

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

TMHMA XHMEIA Σ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΦΩΤΟΚΑΤΑΛΥΤΙΚΗ ΠΑΡΑΓΩΓΗ ΥΔΡΟΓΟΝΟΥ ΜΕ ΔΙΘΕΙΟΛΕΝΙΚΑ ΣΥΜΠΛΟΚΑ

ΚΕΦΑΛΙΔΗ ΧΡΙΣΤΙΝΑ ΜΗΧΑΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

AOHNA

ΙΟΥΝΙΟΣ 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

$\boldsymbol{\Sigma}\boldsymbol{X}\boldsymbol{O}\boldsymbol{A}\boldsymbol{H}\;\boldsymbol{\Theta}\boldsymbol{E}\boldsymbol{T}\boldsymbol{I}\boldsymbol{K}\boldsymbol{\Omega}\boldsymbol{N}\;\boldsymbol{E}\boldsymbol{\Pi}\boldsymbol{I}\boldsymbol{\Sigma}\boldsymbol{T}\boldsymbol{H}\boldsymbol{M}\boldsymbol{\Omega}\boldsymbol{N}$

ΤΜΗΜΑ ΧΗΜΕΙΑΣ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΦΩΤΟΚΑΤΑΛΥΤΙΚΗ ΠΑΡΑΓΩΓΗ ΥΔΡΟΓΟΝΟΥ ΜΕ ΔΙΘΕΙΟΛΕΝΙΚΑ ΣΥΜΠΛΟΚΑ

ΚΕΦΑΛΙΔΗ ΧΡΙΣΤΙΝΑ ΜΗΧΑΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

AOHNA

ΙΟΥΝΙΟΣ 2016

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Φωτοκαταλυτική Παραγωγή Υδρογόνου με Διθειολενικά Σύμπλοκα

ΚΕΦΑΛΙΔΗ ΧΡΙΣΤΙΝΑ

AM.: 001109

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Χ. Μητσοπούλου, Καθηγήτρια ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:

- Χ. Μητσοπούλου, Καθηγήτρια ΕΚΠΑ
- Κ. Μεθενίτης, Αναπληρωτής Καθηγητής
- Π. Παρασκευοπούλου, Επίκουρος Καθηγήτρια

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

- Χ. Μητσοπούλου, Καθηγήτρια ΕΚΠΑ
- Κ. Μεθενίτης, Αναπληρωτής Καθηγητής
- Π. Κυρίτσης, Αναπληρωτής Καθηγητής
- Σ. Κοϊνης, Αναπληρωτής Καθηγητής
- Π. Παρασκευοπούλου, Επίκουρος Καθηγήτρια
- Ι. Παπαευσταθίου, Επίκουρος Καθηγητής
- Α. Χρυσανθόπουλος, Λέκτορας

ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 02/06/2016

ΠΕΡΙΛΗΨΗ

«ΦΩΤΟΚΑΤΑΛΥΤΙΚΗ ΠΑΡΑΓΩΓΗ ΥΔΡΟΓΟΝΟΥ ΜΕ ΔΙΘΕΙΟΛΕΝΙΚΑ ΣΥΜΠΛΟΚΑ»

ΚΕΦΑΛΙΔΗ ΧΡΙΣΤΙΝΑ

Η παρούσα εργασία διενεργήθηκε στα πλαίσια της διδακτορικής διατριβής στο Εργαστήριο Ανόργανης Χημείας του Τμήματος Χημείας του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών. Καλύπτει βιβλιογραφικά φωτοκαταλυτικά συστήματα παραγωγής υδρογόνου ομογενούς κατάλυσης. Παρουσιάζεται η σύνθεση και ο χαρακτηρισμός των συμπλόκων : [ReBr(CO)₃(amphen)] (amphen = $5 - \dot{\alpha}$ μινο -1,10 - φαινανθρολίνη), [ReBr(CO)₃(phendione)] (phendione = 1,10 - φαινανθρολίνη $-5,6 - \delta_1(CO)_3(amphen)$], [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] (dppz-3,6- $(COOEt)_2 = \delta \pi \nu \rho i \delta \sigma [3,2-a;2',3'-c] \varphi a \nu a \zeta i \nu n - 3,6 - \delta \kappa a \rho \beta o \xi \nu \lambda a i \theta \nu \lambda e \sigma \tau \epsilon \rho a \zeta]).$ Επίσης παρουσιάζεται η κρυσταλλική δομή του συμπλόκου [ReBr(CO)₃(pq)]. Τα σύμπλοκα: [ReBr(CO)₃amphen], [ReBr(CO)₃(phendione)], [ReCl(CO)₃(amphen)], [ReBr(CO)₃pq], $[Re(CO)_3Cl\{dppz-3,6-(COOEt)_2\}],$ [Ga(di-o-F-p-py)-1-Ga], [Ga(tpfc)-2-Ga] και σύμπλοκο του Cu (I) {[Cu^(I)(dppzCOOEt)₂]} διερευνήθηκαν ως προς την ικανότατα τους να δρουν ως φωτοευαισθητοποιητές για να ανάγουν πρωτόνια σε ομογενή φωτοκαταλυτικά συστήματα. Ως καταλύτες για την μεταφορά πρωτονίων στο νερό χρησιμοποιήθηκαν κοβαλοξίμες, διθειολενικά σύμπλοκα του Νi, { $[K(NCMe)_3(L^6)Co^{II}-NCMe]\cdot MeCN\cdot H_2O,$ σύμπλοκα Co(II) του [K(NCMe)₃(L¹³)Co^{II}-NCMe]} και σύμπλοκο του Cu (I) {[Cu^(I)(dppzCOOEt)₂]}. Στα πλαίσια της ερευνητικής εργασίας για την περιγραφή των φωτοκαταλυτικών μηχανισμών που λαμβάνουν χώρα, πραγματοποιήθηκαν πειράματα αποδιέγερσης του φωτοευαισθητοποιητή με προσθήκη καταλύτη.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Παραγωγή υδρογόνου σε ομογενή φωτοκαταλυτικά συστήματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ομογενής, φωτοκατάλυση, φωτοευαισθητοποιητής, υδρογόνο, σύμπλοκα Re(I).

ABSTRACT

<<PHOTOCATALYTIC HYDROGEN PRODUCTION WITH DITHIOLENIC COMPLEXES >>

KEFALIDI CHRISTINA

This work was conducted within the graduate thesis in the laboratory of Inorganic Chemistry of Chemistry Department of National and Kapodistrian University of Athens. The first part is a review of the photo-catalytic systems for hydrogen production in homogeneous catalysis. We also present the synthesis and characterization of: $[ReBr(CO)_3(amphen)]$ (amphen = 1,10 - phenathroline - 5 amine), $[ReBr(CO)_3(phendione)]$ (phendione = 1,10 - phenathroline - 5,6 - dione), a:2',3'-c]phenazine-3,6- dicarboxylic ethyl ester). The X-ray crystal structure of [ReBr(CO)₃pq] (2) has been determined. Electrochemical and photophysical studies have been performed to study the ability of the [ReBr(CO)₃amphen], [ReBr(CO)₃(phendione)], [ReCl(CO)₃(amphen)], [ReBr(CO)₃pq], [Re(CO)₃Cl{dppz-3,6-(COOEt)₂], [Ga(di-o-F-p-py)-1-Ga], [Ga(tpfc)-2-Ga] and Cu(I) complexes $\{ [Cu^{(l)}(dppzCOOEt)_2] \}$ to reduce protons in homogeneous photocatalytic systems. Cobaloximes, dithiolenic complexes Ni, Co(II) complexes {[K(NCMe)₃(L⁶)Co^{II}- $[K(NCMe)_3(L^{13})Co^{II}-NCMe]\}$ NCMe]·MeCN·H₂O, and complexes Cu(I) {[Cu^(l)(dppzCOOEt)₂]} were used as hydrogen reaction catalysts. The mechanism of the reactions were studied by quenching fluorescence experiments.

SUBJECT AREA: homogeneous photocatalysis

KEYWORDS: homogeneous, photocatalysis, photosensitizer, hydrogen, Re(I) complexes

Στην μαμά μου,

που είναι πάντα δίπλα μου.

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα διδακτορική διατριβή εκπονήθηκε στο Εργαστήριο Ανόργανης Χημείας και Τεχνολογίας του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, υπό την επίβλεψη της Καθηγήτριας του Τομέα της Ανόργανης Χημείας του Πανεπιστημίου Αθηνών, Χ. Μητσοπούλου.

Αρχικά, θα ήθελα να ευχαριστήσω θερμά την καθηγήτρια μου Χ. Μητσοπούλου για την επιστημονική της καθοδήγηση από το μεταπτυχιακό δίπλωμα ειδίκευσης μου ως τώρα και γενικά για όλη την βοήθεια και υποστήριξη της. Μου έδωσε την ευκαιρία να μάθω πολλά καινούρια πράγματα.

Θα ήθελα επίσης, να ευχαριστήσω τους φίλους και συναδέλφους μου Αθανάσιο Ζαρκαδούλα, Ευγενία Κουτσούρη, Μιχάλη Καπλάνη, Σοφία Ευσταθιάδου και Αρσιάννα Σταυράκη για την πολύτιμη βοήθεια που μου προσέφεραν καθ' όλη την διάρκεια της εκπόνησης αυτής της εργασίας, τόσο στο επιστημονικό μέρος, όσο και στην πολύτιμη ψυχολογική στήριξη που προσέφεραν.

Θα ήθελα να ευχαριστήσω τους Luciano Marchiò (Università degli Studi Parma) για την επίλυση των κρυσταλλικών δομών και τους καθηγητές Z.Gross (Department of Chemistry, Technion, Haifa, Israel) και Π. Σταυρόπουλο (University of Science and Technology, Missouri) για την προμήθεια των αντίστοιχων συμπλόκων του Ga {Ga(tpfc)-**2-Ga**, Ga(di-o-F-p-py)-**1-Ga**} και του Co^{II} {[K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O, [K(NCMe)₃(L¹³)Co^{II}-NCMe]}.

Επιπροσθέτως θα ήθελα να ευχαριστήσω το εργαστήριο της Ανόργανης Χημείας που με υποδέχθηκε όλα αυτά τα χρόνια και τους καθηγητές που δέχτηκαν να συμμετάσχουν στην επταμελή εξεταστική επιτροπή.

Τέλος, θα ήταν παράληψη μου να μην ευχαριστήσω θερμά τους δικούς μου ανθρώπους, την οικογένεια μου για την ευκαιρία που μου έδωσαν να πραγματοποιήσω τα όνειρα μου και ήταν μαζί μου όλες αυτές τις στιγμές.

vi

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΡΟΛΟΓΟΣ	13-14
1. ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ	15
1.1 Γενικά περί υδρογόνου	15-17
1.2 Τεχνολογία υδρογόνου	17-18
1.3 Κυψέλες καυσίμων	19-20
1.4 Πλεονεκτήματα και Μειονεκτήματα υδρογόνου έναντι συμβατικών πηγών	20
ενέργειας	
1.4.1 Πλεονεκτήματα	21
1.4.2 Μειονεκτήματα	22
2. ΚΕΦΑΛΑΙΟ 2. ΦΩΤΟΚΑΤΑΛΥΣΗ	23
2.1 Ορισμός φωτοκατάλυσης	23-24
2.2 Φωτοκαταλύτες και τα χαρακτηριστικά τους	24-25
2.3 Στοιχεία Φωτοκαταλυτικών Συστημάτων	25
2.3.1 Φωτοευαισθητοποιητής (PS)	25-26
2.3.2 Δέκτης ηλεκτρονίων (R)	26
2.3.3 Δότης ηλεκτρονίων (D)	26-27
2.3.4 Διαλύτες	27
2.4 Κατηγορίες φωτοκατάλυσης	27-28
2.4.1 Ετερογενής Φωτοκατάλυση (TiO2/UV-A)	28-29
2.4.2 Ομογενής Φωτοκατάλυση	29-30
3. ΚΕΦΑΛΑΙΟ 3. ΠΟΛΥΜΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ	31
ΠΑΡΑΓΩΓΗΣ Η ₂	
3.1 Ιδανική λειτουργία πολυμοριακών συστημάτων	31
3.2 Γενικά σχήματα για παραγωγή H2	32-36
3.3 Πρώτα συστήματα παραγωγής υδρογόνου	36-38

4. ΚΕΦΑΛΑΙΟ 4. ΦΩΤΟΚΑΤΑΛΥΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ	39
ΥΔΡΟΓΟΝΟΥ	
4.1 Ομογενής καταλύτες και ομογενής συστήματα παραγωγής H2	39-40
4.2 Σύστημα: [Ru(bpy)3]/EDTA/MV ²⁺ / σύμπλοκο Pt για παραγωγή H2	40-42
4.3 Σύστημα: σύμπλοκο Pt [1]/TEOA/MV ²⁺ για παραγωγή H ₂	43-47
4.4. Συστήματα παραγωγής υδρογόνου με διθειολενικά σύμπλοκα	47-52
4.5 Συστήματα παραγωγής υδρογόνου που καταλύονται από μοριακούς καταλύτες κοβαλοζίμης	53-75
5. ΚΕΦΑΛΑΙΟ 5. ΣΥΜΠΛΟΚΑ ΡΗΝΙΟΥ	/6
5.1 Το ρήνιο στην ομογενή φωτοκατάλυση	76-77
5.2 Παραγωγή υδρογόνου με τρικαρβόνυλα σύμπλοκα Re(I) και καταλύτες	77-92
6. ΚΕΦΑΛΑΙΟ 6. ΥΛΙΚΑ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΕΣ ΣΥΣΚΕΥΕΣ	93
6.1 Αντιδραστήρια – Αρχικές ουσίες – Διαλύτες	93-94
6.2 Όργανα – Μικροσυσκευές	94-95
6.3 Μέθοδοι – Πειραματική διαδικασία	95-96
6.4 Βαθμονόμηση αέριου χρωματογράφου	97
7. ΚΕΦΑΛΑΙΟ 7. ΣΥΝΘΕΣΕΙΣ ΣΥΜΠΛΟΚΩΝ	98
7.1 Σύμπλοκο (1) [ReBr(CO)3(amphen)]	98
7.1.1 Σύνθεση συμπλόκου [ReBr(CO)3(amphen)]	98
7.1.2 Χαρακτηρισμός του συμπλόκου [ReBr(CO)3(amphen)]	99-104
7.2 Σύμπλοκο (2) [ReBr(CO) ₃ (phendione)]	104
7.2.1 Σύνθεση συμπλόκου [ReBr(CO)3(phendione)]	104-105
7.2.2 Χαρακτηρισμός του συμπλόκου [ReBr(CO)3(phendione)]	105-108
7.3 Σύμπλοκο (3) [ReCl(CO) ₃ (amphen)]	108
7.3.1 Σύνθεση συμπλόκου [ReCl(CO)3(amphen)]	108-109
7.3.2 Χαρακτηρισμός του συμπλόκου [ReCl(CO)3(amphen)]	109-112
7.4 Σύμπλοκο (4) [Re(CO)3Cl{[dppz-3,6-(COOEt)2}]	113
7.4.1 Σύνθεση συμπλόκου [Re(CO) ₃ Cl{[dppz-3,6-(COOEt) ₂ }]	113
7.4.2 Χαρακτηρισμός του συμπλόκου [Re(CO)3Cl{[dppz-3,6-(COOEt)2}].	114-117
7.5 Μελέτη κρυσταλλικής δομής του συμπλόκου [ReBr(CO)3(pq)] (5)	117-121

7.6 Μελέτη κινητικής σταθερότητας συμπλόκων Co ¹¹	121-123
8. ΚΕΦΑΛΑΙΟ 8. ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΓΙΑ	124
ΦΩΤΟΚΑΤΑΛΥΤΙΚΗ ΠΑΡΑΓΩΓΗ Η2	
8.1 Φωτοκαταλυτική παραγωγή υδρογόνου από συστήματα [ReX(CO) ₃ L] παρουσία καταλυτών κοβαλοζίμης	124
αρουσία καταλυτών κοραλοζιμης. 8.1.1 Σύστημα: [ReBr(CO) ₃ (amphen)]/[Co(OAc) ₂]·4H ₂ O/dmgH ₂ /TEOA/ AcOH σε DMF	124-131
8.1.1a. Μελέτη αποδιέγερσης φωτοευαισθητοποιητή από καταλύτες σύμπλοκα κοβαλοζίμης	131-134
8.1.2 Σύστημα:[ReBr(CO)3(phendione)]/[Co(OAc)2] 4H2O/dmgH2/TEOA/ AcOH σε DMF	134
8.1.3 Σύστημα: [ReCl(CO) ₃ (amphen)]/[Co(OAc) ₂]·4H ₂ O/dmgH ₂ /TEOA/ AcOH σε DMF	134-136
8.1.4 Ανάλυση συστημάτων με καταλύτη σύμπλοκα κοβαλοξίμης	136-139
8.2 Φωτοκαταλυτική παραγωγή υδρογόνου από συστήματα [ReX(CO) ₃ L] παρουσία διθειολενικών συμπλόκων Ni	139
8.2.1 $2\upsilon\sigma\tau\eta\mu\alpha$:[ReBr(CO) ₃ (amphen)]/NiL ₂ /TEOA/AcOH $\sigma\varepsilon$ DMF	139-143
8.2.1α. Μελέτη αποδιέγερσης φωτοευαισθητοποιητή από καταλύτες διθειολενικά σύμπλοκα Ni 8.2.2 Σύστημα: [ReBr(CO)3(pq)]/(NEt4) ⁺ [Ni{S2C2(C6H5)(C6H4-OCH3-	143-148 148
4)}2] ⁻ /ΤΕΟΑ/AcOH σε DMF	
8.2.3 Σύστημα:[$ReBr(CO$) ₃ (pq)]/(NEt_4) ⁺ [$Ni{S_2C_2(C_6H_5)_2}_2$] ⁻ / $TEOA$ /AcOH σε DME	148
8.2.4 Σύστημα: $[Cu^{(1)}(dppz-COOEt)_2]/(NEt_4)^+[Ni{S_2C_2(C_6H_5)(C_6H_4-C_6H_5)}]$	149
OCH ₃ -4)} ₂] ⁻ /Asc σε MeCN/H ₂ O	
8.2.5 Σύστημα: [Re(CO) ₃ Cl{[dppz-3,6-(COOEt) ₂ }]/	149
$(NEt_4)^+[Ni{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)}_2]^-/TEOA/AcOH \sigma \in DMF$	
8.3 Φωτοκαταλυτική παραγωγή υδρογόνου από συστήματα [Ru(bipy)3]	149
παρουσία $[K(NCMe)_3(L^6)Co^{II}-NCMe] \cdot MeCN \cdot H_2O/[K(NCMe)_3(L^{13})Co^{II}-$	
NCMe]	
8.3.1 Σύστημα:[Ru(bipy) ₃ Cl ₂]/[K(NCMe) ₃ (L ¹³)Co ^{II} -NCMe]/	149-150
Asc $\sigma \varepsilon$ MeCN/H ₂ O	

8.3.2 Σύστημα: $[Ru(bipy)_3Cl_2]/[K(NCMe)_3(L^{13})Co^{II}-NCMe]/TEOA/AcOH$	150
$\sigma \varepsilon DMF$	
8.3.3 Σύστημα: [Ru(bipy) ₃ Cl ₂]·6H ₂ O/	151-152
$[K(NCMe)_{3}(L^{6})Co^{II}-NCMe] \cdot MeCN \cdot H_{2}O/Asc \ \sigma \varepsilon \ MeCN/H_{2}O$	
8.4 Φωτοκαταλυτική παραγωγή υδρογόνου με PS σύμπλοκα Ga	152
8.4.1 Σύστημα: [Ga(tpfc)- 2-Ga]/[Co(dmgH) ₂ (py)Cl]/Asc	152-153
σε MeCN/H ₂ O	
8.4.2 Σύστημα: [Ga(di-o-F-p-py)- 1-Ga]/[Co(dmgH) ₂ (py)Cl]/Asc σε MeCN/H ₂ O	153-154
8.4.3 Σύστημα: [Ga(tpfc)- 2-Ga]]/[Co(dmgH) ₂]/TEOA/AcOH	154
δε DMF 8.4.4 Σύστημα: [Ga(di-o-F-p-py)- 1-Ga]/[Co(dmgH) ₂]/TEOA/AcOH	154
$\sigma \varepsilon DMF$	
8.5 Φωτοκαταλυτική παραγωγή υδρογόνου παρουσία	155
[Cu ⁽¹⁾ dppz-COOEt) ₂] 8.5.1. Σύστημα: [Cu ⁽¹⁾ (dppz-COOEt) ₂]/[Co(dmgH) ₂ (py)Cl]/TEA/Asc σε	155
MeCN/H ₂ O	
8.5.2 Σύστημα: [Ru(bipy) ₃ Cl ₂]/[Cu ^{(I)(} dppz-COOEt) ₂]/TEA/Asc	155-157
$\sigma \varepsilon MeCN/H_2O$	
9. ΣΥΜΠΕΡΑΣΜΑΤΑ	158-160
11. ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ	161
12. ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΟΝΥΜΑ	162
13. ΑΝΑΦΟΡΕΣ	163-172

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

Σχήμα 1.1.1.	Σχηματική απεικόνιση αποθήκευσης υδρογόνου
Σχήμα 1.3.1.	Σχηματική απεικόνιση κυψέλης καυσίμων
Σχήμα 2.1.1.	Φωτοκαταλυτική παραγωγή υδρογόνου σε νερό
Σχήμα 2.4.1.1	Προσομοίωση κόκκου ημιαγώγης κόνεως με μικροηλεκτρο χημικό στοιχείο υπό την επίδραση του φωτός
Σχήμα 2.4.2.1.	Απλοποιημένο διάγραμμα του Jablonski της φωτοκαταλυτικής αντίδρασης σε φωτοευαίσθητες ενώσεις [MLnX] (1 φωτοευαίσθητη καταλυτική αντίδραση, 2 φωτουποβοηθούμενη αντίδραση, S: υπόστρωμα, P: προϊόν)
Σχήμα 3.2.1.	Σχηματική απεικόνιση καταλυτικού κύκλου παραγωγής υδρογόνου από νερό με χρήση ορατής ακτινοβολίας συστήματος τεσσάρων συστατικών PS/R/D/Cat: a) οξειδωτικός μηχανισμό αποδιέγερσης b) αναγωγικός μηχανισμός αποδιέγερσης
Σχήμα 3.2.2	Σχηματική απεικόνιση καταλυτικού κύκλου παραγωγής υδρογόνου από νερό μέσω αναγωγικού μηχανισμού αποδιέγερσης, σύστημα τριών συστατικών PS/D/Cat
Σχήμα 3.2.3.	Σχηματική απεικόνιση των οξειδωτικών καταλυτικών κύκλων στην φωτοαναγωγή του νερού σε υδρογόνο, μέσω μεταφοράς ενέργειας από το ορατό φώς, με ακτινοβόληση των PS/R _{en} /R/D/ Cat
Σχήμα 4.2.1	Σχηματική απεικόνιση του αναγωγικού καταλυτικού κύκλου παραγωγής H2 του συστήματος [Ru(bpy)3]/MV ²⁺ /EDTA/ σύμπλοκοPt
Σχήμα 4.3.1.	Απεικόνισηδομής συμπλόκου Pt (1)
Σχήμα 4.3.2.	Φάσμα ηλεκτρονικής απορρόφησης συμπλόκου Pt (1) σε MeCN:νερό (2:3 v/v)
Σχήμα 4.3.3.	 a) επίδραση του pH στην παραγωγή υδρογόνου b) επίδραση του MV²⁺ στην παραγωγή υδρογόνου

Σχήμα 4.4.1.	Δομές των διθειολενικών συμπλόκων του Πίνακα 4.4.4.1 που	51-52
	χρησιμοποιήθηκαν στην παραγωγή υδρογόνου από φωτοχημική	
	διάσπαση του νερού	
Σχήμα 4.5.1.	Απεικόνιση δομών καταλυτών Pt	54
Σχήμα 4.5.2.	Απεικόνιση δομών συμπλόκων κοβαλοξίμης	54
Σχήμα 4.5.3.	(A) Σύγκριση της παραγωγής υδρογόνου υπό διαφορετικές συγκεντρώσεις της ΤΕΟΑ (μαζί με $1.1 \ge 10^{-5}$ M Pt χρωμοφόρο 1 και 2.0 x 10^{-5} M συμπλόκου C1 σε pH = 8.5).	58
	(B) Σύγκριση της παραγωγής υδρογόνου υπό μία υψηλότερη αναλογία MeCN/νερό (ν/ν 24:1 : Μαζί με 1.1 x 10^{-5} M Pt χρωμοφόρο 1 και 2.0x 10^{-5} M συμπλόκου (C1) σε pH = 8.5	
Σχήμα 4.5.4.	A) Σύγκριση της παραγωγής υδρογόνου με χρήση διαφορετικών αναλογιών MeCN / νερού με 1.1 x 10^{-5} M Pt χρωμοφόρο 1, 1.6x 10^{-2} M TEOA, και 2.0x 10^{-5} M συμπλόκου C1 σε pH = 8.5	58
	B) Σύγκριση της παραγωγής υδρογόνου με χρήση διαφορετικών κοβαλοξίμων με $1.1 \cdot 10^{-5}$ M Pt χρωμοφόρο 1 , $1.6 \ge 10^{-2}$ M TEOA και 2.0 $\ge 10^{-5}$ M καταλύτη σε pH = 8.5. (α) Σύμπλοκο C1 (β) σύμπλοκο C2 (γ) σύμπλοκο C3	
Σχήμα 5.2.1.	Μηχανισμός παραγωγής υδρογόνου με χρωμοφόρο το (Re ^I),	78
	δότη ηλεκτρονίων (D) και καταλύτη (WRC)	
Σχήμα 6.4.1.	Φάσμα αέριου χρωματογράφου παραγωγής H2	97
Σχήμα 7.1.2.1.	Δομή συμπλόκου [Re(CO) ₃ Br(amphen)] με εμφανή τα χημικώς διακριτά πρωτόνια	99
Σχήμα 7.1.2.2.	¹ H-NMR φάσμα του συμπλόκου [ReBr(CO) ₃ (amphen)] σε DMSO-d ₆	100
Σχήμα 7.1.2.3	FT-IR φάσμα του συμπλόκου [ReBr(CO) ₃ (amphen)]	100
Σχήμα 7.1.2.4.	UV-Vis φάσμα του συμπλόκου [ReBr(CO) ₃ (amphen)] (1) σε DMF, acetone, DCM	101

Σχήμα 7.1.2.5.	Κυκλικό βολταμμογράφημα του συμπλόκου [ReBr(CO) ₃ (amphen)] σε DMF 0.1 M [n-Bu ₄ NPF ₆]. Ηλεκτρόδιο 103 εργασίας: ηλεκτρόδιο δίσκου υαλώδους άνθρακα (50 mm). Ταχύτητα σάρωσης: 100 mV/s.
Σχήμα 7.1.2.6.	Κυκλικό βολταμμογράφημα του [ReBr(CO)3 amphen] σε DMFσε103διαφορετικές ταχύτητες / 0,1 M[n-Bu4NPF6].Ηλεκτρόδιοεργασίας:ηλεκτρόδιο δίσκου υαλώδους άνθρακα (50 mm).Αναπαριστά την πρώτη αναγωγή (amphen ^{0/-I} couple; $E_{1/2} = -1.74$ V),η οποία είναι ημι-αντιστρεπτή.Ταχύτητα σάρωσης:400-50mV/s.
Σχήμα 7.2.2.1.	Δομή συμπλόκου [ReBr(CO) ₃ (phendione)] με εμφανή τα 105 χημικώς διακριτά πρωτόνια
Σχήμα 7.2.2.2.	¹ H-NMR φάσμα του συμπλόκου [ReBr(CO) ₃ (phendione)] σε 106 DMSO-d ₆
Σχήμα 7.2.2.3.	FT-IR φάσμα του συμπλόκου [ReBr(CO) ₃ (phendione)]
Σχήμα 7.2.2.4.	UV-Vis φάσμα του συμπλόκου [ReBr(CO) ₃ (phendione)]σε 107 DMF, acetone
Σχήμα 7.3.2.1.	Δομή συμπλόκου [ReCl(CO) ₃ (amphen)] με εμφανή τα χημικώς 109 διακριτά πρωτόνια
Σχήμα 7.3.2.2.	¹ H-NMR φάσμα του συμπλόκου [ReCl(CO) ₃ (amphen)] σε 110 DMSO-d ₆
Σχήμα 7.3.2.3.	FT-IR φάσμα του συμπλόκου [ReCl(CO) ₃ (amphen)] 111
Σχήμα 7.3.2.4.	UV-Vis φάσμα του συμπλόκου [ReCl(CO) ₃ (amphen)] σε DMF, 111 acetone, DCM
Σχήμα 7.4.2.1.	Δομή συμπλόκου [Re(CO)3Cl{dppz-3,6-(COOEt)2}] με εμφανή 114 τα χημικώς διακριτά πρωτόνια
Σχήμα 7.4.2.2.	¹ H-NMR φάσμα του συμπλόκου [Re(CO) ₃ Cl{dppz-3,6- 115 (COOEt) ₂ }] σε DMSO-d ₆
Σχήμα 7.4.2.3.	FT-IR φάσμα του συμπλόκου 115 [Re(CO) ₃ Cl{dppz-3,6-(COOEt) ₂ }]
Σχήμα 7.4.2.4.	UV-Vis φάσμα του συμπλόκου [Re(CO) ₃ Cl{dppz-3,6- 116 (COOEt) ₂ }] σε DMF, acetone
Σχήμα 7.5.1.	Σχήμα ORTER (ελλειψοειδές) που παρουσιάζει την 118 κρυσταλλική δομή του συμπλόκου [ReBr(CO) ₃ (pq)] με πιθανότητα 30%

Σχήμα 7.5.2.	Σχήμα ORTER που παρουσιάζει τον τρόπο που έχουν πακεταριστεί οι κρύσταλλοι (crystal packing) του PS (5) κατά μήκος του c άξονα	119
Σχήμα 7.5.3.	Σχήμα ORTER που παρουσιάζει την μοριακή δομή PS (5) που δείχνει την στρέβλωση του δότη-αζώτου.	119
Σχήμα 7.5.4.	Σχήμα ORTER που παρουσιάζει τον τρόπο που έχουν πακεταριστεί οι κρύσταλλοι (crystal packing) του PS (5) κατά μήκος του b άξονα	120
Σχήμα 7.6.1.	Κυκλικό βολταμμογράφημα του [K(NCMe)3(L ⁶)Co ^{II} - NCMe]·MeCN·H2O σε MeCN και η δομή του συμπλόκου	121
Σχήμα 7.6.2.	Κυκλικό βολταμμογράφημα του [K(NCMe)3(L ¹³)Co ^{II} -NCMe] σε MeCN και η δομή του συμπλόκου	122
Σχήμα 7.6.3.	UV-Vis φάσμα του συμπλόκου $[K(NCMe)_3(L^6)Co^{II}-NCMe]$ ·MeCN·H ₂ O σε MeCN/H ₂ O	123
Σχήμα 7.6.4.	UV-Vis φάσμα του συμπλόκου [K(NCMe) ₃ (L ¹³)Co ^{II} -NCMe] σε MeCN/H ₂ O.	123
Σχήμα 8.1.1.1.	Παραγωγή H ₂ ως συνάρτηση του $[Co]^2_{tot}$. Χρησιμοποιήθηκε περίσσεια της dmgH ₂ ανά $[Co]^2_{tot}$ (6 eq. της dmgH ₂ ανά κοβάλτιο) (0.5 mM PS (1), 1 M TEOA, 0.1 M AcOH, DMF και Argon). Το σύμπλοκο [ReBr(CO) ₃ (amphen)] ακτινοβολήθηκε για 3 h (λ > 335 nm)	125
Σχήμα 8.1.1.2.	Ρυθμός παραγωγής υδρογόνου vs $[Co^{II}(solv)_2(dmgH)_2]$ στο	126
	σύστημα με φωτοευαισθητοποιητή $PS(1)$ (0.5 mM)/	
	[Co(OAc) ₂]·4H ₂ O (0 mM, 0.1 mM, 0.25 mM, 1 mM ка 1.5	
	mM), 6 eq dmgH ₂ /Co, 0,1 M AcOH και 1 M TEOA σε DMF	
Σχήμα 8.1.1.3.	Aπεικόνιση παραγωγής H ₂ ως συνάρτηση της dmgH ₂ (0.5 mM PS (1), 1 mM [Co(OAc) ₂]·4H ₂ O, 1 M TEOA, 0.1 M AcOH, DMF και Argon).Το σύμπλοκο [ReBr(CO) ₃ (amphen)] ακτινοβολήθηκε για 3 h (λ > 335 nm)	127

Σχήμα 8.1.1.4.	Απεικόνιση της εξάρτησης της παραγωγής H_2 από την	128
	συγκέντρωση του οξικού οξέος (0.5 mM PS (1), 1 mM	
	[Co(OAc) ₂]·4H ₂ O, 6 mM dmgH ₂ , 1 M TEOA, DMF και Argon).	
	Το σύμπλοκο [ReBr(CO) ₃ (amphen)] ακτινοβολήθηκε για 3 h (λ	
	> 335 nm)	
Σχήμα 8.1.1.5.	Παραγωγή H ₂ συναρτήσει του χρόνου (0.5 mM PS (1), 1 mM $[Co(OAc)_2]$ ·4H ₂ O, 6 mM dmgH ₂ , 1 M TEOA, 0.1 M AcOH, DMF και Argon, $\lambda > 335$ nm)	129
Σχήμα 8.1.1.6.	Συνάρτηση των TONs ως προς τον χρόνο (0.5 mM PS(1), 1 mM $[Co(OAc)_2]$ ·4H ₂ O, 6 mM dmgH ₂ , 1 M TEOA, 0.1 M AcOH, DMF και Argon, $\lambda > 335$ nm)	129
Σχήμα 8.1.1.7.	Παραγωγή υδρογόνου με και χωρίς την προσθήκη Hg (0.5 mM PS(1), 1 mM [Co(OAc) ₂]·4H ₂ O, 6 mM dmgH ₂ , 1 M TEOA, 0.1 M AcOH, 1 mL Hg, DMF και Argon $\lambda > 335$ nm)	130
Σχήμα 8.1.1a.1.	Φάσμα διέγερσης και εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη διαλύματος [Co ^{II} (solv) ₂ (dmgH) ₂]/ [ReBr(CO) ₃ (amphen)] σε DMF, Inset: K _q υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} = 4.2 ± 0.10 ns	132
Σχήμα 8.1.1a.2.	Φάσμα διέγερσης και εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη [TEOA] σε DMF, Inset: K_q όπως υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns	133
Σχήμα 8.1.1a.3.	Προτεινόμενος μηχανισμός αναγωγής H^+ για το σύστημα [ReBr(CO) ₃ (amphen)]/[Co(OAc) ₂]·4H ₂ O/dmgH ₂ /TEOA/AcOH σε DMF (αναγωγικής αποδιέγερσης)	134
Σχήμα 8.1.3.1.	Παραγωγή H ₂ συναρτήσει του χρόνου (0.5 mM PS (2), 1 mM $[Co(OAc)_2]$ ·4H ₂ O, 6 mM dmgH ₂ , 1 M TEOA, 0.1 M AcOH, DMF και Argon $\lambda > 335$ nm)	135
Σχήμα 8.1.3.2.	Παραγωγή υδρογόνου με και χωρίς την προσθήκη Hg (0.5 mM PS (2), 1 mM [Co(OAc) ₂]·4H ₂ O, 6 mM dmgH ₂ , 1 M TEOA, 0.1 M AcOH, 1 mL Hg, DMF και Argon $\lambda > 335$ nm)	136
Σχήμα 8.2.4.1.	Παραγωγή H ₂ ως συνάρτηση του $[Co]^2_{tot}$. Χρησιμοποιήθηκε περίσσεια της dmgH ₂ ανά $[Co]^2_{tot}$ (6 eq. της dmgH ₂ ανά κοβάλτιο) {0.5 mM PS (1) και PS (5), 1 M TEOA, 0.1 M AcOH, DMF και Argon}. Το σύμπλοκο [ReBr(CO) ₃ (amphen)] ακτινοβολήθηκε για 3 h ($\lambda > 335$ nm)	137

Σχήμα 8.2.4.2.	Απεικόνιση παραγωγής H2 ως συνάρτηση της dmgH2 (0.5 mM137PS (1) και PS (5), 1 mM [Co(OAc)2]·4H2O, 1 M TEOA, 0.1 MAcOH, DMF και Argon). Το σύμπλοκο [ReBr(CO)3(amphen)]ακτινοβολήθηκε για 3 h ($\lambda > 335$ nm)
Σχήμα 8.2.4.3.	Απεικόνιση της εξάρτησης της παραγωγής H_2 από την 138 συγκέντρωση του οξικού οξέος (0.5 mM PS (1) και PS (5), 1 mM [Co(OAc)o]:4H2O, 6 mM dmgH2, 1 M TEOA, DME και
	Argon). Το σύμπλοκο [ReBr(CO) ₃ (amphen)] ακτινοβολήθηκε για 3 h ($\lambda > 335$ nm)
Σχήμα 8.2.1.1.	Απεικόνιση δομών διθειολενικών συμπλόκων Νi
Σχήμα 8.2.1.1.	Παραγωγή H ₂ συνατρήσει του χρόνου (0.5 mM PS (1), cat: σύμπλακα του Ni (6.4*10 ⁻⁶ M), 1 M TEOA, 0.1 M AcOH, DMF και Argon $\lambda > 335$ nm)
Σχήμα 8.2.1.2.	Παραγωγή H_2 συναρτήσει του χρόνου (0.5 mM PS (1), 142
	$(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)_2\}]^-$ (6.4*10 ⁻⁶ M), 1 M
	TEOA, 0.1 M AcOH, DMF kat Argon $\lambda > 335$
	nm)
Σχήμα 8.2.1a.1.	Φάσμα εκπομπής του [ReBr(CO) ₃ amphen] (1) με προσθήκη 144
	διαλύματος $(NEt_4)^+[Ni\{S_2C_2(C_6H_4-OCH_3-4)_2\}_2]^-/$
	[ReBr(CO) ₃ (amphen)] σε DMF, Inset: K_q υπολογίστηκε από την
	εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns
Σχήμα 8.2.1a.2.	Φάσμα εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη 145 διαλύματος (NEt ₄) ⁺ [Ni{S ₂ C ₂ (C ₆ H ₅)(C ₆ H ₄ -OCH ₃ -4)} ₂] ^{-/} [ReBr(CO) ₃ (amphen)] σε DMF, Inset: K _q υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns
Σχήμα 8.2.1a.3.	Φάσμα εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη 145 διαλύματος(NEt ₄) ⁺ [Ni{S ₂ C ₂ (C ₆ H ₅) ₂ } ₂] ⁻ /[ReBr(CO) ₃ (amphen)] σε DMF, Inset: K _q υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns
Σχήμα 8.2.1a.4.	Φάσμα εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη 146 διαλύματος (TBA) ⁺ [Ni{S ₂ C ₂ (C ₆ H ₄ -OCH ₃ -4) ₂ }] ^{-/} [ReBr(CO) ₃ (amphen)] σε DMF, Inset: K _q υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns

Σχήμα 8.2.1a.5.	Φάσμα διέγερσης και εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη διαλύματος (TBA) ⁺ [Ni{S ₂ C ₂ (C ₆ H ₅)(C ₆ H ₄ -OCH ₃ - 4)} ₂] ⁻ /[ReBr(CO) ₃ (amphen)] σε DMF, Inset: K _q υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns	146
Σχήμα 8.2.1a.6.	Φάσμα διέγερσης και εκπομπής του [ReBr(CO) ₃ (amphen)] (1) με προσθήκη διαλύματος (TBA) ⁺ [Ni{S ₂ C ₂ (C ₆ H ₅) ₂ } ₂] /[ReBr(CO) ₃ (amphen)] σε DMF, Inset: K _q υπολογίστηκε από την εξίσωση Stern-Volmer και τ _{Re} =4.2 ±0.10ns	147
Σχήμα 8.2.1a.7.	Προτεινόμενος μηχανισμός αναγωγής H ⁺ για το σύστημα [ReBr(CO) ₃ (amphen)]/NiL ₂ /TEOA/AcOH σε DMF (αναγωγικής αποδιέγερσης)	148
Σχήμα 8.3.2.1.	Φάσμα UV-Vis συστήματος (0.5 mM PS, $[K(NCMe)_3(L^{13})Co^{II}-NCMe]$ (5*10 ⁻⁴ M). 1 M TEOA, 0.1 M AcOH, DMF και Argon) πριν και μετά την ακτινοβόληση	150
Σχήμα 8.3.3.1.	Απεικόνιση παραγωγής H ₂ σε συνάρτηση με το χρόνο (2.2*10 ⁻⁴ M PS , 4.4*10 ⁻⁴ M [K(NCMe) ₃ (L ⁶)Co ^{II} -NCMe]·MeCN·H ₂ O (4.4*10 ⁻⁴ M) με Asc σε MeCN/H ₂ O)	151
Σχήμα 8.4.1.1.	Απεικόνιση δομής του συμπλόκου [Ga(tpfc)- 2-Ga], όπου L: πυριδίνη (Χημικός τύπος: C37H8F15GaN4, Mr: 863)	152
Σχήμα 8.4.1.2.	Απεικόνιση δομής συμπλόκου [Ga(di-o-F-p-py)- 1-Ga] (Χημικός τύπος: C ₃₆ H ₁₈ F4GaN5,Mr: 665 + py 744)	153
Σχήμα 8.5.1.	Απεικόνιση δομής συμπλόκου [Cu ^(I) (dppzCOOEt)2]	155

ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

Πίνακας 3.3.1.	Πρώτα συστήματα παραγωγής υδρογόνου από φωτοχημική διάσπαση του νερού	37
Πίνακας 4.1.1.	Ενώσεις και κβαντική απόδοση παραγωγής H2 σε συστήματα ομογενής φωτοκατάλυσης	39
Πίνακας 4.4.1.	Μοντέλα παραγωγής υδρογόνου από φωτοχημική διάσπαση	49-50
	του νερου με οιθειολενικα συμπλοκα	
Πίνακας 4.5.1.	Συνοψίζονται φωτοκαταλυτικά συστήματα που αναφέρονται στην παραγωγή H2 με καταλύτες κοβαλοξίμες	57
Πίνακας 4.5.2.	Μοντέλα παραγωγής υδρογόνου από φωτοχημική διάσπαση	59-75
	του νερού	
Πίνακας 5.2.1.	Μοντέλα παραγωγής υδρογόνου από φωτοχημική διάσπαση	81-92
	του νερού με σύμπλοκα ρηνίου	
Πίνακας 6.3.1.	Δεδομένα Αέριου Χρωματογράφου	96
Πίνακας 7.1.2.1.	Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου [ReBr(CO) ₃ (amphen)] και του υποκαταστάτη amphen στο NMR	100
Πίνακας 7.1.2.2.	UV-Vis φάσμα τουσυμπλόκου[ReBr(CO) ₃ (amphen)]	102
Πίνακας 7.1.2.3.	Δυναμικά οξειδοαναγωγής του συμπλόκου [ReBr(CO) ₃ (amphen)] ως προς Fc ⁺ /Fc σε DMF/TBAPF ₆ στους 298 K, με ηλεκτρόδιο εργασίας: ηλεκτρόδιο δίσκου άνθρακα και ταχύτητα σάρωσης 0.1 V/s	104
Πίνακας 7.2.2.1.	Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου [ReBr(CO) ₃ (phendione)] και του υποκαταστάτη phendione στο NMR	106
Πίνακας 7.2.2.2.	UV-Vis φάσμα τουσυμπλόκου [ReBr(CO) ₃ (phendione)]	108
Πίνακας 7.3.2.1.	Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου [ReCl(CO)3(amphen)] και του υποκαταστάτη amphen στο NMR	110

Πίνακας 7.3.2.2.	UV-Vis φάσμα του συμπλόκου [ReCl(CO) ₃ (amphen)]					
Πίνακας 7.4.2.1.	Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου [Re(CO) ₃ Cl{dppz-3,6-(COOEt) ₂ }] και του υποκαταστάτη dppz-3,6-(COOEt) ₂ στο NMR					
Πίνακας 7.4.2.2.	UV-Vis φάσμα του συμπλόκου [Re(CO) ₃ Cl{dppz-3,6- (COOEt) ₂ }]					
Πίνακας 7.5.1.	Κυριότεροι κρυσταλλικοί παράμετροι του [ReBr(CO) ₃ (pq)] 12					
Πίνακας 7.5.2.	Τα κυριότερα μήκη δεσμών [Å] και οι κυριότερες γωνίες [deg.] των μορίων του συμπλόκου [ReBr(CO) ₃ (pq)]. Το σύστημα της αρίθμησης είναι εκείνο που δείχνεται στο σχήμα του ORTER					
Πίνακας 8.1.1.1.	Παραγωγή H2 σε μmol του PS (1) ανάλογο της συγκέντρωσης του [Co(OAc)2]·4H2O	125				
Πίνακας 8.1.1.2.	Παραγωγή $ m H_2$ σε μmol του PS (1) ανάλογο της συγκέντρωσης της dmgH2	127				
Πίνακας 8.1.1.3.	Παραγωγή H2 σε μmol του PS (1) ανάλογο της συγκέντρωσης του AcOH	128				
Πίνακας 8.1.1.4.	Παραγωγή H ₂ σε μmol και TONs του PS (1)	130				
Πίνακας 8.1.1.5.	Παραγωγή H ₂ συστημάτων φωτοκατάλυσης με PS [ReX(CO) ₃ L] (0.5 mM [PS] παρουσία 1:6 [Co(OAc) ₂]·4H ₂ O:[dmgH ₂], 1 M TEOA και 0.1 M AcOH. Τα δείγματα ακτινοβολήθηκαν με $\lambda > 335$ nm για 24 h	131				
Πίνακας 8.1.3.1.	Παραγωγή H ₂ σε μmol και TONs του PS (2)	135				
Πίνακας 8.2.1.1.	Παραγωγή H ₂ σε μmol και TONs του συστήματος με cat: $(NEt_4)^+ [Ni\{S_2C_2(C_6H_5)_2\}_2]^-$					
Πίνακας 8.2.1.2.	Παραγωγή H_2 σε μmol και TONs του συστήματος με cat: (NEt ₄) ⁺ [Ni{S ₂ C ₂ (C ₆ H ₅)(C ₆ H ₄ -OCH ₃ -4) ₂ } ₂] ⁻	141				
Πίνακας 8.2.1.3.	Παραγωγή H ₂ σε μmol και TONs του συστήματος με cat: $(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-$					
Πίνακας 8.2.1.4.	Παραγωγή H ₂ σε μmol και TONs του συστήματος με cat: $(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-$	143				

Πίνακας 8.4.1.1.	Παραγωγή υδρογόνου συστήματος με φωτοευαισθητοποιητή [Ga(tpfc)- 2-Ga]				
Πίνακας 8.5.2.1.	Αποτελέσματα μελετήθηκαν	φωτοκαταλυτικών	συστημάτων	που	156-157

ΠΡΟΛΟΓΟΣ

Ο ενεργειακός εφοδιασμός του πλανήτη μας εξαρτάται σε μεγάλο βαθμό από τα ορυκτά καύσιμα. Η σκληρή πραγματικότητα όμως είναι ότι τα αποθέματα των ορυκτών καυσίμων μειώνονται, ενώ η κατανάλωση τους αυξάνεται σταθερά. Παράλληλα, η αυξανόμενη ρύπανση της ατμόσφαιρας από τους αέριους ρύπους, που παράγονται από την καύση των διαφόρων τύπων καυσίμων, οδήγησε στη θέσπιση αυστηρών κανόνων σχετικά με την ποιότητα των καυσαερίων, κυρίως στις αναπτυγμένες χώρες. Επιπλέον, η θεωρία του "θερμοκηπίου", που σχεδόν έχει επικρατήσει ότι ισχύει, οδήγησε στην ενοχοποίηση και του διοξειδίου του άνθρακα, κάτι που πρακτικά σημαίνει ότι κάθε καύσιμο που περιέχει άνθρακα (και καίγεται έστω και με τέλεια καύση) είναι και ρυπαντής [1]. Ακόμη, η τιμή των καυσίμων αυτών αυξάνεται συνεχώς και υπάρχει η άποψη της σχετικά γρήγορης εξάντλησης των αποθεμάτων τους.

