUTkHt:p (VL) Bl—t:UUT( 2 Bl—t:UUT( 2

BFt:o B,x:obu:Tt
Btult/z]: T

(cut)

Figure 7.2: The type system IUT® in sequent calculus style.

7.2 The type system IUT? in sequent calculus

The type system IUT® in sequent calculus style is the sequent calculus type system IUT,, of Chapter 2,
presented additively and without the (w)-rule. The additive presentation serves the proof of (restricted)
correspondence theorems between it and the additive sequent calculus logic (see Section 7.3). It assigns
types built by implication, intersection, and union to terms of the untyped A-calculus according to the
rules in Figure 7.2. As was emphasized for IUT,, in Chapter 2, the new variable in the conclusion of an
(—L) inference is fresh with respect to the derivations proving the premises.

The additive sequent calculus TUT® of the current section is equivalent to the additive natural deduc-
tion TUT® of Chapter 4. We remind the reader that we denote V; (or just V) the set of all term variables
appearing in a derivation 7 of the type system.

Theorem 7.9 (i) If 7 :: B+t : o in sequent calculus and x1,...,2, €V, thereisan :: BFt: 0 in
natural deduction, such that x1,...,2, € V' DO V.

(i) If m :: B & t: o in natural deduction, there is a ' :: B &t : o in sequent calculus, such that
VoV,

Proof. (i) By induction on 7.
Base: f 7 :: B, ¢ : o ¢ : 0 is an axiom, then 7’ =7 and x1,...,2, € V' = V.
Induction step: Since the right rules translate to the corresponding introduction rules, we demonstrate

the cut case and the cases of left rules.

m 2 BkFt:o muB,xiobu:T
m BlFult/z]:T

(cut) ~»
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mo i BEt:o [h]
BFt:oUo

Ul
“n m =B, x:oku:7 [h) m =B, x:oku:7 [h)

' Brult/z] T

(UE)

Ifxl,...,xnQZV:VOUVhtheIHyieldsthat Il,...,l'nQV/:VO/UV{QVOU‘G:V.

m 2 BkFt:o muB,x:ThFu:p
muB,y:o—T1Hulyt/z]:p

>

(—=L) ~

(ax) - _Wé _?l__ E 7 [P]_ — [4.14(ii)]
m 2B yiosThtio (SE) o muBaithuip [b] [4.14(ii)]
? Yo _—>_T_|__yf T ________1T ﬂ' il ¥ ?’_y_: g _—) LT :_T_l__u_: 4 (UIE)
7w B,y:o—ThHulyt/z]:p

B y:o—srthy:o—>T1

If2y,...,2, €V, then zq,...,2,,y & Vo UVy. The IH gives that x1,...,2,,y € Vg UV{ D Vo U V1.
Since y ¢ Vy U VY, we can apply 4.14(ii) to 7, and 7} to get m} and 7Y, respectively, such that

1, x, @V =V UV =ViuVu{y} 2VouViu{y} =V

moB,x:obt:p

L
g muB z:oNTkHt:p (L)~
B, riokt
B aoronr viony ™ B g
,x:oNthx:oNT (NE:) ____0_«-__,1,1«___11___P___[4.14(11)]

B,z:oNthkx:0o
7B,z :oNTk (ty/z])|z/y] YRV p

If 21,...,2, € V =V, the IH gives that x1,...,2, € V§ 2 V. If y is such that zq,...,2, Zy €V},

we can apply 4.14(i) to 7, to get 7§ with 1,...,zp,x € V5’ = (V5 \ {z}) U {y}. Since = ¢ Vj’, we can

further apply 4.14(ii) to ( to get my’ with @1,...,x, & Vy"' = V' U{z} = Vj U{y}. Since y ¢ Vj 2,
we finally get that x1,...,z, €V =VJ" 2 VU {y} 2V =V.

moB,x:obt:p muB,x:TkHt:p

> (UL) ~
muB xioUTHt:p
my B, x:okt:p [h] _ m =B, x:THt:p [h] _
T T — - == [4.14(i)] Y T T T T 7T [4.14(1)]
o - TonBuyiottyae L msByirEiy/eie L
B,z:oUTkz:0UT ny' = B,x:oUT, y:0okty/x]:p - 7T/1”::B,w:UUT,y:TFt[y/w]:p(L‘.'E)
FV(t
7B wioUTE (ty/a)a/y) E e P

If 1,...,2p ¢ V = Vo UV4, the IH gives that z1,...,2, € Vg UVy D Vo UV;. If y is such that
T1,...,@n £y & Vg UV/, we can apply 4.14(i) to | and 7} to get 7§ and 7}, respectively, such that
1, .. En,x VUV = (VyUV])\{z})U{y}. Since z & V§' UV{’, we can apply 4.14(ii) to n{ and 7}
to get " and 71", respectively, such that z1,...,z, € Vy" UV =V UV U{z} = Vg UV U{y}. Since
Y € VO/UV{ oW UVl, we ﬁnally get that Lly---yTp € V' = VOW UVlN/ >Vyuh u {y} 2 VouVp =V.
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(ii) By induction on 7.
Base: If 7 :: B', x : 0 - 2 : 0 is an axiom, then 7/ =7 and V' = V.

Induction step: Since the introduction rules correspond to the right rules, we show the cases of
elimination rules.

> o BFtio—T muuBbFru:o (SB)  ~
TuBlEtu:T

w2 BFu:o [h] B z:thaz:T (ax)
(—=L)

mouBEtio— 1 [h B,y:o—>71kyu:r

cut
w2 BFtu:T (cut)

[b]
Itis V' =VyuViU{z,y} 2 VouViU{z,y} D VoUV; = V. [Example 7.10 illustrates one case where
V' 2 V and another case where V' =V ]

—B Pp— (ax)
m i BkFt:oNT , LALANAL (NLy)
— - (ME1) ~  gluBFt:onTt [h] B,z:onNthkx:0
m:BFt:o (cut)
7w 2Bkt:o
. , [(h]
Itis V' =VjU{z} D Vou{z} D Vo =V.
b mBkFt:oUT muB,x:obu:p m B x:ThRu:p (UE) ~
m Blult/z]:p
m =B, x:oku:p [h] m B, x:TkFu:p [h] (UL)
moBhFt:oUT [h] B,z:UUT}—u:p( 0
cu
7' BlFult/z]:p

[h]
sV =VguWVWuVy DV uWhul, =V,

Example 7.10 (i) Consider the following natural deduction derivation w:: z:0 - T, w:0F zw : T.

Mo Z2:0 T, wW:0Fz:0—>T M zZio—T,wWiockw:o

T z:0—>T,W:0Fzw:T

(=E)

Following the method in the proof of 7.9(ii), derivation 7 transforms to the following sequent calculus
derivation ™’ :: 210 = T, w:0F zw: T.

muzio—>T,wiockw:o z:a—)T,wza,w:T}—w:T( L)
—
Ty 20 =T, WioFz:0 =T z:a—>7',w:a,y:a—>7'%yw:7'( 0
cu
i zio—sT,wiokzw:T
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The definition of “basis” implies that x # z,w and the definition of (—L) implies thaty # z,w,z. Hence,
itis V' ={z,w,z,y} 2 {z,w} =V.

(ii) Consider the following natural deduction derivation 7w :: B={z: (cNp)U(pN7)}Fz(Av.z): B,
where p = (a = a) — S.

B,y:ocNpkFy:0Np B,y:pNthky:pNT
(NE3) (NE1)
BFz:(cnp)U(pNT) B,y:ocNpky:p B,y:pNthky:p B,z:alz:«
(UE) (—1)
o BkFz:ip mBFAX.z:a— «

(—E)

muB={z:(cnpU(pNn7)}+zAz.2):p8

Following the method in the proof of 7.9(ii), derivation 7 transforms to the following sequent calculus
derivation 7’ = B={z:(cNp)U(pNT1)}Fz(Az.z): p.

see below B,z:atxz:« )
BFz:(cnp)U(pNT) o B,y (@np)U(pnT)kFy:p muBFA.z:a—a B,z:8Fz:p
(cut) (—L)
nyBEz:ip B,y:pr(A:c.:c):ﬁ( o
7 uB={z:(cNp)U(pn7)}tz(Az.z):8
B,y:onNp,x:pkaxz:p B,y:pN1,z:pFx:p
(ML) (NLy)
B,y:ocNpkFy:onNp B,y:aﬂp,a}:aﬂpl—a}:p( ) B,y:pNTthky:pnNT B,y:pﬂ’r,a::pﬂ’rl—a::p( )
cut cut
B,y:ocNpky:p B,y:pﬂTl—y:p(L)
U

B,y (enNp)U(pnT)kFy:p

The premises B,y :oNpty:pand B,y: pN7TEy:pof (U) can also be derived from the axiom
B,y:pkuy:p by (NLz2) and (NL1), respectively; in fact, this is the easiest way to derive them in sequent
calculus. However, we choose to stick to the method of 7.9(ii) in obtaining ©' from w. We observe that it
is V' ={z,y,z} =V.

The equivalence of the two presentations of IUT® implies that the derivability of renaming, weakening,
strengthening, and contraction, shown in Chapter 4 for the natural deduction presentation, must also
hold for the sequent calculus presentation. We next elaborate on these derivabilities and explain how the
derivability of contraction in sequent calculus differs qualitatively and quantitatively from the derivability
of contraction in natural deduction.

Proposition 7.11 (i) (Renaming) If m :: B, x : o &t : 7 and y is fresh with respect to m, there ezists a
7 B,y:obtly/z]: T, such that V! = (V\{z}) U{y} and T' =T.

(i) (Weakening) If m:: B+t : 1 and x is fresh with respect to 7, there exists a7 :: B,z :o b 1t: T,
such that V! =V U{z} and T' =T.

(11) (Strengthening) If w:: B,z : o bt : 7 and x & FV(t), there exists a @ :: B+t : T, such that
x€V' GV and ' < h.

