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ABSTRACT

Negotiation can be viewed as an exchange mechanism of two or more parties that
search for a mutually acceptable agreement. The art and science of negotiation has
attracted the interest of many different scientific fields, therefore different viewpoints and
approaches have been developed by psychological and sociological sciences, as well
as by economists, mathematicians and computer scientists.

Particularly in the field of computer science the contribution is multifold, as the
technological evolution has paved the way and the means to establish negotiations.
Electronic markets (e-markets) and the provision of tangible or intangible objects
through electronic platforms constitute an example of transferring the negotiation arena
to electronic settings. The development of support systems and of automated agents
advances the development of socio-technical systems and also contributes to the
evolution of negotiation science. During the last decade, the application of learning
techniques is very common in negotiation support systems and in automated agents
that undertake various stages of the negotiation process. Negotiation processes are
complex, as negotiators often seek to maximize their utility (a measure of individual
satisfaction).

The current thesis takes into account the advances in the field of electronic bi-lateral
negotiations, adopting state-of-the-art protocols, as well as strategies that characterize
the behavior of each party. The research objective is the application of strategies that
are based on the estimation of the counterpart’s next offer, and give the predictive agent
the advantage to establish agreements that are more beneficial. Another issue that is
contemplated is that of the risk of employing a predictive strategy. A new strategy that
incorporates the adoption of different attitudes towards risk is proposed.

This thesis also focuses on the Al-based models that are used for the purpose of
estimating the counterpart’s next offer, as well as on the comparison of these models.
The main problem of the majority of related applications is their inability to capture the
dynamics of turbulent negotiation environments, and provide accurate estimations also
in cases where the data distributions change. For this reason the utilization of models
that are based on the data that are acquired from the current negotiation discourse, as
well as the utilization of models that adapt their structure in time are examined. More
specifically the application of neural networks that adapt their structure on the basis of a
genetic algorithm, as well as a simple evolving connectionist structure, eMLP, that does
one-pass learning of data are developed and assessed. Numerous experiments that
result from simulations of different negotiation environments and justify the proposed
solutions are presented. Finally, future research issues that relate to the domain of
application of the proposed strategy as well as to other learning models that could be
enhanced with the negotiating agents in order to estimate the counterpart’s next offer
are also discussed.

SUBJECT AREA: Electronic Commerce

KEYWORDS: electronic negotiations, negotiating agents, neural networks, genetic

algorithms, predictive strategies






NEPIAHYH

H Odiamrpaypdarteuon armoteAei évav ammd Toug PaCIKOTEPOUG MNXAVIOWOUSG €UpeECNS
auoiBaiag atrodekTAG AUONG 1 «CUPQWVIOG», HETAEU OUO 1 TTEPICCOTEPWY HEPWV.
EidikéTepa oTOV TOHEQ TNG TTANPOQYOPIKAG N Ouvelo@opd eival TTOAAATTAN, KaBWGS n
eCENIEN TNG TexVoAoyiag odnyei oe €CENIEN Tou TPOTTOU Kal TwV PECWV UAOTTOINONG Twv
olamrpaydaTeloewy. O1 nAeKTPOVIKEG «ayopécy» (electronic markets) kair n Trapoxn
ayaBwv Kal UTTNPEECIWV HEOA aTTO NAEKTPOVIKEG TTAATPOPUES, CUVIOTOUV £va TTAPAdEIYHO
METATOTTIONG TNG APEVAS TwV DIOTTPAYHATEUCEWY OTOV NAEKTPOVIKO XWwpo. H avatrtuén
OUCTNUATWY UTTOOTAPIENG KAl TTPOKTOPWY AoyiopikoU dlatrpayudreuong (negotiation
software agents) mpodyouv Tn OnuIOUPYIa KOIVWVIKO-TEXVIKWY OUCTNPATWY (Socio-
technical systems) «kai ouvrehouv e€Triong oTtnv  €&ENIEN  TNG  €TMOTAPNG  TNG
dlamrpayudaTeuong. Ta TeAeuTaia xpovia, n XpHon TEXVIKWVY WNXAVIKAG MABnong eival
TTOAU d1adedopévn 0T CUCTAPATA UTTOOTAPIENG AAAG Kal o€ €CEAIYUEVOUG TTPAKTOPEG
AOYIOMIKOU, TTOU avaAauBdavouv va SIEKTTEPAIWOOUV OUVAAAQYEC € TTPAYUATIKO XPOVO
KAl ME TNV PEYAAUTEPN dUVATH IKAVOTTOINON TwWV OTOXWV TTOU £XOUV OPXIKA TEBEI aTTd
TOUG €vTOAgic Toug. H mrapouca diatpIfry aglotroiei TIG €EEAICEIC OTNV TTEPIOXH TWV
OINEPWV NAEKTPOVIKWYV OIATTPAYUATEUOEWY, UIOBETWVTAG BEPEAIWPEVA TTPWTOKOAAA KAl
OTPATNYIKEG TTOU  XAPOKTNPICOUV T OUMTTEPIPOPA TOU €EKACTOTE OCUMPMETEXOVTA.
AvTIKEiNEVO  €peuvag  aTTOTEAEl N XPAON OTPATNYIKWY TTPORAEWNS  MEAAOVTIKWV
TTPOCPOPWYV TOU AVTITTAAOU, TTPOCPEPOVTAG HE TOV TPOTTO AUTO TTAEOVEKTNUA KIVAOEWV
TTPOG OCUPQWVIEG HE HEYOAUTEPO O@eAOG. ETTiong peAeTdTal o Kivouvog xprAong
epyaAeiwv TTPORAEYNGS Kal TTPOTEIVETAI PIa VEQ OTPATNYIKIA TTOU ETTITPETTEI TNV UIOBETNON
OIAQOPETIKWY CUUTTEPIPOPWYV ATTEVAVTI OTOV KivOuvo. lMiveTal €KTEVAG KaTAypa@r Twv
MOVTEAWV HNXAVIKAG PABNONG TTOU XPNOIKOTTOIoUVTAl YE OKOTTO TNV TPORAEwn NG
ETTOMEVNG TTPOCQPOPAG TOU QAVTITTAAOU, KABWG €TTIONG OUYKPITIKN agloAdynon Paon
BiBAIoypa@IKwV ava@opwyv. To BACIKO PEIOVEKTNUA TNS TTAEIOWN@Iag Twv PNEBOdwWV gival
n aduvayia Tapoxns £ykupng TTPORAEWNS o€ duvapika TTepIBAAAovTa, éTav aAAdlouv ol
KATAVOMEG TwV dedopévwy oTa oTroia BacioTnkav Ta apxIKa povtéAa TpoRAewng. lMNa 1o
AOyOo auTd epeuvdTtal n Xprion MOVTEAWY TTOU eKTTAIBEUOVTAI PE BEDOPEVA TTOU £EAYOVTAI
atrd TNV TpEXoUca dIATTPAYNATEUOT), KABWGS €TTioNG Kal SopwyY TTou peTaBAAANovTal hE TO
Xpovo. Zta TAdiola TIG OIaTPIBAG MEAETATAI N XPHON VEUPWVIKWVY OIKTUWV TTOU
e€ehiooouv Tn dopr Toug o€ KABE Briua TTPOPRAEWYNS HE XPrON YEVETIKOU aAyopibuou,
KaBwg €Tmiong kal n atrAn autoggeAioodpevn dourp eMLP, tou pabaivel pe €va pévo
Tépaopa  Twv  Oedopévwy, KaBioTwvrtag Taxutarn  Tn  dladikacia  padnong.
Mapouoidlovtal  €KTEV]  TTEIPOUATIKA  OTTOTEAEOUATA  TTOU  TTPOKUTITOUV  OTTO
TTPOCONOIWCEIG DIOPOPETIKWY TTEPIBAAAOVTWY diatTpayudTeuong, Kal atrodeikvUouV TNV
eTApKEId TwV AUCEwvV TIou TIpoTeivovTal, a@ou odnyouv oOTa TTPOCOOKWHPEVO
atmroteAéoparta. TEAoG TTapaTiOevTal BEuaTa yia JEANOVTIKA €peuva TTOU OXETICOVTAl PE TO
TedI0 EQAPUOYNAG TNG TTPOTEIVOPEVNG OTPATNYIKNAG, AN Kal e GAAa povTéAa TTou Ba
MTTOpOUCAV va ouvOUAOTOUV HE TOUG TTPAKTOPES OINTTPAYUATEUONG, ME OKOTTO TNV
EKTIUNON TNG ETTOUEVNG TTPOCPOPAS TOU AVTITIAAOU.

OEMATIKH NMEPIOXH: HAekTpovikO Eptropio

AEZEIZX KAEIAIA: nAekTpovIKEG OIATTPAYUATEUCEIG, TTPAKTOPES OIATTPAYUATEUONG,

VEUPWVIKA BiKTUQ, YEVETIKOI OAYOPIBUOI, OTPATNYIKEG TTPOBAEWYNS






EYXAPIZTIEZ

Oa NABeAa va euxapioTnow Tov emPBAETTOVTa AvattAnpwtl Kabnynt ApakouUAn
MapTdko, yia Tn OTAPIEA TOU Kal yia Tn duvatoTnTa TTOU Pou £dwaoe va dieCdyw Tnv
épeuva autp oto TUAPa TAnpo@opiknG kKal TnAemkoivwviwy Tou EBvikou Kai
KatrodioTpiakou MavemoTtnuiou ABnvwv.

Oepuég euxaploTieg Ba nBeAa va ekppdow kal otov OuoTiyo Kabnynt KwvoTtavrivo
XaAdrton yia tnv evbdpuvon, Tnv KaBodrynon Kai TNV UTTOOTAPIEN TTOU POU TTPOCEPEPE
KaBAOAn Tn didpKela TNG EPEUVAC.

Emiong euxapiotw tov KaBnynt) Mavayiwtn Mewpyiddn kai Tov €peuvnT ZTAUPO
MepavTtwvn.

TéNog Ba BeAa va euxapioTHow Ta PEAN TNG OIKOYEVEIAG OU, TOUG YOVEIG Kal To oUluyo
MOu, IO TNV UTTOOTHPIEN Kal evBAppuveon TTou pou €0€iav. Eipal oe OAOUG EUyVWHWV.






LIST OF PUBLICATIONS

1) Masvoula, M., Halatsis, C., Martakos, D. (2012). Predictive Automated Negotiators
with different Attitudes Towards Risk. Engineering Intelligent Systems Journal, 20(1):89-
105

2) Masvoula, M., Halatsis, C., Martakos, D. (2012). Forecasting negotiation
counterpart’s offers with the use of neural networks: A focus on session long learning

agents. Neurocomputing and Applications. (Submitted for Publication)

3) Masvoula, M., Halatsis, C., Martakos, D. (2011). Integrating Negotiating Agents
with Evolving Connectionist Structures to Facilitate the Prediction of Counterpart’s
Responses. In Proceedings of the International Conference on Neural Networks (ICNN
2011) (July 27-29, 2011, Paris, France).

4) Masvoula, M., Halatsis, C., Martakos, D. (2011). Predictive Automated Negotiators
Employing Risk-Seeking and Risk-Averse Strategies. In Proceedings of 12th EANN/7th
AIAI Joint Conferences (September 15-18, 2011, Corfu, Greece). EANN/AIAI (1) 2011:
325-334.

5) Masvoula, M., Kanellis, P., Martakos, D. (2010). A Review of Learning Methods
Enhanced in Strategies of Negotiating Agents. In Proceedings of 12th International
Conference on Enterprise Information Systems (June 8-12,2010,Madeira). ICEIS pp.
212-2109.

6) Masvoula, M., Kanellis, P., Martakos, D. (2010). Evolving Structures for Predictive
Decision Making in Negotiations. In Proceedings of 12th International Conference on
Enterprise Information Systems (June 8-12,2010,Madeira). ICEIS pp. 391-394.

7) Masvoula, M., Kanellis, P., and Martakos, D. (2009). Integrating agents with
connectionist systems to extract negotiation routines. In Proceedings of the 11th
International Conference on Enterprise Information Systems (6 — 10, May 2009 Milan,
ltaly). ICEIS (2): 251-256.

8) Masvoula, M., Kontolemakis, G., Kanellis, P., and Martakos, D. (2005). Design
and Development of an Anthropocentric Negotiation Model. In Proceedings of the
Seventh IEEE International Conference on E-Commerce Technology (July 19-22, 2005,
Munich). CEC. IEEE Computer Society, Washington, DC, pp. 383-386.



9) Kontolemakis, G., Masvoula, M., Kanellis, P., Martakos, D. (2005). Transcending
Taxonomies with Generic and Agent-Based E-Hub Architectures. In Proceedings of the
Seventh International Conference on Enterprise Information Systems (May 24-28, 2005,
Miami Florida). ICEIS vol. 4, pp. 297-300

10) Kontolemakis, G., Masvoula, M., Kanellis, P., Martakos, D. (2005). Software
Agents and the Quest for a Generic Virtual Marketplace Architecture. In Proceedings of
the Sixteenth International Conference on International Resources Management,
Managing Modern Organization with Information Technology (May 15-18, 2005, San
Diego California). IRMA.



2YNOITIKH NMAPOYZIAZH AIATPIBHZ

AvTikeipevo TnG dIaTPIBAG atToTEAEI N PEAETN NAEKTPOVIKWY OIATTPAYHATEUOEWY PETALU
TTPOKTOPWYV AoyiopikoU diaTTpaypdaTeuons (negotiation software agents) kai 1I0IKOTEPA N
duvaTOTATA AUTWYV VA UIOBETAOOUV «ECUTTIVEG» OTPATNYIKEG, ME OTOXO TNV auUg¢non tng
QATOMIKNG TOUG W@EAEIAS. ZTa TTAaioIa TNG dIATPIPBAGS TTPOTABNKE KAl AVATITUXONKE HIa vEQ
oTPATNYIKA, N oTToia BacifeTal oTnV eKTiUNON TNG ETTOPEVNG TTPOCPOPAG TOU AVTITTAAOU,
KAl EMTPETTEI TNV QQOMOIWaCN OIAPOPETIKWY CUMTTEPIPOPWV OTTEVAVTI OTOV Kivouvo.
EmmrAéov, €€eT@OTNKE N ATTOd00N TWV UTTOPXOVTWY POVTEAWV TTPOBAEWNGS O duVANIKA
TTEPIBAANOVTA, KAl SOKIJAOTNKAV CUOXETIOTIKA POVTEAQ TTOU PETARAAAOUV Tn OOMN TOUG
ME TO XpOvo. Baoikd ammo@Beyua atroteAei N avAaykn yia ETTAVEKTTAIOEUON TWV MOVTEAWV
TTPORAEYNG pe dedopéva TTou TTPOEPXOVTAI aTTd TNV TPEXOUoa dIaTTPAYHATEUON.