Όλα αυτά, οδήγησαν στην σκέψη της αντικατάστασης των συμβατικών καυσίμων, αλλά με τι; Η μια άποψη είναι η πυρηνική ενέργεια. Τα πυρηνικά "καύσιμα" δεν παράγουν διοξείδιο του άνθρακα, θεωρητικά δεν παράγουν τίποτα που να ρυπαίνει την ατμόσφαιρα (όταν όλα πάνε καλά). Επιπλέον, είναι μια μέθοδος παραγωγής ενέργειας με μεγάλη συγκέντρωση ισχύος, σχετικά οικονομική και με υπάρχουσα τεχνογνωσία. Παράγει όμως επικίνδυνα ραδιενεργά κατάλοιπα και σε περίπτωση ατυχήματος οι επιπτώσεις στην ανθρώπινη ζωή και το περιβάλλον είναι ολέθριες. Ακόμη, τα αποθέματα των πυρηνικών καυσίμων είναι σχετικά περιορισμένα. Από την άλλη, η παραγωγή ενέργειας με σύντηξη, που πιθανόν να λύσει το ενεργειακό πρόβλημα της ανθρωπότητας για πάντα, δεν είναι τεχνικά εφικτή και φαίνεται ότι δεν θα είναι ούτε στο άμεσο μέλλον. Η άλλη άποψη, που είναι πολύ διαδεδομένη τα τελευταία χρόνια, είναι η παραγωγή ενέργειας από "ανανεώσιμες πηγές ενέργειας" που έχουν σαφή περιβαλλοντολογικά οφέλη. Ωστόσο, οι πηγές αυτές (με εξαίρεση την υδροηλεκτρική ενέργεια) έχουν πολύ μικρή συγκέντρωση ισχύος, αστάθεια παροχής, η διαθεσιμότητά τους δεν είναι κατ' ανάγκη ταυτόχρονη με τη ζήτηση, και το κόστος της ενέργειας που παράγουν είναι με τα σημερινά δεδομένα πάρα πολύ υψηλό. Πολλές φορές η ενέργεια που χρειάζεται για την παραγωγή των συστημάτων αυτών, είναι συγκρίσιμη με την τελική ωφέλιμη ενέργεια που θα παραγάγουν σε όλο τον χρόνο ζωής τους. Η δυνατότητες των "ανανεώσιμων πηγών" θα αυξάνονταν πολύ, αν υπήρχε η δυνατότητα αποθήκευσης της ηλεκτρικής ενέργειας με χαμηλό κόστος και μεγάλο συντελεστή απόδοσης. Δυστυχώς όμως, στον τομέα αυτό, υπάρχει ελάχιστη πρόοδος.

Όλα τα πιο πάνω, οδήγησαν στην ιδέα της "οικονομίας του υδρογόνου". Δηλαδή, να γίνει αντικατάσταση των συμβατικών καυσίμων με υδρογόνο για θέρμανση, κίνηση και παραγωγή ηλεκτρισμού. Σύμφωνα με την ιδέα αυτή, το υδρογόνο μέσω των "κυψελών καυσίμου" θα παράγει ηλεκτρική ενέργεια, παράγοντας ως "καυσαέριο" μόνο νερό (ή/και υδρατμούς). Ωστόσο, για να επιτευχθεί ένας τέτοιος στόχος απαιτείται να βρεθούν λύσεις σε συγκεκριμένες τεχνικές-τεχνολογικές δυσκολίες που ανακύπτουν στα τρία στάδια της εφαρμογής αυτής της ενεργειακής πολιτικής, δηλαδή στην παραγωγή, στη μεταφορά και αποθήκευση και στην τελική αξιοποίηση του υδρογόνου [2]. Η άμεση καύση του υδρογόνου μάλλον έχει αποκλειστεί, λόγω της εκρηκτικότητάς του και επειδή επιπλέον παράγονται οξείδια του αζώτου, αν χρησιμοποιηθεί σε μηχανές εσωτερικής καύσης.

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

1.1 Γενικά περί υδρογόνου

Υδρογόνο, το απλούστερο, ελαφρύτερο αλλά και πιο διαδεδομένο στοιχείο του σύμπαντος (τρίτο πιο άφθονο στοιχείο στη Γη, κυρίως υπό τη μορφή νερού και υδρογονανθράκων τύπου CxHy). Η ονομασία του, οφείλεται στον Γάλλο χημικό Antoine Lavoisier και προέρχεται από τη σύμπτυξη δύο αρχαίων ελληνικών λέξεων: «ύδωρ» και «γίγνομαι.». Ως ξεχωριστό χημικό στοιχείο αναγνωρίστηκε για πρώτη φορά από τον Άγγλο χημικό Henry Cavedish το 1766. Έχει την υψηλότερη αναλογία ενέργειας προς βάρος από όλα τα καύσιμα, συγκεκριμένα, 1 kg υδρογόνου περιέχει την ίδια ποσότητα ενέργειας με 2,1 kg φυσικού αερίου ή 2,8 kg βενζίνης, ενώ κατά την καύση του παράγεται απλά και μόνο ...νερό(!). Είναι άχρωμο, άγευστο, άοσμο και είναι το ελαφρύτερο από τα αέρια (14,4 φορές ελαφρύτερο από τον αέρα) και το δυσκολότερα υγροποιούμενο αέριο - μετά το ήλιο. Είναι καλός αγωγός της θερμότητας και του ηλεκτρισμού.

Εντούτοις, σήμερα το Υδρογόνο παίζει μεν ένα σημαντικό ρόλο στην παγκόσμια οικονομία της ενέργειας, αλλά αυτός ο ρόλος περιορίζεται αποκλειστικά σχεδόν στη χημική βιομηχανία, (αποθείωση των καυσίμων κατά τη διύλιση του πετρελαίου, σύνθεση χημικών προϊόντων κυρίως αμμωνίας, ηλεκτρονικά, βιομηχανία γυαλιού, χάλυβα, τροφίμων κλπ.), ενώ σπάνια χρησιμοποιείται ως καύσιμο. Και αυτό διότι εκτός από την έλλειψη υποδομών που θα υποστήριζαν την ευρεία χρήση του, υπάρχει μία μόνιμη προκατάληψη ότι το υδρογόνο είναι επικίνδυνο και ανασφαλές τόσο κατά τη χρήση όσο και κατά την αποθήκευση και μεταφορά του.

Όμως αποδεικνύεται σε τυχόν διαρροή και ανάφλεξη αν συγκρίνουμε υδρογόνο και βενζίνη, το υδρογόνο ανεβαίνει (ως ελαφρύτερο του αέρα) και διασκορπίζεται στην ατμόσφαιρα καιγόμενο προς τα πάνω (δύσκολα δημιουργούνται οι απαιτούμενες συγκεντρώσεις για έκρηξη), ενώ η βενζίνη δεν διαχέεται και καίγεται στο σημείο διαρροής αποδίδοντας δηλητηριώδεις αναθυμιάσεις (CO, CO₂ κλπ.).

15

Όσο για την αποθήκευσή του, ενώ η έρευνα συνεχίζεται, ήδη προτείνονται πολλές εφικτές και ασφαλείς λύσεις όπως: Αποθήκευση: α) με τη μορφή μεθανόλης, β) σε δεξαμενές υψηλής πίεσης, γ) σε υγρή κατάσταση (-253 °C) σε ειδικές δεξαμενές, δ) με τη μορφή μεταλλικών υδριδίων, και ε) σε νανοσωλήνες άνθρακα. Για τη μεταφορά του προτείνονται αγωγοί, και οχήματα μεταφοράς, αλλά και ...επιτόπια παραγωγή!

ΑΠΟΘΗΚΕΥΣΗ ΥΔΡΟΓΟΝΟΥ

Σχήμα 1.1.1 Σχηματική απεικόνιση αποθήκευσης υδρογόνου.

Σήμερα το υγρό υδρογόνο είναι βέβαια ένα πλεονεκτικό καύσιμο πυραύλων, όμως στην αέρια μορφή του ίσως γίνει το υπ' αριθμόν ένα καύσιμο του 21^{ου} αιώνα! Παρόλα αυτά το υδρογόνο δεν είναι πρωτογενής πηγή ενέργειας. Είναι ένα καύσιμο που δε ρυπαίνει μεν το περιβάλλον, αλλά προς το παρόν λαμβάνεται κυρίως από υδρογονάνθρακες και νερό με χρήση άλλων ενεργειακών πηγών είτε συμβατικών είτε ανανεώσιμων. Έτσι όμως, μπορεί να θεωρηθεί ως ενεργειακός φορέας ή μέσο

αποθήκευσης ενέργειας από ανανεώσιμες πηγές (π.χ. αποθήκευση αιολικής, ηλιακής, υδροηλεκτρικής κ.λπ. ενέργειας) και ως τέτοιος φορέας να χρησιμοποιηθεί: Σε καταλυτικούςκαυστήρες και λέβητες αερίου (για θέρμανση, παραγωγή ατμού), σε μηχανές εσωτερικής καύσεως (για παραγωγή ηλεκτρισμού, κίνηση αυτοκινήτου), σε αεροστρόβιλους (για παραγωγή ηλεκτρισμού, κίνηση αεροπλάνων), και σε ένα τύπο μπαταρίας επονομαζόμενη στοιχείο ή κυψελίδα καυσίμου (fuel cells) (για παραγωγή ηλεκτρισμού, κίνηση αυτοκινήτων, πλοίων).

Ιδιαίτερη και ευρεία αναφορά γίνεται και στις κυψελίδες καυσίμου οι οποίες λειτουργούν με μεγάλη ποικιλία καυσίμων και φαίνεται ότι έχουν πολλά πλεονεκτήματα, όπως ελάχιστες εκπομπές ρύπων, όχι κινητά μέρη, απόδοση στην μετατροπή του ηλεκτρισμού της τάξης του 40-65%, εύκολη μεταφορά του υδρογόνου και φυλαξή του και μπορούν να χρησιμοποιηθούν σε πολλές εφαρμογές.

Τέλος, τονίζονται τα πλεονεκτήματα της χρήσης του υδρογόνου έναντι των ορυκτών καυσίμων, αλλά και η δυσκολία ευρύτερης εφαρμογής αυτής παγκοσμίως εξαιτίας αντίθετων οικονομικών και πολιτικών συμφερόντων. Ωστόσο, στην Ευρώπη είναι δεκάδες τα σχετικά ερευνητικά προγράμματα που βρίσκονται σε εξέλιξη, ενώ υπάρχουν χώρες όπως η Ισλανδία που χρησιμοποιούν με μεγάλη επιτυχία και σε πολλούς τομείς το υδρογόνο ως καύσιμο τα τελευταία χρόνια.

1.2 Τεχνολογία υδρογόνου

Οι μέθοδοι παρασκευής του υδρογόνου χωρίζονται σε τρείς κύριες κατηγορίες, τις θερμοχημικές, τις ηλεκτρολυτικές και τις φωτολυτικές. Οι περισσότερες μέθοδοι που χρησιμοποιούνται για την παρασκευή του περιλαμβάνουν τη διαδικασία της υδρόλυσης.

- Οι κυριότερες χρήσεις του είναι:
- Στην παρασκευή αμμωνίας, μεθανίου ή μεθανόλης. Οι ουσίες αυτές χρησιμοποιούνται στη συνέχεια για την παρασκευή άλλων προϊόντων, όπως εκρηκτικά, λιπάσματα, αντιψυκτικά κτλ.
- Στην τεχνολογία τροφίμων για την παρασκευή υδρογονανθράκων.

- Στην επιστήμη της φυσικής με εφαρμογή στη μελέτη των στοιχειωδών σωματιδίων.
- Με τη μορφή υγρού βρίσκει χρήση στη μελέτη της υπεραγωγιμότητας.

Πέρα από τις πολλές του χρήσεις στη χημική βιομηχανία, το υδρογόνο μπορεί να χρησιμοποιηθεί ως φορέας ενέργειας. Σε παγκόσμιο επίπεδο, η τάση κατανάλωσης καυσίμων όλο και λιγότερης περιεκτικότητας σε άνθρακα είναι εμφανής. Το υδρογόνο απαλλαγμένο από κάθε ποσό άνθρακα μπορεί να προσφέρει αρκετή ενέργεια για καθημερινές χρήσεις όπως η ηλεκτροδότηση κτιρίων ή η κίνηση των μεταφορικών μας μέσων. Μάλιστα αυτή τη στιγμή γίνονται σημαντικές προσπάθειες, κυρίως στα ιδιαίτερα ανεπτυγμένα κράτη, για τη μετατροπή της προσαρμοσμένης στα καύσιμα άνθρακα υποδομής σε υποδομή με βάση το υδρογόνο. Ενδεικτικά, η Ισλανδία, προβλέπει σε μία υποδομή πλήρως βασισμένη στο υδρογόνο μέχρι το 2030-2040, ενώ μέχρι το 2030 στόχος του υπουργείου ενέργειας των Η.Π.Α. είναι η αντικατάσταση του 10% της ενεργειακής κατανάλωσης από ενέργεια υδρογόνου.

Χαρακτηριστικό παράδειγμα για το πώς το υδρογόνο μπορεί να χρησιμοποιηθεί για να παραχθεί ενέργεια είναι οι λεγόμενες κυψέλες καυσίμου (fuel cells). Τεχνολογία παραγωγής ηλεκτρισμού με απευθείας ένωση του υδρογόνου με το οξυγόνο σε μεταλλικό καταλύτη: χωρίς κινούμενα μέρη, χωρίς θόρυβο, χωρίς (μεγάλες) απώλειες και χωρίς ρύπους, παράγει ενέργεια με υψηλή απόδοση. Υπάρχουν ήδη αρκετά οχήματα που κινούνται με κυψέλες καυσίμου με υδρογόνο καθώς και μεγαλύτερες εγκαταστάσεις κυψελών που παράγουν ηλεκτρική ενέργεια. Η τεχνολογία του υδρογόνου, ωστόσο, βρίσκεται σε πρώιμο στάδιο ακόμη και θα πάρει πολύ χρόνο για να έλθει στην αγορά, ούτε είναι άμοιρη προβλημάτων.

Το μεγαλύτερο πρόβλημα που ανακύπτει στην χρήση του υδρογόνου ως καυσίμου, είναι το πρόβλημα της αποθήκευσής του. Η θερμαντική του ικανότητα είναι πολύ μεγάλη ανά μονάδα βάρους, αλλά ανά μονάδα όγκου είναι από τις μικρότερες. Η ασφάλεια είναι κρίσιμο σημείο. Το υδρογόνο είναι υλικό που αναφλέγεται και εκρήγνυται πολύ εύκολα - σε αναλογία 1 προς 7 με αέρα παράγει το περίφημο «κροτούν αέριο». Επομένως, το μεγαλύτερο μέρος της ερευνητικής δραστηριότητας έχει στραφεί στην ανάπτυξη «ασφαλών» μεθόδων αποθήκευσης υδρογόνου, ώστε να μπορεί να χρησιμοποιηθεί ως καύσιμο ακόμα και σε αυτοκίνητα.

1.3 Κυψέλες καυσίμων

Η πρώτη κυψέλη καυσίμων φτιάχτηκε το 1839 από τον Ουαλό Sir William Grove, δικαστή και επιστήμονα. Όμως σοβαρό ενδιαφέρον για τη κυψέλη καυσίμων ως πρακτική γεννήτρια παρουσιάστηκε μόλις τη δεκαετία του '60, όταν το διαστημικό ΗΠА επέλεξε κυψέλες πρόγραμμα των τις καυσίμων ĸι όχι την «επικίνδυνη»πυρηνική ενέργεια και την «ακριβότερη» ηλιακή ενέργεια. Με κυψέλες καυσίμων εφοδίασαν ενέργεια το διαστημικό σκάφος Gemini και Apollo, παρείχαν επίσης ηλεκτρική ενέργεια και νερό για το Διαστημικό Λεωφορείο.

Σχήμα 1.3.1. Σχηματική απεικόνιση κυψέλης καυσίμων.

Οι κυψέλες έχουν μια απλή δομή, περιέχουν τρία στρώματα, το ένα δίπλα στο άλλο. Το πρώτο στρώμα είναι η άνοδος, το δεύτερο ο ηλεκτρολύτης και το τρίτο η κάθοδος (Σχήμα 1.3.1). Η άνοδος και η κάθοδος παίζουν το ρόλο του καταλύτη. Το μεσαίο στρώμα αποτελείται από ένα φορέα που απορροφάει τον ηλεκτρολύτη. Χρησιμοποιούνται διάφορες ουσίες ως ηλεκτρολύτες, όπως οι υγροί ηλεκτρολύτες και άλλοι που είναι σε στερεή μορφή με δομή μεμβράνης.

Οι κυψέλες καυσίμου είναι μία μέθοδος μετατροπής ενέργειας αποθηκευμένης με την μορφή καυσίμου (υδρογόνο, μεθάνιο, φυσικό αέριο κ.ά.) σε ηλεκτρισμό και θερμότητα. Αυτό γίνεται με υψηλή απόδοση (40-85% ανάλογα με τον τύπο της κυψέλης) και με μοναδική εκπομπή το καθαρό νερό (όταν το καύσιμο είναι αποκλειστικά υδρογόνο). Στην περίπτωση που το καύσιμο περιέχει άνθρακα, εκπέμπονται και αέρια βλαβερά για το περιβάλλον (π.χ. διοξείδιο του άνθρακα), αλλά σε πολύ μικρότερη ποσότητα από ό,τι με έναν κινητήρα εσωτερικής καύσης αντίστοιχης ισχύος. Μία κυψέλη καυσίμου λειτουργεί ως μια «μπαταρία», μέσω μιας ηλεκτροχημικής αντίδρασης ενός καυσίμου (υδρογόνο) με ένα οξειδωτικό (οξυγόνο). Το πιο σημαντικό όμως είναι ότι δεν έχει τον περιορισμό της εξάντλησης του καυσίμου όπως στην μπαταρία, μιας και το καύσιμο και το οξειδωτικό εισάγονται συνεχώς στην άνοδο και στην κάθοδο του στοιχείου, και τα προϊόντα

1.4 Πλεονεκτήματα και Μειονεκτήματα υδρογόνου έναντι συμβατικών πηγών ενέργειας

Ας μη ξεχνάμε, ότι το υδρογόνο δεν αποτελεί τη μοναδική εναλλακτική λύση έναντι των παγκόσμιων κλιματικών αλλαγών και των διαφόρων ορυκτών καυσίμων που τις εντείνουν, αλλά ότι αντίθετα υπάρχουν και αρκετές άλλες ΑΠΕ (Ανανεώσιμες Πήγες Ενέργειας) οι οποίες μπορούν να εφαρμοστούν παράλληλα και αποτελεσματικά με αυτό. Για το λόγο αυτό θα αναφερθούμε στα πλεονεκτήματα και τα μειονεκτήματα του υδρογόνου ως καύσιμο.

1.4.1 Πλεονεκτήματα

Στη συνέχεια θα αναφέρουμε συνοπτικά τα πλεονεκτήματα που παρουσιάζει το υδρογόνο ως μέσο μεταφοράς ενέργειας, έναντι των συμβατικών ορυκτών καυσίμων που χρησιμοποιούνται σήμερα.

Το υδρογόνο έχει το υψηλότερο ενεργειακό περιεχόμενο ανά μονάδα βάρους
 από οποιοδήποτε άλλο γνωστό καύσιμο, 120,7 kJ/kg, περίπου τρεις φορές
 μεγαλύτερο από αυτό της συμβατικής βενζίνης.

Καθαρή καύση. Όταν καίγεται με οξυγόνο παράγει μόνο νερό και θερμότητα.
 Όταν καίγεται με τον ατμοσφαιρικό αέρα, ο οποίος αποτελείται περίπου από 68%
 άζωτο, παράγονται επίσης αμελητέες ποσότητες οξειδίων του αζώτου.

Εξαιτίας της καθαρής καύσης του δε συμβάλλει στη ρύπανση του περιβάλλοντος. Το ποσό του νερού που παράγεται κατά την καύση είναι τέτοιο ώστε να θεωρείται επίσης αμελητέο και μη ικανό να επιφέρει κάποια κλιματολογική αλλαγή δεδομένης ακόμα και μαζικής χρήσης.

Είναι το ίδιο ακίνδυνο όσο η βενζίνη, το πετρέλαιο ντήζελ (diesel) ή το φυσικό αέριο. Το υδρογόνο μάλιστα είναι το λιγότερο εύφλεκτο απουσία αέρα με θερμοκρασία αυθόρμητης ανάφλεξης τους 585 °C (230 °C έναντι 480 °C της βενζίνης).

Μπορεί να συμβάλλει στη μείωση του ρυθμού κατανάλωσης των περιορισμένων φυσικών καυσίμων. Αν και σε πολλές περιπτώσεις αυτά τα ίδια καύσιμα χρησιμοποιούνται για την παρασκευή υδρογόνου, το ενεργειακό όφελος είναι μεγάλο. Μάλιστα η πιο συμφέρουσα οικονομικά αυτή τη στιγμή μέθοδος παρασκευής υδρογόνου βασίζεται στη μετατροπή του μεθανίου του φυσικού αερίου.

 Μπορεί να παρασκευαστεί με πάρα πολλές μεθόδους σε οποιαδήποτε χώρα
 και σε οποιοδήποτε μέρος και επομένως μπορεί να βοηθήσει στην ανάπτυξη αποκεντροποιημένων συστημάτων παραγωγής ενέργειας. Αυτό θα ωφελήσει φτωχότερα και λιγότερο αναπτυγμένα κράτη τα οποία σήμερα εξαρτώνται ενεργειακά από άλλα ισχυρότερα.

21
1.4.2 Μειονεκτήματα

Τα περισσότερα μειονεκτήματα χρήσης του υδρογόνου έχουν να κάνουν με την ελλίπει σημερινή υποδομή και αποτελούν κυρίως τεχνικά προβλήματα τα οποία αναζητούν λύση.

Η αποθηκευσή του, δεδομένου του ότι το υδρογόνο είναι πολύ ελαφρύ, η συμπίεση μεγάλης ποσότητας σε μικρού μεγέθους δεξαμενή είναι δύσκολη λόγω των υψηλών πιέσεων που χρειάζονται για να επιτευχθεί η υγροποίηση. Αν και το πρόβλημα αυτό λύνεται με τις κυψέλες καυσίμου.

Η έλλειψη οργανωμένου δικτύου διανομής του.

Η τιμή του είναι σχετικά υψηλή σε σύγκριση με αυτή της βενζίνης ή του πετρελαίου. Η περισσότερο διαδεδομένη λόγω χαμηλού κόστους μέθοδος παραγωγής υδρογόνου αυτή τη στιγμή είναι η μετατροπή του φυσικού αερίου. Ωστόσο όσο εξελίσσονται και άλλες μέθοδοι, όπως η μετατροπή της αιολικής ενέργειας, το κόστος θα συνεχίσει να μειώνεται.

 Αν και στις περισσότερες των περιπτώσεων το υδρογόνο θεωρείται περισσότερο ασφαλές από οποιοδήποτε άλλο καύσιμο, κάτω από συγκεκριμένες συνθήκες μπορεί να γίνει εξαιρετικά επικίνδυνο.

Η αυξημένη τιμή των κυψέλων καυσίμου με τις οποίες αυτή τη στιγμή γίνεται η μεγαλύτερη εκμετάλλευση του υδρογόνου ως καύσιμο. Επιπλέον η τεχνολογία τους δε μπορεί να θεωρηθεί ολοκληρωτικά αξιόπιστη αφού προς το παρόν υπάρχουν αρκετά τεχνικά προβλήματα τα οποία αναζητούν αξιόπιστες λύσεις. Κυψέλες προσανατολισμένες για οικιακή και μεταφορική χρήση χαρακτηρίζονται από μικρή ανοχή σε καύσιμα μη υψηλής καθαρότητας. Αυτό με τη σειρά του αυξάνει το κόστος παραγωγής του καυσίμου. Κυψέλες καυσίμου προσανατολισμένες για βιομηχανική χρήση πάλι χαρακτηρίζονται από πολύ υψηλές θερμοκρασίες λειτουργίας.

κεφαλαίο 2 ΦωτοκαταλύΣΗ

2.1 Ορισμός φωτοκατάλυσης

Η λέξη φωτοκατάλυση είναι μια σύνθετη λέξη που αποτελείται από δύο λέξεις, 'φως' και 'κατάλυση'. Κατάλυση είναι η διαδικασία κατά την οποία μια ουσία συμμετέχει στη μεταβολή της ταχύτητας χημικού μετασχηματισμού των αντιδρώντων ουσιών χωρίς η ίδια να αλλάζει ή να καταναλώνεται τελικά. Η ουσία αυτή είναι γνωστή ως ο καταλύτης που αυξάνει την ταχύτητα μιας αντίδρασης ελαττώνοντας την ενέργεια ενεργοποίησης.

Γενικά μιλώντας, η φωτοκατάλυση είναι μια αντίδραση που χρησιμοποιεί το φως για να ενεργοποιήσει μια ουσία που μεταβάλλει την ταχύτητα χημικής αντίδρασης χωρίς η ίδια να εμπλέκεται. Και ο φωτοκαταλύτης είναι η ουσία που μπορεί να αλλάξει την ταχύτητα χημικής αντίδρασης χρησιμοποιώντας τη φωτεινή ακτινοβολία.

Η χλωροφύλλη των φυτών είναι ένας τυπικός φυσικός φωτοκαταλύτης, η χλωροφύλλη συλλαμβάνει το ηλιακό φως για να μετατρέψει το νερό και το διοξείδιο του άνθρακα σε οξυγόνο και γλυκόζη.

Σχήμα 2.1.1. Φωτοκαταλυτική παραγωγή υδρογόνου σε νερό.

Τα συστήματα που χρησιμοποιεί η φωτοκατάλυσηέχουν την ίδια αρχή λειτουργίας που συνίσταται στην απορρόφηση από κάποιο στερεό υλικό (συνήθως ημιαγωγό) της ενέργειας των φωτονίων του (κατά προτίμηση ηλιακού) φωτός με αποτέλεσμα την διέγερση των ηλεκτρονίων του υλικού σε κατάλληλη ενεργειακή στάθμη ώστε να καθίσταται εφικτή η πραγματοποίηση χημικών αντιδράσεων όπως η διάσπαση του νερού σε υδρογόνο και οξυγόνο:

$$H_2 0 \to H_2 + \frac{1}{2} 0_2$$
 (1)

Στην περίπτωση των φωτοχημικών ή φωτοκαταλυτικών συστημάτων, ο ημιαγωγός βρίσκεται με τη μορφή αιωρήματος σε υδατικό διάλυμα ενώ στην περίπτωση των φωτοηλεκτροχημικών ή φωτοηλεκτροκαταλυτικών συστημάτων ο ημιαγωγός βρίσκεται ακινητοποιημένος εν είδει ηλεκτροδίου βυθισμένου σε υδατικό διάλυμα, ενώ είναι δυνατός ο έλεγχος του ρυθμού αντίδρασης με την επιβολή εξωτερικού δυναμικού. Φυσικά υπάρχουν και τα ομογενή συστήματα, οπου ο φωτοκαταλύτης βρίσκεται στην ίδια φάση με τον διαλύτη.

Το πλεονέκτημα της εκμετάλλευσης μιας ανανεώσιμης πηγής ενέργειας, όπως η ηλιακή ακτινοβολία, με τη μετατροπή μιας πρώτης ύλης σε αφθονία, όπως το νερό, σε ένα καύσιμο, όπως το υδρογόνο, που είναι αξιοποιήσιμο χωρίς επιπτώσεις για το περιβάλλον είναι αυταπόδεικτο.

2.2 Φωτοκαταλύτες και τα χαρακτηριστικά τους

Ως φωτοκαταλύτες, ορίζονται οι ουσίες εκείνες που μπορούν να επάγουν αντιδράσεις παρουσία φωτός και δεν καταναλώνονται κατά τη διαδικασία αυτή. Ένας καλός φωτοκαταλύτης πρέπει να είναι:

- Φωτοενεργός
- Να έχει τη δυνατότητα να αξιοποιεί το φως στο ορατό ή υπεριώδες φάσμα
- Βιολογικά και χημικά αδρανής
- Φωτοσταθερός
- Χαμηλού κόστους
- Μη τοξικός

Ο φωτοκαταλύτης βασίζει τη δραστικότητα του στο γεγονός, ότι όταν φωτόνια ενός συγκεκριμένου μήκους κύματος προσπίπτουν στην επιφάνεια του, τα ηλεκτρόνια ανέρχονται (προάγονται) από τη στοιβάδα σθένους (valence band) και μεταφέρονται στη διεγερμένη στοιβάδα (conductance band). Αυτό δημιουργεί θετικά φορτισμένες οπές στη στοιβάδα σθένους που αντιδρά με το υδατικό μέσο παράγοντας ρίζες υδροξυλίου (OH⁻), που είναι τα πλέον οξειδωτικά μόρια.

2.3 Στοιχεία Φωτοκαταλυτικών Συστημάτων

2.3.1 Φωτοευαισθητοποιητής (PS)

Ένας φωτοευαισθητοποιητής (PS) πρέπει να είναι ικανός να απορροφά ορατή ακτινοβολία, ώστε να διεγείρει σωματίδια με χρήσιμες οξειδοαναγωγικές ιδιότητες. Τα βασικά είδη φωτοευαισθητοποιητών που χρησιμοποιούνται στην φωτακατάλυση είναι: σύμπλοκα μετάλλων μετάπτωσης του Ru,Cr,Os...[3,4], μεταλλοπορφυρίνες, μεταλλοφθαλοκυανίνες [5,6] και βαφές ακριδίνης, $[Ru(bpy)_3]^{2+}$ (2,2'- διπυριδίνη) είναι το σύμπλοκο που μελετήθηκε περισσότερο. Αυτά τα σύμπλακα ουσιαστικά αφορούν το μηγανισμό της οξειδωτικής αποδιέγερσης. Όσον αφορά στον αναγωγικό μηγανισμό, ένας από τους πιο κατάλληλους φωτοευαισθητοποιητές είναι το $[Ru(bpz)_3]^{2+}$ {(bpz)_3=2,2'- διπυραζίνη} [7,8]. Το υδρογόνο παράγεται με καλή απόδοση όταν χρησιμοποιείται σε φωτοχημικά συστήματα με ΤΕΟΑ ως δότη ηλεκτρονίων, MV²⁺ ως δέκτη ηλεκτρονίων και ενώσεις λευκογρύσου ως καταλύτη [9]. Ένα άλλος καλόςφωτοευαισθητοποιητής είναι το $[Ru(bpy)_2(dppz)]^{2+}$ (dppz= διπυριδο[3,2-a:2'3'-c]φαιναζίνη), που μπορεί να χρησιμοποιηθεί ως PS είτε σε οξειδωτικό μηχανισμό με EDTA ως δότη ηλεκτρονίων, είτε σε αναγωγικό μηχανισμό με ΤΕΟΑ ως αποδιεγερτή [10]. Ενδιαφέρον παρουσιάζει το στερεό σύμπλοκο του χαλκού $[Cu(dpp)_2]^{2+}(dpp=2,9)$ διφαινυλο-1,10-φαινανθρολίνη), το οποίο έχει χρησιμοποιηθεί ως φωτοευαισθητοποιητής μεταφοράς ενέργειας σε ένα σύστημα με πέντε συστατικά. Πρέπει να σημειωθεί ότι η βέλτιστη κβαντική απόδοση για το σχηματισμό H₂ με βέλτιστο $\Phi(\frac{1}{2}H_2)=0.6$ [11] βρέθηκε σε υδατικά διαλύματα νερού διαλυτού ψευδαργύρου με πορφυρίνη ZnTMPyP4+ [12-15] ακτινοβολούνται με ακτίνα μήκους κύματος 550 nm παρουσία MV²⁺, EDTA και κολλοειδή Pt. Παρόλα αυτά, στο διάστημα τεσσάρων ωρών ακτινοβόλησης [12] η απόδοση μειώνεται δραματικά. Πιο πρόσφατα μελετήθηκαν σύμπλακα εγκλεισμού ως φωτοευαισθητοποιητές, όπως βαφές ακριδίνης [16], οργανικές ενώσεις [17] και πολύπυριδίνες [4] που απορροφούν ορατή ακτινοβολία.

2.3.2 Δέκτης ηλεκτρονίων (R)

Ένας δέκτης ηλεκτρονίων (R) πρέπει να είναι ικανός να αδρανοποιεί τον οξειδωμένο PS⁺δίνονταντας τον αρχικό PS και το προϊόν D. Ιόντα διπυριδιλίου (βιολογόνα) γρησιμοποιούνται συνήθως ως δέκτες ηλεκτρονίων R, από τα πιο γνωστά είναι το μεθυλικό βιολογόνο MV²⁺. Τα εν λόγω συστήματα παρέχουν εκτεταμένη κλίμακα δυναμικών αναγωγής [6]. Μελετήθηκαν αρκετές ομογενείς σειρές των 4,4'διπυριδιλίου, 2,2'-διπυριδιλίου και ιόντα 1,10-φαιναθρολίου ως διαμεσολαβητές στη φωτοαναγωγή [6,8,18], ο πιο αποτελεσματικός δέκτης ηλεκτρονίων είναι το MV²⁺ και ιόντα 1,1'- dimethylene - 4,4'- dimethyl – 2,2'- bipyridinioum [6,18]. Σύμπλοκα μετάλλων μετάπτωσης είναι επίσης καλοί διαβιβαστές, ειδικά το $[Rh(bpy)_3]^{3+}$, που μπορεί να μεταφέρει δύο ηλεκτρόνια [19] και σύμπλοκα εγκλεισμού όπως [Co(sep)]³⁺ (sep=sepulchrate). To $[Co(sep)]^{3+}[20]$, σε αντίθεση με τα βιολογόνα, δεν επηρεάζεται από την υδρογόνωση, μια ανεπιθύμητη παράπλευρη αντίδραση που μπορεί να συμβεί στην επιφάνεια του καταλύτη. Ένας φυσικός διαβιβαστής ηλεκτρονίων είναι το κυτόχρωμα c_3 , που σε αντίθεση με το MV^{2+} δεν είναι καθόλου τοξικό, έχει δοκιμαστεί ως καταλύτης [10,21] σε συστήματα με υδρογόνωση. Είναι ενδιαφέρον να παρατηρήσουμε ότι το μόνο συστατικό που χρησιμοποιήθηκε ως δέκτης ηλεκτρονίων σε σύστημα πέντε συστατικών είναι το ανιόν 9-καρβοξυλικό ανθρακένιο [14,22].

2.3. Δότης ηλεκτρονίων (D)

Ένας δότης ηλεκτρονίων (D) πρέπει να μπορεί να αναχθεί ή να οξειδωθεί με αποδιέγερση των διεγερμένων σωματιδίων του PS^{*}. Ο Krasna [23] δοκίμασε διεξοδικά αρκετές σειρές οργανικών συστατικών ως δότες ηλεκτρονίων, με προφλαβίνη ως φωτοευαισθητοποιητή, MV²⁺ ως δέκτη ηλεκτρονίων και το ένζυμο υδρογονάσης ή τον αμίαντο Pt ως καταλύτη. Με αυτό το σύστημα, ο πιο αποτελεσματικός δότης ήταν ο EDTA και 1,2-διαμινοκυκλοεξάνιο τετρα οξικό οξύ. Ο Whitten και οι συνεργάτες του [24] ανακάλυψαν ότι η τριεθυλαμίνη TEOA, που δεν είναι καθόλου αποτελεσματική στο σύστημα του Krasna, οδηγεί σε υψηλή απόδοση υδρογόνου (0.53) σε σύστημα τριών συστατικών $[Ru(bpy)_3]^{2+}/TEOA/PtO_2$ δηλαδή απουσία του MV²⁺, αλλά σε μείγμα 25% νερού-ακετονιτριλίου. Συνένζυμα όπως NADH και NAPPH έχουν δοκιμαστεί ως δότες ηλεκτρονίων [10,13]. Παρόλα αυτά η φωτοεπαγώμενη αναγέννηση αυτών των φυσικών αναγωγικών ουσιών μπορεί επίσης να επιτευχθεί. Σε φωτοχημικά συστήματα που περιλαμβάνουν δότη ηλεκτρονίων, είναι από μια άποψη ενδιαφέρον, να βρούμε και να χρησιμοποιήσουμε δότες ηλεκτρονίων, όπως H₂S [15], που διατίθενται εύκολα ως απόβλητα βιομηχανικών προϊόντων.

2.3.4 Διαλύτες

Το περιβάλλον του διαλύτη έχει σημαντική επίδραση στον ρυθμό παραγωγής υδρογόνου και στην απόδοση του συστήματος, στην ομογενή φωτοκατάλυση. Ίδιο σύστημα παρουσίασε χαμηλότερη απόδοση, όταν σε αυτό χρησιμοποιήθηκαν διαφορετικοί οργανικοί διαλύτες [25]. Η εξάρτηση της παραγωγής υδρογόνου από το περιβάλλον του διαλύτη πιθανόν οφείλεται σε πολλούς παράγοντες, συμπεριλαμβανομένου της πολικότητας του διαλύτη, της ικανότητας του να γεφυρώνεται με το μέταλλο του φωτοευαισθητοποιητή, της εξάρτησης της βέλτιστης παραγωγής υδρογόνου και της σταθερότητας του καταλύτη στο συγκεκριμένο σύστημα διαλυτών. Ωστόσο, περαιτέρω μελέτες έδειξαν ότι κρίσιμος είναι και ο ρόλος των αναλογιών σε δεδομένο σύστημα διαλυτών, δηλαδή διατηρώντας το ίδιο σύστημα διαλυτών και απλά μεταβάλλοντας την αναλογία τους μπορούμε να αυξήσουμε ή και να μειώσουμε την απόδοση του συστήματος [25]. Διαλύτες που χρησιμοποιούνται κατά κόρον στην ομογενή φωτοκατάλυση [17,25-27] είναι το DMF, THF, MeCN, DMSO, EtOHκαι το H₂O. Συχνά χρησιμοποιούνται και μείγματα διαλυμάτων για καλύτερη απόδοση κάποιων συστημάτων, αυτό συμβαίνει κυρίως με το MeCN/H₂O, THF/ H₂O, DMF/ EtOH και DMF/H₂O [28-30].

2.4 Κατηγορίες φωτοκατάλυσης

Ο όρος κατάλυση χρησιμοποιείται για να περιγράψει μια διεργασία κατά την οποία ένα υλικό (καταλύτης) ενεργοποιείται και αλλάζει τον ρυθμό μιας χημικής αντίδρασης. Κατά αντιστοιχία, ο όρος φωτοκατάλυση περιγράφει μια διεργασία, όπου

ένα υλικό (φωτοκαταλύτης) ενεργοποιείται αλλάζοντας τον ρυθμό μιας χημικής αντίδρασης. Η διαφορά ανάμεσα στους δύο όρους έγκειται στον τρόπο ενεργοποίησης του καταλύτη ή του φωτοκαταλύτη. Οι καταλύτες, συνήθως ενεργοποιούνται θερμικά, ενώ οι φωτοκαταλύτες ενεργοποιούνται με φωτόνια κατάλληλης ενέργειας.

Οι φωτοκαταλυτικές διεργασίες διακρίνονται σε δύο κατηγορίες: τις ομογενείς και ετερογενείς. Στις ομογενείς διεργασίες ο φωτοκαταλύτης και το καταλυόμενο σύστημα βρίσκονται στην ίδια φάση, ενώ στις ετερογενείς σε διαφορετική φάση. Η ετερογενής φωτοκατάλυση είναι μια μέθοδος που πρακτικά μιμείται τη φύση.

2.4.1 Ετερογενής Φωτοκατάλυση (TiO₂/UV-A).

Η ετερογενής φωτοκαταλυτική οξείδωση στηρίζεται στις διεργασίες που λαμβάνουν χώρα κατά το φωτισμό ημιαγώγιμων υλικών (TiO₂, ZnO, κ.α.) με ακτινοβολία μεγαλύτερη του ενεργειακού χάσματος του ημιαγωγού (hv>E_g). Η φωτοενεργοποίηση των καταλυτών αυτών προκαλεί το διαχωρισμό ηλεκτρονίων και οπών (e⁻/h⁺), τα οποία δρουν ως ισχυρά αναγωγικά και οξειδωτικά αντιστοίχως, ικανά να ξεκινήσουν μία σειρά χημικών οξειδοαναγωγικών αντιδράσεων (αντιδράσεις 2-6), οι οποίες οδηγούν στην πλήρη καταστροφή των οργανικών ρύπων (Σχήμα 2.4.1.1).

$$TiO_2 + hv \rightarrow TiO_2(h^+ + e^-) \tag{2}$$

$$0_2 + e^- \to 0_2^- \tag{3}$$

$$h^+ + H_2 0 \rightarrow H^+ + OH^{\cdot}(4)$$

$$OH' + RH \to H_2O + R' \tag{5}$$

$$R' + O_2 \to ROO' \to CO_2 \tag{6}$$

Σχήμα 2.4.1.1. Προσομοίωση κόκκου ημιαγώγης κόνεως με μικροηλεκτρό χημικό στοιχείο υπό την επίδραση του φωτός.

Στην περίπτωση της φωτοκαταλυτικής οξείδωσης, σημαντικό μειονέκτημα της χρήσης του TiO₂ υπό μορφή κόνεως, είναι η ανάγκη απομάκρυνσής του μετά το πέρας της επεξεργασίας. Για τον λόγο αυτό έντονη είναι παγκοσμίως η έρευνα και ανάπτυξη για την παρασκευή και μελέτη λεπτών νανοκρυσταλλικών υμενίων του TiO₂ επάνω σε κατάλληλα υποστρώματα, με στόχο την αντικατάσταση της κόνεως του TiO₂, ώστε να αποκοπεί το στάδιο της απομάκρυνσής του μετά το τέλος της επεξεργασίας. Η μείωση όμως της ενεργούς επιφάνειας του καταλύτη, που βρίσκεται σε μορφή λεπτού υμενίου σε σχέση με την αντίστοιχη σε μορφή κόνεως οδηγεί και σε μείωση της απόδοσης του συστήματος. Η μείωση αυτή μπορεί να αντισταθμισθεί με την εφαρμογή ενός μικρού θετικού δυναμικού στον καταλύτη μέσω μιας ηλεκτροχημικής διάταξης. Ως αποτέλεσμα της υποβοηθούμενης με ηλεκτρικό ρεύμα φωτοκαταλυτικής οξείδωσης ή αλλιώς φωτοηλεκτροκαταλυτικής οξείδωσης αναμένεται δραστική αύξηση της απόδοσης του συστήματος.

2.4.2 Ομογενής Φωτοκατάλυση

Στο Σχήμα 2.4.2.1 παρουσιάζεται απλοποιημένο διάγραμμα Jablonski, όπου φαίνεται η παραγωγή διεγερμένων καταστάσεων και φαίνεται η δράση φωτοευαισθητών συμπλόκων μετάλλων μετάπτωσης και οργανομεταλλικών ενώσεων.

Σχήμα 2.4.2.1. Απλοποιημένο διάγραμμα του Jablonski της φωτοκαταλυτικής αντίδρασης σε φωτοευαίσθητες ενώσεις [ML_nX] (1 φωτοευαίσθητη καταλυτική αντίδραση, 2 φωτουποβοηθούμενη αντίδραση, S: υπόστρωμα, P: προϊόν).

Η αποδοτικότητα τέτοιων διεργασιών εξαρτάται μόνο από τη δραστικότητα του καταλύτη που παράγεται φωτοχημικά. Για το λόγο αυτό, υψηλοί αριθμοί TONs του φωτοχημικά παραγόμενου καταλύτη είναι ένα από τα βασικά κριτήρια που αφορούν τις φωτοκαταλυτικές διαδικασίες. Μπορεί να επιτευχθεί κβαντική απόδοση (αναλογία των molπροϊόντος που σχηματίστηκαν σε σύγκριση με τον αριθμό των φωτονίων που απορροφήθηκαν) μεγαλύτερη του ένα. Το ίδιο ισχύει και για φωτοεπαγώμενες αλυσιδωτές αντιδράσεις.

Οι φωτουποβοηθούμενες αντιδράσεις συμπεριλαμβάνουν αλληλεπιδράσεις της διεγερμένης κατάστασης ή των ενδιάμεσων και των μορίων του υποστρώματος, οδηγώντας στο σχηματισμό προϊόντος με ταυτόχρονη αναγέννηση του αρχικού συμπλόκου. Κβαντική απόδοση μεγαλύτερη του 1 δεν μπορεί να επιτευχθεί, επειδή ένα φωτόνιο δεν μπορεί να ξεκινήσει περισσότερους καταλυτικούς κύκλους.

ΚΕΦΑΛΑΙΟ 3

ΠΟΛΥΜΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ Η2

3.1 Ιδανική λειτουργία πολυμοριακών συστημάτων

Όπως προαναφέρθηκε, η παραγωγή υδρογόνου με τη χρήση ορατής ακτινοβολίας απαιτεί έναν ή περισσότερους διαβιβαστές, οι οποίοι στην ιδανική περίπτωση έχουν τα παρακάτω χαρακτηριστικά:

Απορρόφηση ορατής ακτινοβολίας

Μετατροπή της διεγερμένης ενέργειας σε οξειδοαναγωγική ενέργεια (φορτία)

Σύγχρονη μεταφορά αρκετών ηλεκτρονίων στο νερό που οδηγεί στον σχηματισμό H₂ ή O₂.

Πράγματι, μια από τις κύριες δυσκολίες στηνεπίτευξη διάσπασης του νερού μέσω φωτεινής ακτινοβολίας,που προκαλείται από οξειδοαναγωγικές διεργασίες, είναι ότι το υδρογόνο χρειάζεται δύο ηλεκτρόνια (αντίδραση 2), ενώ το οξυγόνο χρειάζεται τέσσερα ηλεκτρόνια (αντίδραση 3).

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
, $E^0(pH = 7) = -0.41 V versus NHE$ (2)

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-, E^0(pH = 7) = +0.82 V versus NHE$$
 (3)

Αυτός ο αριθμός της μεταφοράς των ηλεκτρονίων αντιστοιχείστιςπιο ευνοϊκές θερμοδυναμικές συνθήκες για την αντίδραση 2. Η συνολική αντίδραση διάσπασης νερού είναι μια διαδικασία μεταφοράς ηλεκτρονίων, η οποία απαιτεί 1.23 eV για την μεταφορά ενός ηλεκτρονίου. Εφόσον τα φωτόνια, με μήκος κύματος λ<1008 nm ανταποκρίνονται στην ελάχιστη ενέργεια των 1.23 eV, μπορούν να προκαλέσουν τηδιάσπαση του νερού.

3.2 Γενικά σχήματα για παραγωγή Η2

Στην αρχική προσέγγιση, προτάθηκαν φωτοχημικά συστήματα που περιλάμβαναν πολλά συστατικά (Σχήμα 3.2.1). Σε αυτά τα πολυμοριακά συστήματα, ο ρόλος του κάθε συστατικού καθώς και η λειτουργία του αναφέρονταιακολούθως:

Ι. Φωτοευαισθητοποιητής PS, ικανός να απορροφά ορατή ακτινοβολία ώστε να διεγείρει σωματίδια PS* με χρήσιμες οξεοδοαναγωγικές ιδιότητες (αντίδραση 4).

$$PS \xrightarrow{h\nu_{vis}} PS * \tag{4}$$

II. Συστατικό R (δότης η δέκτης e⁻), το οποίο μπορεί να αναχθεί ή να οξειδωθεί με απόδέγερση των διεγερμένων σωματιδίων PS^{*} στην αντίδραση μεταφοράς ηλεκτρονίων, που οδηγεί στον σχηματισμό φορτισμένων ζευγών, όπως PS⁺, R⁻ στην περίπτωση της οξειδωτικής αποδιέγερσης του PS (αντίδραση 5)

III.

$$PS * + R \to PS^+ + R^- \tag{5}$$

IV. Και ένα τρίτο συστατικό, ικανό να συλλέγει ηλεκτρόνια για να διευκολύνει τη συναλλαγή των δύο (αντίδραση 6) ή τεσσάρων ηλεκτρονίων με νερό. Αυτή η πολλαπλή συλλογή και μεταφορά ηλεκτρονίων μπορεί να πραγματοποιηθεί με ειδικό οξειδοαναγωγικό καταλύτη (Cat.).

$$2R^- + 2H^+ \xrightarrow{Cat} 2R + H_2 \tag{6}$$

Σε τέτοιο σύστημα το δεύτερο συστατικό R δρα ως δέκτης ηλεκτρονίων μεταξύ του φωτοευαισθητοποιητή PS και του καταλύτη (Cat.) μεσολαβώντας για την συλλογή ηλεκτρονίων. Το δυναμικό οξειδοαναγωγής των οξειδωμένων σωματιδίων R⁻ πρέπει να είναι χαμηλότερο από -0.41 V για να λάβουν μέρος στην αντίδραση 2. Στην πράξη αναδύονται προβλήματα από τον γρήγορο ανασυνδιασμό των φορτισμένων ζευγών (αντίδραση 7).

$$PS^+ + R^- \to PS + R \tag{7}$$

Το βασικό πρόβλημα, σε αυτά τα πολυμοριακά συστήματα και πιο γενικευμένα σε φωτοχημικά συστήματα, αποτελεί ο τρόπος με τον οποίο μπορεί να καθυστερήσει η αντίδραση οπισθομεταφοράς ηλεκτρονίων, ώστε να επιτευχθεί διαχωρισμός φορτίων μεγάλης διάρκειας.