(iv) (Contraction) If m:: B, x :0,y: 0 b t: 1, there exists aw’ :: B,z : o - t[z/y]: T.
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Proof. Throughout the proof, unless otherwise stated, it is Vo = V, and Vi = V,,.
(i) By induction on w. We demonstrate three cases of the induction step.
mo B, z:vkt:o m B, z:v,wiThku:p

> (—L)
muB,z:v,x:0 = THulzt/w]:p

Case 1: rename z to y. We have that V' = V5 U V; U {z}. Since y is fresh with respect to m, it is
also fresh with respect to mp and 7;; hence, we can apply (—L) to mp and 7; with y in place of = to
getan B, z:v,y:0 — 7Fulyt/w]: p. Since x & FV(t) UFV(u), it is ulyt/w] = (ulzt/w))[y/z].
Moreover, it it V' = VUV U{y} = (V\{z})U{y} and T =T.

Case 2: rename z to y. If V) = VoU{z} and V;, = V3 U{z}, then V = Vo UV U{z,2}. The IH gives
amy = B,y:vktly/z]:o,such that Vj = Vo U{y} and T =Ty, and a7} = B,y : v, w: 7 u[y/z] : p,
such that V{ = V4 U {y} and T = Ty. Since z ¢ Vo UV; [by definition of the (—L) which yields 7] and
x # y [by hypothesis], we have that « ¢ Vo U Vi U {y} = Vj UV{ and we can apply an z-introducing
(L) ton) and 7} toget a7’ = B,y : v,z : 0 — 7 F (u[y/z])[z(tly/z])/w] = (ulzt/w])y/z] : p. Tt is
Vi=vyguV]u{z} =VuWU{y,z} = (V\{z}) U{y} and T =T.

mouB,z:v,xiobFt:p m B, z:v,xiThHtip

> UL
muB,ziv,x:oUTHE:p (VL)

Case 1: rename z to y. If V) = VoU{z} and V,, = V1 U{z}, then V =1V, UV; U{x}. The IH gives a
7o B, z:v,y: ok tly/z]: p,such that Vj = VoU{y} and T{ = T, and an} :: B, z: v, y : T+ t[y/z] : p,
such that Vi = V3 U{y} and T{ = T;. By (UL), we then obtain a 7’ :: B, z : v, y : c UT F t[y/z] : p, such
that V' =VjuV/ =1 UV U{y} =V \{z})U{ytand T =T.

Case 2: rename z to y. If Vo, = Vo U{z} and V;;, = V3 U{z}, then V = Vo UV1 U{z}. The IH gives a
o B,y:v, ok tly/z]: p,such that Vj = VoU{y} and T = To,and an} :: B,y : v, z : 7 - tly/z] : p,
such that Vi = V4 U{y} and T{ = T;. By (UL), we then get a 7’ :: B,y : v, x : 0 UT F t[y/z] : p, such
that V' =VjuVy =1 UV U{y} =V \{z}H)U{y} and T =T.

mo i B,xiokHt:T muB,xio,z:THu:p

> B, x:okult/z]:p (eut)

If Vi = VoU{z} and Vi, = V1 U{z}, then V = VoUViU{z}. The IH givesan, :: B,y : 0 t[y/z] : T,
such that Vj = Vo U{y} and T =Ty, and a 7} = B,y : 0, z : T F ufy/z] : p, such that V{ = V4 U {y}
and 77 = T1. Applying (cut) to 7|, and 7}, we get a @’ : B, y : o b (uly/z))[tly/z]/z]) = (u[t/z])[y/z] : p,
such that V' = VjuV/ =V ,uW uU{y} =V \{z}h) U{y} and T' =T.

(ii) By induction on 7. We develop the most notable cases of the induction step.
T BFt:T m B, z:ptu:v

> —L
muByy:T—phuyt/z] v =0

Itis V =VouUViU{y}. The IH provides a |, :: B, x : o -t : 7, such that Vj = Vo U{z} and T = Ty,
andan] = B,z:p,x:0k u:wv,such that V/ =V; U{z} and T{ = T}. Since y & Vp U V1 [by definition
of the (—L) which yields #] and y # x [by hypothesis], we have that y ¢ Vo UV; U{z} = Vj U V] and we
can apply a y-introducing (—L) to nj, and 7} to get a7’ :: B,z : 0,y : T — p b u[yt/z] : v, such that
Vi=ViuVlu{yt=VouWU{z,y}=VU{z}and T =T.
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> moB,y:THt:v muByy:pkt:v (L)
muByy:TtUpkt:v

ItisV=VUVW. TheIH givesan, : B,y : 7,2 : 0 bt : v, such that Vj = Vo U {z} and T} = Ty,
and a7 = B,y:p, x:0kt:v,suchthat V/ =V U{z} and T{ = Ty. Applying (UL) to 7}, and 7}, we
getanm =B,y:7Up,x:0kt:v,suchthat V' =VjuV/ =1V uWViu{z} =VU{z}and T =T.

moBEt:T muB,y:ThFu:p

g m BlEult/y]:p (eut)

It is V =V, UVi. The IH yields a 7 : B,z : ¢ = t : 7, such that Vj = Vp U {z} and T} = Ty,
and a7 = B,y : 7,2 :0t u:p,such that V{ = V4 U{z} and T} = T1. By (cut), we then obtain a
7 B,z :obFult/y]:p,such that V' =VjuV) =V uViU{z} =V U{z}andT' =T.

(iii) By induction on 7. We show three characteristic cases of the induction step.

moB,x:obFt:T muB,xio,z:phu:v

> (—L)
muB, o, y:T—=pbulyt/z] v

Case 1: y € FV (ulyt/z]) = 2z & FV(u) = u[yt/z] = u. Applying the IH to 71, we obtain a derivation
7' B, x:oFulyt/z] i v, such that V/ ¢ V3 C Vo UV U{y} =V and b’ < hy < h. Sincey ¢ V1 2 V/,
we have that y ¢ V' ¢ V.

Case 2: « ¢ FV (u[yt/z]). We distinguish two subcases.

Subcase 2i: z € FV(u) = u[yt/z] = u. The IH on m yields a7} :: B, x : 0 b uw: v, such that V{ & V;
and h} < hy. Since hf < hy < h and = ¢ FV (ulyt/z] = u), the IH on «| gives a 7} :: B F ufyt/z] : v,
such that © ¢ V{" ¢ V{ and h{ < h}. Since y € V1 2 V{’, we have that y ¢ V/’, i.e. that y is fresh with
respect to 77, so that (ii) gives a @’ :: B, y : 7 — p bk ulyt/z] : v, such that V' = V" U {y} and T" = T7".
Itise ¢V and ¢ #y,sothat « ¢ V' =V U{y} € ViU{y} C Vo UV; U{y} = V. Moreover, since
T =T/, it is K = h{ < h.

Subcase 2ii: z € FV(u) = x € FV(t) and z € FV (u). The IH on m gives a wy :: B ¢ : 7, such that
z ¢ V§ & Vo and h{ < ho, while the IH on m givesa n] :: B,z : pF w: v, such that z ¢ V] ¢ V5 and

1 < hy. Since y € VoUV; 2 VyUVY, we have that y ¢ VUV and we can apply a y-introducing (—L) to
moand Ty toget aw’ B,y : T — pkufyt/z] s v, such that « ¢ V' = VUV U{y} S VouWhu{y} =V
and A’ = max (h{, h}) + 1 < max (ho,h1) +1 = h.

myuB,xio,y:ThHE:v muB,x:o,y:pkt:v

> (uL)
muB,rx:o,y:TUpkt:v

Case 1: y € FV(t). The IHon mg givesa ' : B,z : ok t:v,suchthat y ¢ V' C Vo C VoUWV =V
and ' < ho < h.

Case 2: © ¢ FV(t). The IH givesa 7}, : B,y : 7 ¢ : v, such that ¢ Vj & Vj and hj, < ho, and a
7w = B,y:pkt:v,such that « ¢ V{ ¢ V4 and b} < hy. By (UL), we then get an’ :: B,y : 7Upkt: v,
such that x ¢ V' =VyU V] € Vo UV =V and A’ = max (h{, h}) + 1 < max (ho,h1) +1 = h.

moB,xiokHt:T muB,xio,z:THu:p

> B, x:okuft/z]:p (eut)

If « ¢ FV(ult/z]), we distinguish two cases.
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Case 1: z € FV(u) = u[t/z] = u. The IH on m; yields a 7} :: B, x : 0 - u : p, such that V] ¢ V; and
h} < hi. Since b} < hy < h and & &€ FV (u[t/z] = u), the IH on 7} gives a «' :: B - u[t/z] : p, such that
a:sZV’QV{E;VlQVOUVleandh’gh’1<h.

Case 2: z € FV(u) = o ¢ FV(t) and « ¢ FV(u). The IH yields a ©}, :: B - ¢ : 7, such that
x € Vy G Voand hi < hg, and a @} :: B, z:7F w: p,such that € V/ & V; and b} < h;. Applying
(cut) to 7w, and 7, we obtain a ©" :: B b u[t/z] : p, such that « ¢ V' = Vj UV} € VoUV; =V and
b = max (hjy, h}) + 1 < max (ho,h1) +1 = h.

(iv) We distinguish two cases.

Case 1: y & FV (t) = tlz/y] = t. Applying (iii) to m, we get a 7’ :: B, x : o F t[z/y] : 7, such that
y€V' ¢V and b < h.

Case 2: y € FV(t). In this case, we derive contraction through the cut rule.

B z:obz:0o (ax) WICB,QZCU,yCUFtCT( 0
B, rioktz/yl:T
ItisV' =V UV =V and ¥ =h+1 > h. -

Remark 7.12 (i) Contrary to IUL,,, where contraction is derivable only through an additive cut, con-
traction is still derivable in case 2 of 7.11(iv), if we consider a multiplicative cut (recall Remark 2.4).

(i) The derivability of contraction in sequent calculus differs qualitatively from the derivability of
contraction in natural deduction. This is because, in sequent calculus, we cannot prove it by induction on
w, as we do in natural deduction. If we attempt an induction on w in sequent calculus, there are certain
subcases of the induction step that cannot proceed, e.g. the following (UL) subcase.

mounB,x:o1Uos,y:oFt:T muB,rx:o1Uo2,y:0o2Ft:T

(VL)

muB,rx:01Uo2,y:o1UoabHt:T

This subcase cannot proceed, as we cannot apply the induction hypothesis to the premises, where x and y
are not assigned the same type.

(iii) The derivability of contraction in sequent calculus also differs quantitatively from the derivability
of contraction in natural deduction. This is because, in sequent calculus, we cannot prove that V' = V\{y}
and T =T, as we do in natural deduction. Case 2 of 7.11(iv), where V' £V \{y} and T' # T, justifies
this claim.