210 dUO TTpWTa KE@AAala TTapoucidlovTal BACIKEG OPXEG, OPOAOYIEG, ETTIOTNUOVIKEG
TTPOOCEYYIOEIG, KABWG ETTIONG KAl CUCTAPATA TTOU £XOUV avaTTTuxXBei yia Tnv uttooThpIgn
dIaQopwV Qaceswv NG diatmrpayudreuong. To epeuvnTikG TTEdIO €ival DIETTIOTAMOVIKO,
KaBwg¢ WuxoAdyol, KOIVWVIOAGYOI, TTONITIKOI ETTIOTHPOVEG, JABNUATIKOI KAl OIKOVOUOAGYOI
€XOUV OUVEIOPEPEI OTN dIAPOPPWON BewpIwv, HOVTEAWY Kal nEBSdwWV. O opIoUOG TToU
uloBeTeiTal oTnVv TTapouca diatpIPn ival 0 akGAoubog:

«H dlatrpaypdareuon arroteAei évav atrd Toug BAcIKOTEPOUG UNXAVIOUOUG avalnitnong
apoiBaia atmodekTAS AUoNG UETAEU BUO 1) TTEPICOOTEPWYV HEPWIVY.

MpokeiTal yia pia €TavaAnTiTikr d1adIKaoia OTTOU Ol CUMMETEXOVTEG OTEAVOUV EVAAAGE
TTPOCPOPEG PEXPI VA UTTAPEEI CUP@wvia, A va TTaPEABEI O PEYIOTOG TTPOKABOPIoUEVOS
XpoOvog. 210 BIBAio Tou kaBnynt Howard Raiffa «Téxvn kar EmMOTAuN TNng
Alamrpayudreuong»  [16], avagépovtal  pia o€Ipd o1 XOPAKTNPIOTIKA  TTOU
XpnoigotrolouvTtal  ouvBwg yia TN OlaQOPOTIoINCN KAl KATNYOPIOTToiNon  Twv
OIOTTPAYUOTEUCEWY. ZTNV TpEXouoa dIaTpIRn yiveTal HEAETN DiNEPWYV dIATTPAYUATEUCEWYV
yla TNV TTPoPnReeia ayabwy r UTTNPECIWY TTOU TTEPIYPAPOVTAl ATTO YIO OEIPA TTOCOTIKWYV
XOPOKTNPIOTIKWY. Ta CUP@PEPOVTA TWV OCUMMETEXOVTWYV E€ival AvTIKPOUOMUEVA, Kal O
OTOXOG TOU KABe OIOTTPAYMOTEUTH €ival va QUENOEl TO TIPOCWTIIKO TOou KEPDOG.
Ocwpoupue O1m 1O TrEPIBGANOV  gival  duvauikd, OnAadry dev  TTapouciadeTal
emavaAnwIudTNTa OTIG EVEPYEIEG TOU avTITTGAoU. ETriong Bewpoupe 611 01 oTPATNYIKES
TTAPAPETPOI KAl OI TIPOTIMACEIG TWV dIATTPAYUATEUTWY ATTOTEAOUV 181WTIKI TTANPOPOpIa.

Tnv TeAeuTaia OEKAETIO N CUVEICPOPA TNG TTANPOPOPIKNG €ival TTOAU ONUAVTIKY, KABwg
EXEl TTPOCPEPEI TO PECO yia Tn dieCaywyn Twv dIATTPayUaTEUCEWY O€ NAEKTPOVIKEG
TTAATQOPUES. 'Exouv dnuioupynBei NAEKTPOVIKA oCuoTAPATA dIATTPAYHATEUONG TTOU
gEUVoOUV TNV opydvwon, OIEUKOAUVON, UTTOOTAPIEN OKOWA Kal QUTOPOTOTToINON TwV
OIadIKOOIWY. 2&€ QUTA T CUCTAMOTA QVIKOUV KOl Ol TIPAKTOPEG AOYIOUIKOU, TTOU
EVOWMOTWVOUV PovTEAa Kal diadikaaieg yia Tn diekTTEpaiwan dla@opwy 1 Kal SAwvV Twv
oTadiwv Iag dIOTTPAYHATEUONG.

O unxaviopég TG diatmmpayudreuong cival euputata dI0OEBOUEVOG OTIGC NAEKTPOVIKEG
ayopég. ‘Eva rapddelypa avraywvioTIKoU TTEPIBAAAOVTOG TTOU HOVTEAOTTOIEITAI CUXVA JE
XPAonN TPAKTOpwWY AOYIOPIKOU OlaTTpayudTeuong €ival Kal Ol TTPOBECUIOKES AyOpPES
NAEKTPIKNG evEpyelag. Meyahol TTEAATEG, KATA BAON aypoTIKOG Kal BIOPNXAVIKOG TOUEAG,
TTpounBelovTal evépyela atmd evOIANEOOUG TTPOUNBEUTEG Kal TTapaywyoug. ETriong
MIKpOi TTEAATEG, KATA [PAON VOIKOKUPIA, TrpounOsuovTal €VEPYEIQ  €TTIONG  ATTO
EVOIAUEOOUG TTPOPNBEUTEG. 2TIC TTPOBECUIAKES AYOPEG, OI CUPUETEXOVTEG 0ONYOUVTal OE
OUPQWVieg MEANOVTIKAG ekTTANpwonG. Méow TnG dIaTTPayudTeuong CUPOWYOUV TOUG
OpouUg TTAPOXNG TNG EVEPYEIQG, OTTWGS TNV TTOCOTNTA KAl TNV TIMA TWV KIAOBATWPWY, Tn
OIdpKEID TTAPOXNG, KABWG Kal TO TTO000TO ETMOTPOPNG XPNUATWY, HME TO OTI0IO
BapuveTal o TTPOPNBEUTAG O€ TTEPITITWON TTOU BEV TNPEACEI TN CUPQWVIA.



To TPITO KEQPAAQIO ETTIKEVTPWVETAI OTO TIPWTOKOAAO KaI TIG OTPATNYIKES TTOU UI0BETOUVTAI
atmd TOUG TTPAKTOPES AOYIOMIKOU OIaTTpayNATeEUONnS. To TTPWTOKOANO KaBopilel Toug
KAVOVEG, TIG ETTITPETTOPEVEG EVEPYEIEG O€ KABE 0TADIO. M0 CUYKEKPIPEVA, TO TTPWTOKOAAO
gekiva ue ™ @don oxedlaopou. Kard tnv @daon autr}, Ta dU0 upépn KaAouvtal va
KaBopioouv TIG TTPOTIMACEIG TOUG. OETOoUV PEYIOTN KAl EAGXIOTN TIMA YIA KABE TTOCOTIKO
XOPAKTNPIOTIKO, KaBopilouv To PEYIOTO XPOVOo TTou diaTtiBevtal va diatrpayuarteutoly, Tn
ouvapTnon AToTiuNoNG TIPOOPOPAG TIOU TOUG ETTITPETTEI T OUYKPION MPETALU
SIAPOPETIKWYV TTPOCPOPWYV, KABWG £TTIONG TN OTPATNYIKN, TTOU Ba KaBopioel TN GUVOAIKA
oupTTEPIPOPG KaTd Tn didpkela NG diammpayudreuong. A@ou oAokAnpwBei n @don
OXeOIAOPOU, Ol OCUUMETEXOVTEG TTEPVOUV OTO KUPIWG PEPOG TNG dIaTTpayuATEUONG, TTOU
a@opd TNV avraAAayr TTPOCPOPWY. & KABE yUpo, 0 dIATTPAYUATEUTAG XPNOILOTIOIE TNV
TTpoKaBopPIouEVN OTPATNYIKA TOU yia va TTapdyel TNV TTPOC@OPA TTOoU TTPOTIBETAI va
oteilel. Kavovtag xprion Tng ouvapTnong dTroTiunong TTPoo@opds, OUYKPIVEL TNV
TTPOCPOPA AUTA KE AUTAV TTOU TOU €0TEIAE O AVTITIAAOG OTOV TTPONYOUNEVO YUPO. AV N
TEAEUTAIQ €ival TTI0O CUPPEPOUCA TNV ATTOOEXETAI KAl N dIadIKaoia TEPUATICEl UE ETTITUXIA.
¢ avtibetn TepiTTwon, n Oladikacia cuvexietal péXpPl va TTapPEABEl O MEYIOTOC
TIPOKABOPIOPEVOS XPOVOG, OTTOTE KAl N OIATTPAYHATEUOT ANYEI AVETTITUXWG.

Ocuehiwdoug onuaciag yia Tnv €kBacn Tng SIOTTPAYPATEUONS KOl TNV ETTITEUEN TwvV
OTOXWV TWV OIATTPAYMATEUTWY aTTOTEAEI N oTpaTnyik TTou Ba uloBetrioouv. Méow
QUTAG, Ol CUMMETEXOVTEG OXEDIACOUV TIG €VEPYEIEG TOUG O€ KABe yupo. O Opog
«OTPATNYIKI» XPNOIMOTTOIEITAI OUXVA WG OUVWVUMO TNG CUUTTEPIPOPAG. O TTPAKTOPES
AoyIouIKOU diatmmpayudTeuong TTOU OEV EVOWMATWVOUV TEXVIKEG MNXAVIKAG PAOnong,
UIOBETOUV  OTTOKPITIKOUG pnxaviopoug. Or  pnxaviopoi autoi Pacifovial e €va
ouvOuaoud TAKTIKWYV, OnAadn éva ouvOuaouo atTd OUVAPTACEIS YEVVATPIEG TTIPOCPOPWV
[25]. O1 BaoIKEG KATNYOPIEG TAKTIKWY TTOU XPNOIYOTTOIOUVTAl EUPEWG OTIG AUTOTTOINUEVEG
OIaTTPAYHUOTEUOEIS €ival QuTEG TTou  €EapTwvTal ammd 1O OlaBEoIuo  XpOvVOo, TOUug
d1a8€a1uoug TTOPOUG Kal TN CUPTTEPIPOPA Tou avTiTTdAou. O1 dUO TTPWTEG KATNYOPIES
MOVTEAOTTOIOUVTAI HUE TTOAUWVUMIKEG KOl EKBETIKEG OUVAPTAOEIG, EVW N TPITN EKPPAlEl
MIMNTIKA CUPTTEPIPOPA TWV ATTOKPICEWYV TOU avTITTAAOU.

H aBeBaidtnta mou diétrel To TTEPIBAAAOV dlaTTpayudaTEUONG £XEI 0ONYAOEl OTNV avAyKn
uI08£TNONG «ECUTTVWV» OTPATNYIKWY, TTOU EVOWMATWVOUV TEXVIKEG NNXAVIKAG naddnong.
O PBaocikd6g OTOXOC TWV dIATTPAYUATEUTWYV Eival va KAVOUV QOTTOTEAECUATIKOTEPES
EMAOYEG OTN QACN OXeOIAOPOU, va ETTIAECOUV TOUG KATAAANAOUG avTITTAAOUG, VO
OlIaUOPPWOOUV TN OTPATNYIKA TOUG WOTE va MEYIOTOTTOINGEI N aTtouikA | N KOIvA
WOQEAEIA, Kal TEAOG VO aVIXVEUOOUV Kal va OIaKOWOUV OE TTPWIPO OTAdIO ATEAECQPOPES
dlaTTpaydaTeUOoElS. To TETAPTO KEQPAAQIO TNG SIATPIBAG APIEPWOBNKE OTNV KATaypa®r Kal
KATNYOPIOTTOINON TWV «ECUTTVWV» OTPATNYIKWY avaAoya Pe 10 0TABIO EQAPPOYAG Kal TO
€id0¢ pnxaviopou padnong Trou xpnolpoTrolgital. O1 TpeIg BACIKEG KATNYOpPIES gival ol
OTPATNYIKEG ELEPEUVNONG, OI OTPATNYIKEG ETTAVAANYNG KAl Ol OTPATNYIKEG TTPOBAEYNG.

2TIC OTPATNYIKEG €EEPEUVNONG OI DIOTTPAYHOATEUTEG DOKIMACOUV VEEG AUCEIG, €TTIAEYyOUV
OTPATNYIKEG TTOU Ogv €XOUV  EAVAXPENOIYOTIOINCEl TTPOKEINEVOU VA  ETTITUXOUV TO
emOuunTd atotéAeopa. O1 ouvnBelg TeEXVIKEG TTou €@apudlovTal Eival  YEVETIKOI
aAyopiBuor kal Q-Learning. O1 yeveTikoi aAyopiBuol, OTav XpnolyoTrolouvTal oTh gAaon
oXedlaouoU, emITPETTOUV TN MEAETN TNG €EENIENG TWV OTPATNYIKWY OTOUG BIAPOPETIKOUG
TANBuopoug. ATG Tnv GAAn, Otav  Xpnoigotrolouvtal  KoTd T1n  OIApPKEId  TNG
OIaTTPAYUATEUONG, ETTITPETTOUV TN PMABNON Twv TIPOTIUACEWY TOU QVTITTAAOU Kal TnVv
KAataAANAn TTpocappoyr NG eKACTOTE TTPOCPOPAG. Epapuoyn Tng TEXVIKAG Q-Learning
MTTOPE va 0dnynoel o€ auénon TNG ATOMIKAG WEEAEIAS Twv OIOTTPAYHATEUTWY. TNV
TTEPITITWON TTOU TO TIEPIBAAAOV €ival OTATIKO, €ival duvarr) n €upeon TnG BEATIOTNG



OTPATNYIKAG META aTTO £vav apiBud dIOTTPAYUOTEUCEWY. ZNUAVTIKO PEIOVEKTNUA KAl TWV
OUOo peBAdWV gival OTI TIPOUTTOBETOUV Evav APKETA PEYAAO apIBUO eTTAVAAAWEWY UEXPI
va ouykAivouv. EmmimrAéov n péBodog Q-learning TTpoUtToBéTel TNV agloAdynon Twv
KIVI)OEWV TOU DIOTTPAYHATEUTH ATTO TOV AVTITTAAO TOU, YEYOVOG TToU gV €ival PEANIOTIKO
o€ KGBe TTEPITITWON.

O1 otpatnyikég emmavaAnyng Pacifovial o€ TEXVIKEG £TTAVAXPNOIKOTTIOINONG Yyvwong,
otou €ival duvartr n dnuioupyia pouTivwv. H TePIcadTEPO dladedopévn TEXVIKI OE AUTH
TNV Katnyopia eivar n péBodog Case-based Reasoning. H €idikdtepn yvwon 10U
QATTOKTATAI EQAPUOLETAI O TTAPOUOIEG TTEPITITWOEIG YE OKOTTO TNV ETTITEUEN AVTIOTOIXO
KOAWV atroTeAeopaTwy. Kat'autdv Tov TpOTTO gival duvato va dnuioupynBouv BEATIOTEG
TTPOKTIKEG.  MelovékTnua Tng HeBSdou  atroTeAei o KivOuvog  €QAPUOYAS  UN
QATTOTEAEOUATIKWYV EVEPYEIWV AV TO TTEPIBAAAOV DIATTPAYHATEUONG Eival OUVAMIKO.