Στην περίπτωση των πολυμοριακών συστημάτων, η οπισθοαντίδραση πρέπει να εμποδιστεί με τη χρήση ενός τέταρτου συστατικού, ενός δότη ηλεκτρονίων D, ο οποίος αδρανοποιεί τον οξειδωμένο φωτοευαισθητοποιητή PS^+ στην ανταγωνιστική αντίδραση μεταφοράς ηλεκτρονίων, που δίνει τον αρχικό φωτοευαισθητοποιητή PS και το οξειδωμένο προϊόν D^+ (αντίδραση 8).

$$PS^{+} + D \rightarrow PS + D^{+}$$
(8)
$$D^{+} \rightarrow \pi \rho o \ddot{i} o \nu \tau \alpha$$
(9)

Η κατιοντική μορφή του δότη ηλεκτρονίων αποσυντίθεται γρήγορα μη αντιστρεπτά (αντίδραση 9) και τέτοια συστήματα καλούνται δότες ηλεκτρονίων. Ο δότης ηλεκτρονίων D είναι το μόνο συστατικό, εκτός προφανώς του νερού (H⁺) που καταναλώνεται. Τα άλλα συστατικά PS, PS⁺ και Cat. ακολουθούν τον καταλυτικό κύκλο.

Δύο σχήματα κυκλικής παραγωγής υδρογόνου μπορούν να προβλεφθούν [31]. Το πρώτο ονομάζεται «οξειδωτικός μηχανισμός αποδιέγερσης», επειδή περιλαμβάνει οξείδωση του διεγερμένου φωτοευαισθητοποιητή PS^{*} σε PS⁺ από τον δέκτη ηλεκτρονίων R (Σχήμα 3.2.1a). Οι αντίστοιχες αντιδράσεις φαίνονται παραπάνω (αντιδράσεις 4 έως 9).

Σχήμα 3.2.1. Σχηματική απεικόνιση καταλυτικού κύκλου παραγωγής υδρογόνου από νερό με χρήση ορατής ακτινοβολίας συστήματος τεσσάρων συστατικών PS/R/D/Cat: a) οξειδωτικός μηχανισμός αποδιέγερσης b) αναγωγικός μηχανισμός αποδιέγερσης.

Το Σχήμα 3.2.1b που αφορά την αναγωγή της διεγερμένης κατάστασης του φωτοευαισθητοποιητή PS^{*} από τον δότη ηλεκτρονίων D ονομάζεται «αναγωγικός μηχανισμός αποδιέγερσης». Αυτή η βασική αντίδραση

$$PS^* + D \to PS^- + D^+ \tag{10}$$

αποδίδει τον αναγόμενο φωτοευαισθητοποιητή PS^- και τον οξειδωμένο δότη ηλεκτρονίων D^+ που αποσυντίθεται μη αντιστρεπτά (αντίδραση 10). Με αυτό τον τρόπο, ο PS^- μπορείνα συσσωρεύσει και να αντιδράσει με έναν δέκτη ηλεκτρονίων Rώστε να αναγεννηθεί ο φωτοευαισθητοποιητής PS και να δώσει R^- (αντίδραση 11).

$$PS^- + R \to PS + R^- \tag{11}$$

Παρουσία ενός κατάλληλου καταλύτη, ο οξειδωμένος δέκτης ηλεκτρονίων R⁻ μπορεί να οδηγήσει στον σχηματισμό υδρογόνου, όπως φαίνεται στο πρώτο σχήμα (αντίδραση 6).

Πρέπει να σημειωθεί ότι ο PS⁻ είναι πιο ισχυρό αναγωγικό σωματίδιο από τον R⁻και η αναγωγή του νερού σε H₂ μπορεί να επιτευχθεί άμεσα από τον PS⁻ παρουσία κατάλληλου καταλύτη. Ως συνέπεια, αυτό το σχήμα περιλαμβάνει μόνο τρία συστατικά (PS, D, Cat.) και ο μηχανισμός απλοποιείται (Σχήμα 3.2.2).

Σχήμα 3.2.2. Σχηματική απεικόνιση καταλυτικού κύκλου παραγωγής υδρογόνου από νερό μέσω αναγωγικού μηχανισμού αποδιέγερσης, σύστημα τριών συστατικών PS/D/Cat.

Μια άλλη προσέγγιση συνίσταται στη χρήση του φωτοευαισθητοποιητή PS ως κεραίας και τη μεταφορά της ενέργειας διέγερσης σε ένα μόριο δέκτη ενέργειας R_{en} (αντίδραση 12).

$$PS^* + R_{en} \to PS^+ + R_{en}^* \tag{12}$$

Ο δέκτης αυτής της ενέργειας μπορεί στη συνέχεια να αντιδράσει με τον R (δέκτη ηλεκτρονίων) μέσω μεταφοράς ηλεκτρονίων (αντίδραση 13)

$$R_{en}^* + R \to R_{en}^+ + R^- \tag{13}$$

για να δώσει ένα φορτισμένο ζεύγος (R_{en}^+, R^-). Η αναγωγή του νερού σε H₂ μπορεί να επιτευχθεί με την παρουσία ενός θυσιαζόμενου δότη ηλεκτρονίων D και ένος κατάλληλου καταλύτη (Σχήμα 3.2.3), όπως και στο πρώτο σχήμα (Σχήμα 6α). Σε αυτό το σύστημα των πέντε συστατικών PS / R_{en} / R/ D / Cat, ο φωτοευαισθητοποιητής PS που μεταφέρει ενέργεια δεν συμμετέχει σε καμία οξειδοαναγωγική διαδικασία, όπως κάνουν τα μόρια-κεραίες στη φυσική φωτοσύνθεση, και ο R_{en} λειτουργεί ως δέκτης ενέργειας – ηλεκτρονίων.

Σχήμα 3.2.3. Σχηματική απεικόνιση των οξειδωτικών καταλυτικών κύκλων στην φωτοαναγωγή του νερού σε υδρογόνο, μέσω μεταφοράς ενέργειας από το ορατό φώς, με ακτινοβόληση των PS/R_{en}/R/D/ Cat.

Θα πρέπει να σημειωθεί ότι, παρόλο που η πολυμοριακή προσέγγιση είναι η απλούστερη για την επίτευξη κυκλικής φωτοχημικής διάσπασης του νερού, κάθε στάδιο έχει πολλές δυσκολίες που πρέπει να ξεπεραστούν. Πράγματι, οι ενώσεις που συμμετέχουν σε αυτά τα συστήματα πρέπει να πληρούν φασματοσκοπικές φωτοφυσικές, θερμοδυναμικές και κινητικές απαιτήσεις.

4.3 Πρώτα συστήματα παραγωγής υδρογόνου

Αρκετά συστήματα παραγωγής υδρογόνου από το νερό έχουν προταθεί από το 1977. Τα πρώτα συστήματα αναφέρονται στον Πίνακα 3.3.1. Χρησιμοποιούσαν βαφές ακριδίνης, όπως κίτρινη ακριδίνη [32] ως PS. Ωστόσο, τα σύμπλοκα μετάλλων μετάπτωσης, ειδικά, [Ru(bpy)₃]²⁺ [33] (bpy= 2,2΄διπυριδίνη), φαίνονται να είναι καλοί φωτοευαισθητοποιητές με απορρόφηση στο φάσμα του ορατού, ιδιότητες διεγερμένης κατάστασης, δυναμικό αναγωγής και κινητικές απαιτήσεις. Ως δέκτες ηλεκτρονίων μελετήθηκαν άλατα του Eu³⁺ και του V⁺ [32], σύμπλοκα μετάλλων μετάπτωσης [Rh(bpy)₃]³⁺ που μπορούν να μεταφέρουν δύο ηλεκτρόνια και μεθυλοβιολογόνο MV⁺. Η κυστεΐνη [33] και ειδικότερα η τριτοταγής αμίνη, όπως EDTA [31] και η τριαιθανολαμίνη TEOA, που αποσυντίθενται γρήγορα όταν οξειδώνονται, χρησιμοποιήθηκαν ως δότες ηλεκτρονίων. Ενώσεις πλατίνας [31–33] αποδείχτηκαν κατάλληλοι καταλύτες.

Συστήματα	PS	R	D	Cat	Αναφορά
1	Κίτρινη ακριδίνη	Eu ³⁺ ή V ³⁺	Κυστεϊνη	PtO ₂	Shilov 1977[32]
2	[Ru(bpy) ₃] ²⁺	Rh;(bpy) ₃] ³⁺	TEOA	K ₂ PtCl ₆	Lehn 1977[34]
3	[Ru(bpy) ₃] ²⁺	MV^+	EDTA	Κολλοειδής Pt	Orsay 1978[31]
4	[Ru(bpy) ₃] ²⁺	MV^+	TEOA	PtO ₂	Graetzel 1978[33]

Πίνακας 3.3.1. Πρώτα συστήματα παραγωγής υδρογόνου από φωτοχημική διάσπαση του νερού.

Το πρώτο σύστημα (Πίνακας 3.3.1, Σύστημα 1), που το περιέγραψε ο Shilov [32], αποτελείται από κίτρινη ακριδίνη AY ως PS, κυστεϊνη ως δότη ηλεκτρονίων, σαλικυλικά σύμπλοκα του Eu³⁺ καιV³⁺ ως δέκτη ηλεκτρονίων και τον καταλύτη τουAdam (PtO₂) ως καταλύτη. Επίσης χρησιμοποίησαν EDTA, TEOA ή H₂S ως D,MV⁺ ως R και [K₂PtCl₆] ως καταλύτη. Υπέθεσαν ότι ο μηχανισμός που ακολουθήθηκε ήταν «αναγωγικού» τύπου (Σχήμα 3.2.1b), και η κβαντική απόδοση παραγωγής υδρογόνου στην περίπτωση του συστήματος που περιλάμβανε AY/Eu³⁺/κυστείνη/PtO₂ ήταν της τάξης του 1%. Αυτή η κβαντική απόδοση ήταν τόσο πολύ χαμηλή που αμφισβητήθηκε η αξιοπιστία του. Στις αρχές του 1970 τα σύμπλοκα διπυρινικών μετάλλων θεωρούνταν οι πιο υποσχόμενοι φωτοευαισθητοποητές έναντι των οργανικών συμπλόκων [35]. Τα δύο επόμενα συστήματα, αυτά του Lehn και του Saurage [34] (Πίνακας 3.3.1, Σύστημα 2) χρησιμοποίησαν σύμπλοκα μετάλλου [Ru(bpy)₃]²⁺ ως PS. Στα συστήματα του Lehnη η κβαντική απόδοση του υδρογόνου ήταν πολύ υψηλότερη (>10%) από αυτή του συστήματος του Shilov [32]. Στο 1° σύστημα μάλιστα ήταν δυνατό να ανιχνευθεί ο σχηματισμός φυσαλίδων H₂ με γυμνό μάτι. Επιπροσθέτως, στην περίπτωση του συστήματος του Orsay (Πίνακας 3.3.1, Σύστημα 3) εδραιώθηκε ο οξειδωτικός μηχανισμός αποδιέγερσης για παραγωγή υδρογόνου (Σχήμα 3.2.1a).

Πρέπει να σημειωθεί ότι στο σύστημα του Shilov [32] και στο σύστημα του Lehn [34] θεωρήθηκε ότι τα σωματίδια του Pt σχηματίζονται in situ μέσω φωτοευαισθητοποιημένης αναγωγής του [K₂PtCl₆], ενώ στο σύστημα του Orsay τα κολλοειδή μέταλλα (Pt,Au) μπορούν να χρησιμοποιηθούν επιτυχώς ως καταλύτες σε ένα φωτοχημικό σύστημα.

Ο Graetzel περιέγραψε την ίδια περίοδο ένα σύστημα (Πίνακας 3.3.1, Σύστημα 4) παρόμοιο με εκείνο του Orsay, όμως χρησιμοποίησεοξείδια πλατίνας PtO₂ (καταλύτης του Adam) αντί τον κολλοειδής Pt και τριαιθανολαμίνη αντί του EDTA. Με αυτά τα συστήματα (PtO₂, TEOA) η απόδοση είναι πολύ χαμηλότερη από αυτή του συστήματος του Orsay.

ΚΕΦΑΛΑΙΟ 4

ΦΩΤΟΚΑΤΑΛΥΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΥΔΡΟΓΟΝΟΥ

4.1 Ομογενής καταλύτες και ομογενής συστήματα παραγωγής Η2

Σε ομογενή συστήματα (Πίνακας 4.1.1), μετά τη διέγερση του φωτοευαισθητοποιητή PS με ορατή ακτινοβολία, ένα από τα συστατικά μετατρέπεται σε ασταθέςενδιάμεσο, παραδείγματος χάρη ένα υδρίδιο του μετάλλου, που στην συνέχεια αποσυντίθεται για να παραχθεί υδρογόνο και η αρχική ένωση. Για αυτό το λόγο αυτή η ένωση δρα ως ομογενής καταλύτης.

PS	R	D	pН	Φ(H ₂)	Ref.
[Ru(bpy)3] ²⁺	$[Co(Me_6[14]]$ διένιοN ₄)(H ₂ O) ₂] ²⁺	Eu ²⁺	5.0	0.05	1979[36]
[Ru(bpy) ₃] ²⁺	$[Co(Me_6[14]διένιοN_4)(H_2O)_2]^{2+}$	ασκορβικό	5.0	0.0005	1979[36]
[Ru(bpy)3] ²⁺	$[Rh(bpy)_3]^{3+}$	EDTA	5.2	0.04	1979[19]
[Ru(bpy) 3] ²⁺	$\left[Rh(bpy)_{3} \right]^{3+}$	TEOA	5.0	0.02	1981[37]
[Ru(bpy) ₃] ²⁺	$[Co(bpy)_n]^{2+}$	ασκορβικό	5.0	0.03	1981[37]
[Ru(bpy) ₃] ²⁺	[Co(διμεθυλογλυοξίμη)2]	TEOA	8.7		1983[38]
[Ru(4,7- (CH3)2phen)3] ²⁺	[Co(bpy) ₃] ³⁺	TEOA	8.0	0.29	1985[39]

Πίνακας 4.1.1. Ενώσεις και κβαντική απόδοση παραγωγής H_2 σε συστήματα ομογενής φωτοκατάλυσης.

aSe DMF / H_2O $\eta~$ organiká mésa (DMF, aketónh, aketonitrílio ...)

 $^{\beta}\Sigma\epsilon$ 50% υδατικό ακετονιτριλίο

Καλοί καταλύτες είναι οι ανόργανες ενώσεις, που έχουν μεταλλικό κέντρο ικανό να παρουσιάσει οξειδωτικές καταστάσεις κατά τη διάρκεια του καταλυτικού κύκλου, και το οποίο σχηματίζει ενδιάμεσο υδρίδιο, ασταθές σε διάλυμα, που παρέχει τις κατάλληλες συνθήκες για την απελευθέρωση του H₂. Ομογενής καταλύτες [9] (Πίνακας 4.1.1), που αναφέρθηκαν για πρώτη φορά το 1979 είναι σύμπλοκα του κοβαλτίου, $[Co(Me_6[14]\deltaιενίουN_4)(H_2O)_2]^{2+}$, και $[Rh(bpy)_3]^{3+}$ [19], $[Co(bpy)_3]^{3+}$ [38,40], κοβαλοξίμες και άλλα μακρο-κυκλικά σύμπλοκα [38]. Αυτά τα ομογενή συστήματα 4.1.1) αποτελούνται τρία συστατικά, (Πίνακας από τον φωτοευαισθητοποιητή PS, συνήθως [Ru(bpy)₃]²⁺ [34,38,39] ή [Ru(4,7- $(CH_3)_2(phen)$ ²⁺ (phen= 1,10 φαινανθρολίνη) [38], τον δότη ηλεκτρονίων EDTA, Eu(II) [39], ασκορβικό [37,39] ή τεταρτοταγείς αμίνες όπως ΤΕΟΑ [19,39,40] και του καταλύτη. Ο μηχανισμός της παραγωγής υδρογόνου περιλαμβάνει είτε αναγωγική [36-38] είτε οξειδωτική [19,39] αποδιέγερση του PS*. Αυτά τα συστήματα είναι αποτελεσματικά, ειδικά σε οργανικούς διαλύτες [38]. Στην περίπτωση του συστήματος $[Ru(4,7-(CH_3)_2(phen)]^{2+}/TEOA/[Co(bpy)_3]^{2+},$ που προτάθηκε από τον Sutin [39], η απόδοση του συστήματος είναι 0.02 και αυξάνεται σε 0.29 με 50% CH₃CN-H₂O (Πίνακας 4.1.1).

4.2 Σύστημα: $[Ru(bpy)_3]^2/EDTA/MV^{2+}/σύμπλοκο Pt$ για παραγωγή H_2

Κλασσικό σύστημα που προτάθηκε το 1978 πρώτη φορά από την ομάδα του Orsay [31,32] (Πίνακας 3.3.1, Σύστημα 3), συμπεριλαμβάνει το [Ru(bpy)₃]²⁺ ως PS, MV²⁺ ως R, το EDTA ως D και την κολλοειδή πλατίνα ως καταλύτη [31,39] (Σχήμα 4.2.1). Είναι γνωστό από το 1934 [41], ότι η ανταλλαγή ηλεκτρονίων μεταξύ MV²⁺ και H₂ καταλύεται από Pt. Όμως για πρώτη φορά, αποδείχτηκε ότι καταλυτικά αιωρήματαπου χρησιμοποιήθηκαν σε φωτοσυστήματα [31], μεσολαβούν για την παραγωγή υδρογόνου από το νερό με τη χρήση ορατής ακτινοβολίας. Σε προηγούμενες μελέτες [32,34], ο σχηματισμός in situ τέτοιων κολλοειδών επιτυγχανόταν μέσω αναγωγής αλάτων του Pt. Αυτό το σύστημα, παρήγαγε αποτελεσματικά H₂, οδηγούσε σε επαναλαμβανόμενα αποτελέσματα και έδινε λεπτομερή περιγραφή του μηχανισμού [18], όπως και την κβαντική απόδοση του σχηματισμού του υδρογόνου [42]. Αυτοί είναι οι λόγοι που αυτό το σύστημα μελετήθηκε από πολλές ομάδες [43–47] και ακόμη θεωρείται σύστημα αναφοράς για δοκιμές νέων PS, R, D και καταλυτών (Πίνακας 4.4.1), και για ηλιακούς φωτοχημικούς αντιδραστήρες σε πιλοτικό επίπεδο [48].

Σχήμα 4.2.1. Σχηματική απεικόνιση του αναγωγικού καταλυτικού κύκλου παραγωγής H_2 του συστήματος [Ru(bpy)₃]²/MV²⁺/EDTA/κολλοειδή Pt.

Όταν υδάτικο διάλυμα που περιέχει $[Ru(bpy)_3]^{2+}$, MV^{2+} , EDTA και κολλοειδή Pt ακτινοβολείται με ορατή ακτινοβολία (400 nm< λ < 600 nm), παρατηρείται σημαντική απελευθέρωση H₂ (Σχήμα 4.2.1) σύμφωνα με τον ακόλουθο μηχανισμό [31,32], οι βασικές αντιδράσεις του οποίου είναι :

$$[Ru(bpy)_3]^{2+} \xrightarrow{hv} [Ru(bpy)_3]^{2+}$$
(11)

$$[Ru(bpy)_3]^{2+.} \xrightarrow{k_0} [Ru(bpy)_3]^{2+}$$
(12)

$$[Ru(bpy)_3]^{2+.} + MV^{2+} \xrightarrow{\kappa_q} [Ru(bpy)_3]^{3+} + MV^{+.}$$
(13)

$$[Ru(bpy)_3]^{3+} + MV^{+} \xrightarrow{\kappa_b} [Ru(bpy)_3]^{2+} + MV^{2+}$$
(14)

$$[Ru(bpy)_3]^{3+} + EDTA \xrightarrow{\kappa_{ox}} [Ru(bpy)_3]^{2+} + EDTA^+$$
(15)

$$MV^{2+} + H^+(H_20) \rightleftharpoons^{Pt} MV^{2+} + \frac{1}{2}H_2$$
 (16)

$$Net: EDTA + H^+ \xrightarrow{hvPt} EDTA^+ + \frac{1}{2}H_2.$$
(17)

Δυστυχώς προκύπτει αποικοδόμηση του EDTA (αντίδραση 18)

 $EDTA^+ \rightarrow \pi$ ροϊόντα (κυρίως γλυοξυλικού οξέος) (18) Εκτόςαπότην κατανάλωση EDTA (αντίδραση 24), προβλήματα προκύπτουν από τις ανεπιθύμητες αντιδράσεις, όπως ο διμερισμός του MV⁺ [23] (αντίδραση 19)

$$2MV^+ \rightleftharpoons (MV^+)_2 \tag{19}$$

καθώς και η μη αντιστρεπτή υδρογόνωση του μεθυλικού βιολογόνου [39,41,49] (αντίδραση 20).

$$MV^{+} \acute{\eta} MV^{2+} \xrightarrow{H_2Pt} MV^{+}H \xrightarrow{H_2Pt} \pi\rho \sigma \ddot{\iota} \acute{\delta} \nu \tau \alpha$$
(20)

Σε μη απαερωμένα διαλύματα, ο ρυθμός σχηματισμού H_2 και η απόδοση μειώνονται, αυτό οφείλεται κατά κύριο λόγο στην αντίδραση 21 με $k = 8 \cdot 10^8 \text{ M}^{-1} \text{ s}^1$ [50].

$$MV^+ + O_2 \rightarrow MV^{+2} + O_2^-$$
 (21)

Αυτή η αντίδραση οδηγεί στο σχηματισμό H_2O_2 ως σταθερό ενδιάμεσο και το MV^{2+} αποικοδομείται σε άλλα προϊόντα [51].

$$O_2^{-} + H^+ \to HO_2^{\cdot} \tag{22}$$

$$2HO_2 \rightarrow O_2 + H_2O_2 \tag{23}$$

$$MV^+ + O^-HO_2 \rightarrow MVO_2 \rightarrow \pi \rho o \ddot{i} \delta \nu \tau \alpha$$
 (24)

Ο μηχανισμός δείχνει ότι η παραγωγή του H_2 εξαρτάται από την ένταση της ακτινοβολίας, το pH και την συγκέντρωση των τεσσάρων συστατικών του συστήματος. Η άριστη κβαντική απόδοση $\Phi(1/2 H_2) = 0.171$ για το σύστημα βρέθηκε όταν οι συγκεντρώσεις ήταν οι ακόλουθες: pH=5, [Ru(bpy)₃]²⁺ 5.65×10⁻⁵ M, MV²⁺

 3×10^{-3} M, EDTA 0.1 M και κολλοειδή Pt 1.92×10^{-5} M. Στις ίδιες υπολογιζόμενες συνθήκες, απουσία όμως του Pt, η κβαντική απόδοση του MV²⁺ ήταν Φ(MV^{2+.}) = 0.181.

Ο αριθμός επανάληψης του καταλυτικού κύκλου (TON) για την παραγωγή υδρογόνου, ο οποίος αντανακλά την σταθερότητα του κάθε συστατικού του συστήματος, ιδιαίτερα του MV²⁺, είναι για παράδειγμα [18]:

TN([Ru(bpy)₃]²⁺) > 290 TN(MV²⁺) = 115 TN(κολλοειδήςPt) > 2900

Ουσιαστικά, η αναγέννηση του υδρογόνου σταματά όταν το μεθυλικό βιαλογόνο καταστραφεί ολοκληρωτικά δια μέσου υδρογόνωσης. Εντωμεταξύ, το $[Ru(bpy)_3]^{2+}$ αποσυντίθεται ελαφρά και ο κολλοειδής Pt παραμένει άθικτος. Οι υπολογιζόμενοι TONs είναι τα χαμηλότερα όρια των πραγματικών TONs για το $[Ru(bpy)_3]^{2+}$ και την Pt. Η αναστολή της καταλυτικής υδρογόνωσης έχει μεγάλη σημασία. Αυτή η ανεπιθύμητη αντίδραση, μπορεί να προληφθεί α) με δέκτες ηλεκτρονίων των οποίων η δομή θα είναι λιγότερο ευαίσθητη στην υδρογόνωση όπως HMV²⁺ (ιόντα 1,1',2,2',6,6'-εξαμέθυλο-4,4'διπυριδινίου) [52] και [Co(sep)]³⁺ [20], β) με τη χρήση πιο εξειδικευμένων καταλυτών όπως RuO₂ [52], και/ή γ) με τη χρήση διαλυμάτων που δηλητηριάζουν την υδρογόνωση όπως ενώσεις του θείου [44,51,53].

Σε βελτιωμένο σύστημα πέντε συστατικών, του Sasse και της ομάδας [23] του (Σχήμα 4.2.1), [Ru(bpy)₃]²⁺/AC⁻/MV²⁺/EDTA/κολλοειδή Pt χρησιμοποιώντας το ανιόν του AC⁻ ως δέκτη ηλεκτρονίων πραγματοποιήθηκε παραγωγής υδρογόνου με μέγιστη κβαντική απόδοση [23].

 $\Phi(1/2 H_2) = 0.85$

4.3 Σύστημα: σύμπλοκο Pt (1)/TEOA/MV²⁺ για παραγωγή H₂

Σύστημα που προτάθηκε από τους Pingwu Du, Jacob Schneider, Paul Jarosz και Richard Eisenberg [54] το 2006, συμπεριλαμβάνει το σύμπλοκο Pt (1) ως PS (Σχήμα 4.3.1), το MV^{2+} ως R και την ΤΕΟΑ ως D.

Σχήμα 4.3.1. Απεικόνιση δομής συμπλόκου Pt (1).

To σύμπλοκο Pt (1) παρουσιάζει ζώνη χαμηλής ενεργειακής απορρόφησης σε MeCN:νερό (2:3 v/v) μεταξύ 375 nm και 540 nm με λ_{max} στα 420 nm (ε~7700 dm³mol⁻¹cm⁻¹) (Σχήμα 4.3.2). Η παραγωγή υδρογόνου βρέθηκε ότι εξαρτάται από το pH του διαλύματος και από τη συγκέντρωση του MV²⁺. Σε pH 7, παρατηρήθηκε η μέγιστη παραγωγή υδρογόνου, όμως σημαντικές ποσότητες υδρογόνου παράχθηκαν αντίστοιχα σε pH 5 και 9. Όπως είχε παρατηρηθεί και σε προγενέστερα συστήματα [Ru(bpy)₃]³⁺/TEOA/MV²⁺ και [Ru(bpy)₃]³⁺/EDTA/MV²⁺ [19,36,47], έτσι και σε αυτό το σύστημα η εξάρτηση της παραγωγής του H₂ από το pH είναι σύνθετη, εξαρτάται από πολλούς παράγοντες, συμπεριλαμβανομένου της επιρροής του στο δυναμικό αναγωγής H⁺/H₂, την επιδρασή του MV²⁺, και την επίδραση του pH στον πολυακριλικό σταθεροποιητή φορτίων.

Σχήμα 4.3.2. Φάσμα ηλεκτρονικής απορρόφησης συμπλόκου Pt (1) σε MeCN: νερό (2:3 v/v).

Η απόδοση της παραγωγής του υδρογόνου βρέθηκε ότι εξαρτάται από το pH και το MV^{2+} . Το Σχήμα 4.3.3a δείχνει την ποσότητα του υδρογόνου που παράγεται, καθώς μεταβάλλονται αυτές οι δύο παράμετροι. Ενδιαφέρον παρουσιάζει το γεγονός, ότι όταν η συγκέντρωση του MV^{2+} είναι 1.56×10^{-3} M ή μεγαλύτερη δεν παράγεται υδρογόνο. Η αρνητική επίδραση της συγκέντρωσης του MV^{2+} , μπορεί να ερμηνευτεί από την ανταγωνιστική οξειδωτική και αναγωγική αποδιέγερση από το MV^{2+} και την ΤΕΟΑ. Η βέλτιστη τιμή της συγκέντρωσης του MV^{2+} για το σύστημα σύμπλοκο $Pt(1)/TEOA/MV^{2+}$ βρέθηκε να είναι 3.1×10^{-1} σε pH 7 (Σχήμα 4.3.3b). Μετά από 10 h ακτινοβόλησης $\lambda > 410$ nm, το σύστημα με αρχική συγκέντρωση του TEOA στα 5.6×10^{-3} M παρήγαγε 84 αριθμούς επανάληψης καταλυτικού κύκλου (TONs), κάτι που αντιστοιχεί σε 34% απόδοση βασισμένο σε δέκτη ηλεκτρονίων, περαιτέρω ακτινοβόληση οδήγησε σε πρόσθετη παραγωγή υδρογόνου, αλλά με χαμηλότερο ρυθμό παραγωγής. Παραγωγή υδρογόνου παρατηρήθηκε και όταν το MV^{2+} αντικαταστάθηκε από το [Rh(bpy)₃]³⁺με χαμηλότερη απόδοση [19,54].

Ο μηχανισμός του συστήματος παρουσιάζεται στις παρακάτω αντιδράσεις:

$$1 \to 1^* \tag{25}$$

$$1^* + MV^{2+} \to 1^+ + MV^{+}$$
(26)

$$1^* + TEOA \to 1^- + TEOA^* \tag{27}$$

$$1^{-} + MV^{2+} \to 1 + MV^{+}$$
 (28)

$$1^+ + MV^{+} \rightarrow 1 + MV^{2+}$$
 (29)

$$TEOA + 1^* \to TEOA^+ + 1 \tag{30}$$

$$TEOA^{+} \xrightarrow{-H^{+}} TEOA^{*} \to CH_{2}(OH)CHO + NH(CH_{2}CH_{2}OH)_{2}$$
(31)

$$2MV^{+} + H_2 0 \xrightarrow{\kappa o \lambda \lambda o \varepsilon \iota \delta \eta P t} H_2 + 20H^- + 2MV^{2+}$$
(32)

Evώ το σύμπλοκο (1*) είναι ικανό για οξειδωτική και αναγωγική αποδιέγερση με MV^{2+} και TEOA, οι μετρήσεις έδειξαν ότι κυριαρχεί η οξειδωτική αποδιέγερση με MV^{2+} . Η αναγωγική αποδιέγερση από την TEOA συμφωνεί με τα αποτελέσματα του Schmehl [55], ότι το σύμπλοκο (1) είναι ισχυρό οξειδωτικό μέσο διεγερμένης κατάστασης. Όπως έχει προταθεί σε προηγούμενες μελέτες από τον Graetzel [56], η παραχθείσα κατιονική ρίζα της TEOA⁺ παράγεται από την TEOA προκαλεί αναγωγή του [Ru(bpy)₃]³⁺ που χάνει H⁺ και μεταφέρει ένα ηλεκτρόνιο στο MV^{2+} στη διαδρομή προς την αποσύνθεση, για να σχηματίσει γλυκοαλδεΰδη και δι-αιθανολαμίνη (αντίδραση 31). Η μεταφορά ηλεκτρονίων από το MV^{2+} στον καταλύτη ακολουθείται από την αναγωγή πρωτονίου στην επιφάνεια του Pt (αντίδραση 32).

Σχήμα 4.3.3. a) επίδραση του pH στην παραγωγή υδρογόνου **b**) επίδραση του MV^{2+} στην παραγωγή υδρογόνου.

4.4. Συστήματα παραγωγής υδρογόνου με διθειολενικά σύμπλοκα

Τα τελευταία τριάντα χρόνια τα ομοληπτικά ή ετεροληπτικά διθειολενικά σύμπλοκα έχουν προσελκύσει το επιστημονικό ενδιαφέρον στην φωτοκαταλυτική διάσπαση του νερού [57–59]. Αυτό το ενδιαφέρον οφείλεται κυρίως στην αντιστρεπτή οξειδοαναγωγική συμπεριφορά τους, που δυνητικά καθιστά ενδιαφέρουσα τη μελέτη τους στην παραγωγή υδρογόνου και οξυγόνου. Επιπλέον, αυτά τα σύμπλοκα παρουσιάζουν έντονη απορρόφηση στο ορατό, είναι αρκετά φθηνά (ανάλογα με τα μέταλλα μετάπτωσης που χρησιμοποιούνται) και διαλυτοποιούνται σε πολλούς διαλύτες. Επίσης, οι ηλεκτροχημικές και οι φωτοχημικές ιδιοτητές τους μπορούν να συσχετιστούν κατάλληλα με τις δομές των υποκαταστατών, ενώ οι υποκαταστάτες που χρησιμοποιούνται κατά κόρον σε συστήματα αναγωγής πρωτονίων, όπως οι κοβαλοξίμες.

Δυστυχώς τα διθειολενικά σύμπλοκα δεν φαίνεται να είναι καλοί ευαισθητοποιητές για την αναγωγή αλλά ούτε και την οξείδωση του νερού σε ομογενή διαλύματα [57]. Αυτό οφείλεται στην έντονη δραστικοτητά τους όχι μόνο με διαλύτες όπως το THF και το DMSO, αλλά και παρουσία ιόντων πολλών μετάλλων όπως Cu²⁺, Zn²⁺, Fe³⁺ ακόμα και σε αποσταγμένο νερό με κατάλληλη συγκέντρωση του καταλύτη. Τα μειονεκτήματα της συμπεριφοράς των διθειολενικών συμπλόκων σε ομογενή

47

διαλύματα μπορούν να ξεπεραστούν, αν αυτά γεφυρωθούν με ημιαγωγούς όπως TiO₂ και ακτινοβοληθούν σε μήκη κύματος μεγαλύτερα από 400 nm.

Παρόλο, που η χρήση διθειολενικών συμπλόκων ως φωτοευαισθητοποιητές σε ομογενή διαλύματα αντιμετωπίζει κάποια προβλήματα, είναι εμφανές ότι τα μονοανιόντα τους μπορούν να δράσουν ως καταλύτες για τη διευκόλυνση της μεταφοράς των ηλεκτρονίων στο νερό αντί του λευκοχρύσου. Αυτό είναι πολύ σημαντικό μιας και τα διθειολενικά σύμπλοκα μπορούν να αποτελέσουν εναλλακτική πρόταση ως προς το Pt χρησιμοποιώντας ιόντα Cu, Ni, Co που είναι άφθονα στην φύση και δεν προκαλούν προβλήματα στο περιβάλλον.

Η πρώτη φορά που το μονοανιόν δι-[1-(2-χλωροφαινυλο)-2-φαινυλο-1,2-διθειολένιο-S,S']Ni(II) {bis[1-(2-chlorophenyl)-2-phenyl-1,2-dithiolenic-S,S']nickel(II)} χρησιμοποιήθηκε ως καταλύτης στην παραγωγή υδρογόνου ήταν το 1985 από τον Ε.Χαντζόπουλο και την ομάδα του [60]. Λίγα χρόνια αργότερα μια πιο λεπτομερής έρευνα του μονοανιόντος τρι-[1-(2-γλωροφαινυλο)-2-φαινυλο-1,2-διθειολένιο-{tris[1(2-chlorophenyl)-2-phenyl-1,2-dithiolenic-S,S']tungsten(VI)} S,S'W(VI)απέδειξε ότι το συγκεκριμένο μονοανιόν μπορεί να καταλύσει θερμικά την αναγωγή του νερού [58]. Φασματοσκοπικές μετρήσεις έδειξαν ότι στο διάλυμα ακετόνη/νερό, το σύμπλοκο τρι-[1(4-μεθοξυφαινυλο)-2-φαινυλο-1,2-αιθυλοδιθειολένιο-S,S']W(VI) {tris[1(4-methoxyphenyl)-2-phenyl-1,2-ethyldithiolenic-S,S']tungsten(VI)} ανάγεται (in situ) στο μονοανιόν του από το χημικά παραγόμενο MV^{+.}. Οι αντιδράσεις που λαμβάνουν χώρα στο διάλυμα είναι οι παρακάτω σύμφωνα με τα κινητικά δεδομένα:

$$MV^{++} + C \rightarrow MV^{2+} + C^{-}(\alpha\rho\gamma\eta)$$
(1)
$$2MV^{++} + H_2O \rightarrow 2MV^{2+} + H_2 + 2OH^{-}(\gamma\rho\eta\gamma\rho\eta)$$
(2)

Αντικαθιστώντας το νερό με D₂O αποδείχθηκε ότι η πηγή των πρωτονίων είναι το νερό.

Σε μια πρόσφατη μελέτη του Eisenberg χρησιμοποιήθηκε το $[Co(bdt)_2]^-$ ως καταλύτης σε διάλυμα με το $[Ru(bby)_3]^{2+}$ ως χρωμοφόρο και το ασκορβικό οξύ ως δότη ηλεκτρονίων. Το σύστημα ακτινοβολήθηκε με λ=520 nm σε σύστημα διαλυτών MeCN/H₂O στους 15 °C δίνοντας 2700 TON_{cat} σε pH=4. Το σύστημα έδειξε ότι

αυξάνοντας την συγκέντρωση του καταλύτη αυξάνεται και η ποσότητα του υδρογόνου που παράγεται. Παρατηρείται αποσύνθεση της κοβαλοξίμης μετά από 8 h ακτινοβόλησης, αν και προηγούμενες μελέτες είχαν αναφέρει ότι οι κοβαλοξίμες δεν αντέχουν πάνω από 3 h ακτινοβόλησης. Όταν πάλι η συγκέντρωση του χρωμοφόρου αυξάνεται, αυξάνεται και η δραστικότητα του συστήματος δείχνοντας ότι η εξάρτηση του ρυθμού παραγωγής του υδρογόνου είναι πρώτης τάξης. Το ίδιο σύμπλοκο [Co(bdt)₂]⁻ δρα επίσης ως φωτοκαταλύτης για αναγωγή υδρογόνου σε σύστημα διαλυτών 1:1CH₃CN/H₂O παρουσία ασθενούς οξέος υποδηλώνοντας ότι είναι πολύ δραστικός καταλύτης τόσο για την φωτοκαταλυτική όσο και για την ηλεκτροκαταλυτική παραγωγή υδρογόνου.

Πίνακας 4.4.1. Μοντέλα παραγωγής υδρογόνου από φωτοχημική διάσπαση του νερού με διθειολενικά σύμπλοκα.

Complex ^a	\mathbf{M}	R	R′	n	Z	Cat.	H_2	t _{ir}	TOF	λ_{ir}
						(mmol)	(mmol)	(h)		(nm)
Series I										
1	W	Ph	Ph	3	0	~1	-	180	-	>290
2	V	Ph	Ph	3	-1	0.038	0.3	20	0.5	>254
3	V	Ph	Ph	3	0	0.038	0.3	20	0.5	>254
4	Cr	CN	CN	3	-2	0.078	0.1	20	< 0.5	>254
5	Mo	Ph	Ph	3	0	0.094	4.4	20	2.0	>254
6	W	CN	CN	3	-2	0.089	3.5	20	2.0	>254
7	Mn	CN	CN	2	-2	0.086	1.8	20	1.0	>254
8	Re	Ph	Ph	3	0	0.058	< 0.01	20	-	>254
9	Fe	Ph	Ph	2	0	0.023	2.1	20	4.5	>254
10	Os	Ph	Ph	3	0	0.058	1.2	20	1.0	>254
11	Co	Ph	Ph	2	0	0.0097	1.6	20	8.0	>254
12	Co	Et_2N	Et_2N	3	2	0.2	< 0.01	20	-	>254
13	Rh	CN	CN	2	-2	0.044	1.5	20	1.5	>254
14	Ni	Н	Н	2	-1	0.041	1.2	20	1.05	>254
15	Ni	CH_3	CH_3	2	0	0.064	2.5	20	2.0	>254
16	Ni	CN	CN	2	-2	0.021	2.1	20	5.0	>254
17	Ni	Ph	Ph	2	0	0.022	2.0	20	4.5	>254
18	Ni	Ph	Ph	2	-1	0.022	1.4	20	3.0	>254
19	Ni	Ph	Ph	2	-2	0.038	2.0	20	2.5	>254
20	Ni	Et_2N	Et_2N	3	2	0.1	< 0.01	20	-	>254
21	Pd	Ph	Ph	2	0	0.022	2.3	20	5.0	>254
22	Pt	Ph	Ph	2	0	0.02	1.8	20	4.5	>254
23	Cu	Et_2N	Et_2N	3	2	0.04	0.5	20	0.5	>254
24	Ag	CN	CN	2	-2	0.023	1.6	20	3.05	>254
25	Au	CN	CN	2	-1	0.17	0.5	20	< 0.5	>254
26	Zn	CN	CN	2	-2	0.06	10.2	20	8.5	>254
27	Zn	R-	R-	2	-2	0.08	8.5	20	5.5	>254
		R=CS ₃	R=CS ₃							
28	Ni	Ph	o-C ₆ H4- Cl	2	0	0.000903	0.0335	5	-	>350

29	W	Ph	p-C ₆ H ₄ - OCH ₃	3	0	0.00027	0.00438	1	>1000	>350
30	W	Н	p-C ₆ H ₄ - OCH ₃	3	0	0.00032	0.00235	3		>350
31	W	Ph	p-C ₆ H ₄ - N(CH ₃) ₂	3	0	0.00045	0.11607	3		>350
Series II										
32	Ti	-	-	3	-2	0.08	2.6	20	1.6	>254
33	Cu	-	-	2	-1	0.13	0.8	20	0.5	>254
34	Zn	-	-	2	-2	0.043	1.3	20	1.5	>254
Series III										
35	Ni	-	-	2	-2	0.043	0.5	20	0.5	>254
36	Zn	-	-	2	-2	0.06	1.4	20	1.0	>254
Series IV										
37	Fe	-	-	-	0	0.02	0.8	20	2.0	>254
38	Co	-	-	-	0	0.01	1.6	20	8.0	>254
39	Ni	-	-	-	0	0.05	< 0.05	20	-	>254
Series V										
40	Fe	PhNH	-	3	0	0.067	1.5	20	1.0	>254
41	Co	PhNH	-	2	0	0.23	0.6	20	< 0.5	>254
41	Ni	Ar	-	2	0	0.12	0.6	20	< 0.5	>254
42	Cu	Ar	-	2	0	0.16	1.1	20	0.5	>254
Series VI										
43	Ni	Н	-	-	0	0.085	1.7	20	1.0	>254
44	Zn	Н	-	-	0	0.074	3.0	20	2.0	>254
45	Zn	CN	-	-	0	0.059	0.5	20	0.5	>254
46	Co	-	-	-	0	0.035	0.7	20	1.0	>254
Series VII										
47	Pt	COOH	-	-	0	~0.00066	-	95	0.884	>410
48	Pt	tBu	-	-	0	~0.00066	-	40	0.125	>410
Series VIII										
49	Pt	COOH	-	-	0	~0.00066	-	73	0.986	>410
50	Pt	tBu	-	-	0	~0.00066	-	40	0.175	>410
51	Co	-	-	-	0	0.000024	-	12	>225	520

^aΤα δεδομένα που αναγράφονται στον παραπάνω Πίνακα για τα σύμπλοκα **1, 2-27** και **30-46** προέρχονται από τις αναφορές [61] και [62] αντιστοίχως, για τα σύμπλοκα **28, 29, 30, 31, 47-50** και **51** από [58,63–65] και [59].

Σχήμα 4..4.1. Δομές των διθειολενικών συμπλόκων του Πίνακα 4.4.1 που χρησιμοποιήθηκαν στην παραγωγή υδρογόνου από φωτοχημική διάσπαση του νερού.

4.5 Συστήματα παραγωγής υδρογόνου που καταλύονται από μοριακούς καταλύτες κοβαλοξίμης

Μια σειρά συμπλόκων κοβαλοξίμης ([Co(dmgH)2(py)Cl] (C1), [Co(dmgH)2(4-COOMe-py)Cl] (C2), $[Co(dmgH)_2(4-Me_2Npy)Cl]$ (C3), $[Co(dmgH)(dmgH_2)Cl_2]$ (C4), $[Co(dmgH)_2(py)_2](PF_6)$ (C5), $[Co(dmgH)_2(P(n-Bu)_3)Cl]$ (**C6**), και [Co (dmgBF₂)₂(OH₂)₂] (C7), όπου dmgH = διμεθυλογλυοξιμικό μονοανιόν, dmgH₂ = διμεθυλογλυοξίμη, dmgBF₂ = διμεθυλογλυοξιμικό ανιόν και py = π υριδίνη: συντέθηκαν και μελετήθηκαν ως μοριακοί καταλύτες, για την φωτοπαραγωγή υδρογόνου, από τους Pingwu Du, Jacob Schneider, Genggeng Luo, WilliamW. Brennessel, και Richard Eisenberg [25], σε συστήματα που χρησιμοποίησαν ως χρωμοφόρα σύμπλοκα λευκοχρύσου (Pt), ως δότη ηλεκτρονίων την τριεθανολαμίνη (ΤΕΟΑ) σε σύστημα διαλυτών MeCN/νερό. Όλα τα σύμπλοκα της κοβαλοξίμης C1-C7) είναι σε θέση να αποσβέσουν τη φωταύγεια του χρωμοφόρου Pt(II) [Pt(ttpy) (C=CPh)]ClO₄ (1) (ttpy = 4'-p-tolyterpyridine). O πιο αποτελεσματικός δέκτης ηλεκτρονίων για την παραγωγή υδρογόνου βρέθηκε ότι είναι το σύμπλοκο (2), το οποίο παρέχει την ταχύτερη αναγωγή με σταθερό ρυθμό φωταύγειας για το (C1) $(1.7 \times 109 \text{ M}^{-1} \text{s}^{-1}).$

0 ρυθμός παραγωγής υδρογόνου εξαρτάται από πολλούς παράγοντες, συμπεριλαμβανομένης της σταθερότητας των καταλυτών, την ικανότητα να ανάγει πρωτόνια, τις σχετικές και απόλυτες συγκεντρώσεις των συστατικών του συστήματος (ΤΕΟΑ, μοριακού καταλύτη του Co και του φωτοευαισθητοποιητή) και την αναλογία MeCN/νερό στο σύστημα διαλυτών. Για παράδειγμα, όταν η συγκέντρωση της ΤΕΟΑ αυξάνεται, ο ρυθμός της φωτοπαραγωγής του Η2 είναι ταχύτερος και η περίοδος επαγωγής είναι μικρότερη. Διεξήχθησαν πειράματα, με κολλοειδές κοβάλτιο και δοκιμές με υδράργυρο, για να πιστοποιήσουν ότι το σύστημα είναι ομογενές και ότι δεν προκύπτει κατάλυση από την in situ παραγωγή κολλοειδούς σωματιδίων κατά τη διάρκεια της φωτόλυσης. Το πιο αποτελεσματικό σύστημα που έγει εξεταστεί μέγρι σήμερα είναι αυτό που χρησιμοποιεί ως χρωμοφόρο το σύμπλοκο (1) (1.1 x 10^{-5} M), ως δότη ηλεκτρονίων την ΤΕΟΑ (0.27 M) και ως καταλύτη το σύμπλοκο C1 (2.0 x 10⁻⁴ M) σε μίγμα MeCN/νερό (24:1 v/v, συνολικά 25 mL), αυτό το σύστημα παράγει περίπου 2.150 TONs (turnovernumbers) μετά από μόνο 10 h φωτόλυσης με $\lambda > 410$ nm.

Σχήμα 4.5.1. Απεικόνιση δομών συμπλόκων Ρt.