(iv) As far as renaming, weakening, and strengthening are concerned, the derivability in sequent
calculus displays no qualitative or quantitative difference from the derivability in natural deduction.

It is easy to check that, if B+t : o is provable in the sequent calculus IUT®, then F'V (t) C dom(B).
We can thus show that Proposition 4.16 still holds in the sequent calculus context.

Proposition 7.13 If B+ t: o, then dom(B) N BV (t) =0, Consequently, since FV (t) C dom(B), it is
FV(t)NnBV(t) =0.
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Proof. By induction on B Ft: 0. We show the most remarkable cases of the induction step.

BFt:o B,x:tku:p
B,y:0— 1kulyt/z]:p

(=L)

The IH implies that dom(B) N BV (t) =  and that dom(B) N BV (u) = 0. Therefore, we get that
dom(B) N (BV (u)UBV(t)) = (. Since y ¢ BV (u) UBV (t) by definition of the (—L), we further get that
(dom(B) U{y}) N (BV (u) U BV (t)) = (. This is the required result, as BV (u) U BV (t) = BV (u[yt/x]).

BrFt:o B, x:obFu:t
> (cut)
Blrualt/z]: T

The IH implies that dom(B) N BV (t) = 0 and that dom(B) N BV (u) = 0. Therefore, we get that
dom(B) N (BV (u) U BV (t)) = (). This is the required result, as BV (u) U BV (t) = BV (u[t/x]). —

The sequent calculus counterpart of Proposition 4.17 is stated and proved as follows.

Proposition 7.14 Let m be a derivation in IUT®, R be a rule in m, and By, ..., B, be the bases in the
branch connecting the conclusion of R to the root of m.
(i) If R is (—L) or (cut) and x is the variable substituted in the course of R, then « & |Ji—, dom(B;).
(it) If R is (—R) and x is the variable bounded in the course of R, then x & | Ji, dom(DB;).

Proof. We use induction on n for both (i) and (ii). We show the (—L) case, noting that the other two
cases are dealt with in a similar manner.

Base: If n = 1, the picture is as shown below.

BFt:o B,x:thu:p
7B =BU{y:0—=71}Fulyt/z]:p

R:(—)L)

By the definition of “basis”, we have that x ¢ dom/(B); moreover, by the definition of (—L), we have
that « # y. Therefore, we get that = € dom(B) U {y} = dom(B).

Induction step: We suppose that = & | J; dom(B;) and seek to show that z ¢ |/, dom(B;).

If a one-premise rule among (—R),(NL), or (UR) intervenes between B,, and B, with B;,, being the
basis of the premise, it is (JI1}' dom(B;) = J; dom(B;). If a two-premise rule among (NR),(UL), or
(cut) intervenes between B,, and B,,;+1 with B,, being the basis of either the left or the right premise, it
is once again | JI)' dom(B;) = |Ji; dom(B;). In all these cases, the result follows from the TH.

We elaborate on the case of an (—L) between B, and B, ;. If an (—L) intervenes between B,, and

B, 11 with B, being the basis of the left premise, we have the following picture.

BFt:o Byz:thFu:p
By =BU{y:0—1}trufyt/z]:p

R:(—)L)

w0 By Ft v m i Bp,z:ipbu 1

(—=L)
mu By =B, U{w:v— ¢} Eu[wt' /2] : ¢
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By the definition of (—L), variable w is fresh with respect to my and therefore w # z. Hence, we have
that = ¢ (I, dom(B;)) U {w} = [JI} dom(B;). [We note that the TH entails that = ¢ dom(B,,), so
that we may have z = z.] If an (—L) intervenes between B,, and B,,+1 with B,, being the basis of the
right premise, the picture is reformed as follows.

Bhrt:o B,x:tkFu:p
Bi=BU{y:oc—>T1}trufyt/z]:p

R:(—)L)

mo B Ft v m B, =B U{z:¢}Fu 9
T Bpy1 =B U{w:v— ¢} Eu|wt/z]: 9

(=L)

By the definition of (—L), variable w is fresh with respect to 7; and therefore w # =. Hence, we have
that = ¢ (Ui, dom(B;)) U {w} = [J}' dom(B;). [The IH entails that = ¢ dom(B,) = dom(B') U {z},
so that z # x.] =

Remark 7.15 Propositions 7.13 and 7.1} do not hold in the multiplicative sequent calculus IUT of
Chapter 2. The following derivation is a counterexample for both.

r:okbx:o r:okz:o r:okbz:o
(—R) (—L):
OEXz.z:0—>0 Blz{x:a,y:a%a}kyaﬁ:a( 0
cu
z:Thx:T By={z:0}F(Az.2)z:0

(=L)2
muB=Bs={z:1,z:7T—>0}rwrt=Ar.z)(zz): 0

Proposition 7.13 is contradicted, as it is dom(B) N BV (t) = FV(t) N BV (t) = {x,z} N {z} # 0.
Proposition 7.14 is contradicted in two instances: i) the variable substituted in the course of (—L)i,
namely x, belongs to ﬂ?:l dom(B;) C U?:l dom(B;), and 1ii) the variable substituted in the course of
(—L)2, which is x again, belongs to dom(B).

The additive sequent calculus IUT® is equivalent to the multiplicative sequent calculus IUT, as the
next theorem shows.

Theorem 7.16 (i) If 7 :: B+t : 0 in IUTY, there exists a 7’ :: B t: 0 in IUT, such that V' =V
and T' =T.

(i) If w2 B+t:oin IUT and x1,...,x, €V, there exists a ©’ : BEt =4t : 0 in IUT®, such
that x1,..., 2, V' DV and T' =T.

Proof. (i) By induction on the IUT®-derivation .
Base: Since an IUT®-axiom is also an IUT-axiom, if 7 is an axiom, then 7’ = 7.

Induction step: We show two representative cases.
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m 2 BkFt:o muB,x:ThFu:p
> (—L)
muB,y:o—T1Hulyt/z]:p

The TH gives a |, :: B+t : 0 in IUT, such that Vj = Vy and T) = Tp, and alsoan) = B,z : 7k u:p
in IUT, such that V{ =V}, and T] = T. Since y ¢ Vo UVy = V5 U V/, we can apply a y-introducing,
multiplicative (—L) to 7 and 7 toget an’ :: B,y : 0 = 7 Fufyt/z] : pin IUT, s.t. V! = VyUV{U{y} =
VowuWu{yt=VandTI'=T.

o BkFt:o m B, xiobFu:T
m BlRut/z]:T

(cut)

The IH yields a n), :: BFt: 0 in IUT, such that Vj = Vo and T = Ty, and alsoan} = B,z :0Fu:T
in IUT, such that V/ = V; and T] = T1. Applying a multiplicative (cut) to w, and 7}, we obtain a
7' BFwft/z]: 7 in IUT, such that V' = VjuV/ =V, UV, =V and T =T.

(ii) By induction on the IUT-derivation .

Base: Since an IUT-axiom is also an IUT®-axiom, if 7 is an axiom, then 7’ = 7.

Induction step: We elaborate on two characteristic cases, assuming that dom(B) N dom(B') = 0.

m 2 BkFt:o Wl::B',z:T}—u:p
muB, B y:o—T1hHulyt/z]:p

(=L)

We suppose that z1,...,2, € V = Vo UV U{y}, so that z1,...,2, € Vo UV; and y # z1,...,2,.
Since y ¢ Vo U Vi [by definition of the (—L)], we have that z1,...,z,,y ¢ Vo and z1,...,z,,y & V4.
The IH gives a 7, : B+t =, t : o in IUT®, such that x1,...,2,,y € Vy 2 Vo and Tj) = Tp, and a
m B z:iThu =4 u:pin IUT® such that z1,...,2,,y € V/ D2 Vi and 7] =T. If

Vy Ndom(B") = S,

we rename the set? S)) in 7)) to a fresh-with-respect-to-(V] U dom(B’) U {z1,...,xn,y}) set to attain
ani: BEt' =,t :o0,such that the sets Vi, dom(B'), and {z1,...,7,,y} are pairwise disjoint and
T3 = Tp. Successive applications of weakening to 73 by elements in B’ providea 7§ :: B, B'+t" =, t : 0,
such that z1,...,2,,y € Vi = V¢ Udom(B') 2 Vg Udom(B') and T¢ = Tp. If

Vi Ndom(B) =S| >z

we rename the set® S| in 7] to a fresh-with-respect-to-(V{ U dom(B) U {x1,...,7,,y}) set to attain a
72w B w Tk u =, uw|w/z] : p, such that the sets Vi?,dom(B), and {z1,...,z,,y} are pairwise
disjoint and T = T;. Weakening 77 by elements in B, we get a 75 = B, B, w : 7 F u" =, uw/z] : p,
such that z1,...,2,,y ¢ V3 = VZ Udom(B) 2 V{ Udom(B) and T? = T;. Since y ¢ V3 U V3, we can
apply a y-introducing, additive (—L) to w3 and 7} to obtain a

2B, B y:0—1Euyt" /w] =4 (u[w/z])[yt/w] = ulyt/z] : p

2Since dom(B) N dom(B’) = 0, a variable of dom(B’) which is in Vj may appear bound in ¢’ or elsewhere in the body
of m(y, where the “body” of a derivation consists of all sequents in the derivation besides the conclusion.

3Since dom(B) Ndom(B’) = 0, a variable of dom(B) which is in V/ may appear either (in the place of z) or (bound in
u’ or elsewhere in the body of 7}).
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in IUT®, where the term-equality (u[w/z])[yt/w] = u[yt/z] is justified by the fact that w & V (u’), which
implies that w & FV (u). Itis z1,...,z, ¢ V' = VZUVEU{y} 2 (VgUdom(B'))U(V{Udom(B))U{y} =
VUVl u{y}2VuWhu{y}=VandT'=T.