TéNOG, OTnV TPIT KATNyopia €VTACOOVTAI Ol OTPATNYIKEG TIPOPRAEWNng, OTTOU Ol
JIATTPAYMOTEUTEG TTPOCAPHUOLOUV TIG EVEPYEIEG KAl TIG TTPOCPOPESG TOUG PACIfOUEVOI O€
EKTIUAOEIC €CWTEPIKWYV TTAPAYOVTWY, TIOU a@opolv e€ite 1O TrEPIBAAAOV, €iTe TO
oTpaTNyIKO PovtéAo Tou avTiTtTdAou Toug. O TEXVIKEG ABnong TTou XPNOIYOoTToIoUVTal O€
auThv Tnv Katnyopia eival possibilistic case-based reasoning, Bayesian learning, un
YPOUMIKN TTaAIVOPOIoN Kal veupwvikd diktua. O1 duo TTpwTeg HEBODOI TTPOUTTOBETOUV
N yvwon oMWV mMOavoTATWY, VW N YN YPAMMIKA TTaAIVOPOUIoN TTPOUTTOBETEl TN
yvwaon TnG HoOPQrS TNG OUVAPTNONG TTOU ATTOTEAEI TN OTPATNYIKA TOU QVTITIAAOU.

H trapouca diaTpIfr] EMIKEVIPWVETAI OTNV TPITN KATAYOPIa KAl TTI0 OUYKEKPIPMEVA OTNV
TTPOCAPUOYI TNG OTPATNYIKAG KATA TN OIAPKEIA TNG avTAAAQYNG TTPOCPOPWY, HNE OKOTTO
TNV aUgnon NG ATOPIKAG W@EAEIaG. MeAeTWVTAI TTEPITITWOEIG OTTOU N TTPOCPOPA TTOU
TTapPAyel O OIATTPAYUATEUTAG O KABE yupo Bacifetal OTnV EKTIPNON TNG ETTOPEVNG
TTPoo@OPAg Tou avTitdAou. lNMapouoidlovTal dUO XAPOKTNEIOTIKA TTapadeiyuara: TO
ouoTnua Smart-agent [8] kal o TTPAKTOPAG AoyIopIKoU dlaTrpaypareuong Negotiator [9].
210 ouoTnua Smart-agent, o dIATTPAYUATEUTAG OUYKPIVEI 0 KABE yUpPO TNV TTpooPopd
TTou Ba €0TeAve Bdon TNG TTPOKABOPIoPEVNG OTPATNYIKAG TOU, UE QUTHA TTOU TTPORAETTE
OTI Ba oTeiAEl O AVTITTAAOG TOU OTOV ETTOUEVO YUPO. Av n TEAEUTAIQ €ival CUPQEPDTEPN,
TOTE N VEQ TTPOCPOPA DIAPOPPUVETAI CUPPWVA UE TNV EKTIKNOTN, OTTWG opideTal aTTd ToV
Kavova (eq. 3). H ouutrepipopd auTrh €uvoEi TNV avATITUEN TTPAKTOPWY AOYIOUIKOU TTOU
UTTEPVIKOUV avTITTAAOUG TTou &€ SIaBETOUV uNXaviououg pabnong (Zxnua 13).

210 ouoTnua Negotiator o dIATTPAYUATEUTAG KAVEI XPrON ToUu PnXaviopou TTpoBAewng
OTOV TTPOTEAEUTAIO YUPO. ZUYKEKPIPMEVA, KAVEl TO MEYIOTO Ouvatd cuppifacud
atmooTEAAOVTOG TNV TIUA Opiou Tou av n TTPORAEWn TNG TTPOCPOPAS TOU avTITTAAoU tival
AIyOTEPO CUN@EPOUTQ, BIAPOPETIKA OTEAVEI TNV idIa TIUAR WE TNV TTPORAswn. Kat autdv
TOV TPOTTO ETTITUYXAVEI AUENON TNG ATOMIKAG TOU WPEAEING.

O1 dUo kavoveg Tou TreplypdgovTtal oto [8] kai 1O [9] ek@pdalouv dUO aKPAiES
OUMTTEPIPOPEG  aTtTévavTl  OTOV  Kivduvo. 2To  dev  ouoTnua  Smart-agent o
OIaTTPAYMOTEUTAG  €TITUYXAveEl BeauaTikp avénon TnG OATOPIKAG TOU  WQEAEIAG,
TTOPATEIVOVTAG OUWGS ONPAVTIKA TO Xpdvo diatrpayudTteuons. O avTittaAdg Tou Teivel va
QVTATTOKPIOEI PE ATTOOTOAN QVTITTIPOOQPOPAS, yeyovog TTou augdvel Tnv moavotnTa
ATTOXWPENONAG TOU KAl TEPUATIOMOU TNG dlaTTpayudTeuons Xwpic oupgwvia. H
oupTTEPIPOPG aUTH eKQPAlel poTr) TTPog Tov Kiduvo (risk-seeking). 210 Negotiator, o
JIATTPAYMOTEUTAG ETTITUYXAVEI TTIO TTEPIOPICUEVN QUENON TNG ATOUIKAG TOU WQEAEING,
XWpPIic woTtéow va uttdpxel Kivduvog auénong Twv QVETTITUXWY dIaTTPAYUATEUCEWY,
a@ou O avTiTrTaAog TeiVEl va avTaATTOKPIOEI pe atmodoxr TTPoc@OoPAs. YIOBETWVTAG Tn
OUNTTEPIPOPEG aUTA O BIATTPAYUATEUTHG ATTOOTPEPETAI TOV KivOuvo (risk-averse).

YTTapxel pia o€lpd atmmd PHEAETEG TTOU CUOXETICEI TO TTEPIBAAAOV diaTTpayudTeuong KE TN
OUUTTEPIYOPA  TOU  dIATTPAYMATEUTH atrévavtli oTov  Kivouvo. [1lo  ouykepipEva



TTapouoIAdeTal JeyaAUTEPN POTTA TTPOG TOV KivOuvo OTav n dIaTTpayUATEUON YiveTal yid
TN Peiwon ¢nuidg kal Aiyotepn 6Tav agopd TNV augnaon KepOwv.

‘Evag atmé Toug 01dX0UG TNG dIaTpIPNG cival n dnuioupyia Piag oTpatnyikig TTpoRAewng
TTOU VO ETTPETTEI TNV UIOBETNON TTOAAWYV SIAQOPETIKWV CUUTTEPIPOPWV OTTEVAVTI OTOV
KivOUvOo, KaI N €TTEKTOON QUTAG WOTE va UTTooTnpiovTal dIaTTpayuaTeloElS TTOAATTAWY
XOAPOKTNPIOTIKWV.

2TO TTEPTITO KEQPAAQIO YiveTal oulTNON yia TOV KivOUVO TTOU EAOXEUOUV Ol OTPATNYIKEG
TTPORBAEYNC Kal TTAPOUCIAZETAl N TTPOTEIVOUEVN OTPATNYIKN.

Katd tn @don oxediaopou O dIaTTpayuaTeuTig BETEl TIG TTPOTIMACEIS KAl TNV ApXIKA
OTPATNYIKA TOU, KABWG ETTIONG Kal Jia TTapdueTpo RP, n otroia ek@pdadel TO TTOOOCTO TOU
Xpovou Trou eival dlatebeipévog va TTaparteivel Tn dlammpayudreuon. Katd tn @don
avTaAAQyng TTPOCPOPWYV XPNOIYOTIOIEI TNV EKTINNON TNG ETTOUEVNG TTPOCPOPAS TOU
avTiTdAou. 2e k&Be PBAPa, OTEAVEl TNV TIPOCPOPA TIOU TTOPAYETAl ATTO TNV
TTpoKaBopIouévn oTPaATNYIKA, 000 aUTH €ival cupdeepdTEPN aTTO TNV TTPORAEWN (OnuEio
MP). To MP onuatodortei To onuegio TTou Ba avTIOTOIXOUOE O€ CUP@wvia av ol dUo
TIPAKTOPES Oev ePrippolav TEXVIKEG UNXAVIKNAG NaBnong. Otav autd avixveuBei, kai yia
600 didoTnua KaBopiletal amd TNV TTAPAUETPO RP, UIOBETEITAI N OTPATNYIKA WE POTT
TTPOoG ToV Kivduvo. Otav To RP katavaAwbei, UIOBETEITAI N OTPATNYIKA PE ATTOOTPOPr) TOU
KIvOUvou PEXP! TN ANgn Tng diatrpayudateuons. O kavévag TTou eQapudleTal oTNV TTPWTN
TTEPITITWON (UE POTTA TTPOG TOV Kivouvo) BacifeTal 0TOV KavOva TTOU XPNOIKOTIOIEITAlI OTO
ovuotnua Smart-agent, evw autdg TIOU €@aApUOleTal oTn  OeUTEPN  TTEPITITWON
(atrooTpo@n kivduvou), BaciCetal oto Negotiator. Kal o1 dU0 KavOVeG €XOUV ETTEKTABEI
woTe va utrooTnpifovral OIaTTPAYMATEUOEIG  TTOANATTAWY  XapakTnpioTiIkwy. Ooo
MEYaAUTEPN €ival n TINA Tou RP, 1600 peyaAlTepn c€ival n augnon tnG wEEAEING O€
TTEPITITWON CUPQPWVIAG, KAl TAUTOXPOVA TOOO PEYOAWVEI O KivOUVOG aTToXWwpPnong Tou
QVTITTAAOU Kal TEPPATIONOU TNG dIaTTPAYUATEUONG.

lNa tnv amoTtiynon g TTPOTEIVOUEVNG OTPATNYIKAG, Onuioupyrnoaue €va TrepIBAAAov
TTpooopoiwong dlatrpaypateloewy. O1 BaoikEG KAACEIG Twv OIOTTPAYUATEUTWY Eival
UAOTTOINUEVEG O€ Java, KAl N XPAon TOUG ETTEKTEIVETAI PE TNV TTPOCAPMOYN TEXVIKWV
MNXOVIKAG PMABnong oe kKAGoeig oto matlab. Baoikdg pag otéxog eival va petpnOei n
augnon TNG WEEAEIag, OTTWG £TTIONG KAl N YEIWON TWV CUPQWVIWV OTaV YiveTal Xpron
TNG OTPATNYIKAG TIPOPAEWNS, Vvia TIG OIOPOPETIKEG TIUEG Twv RP. Otwproaue
OIOPOPETIKA OEVAPIA AVAPOPIKA PE TO PEYIOTO OIABECIUO XPOVO TWV CUPUETEXOVTWY, TO
€0POG TNG {WVNG CUPPWVIWY KAl TWV OTPATNYIKWVY TToU opiovTal 0Tn @Acn oxedlaouou,
onuioupywvtag €101 2,352 TrepiBdAlovta  diatrpayudreuong. MNa kaBe TrepiBaAAov
OlevepynONKe MIO OEIPA TTEIPAUATWY METAEU TOU «EEUTTVOUY» TTPAKTOPA KAl €VOG
TIPAKTOPA  dIATTPAYUATEUONG TIOU O&V  EVOWMATWVEL  pnxaviopud TpoBAsyng. O
«EEUTTVOG»  TTPAKTOPAG Ol00€TEl  YOVTEAO TTPOPAEWNS HeE  PNdevikG C@AAPQ  Kal
dokiyadetal yia 21 diagopeTikég TIWEG RP ( [0:5:100]). H T1eAIky atroTtipynon yiverai
OuYKpivovTag TN d1apopd TNG AToUIKAG WEEAEIOG Tou dIOTTPAYMATEUTH, TN dlagopd Tou
XpoOvou dlaTrpaypaTeuong  kair T dlagopd  Tou  apIBuoU  TWV  AVETTITUXWV
dlaTTpayhaTEUOEWY, OTAV XPNOIMOTIOIEITAlI N oTPATNYIKN TTPORAeWNS. OTTwg @aiveTal Kal
oto 2xApa 18, ye RP=0% n péon ammoAutn augnon tnG atopikng weéAsiag ival 0.94%
Kal augdvel ye Tnv au¢non tou RP péxpr Tnv Ty 12.05% yia RP=100%. AvrtioToixa
QUEAVETAI KAl O NECOG XPOVOG dlaTTpaypdaTeuong, mmou yia RP=0% ecival 0.96% kai yia
RP=100% eivan 23.07%. H aug¢non tou xpdvou diatrpayudTeuong €ival n kupla aimia
MEIWONG TOU aPIBUOU TWV ETTITUXWYV OIOTTPAYHATEUOEWY, KOBWGS augAveTal n TlavoTnTa
armmoxwpnong Tou avTiradAou. Otrwg eaiveral kal oto ZXAMa 20 yia RP=0% &gv uttdpxel
MEiwoN Tou apIBuoU Twv dIaTTPAYHATEUCEWY, evw yia RP=100% n yéon ueiwon @Tavel



170 20.78%. lNa Tnv €@apuoyn TNG TTPOTEIVOPEVNG OTPATNYIKAG Ba TTPETTEl va Yivel
KATAAANAN €mmiAoyry Twv RP, n otroia ptropei va emTeuxOei JEOW OUVEKTIUNONG TNG
MOAVOTNTAG ATTOXWENONG TOU AVTITTAAOU OTOV ETTOPEVO YUPO, | HEOW TTPORAEWNS TOU
MéyioTOou dlaBéoiyou xpdvou Tou avTiTTdAou. Av eival dlaB€oiun n TTPORAswn Tou
MEYIOTOU XPOVIKOU opiou, O dIOTTPAYMOTEUTAG UTTOPEI va uloBetrioel Tov Kavova Risk
Seeking amd TN oTiyyl Tou avixveuetalr 1o MP péxpr éva Bripa tpiv T AAgn Tou
XPOVIKOU 0opiou TOu avTITTAAOU TOu, OTTOTE Kal UTTOPEI va uloBeTAoEl Tov Kavova Risk
Averse. Kar'autov Tov TPOTTO UTTOPEI VO ETMITEUXOEI ONUAVTIKA augnon TnG ATOMPIKNAG
WOEEAEIOG KAl TAUTOXPOVA ONUAVTIKA MEIWON TWV AVETTITUXWY dlatrpayuateloewy. MNa
ATTOTIMNON TNG OTPATNYIKAG ME KATAAANAO kaBopiopyd Twv RPS, emavaAdfaue Ta
TTEIPAPATA KAl KATAYPAWAUE PEON ATTOAUTN augnon TnG atouikAg weéAgiag 12.017%,
(kovtd oTnv TTO0000TO TTou €ixape yia RP=100%) kal pyéon MEIWON TwV AVETTITUXWYV
dlatrpaypaTetoewy 0.61% (kovrd oTo TToo00TS TToU eixape yia RP=0%).