Σχήμα 4.5.2. Απεικόνιση δομών καταλυτών κοβαλοξίμης.

Κατά τις αρχικές παρατηρήσεις χρησιμοποιώντας το σύμπλοκο (1), με το pH του διαλύματος να κυμαίνεται μεταξύ 5 και 13, τόσο ο ρυθμός όσο και η ποσότητα του παραχθέντος H₂ φάνηκε να μεγιστοποιείται σε pH έως 8.5. Σε pH κάτω του 5, δεν παρατηρήθηκε παραγωγή H₂ και άνω του 12 η παραγωγή H₂ ήταν μέτρια (λιγότερο από 15% από εκείνο που λαμβάνεται σε pH=8.5 με την ίδια διάρκεια ακτινοβόλησης).

Ο Πίνακας 4.5.1 δείχνει τα αποτελέσματα των πειραμάτων παραγωγής υδρογόνου. Παρατηρούμε ότι σε πειράματα κατά τα οποία απουσιάζει ο καταλύτης (σύμπλοκα του Co), δεν ανιχνεύεται υδρογόνο (Πείραμα 9), υποδεικνύοντας ότι ο καταλύτης κοβαλτίου είναι μία από τις βασικές συνιστώσες του ομογενούς συστήματος παραγωγής υδρογόνου. Το σύμπλοκο (C2) του κοβαλτίου, αποδείχθηκε το πιο δραστικό από τις κοβαλοξίμες που εξετάστηκαν, επιτυγχάνοντας έως και 238 καταλυτικούς κύκλους (TONs) μόλις μετά από 5 h ακτινοβόλησης (Πείραμα 2), ενώ περαιτέρω ακτινοβόληση οδήγησε σε αύξηση της απόδοσης του υδρογόνου (Πείραμα 3).

Στο σύμπλοκο (6), όπου η αξονική πυριδίνη του συμπλόκου (1) έχει αντικατασταθεί από το $P(n-Bu)_3$, δεν παρατηρήθηκε παραγωγή υδρογόνου μετά από 5 h ακτινοβόλησης (Πείραμα 7), παρόλο που το δυναμικό οξειδοαναγωγής του ζεύγους Co(II)/Co(I) (-0.74 V vs NHE σε MeCN) είναι θερμοδυμανικά ευνοϊκό για αναγωγή πρωτονίων. Έχει προαναφερθεί, ότι το σύμπλακο (6) αντιδρά με το NaBH4 προς σχηματισμό του πιο σταθερού υδριδίου του Co(III) [CoH(dmgH)₂(P(n-Bu)₃)], το οποίο παράγει υδρογόνο μόνο σε θερμοκρασίες άνω των 150 °C [66]. Έτσι λοιπόν, μπορούμε να αποδώσουμε τη χαμηλή καταλυτική δραστηριότητα του συμπλόκου (6), προςπαραγωγή υδρογόνου, στη μεγάλη σταθερότητα του [CoH(dmgH)₂(P(n-Bu)₃)] σε σύγκριση με το ανάλογο σύμπλοκο του [Co(dmgH)₂(py)].

To σύμπλοκο (7) του Co(II), παρόλα τα πλεονεκτηματά του για ηλεκτροχημική αναγωγή πρωτονίων, λόγω χαμηλού υπερδυναμικού για παραγωγή υδρογόνου, δεν έδρασε ικανοποιητικά ως καταλύτης στο συγκεκριμένο σύστημα. Το pH του συστήματος είχε ρυθμιστεί στο 8.5 και το αποτέλεσμα των πειραμάτων έδειξε ότι το σύμπλοκο (C7) δεν είναι θερμοδυναμικά ικανό (δυναμικό αναγωγής -0.48 V) να δράσει ως καταλύτης σε αυτή την τιμή του pH. Μελετήθηκε ένα ανάλογο σύστημα, με [Ru(bby)₃²⁺] ως φωτοευαισθητοποιητή,το [Co(dmgBF₂)₂(MeCN)₂] ως καταλύτη και το ασκορβικό οξύ ως θυσιαζόμενο δότη σε pH=2. Αν και το σύστημα παρήγαγε υδρογόνο η αποδοσήτου ήταν μικρή. Λίγο διαφορετικά ήταν τα αποτελέσματα της ομάδας του Artero, που χρησιμοποίησε το $[Ru(bpy)_3]^{2+}$ ως φωτοευαισθητοποιητή,το $[Co(dmgBF_2)_2]$ ως καταλύτη και το $[Et_3NH]Cl(TEA)$ ως πηγή πρωτονίων, το σύστημα απέδωσε 20TONs κάτω από UV ακτινοβόληση αλλά πολύ λιγότερο όταν ακτινοβολήθηκε από ορατό φως [67].

Δεν υπάρχει μεγάλη διαφορά στο δυναμικό του ζεύγους Co(II)/Co(I) των συμπλόκων του Co (1-3), στα οποία ο αξονικός υποκαταστάτης (πυριδίνη) τροποποιείται στην 4θέση για να έχει είτε μια ομάδα-δότη ηλεκτρονίων (-NMe₂), όπως στην περίπτωση του συμπλόκου (3), είτε μια ομάδα-δέκτη ηλεκτρονίων (-COOMe), όπως στην περίπτωση του συμπλόκου (2), κάτι που συμφωνεί με την υπάρχουσα βιβλιογραφία [68]. Αυτό που παρουσιάζει ενδιαφέρον, είναι ότι αυτά τα τρία σύμπλοκα παρουσιάζουν διαφορετική δραστικότητα ως προς το σχηματισμό υδρογόνου. Το σύμπλοκο (2) του Co με έναν αξονικό υποκαταστάτη (4-MeOOC-py), που τείνει να παίρνει ηλεκτρόνια, φαίνεται να είναι πιο δραστικό από το σύμπλοκο (1) του Co (Πίνακας 4.4.1, Πείραμα 1), ενώ το σύμπλοκο (3) με υποκαταστάτη (4-Me₂N-py), που τείνει να δίνει ηλεκτρόνια, είναι λιγότερα δραστικό από το (1) (Πίνακας 4.5.1, Πείραμα 4).

Σε μελέτη που αφορούσε την επίδραση του αξονικού υποκαταστάτη (πυριδίνη) στην παραγωγή υδρογόνου μέσω ηλεκτροκατάλυσης, ο Artero και η ομάδα του, αναφέρουν ότι όσο πιο δοτικός σε ηλεκτρόνια είναι ο υποκαταστάτης της κοβαλοξίμης τόσο πιο αποδοτικό είναι το σύστημα στην παραγωγή υδρογόνου [69] κάτι που έρχεται σε αντίθεση με την μελέτη του Eisenberg και της ομάδας του [25]. Αυτή η διαφορά στη δραστικότητα μπορεί να οφείλεται στη χρήση διαφορετικών διαλυτών και στην διαφορετική κλίμακα του pH που χρησιμοποιήθηκαν στις δύο μελέτες.

Σε όλα τα πειράματα που πραγματοποιήθηκαν αυτά που οδήγησαν τελικά στην παραγωγή υδρογόνου χρειαζόταν μια περίοδο επώασης. Τυπικά, η παραγωγή υδρογόνου γίνεται μόνο μετά από 1-2 h ακτινοβόλησης του δείγματος. Αυτή η περίοδος επώασης που απαιτείται, είναι συνεπής με την θεωρία ότι το Co(III) πρώτα πρέπει να μετατραπεί σε Co(II) και μετά σε Co(I) για να πραγματοποιηθεί φωτογένεση του υδρογόνου [70].

56

Πείραμα	Σύμπλοκο	Χρόνος ακτινοβόλη σ ης/ώρα	TONs
1	1	5	193
2	2	5	238
3	2	10	378
4	3	5	106
5	4	5	124
6	5	5	125
7	6	5	<1
8	7	5	<1
9		5	<1
10 ^b	1	5	<1
11 ^c	1	5	25
12 ^d	1	5	56
13 ^e	1	5	92

Πίνακας 4.5.1. Συνοψίζονται φωτοκαταλυτικά συστήματα που αναφέρονται στην παραγωγή Η2 με καταλύτες κοβαλοξίμες^a.

Συνθήκες διεξαγωγής πειράματος: ^aMeCN/νερό (3/2 v/v) σε pH=8.5, παρουσία $1.6x10^{-2}$ M TEOA, $1.1x10^{-5}$ PS:C1 και $2.0x10^{-4}$ M κοβαλοξίμη

^bDMSO/νερό (3/2 v/v) ^cDMF/νερό ^dMeOH/νερό ^eEtOH/νερό

Σχήμα 4.5.3. (A) Σύγκριση της παραγωγής υδρογόνου υπό διαφορετικές συγκεντρώσεις της TEOA (μαζί με $1.1 \ge 10^{-5}$ M Pt χρωμοφόρο 1 και $2.0 \ge 10^{-5}$ M συμπλόκου C1 σε pH = 8.5).

(B) Σύγκριση της παραγωγής υδρογόνου υπό μία υψηλότερη αναλογία MeCN/νερό (v/v 24:1 : Μαζί με 1.1x 10^{-5} M Pt χρωμοφόρο 1 και 2.0 x 10^{-5} M συμπλόκου C1 σε pH = 8.5.

Σχήμα 4.5.4. A) Σύγκριση της παραγωγής υδρογόνου με χρήση διαφορετικών αναλογιών MeCN / νερού με 1.1x 10^{-5} M Pt χρωμοφόρο 1, 1.6 x 10^{-2} M TEOA, και 2.0 x 10^{-5} M συμπλόκου C1 σε pH = 8.5.

B) Σύγκριση της παραγωγής υδρογόνου με χρήση διαφορετικών κοβαλοξίμων με $1.1 \cdot 10^{-5}$ M Pt χρωμοφόρο C1, $1.6 \ge 10^{-2}$ M TEOA και $2.0 \ge 10^{-5}$ M καταλύτη σε pH = 8.5. (a) Σύμπλοκο C1 (β) σύμπλοκο C2 (γ) σύμπλοκο C3 [45].

Πίνακας 4.5.2. Μοντέλα παραγωγής υδρογόνου από φωτοχημική διάσπαση του νερού.

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	ref
[{(bpy)₂Ru(dpp)}₂ RhCl₂](PF₀)₅ ^b	[{(bpy)₂Ru(dpp)}₂RhCl₂] (PF ₆)₅ ^b	DMA (N,N dimethyla niline)	-	CH₃CN/H₂O (αέριο Ar)	22	6,0±0,7	470	[71]
[{(bpy)₂Ru(dpp)}₂ RhCl₂](PF₀)₅ ^b	[{(bpy)2Ru(dpp)}2RhCl2] (PF6)5 ^b	DMA (N,N dimethyla niline)	-	CH₃CN/H₂O (αέριο Ar)	30(4h)	8,2	470	[38]
[{(bpy)₂Ru(dpp)}₂ RhBr₂](PF₀)₅ ^ь	[{(bpy) ₂ Ru(dpp)} ₂ RhBr ₂] (PF ₆)5 ^b	DMA	-	CH₃CN/H₂O (αέριο Ar)	27	7,2±0,8	470	[71]
[{(phen)₂Ru(dpp)}₂ RhCl₂](PF₀)₅ ^b	[{(phen) ₂ Ru(dpp)} ₂ RhCl ₂](PF ₆)5 ^b	DMA	-	CH₃CN/H₂O (αέριο Ar)	20	5,4±0,5	470	[71]
[{(phen)₂Ru(dpp)}₂ RhBr₂](PF₀)₅ ^b	$[\{(phen)_2Ru(dpp)\}_2RhBr_2] \\ (PF_6)_5^b$	DMA	-	CH ₃ CN/H ₂ O (αέριο Ar)	24	6,5±0,2	470	[71]
[(bpy)2Ru(bpy-4- CH3,4´-CONH(4- py)Co(dmgBF2)2(OH2)](PF6)2 <i>0,5Mm</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)](P F ₆) ₂ 0,5mM	Et₃N 300eq	-	Ακετόνη/ [Et₃NH](BF₄) 300eq ως πηγήΗ⁺	38			[72]
[(bpy) ₂ Ru(bpy-4- CH ₃ ,4´-CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)](PF ₆) ₂ <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)](P F ₆) ₂ 0,5mM	Et₃N 100eq	-	Ακετόνη/ [Et₃NH](BF₄) 100eq ως πηγήΗ⁺	15			[72]
[(bpy)₂Ru(bpy-4- CH₃,4´-CONH(4- py)Co(dmgBF₂)₂(OH₂)](PF₀)₂ <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4´- CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)](P F ₆) ₂ 0,5mM	Et₃N 500eq	-	Ακετόνη/ [Et₃NH](BF₄) 500eq ως πηγή H⁺	36			[72]
[(bpy) ₂ Ru(bpy-4- CH ₃ ,4´-CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)](PF ₆) ₂ <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)](P F ₆) ₂ 0,5mM	Et₃N 100eq	-	Ακετόνη/ [Et₃NH](BF₄) 100eq ως πηγή H⁺	19			[72]
[(bpy) ₂ Ru(bpy-4- CH ₃ ,4 ⁻ -CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)](PF ₆) ₂ <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)](P F ₆) ₂ 0,5mM	Et₃N 300eq	-	Ακετόνη/ [Et₃NH](BF₄) 300eq ως πηγήΗ⁺	48			[72]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
[(bpy)₂Ru(bpy-4- CH₃,4 ⁻ -CONHCH₂(4- py)Co(dmgBF₂)₂(OH₂)](PF₀)₂ <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,5mM	Et₃N 500eq	-	Ακετόνη/ [Et₃NH](BF₄) 500eq ως πηγή H⁺	42			[72]
[(bpy)2Ru(bpy-4- CH ₃ ,4´-CONH(4- py)Co(dmgBF2)2(OH2)](PF ₆)2 <i>0,25mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,25mM	Et₃N 300eq	-	Ακετόνη/ [Et₃NH](BF₄) 300eq ως πηγήΗ⁺	23			[72]
[(bpy) ₂ Ru(bpy-4- CH ₃ ,4´-CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)](PF ₆) ₂ <i>0,75mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4´- CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,75mM	Et₃N 300eq	-	Ακετόνη/ [Et₃NH](BF₄) 300eq ως πηγήΗ⁺	31			[72]
[(bpy) ₂ Ru(bpy-4- CH ₃ ,4′-CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)](PF ₆) ₂ <i>0,25mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4´- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,25mM	Et₃N 300eq	-	Ακετόνη/ [Et₃NH](BF₄) 300eq ως πηγήΗ⁺	29			[73]
[(bpy)2Ru(bpy-4- CH ₃ ,4´-CONHCH2(4- py)Co(dmgBF2)2(OH2)](PF ₆)2 <i>0,75mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4´- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,75mM	Et₃N 300eq	-	Ακετόνη/ [Et₃NH](BF₄) 300eq ως πηγήΗ⁺	39			[72]
[(bpy)2Ru(bpy-4- CH3,4´-CONH(4- py)Co(dmgBF2)2(OH2)](PF6)2 <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4´- CONH(4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,5mM	Et₃N 300eq	-	CH₃CN [Et₃NH](BF₄) 300eq ως πηγήH⁺	25			[72]
[(bpy)2Ru(bpy-4- CH3,4´-CONH(4- py)Co(dmgBF2)2(OH2)](PF6)2 <i>0,5mM</i>	[(bpy)2Ru(bpy-4-CH ₃ ,4'- CONH(4- py)Co(dmgBF2)2(OH2)] (PF6)2 <i>0,5mM</i>	Et₃N 300eq	-	DMF [Et₃NH](BF₄) 300eq ως πηγή H⁺	8			[72]
[(bpy)2Ru(bpy-4- CH ₃ ,4 ⁻ -CONHCH2(4- py)Co(dmgBF2)2(OH2)](PF6)2 <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,5mM	Et₃N 300eq	-	CH₃CN [Et₃NH](BF₄) 300eq ως πηγήH⁺	37			[72]
[(bpy)2Ru(bpy-4- CH ₃ ,4´-CONHCH2(4- py)Co(dmgBF2)2(OH2)](PF ₆)2 <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4'- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,5mM	Et₃N 300eq	-	DMF [Et₃NH](BF₄) 300eq ως πηγή H⁺	15			[72]

PS	R	D	Cat	solvent	ΤΟΝ	H ₂	λ(nm)	Ref.
						(µmol)		
[(bpy)2Ru(bpy-4- CH ₃ ,4´-CONH(4- py)Co(dmgBF2)2(OH2)](PF6)2 <i>0,5mM</i>	[(bpy)2Ru(bpy-4-CH ₃ ,4´- CONH(4- py)Co(dmgBF ₂)2(OH ₂)] (PF ₆)2 <i>0,5mM</i>	Et₃N 300eq	-	Ακετόνη/ Η₂Ο ως πηγή Η⁺	29			[72]
[(bpy)₂Ru(bpy-4- CH₃,4´-CONHCH₂(4- py)Co(dmgBF₂)₂(OH₂)](PF ₆)₂ <i>0,5mM</i>	[(bpy) ₂ Ru(bpy-4-CH ₃ ,4´- CONHCH ₂ (4- py)Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂ 0,5mM	Et₃N 300eq	-	Ακετόνη/ Η₂Ο ως πηγή Η⁺	38			[72]
[(bpy)2Ru(bpy-4- CH3,4´-COOH)](PF6)2	Co(dmgBF ₂) ₂ (OH ₂)	Et₃N 300eq	-	CH₃CN [Et₃NH](BF₄) 300eq ως πηγή H⁺	7			[72]
[(bpy)₂Ru(L-pyr)- Co(dmgBF₂)₂(OH₂)] (PF ₆)₂	[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	Et₃N 300eq	-	CH₃CN [Et₃NH](BF₄) 300eq ως πηγή H⁺	36			[72]
[Ru(bpy)₃]²+	[Co(dpgBF ₂) ₂ (CH ₃ CN) ₂	n-Pr₃N	-	CH3CN/H2O/n- Pr3N (3:1:1):CO2	9 (22h)			[72]
[Ru(bpy)₃]²+	[Co(dpgBF ₂) ₂ (CH ₃ CN) ₂	Et₃N	-	CH3CN/H2O/ Et3N,CO2	-	-		[72]
-	[Co(dpgBF ₂) ₂ (CH ₃ CN) ₂	TEOA	-	CH ₃ CN or DMF, TEOA, H ₂ O, CO ₂	-	-		[72]
[Ru(bpy)₃]²+	[Co(bpy)₃]²+	TEOA	-	DMF/ TEOA(2:1)	26 (15h)			[26]
[Ru(bpy)₃]²+	[Co(DO)(DOH)pnBr ₂]	TEOA	-	CH₃CN/H₂O (1:1), TEOA,, LiCI,HCI	2			[26]
[Ru(dmphen)₃]²+	[Co(DO)(DOH)pnBr ₂]	TEOA	-	CH ₃ CN/H ₂ O (1:1), TEOA, ,LiCI,HCI	12			[26]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
[lr(ppy)₂(bpy)]⁺	[Co(DO)(DOH)pnBr2]	TEOA	-	CH₃CN/H₂O (1:1), TEOA, LiCl,HCl	16			[26]
[lr(ppy)₂(dphphen)]⁺	[Co(DO)(DOH)pnBr2]	TEOA	-	CH₃CN/H₂O (1:1), TEOA,, LiCI,HCI	17			[26]
lr(F-mppy)₂(phen)]⁺	[Co(DO)(DOH)pnBr2]	TEOA	-	CH₃CN/H₂O (1:1), TEOA, LiCI,HCI	17			[26]
lr(F- mppy)₂(dphphen)]⁺	[Co(DO)(DOH)pnBr2]	TEOA	-	CH₃CN/H₂O (1:1), TEOA, LiCl,HCl	17			[26]
lr(F-mppy)₂(bpy)]⁺	[Co(DO)(DOH)pnBr ₂]	TEOA	-	CH₃CN/H₂O (1:1), TEOA, LiCl,HCl	17			[26]
lr(dF(CF₃)ppy)₂(tbbpy)]⁺	[Co(DO)(DOH)pnBr ₂]	TEOA	-	CH₃CN/H₂O (1:1), TEOA, LiCI,HCI	18			[26]
Re(CO)₃Br(phen)	[Co(DO)(DOH)pnBr ₂]	TEOA	-	CH₃CN/H₂O (1:1), TEOA, LiCI,HCI	-	-		[26]
[Ru(bpy)₃]²+	[Co(dmgH) ₂ (4-(t- BuNH(C=O)C ₅ H ₄ N)CI]	TEOA	-	DMF/ TEOA, dmgH ₂	16 (1h)			[26]
[Ru(bpy)₃]²+	[Co(dmgH) ₂ (4-(t- BuNH(C=O)C ₅ H ₄ N)Cl]	TEOA	-	DMF/ TEOA, dmgH ₂ , P(n-Bu) ₃	88 (6.5h)			[26]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
Re(CO)₃Br(phen)	[Co(dmgH)₂(PBu₃)Cl]	Et₃N	-	Ακετόνη, Et₃N, Et₃NHBF₄	273 (15h)			[26]
Re(CO)₃Br(bpy)	[Co(dmgH)₂(4-(t- BuNH(C=O)C₅H₄N)Cl]	TEOA	-	DMF,AcOH, TEOA, dmgH ₂	75 (9h)			[26]
[Pt(ttpy)(C ≡ C- Ph)]ClO₄	СоТМРуР	TEOA	-	CH3CN/H2O (3:2)	23 (10h)			[26]
[Pt(ttpy)(C ≡ C-Ph- CH₃)]ClO₄	СоТМРуР	TEOA	-	CH3CN/H2O (3:2)	56 (10h)			[26]
Pt(tpy)(C ≡ C- Ph)]ClO₄	СоТМРуР	TEOA	-	CH ₃ CN/H ₂ O (24:1)	119 (10h)			[26]
[Pt(ttpy)(C ≡ C- Ph)]ClO₄, PS16	СоТМРуР	TEOA	-	CH3CN/H2O (24:1)	94 (5h)			[26]
[Pt(p-COOCH₃-tpy)]	СоТМРуР	TEOA	-	CH ₃ CN/H ₂ O (24:1)	50 (5h)			[26]
[Pt(p-P(O)(OEt) ₂ -tpy)]	СоТМРуР	TEOA	-	CH3CN/H2O (24:1)	94 (5h)			[26]
Eosin Y	СоТМРуР	TEOA	-	CH ₃ CN/H ₂ O (24:1)	66 (5h)			[26]
Eosin Y	СоТМРуР	TEOA	-	CH ₃ CN/H ₂ O (1:1)5% dmgH ₂	181 (12h)			[26]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy) ₂ Ru(L-pyr)- Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, Et₃N, Et₃NH₃	40 (24h)			[26]

PS	R	D	Cat	solvent	ΤΟΝ	H ₂	λ(nm)	Ref.
						(µ1101)		
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	Et₃N	-	Ακετόνη, 100 equiv Et₃N και 100 equiv Et₃NH⁺	32 (1h)			[67]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy) ₂ Ru(L-pyr)- Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, 300 equiv Et₃N και 300 equiv Et₃NH⁺	56 (4h)			[67]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy) ₂ Ru(L-pyr)- Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, 300 equiv Et₃N και 300 equiv Et₃NH⁺	60 (4h)			[66]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy) ₂ Ru(L-pyr)- Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, 300 equiv Et₃N και 300 equiv Et₃NH⁺	85 (8h)			[67]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	Et₃N	-	Ακετόνη, 100 equiv Et₃N και 100 equiv Et₃NH⁺	16 (1h)		A UV cut-off filter was placed between the lamp and the Schlenk tube	[67]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	Et ₃ N	-	Ακετόνη ,300 equiv Et₃N και 300 equiv Et₃NH⁺	103 (15h)		A UV cut-off filter was placed between the lamp and the Schlenk tube	[67]
[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(bpy) ₂ Ru(L-pyr)- Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, 100 equiv Et₃N και 100 equiv H₂O	22 (4h)			[67]

PS	R	D	Cat	solvent	ΤΟΝ	H ₂	λ(nm)	ref
						(µmol)		
[(bpy)₂Ru(L-pyr)- Co(dmgBF₂)₂Cl] (PF₀)₂	[(bpy)2Ru(L-pyr)- Co(dmgBF2)2CI] (PF6)2	Et₃N	-	Ακετόνη ,100 equiv Et₃N και 100 equiv	17 (4h)			[67]
				Et₃NH⁺				
[(bpy)₂Ru(L-pyr)- Co(dmgBF₂)₂CI](PF₀)₂	[(bpy)₂Ru(L-pyr)- Co(dmgBF₂)₂Cl](PF₀)₂	Et₃N	-	Ακετόνη ,100 equiv Et₃Ν και 100 equivEt₃NH⁺	14 (4h)		A UV cut-off filterwas placed between the lampand the Schlenk tube	[67]
[(bpy)₂Ru(L-pyr)- Co(dmgBF₂)₂(OH₂)] (PF ₆)₂	[(bpy)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	Et₃N	-	Ακετόνη, Et₃N,Et₃NH₃	-	-		[26]
[(dmphen)2Ru(L-pyr)- Co(dmgBF2)2(OH2)] (PF6)2	[(dmphen) ₂ Ru(L-pyr)- Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, Et₃N,Et₃NH₃	103 (15h)			[26]
[(ppy)2lr(L-pyr) Co(dmgBF2)2- (OH2)](PF6)	[(ppy)2Ir(L-pyr) Co(dmgBF ₂)2(OH ₂)] (PF ₆)	Et₃N	-	Ακετόνη, Et₃N,Et₃NH₃	9(4h)			[26]
[(bpy) ₂ Ru(4-Me,4´- COOH-2,2´-bipy) Co(dmgH) ₂ (H ₂ O)] (PF ₆) ₂	[(bpy)2Ru(4-Me,4'- COOH-2,2'-bipy) Co(dmgH)2(H2O)](PF6)2	Et₃N	-	MeOH,°(H2O) 5.55M, Et3NH3. dmgH2	235 (20h)			[26]
[(bpy)₂Ru(dcbpy) Co(dmgH)₂(H₂O)] (PF ₆)₂	[(bpy)2Ru(dcbpy) Co(dmgH)2(H2O)](PF6)2	Et₃N	-	MeOH,°(H2O) 5.55M, Et3NH3. dmgH2	58 (24h)			[26]
[(dcbpy)₃Ru (dmgH)₂(H₂O)Co] (PF₀)₂	[(dcbpy)₃Ru (dmgH)₂(H₂O)Co](PF₀)₂	Et₃N	-	MeOH,°(H2O) 5.55M, Et3NH3. dmgH2	32 (24h)			[26]
[(bpy)2Ru(bpy-4- CH ₃ ,40-CONH(4-py) Co(dmgBF ₂)2(OH ₂)] (PF ₆)2	[(bpy) ₂ Ru(bpy-4-CH ₃ ,40- CONH(4-py) Co(dmgBF ₂) ₂ (OH ₂)] (PF ₆) ₂	Et₃N	-	Ακετόνη, Et₃N, [Et₃NH][BF₄]	38 (8h)			[26]

PS	R	D	Cat	solvent	ΤΟΝ		λ(nm)	Ref.
[(bpy)₂Ru(bpy-	[(bpy)₂Ru(bpy-	Ft₃N	_	Ακετόνη	48	(µ11101)		[26]
4-CH ₃ ,40-CONHCH ₂ (4-	4-CH ₃ ,40-CONHCH ₂			Et ₃ N,	(8h)			[20]
py)	(4-ру)			[Et ₃ NH][BF ₄]				
(PF ₆) ₂	Co(dmgBF ₂) ₂ (OH ₂)]							
	(PF6)2							
[Ru(bpy)₃]²+	[Co(dpgBF ₂) ₂ (CH ₃ CN) ₂	n-Pr₃N	-	CH ₃ CN/H ₂ O/n-	9			[26]
				(3:1:1):CO ₂	(22h)			
[{(bpy)₂Ru(dpp)}₂	[{(bpy)2Ru(dpp)}2RhCl2]	DMA	-	CH ₃ CN/H ₂ O		1,9 ± 0,2	520	
RhCl₂](PF₀)₅	(PF ₆)5			(αέριο Ar)				
[{(bpy)₂Ru(dpp)}₂	[{(bpy)2Ru(dpp)}2RhBr2]	DMA	-	CH₃CN/H₂O		1,8±0,5	520	[74]
RhBr₂](PF ₆)₅	(PF ₆) ₅			(αέριο Ar)				
[{(phen) ₂ Ru(dpp)} ₂	[{(phen)2Ru(dpp)}2RhCl2]	DMA	-	CH₃CN/H₂O		$2,2\ \pm\ 0,2$	520	[74]
RhCl₂](PF6)₅	(PF6)5			(αέριο Ar)				177.43
[{(bpy)₂Ru(dpb)}₂IrCl₂](PF₅)₅	[{(bpy) ₂ Ru(dpb)} ₂ IrCl ₂]	DMA	-	CH ₃ CN/H ₂ O		<0,02	470	[74]
1((PF ₆) ₅			(αέριο Ar)				[74]
[{(bpy)₂Ru(dpb)}₂IrCl₂]	[{(bpy) ₂ Ru(dpb)} ₂ IrCl ₂]	DMA	-	CH ₃ CN/H ₂ O		<0,02	520	[/4]
(PF6)5	(٣٢6)5			(αεριο ΑΓ)				
[{(bpy)2Os(dpp)}2RhC	[{(bpy) ₂ Os(dpp)} ₂ RhCl ₂]	DMA	-	CH ₃ CN/H ₂ O		0,13 ±	470	[74]
I2](PF6)5	(PF ₆)5			(αέριο Ar)		0,03		
[{(bpy) ₂ Os(dpp)} ₂	[{(bpy) ₂ Os(dpp)} ₂ RhCl ₂]	DMA	-	CH ₃ CN/H ₂ O		< 0,02	520	[74]
RhCl₂](PF₀)₅	(PF ₆) ₅			(αέριο Ar)				
[{(tpy)RuCl(dpp)}₂Rh Cl₂l(PF₅)₃	[{(tpy)RuCl(dpp)}2RhCl2]	DMA	-	CH₃CN/H₂O		0,21 ±	470	[26]
•:2](: : 0)3	(PF ₆) ₃			(αέριο Ar)		0,00		[74]
[{(tpy)RuCl(dpp)}2	[{(tpy)RuCl(dpp)}2RhCl2]	DMA	-	CH₃CN/H₂O		< 0,02	520	[74]
RhCl2](PF6)3	(PF6)3			(αέριο Ar)				[74]
[{(tpy)OsCl(dpp)}2	[{(tpy)OsCl(dpp)}2RhCl2]	DMA	-	CH ₃ CN/H ₂ O		< 0,02	470	[/4]
	(٣٢6)3							[74]
[{(tpy)OsCl(dpp)}₂Rh Cl₂](PF ₆)₃	[{(tpy)OsCl(dpp)}2RhCl2]	DMA	-	CH ₃ CN/H ₂ O		< 0,02	520	[/]
	(ГГ6/3			(uspiù Al)				

PS	R	D	Cat	solvent	ΤΟΝ	H ₂	λ(nm)	Ref.
						(µmol)		
[{(bpy)₂Ru(dpp)}₂ RhCl₂](PF ₆)₅	[{(bpy)₂Ru(dpp)}₂RhCl₂] (PF ₆)₅	TEA	-	CH₃CN/H₂O (αέριο Ar)		1,2 ± 0,17	470	[74]
[{(bpy)₂Ru(dpp)}₂ RhBr₂](PF₀)₅	[{(bpy)2Ru(dpp)}2RhBr2] (PF6)5	TEA	-	CH₃CN/H₂O (αέριο Ar)		1,7 ± 0,11	470	[74]
[{(phen)₂Ru(dpp)}₂ RhCl₂](PF ₆)₅	[{(phen)2Ru(dpp)}2RhCl2] (PF6)5	TEA	-	CH₃CN/H₂O (αέριο Ar)		0,99 ± 0,08	470	[74]
[{(bpy)₂Ru(dpp)}₂ RhCl₂](PF₀)₅	$[\{(bpy)_2Ru(dpp)\}_2RhCl_2]$ $(PF_6)_5$	TEOA	-	CH₃CN/H₂O (αέριο Ar)		0,22 ± 0,08	470	[74]
[{(bpy)₂Ru(dpp)}₂ RhBr₂](PF ₆)₅	[{(bpy) ₂ Ru(dpp)} ₂ RhBr ₂] (PF ₆) ₅	TEOA	-	CH₃CN/H₂O (αέριο Ar)		0,21± 0,05	470	[74]
[{(phen)₂Ru(dpp)}₂ RhCl₂](PF₀)₅	[{(phen)2Ru(dpp)}2RhCl2] (PF6)5	TEOA	-	CH₃CN/H₂O (αέριο Ar)		0,18 ± 0,03	470	[42]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)₃](PF ₆)₃	TEA	-	THF/H2O 1 : 1 (50%)	846 (18h)	423	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)₃](PF ₆)₃	TEA	-	THF/H ₂ O 2,3 : 1 (70%)	1463 (18h)	732	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)₃](PF ₆)₃	TEA	-	THF/H₂O 3 : 1 (75%)	1835 (18h)	918	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)3](PF6)3	TEA	-	THF/H2O 4 : 1 (80%)	2126 (18h)	1063	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy) ₃](PF ₆) ₃	TEA	-	THF/H₂O 5,7 :1 (85%)	1868 (18h)	934	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)3](PF6)3	TEA	-	THF/H2O 9 : 1 (90%)	1680 (18h)	840	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)3](PF6)3	TEA	-	THF/H₂O 19 : 1 (95%)	1251 (18h)	625	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)₃](PF ₆)₃	TEA	-	THF/H2O 1000 : 1 (99,9%)	721 (18h)	360	460	[75]
[lr(f- mppy)₂(dtbbpy)](PF₀)	[Rh(dtbbpy)3](PF6)3	TEOA	-	THF/H₂O	5000 (22h)	2497	460	[75]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
Rhodamine	[Co ^{lli} (dmgH) ₂ (py)Cl]	TEOA	-	CH₃CN/H₂O 1:1	0	0	520	[76]
Rhodamine substituting S for O in the xanthene ring	[Co ^{lli} (dmgH) ₂ (py)Cl]	TEOA	-	CH ₃ CN/H ₂ O 1:1	1700 (αναώρ α)			[76]
Rhodamine substituting Se for O in the xanthene ring	[Co ^{llI} (dmgH)₂(py)Cl]	TEOA	-	CH₃CN/H₂O 1:1	5500 (ανά ώρα)			[76]
[Ru(bpy)₂(5-amino- phen-dcbpy)PtCl₂]²+	[Ru(bpy)₂(5-amino-phen- dcbpy)PtCl₂]²+	EDTA	-	H ₂ O	4,8 (10h)			[76]
[(tbbpy)₂Ru(tpphz) PdCl2](PF6)2	[(tbbpy) ₂ Ru(tpphz)PdCl ₂](PF ₆) ₂	(NEt₃)	-	MeCN	56 (29h)			[77]
[(bpy)₂Ru-DMB- PdCl₂]²+	[(bpy)2Ru-DMB-PdCl2] ²⁺	TEA	-	MeCN	30 (6h)		475	[77]
[Os(py-PPh₂-mtpy)₂]²+	RhCl₃.3H₂O	Sodium ascorbat e	-	MeCN/ H2O	87 (18h), 381(96 h), 594 (240h)		> 380	[77]
[Os(py-PPh ₂ -mtpy) ₂] ²⁺	[RhCl(CO)2]2	Sodium ascorbat e	-	MeCN/ H ₂ O	36 (18h)		> 380	[78]
[Os(py-PPh ₂ -mtpy) ₂] ²⁺	RhCl3 3 3H2O/dppe	Sodium ascorbat e	-	MeCN/ H ₂ O	24 (18h)		> 380	[78]
[Ru(bpy)₃]²+	[Co(bpy)₃]²+	TEOA	LiCl	MeCN/ H ₂ O 50:50 +0,4 mL HCI	PS:100 R: 2 (30- 60min)	50		[79]
[Ru(dmphen)₃]²+	[Co(bpy)₃] ²+	TEOA	LiCl	MeCN/ H ₂ O 50:50 +0,4 mL HCI	PS:580 R: 12 (30- 60min)	290		[79]
[lr(ppy)₂(bpy)]⁺	[Co(bpy)3] ²⁺	TEOA	LiCI	MeCN/ H2O 50:50 +0,4 mL HCI	PS:800 R:16 (30- 60min)	400	585	[79]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
[lr(ppy)₂(phen)]⁺	[Co(bpy)₃]²+	TEOA	LiCl	MeCN/ H2O 50:50 +0,4 mL HCI	PS:860 R: 17 (30- 60min)	430	579	[79]
[lr(ppy)₂(dphphen) ^{]+}	[Co(bpy)₃]²+	TEOA	LiCI	MeCN/ H₂O 50:50 +0,4 mL HCI	PS: 840 R: 17 (30- 60min)	420	587	[79]
[lr(F-mppy)₂(bpy)]⁺	[Co(bpy) ₃] ²⁺	TEOA	LiCI	MeCN/ H ₂ O 50:50 +0,4 mL HCI	PS: 920 R: 18 (30- 60min)	460	558	[79]
[lr(F-mppy)₂(phen)]⁺	[Co(bpy)3] ²⁺	TEOA	LiCI	MeCN/ H ₂ O 50:50 +0,4 mL HCI	PS: 860 R: 17 (30- 60min)	430	550	[79]
[lr(F- mppy)₂(dphphen)]⁺	[Co(bpy)₃]²+	TEOA	LiCl	MeCN/ H₂O 50:50 +0,4 mL HCI	PS: 860 R: 17 (30-60 min)	430	556	[79]
[Pt(tBu3tpy)([C ≡ CC6H4]H)]ClO4	[Co(dmgH)2pyCl]	TEOA	-	CH ₃ CN/H ₂ O 1:1	67 (1h)	18,4	442	[80]
[Pt(tBu3tpy)([C ≡ CC6H4]2H)]ClO4	[Co(dmgH)2pyCl]	TEOA	-	CH ₃ CN/H ₂ O 1:1	87 (1h)	23,9	442	[80]
[Pt(tBu3tpy)([C ≡ CC6H4]3H)]ClO4	[Co(dmgH)2pyCl]	TEOA	-	CH₃CN/H₂O 1:1	120(1h) , 789 (3-4h)	32,9	442	[80]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
[Ru(bpy)₃]²+	[Rh(bpy)Cp(H₂O)]	Ασκορβικό οξύ (H2A) 0,8M/ ασκορβικό νάτριο (NaHA, 0,3M) pH = 3,6	-	H2O	~70 (100 min)		> 430	[80]
[Ru(bpy)₃]²+	[(bpy)₂Ru(bpm)IrCp (H₂O)]	Ασκορβικό οξύ (H ₂ A) 0,8M/ ασκορβικό νάτριο (NaHA, 0,3M) pH = 3,6	-	H2O	410 (~100 min)		> 430	[81]
[Ru(bpy)₃](NO₃)₂ · 3H₂O	cis-PtCl2(NH3)2	EDTA	-	H ₂ O, pH=5 with buffer solution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa)	-	-		[82]
[Ru(bpy)₃](NO₃)₂ 3H₂O	PtCl₂(en)	EDTA	-	H ₂ O, pH=5 with buffer solution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa)	-	-		[82]
[Ru(bpy)₃](NO₃)₂ 3H₂O	cis-PtCl ₂ (4- methylpyridine) ₂	EDTA	-	H ₂ O, pH=5 with buffer solution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa)	-	-		[83]
[Ru(bpy)₃](NO₃)₂ · 3H₂O	PtCl ₂ (bpm)	EDTA	-	H ₂ O, pH=5 withbuffersolution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa	-	-		[83]
[Ru(bpy)₃](NO₃)₂ · 3H₂O	PtCl ₂ (dcbpy) · H ₂ O	EDTA	-	H ₂ O, pH=5 withbuffersolution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa)	-	-		[83]

PS	R	D	Cat	solvent	ΤΟΝ	H_2	λ(nm)	Ref.
						(µ1101)		
[Ru(bpy)₃](NO₃)₂ · 3H₂O	PtCl₂(terpy)Cl ⋅ H₂O	EDTA	-	H ₂ O, pH=5 withbuffersolution (0,03M CH ₃ COOH + 0,07 MCH ₃ COONa)	-	-		[83]
EosinY	[Co ^{llI} (dmgH)₂pyCl]	TEOA	dmgH₂ (1,5 mM)	MeCN/H ₂ O 1:1 pH=7	~630(1 1h)		> 450	[84]
EosinY	[Co ^{III} (dmgH) ₂ pyCI]	TEOA	dmgH ₂ (3mM)	MeCN/H ₂ O 1:1 pH=7	~880(1 4-15h)		> 450	[84]
EosinY	[Co ^{III} (dmgH) ₂ pyCI]	TEOA	-	MeCN/H ₂ O 1:1pH=7	~340 (5h)		> 450	[84]
EosinY	[Co ^{III} (dmgH) ₂ pyCI]	TEOA	-	MeCN/H ₂ O 1:1pH=7	~210(2 9h)		520	[84]
[Pt(ttpy)(C ≡ C- Ph)]ClO₄	[Co(dmgH)₂pyCl]	TEOA	-	MeCN/H ₂ O (3:2 v/v) pH=8,5	193 (5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ pyCl]	TEOA	-	DMSO / H ₂ O (3:2 v/v)	<1 (5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ pyCl]	TEOA	-	DMF / H ₂ O (3:2 v/v)	25 (5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ pyCl]	TEOA	-	MeOH / H ₂ O (3:2 v/v)	56 (5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ pyCl]	TEOA	-	EtOH / H ₂ O (3:2 v/v)	92 (5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ (4-COOMe- py)Cl]	TEOA	-	MeCN/H ₂ O (3:2 v/v) pH=8,5	238(5h) 378(10 h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ (4-Me ₂ N- py)Cl]	TEOA	-	MeCN/H ₂ O (3:2 v/v) pH=8,5	106(5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH)(dmgH ₂)Cl ₂]	TEOA	-	MeCN/H ₂ O (3:2 v/v) pH=8,5	124(5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH) ₂ (py) ₂](PF ₆)	TEOA	-	MeCN/H ₂ O (3:2 v/v) pH=8,5	125 (5h)		< 410	[85]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgH)₂(P(n-Bu)₃)Cl]	TEOA	-	MeCN/H2O (3:2 v/v) pH=8,5	<1 (5h)		< 410	[85]
[Pt(ttpy)(C≡C- Ph)]ClO₄	[Co(dmgBF ₂) ₂ (OH ₂) ₂	TEOA	-	MeCN/H2O (3:2 v/v) pH=8,5	<1 (5h)		< 410	[85]
[CIPt(C^N^NPhMe)]	MV ²⁺	TEOA	Colloid dal Pt	MeCN/H ₂ O	110 (13h)		> 400	[86]
[CIPt(N^N^NPhMe)] CIO₄	MV ²⁺	TEOA	Colloid dal Pt	MeCN/H ₂ O	~8 (13h)		> 400	[86]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	H ₂ O	21 (5h)	41	> 400	[87]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	MeCN/H ₂ O (1:9)	78 (5h)	156	> 400	[87]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	MeCN/H ₂ O (1:4)	107 (5h)	214	> 400	[87]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	MeCN/H ₂ O (1:2)	118 (5h)	236	> 400	[87]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	MeCN/H ₂ O (1:1)	108 (5h)	215	> 400	[87]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	MeCN/H ₂ O (2:1)	96 (5h)	191	> 400	[87]
Rose Bengal	[Co(dmgBF ₂) ₂ (H ₂ O) ₂	TEA	-	MeCN/H₂O , pH=10	~327 (5h)		> 400	[87]
Rose Bengal	[Co(dpgBF ₂) ₂ (H ₂ O) ₂]	TEA	-	MeCN/H ₂ O, pH=10	~20 (5h)		> 400	[87]
Rose Bengal	[Co(dmg(BF) _{2/3}) ₃](BF ₄)	TEA	-	MeCN/H₂O, pH=10	96 (5h)		> 400	[87]

PS	R	D	Cat	solvent	ΤΟΝ	H₂ (µmol)	λ(nm)	Ref.
Rose Bengal	[Co(dpg(BF) _{2/3}) ₃](BF ₄)	TEA	-	MeCN/H₂O, pH=10	17 (5h)		> 400	[87]
[lr(ppy)²(bpy)](PF6)	-	TEA	K₂Pd Cl₄	ACN/H2O 4:1	49		460	[88]
[lr(ppy)²(4,4´- dmbpy)](PF ₆)	-	TEA	K₂Pd Cl₄	ACN/H2O 4:1	47		460	[88]
[lr(ppy)₂(4,4´- dtbbpy)](PF₀)	-	TEA	K ₂ PdCl ₄	4:1 ACN/H2O	103		460	[88]
[lr(ppy)₂(5,5´- dmbpy)](PF₀)	-	TEA	K₂PdCl₄	4:1 ACN/H ₂ O	96		460	[88]
[lr(ppy)₂(5,5´- dipbpy)](PF₀)	-	TEA	K ₂ PdCl ₄	4:1 ACN/H ₂ O	184		460	[88]
[lr(F- mppy)₂(bpy)](PF₀)	-	TEA	K₂PdCl₄	4:1 ACN/H ₂ O	87		460	[88]
[lr(F-mppy)₂(4,4´-dm bpy)](PF₀)	-	TEA	K ₂ PdCl ₄	4:1 ACN/H2O	97		460	[88]
[lr(F-mppy)₂(4,4´-dtb bpy)](PF₀)	-	TEA	K₂PdCl₄	4:1 ACN/H ₂ O	170		460	[87]
[lr(F-mppy)₂(5,5´- dmbpy)](PF₀)	-	TEA	K ₂ PdCl ₄	4:1 ACN/H2O	160		460	[88]
[lr(F-mppy)₂(5,5´- dipbpy)](PF₀)	-	TEA	K₂PdCl₄	4:1 ACN/H ₂ O	239		460	[88]
[lr(F- mppy)2(dFbpy)](PF6)	-	TEA	K₂PdCl₄	4:1 ACN/H2O	312		460	[88]
[lr(F- mppy)₂(dCF₃bpy)](PF ₀)	-	TEA	K₂PdCl₄	4:1 ACN/H₂O	99		460	[88]
[lr(MeO- mppy)₂(bpy)](PF₀)	-	TEA	K₂Pd Cl₄	4:1 ACN/H2O	70		460	[87]
[lr(MeO-mppy) ₂ (4,4´- dmbpy)](PF ₆)	-	TEA	K₂Pd Cl₄	4:1 ACN/H ₂ O	84		460	[88]
[lr(MeO-mppy) ₂ (4,4´- dtbbpy)](PF ₆)	-	TEA	K₂Pd Cl₄	4:1 ACN/H ₂ O	101		460	[88]

PS	R	D	Cat	solvent	ΤΟΝ	H ₂	λ(nm)	Ref.
						(µmol)		
[lr(MeO-mppy)₂(5,5´- dmbpy)](PF₀)	-	TEA	K₂Pd Cl₄	4:1 ACN/H2O	111		460	[88]
[lr(MeO-mppy)₂(5,5´- dipbpy)](PF₀)	-	TEA	K₂Pd Cl₄	4:1 ACN/H ₂ O	288		460	[88]
Zn(II)TPP, Zn(salphen)	[Fe₂(µ-pdt)(CO)₅{P(3- py)₃}]	[N ⁱ Pr₂Et] [OAc]	-	Διάλυμα τολουολίου		0,22mL(8 0min)	> 390	[89]
Zn(II)TPP, Zn(II)TPP(OMe)₄	[Fe ₂ (µ-pdt)(CO) ₄ {PPh ₂ (4- py)} ₂]	[N ⁱ Pr₂Et] [OAc]	-	Διάλυματολουολίο υ		0,22mL (80min)	> 530	[89]
Zn(II)TPP, Zn(II)TPP(OMe)₄	[Fe ₂ (µ-pdt)(CO) ₅ {PPh ₂ (4- py)}]	[N ⁱ Pr₂Et] [OAc]	-	Διάλυμα τολουολίου		0,22mL (80min)	> 530	[89]
[lr(ppy)₂(bpy)](PF₀) 37,5µmol	-	TEOA	K₂PtCl₄	MeCN/H ₂ O		~300 (~80min)		[90]
[lr(ppy)₂(bpy)](PF₀) 25µmol	-	TEOA	K₂PtCl₄	MeCN/H ₂ O		~200 (~80min)		[90]
[lr(ppy)₂(bpy)](PF₀) 12,5µmol	-	TEOA	K₂PtCl₄	MeCN/H ₂ O		~75 (~80min)		[90]
[lr(ppy)₂(bpy)](PF₀) 6,25µmol	-	TEOA	K₂PtCl₄	MeCN/H ₂ O		~50 (~80min)		[90]
[Pt(tpy)(C ≡ C-p- C ₆ H₅)]ClO₄	MV ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O	84	~20 (3,5h)	> 410	[73]
[Pt(tpy)(C ≡ CPh)]ClO₄	MV ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O		~10 (2,5h)	> 410	[73]
[Pt(tpy)(C ≡ C-p- C ₆ H₄Cl)]ClO₄	MV ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O		~12 (3,5h)	> 410	[73]
[Pt(tpy)(C≡C-p- C ₆ H₄Me)]ClO₄	MV ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O		~5 (3h)	> 410	[73]
[Pt(tpy)(C ≡ C-p- C ₆ H₅)]ClO₄	DQ1 ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O		~2 (3h)	> 410	[73]
[Pt(tpy)(C ≡ C-p- C₀H₅)]ClO₄	DQ2 ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O		~22 (3h)	> 410	[73]
[Pt(tpy)(C ≡ C-p- C ₆ H₅)]ClO4	DQ3 ²⁺	TEOA	Colloid al Pt	MeCN/H ₂ O		~24,5 (3h)	> 410	[73]

PS	R	D	Cat	solvent	ΤΟΝ	H ₂	λ(nm)	Ref.
[Pt(tpy)(C ≡ C-p- C ₆ H ₅)]ClO ₄	DQ4 ²⁺	TEOA	Colloid al Pt	MeCN/H2O	64 (180mi n)	~34 (3h)	> 410	[73]
Pt(NH3)2Cl2	MV ²⁺	EDTA	-	H ₂ O, pH=5 with buffer solution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa)		20 (250min)		[91]
Pt(en)Cl₂	MV ²⁺	EDTA	-	H ₂ O, pH=5 with buffer solution (0,03M CH ₃ COOH + 0,07M CH ₃ COONa)		~26 (~65min)		[91]
Pt(tpy)Cl	MV ²⁺	EDTA	-	H₂O, pH=5 with buffer solution (0,03M CH₃COOH + 0,07M CH₃COONa)		~6 (250min)		[59]

ΚΕΦΑΛΑΙΟ 5

ΣΥΜΠΛΟΚΑ ΡΗΝΙΟΥ

5.1 Το ρήνιο στην ομογενή φωτοκατάλυση

Τα τελευταία χρόνια παρατηρείται μια αναβίωση της τεχνητής φωτοσύνθεσης, χρησιμοποιώντας κυρίως σύμπλοκα μετάλλων ως φωτοευαισθητοποιητές, ευγενή μέταλλα ως καταλύτες για αναγωγή πρωτονίων, τριτοταγείς αμίνες ως δότες ηλεκτρονίων και μεθυλοβιολογόνα ως δέκτες ηλεκτρονίων και τα αποτελέσματα συμφωνούν με προηγούμενες μελέτες [27]. Παρόλο, που το [Ru(bpy)₃]²⁺ ή τα παράγωγά του χρησιμοποιούνταν κυρίως σε μελέτες φωτοκαταλυτικής παραγωγής H₂, και άλλα σύμπλοκα μετάλλων χρησιμοποιούνται ως φωτοευαισθητοποιητές [19,57,92,93]. Αναμεσά τους το [ReX(CO)₃(diimine)] (X = αλογόνο ή φωσφίνη ή υποκατάστατης τύπου-πυριδίνης) [57,94].