> Wo::B,w:U}—t:/l) muB,rv:THt:p (L)
m:B B z:oUTkHt:p

We suppose that z1,...,z, € V =VoUV;. The IH yields a ny :: B,z : o b t{) =4 t : p in ITUT?,
such that z1,...,2, ¢ Vj 2 Vo and T, = Tp, and a ] = B’z : 7 =t} =, t : p in IUT®, such that
iy, xn € V) O V4 and T = Ty. We can actually have t{, = t{ = t’ (see Example 7.17 below), so
we assume that 7 = B,z o bt =4 t:pand ] = B,z : 7t =, t:p. If Vyndom(B') =5,
we rename the set! S} in 7} to a fresh-with-respect-to-(Vy U dom(B’) U {z1,...,z,}) set to attain a
75 = B,z o bt =, t:p,such that the sets ViZ,dom(B’), and {x1,...,r,} are pairwise disjoint and
T¢ = Top. Weakening n3 by B’, we get a mg ©: B, B',x : o -t =, t : p, such that z1,...,2, € Vi =
Vi Udom(B') 2 Vj Udom(B') and T3 = Ty. If V/ Ndom(B) = S, we rename the set S] in 7} to a
fresh-with-respect-to-(V{ U dom(B) U {z1,...,z,}) set to attain a 73 : B, x : 7+t =, t : p, such that
Vi2,dom(B), and {z1,...,r,} are pairwise disjoint and 72 = T;. Weakening 77 by elements in B, we
obtain a 73 :: B, B', x : 7 = t' =, t : p, such that z1,...,2, € V = V2 Udom(B) 2 V{ Udom(B) and
TP = T. Applying an additive (UL) to 7§ and 7§, we then obtain a 7’ :: B, B, x ;o UTHt =, t:pin
IUT®, such that x1,...,2, € V' = VZUVE 2 (VJUdom(B')) U (V{ Udom(B)) = VjuV{ D VouV, =V
and 7" =T. =

The next example illustrates the transition from the multiplicative IUT to the additive IUT® in
sequent, calculus.

Example 7.17 Let ¢ = (0 —» o) > a, ¥ = (T = 7) = «a and consider
Trrxz:pUYp,y:a—=BHt=y(x(\y.y)): 8

i IUT, as shown below.

see below see below
monx:d,y:a—Blyx(Ay.y): B muaz:h,y:a—Bly(x(Ay.y)): B8 (L)
rar:pUY,y:a—=Brurt=y(@(Ay.y)): B
y:oby:o (LR) r:abzo:a r:PBrx:p (L)
o0 OFAy.y:0o =0 moir = T, yia— By B [z & Vol (L)
r:pbx:¢ o1 y:ia—>Bz:0Fy(z(A\y.y): B (cut)

o x:d,y:a— Bhwry(r(Ay.y)): B

4Since dom(B’) N (dom(B) U {x} U BV (t')) = 0, a variable of dom(B’) which is in V may only appear in the body of
m,- A similar note holds for a variable of dom(B) which is in V7.
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y:thy:7
ragyror 0 yiabyia
vy y:afy:a
mio sz Er(Ay.y) o z:BrFax:B (oL)
y:a—=pBFy:a—=p Tz, zia—PEz@(Ayy)): B

cut
mu i, y:a— Blwry(z(Ay.y)): B (e

To transform w to a7 = x: pUY, y:a — BFV =4 t: B in IUT®, we need to transform m to a
i xidyia—Pty=qt:BinIUT® andm toam = x:,y:a— BE, =4t: 0 in IUT?Y, so
that t, =t} = t'. The transformation of my to w}, proceeds top-down as follows. We first transform mo11
toamh, = v:a,y:a— BEyx: B in IUT®, such that z € Vyy;. To do this, we need to rename x in
x:fBFx:f toa fresh-wrt-{x, z,y} variable w and weaken by x : a.

r:abzr:a r:a,w:pfrw:p

mon s T a,yia—Byr: B [z &€ Vil

(-L)®

We then transform mo1 to a mh; = y:a — B,z : ¢ F th =a y(z(Ay.y)) : B in IUT®. To do this, we
need to rename y in w19 to a fresh-wrt-{y,z} variable x and weaken by y : a — f.

y:a—=>p,rz:okFz:o
y:a—pFAr.c:0—0 Mo Tio,y:a— By B
Tt yia—Bz:oy(z(0p.2)): B

(=R)

(—L)®

To attain 7)), we further need to rename  in wjy, to a fresh-wrt-{z,y, z, w} variable v and weaken by z : ¢
and also to weaken x: oFxz: 9 byy:a— .

rz:p,y:a—pB,v:okv:o R T:p,v:akv:a x:qﬁ,v:a,w:ﬁkw:ﬁ([‘)
— —

T:p,y:a—PBFAvv:ioc—0 z:p,y:a—>p,v:abyv:p
r:p,y:a— PP r:p,y:a—p,z:oFy(z(Av.v)): B

Ty aid,yia—=Bhiret =y(@v)=at:f

(=L)

(cut)®

To top-down transform m to 7, we observe that w110 is already in IUT® and we proceed to transform
T toam s xi,zia— BEH, =4 2(@(Ay.y)): B in IUT®. To do this, we need to rename x in
x:BFx:f toa fresh-wrt-{x,z} variable y and weaken by x : 1.

mio s TV Ex(Ay.y) x:p,y: Py
T xi, zia—BEz(@(Ay.y): B

(—L)®

To attain 7}, we then need to rename y in 7y, to a fresh-wrt-{x,y, z} variable v and weaken by y : « — 8
and also to weaken y:a — BFy:a— B byx: .
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y:a—pB,v:TFv:T

R
y:a—pBFAvv:T =T 7 )y:aﬁﬁ,v:akv:a o
yra—=p,r:pFax(Av.o):a y:a—)ﬂ,a}:w,vzﬂl—v:ﬂ( )
—L
Y, y:a—Bry:a—p z:Y,y:a—pB,z:a— fEz(x(Av.v)): B

(cut)®

muziY,yia—= et =y (@) =at: B
We finally obtain 7' by applying an additive (UL) to 7}, and 7j.

mrxip,ya— BB Tz, y:a— BB
mrxipUY,ya—=Bhpget =at:f

(uL)®

ItisV' = {z,y,z,w,0} 2 {z,y,2} =V and T' = T. In transforming 7y and w1 to w, and 7}, respectively,
we choose the new names (new variables), so that we have i) the least possible number of new variables
in V' and i) ty =t, =1t

Combining Theorems 7.16 and 7.9, we see that the three different presentations of the type system
with intersection and union types are equivalent. We abbreviate “nd” and “sc” the natural deduction
style and the sequent calculus style, respectively.

7.9 7.16
ndIUT® < scIUT® < scIUT

The sequent calculus IUT® does not enjoy cut elimination, at least not a total cut elimination, as it
does not contain an explicit contraction rule. Remark 2.22 for the sequent calculus IUT holds for the
sequent calculus IUT®, as well, if modified appropriately.

7.3 Relating IUL,, to IUT? in sequent calculus

As in the natural deduction case, the sequent calculus logic IUL,, is intended to capture the sequent
calculus type system IUT® on a logical level. In order to elaborate on how the logic attempts to accomplish
this goal, we need the notions of non-standard decoration of the logic and of term-sequent of a sequent.

A decoration of the logic dictated by the very rules of the type system encodes the implication, but
does not embody the intersection or the union; it is therefore a “non-standard” decoration. Its formal
definition is once more along the line given in 3.15 and its rules are displayed in Figure 7.3. When
decorating contexts bottom-up, the new variable in an (—L) right premise or an (—R) premise or a
(cut) right premise is fresh with respect to the variables in the branch connecting the conclusion to the
root. The term-sequent of a given sequent derives from the given sequent exactly as the term-statement
of a given statement derives from the given statement in natural deduction (recall Definition 4.18).

For a decoration dictated by the type system to be possible, which is essential in examining a corre-
spondence between the logic and the type system, the logic needs to have a single-premise (NR) and a
single-premise (UL). This is achieved by the molecule structure, which joins together in the same (deco-
rated) molecule sequents that share the same term-sequent®. The right intersection case coincides with

5As in the natural deduction case, this should only be kept in mind as a wishful intention. It can be shown in the sequent
calculus context, as well, that not every set of (derivations proving) sequents sharing the same term-sequent can be joined
into a single (derivation proving a) decorated molecule.
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Figure 7.3: Non-standard decoration of sequent calculus IUL,,.

the intersection introduction case in natural deduction. In the case of left union, the (decorated) logic
merges into the same (decorated) molecule the left and right [UT®-premises, in parallel for multiple rule
instances that share the same term-sequent®.
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It should be obvious by now that the sequent calculus presentation of the logic and the type system
is susceptible to remarks, concerning the relation of the two systems, which are completely analogous to

6The term-sequent of a (UL) instance with premises B,z : 7+ t:v, B,z :pFt: v and conclusion B, z:7Upk t: v,
where dom(B) = {z1,...,Zm} is meant to be x1,...,Tm,z F t.
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the ones given for the natural deduction presentation. Taking this argument further, we expect that a
sequent calculus notion analogous to the natural deduction notion of tree T}, assists the sequent calculus
IUL,,,-IUT® correspondence.

In natural deduction, we stated and proved correspondence theorems between IUL,, and IUT®, using
the restrictive notion of trees Ti%,. Looking at the logic, the implications and the union elimination are
the global rules which have a counterpart in the type system. In sequent calculus, the global rules which
have a counterpart in the type system are the implications and the cut. Defining trees of implications
and cuts with terms, denoted T;!, for both the decorated logic IULY, and the type system IUT®, we can
state and prove restricted correspondence theorems in sequent calculus, as well. We outline the basic

points below.

Definition 7.18 (IUL,: T'! and T.!) (i) Given a decorated molecule t : M,, in TUL%,, the decoration-
sequent deriving from it is the sequent {p} b t, abbreviated p + t.

(ii) Given the tree T of a derivation ©* in IUL%,, the tree with terms T'! of ©* is T with each node
decorated by the decoration-sequent deriving from the decorated molecule that corresponds to it.

(iii) Given the tree T of a derivation m* in IULY, , we derive the tree of implications and cuts with
terms T.¢ of 7% from it by erasing all nodes and corresponding decoration-sequents associated to the rules

(X),(NLR), and (ULR).

Definition 7.19 (IUT®: Tt and T\!) (i) Given the tree T of a derivation 7 in IUT®, the tree with
terms T't of m is T with each node decorated by the term-sequent deriving from the sequent that corresponds
to it.

(ii) Given the tree T of a derivation w in IUT®, we derive the tree of implications and cuts with
terms TiL of m from it by the following algorithm.