210 TrelpdapaTa 1ou dlegnxdnoav, BewprBnkav TTPAKTOPEG AOYIOUIKOU TTou dlaBETouv
MovTéAO TTPORAEWNS peE PNOEVIKO o@aApa. Katd tn didpkela TG dlaTTpayudaTeuong ol
TINEG TTOU OUAAEyovTal o€ OIOKPITA XPOVIKA dIaoTAUATA  TTPOKUTITOUV ATTO TNV
TTAPATAPENON TWV TIPONYOUUEVWY TIPOCQPOPWY TOU QAVTITTAAOU KAl TOU «ECUTTVOU»
TTPAKTOPA. BAOIKOG 0TOXOG €ival N TTPOCEyyIon WIag AyvwoTng ouvaptnong, ME XpHon
€VOG OUVOAOU TIMWV TNG MOPYNRS (X,y) OTTou X gival 0 yUpog dITTPAYUATEUCNSG OTOV
OTTOIO OTOIXEIOOETEITAI KAl TTPOTEIVEITAI PIa TIUR TTPOOQYopds y. Me Tov TpOTTO QUTO
oxnuaTieTal éva 1I0TOPIKG TIMWYV TTOU atToBnKeUETal aTTd TOV TTPAKTOPA TTOU £QAPUOLE!
TNV aTTapaiTnTN €UQUIa yia TNV TTPORAEYWN TNG TIUAG TOU AVTITTAAOU.

210 €KTO Kal To €BOopo Ke@AAaIo, yiveTal oulATNoN Yia Ta POVTEAQ TTPORAEWNG TTOU
€XOUV XPNOIYOTTOINGEI YIO TNV EKTIUNON TNG ETTOUEVNG TTPOCPOPAG. MeTagu auTtwy eival
Ta JOVTEAD PN YPAPMIKAG TTAAIVOPOUIONG, TO VEUPWVIKA BiKTUd, KAl Ol TTPOCEYYIOTEG UE
TN BonBeia TTOAUWVUPWY OTTWG N HEBODOG EAAXIOTWYV TETPAYWVWY KAl N TTPOCEYYION HE
KUBIKEG splines. Ta povtéAa un ypapuIKAG TTAAIVOPOUIONG £XOUV EQAPUOCTEI UE ETTITUXIA,
TTapOAa autd, €TTeldr] TTPOUTTOBETOUV Yyvwon TNG MOPPNG TG CuvAPTNONG, £XOUV TTIO
TTEPIOPIOPEVO €UPOG €QapUOYNG. Or TTPooEeYYIOTEG TTOAUWVUPWY CUYKPITIKA PE T
VEUPWVIKA BikTua gpgavifovtal AlyoTEPO aKPIBEIC. ZTATIOTIKA HOVTEAQ XPOVOOEIPWY, TTOU
EXOUV  €QAPMOOTEI  yia TNV TTPOBAEYN  OIKOVOUIKWY Oedopévwy, Oev  €XOuV
XpnoigotoinBei yia 1o TPORANUA TNG EKTIUNONG TNG E€TTOPEVNG TTPOCPOPAS TOU
QvTITTAAOU, KOBWGS aTralTeiTal Yo oeIpd atmmd eAEyXOUG Yia va €¢ac@alioTei n opBoTNTA
TNG €QApPUOYNS Toug. ‘ETOl KATaArjyoupe oOTnV €TTIAOYN TWV VEUPWVIKWY OIKTUWYV, TA
OTTOia PTTOPOUV va XPNOIPOTTOINBoUV XWPiG va atraITeiTal yvwon NG MOPOAS TNG
ouvAapTNONG TV OEQOPEVWV.

Ta 1TePIooOTEPO DIODEDOUEVA VEUPWVIKA BIiKTUO TTOU £XOUV XPNOIMOTIOINBEI yia TO &V
Aoyw TpoBAnua eival Ta Multi-Layer Perceptrons (MLPs) kai Ta Radial Basis Function
Networks (RBFNs). EmAéyetal n xprion Twv MLPs kabwg trapoucidfouv KaAUuTepn
ouvartoTnTa  yevikeuong kai  gival  pIkpotepa amd T1a RBFNs. Ta MLPs 10U
XPNOoIhoTToIoUVTal VIO TNV TTPORAEYN TNG TTOPEVNG TTPOCPOPAG atToTEAOUVTAI OTTO £vav
KOUPBO KPU@OU eMITTEOOU PE VEUPWVEG TTOU £XOUV CIYUOEIBN OUuvAPTNON EVEPYOTTOINONG,
Kal éva KOUPBO €6OO0U PE VEUPWVEG TTOU £XOUV YPOUMIKY) OUVAPTNON EVEPYOTTOINONG.

2Ta UTTadpxovTa cuoThuara Ta MLPs exktraidsuovTal hia gopd oTn ¢acn oxedIaouou, EiTe
ME OUVOETIKA Oedopéva TTOU TTPOKUTITOUV OTTO TTPOCOUOIWCEIG DIATTPAYUATEUCEWY, EITE
ME Oedopéva TTou €gdyovTal aTTd TTPONYOUNEVES OIOTTPAYUATEUCEIC. Ta EKTTAIOEUUEVA
OiKTUO XPNOIUOTTOIOUVTAI OTr CUVEXEID O€ KABE dIaTTPAyUATEUTIKO YUpo. Eicodd Toug
a1TOTEAOUV OI TTPONYOUUEVEG TTPOCPOPES TWV DIATTPAYMATEUTWY, EVW N £€000C QTTOTEAEI
TNV TTPOBAEYN TNG TTOMEVNG TIUAG TTOU Ba OTEIAEI O AVTITTAAOG.



To TTPORANUa TTOU TTPAYUOTEUETAI N TTapouca dIaTPIBA agopd Tov TPOTTO XPNong Twv
VEUPWVIKWYV BIKTUWV MLPs ota utrdpxovrta cuoTtriuata. To Bacikd PeEIOVEKTAMG gival OTI
n okpiBela NG TIPORAEYNnS cival dAueon eCapTwuevn ammd Ta  dedouéva  TTou
XpnoigoTtrolouvTal yia Tnv ekTraideuorn. 'ETol o€ duvauikd TepIBaAAovTa, 6tav aAAdlouv
Ol KATAVOWEG Twv OEDOUEVWV OTIG OTTOIEG BACIiOTNKAV T APXIKA HOVTEAQ, OI TIPOPRAEWEIG
givanl Aiyotepo €ykupeg. ETTITTAEOV TTApATNEEITAI AVOUOIOYEVEIQ TNG APXITEKTOVIKAG, AAAG
Kal Tou aplBuou TwV TTPONYOUNEVWY TTPOCPOPWYV TTOU OTOIXEIOBETOUV TNV €i0000 TWV
MLPs.

lMa TNV avTINETWTTION TWV avwTéPw TTPORANUATWY gpeuvdTtal n xpAon MOVTEAWY TTOU
ekTaidevovral pe Oedouéva Tou €€dyovial amd TNV TPEXOUOO OIATTPAYMATEUON
(Session-long Learning Agents). Baoikfi apxrl Twv MPOVTEAWV QUTWYV OTTOTEAEI n)
eTmavekTraideuon Toug o€ KABE OdIOTTPAYMOTEUTIKO YUPO. ZTnv Trapouca diaTpifn
emAEyeTal N xpAon OIKTUWV MIKPOU HEYEBOUG, €TOI WOTE VA ETTITUXOUME MIKPOTEPO
aTTOBNKEUTIKO Kal UTTOAOYIOTIKO KOOTOC [EZNM.: n ekTmaideuon vyiverar ye 1 péEBodO
Levenberg and Marquardt], aA\& kai xapnAdétepo o@dAua TpoRAewns TTOU  Eival
avaAoyo Tou AGyou Twv eAeUBEPWYV TTAPANETPWY TTPOG TO TTANBOG TWV TTAPATNPACEWV.

Ta poviéAa Session-long Learning Agents TTou avatrtuxbnkav oTta TTAqiola mng
d1aTpIBAGS Kal TTEpIypd@ovTal oTo Oydoo Kal £€vaTo KEQAAaIO, €ival €ite oTaTIKA (Static
Session-long Learning Agents, SSLAS) €ite duvauika pe duvaTtdtnTa TTPOCAPHOYAS
(Adaptive Session-long Learning Agents, ASLAS). Ta SSLAS xpnoIdoTTolouV £va PIKPO
OiKTUO OTOBEPNG OPXITEKTOVIKNG, TO OTI0I0O ETTAVEKTTAIOEUETAI O€ KABe yupo,
dnNUIoUPYWVTOG KABE @opd VEO eKTTAIBEUTIKO GUVOAO aTTO TIG BIABOXIKEG TTPOCPOPES TOU
avTitédAou. To OikTuo autd XpnoldoTrolEiTal o€ KABe BApa a1rd Tov TTPAKTOPA TTOU
UIOBETEI TNV TTPOTEIVOUEVN OTPATNYIKH.

Mpokelpévou va OeixTei 70 TTPOBANUA TWV UTTAPXOVTWY CUCTNPATWY EKTEAECTNKAV
TTeIpdPaTa OTToU OUYKPIONKE O dIATTPAYUOTEUTAG TTOU XpnoidoTrolei éva MLP 1o otroio
EKTTAIOEVETAI Pia gOVO @opd KaTtd Tn @daon oxedlaouou (Pre-Trained Agent, PTA), pe
Tov SSLA. Avatrtuxonkav 3 diagopeTikoi PTAs Baoiféuevol oe 3 MLPS TTou TTpoékuyayv
atro 3 dIAPOPETIKEG TTEPIOXEG dlatTpayudreuong (negotiation domains) kalr cuykpionkav
pe 3 SSLAs pe MLPs tou diaBétouv 3 kdpPoug €106dou (TIG 3 TTPONyoUUEVES
TIPOOQPOPEG TOU AVTITIAAOU) Kal 2 KOUPBoug Kpugou emmmredou. lMa 1n ouykpion
die¢AxOnoav dlatrpaypaTeloelg PeTagu PTAS kal TTpaKTOpwv TToU O dlabéTouv
UTTOAOYIOTIKA eu@uia Kal HETAEU SSLAS Kal TTPaKTOPWYV TTou O SIaBETOUV UTTOAOYICTIKN
euguia. Ta mepIBdAAovTa dlaTTPAYUATEUONG TTOU XPNOIUOTTOINONKAV yia Tn oUYKPION
ATaV JIAQOPETIKA ATTO AUTA TTOU XPNOIPoTToInenkav yia tn dnuioupyia Twv PTAS. 2Tnv
TTEPITITWON XPNONG OTATIKWY HOVTEAWY TTPOBAEYNGS TTOU XPNOIYOTTOIOUV OedOMEVa TNG
TpEXouoag OINTTPAYHATEUONG, ATTODEIKVUETAI OTI N YEIWON TOU OQAAPATOG TTPOBAEWNS
avépxetal 0to 92.67% oc ox€0N PE AUTO TTOU TTPOKUTITEI aTTd PovTéAa TTou BaacifovTal
o€ ouVvOeTIKA dedouEva, 1) o€ dEdOUEVA TTPONYOUPEVWY DIOTTPAYUATEUCEWV.

2TNV TTEPITITWON XPAoNS OuvauIKWY HOVTEAWY, oI ASLAS atroteAolv Tnv €&EAIEN Twv
SSLAS, a@ou BeATIOTOTIOIOUV TNV APXITEKTOVIKA Kal TIG TTAPAUETPOUG €10000U Twv
otatikwv MLPs. Kat’'autév Tov TpOTTO avTIMETWTTICETaI TO BéPa TNG avopoloyévelag. Mo
OUYKEKPIMEVA TA VEUPWVIKA dikTua e¢eAicoouv Tn dour Toug o€ KABE Bripa TpoRAewng
ME XpNon YeveTIkKoU aAyopiBuou. To XPWHOOWHA TTOU ETTIAEYETAI EVOWMATWVEl OTIG
TTOPAPETPOUG €I00O0U TIG TTPONYOUUEVEG TIPOOQPOPEG TOU aVvTITTAAOU, OAAG Kal TOu
OlaTTPAYUATEUTH. ETITTAéOV EVOWUATWVEI TOV APIBPO TWV VEUPWVWY KPUPOU ETTITTEDOU.
XpnoiyoTtroigital duadikf YPOAUMATIKA, €701 OTO XpWHOowHa Twv 9 bit avadnreital 10
KaAUTEpO MLP, emAéyovtag ammd 0 €wg 7 TTPONYOUNEVES TTPOCQPOPEG TOU AVTITTAAOU,
atro 0 €wg 7 TTPONYOUUEVEG TTPOCPOPES TOU DIATTPAYUATEUTA KAl ATTO 2 €WG 7 VEUPWVEG



Kpu@ou emmTTédou. 2e KABe PBrua tng diampayudreucnsg akoAouBeital 0 TTapaKATwW
YEVETIKOG aAyOpIOpoG. ApXIKG dnuioupyeital éva Tuxaiog TTANBUOUOG AUoEwyV, OTTOU KABE
AUOn aTToKWOIKOTIOIEITAI OTNV  AVTiOTOIXN apXITekKToviki MLP. To 10TOpIKO TWwV
TTPONYOUUEVWY TTPOCPOPWY XPNOIMOTIOIEITAlI yIa Tn OnuIoupyia TOu EKTTAIOEUTIKOU
ouvOhou oTo oTtroio Bacifetal n ektraideuon Twv OIKTUWV. H agloAdéynon Twv
dla@opeTIkWY MLPS yiveTal ye xprion QvTIKEIYEVIKAG ouvapTNoNnG avaloya pe 1o Mean
Squared Error (MSE). EuvoouvTtal AUo€ig 6TTou €ival EQIKTOG 0 dlaxwpIouog o€ training,
validation ka1 test set, 6TTwWG Kal AUCEIG TTOU O AOYOG TWV €AEUBEPWY TTAPAPETPWY TOU
OIKTUOU TTPOG TOV apIBUd TwWv TTAPATNPAOEWV E€ival PIKPOG. ATO Tnv agloAdynon
emAEyovTal O KAAUTEPEG AUCEIG KAl EQapuOlovTal Ol TEAEOTEG Crossover Kal mutation yia
TN dnuioupyia Tou véou TTANBucpou. H diadikacia eravahaupaverail yia 10 yeviég, oTToTE
Kal €mAEyeTal TO BEATIOTO MLP, TO OTT0i0 KaI XPNOIYOTIOIEITAI yIa TNV €KTiUNoNn TNG
ETTOMEVNG TTPOCPOPAG TOU AVTITTAAOU.