Στην πραγματικότητα, τα σύμπλοκα του ρηνίου, με διάφορους αριθμούς οξείδωσης, αποτελούν πόλο έλξης τόσο για τις βασικές όσο και για τις εφαρμοσμένες μελέτες. Η χημεία των συμπλόκων του ρηνίου έχει αναπτυχθεί σε μεγάλο βαθμό τα τελευταία χρόνια λόγω του γεγονότος ότι τα σύμπλοκα του ρηνίου με υποκαταστάτες τις διιμίνες εμφανίζουν μεγάλη διάρκεια ζωής και χρησιμοποιούνται για μελέτεςενώσεων των ισότοπων του ρηνίου με μικρή διάρκεια ζωής που υπόσχονται πολλά ως βemitters στην ακτινοθεραπεία [95,96]. Η χημεία των συμπλόκων του οξορηνίου εμφανίζει ιδιαίτερο ενδιαφέρον όχι μόνο λόγω της συμμετοχής τους σε πολλές αντιδράσεις βιομηχανικής και βιολογικής σημασίας, συμπεριλαμβανομένης της εποξείδωσης ολεφινών και της κατάλυσης μέσω του κυτοχρώματος P-450 [97,98], αλλά και για τον λιπόφιλο χαρακτήρα και τις οξειδωτικές καταστάσεις του ρηνίου από το Re(I) μέχρι και το Re(V) [99].

Τα σύμπλοκα του Re(V) έχουν μελετηθεί ως καταλύτες για αντιδράσεις μεταφοράς οξυγόνου [96] και παρουσιάζουν βιολογική δραστηριότητα [100]. Από την άλλη πλευρά, τα σύμπλοκα του Re(I) δείχνουν αξιοσημείωτες φωτοφυσικές και φωτοχημικές ιδιότητες [55,101–103], και ανάμεσα σε άλλες εφαρμογές χρησιμοποιούνται και ως αισθητήρες ανιόντων [55], ανιχνευτές DNA [104,105] φωτοευαισθητοποιητές σε ηλιακές κυψέλες [106] ανιχνευτές φθορισμού [102] και

76

μόρια που αποτελούν τμήματα σε μια υπερμοριακή κατασκευή (supramolecules) [107]. Οι μοναδικές ιδιότητες των συμπλόκων του Re(I) τρικαρβονυλ-διιμίνη (tricarbonyl-diimine) είναι στενά συνδεδεμένες με την ύπαρξη μεταφοράς χαμηλής ενέργειας φορτίου της διεγερμένης κατάστασης με την μεταφορά μεγάλης ηλεκτρονιακής πυκνότητας από το μέταλλο στον υποκαταστάτη-διιμίνη (MLCTκατάσταση). Η γνώση της φωτοχημείας των συμπλόκων όπως το [Re(CO)₃(bpy)X] βασίζεται σε μεθόδους που σχετίζονται με το χρόνο [108], υπολογισμούς DFT [29,109] και σχέσεις δομής – ιδιοτήτων [110]. Η φωτοκαταλυτική μετατροπή του διοξειδίου του άνθρακα σε μονοξείδιο του άνθρακα καταλυόμενη από το [ReBr(CO)₃(bpy)] και οι εκτενείς έρευνες του μηχανισμού που ακολούθησαν [106,111] προάγουν την έρευνα αυτής της τάξης των συμπλόκων ως φωτοευαισθητοποιητών για την μετατροπή της ηλιακής ενέργειας. Η τελευταία είναι πολύ ενεργή περιοχή έρευνας στην οποία συμβάλει ιδιαίτερα η χημεία των μετάλλων μετάπτωσης. Τα σύμπλοκα μετάλλων επιτρέπουν συσχέτιση δομής – δραστικότητας στην κατάλυση (δυναμικό οξειδοαναγωγής, ενέργεια διεγερμένης κατάστασης, γεωμετρία μορίων). Σε αυτό το πεδίο, τα σύμπλοκα του ρηνίου δρουν με δύο τρόπους: αναγωγή διοξειδίου του άνθρακα και φωτοεπαγώμενη παραγωγή υδρογόνου.

5.2 Αναγωγή πρωτονίων του νερού με τρικαρβόνυλο σύμπλοκο Re(I) και καταλύτες

Τα πιο σύγχρονα συστήματα στην ομογενή φωτοκατάλυση που χρησιμοποιούν σύμπλοκα του Re(I) ως φωτοευαισθητοποιητές χρησιμοποιούν σύμπλοκα τύπου [Re(CO)₃(NN)X], όπου NN υποδηλώνει μια διιμίνη και X αλογόνο, ψευδοαλογόνο, υποκατεστημένη πυριδίνη κ.τ.λ. Οι περισσότερες ερευνητικές μελέτες έγιναν με κοβαλοξίμες, επειδή έχουν μελετηθεί εις βάθος ως καταλύτες. Οι μηχανισμοί της αναγωγής των πρωτονίων και της σταθερότητας των καταλυτών αναφέρονται εκτενώς στη βιβλιογραφία [3,26,112–114], και εστιάζονται στα χρωμοφόρα του ρηνίου.

Εν συντομία, στα ομογενή συστήματα που χρησιμοποιούν τα σύμπλοκα Re(I) ως χρωμοφόρα, καταλύτη (WRC: water-reducingcatalyst, για παράδειγμα κοβαλοξίμη) και δότη ηλεκτρονίων (D), ηφωτοδιέγερση οδηγεί το χρωμοφόρο στην ³MLCT κατάσταση. Στην συνέχεια, το χρωμοφόρο αποδιεγείρεται αναγωγικά μέσω του δότη ηλεκτρονίων προς σχηματισμό (Re^{I)-}, το οποίο με τη σειρά του δίνει ένα ηλεκτρόνιο στον καταλύτη, και αρχίζει ο κύκλος αναγωγής των πρωτονίων/νερού για τον σχηματισμό του υδρογόνου (Σχήμα 5.2.1).

Σχήμα 5.2.1. Μηχανισμός παραγωγής υδρογόνου με χρωμοφόρο το (Re^I), δότη ηλεκτρονίων (D) και καταλύτη (WRC).

Όλα τα συστήματα που μελετηθήκαν με σύμπλοκα ρηνίου παρουσιάζονται στον Πίνακα 5.2.1. Σε αυτά τα συστήματα, ως δότης ηλεκτρονίων χρησιμοποιήθηκε κάποιο οξύ είτε σε κάποιο οργανικό μέσο, είτε σε υδατικά διαλύματα. Όπως φαίνεται στον Πίνακα 5.2.1 τα οξέα που χρησιμοποιούνταικατά κόρον στην φωτοκατάλυση είναι: οξικό οξύ (AcOH), ασκορβικό οξύ (AscOH), τετραφθοπροβορικό οξύ (HBF₄) και η πρωτονιωμένη τριτοταγής αμίνη.

Πιο αναλυτικά, η ομάδα του Aziz Fihri [107] συνέθεσε και μελέτησε σύμπλοκα Re με phen–υποκαταστάτες. Στο σύστημα αυτό, το σύμπλοκο [Re(CO)₃Br(phen)] χρησιμοποιήθηκε ως χρωμοφόρο, το p-κυανιοανιλίνη-τετραφθοροβορικό(p- cyanoanilinioum-tetrafluoroborate) ως πηγή πρωτονίων, το Et₃N/Et₃NH⁺ ως δότης ηλεκτρονίων και το [Co(dmgBF₂)₂(OH₂)₂] ως καταλύτης σε διάλυμα ακετόνης. Ανέφεραν ότι το σύστημα έδωσε τη μέγιστη απόδοση όταν χρησιμοποιήθηκε 1 eq. κοβαλοξίμης σε αντιστοιχία με το Re. Άυξηση της συγκέντρωσης της κοβαλοξίμης

οδηγεί σε μείωση της απόδοσης του συστήματος, πιθανότατα λόγω της ανταγωνιστικότητας μεταξύ του φωτοευαισθητοποιητή και του καταλύτη σε ότι αφορά την απορρόφηση της ακτινοβολίας. Το ίδιο σύστημα χρησιμοποιήθηκε και με διαφορετικούς PS [(Ir(ppy)₂(diimine), Ru(dmphen)₂(diimine), Ru(bipy)₂(diimine)]. Τα αποτελέσματα έδειξαν ό,τι η σειρά δραστικότητας ως προς την παραγωγή υδρογόνου είναι: [Re(CO)₃Br(phen)] > [(Ir(ppy)₂(diimine)] > [Ru(dmphen)₂(diimine)] > [Ru(dmphen)₂(diimine)] > [Ru(bipy)₂(diimine)]. Αυτό συμβαίνει γιατί τα σύμπλοκα του Re και του Ir υφίστανται αναγωγική αποδιέγερση σε σύγκριση με τα σύμπλοκα του Ru.

Η ομάδα του William T. Eckenhoff και Richard Eisenberg [115] μελέτησαν και αυτή τρικαρβονυλο-σύμπλοκα Re με phen και bpy υποκαταστάτες. Το πρώτο σύστημα που παρουσίασαν είχε ως χρωμοφόρο το σύμπλοκο [ReY(CO)₃(phen)], το AcOHωςπηγή πρωτονίων, την ΤΕΑ ως δότη ηλεκτρονίων και καταλύτη σύμπλοκο του κοβαλτίου σε διάλυμα ακετόνης. Το δεύτερο σύστημα χρησιμοποίησε το [ReX(CO)₃(bpy)] ωςχρωμοφόρο, το AcOH ως πηγή πρωτονίων, την ΤΕΟΑ ως δότη ηλεκτρονίων και καταλύτη σύμπλοκο του κοβαλτίου σε διάλυμα DMF. Στο δεύτερο σύστημα, παρατήρησαν ότι αντικαθιστώντας το Br⁻ με το NSC⁻ (isothiocyanate) στο σύμπλοκο $[ReX(CO)_3(bpy)]$ προκύπτει ένας πιο σταθερός **PS** $[Re(NCS)(CO)_3(bpy)]$ μεπαρόμοιες φωτοφυσικές ιδιότητες και το σύστημα απέδωσε σχεδόν 1000 TON_{Co} and 6000 TON_{Re}. Σε μια προσπάθεια να βελτιώσουν το σύστημα χρησιμοποιήθηκαν καταλύτες του κοβαλτίου, [Co(py)2(dmgH)(dmg)], αποκαλύπτοντας ότι κατιονικά σύμπλοκα του Re με υποκαταστάτες όπως pyridine και benzylisocyanide, $\{[Re(Py)(CO)_3(phen)],\$ $[\text{Re}(B_2-\text{NC})(\text{CO})_3(\text{phen})],$ $[\text{Re}(\text{Py})(\text{CO})_3(\text{bpy})],$ $[Re(B_2-$ NC)(CO)₃(bpy)]}, παρουσιάζουν καλή δραστικότητα, σε σύγκριση με άλλα σύμπλοκα {[ReBr(CO)₃(phen)], [Re(p-Py-NMe₂)(CO)₃(phen)], όπως $[Re(H_2O)(CO)_3(phen)],$ $[ReBr(CO)_3(bpy)],$ $[Re(p-Py-NMe_2)(CO)_3(bpy)],$ $[\text{Re}(\text{H}_2\text{O})(\text{CO})_3(\text{bpy})]$ που παράγουν λίγο ή και καθόλου υδρογόνο.

Hoμάδα της Miriam Oberholze [108] μελέτησε και αυτή τρικαρβονυλο-σύμπλοκα Re με phen-υποκαταστάτες, χρησιμοποιώντας το [Re(-C≡C-R)(CO)₃(N∩N)] ως χρωμοφόρο, το [HTEOA]BF₄ ως πηγή πρωτονίων, την TEOA ως δότη ηλεκτρονίων και καταλύτη σύμπλοκο [Co(DOH)Br₂] σε διάλυμα DMF. Ο ρυθμός παραγωγής υδρογόνουγιατα σύμπλοκα με phen-υποκαταστάτες, [Re(phen)(CO)₃{-C≡C-(C₆H₅)}], [Re(phen)(CO)₃(-C≡C-{3,5-(CF₃)₂(C₆H₃)}],[Re(phen)(CO)₃(-C≡C-{2-

79

 (NC_5H_4)], $[Re(phen)(CO)_3(6_{-C} \equiv C_{-(coumarin)})]$, είναι πέντε φορές μεγαλύτερος bpy-υποκαταστάτες, $([Re(bpy)(CO)_3(-C \equiv C - \{2$ από τα σύμπλοκα με (NC_5H_4)], [Rebpy(CO)₃(6-{-C = C-(coumarin)}], $\omega \sigma \tau \delta \sigma \sigma$ τα σύμπλοκα με bpyυποκαταστάτες παρουσίαζουν μεγαλύτερη σταθερότητα στον χρόνο. Παρόλα αυτά, δεν παρουσιάζεται καμία διαφορά στην τελική απόδοση μεταξύ των diimineυποκαταστατών και των alkynyl-υποκαταστατών. Τα σύμπολοκα {Re(CO)₃} με alkynyl-υποκαταστάτες σε αξονική θέση πράγματι βελτιώνουν τις φασματοσκοπικές ιδιότητες επάγοντας μια μετατόπιση προς το ερυθρό της MLCT, η οποία καθιστά ικανή μια πιο αποδοτική μετατροπή του ηλιακού φωτός σε χημική ενέργεια.

Σε μια μελέτη του, το 2009 ο Probst με την ομάδα του [116] παρουσίασαν ένα σύστημα παραγωγής υδρογόνου όπου το [Re(CO)₃Br(bpy)] χρησιμοποιήθηκε ως χρωμοφόρο, το [Co(dmgH)₂] ως καταλύτης και η TEOA ως δότης ηλεκτρονίων. Το χρωμοφόρο Re(I) σε σύγκριση με το [Ru(bpy)₃]²⁺ δρα πιο αποτελεσματικά κατά την πορεία της φωτοκατάλυσης, παρόλο που τα συστήματα παρουσιάζουν παρόμοια αρχικά TOF (3.7 και 4.1 μM/s, αντιστοίχως).

Σε μία πιο λεπτομερή έρευνα ο Probst και η ομάδα του [117] βελτίωσαν το σύστημα που προαναφέραμε αντικαθιστώντας στον φωτοευαισθητοποιητή το Br⁻ με το NCS⁻ και το οξικό οξύ με το τετραφθοροβορικό άλας της πρωτονιωμένης TEOA.

Σε μία περαιτέρω προσπάθεια βελτίωσης του συστήματος των Probst και της ομάδας του [110] πραγματοποιήθηκαν φωτοκαταλυτικά πειράματα σε νερό με οκτώ διαφορετικούς φωεαισθητοποιητές ρηνίου τύπου [Re(CO)₃(diimine)L], όπου ως διιμίνη χρησιμοποιήθηκε ο υποκαταστάτης bpy ή phen και ως L πυριδίνη, βενζυλικό ισοκυανίδιο, 4-διμεθυλ-αμινο-πυριδίνη ή νερό, ως δότης ηλεκτρονίων η TEOA και το HBF₄ ως πηγή πρωτονίων.

PS	Cat	D	solvent system	Adds	Acid	λ _{irr} (nm)	\mathbf{H}_2	TONRe	TON _{C0}	tirr	Ф	ref
[Re(bpy)(CO)3NCS] (30µM)		TEOA (1M)	DMF	-	HBF4 (20mM)	380	~0.2· 10 ⁻⁹ mol/s	6000 ^a	1000 ^b	110h		[117]
	$[Co(OH_2)_6](BF_4)_2$ (0.5mM) +	TEOA (1M)	DMF	-	HBF ₄ (50mM)	476	~15· 10 ⁻⁹ mol/s	1850 ^a		110h	$ \Phi_{\rm H/hv415n} \\ m = 26\% $	[117]
[Re(bpy)(CO)3Br]	dmgH ₂ (3mM) (C1)	TEOA (1M)	DMF	-	AcOH (0.1M)	400 cut off	~36 · 10 ⁻⁹ mol/s	158° (7h)	80 ° (1.5h)	1.5h, 7h	$\Phi_{\cdot H/hv} = 26 \pm 2\%$	[117, 118]
(0.5mM)		TEOA (1M)	DMF	10eq [TBA] Br	AcOH (0.1M)	400 cut off	~36 · 10 ⁻⁹ mol/s	145 °		7h		[117]
[Re(bpy)(CO) ₃ (H ₂ O)] (0.5mM)		TEOA (1M)	DMF	_	AcOH (0.1M)	400 cut off	~10 · 10-9 mol/s	20 °		7h		[117]

Πίνακας 5.2.1. Μοντέλα παραγωγής υδρογόνου από φωτοχημική διάσπαση του νερούμε σύμπλοκα ρηνίου.

PS	Cat	D	solvent system	Adds	Acid	λ _{irr} (nm)	${ m H}_2$	TON _{Re}	TON _{C0}	t _{irr}	Ф	ref
[Re(bpy)(CO) ₃ NCS] (0.5mM)	[Co(OH ₂) ₆](BF ₄) ₂	TEOA (1M)	DMF	-	HBF ₄ (0,1M)	476	14· 10 ⁻⁹ mol/s	775 °		25h		[117]
[Re(bpy)(CO) ₃ Br]	(1mM), dmgH ₂ (6mM)	TEOA (1M)	DMF	-	AcOH (0.1M)	476	4 · 10 ⁻⁹ mol/s	470 °		25h	$\Phi_{\rm H/hv380n}$ m = 40%	[117]
(0.5mM)	(C1)	TEOA (1M)	DMF	-	HBF4 (0,1M)	476	~10,5 · 10 ⁻⁹ mol/s	600 °		25h		[117]
[Re(bpy)(CO) ₃ (H ₂ O)]	[Co(OH ₂) ₆](BF ₄) ₂ (1mM), dmgH ₂ (6mM) (C1)	TEOA (1M)	DMF	-	HBF4 (0,1M)	400 cut off	~2.9 · 10 ⁻⁹ mol/s	20 °		7h		[117]
[Re(bpy)(CO) ₃ (py)](T flsO) (30µM)	[Co(dmgH ₂) ₂ (py) ₂] (500µM)	TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380	1,075 · 10 ⁻⁹ mol/s	105.8 ^d (2.5h)	3.3 ± 0.1 (13h)	2.5h, 13h	$\Phi_{\rm red} = 0.70$	[110]
[Re(bpy)(CO) ₃ (CNBz)](TflsO) (30μM)	[Co(dmgH ₂) ₂ (py) ₂] (500μM)	TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380	1,2 · 10 ⁻⁹ mol/s	72 ^d		2.5h		[110]

PS	Cat	D	solvent system	Adds	Acid	λ _{irr} (nm)	\mathbf{H}_2	TON _{Re}	TON _{C0}	t _{irr}	Ф	ref
[Re(bpy)(CO) ₃ (4- Me ₂ Npy)](TflsO) (30μM)		TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380	no production	-	-	2.5h	-	[110]
[Re(bpy)(CO) ₃ (H ₂ O)] (TflsO)		TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380	no production	-	-	2.5h	-	[110]
[Re(phen)(CO) ₃ (py)](TflsO) (30μM)		TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380	0,64 · 10-9 mol/s	104 d		2.5h	$\Phi_{\rm red} = 0.75$	[110]
[Re(phen)(CO) ₃ (CNB z)](TflsO) (30µM)	[Co(dmgH ₂) ₂ (py) ₂] (500µM)	TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380	0,75 · 10-9 mol/s	96 ^d		2.5h		[110]
[Re(phen)(CO) ₃ (4- Me ₂ Npy)](TflsO) (30μM)		TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380	no production	-	-	2.5h	-	[110]
[Re(phen)(CO) ₃ (H ₂ O)] (TflsO)		TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380	no production	-	-	2.5h	-	[110]

PS	Cat	D	solvent system	Adds	Acid	λirr (nm)	${ m H}_2$	TON _{Re}	TON _{Co}	t _{irr}	Ф	ref
[Re(bpy)(CO) ₃ (py)](T	[CoDOHBr ₂] (500μM)	TEOA (1M)	H ₂ O	_	HBF4 (0,1M)	380	5,6 · 10-9 mol/s		7.4±0.2 ^e	13h		[110]
ΠsO) (30μm)	[CoBr(py)DOH]B r (500µM)	TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380	6,4 · 10-9 mol/s		7.8±0.2 °	13h		[110]
[Re(bpy)(CO) ₃ (py)](T	[Co(DOH(CH ₂ O H) ₂)Br ₂] (500µM)	TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380			4,2 ^d	13h		[110]
fisO) (30μM)	[CoDOHOHBr ₂] (500µM)	TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380			5 ^f	13h		[110]
	[CoDOHF ₂ Br ₂] (500µM)	TEOA (1M)	H ₂ O	-	HBF4 (0,1M)	380			2,4 ^d	13h		[110]
[Re(bpy)(CO) ₃ (py)](T	[CoBr(py)DOH](PF ₆) (500µM)	TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380	4,0 · 10-9 mol/s		11±0.3 g	13h		[110]
[κe(opy)(CO) ₃ (py)](1 flsO) (30μM)	[Co (TIMMe) Br ₂](500µM)	TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380			1 d	13h		[110]
	[Co(TIMOH) Br ₂]Br (500µM)	TEOA (1M)	H ₂ O	-	HBF ₄ (0,1M)	380			0.5 ^d	13h		[110]

PS	Cat	D	solvent system	Adds	Acid	λ _{irr} (nm)	${ m H}_2$	TON _{Re}	TON _{Co}	t _{irr}	Ф	ref
[Re(phen)(CO) ₃ Br] (0.5mM)	[Co(dmgBF ₂) ₂ (OH ₂) ₂] (500µM)	Et ₃ N/ Et ₃ NHBF ₄	Acetone	-	HBF ₄	>380			273	15h	Φ· _{H/hv} =16 ± 1%	[26,107]
[Re(bpy)(CO) ₃ Br] (0.5mM)	[Co(dmgH) ₂ (4-t- BuNHCOC ₅ H ₄ N) Cl]	TEOA (1M)	DMF	dmgH ₂	AcOH (0.1M)	400 cut off			75	9h	$\Phi_{\cdot H/hv} = 26 \pm 2\%$	[26,116]
[Re(py)(bpy)(CO) ₃](O Tf) (0.5mM)	[CoBr(Tpy)]Br (0.1µM)	H ₂ asc/Na Hasc (0.5 M/ 0.5 M)	H ₂ O	-	H2asc, pH =4	400		9000 ^h		20h	Φ = 60%	[30]
[Re(py)(bpy)(CO) ₃](O Tf) (0.5mM)	[Co ^{II} Br(PPy)]Br (5µM)	H ₂ asc/ NaHasc (1M)	H ₂ O	-	H2asc, pH =4.1	385	1.5mL, 59μmol	1180 ^h		20 min		[111]
[Re(py)(bpy)(CO) ₃](O Tf) (0.5mM)	[Co ^{ll} Br(aPPy)]Br (0.1-0.5µM)	H2asc/ NaHasc	H ₂ O	-	H ₂ asc, pH =4.1	385		10800 ^h		20 min		[111]

PS	Cat	D	solvent system	Adds	Acid	λirr (nm)	\mathbf{H}_2	TON _{Re}	TON _{Co}	t _{irr}	Ф	ref
	[Mn ^{II} Br(PPy)]Br (5µM)	H ₂ asc/ NaHasc (1M)	H ₂ O	-	H ₂ asc, pH =4.1	385	no production	-	-	20 min	-	[111]
	[Fe ^{II} Br(PPy)]Br (5µM)	H ₂ asc/ NaHasc (1M)	H ₂ O	-	H ₂ asc, pH =4.1	385	no production	-	-	20 min	-	[111]
[Re(py)(bpy)(CO)3](O Tf) (0.5mM	[Cu ^{II} Br(PPy)]Br (5µM)	H ₂ asc/ NaHasc (1M)	H ₂ O	-	H ₂ asc, pH =4.1	385	no production	-	-	20 min	-	[111]
	[Ni ^{II} Br(PPy)]Br (5µM)	H ₂ asc/ NaHasc (1M)	H ₂ O	-	H ₂ asc, pH =4.1	385	no production	-	-	20 min	-	[111]

[Re(py)(bpy)(CO) ₃](O Tf) (0.5mM)	[Zn ^{II} Br(PPy)]Br (5µM)	H2asc/ NaHasc (1M)	H ₂ O	_	H ₂ asc, pH =4.1	385	no production	_	-	20 min	_	[111]
	[Mn ^{II} Br(aPPy)]Br (5µM)	H ₂ asc/ NaHasc (1M)	H ₂ O	-	H ₂ asc, pH =4.1	385	no production	-	-	20 min	-	[111]
[Re(phen)(CO) ₃ {- C=C-(C ₆ H ₅)}] (0.1Mm)	[Co(DOH)Br ₂] (0.5mM)	TEOA (0.9M)	DMF	-	[HTEOA]BF ₄ (0.1M)	385		400 ⁱ		30h	0.56± 0.03	[108]
$[Re(phen)(CO)_{3}(-C \equiv C - \{3, 5 - (CF_{3})_{2}(C_{6}H_{3})\}]$ $(0.1Mm)$	[Co(DOH)Br ₂] (2mM)	TEOA (0.9M)	DMF	-	[HTEOA]BF4 (0.1M)	385	1.8 10-8 mol/s	270 ⁱ		45h	0.13± 0.01	[108]
$[Re(phen)(CO)_{3}(-C=C-\{2-(NC_{5}H_{4})\}]$ (0.1Mm)	[Co(DOH)Br ₂] (0.5mM)	TEOA (0.9M)	DMF	-	[HTEOA]BF4 (0.1M)	385		~ 280 ⁱ		50h	0.12± 0.03	[108]
$[Re(bpy)(CO)_{3}(-C \equiv C - \{2(NC_{5}H_{4})\}](0.1Mm)$		TEOA (0.9M)	DMF	-	[HTEOA]BF4	385		275 j		20h	0.61± 0.01	[108]

PS	Cat	D	solvent	Adds	Acid	λirr	\mathbf{H}_2	TON _{Re}	TON _{Co}	t _{irr}	Ф	ref
			system			(nm)						
[Re(phen)(CO) ₃ (6- {C≡C-(coumarin)}] (0.1Mm)	[Co(DOH)Br ₂] (0.5mM)	TEOA (0.9M)	DMF	-	[HTEOA]BF ₄ (0.1M)	385		~ 310 ⁱ		40h	0.37±0.0 2	[108]
[Re(bpy)(CO) ₃ (6- {C≡C-(coumarin)}] (0.1Mm)		TEOA (0.9M)	DMF	-	[HTEOA]BF ₄ (0.1M)	385		400 j		50h	0.23±0.0 2	[108]
[Re(bpy)(CO) ₃ (py)](T flsO) (0,03mM)	[Co ^{III} (Br) ₂ {(DO(DOH)pn}] (0,5mM)	H2asc/ NaHasc	H ₂ O	-	H ₂ asc, pH =4.1	380	4,8· 10-9 mol/s	3000 ^h	90 k	30h		[119]
[Re(bpy)(CO) ₃ py] ⁺ (0.5mM)	[CoBr(aPPy)]Br (5µM)	TCEP/ NaAscO	H ₂ O	-	H ₂ asc, pH=4	385			2000 h	11h		[120]
[Re(bpy)(CO) ₃ Br] (1.0 mol/dm ⁻³)	-	TEA	THF	Bu4NBr 10mM	H ₂ asc, pH=4	> 400	6.5µmol	7 m		1h		[30]
	-	TEA	Dry THF	-	H2asc, pH=4	> 400	1µmol	< 2 ^m		1h		[30]
	-	TEA	THF/ H ₂ O	-	-	> 400	3.8µmol (0 °C)	8 m		1h		[30]

[Re(bpy)(CO) ₃ Br] (1.0 mol/dm ⁻³) [Re(bpy)(CO) ₃ Br] (1.0 mol/dm ⁻³)	_	TEA	THF/ H ₂ O	-	-	> 400	5.6 μmol (15 °C)	10 m	1h	[30]
	-	TEA	THF/ H ₂ O	bpy (50m)	-	> 400	7.1 μmol (45 °C)	15 ^m	1h	[30]
	-	TEA	THF/ H2O	СО	-	> 400	5.6 µmol	9 m	1h	[30]
	-	TEA	THF/ H ₂ O	P(OEt) (20m)	-	> 400	5 µmol	10 ^m	1h	[30]
	-	TEA	THF/ H2O	-	-	> 400	~1 µmol	<1 ^m	1h	[30]
	-	TEOA	THF/ H ₂ O	-	-	> 400	1.3 µmol	2 m	1h	[30]
	-	TEA	DMF	-	-	> 400	-	-	1h	[30]
[Re(H ₂ bby)(CO) ₂ (PPh ₃)PPh ₃] ¹⁺ (1mM)		BNAH/ TEOA	DMF	-	-	> 400	60.4 µmol	15.1 ⁿ	6h	[29]

PS	Cat	D	solvent system	Adds	Acid	λirr (nm)	${ m H}_2$	TON _{Re}	TON _{Co}	t _{irr}	Ф	ref
[Re(H2bby)(CO)2(P(OE	t) ₃)PPh ₃] ¹⁺ (1mM)	BNAH/ TEOA	DMF	-	-	> 400	30 µmol	12.9 ⁿ		бh		[29]
$[Re(Me_2bby)(CO)_2(P(OEt)_3)PPh_3]^{1+}$ (1mM)		BNAH/ TEOA	DMF	-	-	> 400		13.8 ⁿ		6h		[29]
$[Re(H_{2}bby)(CO)_{2}(P(OEt)_{3}(P(OEt)_{3})]^{1+}$ (1mM)		BNAH/ TEOA	DMF	-	-	> 400		4.8 ⁿ		бh		[29]
[Re(Me ₂ bby)(CO) ₂ (P((1mM	OEt) ₃)(P(OEt) ₃] ¹⁺ I)	BNAH/ TEOA	DMF	-	-	> 400		6.8 ⁿ		бh		[29]
[Re(H ₂ bby)(CO) ₂ (P((1mM	OEt) ₃)MeCN] ¹⁺ I)	BNAH/ TEOA	DMF	-	-	> 400		0.34 ⁿ		бh		[29]
[Re(H ₂ bby)(CO) ₂ (P(OEt) ₃)Cl ⁻](1mM)	BNAH/ TEOA	DMF		-	> 400		0.04 ⁿ		6h		[29]

PS	 Cat	D	D solvent	Adds	Acid	λirr	Ha	TONPO	TONCo	tirr	Φ	ref
			system			(nm)		IOITK			*	
$[Re(CF_{3})_{2}bby)(CO)_{2}(P(OEt)_{3}(P(OEt)_{3})]^{1+}$ (1mM)		BNAH/	DMF	_	-	>400		_		6h		[29]
		TEOA	DMI			2400				UII		[27]
[Re(H ₂ bby)(CO) ₂ ($P(OEt)_3)py]^{1+}$	BNAH/	DMF	_	_	> 400		1 2 n		6h		[29]
(1mM)		TEOA	DMF	-		> 400		1.2		011		[27]
$[Re(H_2bby)(CO)_2(P(OEt)_3(P(OEt)_3)]^{1+}$ (1mM)		BNAH/	DMF/			. 100				(h		[20]
		TEOA	(1.5M)	-	-	> 400		_		OII		[29]
		BNAH/	DMF/	_	_	> 400		0.6 ⁿ		6h		[20]
		TEOA	H ₂ O	-	_	> 400		0.0		OII		[27]
		BNAH/	DMF/	-	-	> 400		-		6h		[29]
[Re(H ₂ bby)(CO) ₂ (P(C	$(OEt)_3(P(OEt)_3)]^{1+}$	pyBu ₂	H ₂ O									
(1mM)	[)	BNAH/ py	DMF/ H2O	-	-	> 400		0.4 ⁿ		6h		[29]
	BNAH/	DMF/	-	_	> 400		10.2 n		бh		[29]	
		TEOA	H ₂ O									

[Re(H ₂ bby)(CO) ₂ (P(OEt) ₃ (P(OEt) ₃)] ¹⁺ (1mM)	BNAH/ TEA	DMF/ H ₂ O		6 ⁿ		[29]
	BNAH/ pipMe ₄	DMF/ H ₂ O		0.7 ⁿ		[29]
	-	DMF		0.3 ⁿ		[29]

^aμετά από 120 h ακτινοβόλησης ο PS αποσυντίθεται, ^bμετά από 55 h ακτινοβόλησης ο Cat. αποσυντίθεται, ^cστον PS και στον Cat. δεν έχει απέρθει αποσύνθεση, ^dμετά από 4 h ακτινοβόλησης ο PS αποσυντίθεται, ^eμετά από 8 h ακτινοβόλησης ο Cat. αποσυντίθεται, ^fμετά από 5 h ακτινοβόλησης ο Cat. αποσυντίθεται, ^gμετά από 12 h ακτινοβόλησης ο Cat. αποσυντίθεται, ^hσταθερές ενώσεις σε αυτό το σύστημα κατά την φωτοκατάλυση, ⁱμετά από ~5-10 h ακτινοβόλησης ο PS και ο Cat. αποσυντίθενται, ^jμετά από ~10-20 h ακτινοβόλησης ο PS και ο Cat. αποσυντίθενται, ^kο Cat. [Co^{III}(Br)₂{(DO(DOH)pn}] σε ένα υδατικό διάλυμα μετασχηματίζεται σε [Co^{II}(OH₂){(DO)(DOH)pn}]⁺ και η αποσύνθεση του Cat. κατά την φωτοκατάλυση πρέπει ακόμη να εξεταστεί, ^mμετά από 2 h ακτινοβόλησης ο PS αποσυντίθεται, ⁿμετά από ~14 h ακτινοβόλησης ο φωτοκαταλύτης αποσυντίθεται μερικώς.

ΚΕΦΑΛΑΙΟ 6

ΥΛΙΚΑ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΕΣ ΣΥΣΚΕΥΕΣ

6.1 Αντιδραστήρια – Αρχικές ουσίες – Διαλύτες

Για τις παρασκευές που έγιναν στα πλαίσια της μελέτης μας γρησιμοποιήθηκανως αρχικά αντιδραστήρια τα σύμπλοκα [Re(CO)5Br], [Re(CO)5Cl], και οι γεφυρωτικοί υποκαταστάτες 1,10 – phenathroline – 5 – amine, 1,10 – phenathroline – 5,6 – dione αγορασμένα από τις Sigma Aldrich, Alfa Aesarκαι Merck. Τα σύμπλοκα του Ni $\{(NEt_4)^+|Ni\{S_2C_2(C_6H_4-OCH_3-4)_2\}_2\}$ $(NEt_4)^+[Ni{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)}_2]^-,$ $(NEt_4)^+[Ni\{S_2C_2(C_6H_5)_2\}_2]^-,$ $(TBA)^{+}[Ni\{S_{2}C_{2}(C_{6}H_{4}-OCH_{3}-4)_{2}\}_{2}]^{-},$ $(TBA)^{+}[Ni{S_2C_2(C_6H_5)(C_6H_4 OCH_{3}-4)_{2}^{-1}$ kai $(TBA)^{+}[Ni\{S_{2}C_{2}(C_{6}H_{5})_{2}\}_{2}]^{+}\}$ suntéhnkan kai carakthrísthkan apó touc Ευγενία Κουτσούρη και Αθανάσιο Ζαρκαδούλα στα πλαίσια της διδακτορικής τους διατριβής στο εργαστήριο μας. Τα σύμπλοκα του Ga [Ga(di-o-F-p-py)-1-Ga] και [Ga(tpfc)-2-Ga] συντέθηκαν και χαρακτηρίστηκαν από τον καθηγητή Z.Gross (Department of Chemistry, Technion, Haifa, Israel). Τα σύμπλοκα [K(NCMe)₃(L¹³)Co^{II}-[K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O NCMe] και συντέθηκαν και χαρακτηρίστηκαν από τον καθηγητή Π. Σταυρόπουλο (University of Missouri). Η επίλυση των κρυσταλλικών δομώντου [ReBr(CO)₃(pq)] έγινε από τον Luciano Marchiò (Università degli Studi Parma).

Τα οργανικά αντιδραστήρια που χρησιμοποιήθηκανήταν τουλάχιστον αναλυτικού βαθμού καθαρότητας p.a. και κατά περίπτωση υποβλήθηκαν σε περαιτέρω κατεργασία καθαρισμού και απόσταξης. Αγοράστηκαν και αυτά από τις εταιρείες Aldrich, Merck καθώς και Fluka, SDS, Alfa.

Το νερό ήταν αποσταγμένο ή προερχόμενο από τη συσκευή Milli-Q του εργαστηρίου της Χημείας Περιβάλλοντος.

Οι διαλύτες που χρησιμοποιήθηκαν για τη λήψη φασμάτων ορατού-υπεριώδους ήταν αγορασμένοι διαλύτες φασματοσκοπικής καθαρότητας.

Οι δευτεριωμένοι διαλύτεςγια το NMR αγοράστηκαν από τις Aldrich, Merck και Alfa και αντιστοιχούσαν σε 99,9% καθαρότητα.
Το DMF που χρησιμοποιήθηκε στα πειράματα ήταν μεγάλης καθαρότητας αλλά αποστάχθηκε επιπλέον για ακόμα μεγαλύτερη καθαρότητα. Χρησιμοποιήθηκε επίσης διμεθυλογλυοξίνη 99% καθαρότητας, MeOH, και TEOA 99% καθαρότητας.

6.2 Όργανα – Μικροσυσκευές

Τα φάσματα ηλεκτρονικής απορρόφησης καταγράφηκαν σε φασματοφωτόμετρο τύπου Cary 300 της Varian συνδεδεμένο με υπολογιστή με το αντίστοιχο λογισμικό, σε θερμοκρασία δωματίου 25°C. Χρησιμοποιήθηκαν κυψελίδες χαλαζία οπτικής διατομής 1 cm.

Τα φάσματα υπερύθρου καταγράφηκαν σε φασματοφωτόμετρο IR τύπου Class 1, Laser Product, SHIMADZU, FT-IR (FOURIER TRANSFORM INFRARED SPECTROPHOTOMETER), συνδεδεμένο με υπολογιστή.

Τα πειράματα ¹Η NMR πραγματοποιήθηκαν σε όργανο τύπου Unity Plus 300/54 της Varian συνδεδεμένο με υπολογιστή Sun Ultra 5.

Όλες οι κυκλικές βολταμμετρίες πραγματοποιήθηκαν με όργανο Bipotentiostat AFCBP1 από την Pine Instrument Company ελεγχόμενο με λογισμικό PineChem 2.7.9.

Ησυλλογήτωνκρυσταλλικώνδεδομένωντου [ReBr(CO)₃pq] έγινε στο Università degli Studi Parma της Ιταλία, σε περιθλασίμετρο Bruker Smart Breeze με ακτινοβολία ΜοΚα, $\lambda = 0.71073$ Å. Η επεξεργασία των δομών του συμπλόκου έγινε με πρόγραμμα Mercury 3.5.1.

Τα πειράματα φωτόλυσης πραγματοποιήθηκαν με:

- Λάμπαξένου 1000 W της Oriel, 68820, Universal Power Supply. Χρησιμοποιήθηκε ως φίλτρο H₂O και ειδικό φίλτρο 335 nm προκειμένου να παραχθεί ηλεκτρομαγνητική ακτινοβολία μήκος κύματος λ = 335 – 1000 nm.
- Led 10 W, της Spotlights, VK/02001/G/D/230V, λευκού χρώματος, φωτεινότητας 700 LM.

Τα χρωματογραφήματα των πειραματικών δοκιμών καταγράφηκαν σε αέριο χρωματογράφο τύπου 430 – GC (Gas Chromatographer) της BRUCHER, συνδεδεμένο με υπολογιστή.

Τα φάσματα διέγερσης και εκπομπής καταγράφηκαν σε φθορισμόμετρο τύπου RF– 5301PC (Spectofluorophotometer) της Shimadzu, με λάμπα ξένου 1000 W, συνδεδεμένο με υπολογιστή.

6.3 Μέθοδοι – Πειραματική διαδικασία

Για τα φάσματα IR κατασκευάστηκε με το δείγμα παστίλια με χρήση άνυδρου KBr. Η παστίλια αυτή φτιάχτηκε σε χειροκίνητη πρέσα.

Για τη λήψη φάσματος NMR, το δείγμα διαλύθηκε στον ανάλογο δευτεριωμένο διαλύτη, σε σωληνάκι 5 mm.

Για τα πειράματα κυκλικής βολταμετρίας χρησιμοποιήθηκε ο ποτενσιοστάτης AFCBP1 (Pine Instrument Company) και το λογισμικό PineChem 2.7.9. Ως ηλεκτρόδιο εργασίας χρησιμοποιήθηκε ηλεκτρόδιο δίσκου χρυσού (διαμέτρου 1.6 mm), και λευκοχρύσου (διαμέτρου 0.5 cm) ως ηλεκτρόδιο αναφοράς πρότυπο Ag/AgCl/KCl και (για μη υδατικούς διαλύτες) ηλεκτρόδιο Ag/Ag+ (0.01 M AgNO₃ και 0,1 M [(n-Bu)₄NPF₆] σε MeCN) με επιπρόσθετη γέφυρα (0.5 M [(n-Bu)₄NPF₆] σε MeCN) και ως βοηθητικό ηλεκτρόδιο πλέγμα λευκοχρύσου (8 cm², Sigma-Aldrich). Το ηλεκτρόδιο εργασίας γυαλίζεται κάθε φορά πριν από τη χρήση χρησιμοποιώντας διαδοχικά διαμαντόπαστες των 6, 3 και 1 mm σε πανάκι DP-Nap (Struers, Westlake, OH), εκπλένεται με νερό, ακετόνη και στεγνώνεται στον αέρα. Το βοηθητικό ηλεκτρόδιο λευκοχρύσου καθαρίζεται σε διάλυμα H₂O₂/H₂SO₄ (πυκνό) (1/4 v/v) και στεγνώνεται στο φούρνο. Η συγκέντρωση των δειγμάτων είναι 1-3 mM και του [(n-Bu)₄NPF₆] (φέρων ηλεκτρολύτης) 0.5 M. Η ταχύτητα σάρωσης κυμαίνεται μεταξύ 100-500 mV/s. Όλες οι τιμές δυναμικού δίνονται ως προς το δυναμικό αναγωγής του φεροκενίου (Fc+/Fc).

Τα φάσματα διέγερσης και εκπομπής καταγράφηκαν σε φθορισόμετρο τύπου RF– 5301PC (Spectofluorophotometer) της Shimadzu, με λάμπα ξένου 1000 W, συνδεδεμένο με υπολογιστή. Παρασκευάστηκε διάλυμα [ReBr(CO)₃(amphen)] σε DMF συγκέντρωσης 0.5 mM, 1 mL αυτού του διαλύματος χρησιμοποιήθηκε για την παρασκευή διαλύματος που περιείχε την κοβαλοξίμη, έτσι ώστε η συγκέντρωση της $[Co(OAc)_2]$ ·4H₂O να είναι 0.03 M και αντίστοιχα (6eq.) της dmgH₂ 0.09 M, το προκύπτον διάλυμα απαερώθηκε υπό Ar. Τα 3 mL του διαλύματος του [ReBr(CO)₃(amphen)] (0.5 mM) προστέθηκαν στην κυψελίδα χαλαζία και το διάλυμα απαερώθηκε. Η επίδραση της κοβαλοξίμης στην διέγερση του διαλύματος [ReBr(CO)₃(amphen)]/DMF παρακολουθήθηκε μέσω της λήψης φασμάτων εκπομπής κάθε την προσθήκη φοράς ποσοτήτων από το διάλυμα με $[Co(OAc)_2]$ ·4H₂O/[ReBr(CO)₃(amphen)]. Τα φάσματα εκπομπής λήφθηκαν με διέγερση στα 465 nm και με σάρωση από τα 500 μέχρι τα 800 nm. Η σχισμή (slits) της διέγερσης και της εκπομπής είχε οριστεί στα 5 mm.

Ο προσδιορισμός του H₂ έγινε με αέριο χρωματογράφο TCD (Ανιχνευτής Θερμικής Αγωγιμότητας), οι συνθήκες λειτουργίας του αέριου χρωματογράφου αναγράφονται στον Πίνακα 6.3.1.

Δεδομένα Χρωματογράφου					
Στήλη	Molsieve SAPLOT 30*0.53(15)				
Τ °C Εισαγωγέα (Injector)	70 °C				
Τ °C Ανιχνευτή (Detector)	150 °C				
Τ °C Φούρνου (Oven)	40 °C				
Φέρον Αέριο	Άζωτο				
Συνολικός Χρόνος	15 min				
Ροή αερίου στήλης (Column Flow)	10 mL/min				

Πίνακας 6.3.1. Δεδομένα Αέριου Χρωματογράφου.

Για τη σύνθεση των νέων συμπλόκων έγινε χρήση τεχνικών τύπου Schlenk με εξέλιξη της πειραματικής διαδικασίας σε ατμόσφαιρα αδρανούς αερίου N₂ (καθαρότητας 99.999%).