> We choose a topmost (NR) or (UL) in the tree with terms of m and erase all nodes and correspond-
ing term-sequents associated to (NL) or (UR) in the trees with terms of the premises. If the resulting
premise trees of implications and cuts with terms are identical, we identify them and erase the node and
corresponding term-sequent associated to the (NR) or (UL).

> We iterate the above procedure for the tree with terms resulting from the previous step.

> When all the ("R)’s and (UL)’s have been dealt with, we make a final step to erase any remaining
nodes and corresponding term-sequents associated to (NL) or (UR).

As in the natural deduction case, the algorithm in 7.19(ii) does not always terminate.

Theorem 7.20 (From IUL,, to IUT®) If 7* = ¢: (0, .08 7)™ 1) 21, 2 @S a decorated deriva-

tion in IUL,,, there are derivations m; :: 1 :0%,..., Ty 1ot Bt (1 <i<n)in IUT®, such that

1. (Ti8); emists, 2. (Tie)i = (Ti); (1 <i#j<n), and 3. (Ti)i = (Ti)n -

Theorem 7.21 (From IUT® to IUL,,) If m; = @1 :0%,..., &y s ol 7 (1 < i< n) are deriva-
tions in IUT®, such that 1. (T,L); emists and 2. (T)L); = (T}L); (1 <i#j < n), then there is a decorated
derivation 7 = t: [(of, ..., 0% s 7)) " 4] ey, z,, @0 LULy,, such that (T.t) .« = (T3L);.

The proofs of 7.20 and 7.21 are the sequent calculus counterparts of the proofs of 5.10 and 5.13, re-
spectively. They have been checked, but are not exposed here. The (—L) case in 7.20 is quite demanding,
while 7.21 requires a quite different handling of the exchange inferences compared to 5.13 (Remark 7.8 is
relevant).
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At this point, we can explain why an additive presentation of the sequent calculus type system is
chosen. If we attempted the (restricted) correspondence theorems, stated above, with the multiplicative
(sequent calculus) type system instead of the additive (sequent calculus) type system, we would discover
the following. The theorem from the logic to the type system would work fine, as the additive logic
would project additively to the type-system level and the multiplicative type system behaves exactly as
the additive one, given additive premises. On the other hand, the theorem from the type system to the
logic would not work. Although the hypothesis that the trees (Ti%)1,..., (Zi!), all exist would restrict
the ("R) and (UL) rule-inferences in 71, ...m, to additive versions, the (still) multiplicative (—L) and
(cut) rule-inferences in my, ..., m, would only return to multiplicative (—L) and (cut) rule-inferences in
the logic. For both theorems to work, we either need a logic with multiplicative versions of (—L) and
(cut) opposite the multiplicative type system or the additive logic introduced in Section 7.1 opposite the
additive type system.

Following the natural deduction case, we estimate’ that a set of derivations m,...,T,, sharing the
same term-sequent at the root and such that it is not the case that the trees (1}!)1, . .., (I}!), all exist and
are identical, is not always transformable to a set of derivations 7, ..., n/,, proving the same sequents as
T1,-..,Ty, respectively, and such that the trees (Ti%)},. .., (Zi%),, all exist and are identical. Given this
estimate, the claims in Sections 5.4 and 6.3 about non-restricted correspondence theorems and the actual
success of IUL,, as a logic for IUT®, respectively, can also be sustained in sequent calculus, modulo the
conversion of natural deduction notions or rules to the corresponding sequent calculus notions or rules.

"We use the verb “estimate”, as we have not attempted to establish a transformation counterexample in sequent calculus.
It would be interesting to translate the natural deduction derivations w1 and w2 of Section 5.3 in sequent calculus style,
examine their compatibility with respect to trees le, and decide whether they constitute a transformation counterexample
in sequent calculus, as well.






Conclusions and Future Work

The main aim of this thesis was to offer a logic corresponding to the type system with intersection and
union types IUT through decoration, in the manner that the logics offered in [18, 15] correspond to the
type system with intersection types IT through decoration. We modified and extended with union the
logic ISL in [15] to define the logic IUL,, as a logic intended to correspond to IUT through decoration.
Decorating IUL,, with untyped terms that simulate the terms in IUT, we proved restricted correspondence
theorems between the decorated IUL,, and IUT. The restrictions involve the trees of implications and
union eliminations with terms T}, which are defined for both the decorated IUL,, and IUT. A decorated
derivation 7* in IUL,,, with decoration-statement x1, ..., Z,, F t at the root corresponds to a finite number
of derivations 7y, ...,m, in IUT that share the term-statement x1,..., %, F t at the root, and the trees
Tt of all these derivations 7*, 1, ..., T, are identical (recall Theorems 5.10 and 5.13). More precisely,
in the direction from IUT to the decorated IUL,,, it is only under the condition that the trees Ti%, of
m1,...,mT, all exist and are identical that we can merge 1,..., 7, into a single 7* with this very tree T}
(recall the intuitive justification of this fact in Section 5.4). Since it is not always the case that derivations
1,..., Ty, that share the same term-statement at the root have existing and identical trees T}!, or, at least,
can be transformed into derivations 71, . .., m,, that prove the same statements as 71, . .., 7y, respectively,
and have existing and identical trees T, (recall the transformation counterexample in Section 5.3),
the condition that secures that my,...,m, can be merged into a single 7* is indeed a restriction. This
restriction does not agree with the original definition of IUL,, as a logic meant to correspond to IUT
through decoration; this is because the definition assumed that any statements in IUT that share the
same term-statement can be merged into a single decorated molecule in IUL,,, so that the two-premise
(NI) and the two-minor-premise (UE) in IUT translate into a single-premise (NI) and a single-minor-
premise (UE) in the decorated IUL,,, respectively, allowing the decoration to simulate the terms in IUT
without the inclusion of metatheoretical conditions (recall Section 4.3). Therefore, the logic IUL,, does
not actually meet the expectations of its definition as a logic for IUT in the manner that the logic ISL (or
its modified version IL,,) meets the expectations of its definition as a logic for IT (recall the discussion
in Section 6.3). This is a negative result that raises questions about the adequacy of structures like kits
or molecules to describe logics that correspond to intersection (and union) types, in the sense that an
adequate logic would need to retain its good properties under extension. It may be the case that the
logical foundation of intersection (and union) types requires a drastically different treatment than what

is studied in this thesis.

However, besides the interrelation between IUL,, and IUT, we studied IUT in itself, both in natural
deduction and sequent calculus styles, and provided many interesting results about it. We proved cut
elimination in the sequent calculus IUT ¢ and emphasized the necessity of an explicit contraction rule for
the elimination of all cuts (recall Theorem 2.21 and Remark 2.22). We extended the theorems in [13]
that characterize A-terms according to their typings in IT,, and IT to theorems that characterize A-terms
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according to their typings in IUT ¢ and IUT ¢, respectively, to conclude that the correspondences between
typings and characterizations remain unchanged under the extension of the type systems with contraction
and union (recall Theorems 2.36, 2.42, 2.47, and 2.49). We also elaborated on properties of IUT, enriching
already established ones with new information and also proving additional ones; this was done for both the
natural deduction and sequent calculus formulations of the system (recall Propositions 4.14, 4.16, and 4.17
in natural deduction and their counterparts 7.11, 7.13, and 7.14, respectively, in sequent calculus).

Thoughts for future work include the examination of cut elimination in the sequent calculus IUL,,.
Some work has already been done in this direction, although it is not incorporated in this thesis. In
particular, we have shown cut elimination in the sequent calculus IL,, by means of Gentzen’s method [12]
and, together with S. Ronchi Della Rocca, Y. Stavrinos, and A. Saurin, have recorded some serious
evidence that the property breaks down in IUL,,. If we turn this evidence into proof, we will have
another argument against the adequacy of the molecule structure to describe logics for intersection (and
union) types.

Another interesting related study, which is actually a work in progress with Stavrinos, is the study
of a new version IUL/, of IUL,, with rules for conjunction and with (UE)’ in place of (UE) (recall
Proposition 4.13) in juxtaposition with intuitionistic linear logic ILL [14], so that the relation between
intersection (or synchronous conjunction) and conjunction (or asynchronous conjunction) in the former
logic is investigated under the light of the relation between additive and multiplicative conjunction in the
latter. The extended logic IULY), contains an introduction rule and a general elimination rule [16] for con-
junction, which are asynchronous and multiplicative, whereas the rules for intersection and union remain
synchronous and therefore additive. We have defined a translation of formulas of IUL), into formulas
of ILL by interpreting conjunction A, intersection N, and union U in the former logic as multiplicative
conjunction ®, additive conjunction &, and additive disjunction @ in the latter, respectively. We have
further noted that intersection implies conjunction in IUL/, and not conversely, while the translation
of conjunction implies the translation of intersection in ILL and not conversely; this non-monotonicity
of the translation reveals a duality of the N-A relation to the &-® relation. Decorating IUL/, and ILL
with untyped terms, so that implication and conjunction are the only connectives encoded in the former
logic and their corresponding connectives through the translation are the only connectives encoded in the
latter, we have then proved a full embedding of IUL/, into ILL. Future work may include i) examining the
faithfulness of the embedding through an inverse translation from ILL into IUL/ | ii) further examining
interpretations, properties, and relations of the connectives in IUL, through interpretations, properties,
and relations of their corresponding connectives in ILL, iii) investigating normalization in IUL), through
normalization in ILL, iv) a categorical study of the embedding, viewing the two logics as categories and
the translation as a contravariant functor, and v) a semantical comparative study of the two logics.
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Proof of Lemma 2.18

A fully detailed proof of Lemma 2.18 follows.

Lemma A.1 (Lemma 2.18) If 7 :: B+ t: 0 is a derivation in IUT(, with a miz as final rule and no
other miz contained, then there is a miz-free derivation ©’ :: B t': o in IUT(,, wheret -z t'.

Proof. Writing “mf” for “mix-free” and “t/xz;” for the substitutions in parallel “t/z,...,t/zy”, we
can display the final mix of = as follows.

mf mf
mouBEt:o muB,r1:0,...,Tm0Fu:T
m B, B Fualt/z;] T

(mix), m = (d,r)

We proceed by transfinite induction on the measure m of the mix, considering the lexicographic order
for measures.