2710 £vato KeEQAAaIO JIECAYETAI PIa OLIPA TTEIPANATWY yia va ouykpiBouv ol SSLAS Kai
ASLAs. AQ@Bnkav uttown JBIaQOopPETIKA oevapia OIaTTPAYHATEUONG AVOPOPIKA HE TO
€UPOG TNG CWVNG CUPQWVIWY, T MEYIOTA XPOVIKA TTEPIBWPIa Kal TIG OTPATNYIKEG
TTPOTIMNOCEIG TWV CUPMPETEXOVTWY Kal dnuioupyhonkav 1,359 dia@opeTikd TTEPIBAAAOVTA.
2g KABe TmepIBAANOV dIECXONOavV dIATTPAYUATEUOEIS PETALU SSLAS Kal TTPAKTOPWYV
dlatrpayudaTeuong Tou Oe dIaBETOUV UTTOAOYIOTIKR) €uuia, Kal petagu ASLAS Kail
TTPaKTOpWV TTOoU O€ Ol0BETOUV UTTOAOYIOTIKN €uguia. MNa Toug Session-long learning
agents, o€ K&Be yUpo uttoAoyioTnke TO ATTOAUTO CPAAPa TTPORAEYNGS Kal 0TO TEAOG TNG
dIaTTPAYMATEUONG UTTOAOYIOTNKAV O JECOG OPOG, N MEYIOTN TIMA KAl N TUTTIKA aTTOKAIoN
Tou atmmOAuToU O@QAAPaTOG. ATTodeIkvUETAlI OTI oI ASLAS TTapéXouv TTIo OTaBEPES
TTPOBAEYEIC PEYAAUTEPNG OKPIBEIAG, APOU N MEIWON TOU YEOOU OQAAPATOG QAVEPXETAI
oT1o 38.34%, n peiwon TNG péong TUTTIKAG aTTdkAIong avépxeTtal oto 38.03% kal n péon
MEYIOTN TIPN €ival pElwPEVN KOTA 44.75% o0€ ox€on PE TA OTATIKA HOVTEAQ.

2710 OéKaTo KEQAAQIO TNG dIATPIRAG, EPEUVATAI N dUVATOTNTA ETTEKTACNG TWV HOVTEAWV
TTPORAEYNS o€ dlaTTpayuaTeUoEIS TTOANATTAWY XapakTnploTIKwy. Mapouaialovtal duo
duvatoTnTeG. TNV TTPWTN 0 Session-long Learning Agent xpnoiyoTrolei éva MLP yia
KABe xapakTnpEIoTikG, dnAadn yia dIaTTPayUATEUCEIS N XAPAKTNPIOTIKWY d1a0£Tel N MLPs
ME éva KOUPBO €€000U. 2T deUTEPN TTEPITITWON XPNOIPoTIoIEl éva MLP yia Tnv TpdRAsywn
TOUu OIaVUOUOTOG TTPOOQPOPAG, ONnAadry yia dIaTTPayHATEUCEIS N XOPAKTNPIOTIKWY
XpPnoIJoTIoIEiTal €va OIKTUO HME N KOPPoUG €€0dou. H BEATIOTN QPXITEKTOVIKI OTNV
TTEPITITWON Twv SSLAsS avalnTAbnke eUTTEIPIKA. ZTnNV TTPWTN TTEPITITWON MIKPOTEPO
OQAAUQ Kal TUTTIKA ATTOKAION ONUEIWBNKE OTNV TTEPITITWON TWV 5 KOUPWYV €106d0U Kal 4
KOUPWYV Kpu@ou emmTédOU, TTOU 00rfynoe Ot au&énon TNG OTOMIKAG WEEAEIAS KATA
10.78%. 21n deuTepPn TTEPITITWON XAMNAOTEPO OPAANQ ONUEILONKE OTav ETTIAEXONKaV 8
KOuPol €i06dou kal 5 kKOPPBOI KpuPou eTMITTESOU, OTTOTE Kal N auénon TnG QATOMIKAG
woeéAelag é@raoce 10 10.5%.

KaBwg n e@apuoyr YEVETIKWY aAyopiOuwy €xel HEYOAUTEPO XPOVIKO Kal UTTOAOYIOTIKO
KOOTOG yIla TOuG OIaTTPAYMATEUTEG, MEAETABNKE €TTiong n  xpAon Tng atmAAg
autoeeAioodpevng dopng eMLP trou atraitei éva povo mépacua Twv OedouEvwy,
KaBioTwvTag Taxutartn mn diadikacia pdénong. Ta eMLPs atrotehouvTal atrd 3 eTmitreda:
input, evolving kai output . KaBe k6upog Tou evolving layer, TTpayuatoTrolei avTioToiXion
EVOG UTTOXWPOU TNG €10000U, O’évav UTTOXWPEO TngG €¢odou, Ki €101 N pddnon yiveral
TOTMKA O€ KABe KOpPo. 210 TrapdpTnua  TTapoucidlovTal  EKTEVH)  TTEIPOAMATIKA
ATTOTEAEOUATA TTOU TTPOKUTITOUV OTTO TTPOCOMOIWOEIS OE OIAPOPETIKA TTEPIBAAAOVTA
dlatmrpayuaTeuong. Atrodeikvuetal 0TI Ta eMLPs gival Aiyétepo akpifr] amdé 1a MLPs.
MapoAa autd agiCel va onueiwBei 0TI TTAPoUcIAfouv UeyaAUuTeEPn OTABEPATNTA, APOU
ONUEILVETAI TTOAU XaunAOTEPN PEON TUTTIKA aTTOKAION. TeAIKG pe xprion Twv eMLPs o



«ECUTTVOGY OIOTTPAYMATEUTAG ETTITUYXAVEI JEON AUENOoN TNG ATOMIKAG TOU WQEAEIAG KATA
5.327%.

270 €VOEKATO KEQAAAIO YIVETAI OUVOTITIKA TTAPOUCIACN TWV CUUTTEPACUATWY KAl TNG
OUVEIOPOPAG, Kal YiveTal AOyog yia TNV eTTAPKEIA TWV AUCEWV TTOU TTPOTEIVOVTAI, a@pou
odnyouv oTa TTPOCOOKWHEVA ATTOTEAEOUATA.

MapartiBevTal, TEAOG 0TO dWOEKATO KEPAAQIO, KATEUBUVOEIG-TTPOTACEIS VIO CUVEXION Kal
eTMEKTOON TNG épeuvag. Mia kateuBuvon agopd Tn diEUpuveon Tou TTEDIOU EQapuoyNnS. Oa
TPETTEl va dlgpeuvnBoUv oevaplia OTTOU O AVTITTAAOG avaTTapdyel TN CUPTTEPIPOPA TOU
OIATTPAYHUOTEUTA TTOU XPNOIKOTIOIEI TO HOVTEANO TTPORBAEWNG OTAV OTPATNYIKA TOU, KABWG
O€ QUTEG TIG TTEPITITWOEIG N EQAPUOYA TNG OTPATNYIKNG TTOU PETTEI TTIPOG TOV KivOUvo Oev
€XEI TO iB10 TTOOOOTO emmiTUXiaG. Mia TTpdTOON €ival N CUVEKTIMNON TOU TTOCOOTOU TTOU O
QvTITTAAOG UIOBETEI OTPATNYIKI €EAPTWHMEVN aTTO TN OCUPTTEPIPOPE, £TOI WOTE va
ATTOQACIOTE KATA TTOC00 N OTPATNYIKA TTPOBAEYNG UTTOPEI va 0dnynoel o€ augnon g
ATOMIKAG WEEAEIag. 'Eva akoun CATNUA yia PJEAAOVTIKA £€pguva a@opd TV £QAPUOYN
OTPATNYIKWY TTPORBAEWNS o€ TTEPIBAAAOVTA OUvEPYQOiag OTTou OTOXOG €ival n au¢non
TNG KOIVAG WPEAEING.

OAokAnpwvovTag, évag HEANOVTIKOG EPEUVNTIKOG OTOXOG TTOU UTTOPEI VA €XEI WG ATTAPXN
uAoTroinong Tou auth Tn diaTpIRn, €ival n digpeuvnon Kai GAAwv PovTéAwvV TTPORAEWNS
TTOU XPNOIUYOTTOIoUV Oedopéva TTou €¢AyovTal aTTO TNV TpEXouoa OIaTTpayudTeuon.
MpoteiveTal n Xprion cuoTPATWY TToU €EEAICOOUV Tn SOMI TOUG OTO XPOVO, KaBwg ol
KATAVOMEG Twv dedopévwy petaBdaAlovtal. TETola TTapadeiypara ammoteAouv 1a Evolving
Fuzzy Neural Networks (EFuNNs) kai DENFIS 1ou avrikouv OTnv KaTtnyopia Twv
Evolving Connectionist Systems (ECoS).
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E-Negotiations for trading Commodities and Services: Predictive Strategies
1. INTRODUCTION

Electronic Marketplaces (E-markets), is an important component of e-business that
brings demand and supply of commodities and services into balance. These arenas are
the meeting places of producers and consumers that use exchange mechanisms,
varying from catalogues where requests and offers are posted, to negotiations where
participants bargain over the conditions of the exchange, to auctions where multiple
participants compete against each other [1]. The term e-market is used in a broad
sense and incorporates the various types and configurations of markets, stores, agoras
and other meeting places where transactions take place.

The exchange mechanisms that are embedded in e-markets are models and
procedures which control access to and regulate execution of the transactions. While
the commonly used catalogue-based exchanges provide one example of an institution,
of greater interest are mechanisms which permit richer dynamics and more complex
behavior on the part of participants, e.g. negotiations and auctions. This thesis focuses
on the negotiation exchange mechanism.

1.1 Negotiation: A brief review of the research field

There is a grand variety of problems drawn from everyday life where negotiations are
evident. A typical list would contain economic transactions, distribution of services,
management of business processes, labor negotiations, political and juridical disputes
etc. Such scenarios do not always relate to conflict as might be assumed. Negotiation is
the key decision-making approach that is used to reach consensus whenever a person,
organization or another entity cannot achieve its goals unilaterally. It can be defined as
an iterative communication and distributed decision-making process, where participants
are searching for an agreement. Negotiation is thus a mechanism that can be used for
allocating and sharing resources. The term ‘resource’ is used in the broadest possible
sense and may involve commodities, services, time, money etc. Yet it is not guaranteed
that an agreement always exists or that it will be established.

During the last decades, scientists belonging in various scientific areas such as
anthropology, psychology and sociology, law, political science, economics, mathematics
and computer science have made efforts to model and study negotiation interactions.
These efforts have resulted to different methodologies, architectures and approaches.

Among many significant contributions is the transfer of negotiation encounters in
electronic settings. Electronic platforms have been designed to facilitate the conduct of
negotiations. Furthermore, computer scientists have contributed to the development of
software components that either assist negotiators in various stages of the negotiation
process (Negotiation Support Systems, NSSs), or in some cases are capable of
undertaking stages or even the whole negotiation process. This thesis focuses on the
latter category, where negotiation software agents (NSAs) are used for the
representation of market stakeholders.

An agent can be viewed as an encapsulated computer system that is situated in an
environment and is capable of flexible, autonomous action in order to meet its design
objectives. Negotiation Software Agents are good representatives of human negotiators.

The specific rules of the interaction, which constitute the negotiation protocol, are
predefined in negotiations between autonomous agents. Based on the negotiation
protocol, agents need to plan their specific actions, their strategy, in order to meet their
objectives. The action planning is usually not disclosed to the other participants and
takes place before the actual conduct of negotiation (at a pre-negotiation phase). Yet, it
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is possible that during the interaction an agent reassesses the negotiation problem and
adapts his strategy to the responses of his counterpart. State of the art negotiating
agents use learning techniques in order to increase their profits or fulfill their objectives.
Learning techniques usually assist agents to select optimal or suboptimal strategies and
better model their counterparts.

1.2 Problem statement and contribution of the thesis

In order to facilitate comprehension of the domain, in this thesis we provide a
categorization of strategies that are enhanced with learning techniques and are used by
state of the art automated negotiators. In this respect, we devise agents to those who
use explorative, repetitive and predictive strategies, either at the planning phase or
during discourse. Explorative strategies imply the search for new solutions and are
based on trial and error learning processes, such as Q-learning and Genetic algorithms,
until some convergence criteria are met. Repetitive strategies are based on knowledge
reuse, and specific knowledge is acquired by repeated execution of actions. Case-
based reasoning is one such technique. Finally, in predictive strategies learning is
introduced in the form of predictive decision making, where estimations of factors that
influence strategy selection or update serve as input to the agents’ decision making.

In this thesis we focus on the third category and particularly on agents who update their
strategy based on estimations of their counterpart’s future responses. Such a technique
has proved valuable, as in most cases negotiators manage to increase their profits
compared to the non-learning case. However, in some situations agents tend to prolong
the negotiation discourse and this increases the risk that negotiation breaks off, as the
counterpart may decide to terminate the process. A first issue we investigate is how
such strategies affect the establishment of negotiating agreements. In this vein, we
propose a negotiation strategy that introduces a risk related parameter, mainly linked to
the prolongation of the negotiation discourse. This parameter allows the specification of
different attitudes towards risk, where risk measures an agent’s willingness to stay in
negotiation in order to use the predictive mechanism more extensively and heighten his
gains. For example a negotiator with a risk-seeking behavior would decide to exhaust
negotiation time in order to increase his profits, while a risk-averse agent would act
more conservatively, and would not risk prolonging negotiation time.

Another issue that is studied in this thesis is the type of learning mechanism that is used
by predictive negotiators who estimate their counterpart’s future offers. When it comes
to forecasting the partners’ future offers, techniques can be summarized into those
based on statistical approaches (particularly non-linear regression) [2] [3], mathematical
models based on differences [4] [5], and connectionist approaches, particularly some
special types of neural networks, Multi Layer Perceptrons (MLPs) and Radial Basis
Function Networks (RBFN) [6] [7] [8] [9] [10] [11] [12]. From the above methods we
argue that neural networks are best applicable for the purpose of forecasting the
counterpart’s future offers. Experiments have shown that mathematical models give
poorer results when compared to non-linear regression models [3]. Non-linear
regression models are more restrictive than artificial neural networks, since they require
specific assumptions regarding the strategy of the other party. On the other hand neural
networks are applicable in the general case, without assuming implicit knowledge of the
function that maps input to output data. This is particularly desirable for negotiation
forecasting situations where data relations are not known.

In current research approaches neural networks are trained at a pre-negotiation phase
with data extracted from past negotiations, and are used in the current discourse to

36 M. Masvoula



E-Negotiations for trading Commodities and Services: Predictive Strategies

provide estimations of the counterpart’s future offers. However, the accuracy of the
forecasting tool depends heavily on data acquired from previous interactions. We
investigate how the forecasting accuracy is affected when data distributions change,
and propose building and training neural networks with data extracted from the current
interaction. We term agents that exploit data from the actual discourse session-long
learning, and prove that a small neural network with few training examples is capable of
capturing the negotiation dynamics. In this thesis we introduce two types of session-
long learning agents: Static session-long learning agents (SSLAs), who use a neural
network with a static structure during the negotiation process, and adaptive session-
long learning agents (ASLAs), who use a neural network which evolves its structure and
input features based on a genetic algorithm. We also study the use of another adaptive
structure eMLP, which is a simple evolving connectionist structure that engages in one-
pass, lifelong learning. From the experiments conducted it is empirically proved that
ASLAs provide the most promising results (forecasts yield the smallest error), however
the combination of neural networks with genetic algorithms require a lot of time and
resources which is sometimes restricting in negotiation domains. This result makes
SSLAs a good selection for the problem of forecasting the counterpart’s future offers.