6.4 Βαθμονόμηση αέριου χρωματογράφου

Η βαθμονόμηση του αέριου χρωματογράφου έγινε με τους εξής δύο τρόπους:

Ι) Σε γυάλινο βαρελάκι προστίθενται 35 mL καθαρού DMF, το διάλυμα απαερώνεται σε γραμμή κενού υπό Ar για 15 min. Σε γυάλινη κωνική φιάλη 15 mL προστίθενται διάλυμα πυκνού HCl/H₂O και Zn προς παραγωγή H₂. Στην συνέχεια με σύριγγα 5 mL προσθέτουμε ποσότητες υδρογόνου στην φιάλη Schlenk (0.5 mL, 1 mL, 1.5 mL...) και με σύριγγα 10 μL εισάγουμε το αέριο από την φιάλη Schlenk στο όργανο. Το H₂ δίνει κορυφή στο 1.1 min, ανάλογα με την ποσότητα H₂ που εισάγουμε παίρναμε κορυφή με διαφορετικό εμβαδόν. Η βαθμονόμηση έγινε με ολοκλήρωση των κορυφών.

II) Σε γυάλινη φιάλη 5 mL προστίθενται 2 mL καθαρό DMF, το διάλυμα απαερώνεται σε γραμμή κενού υπό Ar για 15 min. Σε γυάλινη κωνική φιάλη 10 mL προστίθενται πυκνό HCl και Zn προς παραγωγή H₂. Στην συνέχεια με σύριγγα 1 mL προσθέτουμε ποσότητες υδρογόνου στην φιάλη (0.1 mL, 0.2 mL, 0.5 mL...) και με σύριγγα 10 μL εισάγουμε το αέριο από την φιαλίδιο στο όργανο. Το H₂ δίνει κορυφή στο 1.1 min, ανάλογα με την ποσότητα H₂ που εισάγουμε παίρνουμε κορυφή με διαφορετικό εμβαδόν. Η βαθμονόμηση έγινε με ολοκλήρωση των κορυφών.

Σχήμα 6.4.1. Φάσμα αέριου χρωματογράφου παραγωγής Η₂.

ΚΕΦΑΛΑΙΟ 7

ΣΥΝΘΕΣΕΙΣ ΣΥΜΠΛΟΚΩΝ

7.1 Σύμπλοκο [ReBr(CO)₃(amphen)] (1)

7.1.1 Σύνθεση συμπλόκου [ReBr(CO)₃(amphen)]

Για την σύνθεση του συμπλόκου [ReBr(CO)₃(amphen)] (1) χρησιμοποιήθηκε ως πρώτη ύλη το σύμπλοκο του ρηνίου [Re(CO)₅Br], το οποίο παρουσία του υποκαταστάτη 5 – αμινο - 1,10 – φαινανθρολίνη,με μια απλή αντίδραση αντικατάστασης, δίνει το τελικό σύμπλοκο [ReBr(CO)₃(amphen)]. Η συνολική πορεία σύνθεσης συνοψίζεται στην παρακάτω αντίδραση:

Πιο αναλυτικά, προσθέτονται 0.0507 g (0.26 mmol) του υποκατάστατη (amphen) με μια ισομοριακή ποσότητα του συμπλόκου του ρηνίου [Re(CO)₅Br] 0.11g (0.26 mmol) σε 10 mL τολουολίου, το διάλυμα βράζεται υπό αναρροή και υπό N₂ για 2 h. Το προκύπτον διάλυμα διηθείται σε Buchner και εκπλένεται με τολουόλιο. Λαμβάνεται ανοιχτό-πορτοκαλί στερεό 0.1258 g, το οποίο αφήνεται για ξήρανση υπό κενό. Η απόδοση της διαδικασίας είναι 85.45%.

7.1.2 Χαρακτηρισμός του συμπλόκου [ReBr(CO)₃(amphen)]

Σχήμα 7.1.2.1. Δομή συμπλόκου [Re(CO)₃Br(amphen)] με εμφανή τα χημικώς διακριτά πρωτόνια.

Η ταυτοποίηση του συμπλόκου [ReBr(CO)₃(amphen)] έγινε με φασματοσκοπία NMR. Στο Σχήμα 7.1.2.2 φαίνεται το φάσμα του συμπλόκου του ρηνίου [ReBr(CO)₃amphen] σε διαλύτη d⁶-διμεθυλοσουλφοξείδιο (DMSO-d₆) και στον Πίνακα 7.1.2.1 δίνονται οι χημικές μετατοπίσεις των πρωτονίων σε d⁶διιμεθυλοσουλφοξείδιο. Στο μόριο του [ReBr(CO)₃(amphen)] υπάρχουν οκτώ χημικώς διακριτά πρωτόνια (Σχήμα 7.1.2.1). Στο φάσμα του NMR παρατηρούμε τις οκτώ κορυφές που αναμέναμε, τέσσερις διπλές κορυφές 9.39 (d,1H), 9.09 (d,1H), 8.95 (d,1H), 8.46 (d,1H), δύο τριπλές κορυφές 8.05 (t, 1H), 7.79 (t,1H) και δύο μονές κορυφές 7.07 (s,1H), 6.89 (s,2H,NH₂).

Σχήμα 7.1.2.2. ¹H-NMR φάσμα του συμπλόκου [ReBr(CO)₃(amphen)] σε DMSO-d₆.

Πίνακας 7.1.2.1. Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου [ReBr(CO)₃(amphen)] και του υποκαταστάτη amphen στο NMR.

	H_1	H8	H3	H ₂	H7	H6	H 4	H5
[ReBr(CO) ₃ (amphen)]	9.40	9.09	8.95	8.46	8.05	7.79	7.07	6.89
amphen	9.06	8.69	8.69	8.05	7.74	7.51	6.88	6.13

Στη συνέχεια ακολουθεί το FT-IR φάσμα του συμπλόκου:

Σχήμα 7.1.2.3. FT-IR φάσμα του συμπλόκου [ReBr(CO)₃(amphen)].

Το φάσμα (IR) φασματοσκοπίας παρουσιάζει τρείς χαρακτηριστικές ταινίες, που παρατηρούνται στην περιοχή δόνησης των καρβονυλίων. Συγκεκριμένα παρατηρούμε μια χαρακτηριστική δόνηση στα 2017 cm⁻¹ (συμμετρική) και μια δόνηση στα 1932-1905 cm⁻¹ (ασύμμετρη), οι οποίες αναφέρονται στη δόνηση τάσης του δεσμού C=O των τριών καρβονυλίων του συμπλόκου. Οι κυματαριθμοί των δονήσεων του C=O είναι ευαίσθητες ως προς την d_π ηλεκτρονιακή πυκνότητα (κατάσταση οξείδωσης). Η σταθερότητα των κυματοαριθμών υποδεικνύει ότι ουποκαταστάστης έχει ισοδύναμη διατάραξη στο μεταλλικό κέντρο. Η συχνότητα δόνησης των καρβονυλίων κυμαίνεται στα ±5 cm⁻¹ στο σύμπλοκο του [ReBr(CO)₃(amphen)].

Ακολουθεί το φάσμα UV – Vis του συμπλόκου

Σχήμα 7.1.2.4. UV-Vis φάσμα του συμπλόκου [ReBr(CO)₃(amphen)] (1) σε DMF, Acetone, DCM.

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη DMF, παρατηρούνται δύο κορυφές στην περιοχή του υπεριώδους, στα 265 nm (11870 M⁻¹cm⁻¹) και στα 299 nm (13420

 $M^{-1}cm^{-1}$), όπου αντιστοιχούν σε intraligand $\pi \rightarrow \pi^*$ μεταπτώσεις της φαινανθρολίνης, μια κορυφή CT στα 365 nm (6680 $M^{-1}cm^{-1}$) και μια κορυφή στην ορατή περιοχή 444 nm (1830 $M^{-1}cm^{-1}$) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου. Όπως φαίνεται στο Σχήμα 7.1.2.4, οι δύο τελευταίες αναφερόμενες κορυφές παρουσιάζουν διαλυτοχρωμισμό. Έτσι σε διαλύτη ακετόνη, παρατηρούμε ότι μετατοπίζεται η κορυφή CT στα 358 nm (5390 $M^{-1}cm^{-1}$) και η MLCT στα 436 nm (1670 $M^{-1}cm^{-1}$).

Αντίστοιχα,σε διαλύτη DCM οι κορυφές CT και MLCT μετατοπίζοναι στα 353 nm $(2900M^{-1}cm^{-1})$ και στα 444 nm $(1830 M^{-1}cm^{-1})$ σύμφωνα με τις αρχές του αρνητικού διαλυτοχρωμισμού. Το φάσμα του συμπλόκου σε DCM, παρουσιάζει και διαφορετική μορφή στη UV-Vis περιοχή, υποδεικνύοντας ίσως χημική επίδραση του διαλύτη στο σύστημα του υποκαταστάτη.

Complex	Solvent	λ_{max} (nm)	ε (M ⁻¹ cm ⁻¹)	$\lambda_{em}(nm)$	Characterisation
[(u		444	1830	586	MLCT
		365	6680		СТ
	DMF	299	13420		$\pi \rightarrow \pi^*$
phe		265	11870		$\pi \rightarrow \pi^*$
am	Acetone	436	1670		MLCT
)3(358	5390		СТ
CC		429	1100		MLCT
Br(353	2900		СТ
[Re	DCM	297	4080		$\pi \rightarrow \pi^*$
_		260	4700		$\pi \rightarrow \pi^*$
		241	5610		$\pi \rightarrow \pi^*$

Πίνακας 7.1.2.2. UV-Vis φάσμα του συμπλόκου [ReBr(CO)₃(amphen)].

Το σύμπλοκο χαρακτηρίστηκε και με κυκλική βολταμετρία σε DMF (Σχήμα 7.1.2.5 - 7.1.2.6).

Σχήμα 7.1.2.5. Κυκλικό βολταμμογράφημα του συμπλόκου [ReBr(CO)₃(amphen)] σε DMF 0,1 M [n-Bu₄NPF₆]. Ηλεκτρόδιο εργασίας: ηλεκτρόδιο δίσκου υαλώδους άνθρακα (50 mm). Ταχύτητα σάρωσης: 100 mV/s.

Σχήμα 7.1.2.6. Κυκλικό βολταμμογράφημα του [ReBr(CO)₃(amphen)] σε DMF, σε διαφορετικές ταχύτητες / 0,1 M[n-Bu₄NPF₆]. Ηλεκτρόδιο εργασίας: ηλεκτρόδιο δίσκου υαλώδους άνθρακα (50 mm). Αναπαριστά την πρώτη αναγωγή (amphen^{0/-I}couple; $E_{1/2} = -1.74$ V), η οποία είναι ημιαντιστρεπτή. Ταχύτητα σάρωσης: 400-50 mV/s.

Σύμφωνα με το κυκλικό βολταμογράφημα του συμπλόκου [ReBr(CO)₃(amphen)], όπως φαίνεται στο Σχήμα 7.1.2.5 παρατηρούμε μια οξείδωση (μη αντιστρεπτό κύμα) στα Ep,a = 0,86 V, που σύμφωνα με την βιβλιογραφία μπορεί να αποδοθεί στο ζεύγος Re^{I/II} [121,122]. Επιπλέον, εμφανίζει ένα ημι-αντιστρεπτό κύμα στα E_{1/2} = -1.74 V ($\Delta E = 154$ mV, ip, c/ip,a = 1.39) που αντιστοιχεί στο ζεύγος amphen^{0/-I}, και ένα μη αντιστρεπτό κύμα στα Ep,c = - 2.17 V που αντιστοιχεί στο ζεύγος amphen^{-I/-II}. Στον Πίνακα 7.1.2.3 δίνονται τα δυναμικά οξειδοαναγωγής του συμπλόκου ως προς το Fc+/Fc,B με ηλεκτρόδιο εργασίας: ηλεκτρόδιο δίσκου υαλώδους άνθρακα και ταχύτητα σάρωσης 0.1 V/s.

Πίνακας 7.1.2.3. Δυναμικά οξειδοαναγωγής του συμπλόκου [ReBr(CO)₃(amphen)] σε DMF ως προς Fc⁺/Fc σε DMF/TBAPF₆ στους 298 K, με ηλεκτρόδιο εργασίας: ηλεκτρόδιο δίσκου υαλώδους άνθρακα και ταχύτητα σάρωσης 0.1 V/s.

Complex	Eox	\mathbf{E}_{red}	Ered
[ReBr(CO) ₃ (amphen)]	0,86V	-1.74V ^α	-2.17V

^α ημι-αντιστρεπτό

7.2 Σύμπλοκο [ReBr(CO)₃(phendione)](2)

7.2.1 Σύνθεση συμπλόκου [ReBr(CO)₃(phendione)]

Για την σύνθεση του συμπλόκου [ReBr(CO)₃(phendione)] (2) χρησιμοποιήθηκε ως πρώτη ύλη το σύμπλοκο του ρηνίου [Re(CO)₅Br], το οποίο παρουσία του υποκαταστάτη 1,10 – φαινανθρολίνη – 5,6 – διόνη, με μια απλή αντίδραση αντικατάστασης, δίνει το τελικό σύμπλοκο [ReBr(CO)₃(phendione)]. Η συνολική πορεία σύνθεσης συνοψίζεται στην παρακάτω αντίδραση:

Πιο αναλυτικά, προσθέτονται 0.0546 g (0.26 mmol) του υποκατάστατη (phendione) με μια ισομοριακή ποσότητα του συμπλόκου του ρηνίου [Re(CO)₅Br] 0.11 g (0.26 mmol) σε 10 mL τολουολίου, το διάλυμα βράζεται υπό αναρροή και υπό N₂ για 2 h. Το προκύπτον διάλυμα διηθείται σε Buchner και εκπλένεται με τολουόλιο. Ο καθαρισμός του συμπλόκου επιτυγχάνεται σε στήλη Silica Gel με διαλύτη έκλουσης το THF. Απορριφτήκαν οι δύο πρώτες ταινίες (πρώτη μπάντα – πράσινο χρώμα, δεύτερη ταινία – λαδί χρώμα), παραλήφθηκε η τρίτη ταινία, που είχε καφέ χρώμα. Οι διαλύτες αφαιρέθηκαν στον περιστροφικό συμπυκνωτή. Το στερεό διαλύθηκε σε διχλωρομεθάνιο και διηθήθηκε για να απομακρυνθεί το αδιάλυτο στερεό. Στο διήθημα προστέθηκε αιθέρας, οπότε και καταβυθίστηκε καφέ στερεό 0.01947 g, το οποίο αφήνεται για ξήρανση υπό κενό. Η απόδοση της διαδικασίας είναι 12.87%.

7.2.2 Χαρακτηρισμός του συμπλόκου [ReBr(CO)₃(phendione)].

Σχήμα 7.2.2.1. Δομή συμπλόκου [ReBr(CO)₃(phendione)] με εμφανή τα χημικώς διακριτά πρωτόνια.

Η ταυτοποίηση του συμπλόκου [ReBr(CO)₃(phendione)] έγινε με φασματοσκοπία NMR. Στο Σχήμα 7.2.2.2 φαίνεται το φάσμα του συμπλόκου του ρηνίου [ReBr(CO)₃(phendione)] σε διαλύτη d⁶-διμεθυλοσουλφοξείδιο (DMSO-d₆) και στον Πίνακα 7.2.2.1 δίνονται οι χημικές μετατοπίσεις των πρωτονίων σε d⁶διμεθυλοσουλφοξείδιο. Στο μόριο [ReBr(CO)₃(phendione)] υπάρχουν τρία χημικώς διακριτά πρωτόνια (Σχήμα 7.2.2.1). Στο φάσμα του NMR παρατηρούμε τις τρείς κορυφές που αναμέναμε, δύο διπλές κορυφές 9.21 (d,1H), 8.71 (d,1H), μία τριπλή κορυφή 7.93 (t,1H).

Σχήμα 7.2.2.2:.¹H-NMR φάσμα του συμπλόκου [ReBr(CO)₃(phendione)] σε DMSO-d₆.

Πίνακας 7.2.2.1. Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου [ReBr(CO)₃(phendione)] και του υποκαταστάτη phendioneστο NMR

	H1,H6	H2,H5	H3,H4
[ReBr(CO) ₃ (phendione)]	9.21	8.71	7.93
phendione	8.73	7.94	7.26

Στη συνέχεια ακολουθεί το FT-IR φάσμα του συμπλόκου:

Σχήμα 7.2.2.3. FT-IR φάσμα του συμπλόκου [ReBr(CO)₃(phendione)].

Το φάσμα υπέρυθρης απορρόφησης παρουσιάζει τρείς χαρακτηριστικές ταινίες, που παρατηρούνται στην περιοχή δόνησης των καρβονυλίων (Σχήμα 7.2.2.3). Συγκεκριμένα παρατηρούμε μια χαρακτηριστική δόνηση στα 2027 cm⁻¹ (συμμετρική) και μια δόνηση στα 1944-1883 cm⁻¹ (ασύμμετρη), οι οποίες αναφέρονται στη δόνηση τάσης του δεσμού C=O των τριών καρβονυλίων του συμπλόκου.

Ακολουθεί το φάσμα UV – Vis του συμπλόκου:

Σχήμα 7.2.2.4. UV-Vis φάσμα του συμπλόκου [ReBr(CO)₃(phendione)] σε DMF, acetone.

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη DMF, παρατηρούνται δύο ώμους στην περιοχή του υπεριώδους, στα 293 nm (6440 M⁻¹cm⁻¹) και στα 318 nm (4660 M⁻¹cm⁻¹), όπου αντιστοιχούν σε intraligand π \rightarrow π* μεταπτώσεις τηςφαινδιόνης και δύο κορυφές στην ορατή περιοχή στα 418 nm (1110 M⁻¹cm⁻¹) και στα 478 nm (470 M⁻¹ cm⁻¹) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.2.2.4 – Πίνακας 7.2.2.2).

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη ακετόνη, παρατηρούμε μία κορυφή στην περιοχή του ορατού 395 nm (1490 M⁻¹cm⁻¹) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.2.2.4 – Πίνακας 7.2.2.2).

Complex	Solvent	λ_{max} (nm)	ε (M ⁻¹ cm ⁻¹)	Characterisation
3		478	505	MLCT
(O)	DIG	418	1100	СТ
ir(C ndio	ReBr(C hendic	318	4580	$\pi \rightarrow \pi^*$
ReB		293	6360	$\pi \rightarrow \pi^*$
	Acetone	395	1850	MLCT

Πίνακας 7.2.2.2. UV-Vi sφάσμα του συμπλόκου [ReBr(CO)₃(phendione)].

7.3 Σύμπλοκο [ReCl(CO)₃(amphen)] (3)

7.3.1 Σύνθεση συμπλόκου [ReCl(CO)₃(amphen)]

Για την σύνθεση του συμπλόκου [ReCl(CO)₃(amphen)] (**3**) χρησιμοποιήθηκε ως πρώτη ύλη το σύμπλοκο του ρηνίου [Re(CO)₅Cl], το οποίο παρουσία του υποκαταστάτη 5 – άμινο - 1,10 – φαινανθρολίνη, με μια απλή αντίδραση αντικατάστασης, δίνει το τελικό σύμπλοκο [ReCl(CO)₃(amphen)]. Η συνολική πορεία σύνθεσης συνοψίζεται στην παρακάτω αντίδραση:

Πιο αναλυτικά, προσθέτονται 0.0388 g (0.304 mmol) του υποκατάστατη (amphen) με μια ισομοριακή ποσότητα του συμπλόκου του ρηνίου [Re(CO)₅Cl] 0.11 g (0.304 mmol) σε 10 mL τολουολίου, το διάλυμα βράζεται υπό αναρροή και υπό N₂ για 2 h. Το προκύπτον διάλυμα διηθείται σε Buchner και εκπλένεται με τολουόλιο. Λαμβάνεται πορτοκαλί στερεό 0.1278 g, το οποίο αφήνεται για ξήρανση υπό κενό. Η απόδοση της διαδικασίας είναι 84%.

7.3.2 Χαρακτηρισμός του συμπλόκου[ReCl(CO)₃(amphen)]

Σχήμα 7.3.2.1. Δομή συμπλόκου [ReCl(CO)₃(amphen)] με εμφανή τα χημικώς διακριτά πρωτόνια.

Η ταυτοποίηση του συμπλόκου [ReCl(CO)₃(amphen)] έγινε με φασματοσκοπία NMR. Στο Σχήμα 7.3.2.2 φαίνεται το φάσμα του συμπλόκου του ρηνίου [Re(CO)₃Cl(amphen)] σε διαλύτη d⁶-διμεθυλοσουλφοξείδιο (DMSO-d₆) και στον Πίνακα 7.3.2.1 δίνονται οι χημικές μετατοπίσεις των πρωτονίων σε d⁶διιμεθυλοσουλφοξείδιο. Στο μόριο του [ReCl(CO)₃(amphen)] υπάρχουν οκτώ χημικώς διακριτά πρωτόνια (Σχήμα 7.3.2.1). Στο φάσμα του NMR παρατηρούμε τις οκτώ κορυφές που αναμέναμε, τέσσερις διπλές κορυφές 9.38 (d,1H), 9.11 (d,1H), 8.93 (d,1H), 8.48 (d,1H), δύο τετραπλές κορυφές 8.06 (f,1H), 7.77 (f,1H) και δύο μονές κορυφές 7.07 (s,1H), 6.88 (s,2H,NH₂).

Σχήμα 7.3.2.2. ¹H-NMR φάσμα του συμπλόκου [ReCl(CO)₃(amphen)] σε DMSO-d₆.

Πίνακας 7.3.2.1. Σύγκριση χημικών μετατοπίσεων πρωτονίωντου συμπλόκου [ReCl(CO)₃(amphen)] και του υποκαταστάτη amphen στο NMR

	H_1	H 8	H3	H_2	H 7	H ₆	H4	H5
[ReCl(CO)3amphen]	9.38	9.11	8.93	8.48	8.06	7.77	7.07	6.88
amphen	9.06	8.69	8.69	8.05	7.74	7.51	6.88	6.13

Στη συνέχεια ακολουθεί το FT-IR φάσμα του συμπλόκου:

Σχήμα 7.3.2.3. FT-IR φάσμα του συμπλόκου [ReCl(CO)₃(amphen)].

Το φάσμα υπέρυθρης απορρόφησης παρουσιάζει τρείς χαρακτηριστικές ταινίες, που παρατηρούνται στην περιοχή δόνησης των καρβονυλίων (Σχήμα 7.3.2.3). Συγκεκριμένα παρατηρούμε μια χαρακτηριστική δόνηση στα 2022 cm⁻¹ (συμμετρική)και μια δόνηση στα 1927-1902 cm⁻¹ (ασύμμετρη), οι οποίες αναφέρονται στη δόνηση τάσης του δεσμού C=O των τριών καρβονυλίων του συμπλόκου.

Ακολουθεί το φάσμα UV – Vis του συμπλόκου:

Σχήμα 7.3.2.4. UV-Vis φάσμα του συμπλόκου [ReCl(CO)₃(amphen)] σε DMF, ακετόνη, DCM.

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη DMF, παρατηρούνται μια κορυφή στην περιοχή του υπεριώδους, στα 298 nm (8490 M⁻¹cm⁻¹), που αντιστοιχεί σε intraligand π \rightarrow π* μετάπτωση της φαινανθρολίνης, μια CT κορυφή στα 362 nm (3760M ⁻¹cm⁻¹) και μια κορυφή στην ορατή περιοχή 448 nm (805 M⁻¹cm⁻¹) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.3.2.3). Και σε αυτή την περίπτωση παρατηρείται διαλυτοχρωμισμός στις δύο τελευταίες κορυφές, οι οποίες μετατοπίζονται στην ακετόνη (356 nm, 440 nm) και στο DCM (350 nm, 427 nm), αντίστοιχα.

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη ακετόνη, παρατηρούμε μια CT κορυφή στα 356 nm (3600 M⁻¹cm⁻¹ και μια κορυφή στην ορατή περιοχή 440 nm (980 M⁻¹cm⁻¹) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.3.2.3 – Πίνακας 7.3.2.2).

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη DCM, παρατηρούνται τρείς κορυφές στην περιοχή του υπεριώδους, στα 240 nm (7220 M⁻¹cm⁻¹), στα 261 nm (5290 M⁻¹ cm⁻¹) και στα 295 nm (5009 M⁻¹cm⁻¹), όπου αντιστοιχούν σε intraligand $\pi \rightarrow \pi^*$ μεταπτώσεις της φαινανθρολίνης, μια CT κορυφή στα 350 nm (1940 M⁻¹cm⁻¹) και μια κορυφή στην ορατή περιοχή 427 nm (640 M⁻¹cm⁻¹) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.3.2.4 – Πίνακας 7.3.2.2).

Complex	Solvent	λ_{max} (nm)	ε (M ⁻¹ cm ⁻¹)	Characterisation
		448	805	MLCT
[DME	362	3760	СТ
Jen	DMF	298	8490	$\pi \rightarrow \pi^*$
lqn	Acetone	440	980	MLCT
3(ar		356	3600	СТ
Ô		427	640	MLCT
J(C	5 61 6	350	1940	СТ
CeC	DCM	295	5009	$\pi \rightarrow \pi^*$
a l		261	5290	$\pi \rightarrow \pi^*$
		240	7220	$\pi \rightarrow \pi^*$

Πίνακας 7.3.2.2. UV-Vis του συμπλόκου [ReCl(CO)₃(amphen)].

7.4 Σύμπλοκο [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] (4)

7.4.1 Σύνθεση συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] (4)

Η σύνθεση του συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] (4) έγινε σύμφωνα με την βιβλιογραφία [123]. Ως πρώτη ύλη χρησιμοποιήθηκε το σύμπλοκο του ρηνίου [Re(CO)₅Cl], το οποίο παρουσία του υποκαταστάτη διπυριδο[3,2-a:2',3'c]φαιναζίνη-3,6- δικαρβοξυλαιθυλ εστέρας], με μια απλή αντίδραση αντικατάστασης, δίνει το τελικό σύμπλοκο [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}]. Η συνολική πορεία σύνθεσης συνοψίζεται στην παρακάτω αντίδραση:

Πιο αναλυτικά, προσθέτονται 0.05 g (0.138 mmol) του υποκατάστατη [dppz-3,6-(COOEt)₂] με μια ισομοριακή ποσότητα του συμπλόκου του ρηνίου [Re(CO)₅Cl] 0.05 g (0.138 mmol) σε 10 mL τολουολίου, το διάλυμα βράζεται υπό αναρροή και υπό N₂ για 2 h. Το προκύπτον διάλυμα διηθείται σε Buchner και εκπλένεται με τολουόλιο. Πραγματοποιείται ανακρυστάλλωση με 50 mL διχλωρομεθάνιο και στην συνέχεια προσθέτουμε 10 mL εξάνιο. Λαμβάνεται σκούρο-πορτοκαλί στερεό 0,0459 g, το οποίο αφήνεται για ξήρανση υπό κενό. Η απόδοση της διαδικασίας είναι 70%.

7.4.2 Χαρακτηρισμός του συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}]

Σχήμα 7.4.2.1. Δομή συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] με εμφανή τα χημικώς διακριτά πρωτόνια.

Η ταυτοποίηση του συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] έγινε με φασματοσκοπία NMR. Στο Σχήμα 7.4.2.2 φαίνεται το φάσμα του συμπλόκου του ρηνίου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] σε διαλύτη d⁶-διμεθυλοσουλφοξείδιο (DMSO-d₆) και στον Πίνακα 7.4.2.1 δίνονται οι χημικές μετατοπίσεις των πρωτονίων σε d⁶-διμεθυλοσουλφοξείδιο. Το σύμπλοκο του [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] περιέχει έξι είδη πρωτονίων. Στο φάσμα του NMR παρατηρούμε δύο απλές κορυφές 10.80 (s,1H), 9.89 (s,1H), μία πενταπλή κορυφή 8.56 (f,1H) και μίατετραπλή κορυφή 8.24 (t,1H).

	H2, H7	H1, H8	H3, H6	H4, H5
[Re{dppz-3,6- (COOEt) ₂ }(CO) ₃ Cl]	10.80	9.89	8.56	8.24
[dppz-3,6-COOEt]	9.08	8.17	8.63	8. 50

Πίνακας 7.4.2.1. Σύγκριση χημικών μετατοπίσεων πρωτονίων του συμπλόκου $[Re(CO)_3Cl\{dppz-3,6-(COOEt)_2\}]$ και του υποκαταστάτη $[dppz-3,6-(COOEt)_2]$ στο NMR.

Σχήμα 7.4.2.2. ¹H-NMR φάσμα του συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] σε DMSO-d₆.

Στη συνέχεια ακολουθεί το FT-IR φάσμα του συμπλόκου:

Σχήμα 7.4.2.3. FT-IR φάσμα του συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}].

Το φάσμα υπέρυθρης απορρόφησης παρουσιάζει δύο χαρακτηριστικές ταινίες, που παρατηρούνται στην περιοχή δόνησης των καρβονυλίων. Συγκεκριμένα παρατηρούμε μια χαρακτηριστική δόνηση στα 2033 cm⁻¹ και μια δόνηση στα 1914 cm⁻¹, οι οποίες αναφέρονται στη δόνηση τάσης του δεσμού C=O των καρβονυλίων του συμπλόκου.

Σχήμα 7.4.2.4. UV-Vis φάσμα του συμπλόκου [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] σε DMF, acetone.

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη DMF, παρατηρούνται δύο κορυφές στην περιοχή του υπεριώδους, στα 287 nm (2087 $M^{-1}cm^{-1}$) και στα 366 nm (4960 $M^{-1} cm^{-1}$) και ένας ώμος στα 335 nm (690 $M^{-1}cm^{-1}$) όπου αντιστοιχούν σε intraligand π \rightarrow π* μεταπτώσεις του dppz και μια κορυφή στην ορατή περιοχή 386 nm(4410 $M^{-1}cm^{-1}$) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.4.2.4 – Πίνακας 7.4.2.2).

Στο UV-Vis φάσμα του συμπλόκου σε διαλύτη ακετόνη, παρατηρούμε δύο κορυφές στην περιοχή του υπεριώδους, στα 332 nm (6240 M⁻¹cm⁻¹) και στα 364 nm (3970 M⁻¹cm⁻¹), που αντιστοιχούν σε intraligand $\pi \rightarrow \pi^*$ μεταπτώσεις του dppz και μια κορυφή στην ορατή περιοχή 383 nm (3500 M⁻¹cm⁻¹) που αντιστοιχεί στην MLCT μετάπτωση του συμπλόκου (Σχήμα 7.4.2.4 – Πίνακας 7.4.2.2).

Complex	Solvent	λ_{\max} (nm)	ε (M ⁻¹ cm ⁻¹)	Characterisation
		386	4410	MLCT
-zd	DMF	366	4960	$\pi \rightarrow \pi^*$
{dp Et)2		335	690	$\pi \rightarrow \pi^*$
JOI		287	20870	$\pi \rightarrow \pi^*$
QŬ		383	3500	MLCT
.e(C	Acetone	364	3970	$\pi \rightarrow \pi^*$
3 3		332	6240	$\pi \rightarrow \pi^*$

Πίνακας 7.4.2.2. UV-Vis του συμπλόκου [Re{dppz-3,6-(COOEt)₂)}(CO)₃Cl]

7.5 Μελέτη κρυσταλλικής δομής του συμπλόκου [ReBr(CO)₃(pq)](5)

Οι μοναδιαίοι κρύσταλλοι κόκκινου – καφέ χρώματος του συμπλόκου [ReBr(CO)₃(pq)] (5) κατάλληλοι για ανάλυση με X-ray κρυσταλλώθηκαν με σύστημα αργής εξάτμισης διαλυμάτων, το σύμπλοκο είχε διαλυθεί σε διχλωρομεθάνιο – εξάνιο. Τα ORTEP διαγράμματα και οι κυριότερες κρυσταλλογραφικές παράμετροι του συμπλόκου παρουσιάζονται στα Σχήματα 7.5.1 – 7.5.3 και στους Πίνακες 7.5.1-7.5.2. Στον Πίνακα 7.5.2 παραθέτουμε τα κυριότερα μήκη δεσμών και τις κυριότερες γωνίες στα μόρια του συμπλόκου [ReBr(CO)₃(pq)]. Η αρίθμηση των ατόμων του συμπλόκου στα διαγράμματα ORTEP ακολουθεί το σύστημα των κρυσταλλογράφων και είναι αυτή που ακολουθείται και στον Πίνακα 7.5.2, όπου για λόγους διευκόλυνσης παρατίθενται τα αντίστοιχα στοιχεία για το σύμπλοκο. Στο Σχήμα 7.5.2 φαίνεται η μοναδιαία κυψελίδα του συμπλόκου.

Η μοριακή δομή του συμπλόκου (5) απεικονίζεται στο Σχήμα 7.5.1. Η γεωμετρία συναρμογής του Re στο σύμπλοκο είναι οκταεδρική με τρείς καρβονυλικούς υποκαταστάτες τοποθετημένους σε facial-θέση, ένα άτομο βρωμίου και δύο άτομα αζώτου του υποκαταστάτη pq. Η γωνία N(11)-Re-N(21) είναι 74,7(2)° και σημαντικά μικρότερη από τις 90°, και αυτός είναι ο σηματικότερος λόγος για την απόκλιση από την ιδανική γεωμετρία. Το μήκος των δεσμών ρηνίου – καρβονυλίων δεν παρουσιάζει σημαντικές διαφορές [1.90(1)-1.92(1) Å]. Η δομή αυτή είναι σύμφωνη με την παρουσία του ατόμου του Br και των ατόμων του N των αρωματικών δακτυλίων σε θέση trans προς τα άτομα του άνθρακα C(12) και C(13)/C(14) αντίστοιχα, κάτι που δείχνει ισχυρή trans-κατεύθυνση [122]. Επιπροσθέτως, τα μήκη των δεσμών Re-C

είναι σε συμφωνία με αυτά που έχουν παρατηρηθεί σε παρόμοια σύμπλοκα [117,124– 126]. Το μήκος του δεσμού Re-N(11) [2.145(7) Å] είναι αρκετά μικρότερο από αυτό του Re-N(21) [2.220(6) Å]. Μια εξήγηση για αυτό το φαινόμενο μπορεί να δωθεί αν αναλογιστούμε ότι ασκείται σημαντική στερεοχημική παρεμπόδιση από τον φαινυλικό - δακτύλιο που βρίκεται κοντά στο N(21). Ως αποτέλεσμα, υπάρχει σηματική απόκλιση από την ιδανική οκταεδρική δομή (Σχήμα 7.5.1). Αυτή η συμπεριφορά είναι παρόμοια με την συμπλεγμένη συμπεριφορά του pq με άλλα ιόντα μετάλλων μετάπτωσης [125,127,128]. Ο τρόπος που έχουν πακεταριστεί οι κρύσταλλοι υποδεικνύουν την παρουσία υπερμοριακών (supromolecular) αλυσίδων που διατρέχουν παράλληλα τον b κρυσταλλικό άξονα (Σχήμα 7.5.4), και που δημιουργήθηκαν μέσω αλληλεπιδράσεων μεταξύ C-H…N. Επιπλέον, αυτές οι αλυσίδες σχηματίζοναι από την αλληλεπίδραση των αρωματικών δακτυλίων κατά μήκος του c άξονα (Σχήμα 7.5.2).

Σχήμα 7.5.1. Σχήμα ORTER (ελλειψοειδές) που παρουσιάζει την κρυσταλλική δομή του συμπλόκου [ReBr(CO)3pq] με πιθανότητα 30%.

Σχήμα 7.5.2. Σχήμα ORTER που παρουσιάζει τον τρόπο που έχουν πακεταριστεί οι κρύσταλλοι (crystal packing) του **PS** (5) κατά μήκος του c άξονα.

Σχήμα 7.5.3. Σχήμα ORTER που παρουσιάζει την μοριακή δομή **PS** (5) και δείχνει την στρέβλωση του δότη-αζώτου.

Σχήμα 7.5.4. Σχήμα ORTER που παρουσιάζει τον τρόπο που έχουν πακεταριστεί οι κρύσταλλοι (crystal packing) του PS (5) κατά μήκος του b άξονα.

Empirical formula	C ₁₆ H ₉ BrN ₃ O ₃ Re
Formula weight	557.37
Color, habit	Red, plate
Crystal size, mm	0.19×0.15×0.06
Crystal system	Monoclinic
Space group	$P2_{1}/c$
<i>a</i> , Å	15.668(3)
<i>b</i> , Å	14.366(2)
<i>c</i> , Å	7.354(1)
a, deg.	90
β, deg.	105.332(7)
γ, deg.	90
<i>V</i> , Å ³	1596.4(4)
Ζ	4
Т, К	293(2)
ho (calc), Mg/m ³	2.319
μ , mm ⁻¹	10.134
θ range, deg.	1.35 to 24.92
No.of rflcn/unique	24501 / 2782
GooF	1.003
<i>R</i> 1	0.0379
wR2	0.0801

Πίνακας 7.5.1. Κυριότερες κρυσταλλικοί παράμετροι του [ReBr(CO)₃(pq)].

Bond length (Å)		Bond a	ngles (°)
Re-N(11)	2.145(7)	C(12)-Re-C(13)	87.0(3)
Re-N(21)	2.220(6)	C(12)-Re-C(14)	90.4(4)
Re-C(12)	1.90(1)	C(13)-Re-C(14)	86.2(4)
Re-C(13)	1.92(1)	N(11)-Re-C(12)	97.2(3)
Re-C(14)	1.902(9)	N(11)-Re-C(13)	95.2(4)
Re-Br	2.628(1)	N(21)-Re-C(12)	93.9(3)
C(12)-O(12)	1.14(1)	N(21)-Re-C(14)	103.8(3)
C(13)-O(13)	1.15(1)	N(11)-Re-N(21)	74.7(2)
C(14)-O(14)	1.16(1)	N(11)-Re-Br	83.1(2)
		N(21)-Re-Br	85.2(2)
		C(13)-Re-Br	94.0(3)
		C(14)-Re-Br	89.3(3)

Πίνακας 7.5.2. Τα κυριότερα μήκη δεσμών [Å] και οι κυριότερες γωνίες [deg.] των μορίων του συμπλόκου [ReBr(CO)₃(pq)]. Το σύστημα της αρίθμησης είναι εκείνο που δείχνεται στο σχήμα του ORTER.

7.6 Μελέτη κινητικής σταθερότητας συμπλόκων Co^{II}

Στα Σχήματα 7.6.1 και 7.6.2 παρουσιάζονται τα βολταμμογραφήματα των συμπλόκων και οι δομές τους αντίστοιχα [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O, [K(NCMe)₃(L¹³)Co^{II}-NCMe].

Σχήμα 7.6.1. Κυκλικό βολταμμογράφημα του [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O σε MeCN και η δομή του συμπλόκου.

Σχήμα 7.6.2. Κυκλικό βολταμμογράφημα του [K(NCMe)₃(L¹³)Co^{II}-NCMe] σε MeCN και η δομή του συμπλόκου.

Για να διαπιστώσουμε αν τα δύο σύμπλοκα του Co^{II} [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O/[K(NCMe)₃(L¹³)Co^{II}-NCMe]} μπορούν να λάβουν μέρος στην φωτοκαταλυτική μελέτη έπρεπε να βεβαιωθούμε ότι αυτά παραμένουν σταθερά στο χρόνο όταν διαλυθούν σε MeCN παρουσία υδατικού διαλύματοςασκορβικού οξέος/ασκορβικού νατρίου (pH=4) με αναλογία διαλυτών MeCN/H₂O (1/1), που χρησιμοποιούμε για την φωτοκαταλυτική παραγωγή υδρογόνου.

Παρατηρήσαμε ότι το σύμπλοκο [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O παραμένει απόλυτα σταθερό τις πρώτες 5 h, όπως φαίνεται στο Σχήμα 7.6.3 και το σύμπλοκο [K(NCMe)₃(L¹³)Co^{II}-NCMe] παραμένει πρακτικά σταθερό μέχρι και τις 48 h, όπως φαίνεται στο Σχήμα 7.6.4, επομένως και τα δύο σύμπλοκα μπορούν να πάρουν μέρος στις φωτοκαταλυτικές αντιδράσεις.

Σχήμα 7.6.3. UV-Vis φάσμα του συμπλόκου [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O σε MeCN/H₂O.

Σχήμα 7.6.4. UV-Vi sφάσμα του συμπλόκου [K(NCMe)₃(L^{13})Co^{II}-NCMe] σε MeCN/H₂O.

ΚΕΦΑΛΑΙΟ8

ΑΠΟΤΕΛΕΣΜΑΤΑΠΕΙΡΑΜΑΤΙΚΩΝΔΙΕΡΓΑΣΙΩΝ ΓΙΑ ΦΩΤΟΚΑΤΑΛΥΤΙΚΗ ΠΑΡΑΓΩΓΗ Η₂

8.1 Φωτοκαταλυτική παραγωγή υδρογόνου από συστήματα [ReX(CO)₃L] παρουσία καταλυτών κοβαλοζίμης

8.1.1 Σύστημα 1: [ReBr(CO)₃(amphen)]/[Co(OAc)₂·4H₂O]/ dmgH₂/TEOA/AcOH σε DMF

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [ReBr(CO)₃(amphen)] (1) 0.5 mM, to AcOH 0.1 M, se DMF (30 mL) parousía the TEOA (1 M) kai katalúth to [Co(dmgH)2]. Για να μελετήσουμε το σύστημα ως προς την επίδραση της κάθε μεταβλητής του, πραγματοποιήθηκε μια σειρά πειραμάτων μεταβάλλοντας την συγκέντρωση της κάθε παραμέτρου του συστήματος. Αρχικά αυξήσαμε την συγκέντρωση του [Co(OAc)₂]·4H₂O, διατηρώντας πάντα την αντιστοιχία των (6eq.) της dmgH2 ανά κοβάλτιο, η οποία είναι απαραίτητη για τον σχηματισμό του καταλύτη $[Co(dmgH)_2]$ από το $[Co]_{solv}^{2+}$ και την $[(dmgH)_2]$ [129]. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε λάμπα ξένου 1000 W με $\lambda >$ 335 nm. Το σύστημα παρήγαγε υδρογόνο και μόλις μετά από 3 h έδωσε 41.33 μmol $(3.18 \text{ TON}_{Re}, 1.38 \text{ TON}_{Cat})$ όταν αυξήσαμε την συγκέντρωση του [Co(OAc)₂]·4H₂O σε 1 mM. Ο ρυθμός παραγωγής υδρογόνου αυξάνεται γραμμικά με την αύξηση της συγκέντρωσης του $[Co^{II}]$ στην περιοχή των 0 – 1.5 mM, όπως φαίνεται στο Σχήμα 8.1.1.1 - Πίνακας 8.1.1.1, δείχνοντας ότι η εξάρτηση του συστήματος από τον καταλύτη είναι πρώτης τάξης (Σχήμα 8.1.1.2).

Σχήμα 8.1.1.1. Παραγωγή H₂ ως συνάρτηση του $[Co]^2_{tot}$. Χρησιμοποιήθηκε περίσσεια της dmgH₂ ανά $[Co]^2_{tot}$ (6 eq. της dmgH₂ ανά κοβάλτιο) (0.5 Mm **PS** (1), 1 M TEOA, 0.1 M AcOH, DMF και Argon). Το σύμπλοκο [ReBr(CO)₃(amphen)] ακτινοβολήθηκε για 3 h ($\lambda > 335$ nm).

Πίνακας 8.1.1.1.	Παραγωγή	H_2	σε	μmol	του	PS	(1)	ανάλογο	της	συγκέντρωσης	του
$[Co(AcOH)_2] \cdot 4H_2O.$											

PS(1)	Οξύ	Διαλύτης	Δότης			Παραγωγή Η2
[ReBr(CO)3amphen]	АсОН	DMF	TEOA	dmgH ₂	[Co(AcOH)2]·4H20 (mM)	H ₂ (µmol)
0.5 mM	0.1 M	30 mL	1 M	бeq	0.00	0.00
					0.10	2.77
					0.25	6.83
					0.60	8.88
					0.80	11.11
					1.00	41.33
					1.50	54.91

Σχήμα 8.1.1.2. Ρυθμός παραγωγής υδρογόνου vs $[Co^{II}(solv)_2(dmgH)_2]$ στο σύστημα με φωτοευαισθητοποιητή **PS (1)** (0.5 mM)/[Co(OAc)_2]·4H₂O (0 mM, 0.1 mM, 0.25 mM, 1 mM and 1.5 mM), 6 eq dmgH₂/Co, 0,1 M AcOH και 1 M TEOA σε DMF.

Στο ίδιο σύστημα, όταν αυξήσαμε τη συγκέντρωση της dmgH₂ παρατηρήσαμε όπως και οι Benjamine Probst και η ομάδα του [116], ότι η συγκέντρωση της dmgH₂ είναι κρίσιμης σημασίας για το σύστημα μας. Η εξάρτηση του ρυθμού παραγωγής υδρογόνου από την dmgH₂ επιβεβαίωσε ότι ο αριθμός επανάληψης του καταλυτικού κύκλου (TON) αυξάνεται σημαντικά με την αύξηση της συγκέντρωσης της [dmgH₂], διατηρώντας φυσικά όλους τους άλλους παράγοντες σταθερούς. Το σύστημα έδωσε 67.95 μmol (5.22 TON_{Re}, 2.27 TON_{Cat}) μετά από 3 h ακτινοβόλησης όταν η συγκέντρωση της [dmgH₂]_{max} = 15 mM (Σχήμα 8.1.1.3)

Τα αποτελέσματα δίνονται συνοπτικά στον Πίνακα 8.1.1.2.

Σχήμα 8.1.1.3. Απεικόνιση παραγωγής H₂ ως συνάρτηση της dmgH₂ (0.5 mM **PS** (1), 1 mM $[Co(OAc)_2]$ ·4H₂O, 1 M TEOA, 0.1 M AcOH, DMF και Argon). Το σύμπλοκο [ReBr(CO)₃(amphen)] ακτινοβολήθηκε για 3 h (λ > 335 nm).

PS (1)	Οξύ	Διαλύτης	Δότης	Καταλύτης		Παραγωγή Η2
[ReBr(CO) ₃ (amphen)]	AcOH	DMF	TEOA	[Co(OAc)2]·4H2O	dmgH ₂ (mM)	H2 (µmol)
	0.1 M	30 mL	1 M		0.00	18.26
					2.50	26.61
					5.00	27.81
0.5 mM				1 mM	6.00	41.36
					7.50	44.82
					10.00	58.93
					15.00	67.95

Πίνακας 8.1.1.2. Παραγωγή H_2 σε μmol του PS (1) ανάλογο της συγκέντρωσης της dmg H_2 .

Αλλάζοντας την συγκέντρωση του AcOH παρατηρήσαμε διαφορετική συμπεριφορά του συστήματος. Το σύστημα παρήγαγε περίπου 40 μmol υδρογόνου (H₂), όταν η συγκέντρωση του AcOH κυμαινόταν από 0.05 έως 0.2 M, ωστόσο η παραγωγή υδρογόνου μειωνόταν όταν [AcOH] > 0.2 M (Σχήμα 8.1.1.4 - Πίνακας 8.1.1.3). Ενδιαφέρον παρουσιάζει το γεγονός ότι το σύστημα παράγει υδρογόνο απουσία οξέος

(5 μmol H₂) κάτι που πιθανότατα οφείλεται στα υπολείμματα πρωτονίων του νερού και στην αποσύνθεση της TEOA [116].

Σχήμα 8.1.1.4. Απεικόνιση της εξάρτησης της παραγωγής H₂ από την συγκέντρωση του οξικού οξέος (0.5 mM **PS** (1), 1 mM [Co(OAc)₂]·4H₂O, 6 mM dmgH₂, 1 M TEOA, DMF και Argon). Το σύμπλοκο [ReBr(CO)₃(amphen)] ακτινοβολήθηκε για 3 h (λ > 335 nm).