Base: If m = (0,2), then: (i) d =0 = o = a, for some type variable @ = the final rule of m is not
a left rule introducing o and (ii) r =2 = rr =1 = the final rule of m; is not a right rule or a left rule
introducing some type in B’ or contraction in B’ or contraction of o. So, 71 must be an axiom and we
distinguish the following cases.

Case 1: The term typed by m; belongs to {x1,..., Ty }.

.. mf . .. / . . . (aX)
m:BFt:o muB,zr1:0,...,Tmiokx;0 (mix) > o+ Lemma 2.13(ii) mf

m:B B Ft:o ' B,B'Ft:o

Case 2: The term typed by m does not belong to {z1,..., xm}.

(ax)

; (mix) y y (ax)
mBB y:Thy:T m BB y:Thy:T

mouBlFt:o muBL,y:T, 10, ,xm oy T
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164 Appendix A. Proof of Lemma 2.18

Induction step for limit points: If m = (d,2) with d > 0, then: (i) Ir =1 = = is an axiom or
its final rule is a right rule and (ii) 7r =1 = m is an axiom or its final rule is a left rule introducing o

with m = 1. From (i) and (ii) we have the following cases.
Case 1: If 7 is an axiom, we refer to the base case.
Case 2: If mg is an axiom, it suffices to show the case where the final rule of m is a left rule introducing

o with m = 1.

mf

(ax)

muB,y:okby:o muB,r:ioku:T .
; (mix) , ,
m:B,By:otuly/z]:T ' 2B,By:otuly/z]:T

— 71 + Lemma 2.13 mf

Case 3: Derivations mg, 71 have (—R),(—L) as final rules, respectively.

B,y:o’}—v:r B't+t:o B”,Z:TF’U,:p
(‘}R’) / 11 (*}L)
mo s BFAyvio—=T m B B" x:0—=T1hFufzt/z]: p —

mix), m = (d(o 7),2
i B, B, B" Fulzt/z][Ay.v/x] : p (mix) (o =m.2

B'rt:o B y:otwv:T
B,B' Folt/y]: T
B,B'Fto: 7 (mnf) B' z:thu:p
B,B',B" - ult :
- /——7— —7/— _N_’L_L[_o/_z]_ L [IH: m"” < m]
m :B,B',B" Ft1:p (mf)

(mix)’, m’ = (d(a),r")

(mix)", m"" = (d(7),r")

By the IH, we have v[t/y] —3 to and ulto/z] —5 t1. Since x is not free in u, we get ulzt/z|[Ay.v/x] =
u[(Ay.v)t/z] =g ulv[t/y]/z] =5 ulto/z] =5 t1.
Case 4: Derivations mg, 71 have (NR),(NL) as final rules, respectively.

B’ x:oku:p

Fo: "Fu:
BFuv:o : B Fuv:t (NR) i
mo BB Fv:oNT m B x:oNThu:p
m: B, B B" Fufv/z]:p

(L)
(mix), m = (d(c N7),2)

Bruv:o B’ x:otu:p

B,B" - :
- _u_[vla;l f_ [IH: m' < m]

________ 2 LT — _ [Lemma 2.13(ii)]
n' :B,BB" Fto:p (mf)

(mix)’, m’ = (d(o),r")

By the IH, we have ulv/x] —3 to.
Case 5: If mp, m have (UR),(UL) as final rules, respectively, the case is very similar to case 4.
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Induction step for successor points: If m = (d,r) with » > 2, then: A) Ir > 1 or B) rr > 1.
Case A: Ir > 1 = the final rule of mg is a contraction or a left rule.

Case (C): In what follows, we consider z fresh with respect to m; otherwise, we substitute it by a
fresh (wrt m1) w, using Lemma 2.13(i).

B,y:1,z:7Ft:o

C
mo B, y:THtly/z] o (© muB x0Tm0 u:p

mi BB y:1Fultly/z]/z;] p

B y:mz:tkHt:o muB r1:0,...,Tmi0Fup
B,B' y:1,z:TFult/z;]:p

BB y:Tktoy/z]: p

By the IH, we have u[t/z;] —3 to. Since z is not free in u, we get ultly/z]/x;] = ult/z;]ly/z] —z
toly/z].
Case (—L): In what follows, we consider z,y fresh with respect to m and 7 # 0.

Brt:T B z:¢tv:0o L)
mo BB y:T—>¢tuyt/z]: o muB' x1:0,...,zm:0Fu:p
m:B B B y:7— ¢t uvyt/z]/z;]:p

(mix), m = (d(o),r)

B ,z:¢Fv:0o muB'  xii0,..., xmiobup
B' 'B" z: ¢t uv/zj]:p
BFt:T B B", z:¢Ftyo:p (mf)

(mix)’, m’ = (d(o),r — 1)

By the IH, we have ufv/x;] —3 to. Since z is not free in u, we get u[vlyt/z]/z;] = ulv/z;][yt/z] -z
tolyt/z].
Case (NL): If the final rule of 7y is a left intersection

B,y:7kt:o (L)
moB,y:tNokHt:o Wl::B',xlza,...,xm:aFu:p
muB,By:TN¢Fult/x;]:p

(mix), m = (d(o),r)

we distinguish two subcases according to whether y : 7 N ¢ belongs to B’ or not.

Subcase a: Suppose that B’ = B”, y : TN ¢. In what follows, we consider z fresh with respect to both
w1 and 7.
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B,y:tkt:o (L)
mouB,y:tNokt:o muB  y:TNg, x1:0,...,Tm:okup . o
i (mix), m = (d(o),r)
BB y:tN¢Fult/z;]:p

m B y:tN¢,w1:0,...,Tm:0Fu:p (mf) Lomma 2.13(0)]

B y:tkt:o B" z:tN¢,z1:0,..., T : 0 u[z/y] : p (mf)

(mix)’, m’' = (d(a),r — 1)

BB y:tN¢,z:TNdp+to:p c)
BB y:TN¢tofy/z]:p

By the IH, we have u[z/y][t/x;] =5 to. As zis not free in u or ¢, we get u[t/z;] = ulz/y][t/z;]lly/2] >3

toly/=].
Subcase b: Suppose that y : 7N ¢ & B’.

B y:tkt:o
(NL) ,
mouB,y:TNoFt: o muB xi:0,...,zm:0Fu:p .
(mlx)7m:(d(‘7)7r)
BB y: TN ult/zi]:p

B y:tht:o muB,r1:0,...,Tmi0Fup .,
/ i m’' = (d(o),r — 1)
B,B',y:1kFuft/z;]:p

7 2B,B,y:tN¢kto:p

By the IH, we have u[t/z;] —3 to.
Case (UL): If the final rule of 7 is a left union

B y:tht:o B y:¢rt:o (L)
mo:B,By:TUp+Ft: 0o m =B x1:0,...,xm:0Fu:p .
=Y (mix), m = (d(o),r)
m:B,B" B y:TtU¢Fult/z]:p

we again distinguish two subcases according to whether y : 7 U ¢ belongs to B” or not.
Subcase a: Suppose that B” = B"', y : TU¢. In what follows, we write “z; : ¢” for z1 : o,. ..
and consider z fresh with respect to m; and .

y Tm 1 O

B y:tht:o B y:¢prt:o L)
mo BB y:TUd+t:0o muB" y:TUd, xjiotu:p . —
1o (mix), m = (d(0),r)
m:B,B" B" y:1tU¢t ult/x;]:p
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mo = B,B" y:1,2:TUdFto:p (mf) m =B B" y:¢,z:7TUdkt1:p (mf)
B,B' ) B",y:17U¢,z:TUpFt (=to=1t1):p
7w B,B B" y:tU¢tt[y/z]:p

(VL)

(©)

We derive 7(,, 7} as shown below.

——————————————————— )— [Lemma 2.13(i)]
B,y:tkFt:o B" z:1Ué¢, xj: ot ulz/y]:p (mf) ., ,
(mix)’, m’ = (d(o),r")

ByBllly YT, 2 TU(f)}_u[z/y][t/w]] P

—m s mmmmmm— s T IH: r <r=m' <m]
mo BB y:r,z:TUpkHto:p (mf)

m=B" y:7U¢, zj:0ku:p (mf) )
, i [Lemma 2.13(i)]
B y:pkFt:o B" z:1U¢, xj 0k u[z/y]:p (mf)

’ " (mix)"”, m" = (d(o),r")
B',B",y:¢, z:TUdulz/yllt/z;]: p

————————————————————— H:r"" <r=m'"<m
m =B B" y:¢,z:7Udkt1:p (mf) [ ]

By the IH, we have tg g« ulz/y][t/x;] —p t1. But to and ¢; are normal terms (Remark 2.12(i)), so,
by uniqueness of the normal form, we get tg = ¢; = t’. Finally, since z is not free in u or ¢, we have
ult/z;] = ulz/yl[t/=;lly/2] —s t'ly/z]-

Subcase b: Suppose that y : 7U ¢ & B”.

oo B,y:THt:o 1B,y prt:o (UL
mo:B,By:TU¢Ft: 0o m =B zjiobu:p
w2 B B B y:TU¢tut/x;]:p

(mix), m = (d(o),r)

00 st ’ ’ ’ o1 1 RV 7 "
(mix) s M= (d(a—)7r ) (mlx) »mo = (d(a—)7r )
BBy altfelie BB yierult/elie
B,B",y:7tty:p (mf) ’ B' ' B" y:¢+ti:p (mf) '

BB B y:tUdt(=to=t1):p

By the IH and using the uniqueness of normal form, we get u[t/x;] —5 t'.
Case B: rr > 1 = the final rule of 7 is a contraction or a left rule or a right rule.
Case (C): We distinguish two subceses.

Subcase a: The mix-type is contracted.

/
B',xo:0,z1:0,...,xm:0Fu:p

(©)

wBkFt: = B’ 10, ., Tm O :
o o ™ , T1 0, , T o u[xl/:co] 4 (mix), m = (d(o), 1)

m B, B' b u[zy/zo][t/z;] : p
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moBFt:o B xo:0,21:0,...,Tm:0bFu:p
B, B’ Falt/xo,t/x;] : p

(mix)’, m' = (d(o),r — 1)

(18]
It is ulz1/zo][t/z;] = ult/zo,t/x;] — 5 to.