1.3 Organization of the thesis

This thesis is organized as follows. In the second Chapter we provide some foundations
related to the negotiation domain, terminologies and classifications, as well as to the
research methodologies and approaches. We also present a number of software
platforms, systems and agents that have been developed to support the various stages
of the negotiation process and describe an example domain concerning electricity
distribution. In the third Chapter attention is focused on the description of the negotiation
protocol and particular families of non-learning strategies that are often employed by
automated negotiation agents. The fourth Chapter concludes our review of the
negotiation field by apposition of agent models that are enhanced with learning
techniques to increase their individual gain. In this respect classification to explorative,
repetitive and predictive strategies is illustrated, and virtues and weaknesses of the
developed models are presented. Special attention is given to the class of predictive
strategies, and particularly to those that make use of the estimation of the counterpart’s
future offers. In the fifth Chapter we discuss how such strategies, often related with
prolongation of the negotiation process, pose the risk of negotiation breakdowns, and
propose a strategy that incorporates a risk-related parameter, enabling the adoption of
different attitudes towards risk. We also discuss how this parameter can be
appropriately set to avoid negotiation breakdowns. The remainder of this thesis
contemplates the issue of learning models applied by the predictive agents. The sixth
Chapter provides a brief overview and comparison of the forecasting tools employed by
negotiators, and bibliographical research reveals the superiority of artificial neural
networks (particularly MLPs), which are more extensively discussed in the seventh
Chapter. In the eighth Chapter we identify two issues that require further examination.
The first concerns application of the learning tools in order to capture the dynamics of
changing negotiation environments, and the second concerns optimization of the
architecture of the employed tools. To address the first issue, we argue that it is crucial
to retrain the learning tools during the negotiation discourse and we introduce Static
Session-long Learning Agents (SSLAS). In the same chapter SSLAs are compared with
current state of the art agents who train their networks only at a pre-negotiation phase
(Pre-Trained Agents, PTAS). In chapter 9 we address the second issue by optimizing
the architecture of the MLP with the use of a genetic algorithm. The agent that adapts
the architecture of the employed learning tool and the subset of input features is termed
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Adaptive Session-long Learning Agent (ASLA) and is compared to the SSLA. Other
evolving learning structures, such as a simple evolving connectionist system eMLP, is
also discussed and illustrated in the appendix of this thesis. Finally, in the tenth Chapter
we illustrate extension of the proposed agents to support multi-issued negotiations.
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2. FOUNDATIONS
2.1 Negotiation: A multidisciplinary research field

Negotiation is a multidisciplinary research field and its definition has been biased by the
different views of the procedure. For this reason, numerous definitions exist in the
literature revealing the different objectives that can be approached.

Gulliver [13] defines negotiation as a process in which two parties attempt to reach a
joint decision on issues under dispute.

Robinson and Volkov [14] view negotiation as a process in which participants bring their
goals to a bargaining table, strategically share information and search for alternatives
that are mutually beneficial.

Putnam and Roloff [15] view negotiation as a special form of communication that
centers on perceived incompatibilities and focuses on reaching mutually acceptable
agreements.

Actually negotiations have attracted the interest of researchers from several scientific
fields, including anthropology, psychology and sociology, law, political science,
economics, mathematics, and computer science. Raiffa [16] identifies those
perspectives that act as reference to the development of any negotiation theory.
Particularly he describes the “is” and “ought” of decision making and identifies the
perspectives of the “describers” and the “prescribers”.

The describers examine how people actually behave, how they think, how they
rationalize their choices to themselves. The main contributors of descriptive studies are
anthropologists, psychologists, sociologists and political scientists who are oriented
towards studying a negotiator’'s perceptions and ways of interaction in particular
problem situations. The describers perform analysis to help understand the selection of
a choice that has been made. They identify negotiation patterns, reasons for certain
decisions and the implications of cultural differences in behavior.

The prescribers are interested in how people should or ought to behave. Their aim is to
guide the perplexed decision maker in choosing an action that is consonant with the
decision-makers true beliefs and values. The main contributors of prescriptive studies
are game theorists -applied mathematicians and economists- who examine what
rational, all-knowing, super people should do in competitive, interactive situations. They
develop normative models and perform analysis to help in the selection of a choice to
be made.

Studies in management science also have a prescriptive orientation with the
development of models designed to identify the “goodness” of the procedures. These
are based largely on multi-attribute utility theory, optimization, and multiple criteria
decision making theories.

In the last decade the contribution of computer science is also very significant as it
advances the theoretical development of negotiation and examines its applied nature
with the construction of negotiation tables, decision and negotiation support systems,
software agents and software platforms [17]. The use of Al-based techniques to support
various stages of the negotiation process also advances negotiation theory.

Figure 1, as depicted in [18], illustrates the different views of negotiation, the
contribution of the various scientific fields and the interdependencies between
negotiation models and procedures.
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Computer science Economic sciences

Computational lingusitics and Management

Data mining and KDD Econometrics

Avrtificial Intelligence Experimental economics

Distributed Al Management science
Automated negotiations Decision science

Autonomous negotiation agents
Negotiation expert systems
Distributed negotiations
Negotiation software platforms

Negotiation media and Negotiation procedures
systems: tools, agents <:> and models: strategies,
and platforms tactics and techniques

Bargaining theory
Auction theory
Game theory
Negotiation analysis

Information systems Law and Social sciences

Decision support Law

Group and negotiation support Psychology

Workflow models Sociology

Electronic commerce Linguistics
Decision support systems Political science
Negotiation support systems Mediation and faciltitation
Electronic negotiation tables Models of attitudes and perceptions
Negotiation support agents Process models
Electronic markets Cultural influences
Electronic auctions Cognitive models

Figure 1: The negotiation landscape [18]

The variety of disciplines and perspectives has created different terminologies and
concepts, resulting to inconsistencies and contradictions [13] [14] [15] [16] [17] [18]. For
example in the economic literature, the term negotiation is often used synonymously
with bargaining. In behavioral studies negotiation is viewed as a social interaction
involving the distribution of power, resources and commitments. It is evident that
negotiations require an interdisciplinary approach because of their psychological, social
and cultural character; economic, political and legal considerations; quantitative and
gualitative aspects; strategic, tactical and managerial perspectives.

2.2 Terminology and classification of the negotiation domain

This paragraph introduces some essential terminology and identifies the parameters
that are used to classify the different negotiation domains.

Negotiations involve establishment of agreements characterized by a series of attributes
(issues or features). Such attributes specify the negotiation agenda and may represent
tangible characteristics of the commodities (or objects) being negotiated, or non tangible
characteristics such as contract terms. For each attribute, negotiators specify a range of
permissible (reservation) values, a minimum and a maximum, which they are not willing
to exceed. Participants usually know where to stop; they specify a plan to achieve their
goals skipping negotiation, what is termed best alternative to negotiating agreement
(BATNA). Additionally participants set a deadline indicating the maximum time they can
spend in a negotiation encounter. The place where negotiations are conducted
constitutes the negotiation arena and the negotiation outcome (or result) can be a

40 M. Masvoula



E-Negotiations for trading Commodities and Services: Predictive Strategies

compromise or a failure, as agreement is not always guaranteed. The specific rules of
communication constitute the negotiation protocol, which determines the way messages
are exchanged. Based on the protocol each agent adopts a negotiation strategy which
consists of the decision making rules that are used to determine, select and analyze the
decision alternatives.

At the beginning of a negotiation encounter each participant has a portion of space
where he is willing to make agreements. During negotiation each participant’'s space
may expand or contract. The negotiation ends when participants find a mutually
acceptable point in the negotiation space, which of course belongs in both participants’
region of acceptability (agreement zone). Figure 2a illustrates the negotiation space of
two participants, A; and A,, where x stands for potential deals and o constitutes the
final outcome. The shaded space represents the agreement zone, which exists and is
stationary during the search of a solution. Figure 2b illustrates a change of the search
space of participant A,, in order to trace an agreement. Negotiation concerns the
distributed search through the space of potential agreements, sometimes invoking the
search of spaces that include potential agreements. Alternation of the bounds of the
search space (expansion or contraction) is related to alternation of the negotiators’
beliefs, often due to changes that take place in the environment, or to persuasive power
of his counterparts.

(@) (b)

Figure 2: (a): Searching for an agreement in stationary spaces (contracts are here represented in

2D space). (b): A2 changes the space of potential agreements during the discourse

The type of interaction, the participants and the role they play, their social behavior, as
well as the commodities (tangible or not) that are being discussed have been used as
discriminative entities in an attempt to classify the various negotiation domains. We give
a description of some commonly stated parameters and considerations of a negotiation
discourse. These focal points have also been discussed by Raiffa [16].

The Negotiable Object: As mentioned earlier the negotiable object consists of at least
one issue. The number of issues is often used as a discriminative parameter of different
negotiation domains, as it gives rise to different negotiation behaviors. If only one issue
is negotiated (single-issued), its value shifts along one dimension, therefore gain for one
negotiator might result loss for the other. Opposing, in cases where negotiation involves
multiple issues (multi-issued), negotiators are given the opportunity to consider the
overall gain, thus adopt a more cooperative behavior. The type of issues is also used to
discriminate different negotiation domains. It concerns the acceptable values an issue
can take, and therefore the space of possible agreements. For example if at least one
attribute takes values in the continuous space, the space of possible agreements is
infinite. Opposing, if all attribute values are picked from a discrete set, alternatives are
quantifiable. Additionally, the value of an issue may be quantitative or qualitative.
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The Participating entities: Negotiation can be considered as a two-sided setting.
Depending on the number of participants on each side, we can have one-to-one (or
bilateral), one-to many, many-to-one or many to many negotiation encounters. In
conflict situations where more than two disputants are involved, coalitions may be
formed and act in concert against the remaining participants. In some cases an
individual or a group may experience internal conflict, in which case we have non-
monolithic participants. Another important issue that discriminates the different
negotiation domains is related to third party interventions. In some cases decision
making is transferred “outside” the negotiation arena, and agreement is suggested by
the central decision maker. Issues like trustworthiness and truthfulness arise in such
scenarios. Discrimination of a facilitator, mediator, arbitrator or rule manipulator entity
depending on the role of the intervener can be found in [16].

The Negotiation Objective: Each negotiator has a subjective measure that indicates his
individual satisfaction for each decision alternative, also termed utility. According to
Blake and Mouton [19] who have introduced the Dual Concerns model in the mid 1960s,
there are five behavioral classifications regarding the level of assertiveness and
cooperativeness. Assertiveness reflects the concern to satisfy one’s own interests, while
cooperativeness reflects the concern to satisfy the other party’'s interests. These
classifications are competing, collaborating, compromising, accommodating and
avoiding. The different behavioral classifications also reflect different negotiation
objectives. For example in a competing environment, each participant is trying to
maximize his individual utility, while in a collaborating environment participants are
trying to maximize the joint utility.

Affect of time and resources: In many negotiation scenarios elapsing time and
resources that diminish through time play a crucial role. Negotiators in haste are usually
at a disadvantage and this is because the penalties incurred in delays may be quite
different for the two parties. Additionally the “value” of a resource may change as time
elapses.

Knowledge: This parameter relates to the type of knowledge available to each
participant, concerning the specific negotiation stance, the determination of his
preferences and goals as well as the preferences and goals of his counterpart. In some
scenarios participants may have full knowledge, while in others they may be ignorant or
fuzzy about their own preferences let alone their counterpart or the dynamics of the
environment.

Knowledge about the Environment: Knowing a negotiation domain relates to the
experience a negotiator has gained on the domain, and/or to information collected from
third parties. The evolving rules of the environment play also a crucial role into
determining how knowledgeable one can be of a specific domain.

Knowledge of Individual preferences and goals: Participants who engage in negotiations
usually know why they do so. They expect to be benefited from such a choice, thus they
are capable of determining preference relations among alternatives. Knowing the
alternatives that are most beneficial (individually or socially) implies knowing those that
are not. Therefore participants usually know where to stop; they specify a plan to
achieve their goals skipping negotiation — best alternative to negotiating agreement
(BATNA) and set reservation values - bounds they are not willing to exceed, in
guantitative issues.

Knowledge of Partners’ behavior: Among a negotiator's considerations lies the
expectation of the counterparts’ behavior. Different modes of behavior are expected
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when discussing a point of disagreement with a business partner, from those you
expect to occur between firms or countries. Raiffa [16] discriminates between
cooperative antagonists, strident antagonists and fully cooperative partners.

Environments: Another discriminative parameter relates to whether the negotiation
environment is static or dynamic. In a static environment repetitive encounters may be
observed, e.g. repetitive behavior of the participants.

Negotiation Protocol and Strategy: A significant point of each interaction, which is also
being investigated in this thesis, concerns the mechanism of the interaction. What are
the exact rules of the encounter, the supported or legal actions for each participant, and
how does one decide how to guide the discourse and what actions to take?

Agreements: If the negotiating parties cannot establish a mutually acceptable
agreement, negotiations are broken-off. Additionally, at any point of the discourse the
negotiator may decide to walk away. Negotiators usually specify a best alternative to
negotiation (BATNA) and identify the point where the negotiation is no longer
“meaningful”. In cases where negotiators are knowledgeable and rational, they are
capable of specifying the risk associated with staying at a particular discourse. Finally in
cases where agreement zones do not exist, negotiation terminates without establishing
an agreement. It should also be noted that there is no way of assuring that the other
side will abide by an agreement. For this reason a negotiator may request for
ratification, resulting to strengthening his side and stiffening the resolve of the other

party.
2.3 Negotiation process model

In order to comprehend the different phases of negotiation, we proceed with the
adoption of a process model, which provides a structure for the negotiation process.
The search of a solution concerns an interaction of the engaged parties as well as an
arrangement of individual beliefs. Braun et al. [20] identify the lack of process models
from behavioral science specific to e-negotiations, and adopt a behavioral phase model
based on Gulliver’s eight phase model [13]. This model comprises of five phases and is
presented in Figure 3, along with the activities the negotiators undertake in each phase.
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11. Planning

» Formulate representation of negotiation problem

e Specify issues and options

» Specify objectives and preferences

» Specify constructs and reservation values

» Learn about opponents

e Decide strategy

» Select negotiation location, time and communication modes

:2. Agenda Setting and Exploring the Field

Discuss negotiation Issues and meaning
Discuss protocol

Discuss timing of exchanges, deadline
Discuss priorities and constraints
Revise strategy after discussion

3 Exchange Offers and Arguments

i- Modify Strategies
» Exchange Offers

:4. Reaching Agreement

= Develop joint proposals
» Identify a number of compromises

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

:5. Concluding Negotiation

» Evaluate compromise, discuss improvements
» Discuss agreement implementation

Figure 3: The five phase negotiation model [20]

The phases depicted above are subsequently executed. However, the engaged parties
may return to one of the previous phases at sometime during the course of negotiation
or may bypass a phase. The first two phases consist of pre-negotiation activities. In the
Planning phase negotiators collect all relevant information, try to model their counterpart
and specify objectives, preferences, reservation values, and their initial strategy. In the
Agenda Setting and Exploring the Field phase, they exchange information concerning
negotiation issues, protocol and deadline. At this phase the engaged parties may
reassess the negotiation problem and change their initial strategy. In some cases many
activities of this phase may be skipped, particularly if negotiators do not want to disclose
strategic information, such as their deadline. The third phase, Exchange Offers and
Arguments, is the phase that negotiation actually takes place. The two sides take
alternate turns and exchange offers and counter offers. During the negotiation dance,
the engaged parties may modify their strategy. Negotiation continues until deadline is
reached, where the process terminates without success, or until an agreement is
established. It is at the fourth phase that both parties confirm the agreement.
Concluding Negotiation consists of post-negotiation activities, and takes place when
negotiators reach an agreement. In this phase they may discuss additional issues which
have no impact on the negotiations (e.g. the agreement implementation).