Πίνακας 8.1.1.3.	. Παραγωγή Η2	σε μmol του Ρ	S (1) ανάλογο	ο της συγκέντρωσης τ	του ΑcOH
------------------	---------------	---------------	---------------	----------------------	----------

PS (1)	Καταλύτης	Διαλύτης	Δότης		Οξύ	Παραγωγή Η2
[ReBr(CO) ₃ (amphen)]	[Co(OAc) ₂]·4H ₂ O	DMF	TEOA	dmgH ₂	AcOH (M)	H ₂ (µmol)
0.5 mM	1mM	30 mL	1 M	бeq	0.00	7.09
					0.05	38.61
					0.10	41.36
					0.15	40.18
					0.20	39.50
					0.50	3.83

Τέλος, μελετήσαμε την αποτελεσματικότητα του συστήματος παραγωγής υδρογόνου στη διάρκεια του χρόνου, και παρατηρήσαμε ότι μετά από 35 h ακτινοβόλησης το σύστημα συνεχίζει να παράγει υδρογόνο φτάνοντας τα 475,37 μmol (11.8 TON_{Cat}) μετά από 24 h ακτινοβόλησης και τα 332.46 μmol (15.85 TON_{Cat}) μετά από 35 h ακτινοβόλησης (Σχήματα 8.1.1.5 - 8.1.1.6 – Πίνακας 8.1.1.4).

Σχήμα 8.1.1.5. Παραγωγή H₂ συναρτήσει του χρόνου (0.5 mM PS (1), 1 mM $[Co(OAc)_2]$ ·4H₂O, 6 mM dmgH₂, 1 M TEOA, 0.1 M AcOH, DMF και Argon, $\lambda > 335$ nm).

Σχήμα 8.1.1.6. ΣυνάρτησητωνTONs ως προς τον χρόνο (0.5 mM **PS** (1), 1 mM $[Co(OAc)_2]$ ·4H₂O, 6 mM dmgH₂, 1 M TEOA, 0.1 M AcOH, DMF και Argon, $\lambda > 335$ nm).

Πίνακας 8.1.1.4	. Παραγωγ	ή Η2 σε	μmol και	TONs $\tau o \upsilon$	PS (1).
-----------------	-----------	---------	----------	------------------------	------	-----

PS (1)	Καταλύτης	Διαλύτης	Δότης		Οξύ	Time (h)	H2 (µmol)	TON _{Cat}
[ReBr(CO) ₃ (amphen)]	[Co(OAc) ₂]·4H ₂ O	DMF	TEOA	dmgH ₂	AcOH	0.0	0.00	0.00
0.5 mM	1 mM	30 mL	1 M	6eq	0.1 M	2.0	18.87	0.53
						2.5	28.41	0.95
						3.0	41.36	2.22
						7.0	142.87	4.76
						16.0	322.95	10.77
						24.0	332.46	11.80
						35.0	475.37	15.85

Επιπλέον, για να διερευνήσουμε αν το σύστημα παραμένει ομογενές και τα προϊόντα αποσύνθεσης δεν ευθύνονται για την κατάλυση, πραγματοποιήθηκαν πειράματα παρουσία περίπου 1 mL στοιχειακού υδραργύρου, δίνοντας μενμικρότερη ποσότητα
υδρογόνου συγκριτικά με τα αποτελέσματα των πειραμάτων χωρίς την παρουσία στοιχειακού υδραργύρου (Σχήμα 8.1.1.7), αλλά η κλίση των ευθειών παραμένει ίδια. Αν τα νανοσωματίδια του κοβαλτίου είχαν σχηματιστεί υπό αναγωγικές συνθήκες, τότε θα είχε σχηματιστεί αμάλγαμα και αυτό δεν συνέβη. Λαμβάνοντας υπόψη αυτά τα αποτελέσματα φαίνεται ότι το σύστημα παραμένει ομοιογενές.

Σχήμα 8.1.1.7. Παραγωγή υδρογόνου με και χωρίς την προσθήκη Hg (0.5 mM PS (1), 1 mM $[Co(OAc)_2]$ ·4H₂O, 6 mM dmgH₂, 1 M TEOA, 0.1 M AcOH, 1 mL Hg, DMF και Argon $\lambda > 335$ nm).

Τέλος, για να μελετήσουμε την επίδραση του υποκαταστάτη του χρωμοφόρου στη φωτοκαταλυτική διαδικασία και να συγκρίνουμε τα συστηματά μας με αυτά της βιβλιογραφίας, όπως [ReBr(CO)₃(phen)] [107], [ReBr(CO)₃(bby)] [116] και [ReCl(CO)₃(bby)] [130] διεξάγαμε μία σειρά πειραμάτων διατηρώντας σταθερές όλες τις μεταβλητές του συστήματος εκτός αυτής του φωτοευαισθητοποιητή. Τα δεδομένα που συλλέξαμε παρουσιάζονται συνοπτικά στον Πίνακα 8.1.1.5 και μπορούν να συγκριθούν άμεσα ως προς την φωτοκαταλυτική δράση των υποκαταστατών των PS από την στιγμή που τα πειράματα διεξήχθησαν ύπο τις ίδιες συνθήκες και με τον ίδιο καταλύτη. Στα σύμπλοκα [ReBr(CO)₃] η σειρά δραστικότητας των υποκαταστατών ως προς την παραγωγή H₂ είναι: bby > phen > amphen > pq >> phendione (=0). Αξίζει να σημειωθεί ότι όταν η αναλογία [Co(OAc)₂]·4H₂O:dmgH₂ είναι 1:20 έχουμε

την μέγιστη απόδοση σε H₂ (800 μmol) με υποκαταστάτη το pq, ένω σε αυτή την αναλογία παρατηρήθηκε μείωση στην παραγωγή του H₂ σε όλα τα άλλα συστήματα. Αυτή η αναλογία φαίνεται να είναι η καλύτερη για το σύμπλοκο [ReBr(CO)₃(pq)] και έχει σημειωθεί και από τον Hawecker ως λογική απόδοση [38]. Παρ' όλο που η προσθήκη υποκαταστατών αζώτου στις διιμίνες δείχνει να οδηγεί στη μείωση παραγωγής H₂, ο δακτύλιος της κινοξαλίνης φαίνεται ότι επηρεάζει περαιτέρω την φωτοκαταλυτική διαδικασία.

Πίνακας 8.1.1.5. Παραγωγή H₂ συστημάτων φωτοκατάλυσης με PS [ReX(CO)₃L] (0.5 mM [PS] παρουσία 1:6 [Co(OAc)₂]·4H₂O:[dmgH₂], 1 M TEOA και 0.1 M AcOH. Τα δείγματα ακτινοβολήθηκαν με $\lambda > 335$ nmγια 24 h).

PS	H2(µmol)	Ref.
[ReCl(CO) ₃ (bpy)]	1050	[130]
[ReCl(CO) ₃ (bpy)]	1120	[116]
[ReBr(CO) ₃ (pq)]	35	
[ReBr(CO) ₃ (pq)] ^a	800	
[ReBr(CO) ₃ (phen)]	550	[107]
[ReBr(CO) ₃ (amphen)]	335	
[ReBr(CO) ₃ (phendione)]	0	

 a [Co(OAc)₂]·4H₂O:dmgH₂ = 1:20

8.1.1a. Μελέτη αποδιέγερσης φωτοευαισθητοποιητή από καταλύτες σύμπλοκα κοβαλοζίμης

Σύμφωνα με τη βιβλιογραφία [116,131,132], συστήματα παραγωγής υδρογόνου που χρησιμοποιούν σύμπλοκα [ReL(CO)₃(NN)]^{0/+} ως φωτοευαισθητοποιητές και TEOA ως δότη ηλεκτρονίων, είναι γνωστό ότι ακολουθούν τον μηχανισμό αναγωγικής αποδιέγερσης, η οποία ξεκινά με φωτοδιέγερση του [ReL(CO)₃(NN)] προς σχηματισμό του [ReL(CO)₃(NN)]^{*}, το οποίο στην συνέχεια ανάγεται από την TEOA σε [ReL(CO)₃(NN)]⁻, και τελικά ανάγει τον καταλύτη. Βάση αυτών των δεδομένων και χρησιμοποιώντας την τιμή του χρόνου ζωής της διεγερμένης κατάστασης του συμπλόκου [ReBr(CO)₃(amphen)] (τ_{re}=4.2±10 ns) [132], βρέθηκε ότι στο DMF, η TEOA αποδιεγείρει το *[ReBr(CO)₃(amphen)], ακολουθώντας την συμπεριφορά Stern–Volmer με $k_q=1\times10^8$ M⁻¹s⁻¹ (Σχήμα 8.1.1a.2). Ο καταλύτης [Co^{II}(solv)₂(dmgH)₂] βρέθηκε επίσης να αποδιεγείρει το *[ReBr(CO)₃(amphen)] ακολουθώντας την συμπεριφορά Stern–Volmer με πολύ μεγαλύτερη σταθερά $k_q=9\times10^{12}$ M⁻¹s⁻¹, κοντά στο όριο diffusion controlled (Σχήμα 8.1.1a.1).

Ακολουθεί το φάσμα του φθορισμού του συμπλόκου [ReBr(CO)₃(amphen)] με προσθήκη διαλύματος [Co^{II}(solv)₂(dmgH)₂] σε DMF (Σχήμα 8.1.1a.1).

Σχήμα 8.1.1a.1. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος [Co^{II}(solv)₂(dmgH)₂]/[ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10ns.

Ακολουθεί το φάσμα του φθορισμού του συμπλόκου [ReBr(CO)₃(amphen)] με προσθήκη διαλύματος TEOA σε DMF (Σχήμα 8.1.1a.2).

Σχήμα 8.1.1a.2. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη [TEOA] σε DMF, Inset: K_q όπως υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10ns.

Ενώ, ο καταλύτης αποδιεγείρει το χρωμοφόρο με μια σταθερά που είναι μεγαλύτερη κατά τέσσερις τάξεις σε σχέση με εκείνη της ΤΕΟΑ, η αναγωγική αποδιέγερση από την ΤΕΟΑ κυριαρχεί στο σύστημά μας, εξαιτίας της μεγαλύτερης συγκέντρωσης της ΤΕΟΑ (1 M) σε σχέση με αυτήν του καταλύτη $[Co^{II}(solv)_2(dmgH)_2]$ (1 mM). Συμπερασματικά τα αρχικά φωτοχημικά βήματα είναι ο σχηματισμός του ανιόντος $[ReBr(CO)_3(amphen)]^-$ από τηνΤΕΟΑ, που ακολουθείται με πρωτονίωση του Co^I. Παρατίθεται ο προτεινόμενος μηχανισμός στο Σχήμα 8.1.1a.3.

Σχήμα 8.1.1a.3. Προτεινόμενος μηχανισμός αναγωγής H^+ για το σύστημα [ReBr(CO)₃(amphen)] /[Co(OAc)₂·4H₂O]/dmgH₂/TEOA/AcOH σε DMF (αναγωγικής αποδιέγερσης).

8.1.2 Σύστημα 2: [ReBr(CO)₃(phendione)]/[Co(OAc)₂·4H₂O]/ dmgH₂/TEOA/AcOHσεDMF

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν χώρα σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [ReBr(CO)₃(phendione)] (2) 0.5 mM, το AcOH 0.1 M, σε DMF (30 mL) παρουσία της TEOA (1 M) και καταλύτη το [Co(dmgH)₂] 1 mM. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε λάμπα ξένου 1000 W με $\lambda > 335$ nm. Το σύστημα μελετήθηκε αυξάνοντας τη συγκέντρωση της dmgH₂. Ωστόσο, το σύστημα ήταν αναποτελεσματικό και δεν είχαμε παραγωγή υδρογόνου

8.1.3 Σύστημα 3: [ReCl(CO)₃(amphen)]/[Co(OAc)₂]4H₂O/ dmgH₂/TEOA/AcOHσεDMF

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [ReCl(CO)₃(amphen)] (**3**) 0.5 mM, το AcOH 0.1 M, σε DMF (30 mL) παρουσία της TEOA (1 M) και καταλύτη [Co(OAc)₂]·4(H₂O) 1*10⁻³ M και dmgH₂ 6*10⁻³M. Το διάλυμα απαερώθηκε υπό Arγια 15minκαι ακτινοβολήθηκε σε λάμπα ξένου 1000 W με λ > 335 nm. To

σύστημα παρήγαγε 19.20 μmol υδρογόνου μετά από 3 h ακτινοβόλησης. Στη συνέχεια, μελετήσαμε την αποτελεσματικότητα του συστήματος παραγωγής υδρογόνου στη διάρκεια του χρόνου, και παρατηρήσαμε ότι μέχρι τις 24 h ακτινοβόλησης το σύστημα παράγει υδρογόνο φτάνοντας τα 210.71 μmol (7.15 TON_{Cat}) (Σχήμα 8.1.3.1 – Πίνακας 8.1.3.1). Μετά όμως τις 24 h ακτινοβόλησης το σύστημα σταματάει να παράγει υδρογόνο.

Σχήμα 8.1.3.1. Παραγωγή H₂ συναρτήσει του χρόνου (0.5 mM PS (**3**), 1 mM $[Co(OAc)_2]$ ·4H₂O, 6 mM dmgH₂, 1 M TEOA, 0.1 M AcOH, DMF και Argon $\lambda > 335$ nm).

PS (3)	Καταλύτης	Διαλύτης	Δότης		Οξύ	Time (h)	H2 (µmol)	TON _{Cat}
[ReBr(CO) ₃ (amphen)]	[Co(OAc) ₂]·4H ₂ O	DMF	TEOA	dmgH ₂	AcOH	0	0.00	0
				3	19.20	0.74		
				4	37.46	1.44		
0.5	1	20	1	6		5	48.83	1.87
0.5 mM	n M	50 mI	I M	0	0.1M	6	60.35	2.32
1111VI	IIIIVI	IIIL	101	eq		7	76.03	2.92
						24	210.71	7.15
						48	210.71	7.15

Πίνακας 8.1.3.1.	Παραγωγή	H ₂ σε μmol ι	και TONs του	PS(3).
------------------	----------	--------------------------	--------------	--------

Επιπλέον, για να διερευνήσουμε αν το σύστημα παραμένει ομοιογενές και τα προϊόντα αποσύνθεσης δεν ευθύνονται για την κατάλυση, πραγματοποιήθηκαν πειράματα παρουσία περίπου 1 mL στοιχειακού υδραργύρου, δίνοντας περίπου την μισή ποσότητα υδρογόνου συγκριτικά με τααποτελέσματα των πειραμάτων χωρίς την παρουσία στοιχειακού υδραργύρου (Σχήμα 8.1.3.2). Αν τα νανοσωματίδια του κοβαλτίου είχαν σχηματιστεί υπό αναγωγικές συνθήκες, τότε θα είχε σχηματιστεί αμάλγαμα και αυτό δεν συνέβη. Λαμβάνοντας υπόψη αυτά τα αποτελέσματα φαίνεται πιθανό ότι το σύστημα παραμένει ομοιογενές.

Σχήμα 8.1.3.2. Παραγωγή υδρογόνου με και χωρίς την προσθήκη Hg (0.5 mM PS(3), 1 mM $[Co(OAc)_2]$ ·4H₂O, 6 mM dmgH₂, 1 M TEOA, 0.1 M AcOH, 1 mL Hg, DMF και Argonλ > 335 nm).

8.1.4 Ανάλυση συστημάτων με καταλύτη σύμπλοκα κοβαλοξίμης

Στην προσπαθειά μας να διαπιστώσουμε την αποδοτικότητα των συστημάτων που μελετήσαμε συγκρίναμε τα αποτελεσματάμας με σύστημα που λειτουργεί υπό τις ίδιες συνθήκες. Διαπιστώσαμε ότι το σύστημα με **PS** (1) [ReBr(CO)₃(amphen)] και το σύστημα με **PS** (5) [ReBr(CO)₃(pq)] λειτουργούν διαφορετικά [133]. Στο σύστημα με χρωμοφόρο το [ReBr(CO)₃(amphen)] η παραγωγή υδρογόνου λαμβάνει χώρα από την πρώτη ώρα ακτινοβόλησης και η εξάρτηση του σχηματισμου H₂ από την συγκέντρωση του [Co(OAc)₂]·4H₂O και της dmgH₂ επιβεβαιώνει ότι οι αριθμοί TONs αυξάνονται σημαντικά με την αύξηση της dmgH₂ ή του [Co(OAc)₂]·4H₂O και

έχουν πρώτης τάξης εξάρτηση από τη συγκέντρωση του καταλύτη Σχήμα 8.1.1.2, ένω όλοι οι άλλες παράμετροι διατηρούνται σταθεροί. Παράγονται περίπου ίδιες ποσότητες υδρογόνου όταν η συγκέντρωση του AcOHκυμαίνεται ανάμεσα σε 0.05 – 0.2 M, και παράγεται λιγότερο υδρογόνο όταν [AcOH] > 0.2 M, κάτι που υποδεικνύει ότι το σύστημα δεν επηρεάζεται από την συγκέντρωση των πρωτονίων.

Σχήμα 8.2.4.1. Παραγωγή H₂ ως συνάρτηση του $[Co]^2_{tot}$. Χρησιμοποιήθηκε περίσσεια της dmgH₂ ανά $[Co]^2_{tot}$ (6 eq. της dmgH₂ ανά κοβάλτιο) (0.5 mM PS (1) και **PS** (5), 1 M TEOA, 0.1 M AcOH, DMF και Argon). Το σύμπλοκο [ReBr(CO)₃(amphen)] ακτινοβολήθηκ εγια 3 h (λ > 335 nm).

Σχήμα 8.2.4.2. Απεικόνιση παραγωγής H_2 ως συνάρτηση της dmg H_2 (0.5 mM PS (1) και PS (5), 1 mM [Co(OAc)₂]·4 H_2O , 1 M TEOA, 0.1 M AcOH, DMF και Argon). Το σύμπλοκο [ReBr(CO)₃(amphen)] ακτινοβολήθηκεγια 3 h ($\lambda > 335$ nm).

Σχήμα 8.2.4.3. Απεικόνιση της εξάρτησης της παραγωγής H₂ από την συγκέντρωση του οξικού οξέος (0.5 mM **PS** (1) και **PS** (5), 1 mM [Co(OAc)₂]·4H₂O, 6 mM dmgH₂, 1 M TEOA, DMF και Argon). Το σύμπλοκο [ReBr(CO)₃(amphen)] ακτινοβολήθηκεγια 3 h (λ > 335 nm).

Από την άλλη πλευρά, το σύστημα με χρωμοφόρο το [ReBr(CO)₃(pq)] χρειάζεται 24 h για να αρχίσει να παράγει υδρογόνο και η παραγωγή του δεν εξαρτάται από την [Co^{II}] ειδικά αν αυτή είναι μεγαλύτερη από 0.05 M. Σε πολύ υψηλές συγκεντρώσεις της dmgH₂ η αποτελεσματικότητα του [ReBr(CO)₃(pq)] αυξάνεται σημαντικά. Επίσης, για το σύστημα με χρωμοφόρο το [ReBr(CO)₃(pq)] φαίνεται ότι η παραγωγή υδρογόνου φτάνει στο μέγιστο όταν η συγκέντρωση του οξικού οξέος είναι 0.05 M και στη συνέχεια μειώνεται σταθερά με την μείωση της συγκέντρωσης του AcOH. Αυτό πιθανόν να οφείλεται στην πρωτονίωση των ατόμων του αζώτου της κινοξαλίνης, η οποία επηρεάζει τις ηλεκτρονικές ιδιότητες του [ReBr(CO)₃(pq)].

Το γεγονός ότι η συμπεριφορά των δύο συστημάτων διαφέρει μπορεί να οφείλεται στην διαφορά στη φύση των δύο διιμινών, η οποία αντανακλάται στις ηλεκτρονικές ιδιοτητές τους. Κατί που επιβαιβαιώνεται και στο σύστημα με φωτοευαισθητοποιητή το σύμπλοκο [ReBr(CO)₃(phendione)], όπου υπό τις ίδιες συνθήκες δεν παράγεται υδρογόνο, άρα η φύση του υποκαταστάτη παίζει σημαντικό ρόλο στη φωτοκαταλυτική δράση των χρωμοφόρων.

Στην συνέχεια κάναμε πειράματα, υπό τις ίδιες συνθήκες, αλλάζοντας στο σύμπλοκο [ReBr(CO)₃(amphen)] το Br με το Cl. Αυτό που παρατηρήσαμε είναι ότι το σύμπλοκο [ReBr(CO)₃(amphen)] παράγει υδρογόνο μετά από 3 h ακτινοβόλησης όπως και το σύστημα με χρωμοφόρο το [ReBr(CO)₃(amphen)] και μετά από 24 h παράγουν 7.15 και 11.80 TON_{Cat}, αντίστοιχα. Συμπεραίνουμε λοιπόν, ότι το αλογόνο επηρεάζει την λειτουργία του συστήματος γιατί επηρεάζει τις οξειδωτικές ή/και αναγωγικές ιδιότητες του συμπλόκου, και μάλιστα όσο αυξάνεται η ταχύτητα απομάκρυνσης του αλογόνου, τόσο πιο αποδοτικό γίνεται το σύστημα.

8.2 Φωτοκαταλυτικήπαραγωγή υδρογόνου από συστήματα [ReX(CO)3L] παρουσία διθειολενικών συμπλόκων Ni

8.2.1 Συστήματα 4-6: [ReBr(CO)₃(amphen)]/NiL₂/TEOA/AcOH σε DMF

Στην προσπάθεια μας να βελτιώσουμε το σύστημα που χρησιμοποιήσαμε προγηγουμένως πραγματοποιήσαμε σειρά πειραμάτων χρησιμοποιώντας ως PS το σύμπλοκο [ReBr(CO)₃(amphen)] (1) ο και καταλύτες διθειολενικά σύμπλοκα Ni.

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [ReBr(CO)₃(amphen)] (0.5 mM), το AcOH (0.1 M), σε DMF (30 mL) παρουσία της TEOA (1 M) και καταλύτη σύμπλακα του Ni ($6.4*10^{-6}$ M). Τα διθειολενικά σύμπλακα Ni που χρησιμοποιήθηκαν είναι τα εξής: (NEt₄)⁺[Ni{S₂C₂(C₆H₅)₂]⁻ (C1), (NEt₄)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂]⁻ (C2) και (NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)₂]⁻ (C3) (Σχήμα 8.2.1.1).

Σχήμα 8.2.1.1. Απεικόνιση δομών διθειολενικών συμπλόκων Νi.

Τα διαλύματα απαερώθηκαν υπό Ar για 15 min και ακτινοβολήθηκαν σε λάμπα ξένου 1000 W με $\lambda > 335$ nm. Όλα τα συστήματα λειτούργησαν και παρήγαγαν υδρογόνο από την πρώτη ώρα ακτινοβόλησης, τα αποτελέσματα των πειραμάτων δίνονται συνοπτικά στους Πίνακες 8.2.1.1-.8.2.1.3 και στο Σχήμα 8.2.1.1. Παρατηρήσαμε ότι και οι τρείς καταλύτες έχουν παρόμοια απόδοση, ωστόσο το καλύτερα είναι σύστημα που λειτουργεί αυτό με καταλύτη το $(NEt_4)^+[Ni{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)}_2]^-$ που στις 3 h ακτινοβόλησης παράγει 7.83 μmol (37.59 TON_{Cat}) (Σχήμα 8.2.1.1). Αυτό πιθανότατα συμβαίνει γιατί στο ασύμμετρο σύμπλοκοτου Νi η μεθόξυ-ομάδα που είναι π-δότης ηλεκτρονίων διαφοροποιεί το φορτίο στα θεία με αποτέλεσμα να πρωτονιώνεται πιο εύκολα σύμφωνα με τους θεωρητικούς υπολογισμούς και τα αποτελέσματα της ηλεκτροκατάλυσης των συμπλόκωνπου παρατίθενται στην βιβλιογραφία [134].

Σχήμα 8.2.1.1. Παραγωγή H₂ συνατρήσει του χρόνου (0.5 mM PS (1), cat: διθειολενικά σύμπλακα του Ni (6.4*10⁻⁶ M), 1 M TEOA, 0.1 M AcOH, DMF και Argonλ > 335 nm).

Πίνακας 8.2.1.1.	Παραγωγή Η2	2 σε μmol και	TONs του	συστήματος	με cat:
$(NEt_4)^+[Ni\{S_2C_2(0)\}]$	$C_6H_5)_2\}_2]^-$				

PS (1)	Καταλύτης	Διαλύτης	Δότης	Οξύ	Time (h)	H2 (µmol)	TON _{Cat}
[ReBr(CO) ₃ (amphen)]	$(NEt_4)^+[Ni{S_2C_2} (C_6H_5)_2]_2]^-$	DMF	TEOA	AcOH	0	0.00	0.00
					1	4.21	18.75
0.5 mM	6.4 µM	30 mL	1 M	0.1M	2	5.09	22.32
					3	5.83	26.34

Πίνακας 8.2.1.2. Παραγωγή H₂ σε μmol και TONs του συστήματος με cat: $(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)_2\}_2]^-$.

PS (1)	Καταλύτης	Διαλύτης	Δότης	Οξύ	Time (h)	H2 (µmol)	TON _{Cat}
[ReBr(CO) ₃ (amphen)]	$(NEt_4)^+[Ni{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)_2}_2]^-$	DMF	TEOA	AcOH	0	0.00	0.00
0.5	6.1	20	1		1	4.96	21.88
0.5 mM	0.4 uM	30 mI	I M	0.1M	2	5,08	26.33
111111	μινι	IIIL	101		3	7.80	34.38

Πίνακας 8.2.1.3. Παραγωγή H_2 σε μmol και TONs του συστήματος με cat: $(NEt_4)^+ [Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-$.

PS (1)	Καταλύτης	Διαλύτης	Δότης	Οξύ	Time (h)	H2 (µmol)	TON _{Cat}
[ReBr(CO) ₃ (amphen)]	$[(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-$	DMF	TEOA	AcOH	0	0.00	0.00
0.5	<i>C</i> 1	20	1		1	4.80	20.98
0.5 mM	0.4 uM	30 mI	I M	0.1M	2	5.63	33.93
111111	μινι	IIIL	141		3	7.83	37.59

Στη συνέχεια, μελετήσαμε την αποτελεσματικότητα του συστήματος **6** παραγωγής υδρογόνου στη διάρκεια του χρόνου, με καταλύτη το σύμπλοκο $(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-$ και παρατηρήσαμε ότι το σύστημα συνεχίζει και παράγει υδρογόνο μέχρι και τις 24 h ακτινοβόλησης φτάνοντας τα 163.78 TON_{Cat} (31.39 μmol). Τα αποτελέσματα των πειραμάτων δίνονται συνοπτικά στο Σχήμα 8.2.1.2 και στον Πίνακα 8.2.1.4.

Σχήμα 8.2.1.2. Παραγωγή H₂ συναρτήσει του χρόνου (0.5 mM PS (1), (NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻ (6.4*10⁻⁶ M)., 1 M TEOA, 0.1 M AcOH, DMF και Argon $\lambda > 335$ nm).

Πίνακας 8.2.1.4. Παραγωγή H_2 σε μmol και TONs του συστήματος με cat: $(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-$.

PS (1)	Καταλύτης	Διαλύτης	Δότης	Οξύ	Time (h)	H2 (µmol)	TON _{Cat}
[ReBr(CO) ₃ (amphen)]	$(NEt_4)^+[Ni\{S_2C_2(C_6H_5))(C_6H_4-OCH_3-4)\}_2]^-$	DMF	TEOA	АсОН	0	0.00	0.00
		1	4.80	20.98			
	6.4 μM	30 mL	1 M		2	5.63	33.93
					3	7.83	37.59
0.5 mM				0.1M	5	7.85	40.82
					6	9.73	50.57
					19	25.54	132.96
					22	31.39	163.78

8.2.1a. Μελέτη αποδιέγερσης φωτοευαισθητοποιητή από καταλύτες διθειολενικά σύμπλοκα Ni

Ακολουθήθηκε η πειραματική διαδικασία που χρησιμοποιήθηκε για το προηγούμενο σύστημα, αντικαθιστώντας τον καταλύτη [Co^{II}(solv)₂(dmgH)₂] με διθειολενικά σύμπλοκα του Ni.

Οι καταλύτες (NEt₄)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻,(NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻ και (NEt₄)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻ βρέθηκαν να αποδιεγείρουν το *[ReBr(CO)₃(amphen)] ακολουθώντας τη συμπεριφορά Stern–Volmer με πολύ μεγαλύτερη σταθερά k_q =2.42×10¹² M⁻¹s⁻¹, k_q =4.6×10¹² M⁻¹s⁻¹ και k_q = 7.42×10¹² M⁻¹s⁻¹ κοντά στο όριο diffusion controlled (Σχήματα 9.2.1a.1 - 9.2.1a.3). Παρατηρήθηκε ότι μεγαλύτερη σταθερά k_q εμφανίζει το (NEt₄)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻

Οι καταλύτες (TBA)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻, (TBA)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻ και (TBA)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻ βρέθηκαν να αποδιεγείρουν το *[ReBr(CO)₃(amphen)] ακολουθώντας τη συμπεριφορά Stern–Volmer με πολύ μεγαλύτερη σταθερά k_q =3.91×10¹² M⁻¹s⁻¹, k_q =3.05×10¹² M⁻¹s⁻¹ και k_q = 2.01×10¹² M⁻¹s⁻¹ και k_q = 2.01×10¹² M⁻¹s⁻¹ κοντά στο όριο diffusion controlled (Σχήματα 9.2.1a.2 - 9.2.1a.4). Παρατηρήθηκε ότι μεγαλύτερη σταθερά k_q εμφανίζει το (TBA)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻.

Σύμφωνα με τα πειραματικά αποτελέσματα παρατηρήθηκε ότι αλλάζοντας το αντισταθμιστικό στους καταλύτες άλλαζαν και οι τιμές των σταθερών k_q , που σημαίνει ότι το αντισταθμιστικό επηρεάζει την αποδιέγερση του φωτοευαισθητοποιητή.

Ακολουθεί το φάσμα φθορισμού του συμπλόκου [ReBr(CO)₃(amphen)] με προσθήκη διαλύματος (NEt₄)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4}₂]₂]/[ReBr(CO)₃(amphen)] σε DMF (Σχήμα 8.2.1a.1).

Σχήμα 8.2.1a.1. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος (NEt₄)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmerκαι τ_{Re}=4.2 ±0.10 ns.

Aκολουθείτοφάσμαφθορισμούτουσυμπλόκου[ReBr(CO)₃(amphen)] με προσθήκη διαλύματος (NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF (Σχήμα8.2.1a.2).

Σχήμα 8.2.1a.2. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος (NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻/ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10 ns.

Ακολουθεί το φάσμα φθορισμού του συμπλόκου [ReBr(CO)₃(amphen)] με προσθήκη διαλύματος (NEt₄)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF (Σχήμα 8.2.1a.3) καθώς και με προσθήκη διαλύματος (TBA)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF (Σχήμα 8.2.1a.4).

Σχήμα 8.2.1a.3. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος (NEt₄)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10 ns.

Σχήμα 8.2.1a.4. Φάσμα εκπομπής του[ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος (TBA)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10 ns

Aκολουθεί το φάσμα του φθορισμού του συμπλόκου [ReBr(CO)₃(amphen)] με προσθήκη διαλύματος (TBA)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]/[ReBr(CO)₃(amphen)] σε DMF (Σχήμα 8.2.1a.5) καθώς και με προσθήκη διαλύματος (TBA)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF (Σχήμα 8.2.1a.6).

Σχήμα 8.2.1a.5. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος (TBA)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10 ns.

Σχήμα 8.2.1a.6. Φάσμα εκπομπής του [ReBr(CO)₃(amphen)] (1) με προσθήκη διαλύματος (TBA)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻/[ReBr(CO)₃(amphen)] σε DMF, Inset: K_q υπολογίστηκε από την εξίσωση Stern-Volmer και τ_{Re}=4.2 ±0.10 ns.

Ενώ, οι καταλύτες αποδιεγείρουν το χρωμοφόρο με μια σταθερά που είναι μεγαλύτερη κατά τέσσερις τάξεις μεγέθους σε σχέση με εκείνη της ΤΕΟΑ ($k_q=1\times10^8$ M⁻¹s⁻¹), η αναγωγική αποδιέγερση από την ΤΕΟΑ κυριαρχεί στο σύστημά μας, εξαιτίας της μεγαλύτερης συγκέντρωσης της ΤΕΟΑ (1 M) σε σχέση με αυτήτων καταλύτων του Ni (6.4 μM). Συμπερασματικά τα αρχικά φωτοχημικά βήματα είναι ο σχηματισμός του ανιόντος [ReBr(CO)₃(amphen)]⁻ από την ΤΕΟΑ, που ακολουθείται από αναγωγή και πρωτονίωση του διθειολενικού καταλύτη του Ni. Παρατίθεται ο προτεινόμενος μηχανισμός στο Σχήμα 8.2.1a.7.

Σχήμα 8.2.1a.7. Προτεινόμενος μηχανισμός αναγωγής H^+ για το σύστημα [ReBr(CO)₃(amphen)]/NiL₂/TEOA/AcOH σε DMF (αναγωγικής αποδιέγερσης).

8.2.2 Σύστημα 7: [ReBr(CO)3(pq)]/

$(NEt_4)^+[Ni{S_2C_2(C_6H_5)_2}_2]^+(C1)/TEOA/AcOH \sigma \varepsilon DMF$

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [ReBr(CO)₃(pq)] 0.5 mM, το AcOH 0.1 M, σε DMF (30 mL) παρουσία της TEOA (1 M) και καταλύτη το (NEt₄)⁺[Ni{S₂C₂(C₆H₅)₂}₂]⁻ (C1) (6.4*10⁻⁶ M). Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε λάμπα ξένου 1000 W με $\lambda > 335$ nm. Το σύστημα παρήγαγε ίχνη υδρογόνου.

8.2.3 Σύστημα 8: [ReBr(CO)₃(pq)]/NEt₄)⁺[Ni[S₂C₂(C₆H₄-OCH₃-4)₂]₂]⁻ (C2)/TEOA/AcOH σε DMF

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [ReBr(CO)₃(pq)] 0.5 mM, το AcOH 0.1 M, σε DMF (30 mL) παρουσία της TEOA (1 M) και καταλύτη το (NEt₄)⁺[Ni{S₂C₂(C₆H₄-OCH₃-4)₂}₂]⁻ (C2) (6.4*10⁻⁶ M). Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε λάμπα ξένου 1000 W με λ > 335 nm. Το σύστημα παρήγαγε ίχνη υδρογόνου.

8.2.4 Σύστημα 9: [Cu⁽¹⁾(dppz-COOEt)₂]/

$(NEt_4)^+[Ni\{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)\}_2]^-(C3)/Asc \sigma \in MeCN/H_2O.$

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο $[Cu^{(I)}(dppzCOOEt)_2)]$ 2.2*10⁻⁴M, σε σύστημα διαλυτών MeCN/Asc/H₂O (10 mL) αναλογία 1/1 και pH=4, παρουσία καταλύτη το(NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻ 4*10⁻⁴ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου.

8.2.5 Σύστημα 10: [Re(CO)₃Cl{[dppz-3,6-(COOE})₂]/

$(NEt_4)^+[Ni{S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)}_2]^- (C3)/TEOA/AcOH \sigma \varepsilon DMF$

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο βαρελάκι όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}] 0.5 mM, τοAcOH 0.1 M, σε DMF (30 mL) παρουσία της TEOA (1 M) καικαταλύτη το (NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻ 6.4*10⁻⁴ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε λάμπα ξένου 1000 W, $\lambda >$ 335 nm. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου.

8.3 $\Phi \omega \tau \sigma \kappa a \tau a \lambda \upsilon \tau \iota \kappa \eta$ παραγωγή υδρογόνου από συστήματα $Ru(bipy)_3$ παρουσία $K(NCMe)_3(L^6)Co^{II}-NCMe]\cdot MeCN\cdot H_2O/[K(NCMe)_3(L^{13})Co^{II}-NCMe]$

8.3.1 Σύστημα 11: [Ru(bipy)₃Cl₂]·6H₂O/

$[K(NCMe)_3(L^{13})Co^{II}-NCMe]/Asc \sigma \in MeCN/H_2O$

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 4 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Ru(bipy)₃Cl₂]·6H₂O ($2.2*10^{-4}$ M), καταλύτη το [K(NCMe)₃(L¹³)Co^{II}-NCMe] ($2.2*10^{-4}$ M) με σύστημα διαλυτών Asc σε MeCN/H₂O όγκου 2 mL, σε αναλογία 80/20, αντίστοιχα. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα

ήταν αναποτελεσματικό και δεν είχαμε παραγωγή υδρογόνου. Το πείραμα επαναλήφθηκε με διαφορετική συγκέντρωση καταλύτη, [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O (4.4*10⁻⁴ M), όμως και πάλι δεν είχαμε παραγωγή υδρογόνου. Στη συνέχεια, διαφοροποιήσαμε την αναλογία διαλυτών, Asc σε MeCN/H₂O όγκου 2 mL, σε αναλογία 60/40, αντίστοιχα και pH=4. Ωστόσο, δεν επιτεύχθηκε παραγωγή υδρογόνου.

8.3.2 Σύστημα 12: [Ru(bipy)₃Cl₂]·6H₂O/ [K(NCMe)₃(L¹³)Co^{II}-NCMe]/TEOA/AcOH σε DMF

OI φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 4 mL, που περιείχε τον φωτοευαισθητοποιήτη, σύμπλοκο [Ru(bipy)₃Cl₂]·6H₂O (0.5 mM), το AcOH (0.1 M), σε DMF (2 mL) παρουσία της TEOA (1 M) και καταλύτη το [K(NCMe)₃(L¹³)Co^{II}-NCMe] (5*10⁻⁴ M). Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Τα πειράματα επαναλήφθηκαν με διαφορετικές συγκεντρώσεις του καταλύτη, ωστόσο το σύστημα δεν απέδωσε. Αυτό πιθανόν να οφείλεται στην καταστροφή του φωτοευαισθητοποιητή, όπως φαίνεται στο Σχήμα 8.3.2.1. Αν και το σύμπλοκο του [K(NCMe)₃(L¹³)Co^{II}-NCMe] παραμένει πρακτικά σταθερό στον διαλύτη για 48 h, ωστόσο καταστρέφεται με την ακτινοβόληση.

Σχήμα8.3.2.1. Φάσμα UV-Vis συστήματος (0.5 mM PS, [K(NCMe)₃(L^{13})Co^{II}-NCMe] (5*10⁻⁴ M). 1 M T EOA, 0.1 M AcOH, DMF και Argon) πριν και μετά την ακτινοβόληση.

8.3.3 Σύστημα 13: [Ru(bipy)₃Cl₂]·6H₂O/

$[K(NCMe)_3(L^6)Co^{II}-NCMe]\cdot MeCN\cdot H_2O/Asc \sigma \in MeCN/H_2$

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 4 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Ru(bipy)₃Cl₂]·6H₂O (2.2* 10^{-4} M), καταλύτη το [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O (4.4* 10^{-4} M) με σύστημα διαλυτών Asc σε MeCN/H₂O όγκου 2 mL, σε αναλογία 80/20, αντίστοιχα και pH=4. Το διάλυμα απαερώθηκε υπό A rγια 15 min και ακτινοβολήθηκε σε led.

Το σύστημα παρήγε 0.147 μmol υδρογόνου μετά από 2 h ακτινοβόλησης και 1.138 μmol μετα από 8 h (4.06 TON_{Cat}). Στη συνέχεια, μελετήσαμε την αποτελεσματικότητα του συστήματος παραγωγής υδρογόνου στη διάρκεια του χρόνου, και παρατηρήσαμε ότι μέχρι τις 24 h ακτινοβόλησης το σύστημα παράγει υδρογόνο φτάνοντας τα 10.47 TON_{Cat} (2.944 μmol). Τα αποτελέσματα των πειραμάτων δίνονται συνοπτικά στο Σχήμα 8.3.3.1.

Σχήμα 8.3.3.1. Απεικόνιση παραγωγής H₂ σε συνάρτηση με το χρόνο (2.2*10⁻⁴ M PS, 4.4*10⁻⁴M [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O (4.4*10⁻⁴ M) με Asc σε MeCN/H₂O).

Το ίδιο πείραμα επαναλήφθηκε τριπλασιάζοντας την συγκέντρωση του καταλύτη, $[K(NCMe)_3(L^6)Co^{II}-NCMe]\cdot MeCN\cdot H_2O$ (15*10⁻⁴ M), το σύστημα παρήγαγε υδρογόνο μετά από 24 h ακτινοβόλησης μόλις 0.58 μmol. Συμπερασματικά φαίνεται ότι η αύξηση της συγκέντρωσης του καταλύτη οδηγεί στην μείωση της απόδοσης του

συστήματος, πιθανότατα λόγω της ανταγωνιστικότητας μεταξύ του φωτοευαισθητοποιητή και του καταλύτη σε ότι αφορά την απορόφηση της ακτινοβολίας [107].

8.4 Φωτοκαταλυτική παραγωγή υδρογόνου με PS σύμπλοκα Ga

8.4.1 Σύστημα 14: [Ga(tpfc)-2-Ga]/[Co(dmgH)₂(py)Cl]/Asc σε MeCN/H₂O

Σχήμα 8.4.1.1. Απεικόνιση δομής του συμπλόκου [Ga(tpfc)-**2-Ga**], όπου L: πυριδίνη (Χημικός τύπος: C₃₇H₈F₁₅GaN₄, Mr: 863).

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Ga(tpfc)-**2-Ga**] $1.3*10^{-3}$ M, σε σύστημα διαλυτών MeCN/Asc&H₂O αναλογία 1/1 (10 mL) και pH=4, παρουσία καταλύτη το [Co(dmgH)₂(py)Cl] $5.5*10^{-4}$ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, παρατηρήσαμε ίχνη υδρογόνου. Στην προσπάθεια μας να βελτιώσουμε το σύστημα μεταβάλλαμε την συγκέντρωση του καταλύτη, τα αποτελέσματα παρατίθενται στον Πίνακα 8.4.1.1. Το σύστημα φαίνεται να παράγει μικρή ποσότητα υδρογόνου όταν η

συγκέντρωση του καταλύτη είναι $5*10^{-4}$ M (0.22 μmol) και $4*10^{-4}$ M (0.12 μmol). Το ίδιο σύστημα ακτινοβολήθηκε και σε λάμπα ξένου 1000 W με $\lambda > 335$ nm, ωστόσο δεν παρήχθη υδρογόνο.

PS	Καταλύτης	Διαλύτης	Time (h)	H2 (µmol)	TONcat
2-Ga (M)	[Co(dmg) ₂ (py)Cl] (M)	MeCN/Asc&H ₂ O 1/1 (ml)			
4*10 ⁻⁵	5*10-4	10	2	0.22	1.93
4*10-5	5*10-5	10	2	0	0
4*10 ⁻⁵	7*10-4	10	2	0	0
4*10 ⁻⁵	3*10-4	10	2	0.05	0.75
4*10 ⁻⁵	4*10-4	10	2	0.12	1.29
4*10-5	6*10-4	10	2	0	0
4*10 ⁻⁵	5.5*10-4	10	2	_	-

Πίνακας 8.4.1.1. Παραγωγή υδρογόνου συστήματος με φωτοευαισθητοποιητή Ga(tpfc)-2-Ga.

8.4.2 Σύστημα 15: [Ga(di-o-F-p-py)-1-Ga]/[Co(dmgH)₂(py)Cl]/Asc σε MeCN/H₂O

Σχήμα 8.4.1.2. Απεικόνιση δομής συμπλόκου [Ga(di-o-F-p-py)-1-Ga] (Χημικός τύπος: $C_{36}H_{18}F_4GaN_5$,Mr: 665 + py744).

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου35 mL, που περιείχε τον φωτοευαισθητοποιήτη, σύμπλοκο [Ga(di-o-F-p-py)-**1-Ga**] $1.3*10^{-3}$ M, σε σύστημα διαλυτών MeCN/Asc&H₂O αναλογία 1/1 (10 mL) και pH=4, παρουσία καταλύτη το [Co(dmgH)₂(py)Cl] $5.5*10^{-4}$ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου. Το ίδιο σύστημα ακτινοβολήθηκε και σε λάμπα ξένου 1000 W με $\lambda > 335$ nm, ωστόσο δεν παράχθηκε υδρογόνο.

8.4.3 Σύστημα 16: [Ga(tpfc)-2-Ga]/[Co(dmgH)₂]/TEOA/AcOH σε DMF

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Ga(tpfc)-**2-Ga**] $1.3*10^{-3}$ M, το AcOH 0.1 M, σε DMF (10 mL) παρουσία της TEOA (1 M) και παρουσία του [Co(OAc)₂]·4H₂O $5*10^{-4}$ M και dmgH₂ $30*10^{-4}$ M. Το διάλυμα απαερώθηκε υπό Arγια 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου.

8.4.4 Σύστημα 17: [Ga(di-o-F-p-py)-1-Ga]/[Co(dmgH)₂]/TEOA/AcOH σε DMF

Oi φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικόγυάλινοφιαλίδιοόγκου35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Ga(di-o-F-p-py)-**1-Ga**] $1.3*10^{-3}$ M, το AcOH 0.1 M, σε DMF (10 mL) παρουσία της TEOA (1 M) και παρουσία του [Co(OAc)₂]·4H₂O 5*10⁻⁴ M και dmgH₂ 30*10⁻⁴ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου.

8.5 Φωτοκαταλυτική παραγωγή υδρογόνου παρουσία [Cu⁽¹⁾(dppz-COOEt)₂]

8.5.1 Σύστημα 18: [Cu^(l)(dppz-COOEt)₂]/[Co(dmgH)₂(py)Cl]/TEA σε MeCN/H₂O

Σχήμα 8.5.1. Απεικόνιση δομής συμπλόκου [Cu⁽¹⁾(dppzCOOEt)₂].

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιητή, σύμπλοκο [Cu^(I)(dppzCOOEt)₂] $2.2*10^{-4}$ M, σε σύστημα διαλυτών MeCN/H₂O αναλογία 1/1 (30 mL) και pH=4, παρουσία της TEA (0.07 M) και καταλύτη το [Co(dmgH)₂(py)Cl] $2.2*10^{-4}$ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου.

8.5.2 Σύστημα 19: [Ru(bipy)₃Cl₂]/[Cu⁽¹⁾(dppz-COOEt)₂]/TEA σε MeCN/H₂O

Οι φωτοκαταλυτικές αντιδράσεις έλαβαν μέρος σε ειδικό γυάλινο φιαλίδιο όγκου 35 mL, που περιείχε τον φωτοευαισθητοποιήτη, σύμπλοκο [Ru(bipy)₃Cl₂]·6H₂O, σε σύστημα διαλυτών MeCN/H₂O αναλογία 1/1 (30 mL) και pH=4, παρουσία της TEA (0.07 M) και καταλύτη το [Cu^{(I)(}dppzCOOEt)₂] $2.2*10^{-4}$ M. Το διάλυμα απαερώθηκε υπό Ar για 15 min και ακτινοβολήθηκε σε led. Το σύστημα αποδείχθηκε αναποτελεσματικό, δεν είχαμε παραγωγή υδρογόνου.

Ακολουθεί ο Πίνακας 8.5.2.1, όπου παρουσιάζονται συνοπτικά όλα τα συστήματα που μελετήθηκαν στα πλαίσια της διδακτορικής διατριβής.