Subcase b: A type different from the mix-type is contracted. In what follows, we consider z fresh
with respect to mg.

B y:1,2:1,21:0,...,Tm:0Fu:p

(©)

wBFt: =B y: 7 U ) :
o o m LY IT,T1:0,.. ., T o buly/z] ip (i), = (d(e). )

mi BBy Fuly/z[t/z;] p

2 BEt: B y: : io,... ok w:
™o t:o : ,Y:IT,2:T,T1: 0, , Tm o FEw:p (mix)’, m’ = (d(0), 7 — 1)
B,B,y:1,z:17Fult/z;]:p .
BBLyir it Choip (mt) S
BlLiyir, ziTthHto:p
(©)

7w B,By:Tkty/z] :p

Since z is not free in ¢, we have uly/z][t/z;] = u[t/z;][y/z] [—IE; toly/z].

Case (—L): We distinguish two subcases.

Subcase a: The mix-type is introduced by (—L). In what follows, itis 1 < g <k, k+1<h<m—1,
and z, z,, fresh with respect to mg.

/ 1"
mwo B x10,...,c,:0Fv:o01 m1 B g1 0,00, T 0, 200w p

(—L)
muBFt:o m =B B" %1 :0,..., Tm_1:0, T 0 Fulz,v/z]ip

m: B, B, B" b u[zmv/z][t/z;] : p

(mix), m = (d(o),r)

) 10 , , , 0 11 N ” "
ix)", m’ = (d(o), ) = (d(0),
B,B'Fu[t/zy] : o1 (mix)f, = (d(), ) B,B", z: 00 Fult/zy] i p (mbe), = (e 1)
e e [[H: r <r=m' <m] o m— == [H: 7" <r=m" < m]
B,B'Fto:o01 (mf) B,B", z:02F t1:p (mf) (oL
N
o B,B',B", xy 0 & tiltmto/2] : p

(mix)”’, m'" = (d(a), ,r_///)

1"

B,B',B" - ti[xmt t/xm] :
2T _1_[x_ _OZZ_][_/{—]—p— IH: 7" <r=m

! ! " <m]
7w B,B',B" Fty:p (mf)

It is v =Ur"" + 7" =1lr+1 <lr +rr = r. By the IH, we have v[t/z,] —3 to, u[t/xzp] —p t1, and
ti[zmto/z][t/Tm] —p t2. Since z,z,, are not free in t, we get

ulzmo/2[t/x;] = ult/zp)[@m 0]t/ 24))/ 2]t/ 2m] =5 tilemto/2][t/2m] —p t2

Subcase b: A type different from the mix-type is introduced by (—L). In what follows, itis 1 < g < k,
k+1<h<m,and z,y fresh with respect to mg.
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mozB L r1:0,...,0k:0Fv:iT m1 B w10, .m0, 22 R up (L)
mouBFt:o m B B x1:0,...,xm 0,y THulyv/z] i p
T~ (mix), m = (d(o),r)
m:: B,B" B" y:1Fulyv/z][t/z;] : p
o 710 o 11
mix)’, m’ = (d(o),r’) mix)"”, m"" = (d(o),r")
B,B' Folt/zg]: 11 (mix) ’ B,B", z:m b alt/zy] : p (mix) 7
——————————— [H: 7 <r=m' <m] — === =~ [[H: 7" <r=m" <m]
B,B", z:mFt1:p (mf)

(=L)

7' B,B" B" y:1Ftifyte/z] : p

By the IH, we have v[t/x,] —g to and u[t/zp] —s t1. As z is not free in ¢, we get ulyv/z][t/z;] =

ult/znlly(vlt/zg]) /2] =5 tilyto/2].
Case (UL): We distinguish two subcases.
Subcase a: The mix-type is introduced by (UL). In what follows, it is 1 < g < m — 1 and we consider

5 Tm} € FV(u) and @, fresh with respect to 7.

{l‘l,..
10 T
B x1:0,...,Zm-1:0,Tm:01u:p B, x1:0,...,Tm-1:0,Tm :02Fu:p (L)
mouBEt:o 7,r1 ::”B/,B", T1:0,...,Tm-1:0,Tm:0Fu:p (mix), m = (d(o),r) <>
m:: B,B'"B" Fult/z;] : p
o 10 o i1
mix)’, m' = (d(0),r’) mix)”’, m"" = (d(0),r")
B,B', ., o1 Fuft/zg] i p (mix) ’ B,B", xy, t o2 Fuft/zg] i p (mix) ’
e m e —m = — = [IH: 7' <r=>m' <m] ——=——=——-——-"2— [H: 7" <r=m" <m]
B,B', xp 01t to:p (mf) B,B", &y 02 t1:p (mf) L)
™ B,B' B", xp okt (=to=1t1):
0 ) ) ) m ( 0 1) P (mix)m, m'" = (d(a),?‘m)

B,B',B" + [t/ :
) ) [ /x ] p [IH: T/// <r= m/// < m]

n'::B,B',B" Ft2:p (mf)

Itis 7" = Ur" + " =1lr+1 < lr +rr = r. By the IH, we have ty g« u[t/z,] -3 t1 and

t'[t/zm] —p t2. The terms tg,¢; are normal (Remark 2.12(i)) and by uniqueness of normal form, we get

to = t; = t'. Finally, since z,, is not free in ¢, we get u[t/z;] = ult/zy|[t/zm] —p t'[t/Tm] —35 to.
Subcase b: A type different from the mix-type is introduced by (UL). In what follows, we write

“j:o” for x1 : 0,..., Ty : o and consider {z1,...,xy,} € FV(u) and z fresh with respect to mio, 11,

and T0-
mouB L xjioy:mbuip mi B xjioyieup (L)
muB B xjioy:Thu:p
(mix), m = (d(o),r)

moB,y:TkHt:o

m:B,B B" y:1Fut/z;]:p
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monB,xjioy:mbup m1 B xj oy up
——/————’—————————E—)—[213(1)] ——N————’——————————(—)—[2.13(1)]
o B, zj:0,z: 11 Fulz/y]:p (mf) ( ., ™o B" zj:0,z: 72 ulz/y] : p (mf) (mix)”, m”
,m m ix)"”, m
B,B',y:1,z:71 Fulz/yllt/z;]: p ) B,B" y:7,z: 12 Fulz/yllt/z;] : p .
SL ol L R [IH: m’ < m] SL ot oo L [IH: m" < m)]
B,B'y:7,z:11Fto:p (mf) B,B" y:71,z: 12 t1:p (mf) L)
B,B' B", y:1,z:THt(=to=t1): p

! i 1" / (C)
w2 B,B" B",y:TkHt[y/z] : p (mf)

By the IH, we have to g« u[z/y][t/x;] =3 ti. As z is not free in ¢ and to,t; are identical, since they
are both normal, we get u[t/z;] = ulz/y|[t/z;]ly/z] =5 t'[y/z].

Case (NL): This case is handled in a manner similar to the two left-rule cases shown above. It is even
easier, since the rule in question has a single premise.

Case (—R): We consider y fresh with respect to mg.

B xi:0,...,%m:0,y:Thu:p
- (—=R)
o BkFt:o m B zxii0,...,xm oAy uiT = p .
7 (mix), m = (d(o),r)
m: B,B'F (Ay.w)t/zj] T —p
wBFt: B’ L0, T T
= 7 % oI DY TTRIP (mixy, m = (d(o),r — 1)
B,B',y:1lFuft/z;]:p ,
o - == - = [IH: m’ < m]
B,B',y:7kFto:p (mf) (SR)

By the IH, we have u[t/x;] =g to, so (Ay.w)[t/z;] = Ay. ult/z;] -5 Ay. to.

Case (NR): We consider {z1,...,2,} C FV(u) and write “z; : 0” for z1 : 0,...,2y : 0.
mou B xjioku:T mi B xjioku:p (R)
mouBbt:o 7r1::B',B”,wj:U}—u:Tﬂp( ) (&(e). )
mix), m = o),r
m:B,B B Fult/z;]:TNp
o 10 RV ’ ’ o 11 s NI ” ”
) = (d(o), , = (d(o),
B,B’' Falt/z;] : T (mix)fs = (o), 1) B,B" ~ult/zj]: p (mib)", = (). )
- === === = = IH: r <r=m' <m] - - === - = IH: r"” <r=m" <m)]
B,B'Fto:7 (mf) B,B"Ft1:p (mf) (nR)
7 BB B"Ft(=to=t1):TNp

By the IH, we have ¢y g« u[t/x;] —3 t1. But to,¢1 are normal and the normal form is unique, so
to =t = t" and u[t/xj] -3 t.

Case (UR): Very straightforward, even easier than the two right-rule cases shown above. —

Remark A.2 In Lemma A.1 we could have also included the fact that ©' does not contain any fresh-
with-respect-to-m variables. This fact is tacitly used in the proof, in cases A:(—L) and B:(—L).
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A Transformation Example

Consider the following A-terms.

u = zxy v =z

" 1
U = T2yy v = y(z2y)
U = ToT1T1 v =1z1(x211)

If s = zoxy and r = @4, it is u = u/[s/z] = u”[r/y] and v = v'[s/x] = v"[r/y]. Moreover, if s’ = x2y, the
following A-term relations hold.

u = ar v =ra
u// — S/y ,U// — ysl
u = sr v=rs

fo=F—->7y—>a)nNd, r=E—=>C—=>a)Nn,and p=(d = v)N(p = ()N BNe, consider the
IUT®-derivation m1 :: By = {21 :p, x2: § = o U7} Fuv: a and its tree (T}%,)1, exactly as given in the
transformation counterexample of Chapter 6. The letter S denotes the set {1, z2}.