2.4 Research methodology used in the study of negotiations

The main research methods used in the theoretical analysis of negotiations are game
theory (a normative approach — how groups of ultra-smart individuals should make
separate interactive decisions), decision analysis (a prescriptive approach - how an
analytically inclined individual should and could make wise decisions), behavioral
decision making (a descriptive approach - the psychology of how ordinary individuals do
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make decisions), negotiation analysis (mostly prescriptive - how groups of reasonably
wise individuals should and could make joint, collaborative decisions) and atrtificial
intelligence (a prescriptive approach).

2.4.1 Game Theory

Game Theory has been extensively used in the study of negotiation interactions. Its
analytical approach specifies what each of the rational players should do given a set of
tightly defined assumptions.

A central concept in game theory is that of equilibrium. A notable type of equilibrium is
the so-called Nash equilibrium, where no player has an incentive to deviate from a
particular strategy, given that the other players stick to their strategies. Two strategies S
and T are in Nash equilibrium if one player uses strategy S and the other player cannot
do better by using some strategy other than T, and vice versa. Another level of
equilibrium is that of Perfect equilibrium, which is achieved in games with multiple steps,
and given that a player uses strategy S, there is no state in the game where the other
player can do better by not sticking to strategy T. Finally, a third level of equilibrium is
that of dominant equilibrium, where a player cannot do better than play strategy S,
irrelevant to the strategy of the other player.

Another concept used in game theory is that of mechanism design, also known as the
implementation problem. Given a group of negotiators with predefined utility functions
and preferences over the different social outcomes, the objective is to design a game
with a unique solution (equilibrium strategies). If each negotiator acts ‘rationally’ and
adopts the equilibrium strategy, the social welfare function, which rates all possible
social outcomes, will be maximized.

A seminal work on the use of game theory tools to the study of automated negotiations
is that of Rosenschein and Zlotkin [21].

Numerous game theoretic frameworks that provide neat solutions to the negotiation
problem can be found in literature [22] [23] [24].

However, the assumptions made in game theory are too restrictive to have wide
applicability. Unbounded computational power (resources) of the negotiators, complete
knowledge of the outcome space and of the preferences and utilities of the other
parties, as well as the assumption that all parties act rationally, are some commonly
stated points that restrict the application of game theoretic models in real situations. The
third assumption is required in game theory, because each negotiator assumes that his
counterparts will adopt the optimal strategy, and searches for the best response to
optimal strategies. However, if game theory’'s predictions become inaccurate, its
prescriptive advice becomes unreliable.

In an attempt to overcome the problems of game theoretic approaches, heuristics are
applied to the design of negotiation procedures. In heuristic approaches the
assumptions of complete knowledge, rationality and unbounded computational power
are relaxed, and negotiators operate in uncertain and dynamic environments, and adjust
their behavior with respect to the elapsing time, diminishing resources and counterpart’s
moves. Heuristic approaches result in sub-optimal heuristic search in the space of
possible agreements [25].

An extension of heuristic approaches is argumentation-based techniques that use
communication performatives such as lies, threats, promises and rewards during
negotiation. Negotiators increase the likelihood and quality of an agreement by
exchanging arguments that influence each others’ states [26].
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2.4.2 Decision Analysis

Another research method which has been used in the theoretic analysis of negotiations
is that of decision analysis. Decision analysis deals with modeling, optimizing and
analyzing decisions, and assists decision makers in complex situations, usually under
uncertainty. Decision analysis provides prescriptive orientation and should be evaluated
by its ability to help people make better decisions.

According to Simon [27], decision making comprises of the following four steps:
recognize the problem, specify the decision-makers’ objectives, develop alternatives,
evaluate and choose among the alternative decisions. Decision theory provides a wide
range of instruments which can help represent, analyze, solve and evaluate a decision
problem, as well as uncover existing relationships among data. For the representation
and analysis of the problem graphical paradigms, such as decision trees and influence
diagrams play an important role. Other tools, mainly based on statistical methods, such
as forecasting and regression analysis, have also proved important in the analysis and
recognition of relationships between data. The decision maker explores the list of
various alternatives and predicts the consequences that would arise from each
particular alternative [28]. In order to make a wise decision he assesses his judgments
about uncertainty and examines his attitude towards risk. The decision maker performs
uncertainty analysis, for example assigns subjective numerical probabilities to the
likelihoods of the outcomes. A von Neumann-Morgenstern expected utility criterion [29]
typically aggregates subjective probabilities, values, risk and time preferences in
ranking possible actions to determine the optimal choice.

2.4.3 Behavioral Decision Making

There also exists a descriptive view of decision-making which focuses on how people
actually make decisions. This view, which heavily relies on psychology, is empirical and
provides evidence that people process information, assess probabilities, and make
decisions in ways not consistent with the rational prescription of decision analysis and
game theory. Research in factors, such as social relationships, egocentrism, ethics,
emotions, and intuitions was incorporated into the field of negotiations [30]. Descriptive
research assists a negotiator into anticipating the likely behavior of the counterparts. In
[31] it is stated that negotiators care more about the relative than about the absolute
outcome, often preferring Pareto-inefficient solutions in order to avoid being
comparatively disadvantaged. For instance people were found to prefer the outcome of
seven dollars to each side, than eight dollars for them and ten for the counterpart.
Another finding provided by Thompson and Loewenstein [32], states that the more
egocentric negotiators are the less likely it is to conduct successful negotiations. There
are also studies that focus on the permissibility of common bargaining tactics. A
characteristic debate is that of ethics of deception in negotiations [33]. Emotion of the
negotiators is another factor that plays an important role in negotiations. It is found that
positive mood increases negotiator’'s tendency to adopt a cooperative strategy and
helps avoid the development of hostility and conflict [34]. Additionally, negotiators’
frames (positive or negative) also seem to play a crucial role on the risk profile of the
disputants. In cases where negotiations are viewed as procedures of gain maximization
(positive or gain frame), negotiators are more risk aversive, while in cases where they
are viewed as procedures of loss minimization (negative or loss frame), negotiators are
more risk prone [35]. Reliance on intuition is another issue studied by the behavioral
scientists. It is believed that negotiators trust their intuition and this often leads to
irrational behavior, improper weighting of information and sub-optimal outcomes [36].
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Good descriptive analysis is highly empirical and can lead to good predictions of actual
behaviors.

2.4.4 Negotiation Analysis

The field of negotiation analysis lies between the fields of behavioral decision making,
decision analysis and game theory. It tries to fill the gap between prescriptive and
descriptive studies, and develop theories that will aid negotiators and third parties.
Game theory mostly gives normative advice to all parties, while negotiation analysis
concentrates on giving prescriptive advice to one of the negotiators after reflecting on
the behavior of other negotiators. Advice to one side does not necessary presume the
full (game-theoretic) rationality of the other sides. Instead it tends to de-emphasize the
application of game-theoretic solution concepts to find unique equilibrium outcomes.
Negotiation analysts generally focus on changes in perceptions of the zone of possible
agreement and the (subjective) distribution of possible negotiated outcomes conditional
on various actions. Sebenius in [37] identifies the basic elements of negotiation analysis
and associates them with the corresponding research disciplines. Mapping the set of
potentially relevant parties and their relationships, identifying personal interests, and
assessing alternatives lie in the context of decision analysis. Negotiation analysts
combine decision analysis with game theoretic concepts when it comes to structure the
negotiation outcome. More specifically they use game theoretic techniques to compute
the strategies that will result to equilibrium and assess the risk of applying them. The
negotiator's subjective distribution of beliefs about the negotiated outcome conditional
on using the game-theoretic tactic is compared with his subjective distribution of beliefs
about the negotiated outcome conditional on not using them. The tactic is attractive if
the former distribution gives the negotiator higher expected utility than the latter.

2.4.5 Artificial Intelligence

Approaches stemming from computer science and particularly artificial intelligence (Al),
have also contributed in the design of software agents and negotiation support systems.
Negotiation problems are usually ill-defined, information is not equally distributed among
participants and negotiators have only partial knowledge about their counterparts.
Methods of Al allow negotiators to learn and update their knowledge about their
counterparts and the environment. They are also able to make wiser decisions and
search for optimal or sub-optimal strategies. In the planning phase, where the negotiator
has to select negotiating partners and strategy, and during the conduct of negotiation
where he has to update his knowledge and decide his next action, models based on
probabilistic decision theory, possibilistic decision theory, Bayesian learning, case
based reasoning, Q-learning, genetic algorithms and neural networks are used to
support the negotiation activities. This thesis focuses on the contribution of Al in
negotiations and these methods will be discussed in detail in the following sections.

2.5 Electronic Negotiation Systems

At this point it is essential to distinguish between face to face (F2F) and electronic
negotiation systems (ENS) [38]. In F2F negotiations, the participants, provided with
enhanced degree of freedom, are foremost responsible to decide on information, rules,
activities etc. This is the case with traditional negotiations which rely on human
expertise and little, if at all, on information systems. The advancement of software
engineering and internet technologies has given rise to the development of electronic
negotiation systems (ENS), defined as software tools for the purpose of organizing,
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facilitating, supporting and/or automating negotiation processes. Kersten and Lai in [39]
identify four kinds of software that have been designed for negotiations; e-negotiation
tables (ENT), negotiation support systems (NSS), negotiation software agents (NSA)
and negotiation agent assistants (NAA). ENTs provide the participants with a virtual
space and tools in order to undertake negotiation activities. They are considered as
arenas, or negotiation workbenches, and are usually passive systems, oriented in
facilitating communication of participants. In their simplest form they are virtual spaces
where negotiators and third parties post offers and messages.

NSSs are defined as software tools which incorporate communication facilities and
implement models and procedures to support participants in negotiation activities.

NSAs and NAAs are based on software agent technologies. The key characteristics of
software agents is that they are autonomous, they act on behalf of their human or
artificial principles, they are able to be reactive and proactive in deciding on undertaking
an action and they exhibit some level of capabilities such as learning, co-operation and
mobility. NSAs are designed with the purpose to automate one or more negotiation
activities. NAAs are agents designed to provide advice and critique, without engaging
directly in the negotiation process. NAAs play the role of analysts and experts and
provide negotiators with relevant knowledge about their counterparts, process and
problem.

2.5.1 Agent Types

Braun et al. [20] discuss the different types of software agents with respect to their role,
and distinguish user profile, information, opponent profiling, proposer, critic, negotiator,
and mediator agent. The tasks delegated to each agent type relate to the process
model depicted in section 2.3 and each agent may be assigned tasks of different
phases.

User Profile Agent: A user profile agent focuses on determining user preferences
expressed in terms of reservation values, aspiration levels, as well as best alternative to
negotiating agreement (BATNA), objectives, and strategies.

Information Agent: Information agents are engaged in actively seeking, retrieving,
filtering and delivering information relevant to the negotiation domain.

Opponent Profiling Agent: Knowing the opponent’s profile relates to the identification of
objectives, preferences, and strategies of the opponent. Such information yields better
strategic decisions and can be delivered by the opponent profiling agent.

Proposer Agent: Proposer agent is concerned with the search and generation of offers
to be submitted to the opponent.

Critic Agent: Critic agent is a type of NAA concerned with the evaluation of offers
received from and addressed to the opponent. Such agents are capable of providing
verbal feedback on drawbacks and benefits of these offers.

Negotiator Agent: NSAs are capable of conducting negotiations on a semi or fully
autonomous fashion, based on certainty upon the objectives, preferences and tactics.

Mediator Agents: The purpose of this agent is to coordinate activities and generate
mutually beneficial offers. Raiffa [16] discusses the roles of interveners in negotiations
and distinguishes between facilitator, mediator and arbitrator.
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Increasing level of automation gives rise to interaction of different agent types which
update their beliefs about the particular negotiation stance, and carry on with their task.
Figure 4 illustrates a generic agent architecture, as depicted in [20].
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Figure 4: A Generic Agent Architecture

2.5.2 Systems and platforms

Numerous software platforms have been developed to support negotiations in different
exemplar domains. WebNS [40] is one such example that focuses on offer preparation
and provides support to the exchange of offers and counter-offers with the use of real-
time chat and video conferencing. Inspire [41] is another ENS that is based on a three
phase process model and is mainly used to investigate cross-cultural negotiations.
Inspire has been used to facilitate the bicycle-parts purchasing problem. The InterNeg
Support System (INSS) [41] is an extension of Inspire. It provides a workbench of
negotiation tools and allows the introduction of new issues at any point during
negotiation. A system that is used to generate ENS instances and allows the execution
of several negotiation processes is InterNeg virtual integrated transaction environment
(Invite) [42]. It is mainly used for training and research purposes.

Other software platforms are based on agent technology. e-Negotiation Agents (eNAS)
[43] is an example of an agent-based e-platform demonstrated in a number of test-beds
of e-commerce trading. It provides a suite of negotiating agents that act on behalf of
their users and can engage in automated negotiations over the Internet. The agents
share information about objects and conduct negotiations usually following a predefined
protocol. Fuzzy e-Negotiation Agents (FeNASs) [44], is another prototypical system with
e-commerce trading agents. FeNAs consists of a nhumber of autonomous agents that
conduct concurrent negotiations, and specify fuzzy constraints and preferences. Other
agent-based negotiation systems are Intelligence Trading Agency (ITA) [45], a pilot
application that uses the Personal Computer trading scenario, and Kasbah [46], a
prototype online virtual marketplace where users dynamically configure and describe
the items to sell. Similarly, negotiations in market places may include dispute resolution
over non tangible items. For instance Cybersettle [47] is an on-line system that supports
negotiations of insurance claims. When electronic commerce moves into business-to-
business marketplaces or even supply chain management, negotiation over complex,
mutually determined contracts describing the terms of the transaction is necessary.
Business processes are supported by infrastructures, where control and management
of activities is entrusted to autonomous agents. One such example is ADEPT
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(Advanced Decision Environment for Process Tasks) [25], which can be viewed as a
generic method of structuring the design, development and conduction of business
processes, based on a set of autonomous agents which interact when they have
interdependencies. Another example is Tete - a —Tete [48] which supports negotiations
across multiple terms of a transaction including warranties, delivery times, service
contracts, return policies and other value-added services. Similarly, MAGNET (Multi
AGent NEgotiation Testbed) is an experimental architecture developed at the University
of Minnesota to provide support for complex agent interactions such as in automated
multi-agent contracting. Agents in MAGNET negotiate and monitor the execution of
contracts among multiple suppliers [49].