Σύστημα	PS	Καταλύτης	Διαλύτης	Δότης	Οξύ	λ _{ir} (nm)	Time (h)	H2 (µmol)	TONCat
1 ^a	[ReBr(CO) ₃ (amphen)] (0.5 mM)	$\frac{[Co(dmgH)_2]}{(1 mM) + dmgH_2 (6 mM)}$	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	7	142.87	4.76
2	[ReBr(CO) ₃ (phendione)] (0.5 mM)	$\frac{[Co(dmgH)_2]}{(1 mM) + dmgH_2 (6 mM)}$	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	3	0.00	0.00
3	[ReCl(CO) ₃ (amphen)] (0.5 mM)	$\frac{[Co(dmgH)_2]}{(1 mM) + dmgH_2 (6 mM)}$	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	7	76.03	2.92
4	[ReBr(CO) ₃ (amphen)] (0.5 mM)	$[Ni[S_2C_2(C_6H_5)_2]_2]^{-}(NEt_4)^+$	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	5	48.83	26.34
5	[ReBr(CO) ₃ (amphen)] (0.5 mM)	$[Ni[S_2C_2(C_6H_4-OCH_3-4)_2]_2]^-$ (NEt ₄) ⁺ (6.4*10 ⁻⁶ M)	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	3	7.80	34.38
6	[ReBr(CO) ₃ (amphen)] (0.5 mM)	$[Ni[S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)]_2]^{-}(NEt_4)^{+}$ (6.4*10 ⁻⁶ M)	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	3	7.83	37.59
7	[ReBr(CO) ₃ (pq)] (0.5 mM)	$\frac{[\text{Ni}[\text{S}_2\text{C}_2(\text{C}_6\text{H}_4\text{-OCH}_3\text{-}4)_2]_2]^{2^-}}{(\text{NEt}_4)^+}$ (6.4*10 ⁻⁶ M)	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	24	ιχνή	-
8	[ReBr(CO) ₃ (pq)] (0.5 mM)	$[Ni[S_2C_2(C_6H_5)_2]_2]^{-}(NEt_4)^+ (6.4*10^{-6}M)$	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	24	ιχνή	-
9	[Cu ^(I) (dppzCOOEt) ₂] (2.2*10 ⁻⁴ M)	$[Ni[S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)]_2]^{-}(NEt_4)^{+}$ (6.4*10 ⁻⁶ M)	MeCN/ Asc/H ₂ O pH=4			>335	24	0.00	-
10	[Re(CO) ₃ Cl{dppz-3,6- (COOEt) ₂ }] (0.5 mM)	$[Ni[S_2C_2(C_6H_5)(C_6H_4-OCH_3-4)]_2]^{-}(NEt_4)^+ (6.4*10^{-6}M)$	DMF	TEOA (1 M)	AcOH (0.1 M)	>335	24	0.00	-

Πίνακας 8.5.2.1. Αποτελέσματα φωτοκαταλυτικών συστημάτων που μελετήθηκαν.

Σύστημα	PS	Καταλύτης	Διαλύτης	Δότης	Οξύ	λ _{ir} (nm)	Time (h)	H2 (µmol)	TON _{Cat}
11	[Ru(bipy) ₃ Cl ₂]·6H ₂ O (2.2*10 ⁻⁴ M)	[K(NCMe) ₃ (L ¹³)Co ^{II} -NCMe] (4,4*10 ⁻⁴ M)	MeCN/ Asc/H ₂ O pH=4				24	0.00	-
12	[Ru(bipy) ₃ Cl ₂]·6H ₂ O (0.5 mM)	$[K(NCMe)_{3}(L^{13})Co^{II}-NCMe] (5*10^{-4}M)$	DMF	TEOA (1 M)	AcOH (0.1 M)		24	0.00	-
13	[Ru(bipy) ₃ Cl ₂]·6H ₂ O (2.2*10 ⁻⁴ M)	$[K(NCMe)_{3}(L^{6})Co^{II}-NCMe] \cdot MeCN \cdot H_{2}O (4.4*10^{-4} M)$	DMF	TEOA (1 M)	AcOH (0.1 M)		6	1.138	4.06
14 ^b	[Ga(tpfc)- 2-Ga] (1.15*10 ⁻³ M)	[Co(dmgH) ₂ (py)Cl] (5*10 ⁻⁴ M)	MeCN/ Asc/H ₂ O pH=4				2	0.22	1.93
15°	[Ga(di-o-F-p-py)- 1-Ga] (1.3*10 ⁻³ M)	$[Co(dmgH)_2] \\ (5*10^{-4}M + 30*10^{-4}M)$	MeCN/ H ₂ O pH=4				24	0.00	-
16 ^c	[Ga(tpfc)- 2-Ga] (1.15*10 ⁻³ M)	[Co(dmgH) ₂ (py)Cl] (5*10 ⁻⁴ M)	DMF	TEOA (1 M)	AcOH (0.1 M)		24	0.00	-
17 ^c	[Ga(di-o-F-p-py)- 1-Ga] (1.3*10 ⁻³ M)	$\begin{array}{c} Co(dmgH)_2 \\ (5^{*}10^{-4}M + 30^{*}10^{-4}M) \end{array}$	DMF	TEOA (1 M)	AcOH (0.1 M)		24	0.00	-
18	[Cu ⁽¹⁾ (dppzCOOEt) ₂] (2.2*10 ⁻⁴ M)	[Co(dmgH) ₂ (py)Cl] (2.2*10 ⁻⁴ M)	MeCN/ H ₂ O pH=4	TEA (0.07 M)			24	0.00	-
19	[Ru(bipy) ₃ Cl ₂]·6H ₂ O (2.2*10 ⁻⁴ M)	Cu ^{(I)(} dppzCOOEt) (2.2*10 ⁻⁴ M)	MeCN/ H ₂ O pH=4	TEA (0.07 M)			24	0.00	-

a. Το σύστημα μελετήθηκε μεταβάλλοντας την συγκέντρωση της κάθε παραμέτρου του συστήματος.

b. Το σύστημα μελετήθηκε μεταβάλλοντας την συγκέντρωση του καταλύτη.

c. To sústima aktivobolúquke me led kai me láma zévou 1000 W me $\lambda>335$ nm.

<u>ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

Στην παρούσα διατριβή παρουσιάζεται η σύνθεση και ο χαρακτηρισμός των συμπλόκων: [ReBr(CO)₃(amphen)], [ReBr(CO)₃(phendione)], [ReCl(CO)₃(amphen)], [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}]. Παρουσιάζεται η κρυσταλλική δομή του συμπλόκου [ReBr(CO)₃(pq)], η κρυστάλλωση του οποίου πραγματοποιήθηκε με σύστημα αργής εξάτμισης διαλυμάτων, υποδεικνύοντας ότι το σύμπλοκο κρυσταλλώνεται σε μονοκλινικό σύστημα. Τα σύμπλοκα: [ReBr(CO)₃(amphen)], [ReBr(CO)₃(phendione)], [ReCl(CO)₃(amphen)], [ReBr(CO)₃(phendione)], [ReCl(CO)₃(amphen)], [ReBr(CO)₃(phendione)], [ReCl(CO)₃(amphen)], [Re(CO)₃Cl{dppz-3,6-(COOEt)₂}], [Cu⁽¹⁾(dppzCOOEt)₂], [Ga(di-o-F-p-py)-**1-Ga**], [Ga(tpfc)-**2-Ga**] διερευνήθηκαν ως προς την φωτοευαισθητοποιητική ικανότητα τους να ανάγουν πρωτόνια σε ομογενή φωτοκαταλυτικά συστήματα.

Στο σύστημα **1** με χρωμοφόρο το σύμπλοκο [ReBr(CO)₃(amphen)] (Πίνακας 8.5.2.1) η παραγωγή υδρογόνου αρχίζει από την πρώτη ώρα ακτινοβόλησης και η εξάρτηση του σχηματισμού του H₂ από την μεταβολή της συγκέντρωσης της dmgH₂ και της [Co(OAc)₂]·4H₂O επιβεβαιώνει, ότι τα TONs του συστήματος αυξάνονται σημαντικά με την αύξηση της συγκέντρωσης της dmgH₂ και της $[Co(OAc)_2]$ ·4H₂O. Η αντίδραση σχηματισμού υδρογόνου στο συγκεκριμένο σύστημα είναι πρώτης τάξης, όταν μεταβάλλεται ο καταλύτης, ενώ όλες οι άλλες μεταβλητές διατηρούνται σταθερές. Επιπλέον, το σύστημα έχει την καλύτερη απόδοση όταν η αναλογία [Co(OAc)₂]·4H₂O:dmgH₂ είναι 1:6. Παρόμοιες ποσότητες υδρογόνου σχηματίζονται όταν η συγκέντρωση του AcOH κυμαίνεται ανάμεσα στα 0.05 – 0.2 M AcOH, και παράγεται λιγότερο υδρογόνο όταν [AcOH] > 0.2 M, αυτό υποδηλώνει ότι το σύστημα δεν επηρεάζεται από το pH. Όταν συγκρίναμε τα αποτελεσματά μας με αυτά του συστήματος με χρωμοφόρο το [ReBr(CO)₃(pq)] παρατηρήσαμε ότι η συμπεριφορά των δύο συστημάτων διαφέρει και αυτό πιθανότατα οφείλεται στην διαφορά στη φύση των δύο διιμινών, η οποία αντανακλάται στις ηλεκτρονικές ιδιότητες τους. Κάτι που επιβεβαιώνει και το σύστημα 2 με χρωμοφόρο το σύμπλοκο (Πίνακας 8.5.2.1), [ReBr(CO)₃(phendione)] όπου αλλάζοντας μόνο τον υποκαταστάτης (amphen) του συμπλόκου (1) και διατηρώντας όλες τις άλλες παραμέτρους σταθερές το σύστημα δεν παράγει υδρογόνο. Τέλος, για να μελετήσουμε και την επίδραση του αλογόνου στο φωτοκαταλυτικό σύστημα στη θέση του Br βάλαμε το Cl. Παρατηρήσαμε ότι η απόδοση του συστήματος 3 με χρωμοφόρο το [ReCl(CO)₃(amphen)] είναι μικρότερη από αυτή με χρωμοφόρο το

158

[ReBr(CO)₃(amphen)] (Πίνακας 8.5.2.1), το αλογόνο λοιπόν και αυτό με τη σειρά του επηρεάζει τη λειτουργία του συστήματος, όσο αυξάνεται η ταχύτητα απομάκρυνσης του αλογόνου, τόσο πιο αποδοτικό το σύστημα.

Στα συστήματα **4**, **5** και **6** με χρωμοφόρο το σύμπλοκο [ReBr(CO)₃(amphen)] και καταλύτες διθειολενικά σύμπλοκα του Ni ο σχηματισμός υδρογόνου ξεκίναει από την πρώτη ώρα ακτινοβόλησης. Αυτό που παρατηρήσαμε είναι ότι και οι τρείς καταλύτες του Ni έχουν παρόμοια απόδοση, ωστόσο το σύστημα που λειτουργεί καλύτερα είναι αυτό με καταλύτη το (NEt₄)⁺[Ni{S₂C₂(C₆H₅)(C₆H₄-OCH₃-4)}₂]⁻ που στις 3 h ακτινοβόλησης παράγει 7.83 μmol (7.59 TON_{cat}) (Πίνακας 8.2.1.3) και φτάνει τα 163.78 TON_{cat} μετά από 22 h. Αυτό πιθανότατα συμβαίνει γιατί στο ασύμμετρο σύμπλοκοτου Ni η μεθόξυ-ομάδα που είναι π-δότης ηλεκτρονίων διαφοροποιεί το φορτίο στα θεία με αποτέλεσμα να πρωτονιώνεται πιο εύκολα σύμφωνα με τους θεωρητικούς υπολογισμούς και τα αποτελέσματα της ηλεκτροκατάλυσης των συμπλόκων. Επαναλάβαμε τα πειράματα με καταλύτες σύμπλοκα του Ni και χρωμοφόρο το [ReBr(CO)₃(pq)] και τα δύο συστήματα που δοκιμάσαμε παρήγαγαν ίχνη υδρογόνου (Σύστημα **7-8**, Πίνακας 8.5.2.1), επιβεβαιώνοντας ότι η φύση του υποκαταστάτη επηρεάζει ιδιαίτερα την καταλυτική διεργασία.

Στασυστήματαμεγρωμοφόροτοσύμπλοκο $[Ru(bipy)_3Cl_2] \cdot 6H_2O$ και καταλύτητο $[K(NCMe)_3(L^6)Co^{II}-NCMe]$ ·MeCN·H₂O παράγεται υδρογόνο όταν η συγκέντρωση του καταλύτη είναι 5*10⁻⁴ M (Σύστημα **13**). Τριπλασιάζοντας όμως την συγκέντρωση του καταλύτη, [K(NCMe)₃(L⁶)Co^{II}-NCMe]·MeCN·H₂O ($15*10^{-4}$ M), το σύστημα παρήγαγε υδρογόνο μετά από 24 h ακτινοβόλησης μόλις 0.58 μmol. Συμπερασματικά φαίνεται ότι η αύξηση της συγκέντρωσης του καταλύτη οδηγεί στην μείωση της απόδοσης του συστήματος, πιθανότατα λόγω της ανταγωνιστικότητας μεταξύ του φωτοευαισθητοποιητή και του καταλύτη σε ότι αφορά την απορόφηση της ακτινοβολίας. Στην συνέχεια, μελετήσαμε την αποτελεσματικότητα του συστήματος 13 στη διάρκεια του χρόνου στην παραγωγή υδρογόνου, και παρατηρήσαμε ότι μέχρι τις 24 h ακτινοβόλησης το σύστημα συνεχίζει να παράγει υδρογόνο (Πίνακας 8.5.2.1). Το ίδιο σύστημα μελετήθηκε με καταλύτη το $[K(NCMe)_3(L^{13})Co^{II}-NCMe]$ (Σύστημα 11) όμως δεν απέδωσε. Στη συνέχεια αλλάξαμε τον διαλύτη του συστήματος σε DMF (Σύστημα 12), Ωστόσο, ούτε αυτό το σύστημα παρήγαγε υδρογόνο. Αυτό πιθανόν να οφείλεται στο γεγονός, ότι αν και το σύμπλοκο του [K(NCMe)₃(L¹³)Co^{II}-NCMe] παραμένει πρακτικά σταθερό στον διαλύτη για 48 h, φαίνεται ωστόσο ότι καταστρέφεται με την ακτινοβόληση.

Το σύστημα με χρωμοφόρο το σύμπλοκο Ga(tpfc)-2-Ga και καταλύτη το [Co(dmgH)₂(py)Cl] παράγει υδρογόνο. (Σύστημα 14), ενώ όταν αλλάξαμε τον καταλύτη σε [Co(dmgH)₂]το σύστημα δεν απέδωσε (Σύστημα 16). Φαίνεται το σύστημα να επηρεάζεται ιδιαίτερα από τον καταλύτη που χρησιμοποιούμε. Το σύστημα με χρωμοφόρο το [Ga(di-o-F-p-py)-1-Ga] δεν παράγει υδρογόνο με κανένα από τους δύο καταλύτες (Σύστημα 15, 17).

Το σύμπλοκο $[Cu^{(I)}(dppzCOOEt)_2]$ μελετήθηκε σε φωτοκαταλυτικό σύστημα και ως χρωμοφόρο με καταλύτη το $[Co(dmgH)_2(py)Cl]$ (Σύστημα **18**) και ως καταλύτης με χρωμοφόρο το $[Ru(bipy)_3Cl_2]\cdot 6H_2O$ (Σύστημα **19**), όμως σε καμία από τις δύο περιπτώσεις δεν είχαμε παραγωγή υδρογόνου (Πίνακας 8.5.2.1).

Με συστηματική μελέτη των παραγόντων που επηρεάζουν την παραγωγή H_2 στα υπό μελέτη συστήματα καθώς και τα πειράματα απόσβεσης φθορισμού προτείνονται αναγωγικοί μηχανισμοί αναγωγής H^+ για τα συστήματα [ReBr(CO)₃(amphen)]/[Co(OAc)₂]·4H₂O]/dmgH₂/TEOA/AcOH σε DMF (αναγωγικής αποδιέγερσης) και [ReBr(CO)₃(amphen)]/NiL₂/TEOA/AcOH σε DMF (αναγωγικής αποδιέγερσης).

ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ

Ξενόγλωσσος όρος	Ελληνικός Όρος
Hydrogen storage	Αποθήκευση υδρογόνου
Fuel cells	Κυψέλες καυσίμου
Valence band	Στοιβάδα σθένους
Conductance band	Διεγερμένη στοιβάδα
Turnovernumbers	Αριθμοί Επανάληψης Καταλυτικού Κύκλου
Diimine	Διιμίνη
Supramolecules	Υπερμοριακή κατασκευή
Cyanoanilinioumtetrafluoroborate	Τετραφθοροβορικο κυανιοανιλινιο
Benzylisocyanide	Βενζιλικό ισοκυανίδιο
Pyridine	Πυριδίνη
Alkynyl	Αλκυνύλιο
Dimethylglyoxine	Διμεθυλογλυοξίνη
Gas Chromatographer	Αέριος Χρωματογράφος
Spectofluorophotometer	Φθορισμόμετρο
Injector	Εισαγωγέας
Detector	Ανιχνευτής
Total Time	Συνολικός Χρόνος
Column Flow	Ροή στήλης
Phenathroline	Φαινανθρολίνη
Amine	Αμίνη
Quinoxaline	Κινοξαλίνη
Diffusion controlled	Ελεγχόμενη διάχυση

ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΟΝΥΜΑ

АсОН	Οξικό οξύ
amphen	1,10 – phenanthroline – 5 – amine
АПЕ	Ανανεώσιμες Πήγες Ενέργειας
AY	Ακριδίνη
bpy ή bipy	2,2'- διπυριδίνη
bpz	2,2'-διπυραζίνη
Cat	Καταλύτης
СТ	charge transfer
D	Δότης ηλεκτρονίων
dppz	διπυριδο(3,2-α:2',3'-c)φαιναζίνη
dpp	2,9 διφαινυλο-1,10-φαιναθρολίνη
DCM	διχλωρομεθάνιο
DMF	Ν,Ν-διμεθυλοφορμαμίδιο
dmgH	dimethylglyoximate
dmgH ₂	dimethylglyoxime
DMSO	Διμεθυλοσουλφοξείδιο
dpq	2,3-di(2-pyridyl)quinoxaline
EDTA	Αιθυλενο-διαμίνη τετραοξικό οξύ
IR	Υπέρυθρη ακτινοβολία
λ	Μήκος κύματος
Me	Μεθυλομάδα CH3
MeOH	Μεθανόλη
MV ⁺	Μεθυλοβιολογόνο
NMR	Πυρηνικός Μαγνητικός Συντονισμός
NEt ₄	τετρα-αιθυλαμόνιο
phen	1,10- φαινανθρολίνη
phendione	1,10 – phenathroline – $5,6$ – dione
PPh ₃	τριφιανυλοφωσφίνη
pq	2-(2΄πυριδιλο)κινοξαλίνη
ppq	[2,3-a:3',2'-c]dipyridophenazine
ру	πυραζίνη
PS	Φωτοευαισθητοποιητής
sep	sepulchrate
R	Δέκτης ηλεκτρονίων
Ren	Δέκτης ενέργειας
TEOA	Τριαιθανολαμίνη
ТВА	τετρα-βουτυλαμόνιο
ТСВ	Ανιχνευτής Θερμικής Αγωγιμότητας
TON	Αριθμός Επανάληψης Καταλυτικού Κύκλου
TR-IR	time-resolved infrared spectroscopy
WRC	water reduction catalyst
UV-Vis	Υπεριώδες - Ορατό

ΑΝΑΦΟΡΕΣ

1. Hoel M, Kverndokk S. *Depletion of fossil fuels and the impacts of global warming. Resour.* Energy Econ. 1996;18:115–36.

2. Schlapbach L, Zuttel A. *Hydrogen-storage materials for mobile applications*. Nature. 2001;414:353–8.

3. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A. *Ru(II)* polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord. Chem. Rev. 1988;84:85–277.

4. Belattar A, Saxton JE. *Total synthesis of heptacyclic Aspidosperma alkaloids. Part* 3. *Synthesis of an advanced intermediate in the synthesis of alalakine.* J. Chem. Soc.. 1992;679–83.

5. K. Kalyanasundaram, *Photochemistry of Polypyridine and Porphyrin Complexes*, Academic Press, London, 1992.

6. Amouyal E, Zidler B. On the Effect of Electron Relay Redox Potential on Electron Transfer Reactions in a Water Photoreduction Model System. Isr. J. Chem. 1982;22:117–124.

7. Freas RB, Ridge DP. Characterization of complexes of butanes with transitionmetal atomic ions in the gas phase. J. Am. Chem. Soc. 1980;102:7129–31.

8. Amouyal E. Development of Catalysts for Mater Photoreduction : Improvement, Poisoning and Catalytic Mechanism. In: Pelizzetti E, Serpone N, editors. Homog. Heterog. Photocatal. Springer Netherlands; 1986. p. 253–65.

9. Dürr H, Boßmann S, Beuerlein A. *Biomimetic approaches to the construction of supramolecular catalysts: titanium dioxide—platinum antenna catalysts to reduce water using visible light.* J. Photochem. Photobiol. Chem. 1993;73:233–45.

10. Okura I. *Hydrogenase and its application for photoinduced hydrogen evolution*. Coord. Chem. Rev. 1985;68:53–99.

11. Harriman A, Neta P, Richoux MC. *Catalysed Decay of Oxidising Radicals in Water*. In: Pelizzetti E, Serpone N, editors. Homog. Heterog. Photocatal. Springer Netherlands; 1986. p. 123–45. Available from: http://dx.doi.org/10.1007/978-94-009-4642-2_6

12. Darwent JR, Douglas P, Harriman A, Porter G, Richoux M-C. Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord. Chem. Rev. 1982;44:83–126.

13. Okura I, Kim-Thuan N. Hydrogen generation by visible light with zinc(II) tetraphenylporphyrin in aqueous micellar solutions. J. Mol. Catal. 1979;6:227–30.

14. Johansen O, Mau AW-H, Sasse WHF. *The 9-anthracenecarboxylate anion as sensitizer for the photoreduction of water*. Chem. Phys. Lett. 1983;94:107–12.

15. Harriman A. Metalloporphyrin-photosensitized formation of hydrogen from organic and inorganic substrates. J. Photochem. 1985;29:139–50.

16. Königstein C, Bauer R. *Charge separation in J-aggregates of covalently linked cyanine dye-viologen systems.* Sol. Energy Mater. Sol. Cells. 1994;31:535–9.

17. Barigelletti F, De Cola L, Balzani V, Belser P, Von Zelewsky A, Voegtle F, et al. *Caged and uncaged ruthenium(II)-polypyridine complexes. Comparative study of the photochemical, photophysical, and electrochemical properties.* J. Am. Chem. Soc. 1989;111:4662–8.

18. Keller P, Moradpour A, Amouyal E, Zidler B. Sacrificial hydrogen generations from water mediated by a series of viologen-dye relays. J. Mol. Catal. 1981;12:261–3.

19. Kirch M, Lehn J-M, Sauvage J-P. Hydrogen Generation by Visible Light Irradiation of Aqueous Solutions of Metal Complexes. An approach to the photochemical conversion and storage of solar energy. Helv. Chim. Acta. 1979;62:1345–1384.

20. Houlding V, Geiger T, Kolle U, Gratzel M. *Electrochemical and photochemical investigations of two novel electron relays for hydrogen generation from water*. J. Chem. Soc. Chem. Commun. 1982;681–3.

21. Eng LH, Lewin MB-M, Neujahr HY. Light-Driven H₂ production with proflavin and hydrogenase: comparison of cytochrom C3 and methyl viologen as e- mediators. Photochem. Photobiol. 1993;58:594–599.

22. Krasna AI. Proflavin catalyzed photoproduction of hydrogen from organic compounds. Photochem. Photobiol. 1979;29:267–276.

23. P.A. Lay, A.W.H. Mau and W.H.F. Sasse, I.I. Creaser, L.R. Gahan and A.M. Sargeson and W.H.F. Sasse E. *Chemistry of the Platinum Group Metals: Recent Developments.* Sci Pap Inst Phys Chem Res Jpn. 1983;2347.

24. DeLaive PJ, Sullivan BP, Meyer TJ, Whitten DG. *Applications of light-induced electron-transfer reactions. Coupling of hydrogen generation with photoreduction of ruthenium(II) complexes by triethylamine.* J. Am. Chem. Soc. 1979;101:4007–8.

25. Du P, Schneider J, Luo G, Brennessel WW, Eisenberg R. Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts. Inorg. Chem. 2009;48:4952–62.

26. Losse S, Vos JG, Rau S. *Catalytic hydrogen production at cobalt centres.* 18th Int. Symp. Photochem. Photophysics Coord. Compd. Sapporo 2009. 2010;254:2492–504.

27. Ozawa H, Haga M, Sakai K. A *Photo-Hydrogen-Evolving Molecular Device Driving Visible-Light-Induced EDTA-Reduction of Water into Molecular Hydrogen.* J. Am. Chem. Soc. 2006;128:4926–7.
28. Lei P, Hedlund M, Lomoth R, Rensmo H, Johansson O, Hammarström L. *The Role of Colloid Formation in the Photoinduced H*² *Production with a RuII–PdII Supramolecular Complex: A Study by GC, XPS, and TEM.* J. Am. Chem. Soc. 2008;130:26–7.

29. T. Morimoto, J. Tanabe, K. Sakamoto, K. Koike, O. Ishitani, HL. Selective H2 and CO production with rhenium(I) biscarbonyl complexes as photocatalyst. Res Chem Intermed. 2013;

30. Guttentag M, Rodenberg A, Bachmann C, Senn A, Hamm P, Alberto R. *A highly stable polypyridyl-based cobalt catalyst for homo- and heterogeneous photocatalytic water reduction.* Dalton Trans. 2013;42:334–7.

31. A. Moradpour, E. Amouyal, P. Keller HK. *Hydrogen Production by Visible-Light Irradiation of Aqueous-Solutions of* $[Ru(bpy)_2]^{3+}$. Nouv J Chim. 1978;2:547.

32. B.V. Koriakin, T.S. Dzhabiev, AE. Shilov Y. Photosensibilized Reduction of Water in Dye Solutions - Model of Bacterial Photosyntesis. DokI Akad Nauk SSSR. 1977;233:620.

33. Kalyanasundaram K, Kiwi J, Grätzel M. Hydrogen Evolution from Water by Visible Light, a Homogeneous Three Component Test System for Redox Catalysis. Helv. Chim. Acta. 1978;61:2720–2730.

34. J.M. Lehn, J.P. Sauvage, Chemical storage of light energy: Catalytic generation of hydrogenby visible light or sunlight irradiation of neutral aqueous solutions". 1977;1:449.

35. V. Balzani LM, M.F. Manfrin FB, M. Gleria. *Solar energy conversion by water photodissociation*. Science. 1975;189:852.

36. Brown GM, Brunschwig BS, Creutz C, Endicott JF, Sutin N. *Homogeneous catalysis of the photoreduction of water by visible light. Mediation by a tris(2,2'-bipyridine)ruthenium(II)-cobalt(II) macrocycle system.* J. Am. Chem. Soc. 1979;101:1298–300.

37. Chan S-F, Chou M, Creutz C, Matsubara T, Sutin N. *Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine)ruthenium(II) and poly(pyridine)rhodium(III) complexes.* J. Am. Chem. Soc. 1981;103:369–79.

38. Hawecker J, Lehn J-M, Ziessel R. *Efficient photochemical reduction of CO*₂ to CO by visible light irradiation of systems containing $Re(bipy)(CO)_3 X$ or $Ru(bipy)_3^{2+}-Co^{2+}$ combinations as homogeneous catalysts. J. Chem. Soc. Chem. Commun. 1983;536–8.

39. Krishnan CV, Brunschwig BS, Creutz C, Sutin N. *Homogeneous catalysis of the photoreduction of water.* 6. *Mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media.* J. Am. Chem. Soc. 1985;107:2005–15.

40. Krishnan CV, Sutin N. *Homogeneous catalysis of the photoreduction of water by visible light. 2. Mediation by a tris(2,2'-bipyridine)ruthenium(II)-cobalt(II) bipyridine system.* J. Am. Chem. Soc. 1981;103:2141–2.

41. Amouyal E, Zidler B, Keller P, Moradpour A. *Excited-state electron-transfer quenching by a series of water photoreduction mediators*. Chem. Phys. Lett. 1980;74:314–7.

42. Amouyal, E.; Grand, D.; Moradpour, A.; Keller, P. *Photochemical model system for hydrogen production from water: The efficiency of colloidal platinum catalyst associated with viologen electron relay.* Nouv J Chem. 1982;6:241.

43. Dürr H, Bossmann S, Schwarz R, Kropf M, Hayo R, Turro NJ. *Supramolecular* assemblies for light-induced electron-transfer reactions. J. Photochem. Photobiol. Chem. 1994;80:341–50.

44. Johansen O, Launikonis A, Loder J, Mau A, Sasse W, Swift J, et al. Solar reduction of water. II. Inhibition of the hydrogenation of methyl viologen in the system water-Tris(2,2'-bipyridine)ruthenium(II) dication-ethylenediaminetetraacetic acid-platinum by sulfur compounds. Aust. J. Chem. 1981;34:2347–54.

45. Mandal K, Hoffman MZ. Solution medium control of the photoredox yield in the $[Ru(bpy)3]^{2+}/methyl viologen/EDTA system. J. Phys. Chem. 1984;88:185–7.$

46. Nenadović MT, Mićić OI, Rajh T, Savić D. Temperature effect on the photoinduced reduction of methyl viologen with several sensitizers and the evolution of hydrogen from water. J. Photochem. 1983;21:35–44.

47. Miller D, McLendon G. Model systems for photocatalytic water reduction: role of pH and metal colloid catalysts. Inorg. Chem. 1981;20:950–3.

48. AM. Braun, in: S. Pelizzetti and M. Schiavello, Kluwer Academic Publishers, Dordrecht, 1991. *Photochemical Conversion and Storage of Solar Energy*.

49. Keller P, Moradpour A, Amouyal E. *Ruthenium dioxide: a redox catalyst for the generation of hydrogen from water.* J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1982;78:3331–40.

50. J.A. Farrington, M. Ebert and E.J. Land. J Chern Soc Faraday Trans. 1978;74:665.

51. Nanni EJ, Angelis CT, Dickson J, Sawyer DT. Oxygen activation by radical coupling between superoxide ion and reduced methyl viologen. J. Am. Chem. Soc. 1981;103:4268–70.

52. A Launikonis, 1.W. Loder, AW.H. Mau, W.H.F. Sasse and D. Wells A. *Homogeneous and Heterogeneous Photocatalysis.* Isr 1 Chern. 1982;22:158.

53. Amouyal E. *Photochemical production of hydrogen and oxygen from water: A review and state of the art.* Sol. Energy Mater. Sol. Cells. 1995;38:249–76.

54. Du P, Schneider J, Jarosz P, Eisenberg R. *Photocatalytic Generation of Hydrogen from Water Using a Platinum(II) Terpyridyl Acetylide Chromophore.* J. Am. Chem. Soc. 2006;128:7726–7.

55. Bessette A, Nag S, Pal AK, Derossi S, Hanan GS. Neutral Re(I) complexes for anion sensing. Supramol. Chem. 2012;24:595–603.

56. Cannizzo A, Blanco-Rodríguez AM, El Nahhas A, Šebera J, Záliš S, Vlček J Antonín, et al. *Femtosecond Fluorescence and Intersystem Crossing in Rhenium(I) Carbonyl–Bipyridine Complexes.* J. Am. Chem. Soc. 2008;130:8967–74.

57. Zarkadoulas A, Koutsouri E, Mitsopoulou CA. A perspective on solar energy conversion and water photosplitting by dithiolene complexes. Sol. Fuels- Invit. Only. 2012;256:2424–34.

58. Mitsopoulou C, Konstantatos J, Katakis D, Vrachnou E. Dithiolenes: A cheap alternative to platinum for catalytic dihydrogen formation. The case of tris-[1-(4-methoxyphenyl)-2-phenyl-1,2-ethylenodithiolenic-S,S'] tungsten. J. Mol. Catal. 1991;67:137–46.

59. McNamara WR, Han Z, Yin C-J (Madeline), Brennessel WW, Holland PL, Eisenberg R. *Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions*. Proc. Natl. Acad. Sci. 2012;109:15594–9.

60. Hontzopoulos E, Knostantatos J, Vrachnou-Astra E, Katakis D. *Homogeneous* catalytic action of a nickel dithiolene complex, leading to dihydrogen formation from *N*,*N*'-dimethyl-4,4'-dipyridinium radical ion solutions. J. Mol. Catal. 1985;31:327–33.

61. Henning, R S, Kisch, H. *Photolysis of water catalyzed by transition metal dithiolenes*. Angew Chem Int Ed Engl. 1980;19:8.

62. Battaglia R, Henning R, Dinh-Ngoc B, Schlamann W, Kisch H. Catalytic photoproduction of hydrogen from water in the presence of metal sulfur complexes and reducing agents. J. Mol. Catal. 1983;21:239–53.

63. Humphry-Baker R, Mitsopoulou CA, Katakis D, Vrachnou E. *Photophysical study of the decomposition of water using visible light and tungsten tris(dithiolenes) as photosensitizers-catalysts.* J. Photochem. Photobiol. Chem. 1998;114:137–44.

64. Zhang J, Du P, Schneider J, Jarosz P, Eisenberg R. *Photogeneration of Hydrogen from Water Using an Integrated System Based on TiO*² and *Platinum(II) Diimine Dithiolate Sensitizers*. J. Am. Chem. Soc. 2007;129:7726–7.

65. Hontzopoulos E, Vrachnou-Astra E, Konstantatos J, Katakis D. A new photosensitizer—catalyst for the photochemical cleavage of water. J. Photochem. 1985;30:117–20.

66. Schrauzer GN, Holland RJ. *Hydridocobaloximes*. J. Am. Chem. Soc. 1971;93:1505–6.

67. Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M. Cobaloxime-Based Photocatalytic Devices for Hydrogen Production. Angew. Chem. Int. Ed. 2008;47:564–567.

68. Schrauzer GN, Windgassen RJ. Alkylcobaloximes and Their Relation to Alkylcobalamins. J. Am. Chem. Soc. 1966;88:3738–43.

69. Razavet M, Artero V, Fontecave M. Proton Electroreduction Catalyzed by Cobaloximes: Functional Models for Hydrogenases. Inorg. Chem. 2005;44:4786–95.

70. Du P, Knowles K, Eisenberg R. A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(II) Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst. J. Am. Chem. Soc. 2008;130:12576–7.

71. White TA, Rangan K, Brewer KJ. Synthesis, characterization, and study of the photophysics and photocatalytic properties of the photoinitiated electron collector $[{(phen)_2Ru(dpp)}_2RhBr_2](PF_6)_5$. J. Photochem. Photobiol. Chem. 2010;209:203–9.

72. Li C, Wang M, Pan J, Zhang P, Zhang R, Sun L. *Photochemical hydrogen production catalyzed by polypyridyl ruthenium–cobaloxime heterobinuclear complexes with different bridges.* Organomet. Energy Convers. 2009;694:2814–9.

73. Du P, Schneider J, Jarosz P, Zhang J, Brennessel WW, Eisenberg R. Photoinduced Electron Transfer in Platinum(II) Terpyridyl Acetylide Chromophores: Reductive and Oxidative Quenching and Hydrogen Production[†]. J. Phys. Chem. B. 2007;111:6887–94.

74. Arachchige SM, Brown JR, Chang E, Jain A, Zigler DF, Rangan K, et al. *Design Considerations for a System for Photocatalytic Hydrogen Production from Water Employing Mixed-Metal Photochemical Molecular Devices for Photoinitiated Electron Collection.* Inorg. Chem. 2009;48:1989–2000.

75. Cline ED, Adamson SE, Bernhard S. Homogeneous Catalytic System for Photoinduced Hydrogen Production Utilizing Iridium and Rhodium Complexes. Inorg. Chem. 2008;47:10378–88.

76. McCormick TM, Calitree BD, Orchard A, Kraut ND, Bright FV, Detty MR, et al. *Reductive Side of Water Splitting in Artificial Photosynthesis: New Homogeneous Photosystems of Great Activity and Mechanistic Insight*. J. Am. Chem. Soc. 2010;132:15480–3.

77. Inagaki A, Akita M. *Visible-light promoted bimetallic catalysis*. Front. Organomet. Chem. 2010. 2010;254:1220–39.

78. Miyake Y, Nakajima K, Sasaki K, Saito R, Nakanishi H, Nishibayashi Y. Design and Synthesis of Diphosphine Ligands Bearing an Osmium(II) Bis(terpyridyl) Moiety as a Light-Harvesting Unit: Application to Photocatalytic Production of Dihydrogen. Organometallics. 2009;28:5240–3.

79. Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, et al. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chem. Mater. 2005;17:5712–9.

80. Wang X, Goeb S, Ji Z, Pogulaichenko NA, Castellano FN. Homogeneous Photocatalytic Hydrogen Production Using π -Conjugated Platinum(II) Arylacetylide Sensitizers. Inorg. Chem. 2011;50:705–7.

81. Fukuzumi S, Kobayashi T, Suenobu T. Photocatalytic Production of Hydrogen by Disproportionation of One-Electron-Reduced Rhodium and Iridium–Ruthenium Complexes in Water. Angew. Chem. Int. Ed. 2011;50:728–731.

82. Sakai K, Ozawa H. Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water. Chem. Coord. Space. 2007;251:2753–66.

83. Ozawa H, Yokoyama Y, Haga M, Sakai K. Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,2[prime or minute]-bipyridine)ruthenium(ii) derivatives tethered to a cis-Pt⁽ⁱⁱ⁾Cl₂ unit: insights into the structure-activity relationship. Dalton Trans. 2007;1197–206.

84. Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R. *Making Hydrogen from Water Using a Homogeneous System Without Noble Metals.* J. Am. Chem. Soc. 2009;131:9192–4.

85. Du P, Schneider J, Luo G, Brennessel WW, Eisenberg R. Correction to Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts. Inorg. Chem. 2009;48:8646–8646.

86. Xu Q, Fu W, Zhang G, Bian Z, Zhang J, Han X, et al. *Photocatalytic H2 evolution from water based on cyclometalated platinum(II) complex.* Catal. Commun. 2008;10:49–52.

87. Zhang P, Wang M, Dong J, Li X, Wang F, Wu L, et al. *Photocatalytic Hydrogen Production from Water by Noble-Metal-Free Molecular Catalyst Systems Containing Rose Bengal and the Cobaloximes of BFx-Bridged Oxime Ligands.* J. Phys. Chem. C. 2010;114:15868–74.

88. Curtin PN, Tinker LL, Burgess CM, Cline ED, Bernhard S. Structure-Activity Correlations Among Iridium(III) Photosensitizers in a Robust Water-Reducing System. Inorg. Chem. 2009;48:10498–506.

89. Kluwer AM, Kapre R, Hartl F, Lutz M, Spek AL, Brouwer AM, et al. Selfassembled biomimetic [2Fe₂S]-hydrogenase-based photocatalyst for molecular hydrogen evolution. Proc. Natl. Acad. Sci. 2009;106:10460–5.

90. Tinker LL, McDaniel ND, Curtin PN, Smith CK, Ireland MJ, Bernhard S. *Visible Light Induced Catalytic Water Reduction without an Electron Relay*. Chem. – Eur. J. 2007;13:8726–8732.

91. Yamauchi K, Masaoka S, Sakai K. Evidence for Pt(II)-Based Molecular Catalysis in the Thermal Reduction of Water into Molecular Hydrogen. J. Am. Chem. Soc. 2009;131:8404–6.

92. Kölle U, Grützel M. Organometallic Rhodium(III) Complexes as Catalysts for the Photoreduction of Protons to Hydrogen on Colloidal TiO₂. Angew. Chem. Int. Ed. Engl. 1987;26:567–570.

93. Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S. Discovery and High-Throughput Screening of Heteroleptic Iridium Complexes for Photoinduced Hydrogen Production. J. Am. Chem. Soc. 2005;127:7502–10.

94. Vlček Jr. A. Highlights of the spectroscopy, photochemistry and electrochemistry of $[M(CO)_4(\alpha-diimine)]$ complexes, M=Cr, Mo, W. Coord. Chem. Rev. 2002;230:225–42.

95. M. Nicolini, G. Bandoli, U. Mazzi. *Technetium and Rhenium in Chemistry and Nuclear Medicine* 3. 1990. p. Raven Press, New York,.

96. Ford PC, Taube H. Inorganic Reaction Mechanisms: An Appreciation of Henry Taube in His 90th Year. Elsevier; 2005.

97. Holm RH. Metal-centered oxygen atom transfer reactions. Chem. Rev. 1987;87:1401–49.

98. Seymore SB, Brown SN. *Charge Effects on Oxygen Atom Transfer*. Inorg. Chem. 2000;39:325–32.

99. Jackson TW, Kojima M, Lambrecht RM. *Rhenium Diamino Dithiol Complexes*. *III. Lipophilic Ligands for Endotherapeutic Radiopharmaceuticals*. Aust. J. Chem. 2000;53:983–7.

100. Mitsopoulou CA, Dagas C. Synthesis, *Characterization*, *DNA Binding*, and *Photocleavage Activity of Oxorhenium* (V) Complexes with α-Diimine and *Quinoxaline Ligands*. Bioinorg. Chem. Appl. 2010;2010:973742.

101. Vlček Jr. A, Busby M. Ultrafast ligand-to-ligand electron and energy transfer in the complexes $fac-[ReI(L)(CO)_3(bpy)]^{n+}$. 16th Int. Symp. Photochem. Photophysics Coord. Compd. 2006;250:1755–62.

102. George MW, Johnson FPA, Westwell JR, Hodges PM, Turner JJ. *Excited-state* properties and reactivity of $[ReCL(CO)_3(2,2[prime or minute]-bipy)](2,2[prime or minute]-bipy = 2,2[prime or minute]-bipyridyl) studied by time-resolved infrared spectroscopy. J. Chem. Soc. Dalton Trans. 1993;2977–9.$

103. Zhang T, Lin W. *Metal-organic frameworks for artificial photosynthesis and photocatalysis.* Chem. Soc. Rev. 2014;43:5982–93.

104. Stoeffler HD, Thornton NB, Temkin SL, Schanze KS. Unusual Photophysics of a Rhenium(I) Dipyridophenazine Complex in Homogeneous Solution and Bound to DNA. J. Am. Chem. Soc. 1995;117:7119–28.

105. Dattelbaum DM, Omberg KM, Hay PJ, Gebhart NL, Martin RL, Schoonover JR, et al. *Defining Electronic Excited States Using Time-Resolved Infrared Spectroscopy and Density Functional Theory Calculations†*. J. Phys. Chem. A. 2004;108:3527–36.

106. Ishitani O, George MW, Ibusuki T, Johnson FPA, Koike K, Nozaki K, et al. *Photophysical Behavior of a New CO*₂ *Reduction Catalyst, Re*(*CO*)₂(*bpy*){ $P(OEt)_3$ }²⁺. Inorg. Chem. 1994;33:4712–7.

107. Fihri A, Artero V, Pereira A, Fontecave M. *Efficient* H_2 -producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrheniumdiimine photosensitizers and cobaloxime catalysts. Dalton Trans. 2008;5567–9.

108. Oberholzer M, Probst B, Bernasconi D, Spingler B, Alberto R. *Photosensitizing Properties of Alkynylrhenium(I) Complexes* $[Re(-C \equiv C-R)-(CO)_3(N \cap N)]$ $(N \cap N = 2,2'-bipy, phen)$ for H_2 Production. Eur. J. Inorg. Chem. 2014;2014:3002–3009.

109. Blanco Rodríguez AM, Gabrielsson A, Motevalli M, Matousek P, Towrie M, Šebera J, et al. *Ligand-to-Diimine/Metal-to-Diimine Charge-Transfer Excited States* of $[Re(NCS)(CO)_3(\alpha-diimine)]$ (α -diimine = 2,2'-bipyridine, di-iPr-N,N-1,4-diazabutadiene). A Spectroscopic and Computational Study. J. Phys. Chem. A. 2005;109:5016–25.

110. Probst B, Guttentag M, Rodenberg A, Hamm P, Alberto R. *Photocatalytic H2 Production from Water with Rhenium and Cobalt Complexes*. Inorg. Chem. 2011;50:3404–12.

111. Bachmann C, Guttentag M, Spingler B, Alberto R. 3d Element Complexes of Pentadentate Bipyridine-Pyridine-Based Ligand Scaffolds: Structures and Photocatalytic Activities. Inorg. Chem. 2013;52:6055–61.

112. Artero V, Chavarot-Kerlidou M, Fontecave M. *Splitting Water with Cobalt*. Angew. Chem. Int. Ed. 2011;50:7238–7266.

113. Neshvad G, Hoffman MZ. Reductive quenching of the luminescent excited state of $[tris(2,2'-bipyrazine)ruthenium]^{(2+)}$ ion in aqueous solution. J. Phys. Chem. 1989;93:2445–52.

114. Zarkadoulas A, Koutsouri E, Kefalidi C, Mitsopoulou CA. *Rhenium complexes in homogeneous hydrogen evolution*. Coord. Chem. Rev. 2015;304–305:55–72.

115. Eckenhoff WT, Eisenberg R. *Molecular systems for light driven hydrogen production*. Dalton Trans. 2012;41:13004–21.

116. Probst B, Kolano C, Hamm P, Alberto R. An Efficient Homogeneous Intermolecular Rhenium-Based Photocatalytic System for the Production of H^2 . Inorg. Chem. 2009;48:1836–43.

117. Probst B, Rodenberg A, Guttentag M, Hamm P, Alberto R. A Highly Stable Rhenium–Cobalt System for Photocatalytic H₂ Production: Unraveling the Performance-Limiting Steps. Inorg. Chem. 2010;49:6453–60.

118. Tajik M, Detellier C. Hydrogen photoproduction by visible light irradiation of an organorhenium catalyst incorporated into aqueous suspensions of hectorite. J. Chem. Soc. Chem. Commun. 1987;1824–5.

119. Guttentag M, Rodenberg A, Kopelent R, Probst B, Buchwalder C, Brandstätter M, et al. *Photocatalytic H2 Production with a Rhenium/Cobalt System in Water under Acidic Conditions*. Eur. J. Inorg. Chem. 2012;2012:59–64.

120. Bachmann C, Probst B, Guttentag M, Alberto R. Ascorbate as an electron relay between an irreversible electron donor and Ru(ii) or Re(i) photosensitizers. Chem. Commun. 2014;50:6737–9.

121. Juris A, Campagna S, Bidd I, Lehn JM, Ziessel R. Synthesis and photophysical and electrochemical properties of new halotricarbonyl(polypyridine)rhenium(I) complexes. Inorg. Chem. 1988;27:4007–11.

122. Coe BJ, Glenwright SJ. *Trans-effects in octahedral transition metal complexes*. Coord. Chem. Rev. 2000;203:5–80.

123. Ε. Βερώνη. Σύνθεση, χαρακτηρισμός και μελέτη α-Διιμινικών συμπλόκων μετάλλων μεταπτώσης, 2006.

124. R. Waterland M, J. Simpson T, C. Gordon K, K. Burrell A. Spectroelectrochemical studies and excited-state resonance-Raman spectroscopy of some mononuclear rhenium(I) polypyridyl bridging ligand complexes. Crystal structure determination of tricarbonylchloro[2,3-di(2-pyridyl)quinoxaline]rhenium(I). J. Chem. Soc. Dalton Trans. 1998;185–92.

125. Lumpkin RS, Meyer TJ. *Effect of the glass-to-fluid transition on excited-state decay. Application of the energy gap law.* J. Phys. Chem. 1986;90:5307–12.

126. Chen P, Curry M, Meyer TJ. *Effects of conformational change in the acceptor on intramolecular electron transfer.* Inorg. Chem. 1989;28:2271–80.

127. Helberg LE, Barrera J, Sabat M, Harman WD. *Rhenium(I) Coordination Chemistry: Synthesis, Reactivity, and Electrochemistry of Terpyridyl Complexes.* Inorg. Chem. 1995;34:2033–41.

128. O'Connor CJ, Sinn E. Synthesis, structure, and properties of trichloro- and tribromo(2-(2'-pyridyl)quinoline)gold(III). Inorg. Chem. 1978;17:2067–71.

129. Banks CV, Anderson S. Stability Constants and Intrinsic Solubility of Several Nickel(II)-vic-Dioxime Complexes. Inorg. Chem. 1963;2:112–5.

130. Summers PA, Dawson J, Ghiotto F, Hanson-Heine MWD, Vuong KQ, Stephen Davies E, et al. *Photochemical Dihydrogen Production Using an Analogue of the Active Site of [NiFe] Hydrogenase.* Inorg. Chem. 2014;53:4430–9.

131. Lees AJ. Luminescence properties of organometallic complexes. Chem. Rev. 1987;87:711–43.

132. Zhou Y, Vuille K, Heel A, Probst B, Kontic R, Patzke GR. *An inorganic hydrothermal route to photocatalytically active bismuth vanadate*. Appl. Catal. Gen. 2010;375:140–8.

133. Kefalidi C, Koutsouri E, Marchiò L, Zarkadoulas A, Efstathiadou S, Mitsopoulou CA. Synthesis, characterization and crystal structure of rhenium(I) tricarbonyl diimine complexes coupled with their efficiency in producing hydrogen in a photocatalytic system. Polyhedron. 2016;110:157–64.

134. Zarkadoulas A, Field MJ, Papatriantafyllopoulou C, Fize J, Artero V, Mitsopoulou CA. *Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts*. Inorg. Chem. 2016;55:432–44.