BiFx2:—0UT BilFaxi:f
BiFxzox1 =s:0UT

see below
(—E) ,
w1 B, v:robar(re) =uv

see below
T2 B,z Thor(ra) =uv
(UE)
m i BrEsr(rs) =uv: «

Bi,xz:okFzx:0

: : Bi,z:oFz1:p Bi,xz:okFz:0o
(NE1) — = - - - —"— = (NE) ————-——-—-——-=== (NE) ————
Bi,z:okFaz:f—>7—>« Bl,wzal—wlz,ﬁ(_}E) Bi,z:0Fz1:6 7 Bi,x:oFx:6

Bi,x:obFzix:y

(NE2)
(—E)

Bi,x:okFzxx1:7 >«

(—E)
w1 B, xio b xzi(ziz) = v

171



172 Appendix B. A Transformation Example
Bi,z:thua:71 (NE1) Blyf'JiTFﬂ’flip(mEQ) __Bl’fittailje_(mE) Bl,a::TFac:T(mEQ)
Bi,x:17kFxi:€ : i —( Bi,z:Tthx:n
(—E) (—E)
Bi,x:1tkxiz: ¢
(—E)

Bi,z:thtz:e (>«
Bi,x:1thzr:: ( = «
T2

2B,z T ani (i) =u'v ta

S,z Fx1 S,ckw

Setkx S,z Fx1

S+ uv
(inltle)l

Ifg=(C—=a)nev=((—=7)Ne x=0Ut,and v = (¢ = dag) N (Y = Yy5) N (€ — (), where
Pap = ¢ — a — [ and Y3 = ¢ — v — f, consider also mp :: B = {x1 : x, T2 : v} F uv : § and its
tree (Ti,)2, as demonstrated below. For space economy, we denote By and By, the bases Bo, y : ¢ and
Bs, y : 9, respectively.

see below
1", .

w2 i Ba, y 1 ¢ F woyy (y (z2y)) = uw'v" :
(UE)

see below
1", .

w1 i B2, y: ¢ F wayy (y (z2y)) = uw'v" :

BaokFaxi=r:¢ouUy
w2 2 Bo b worr (r (zar)) = uv : B

By Fxg:v By xg:v Byty:¢
_________ (NE) (NE3) (NE3)
By tx2: ¢ — dap B¢|—y:¢( . Byty:¢ e By Fax2:e—C Bd,l—y:a(HE)

- 1
By b2y : dap B¢"yi¢( o BytFy:(—a B¢"l‘2y=4( .
— —
Ba,y: ¢t zoyy:a— Bz,y:¢|—y(a:2y):a( )
N
mo1 :: Ba, y i ¢k xayy (y (w2y)) = w/'v” : B

By Fx2:v By Fx2:v By Fy
_________ (NE) 2) (NE2)
By Fx2:9 — Y By by . By Fy:d¢ mE)BwaQ:E%( By Fy E(*)E)

d 1
By Fx2y: g Bwky:w( ByFy:(—y Bwkxzy:C(HE)
Bo,y: Y Fasyy:y— B Bz,y:dJFy(Izy):v(ﬁE)
"1 .

w2 i Ba, y i Y xoyy (v (w2y) = u''v" 1 B
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S,y b xo Syky S,y b a2 Syty

S+ uv
(T%Ltle>2

Trying to bottom-up transform 7, so that its bottom (UE) is like the one in my, i.e. with term-

statements S F r and S,y F u”v” at the major and minor premises, respectively, we end up with the

following =} .

711 (see below) w111 (see below) 112 (see below)
BibFwip BiFs' =xzy:0Ur Bj,z:0txzy(yz):a Bj,z:7Fazayyc):a
E)[1,s’]
Birr=aiipup By =B1U{y:p}Faayy (y(z2y)) = s'y (ys') =u"v" : e same
(UE)[4, 7]
) 1 Br Fuv = xorr (r (x2r)) t o
B pky:
Ly pry:e (NE)
Bi,y:pbtaz:f—0oUT Bi,y:pky:p (SE)
Tt Bl,y:pks =xy:oUr
B,z:0Fz:0 B,z:0kFy: Bi,z:0Fy: Bi,z:0Fzx:0
— By SR P ey o FRIUICP py SD 27T 0 (g
By,z:oFz:—>7v7—« By,z:0kFy:0 By,z:0Fy:6 —~ Bi,x:oFx:
(—E) (—E)

’ . .
Bl,z:okFzy:v—a« : : (LE)
w1 = Bl wiokay(yz) : «
Lx: : Bl,z:ThFy: Bl,z:TFy: Bl,z:TFx:

: By,x:tkhx:T (E1) 1,w Ty P(QEZ) _/_1_,§_T_ yip (NE) M(OEQ)

Bl,z:thtz:e >( >« By,z:1thy:e By,z:thy:n—( By,z:thx:n
B 2 rFan (o (—=E) B - A (—~E)
Lr:Thzy: (=« 1L, TITEYT (—E)

mi i B, T oy (yT) @
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It is worth noting that the (UE)[1, s'] considered right above the (UE)[4, 7] is the only rule-application that
works at that point. The (—»E), the (UE)[1,%"], the (UE)[1,v"], and the other two possible (UE)[1, s']’s all
fail. We cannot consider a (UE)[2] or an (NI). Comparing this transformation of 7; with its counterpart
in the transformation counterexample of Chapter 6 (see case 4b1), we observe the following.

counterexample example
ul/,U/I — S/y (ys) ul/,U/I — S/y (ys/)
rule outcome rule outcome
(—E) X (—E) X
(UE)[1, "] X (UE)[1, "] X
(UE)[1,v"] X (UE)[1,v"] X
(UE)[1, 5] (4)
X
[zy (ys) ]
UE)[1, 8] (4
ey | x| GBS
[s'y (yz)]
UE)[1, s'] (¢i4
(UE)[1, s] (uii) v
[zy (yz)]
(UE)[1, s] X (UE)[1, s] not
(UE)[2] not (UE)[2] not
(NI) not (NI) not
We then accordingly transform o to 7}, still working bottom-up.
75, (see below) 75y (see below)
Bobr=wz1:9U9¢ Bz, y: ¢+ woyy (y (v2y)) = s'y (ys') : B Ba, y i - wayy (y (way)) = s'y (ys') : B OBy (2]
wh 2 Ba b uv = zorr (r (w2r)) : B )
see below see below
10 it Ba, y i 8" (Pap NE) U (paps NC) w11 = B, y i@, T pap NE - zy (yz) @ B same ,
! / / (UE)[17 s ]
w1 i Ba, y b sy (ys’) : B
By, y:ptaxa:v By, y:ptaxa:v By,y:pby:¢
———————————— NE E —=J " I P (nE
Bz,yi¢k$21¢_>¢a6( ) B27y:¢ky:¢(ﬁE) BQ,y;¢Fx2:E—>§(ﬂ 2) Bz,y2¢Fy:5((:Ez))
By, y: ¢t aoy: dagp B2,yi¢"w2in(m)

Bz, y: b z2y:papN( (
Th10 = Ba, y 1 ¢ b oy = 5" 1 (dap N ) U (Pap N Q)

ur)
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BibFx:dasn 4 : Byt 1 ¢

QIW $ap N¢ (NE1) / /BQ’_y ¢ (NE1) 2 IW $ap N¢ (NE2)

By Fx: ¢ap ByFy:¢ (5E) BykFy:(—« ByFxz:¢ (HE)
Bibzy:a—f BilFyz:a (LE)

mon i By =B U{y: ¢, x:dap NC}Eay(yz) : B

see below see below
Thao i Bay y i b (Wop NOU W) mhar i Bayy i iy NC Hay (ya) s B © mye]
T i Ba, y i b sy (ys') 1 8 ’
Byy,y:¥bza:v By, y:Ybaxo:v By, y:ypty:e
———————————— (NE) NE —= = — (NE
Bo,y:tpbxa:t) — g B2,y:¢ky:¢(_>E) Bg,yztﬁFacg:s—)C( 2) Bg,yi’(ﬂFy:g((_}];))
By, y it way s Bz,yi1/”—a?2y1§(m)
B,y ooy s n( 1)
o0 = B2, y 1 Fway = 5" 1 (Yys N Q) U (P N Q)
Byl N 5 : Bl b x: n
;”z 1{)75 < (NEy) B Ly B”Bi#m&) ZB”IF 1/’w.ﬁ < (NE2)
2 by 2 y.wHE) 2 Fy: (=7 2 x.g(%E)
B)Fxy:v— B BQIFZI???V( E)
N
Too1 = By = B2 U{y ¢, x9N}y (yx): B
The trees (Ti%,); and (T3!,)5 both exist and are identical, as required.
S,y,zkx S,y,zky S,y,zky S,y,zkx

S,y x2

S,yks' Sy, Fay(yx)

Skr
S, y '7 u”’[/'//

S+ uv
(Tiie)1 = (Tiie)a
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Investigating closely the transformation counterexample in Chapter 6 and the transformation example
given here, we note the following. In the counterexample, the terms v’ and v" are symmetric with respect
to application (v’ = zr, v' = rz), while v’ and v” are not (v” = s’y, v = ys). On the contrary, in
the example, both u/,v" and u”,v"” are symmetric with respect to application (v’ = xr, v = rz and
u” = sy, v = ys). If (W)[s/z] = sr(rs) = uv = zorr (r(zor)) = (uv”)[r/y], there are three
different choices for u'v’, one of which employs symmetric-with-respect-to-application v’ and v’, and
fifteen different choices for u”/v”, three of which employ symmetric v” and v”.

uw'v’ | symmetry

1| ar(rs) no

2 | sr(rz) no

3| ar(rz) v

uv" symmetry

L | @oyr (r(w2r)) = s'r (rs) no
2 | mory (r(zor)) = sy (rs) no
3 | worr (y(xar)) = sr(ys) no
4 | worr (r (way)) = sr(rs') no
5 | wayy (r(wor)) = 8"y (rs) no
6 | wayr (y (zor)) = s'r (ys) 1o
7 | @oyr (r(z2y)) = s'r (rs') v
8 | wary (y(zar)) = sy (ys) v
9 | zary (r(z2y)) = sy (rs') no
10 | @orr (y (w2y)) = sr(ys') no
11| wary (y (w2y)) = sy (ys') 1o
12 | zayr (y (w2y)) = s'r (ys') 1o
13 | mayy (r (z2y)) = s'y (rs”) no
14 | zayy (y (z2r)) = 'y (ys) no
15 | zoyy (y (x2y)) = s'y (ys') v

It would be interesting to further examine if all the combinations which involve symmetry for both u'v’
and u”v” can provide transformation examples, i.e. if, besides combination 3-15, which is met in the
example presented here, combinations 3-7 and 3-8 can also provide transformation examples. It would
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also be interesting to test if all the rest combinations can deliver transformation counterexamples; the
counterexample in Chapter 6 uses combination 3-14. These conjectures and their likely consequences are
left open for future study.
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