Last but not least, eAgora [50] is an e-marketplace that allows buyers and sellers to
engage in multi-issue negotiations. Its services include a software agent that generates
and critiques offers.

E-market players are often modeled with the use of autonomous software agents. Multi-
agent platforms is a preferred mechanism for studying market deregulation, since social
aspects are taken into account and reflect with better accuracy the relationships of
various market players compared to auction mechanisms. In the following section we
discuss the domain and interactions of an electricity market.

2.6 An example domain: electricity markets

An electricity supply system consists of three basic functions: power generation,
transmission and distribution. Electricity is produced from a number of energy sources,
distinguished in those with high capital cost (such as hydro or nuclear stations) and
those with low capital but high operating cost (such as gas turbines), mainly used to
meet peak loads. Large power and heat stations are often located at considerable
distances from the main areas of electricity demand. For this reason it is essential to
have an adequate electrical system to transport electrical power from the large stations
to the main load centers. Transmission of very large amounts of power involves high
voltage networks (HV). An electricity distribution system is then used to deliver electrical
energy from transmission substations or small generating stations to each customer,
transforming to a suitable voltage, medium (MV) or low (LV), when necessary. In the
1990's there has been a strengthening trend towards breaking up the vertical integration
in the electric power industry by separating the generation, transmission, and
distribution of electricity into separate business areas. This trend has increased the
demand towards opening up transmission and distribution networks to producers,
suppliers and consumers and the appearance of independent power producers. In the
power distribution sector deregulation allows consumers to select their electricity
suppliers.

2.6.1 Market deregulation: the situation in Greece

All the countries of Western Europe have taken steps to liberalize their electricity
industries. Large consumers (selected customers) in every country can choose their
electricity suppliers and in some countries this choice is given to every consumer. In
Greece an independent administrative authority, the Regulatory Authority for Energy
(RAE), has been established to promote harmonization of the Greek law with the
directives of the European Community concerning the liberalization of the electricity
market. RAE controls and monitors the operations of all sectors in energy market. It is
provided with the ability to issue administrative and normative acts, which are later
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approved by a governmental department (the Ministry of Development). It also
publishes the annual electricity transactions and progress reports (RAE). Deregulation
of electricity was conducted in 2001. Although the energy business areas have been
liberalized, some network activities remain monopolistic. To this extent two
organizations, one controlling the transmission system (AEZMHE) and one the
distribution networks of medium and low voltage (AIAXEIPIZTHX AIKTYQY), have been
established. Stakeholders who wish to insert energy to the system also need to pay
fees for the use of interconnection lines. The main entities that form the electricity
market are producers (generators), suppliers and consumers. The latter are further
distinguished in selected customers, mainly industries, who are provided with the ability
to select among a number of suppliers, and non-selected customers who are supplied
by a particular organization (AEH). The types of bills of sale among the entities of an
electricity market that have been published by RAE actually disclose the different
business transactions and are grouped in the following activities:

Electricity Supply to Selected Customer

Contracts are established between suppliers (or producers) and selected customers,
such as industries, who mainly connect to high or medium voltage networks. Electricity
supply to selected customers is operating under commercial competition.

Electricity Supply to Non-selected Customer

Since 2006, the ability to select one’s own supplier has been opened to households who
connect to low voltage networks. Nevertheless, this operation is still monopolistic, since
there is only one organization in Greece (AEH) which supplies non-selected customers.

Use of the Transmission System

This type of contract is issued by the organization which controls the transmission
system (AEXZMHE) to those who wish to insert energy to the system (producers). It
involves fees imposed for the use of the transmission system and is monopolistic.

4. Use of the Medium Voltage Network
5. Use of the Low Voltage Network

The above operations are monopolistic and issued by one organization (AEH) to those
who wish to use the distribution networks (for instance suppliers who provide energy to
consumers who connect to medium or low voltage networks).

2.6.2 Electricity e-market

Restructuring the electricity industry into an open market has created demands for new
software tools to meet future challenges and requirements of competitive environments.
There exist two types of markets in which energy is traded: the spot market and the
forward (over-the-counter) market [51]. In the spot market energy is traded in real-time
and transactions are conducted through centralized auction mechanisms that determine
how much energy each unit should produce to meet the demand. On the other hand, in
the forward market, bilateral contracts concerning future delivery of electricity are
established. Electricity supply of selected customers and use of the transition system,
are two activities where bilateral negotiations are encountered. In the first case
producers (generating companies) trade energy by way of signing bilateral contracts,
which are referred to as physical forward contracts, with their counterparts (e.g.,
selected customers).

The parties communicate with the use of agents who automate the negotiation process,
to facilitate computational overhead, be able to analyze larger stacks of data, and
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reduce human intervention. Supply of electricity is considered as a service according to
Directive 2003/54/EC. Specific details such as trading quantity, trading duration, trading
price and penalty terms (refunds) are bilaterally negotiated between the engaged
parties. Negotiation contracts are discussed in the following paragraph.

2.6.3 Negotiation Contracts

The object being negotiated may also be referred to as a contract. Contracts contain
identification and a negotiation part. The identification part includes information to
uniquely identify the contract, such as contract id, contract name etc. The negotiation
part involves the actual issues included in the offers exchanged between the engaged
parties. According to [52] there are six elements (categories) that describe the attributes
of the negotiation contracts (Who, What, Where, When, Why and How). These
elements are described below:

“Who”: This element provides the identities of the parties involved in the targeted
negotiation process. It may include primary parties such as stakeholders (producers and
consumers) or secondary parties such as supporting institutions, shipping companies
etc.

“What”: This element provides information about the negotiation subject. If for example
negotiation is conducted for the provision of electricity, the number of KWh and its
related price are two issues that fall under this category.

“Where”: Attributes of this group concern the region where the service will be
provisioned, or the object will be delivered. In the case of electricity trade, this element
may involve the connection point of the distribution network (HV, MV or LV).

“When”: Temporal clauses involve location information of the negotiation processes. An
example could be time and duration of service provision.

“Why”: This part describes the motivation of negotiation. In electricity provisioning,
motivation depends on the electricity customers; therefore it may involve industrial,
commercial, agricultural, public or house holding use.

“How™: This attribute involves the penalty cost if terms are violated. Penalties are
expressed in terms of price deductions as a means of customer insurance. If a supplier
proves inconsistent he is obliged to reduce the agreed price by a specified amount.

Contracts that involve the provision of services are defined as Service Level
Agreements (SLASs). In the Figure 5, we give an example of an SLA equivalent to an
electronic electricity contract, established between a producer and a consumer
(selected customer).
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Service Name: Electricity Supply to Selected

Customers

SLA_ID: Contract 1
:| Agreement Initiator: National Bank of Greece WHO?
.| Agreement Responder: Energy Global Trading Ltd :
:| Service Provider: Energy Global Trading Ltd

:| Connection Network: MV WHERE?

:| Region of Provision: Athens .
.| Motivation: Commercial ... .. ... .. WHY?
‘| Expiration Date: January 2013 VHEN?

‘| Start Time: 07.00
;| End Time: 17.00

;| Duration: 10 hours ¥
................. ) VY
qub_er of KWh: 100 : Negotiation
| Price in Euro Cents per KWh: 12,8292 ... | pat
Penalty Cost: 10% of the agreed price | HOW?

Figure 5: A Contract between Suppliers and Selected Customers

In the example, negotiations are conducted for the settlement of duration (measured in
hours), penalty terms (percentage of the sum which will be returned to the consumer in
case of dissatisfaction), quantity (humber of KwWh) and price (in Euro Cents) per unit of
electrical energy. These attributes constitute the Negotiation part. The negotiation
environment is competitive and the two agents have opposing interests; the consumer
will start from a low price and a low number of Kwh, which he will increase in each
round, while he will start from a high percentage of refund and high service duration
which he will decrease in each round. At the same time the producer will initially request
high price per Kwh, and high number of Kwh which he will lower in each round, and low
penalty and duration of service provisioning which he will increase in each round. In the
next chapter we discuss the model of bilateral negotiations.
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3. MODEL OF BILATERAL NEGOTIATIONS

The type of conflict that governs the interaction, the participants and the role they play,
their social behavior, as well as the commodities (tangible or not) that are being
discussed are used as discriminative entities in an attempt to classify the various
negotiation domains. The domain being investigated in this thesis, concerns bilateral
(one-to-one), multi-issued negotiations between competing agents (i.e. consumer and
producer), where each party’s individual preferences and strategic information are
private and not disclosed to the counterpart.

3.1 Requirements of the negotiation domain

As mentioned earlier, the negotiation environment considered is tied to bilateral multi-
issue negotiations, where all issues are bundled and discussed together (package
deal). Further assumptions concerning the application domain are the following:

1. Negotiators, referred as producers or consumers, have conflicting interests.

2. Issues are quantitative and negotiation amounts to determining a value between
delimited ranges.

3. Negotiators have a prior agreement over the set of negotiable issues.

Negotiators are autonomous and do not have access to private information of
their opponents (assumptions about opponent’s strategies and preferences is
only considered for the development of experimental settings).

5. Negotiators are subject to time restrictions, and define a deadline, the maximum
time they are willing to negotiate. Deadline is not revealed to the counterpart.

6. Negotiators have limited resources.
In the next sections the bilateral negotiation model is described.

3.2 The negotiation protocol

The negotiation activities, usually translated as rules of encounter, indicate permissible
actions, content and timing of utterances. These rules constitute the negotiation
protocol, and guide an agent to address the challenge of “what he should say and when
in a particular negotiation framework”. Each interaction is governed by a set of rules that
constrain the public behavior of the participants [21]. They are incorporated in the
negotiation protocol and guide software processing, decision making, communicational
tasks and specification of permissible inputs and actions [53].

The interaction is modeled as a sequence of offers and counter-offers, which terminates
with either a commitment by both parties to a mutually agreed solution or unsuccessfully
without establishment of an agreement. The possible state transitions of the negotiation
protocol are shown in Figure 6.
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Pre-negotiation
Phase
Propose (b->a)
Accept (a->b)  Accgpt (b->a)

Initial State

O O

Terminal State

Figure 6: The negotiation protocol

The protocol starts with a dialogue to establish the conditions for the negotiation
(transition from state O to state 1). In this pre-negotiation phase, the engaged parties
must specify the set of issues and decide who will initiate the process. The initiator then
makes the first offer (transition from state 1 to state 2 or 3; the ‘or’ transition from state
1, is represented with an arc joining the two proposals in Figure 6). The counterpart may
accept the initial proposal and successfully terminate the process moving to state 4,
send a counter-offer moving to state 2 or 3, depending on who was the initiator, or
withdraw moving to state 5. If he decides to send a counter-offer, it is the initiators’ turn
to make a move. He may accept the received offer, withdraw from negotiation or send a
counter-offer as well. The engaged parties may iterate between states 2 and 3, until an
offer is accepted, or until any of the negotiators reaches his deadline and withdraws.
Termination of the negotiation protocol is guaranteed through the presence of
deadlines. This protocol is an extension of the Contract Net Protocol [21].

3.3 Formal definition of negotiation entities

In this section we proceed with a more strict definition of the negotiation environment.
Let Agents = { a, b }, be the set of autonomous agents that engage to the discourse. At
a pre-negotiation stage the agents agree upon the negotiable issues (or attributes) and
their meaning. Therefore, we consider a finite set of quantitative issues | = {i1, iz, . . ., in}
which form the negotiation part of the contract. For each issue in |, agent a assigns a
range of permissible values. This information is not revealed to the counterpart and the
domain of reservation values for each issue i is defined as D :[min{, max}].

Agent a also specifies a utility function U? : D? — [0,1] that scores issue i in the range of
its permissible values. For convenience, scores are kept in the interval [0,1].

The relative importance for each issue i is assigned by a weightw? by agent a. The
1

weights are normalized, thus for n issuesZwﬁ =1.
n

At a pre-negotiation phase, agent a also needs to specify the deadline T3 , which

indicates the maximal time he is willing to spend during the discourse. In the cases
studied time variable t is discrete and expresses the interaction step (negotiation round).
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Having set the reservation values, weights, utility functions, and deadlines the engaged
parties can proceed with the actual conduct of negotiation (state 1).

As shown in Figure 6, the agents take alternate turns proposing offers and counter-
offers (they iterate between states 2 and 3) until an agreement is established (state 4)
or until any of the involved parties reaches his deadline and negotiation terminates

without success (state 5). The offers exchanged during the discourse are represented

. - - - t — t t t T
by vectors in the multi-dimensional space. X, = (xl(aﬁb),xz(aeb),..., xn(aﬁb)) represents

the negotiation offer sent from agent a to agent b at time t, and each attribute xf(aﬁb)
denotes the offered value of negotiable issue i. It should be noted that agents keep
track of the offers exchanged during the discourse and formulate the negotiation thread,

formally defined below:

A negotiation thread between agents a,b at time t,, noted X is any finite sequence

b !

of length n, of the form (X ), X ¢_as X (sppy -+ ) Where:

tis1 > t;, the sequence is ordered over time

for each issue i, x;’ e D? and x;j;*,., € D?,wherej=1,35 ...

i(a—b) i(b—a)

Agents can assess the different negotiation offers by computing the overall utility, which
is the weighted sum of the utilities attributed to each issue, thus:

U (X) = 20 U200 (eq. )

The additive utility function in (eq. 1) allows the consolidation of individual preferences
over each issue into a single preference value.

An agreement may be reached only if the attribute values of the proposed offer lies
within the acceptable range for both parties, or if any of the two agents receives an offer
that incurs higher utility than the offer he is planning to send in the next round. Thus the

action X taken by agent a at time t is formulated as follows:

Quit, if t>T2,
Ata = ACCGpt X(tb_:a)’ If U a(X(tb_ia)) 2 U a(X(tal—»b))
¢ :
Send X ,_4,,Otherwise (eq. 2)
Where X, is the offer agent a is planning to send at time t, and X(‘gia) is the offer he

received from agent b at time t-1. The construction of offers in each round is based on
the agents’ negotiation strategy, which is discussed in the following section.

3.4 Negotiation strategies

Strategy involves the decision of an action, given a set of permissible ones (specified by
the protocol). The term is often used synonymously with behavior. As mentioned in the
second chapter, Blake and Mouton introduced the Dual Concerns model which
describes five behavioral classifications regarding the level of assertiveness and
cooperativeness [19]. These classifications are competing, collaborating, compromising,
accommodating and avoiding. Assertiveness reflects the concern to satisfy one’s own
interests, while cooperativeness reflects the concern to satisfy the other party’s
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interests. Cooperativeness and assertiveness are viewed as two independent
dimensions that run from weak to strong as shown in Figure 7.

High . .
" Competing Collaborating
Assertiveness
(Concern for self L.
Interests) Compromising
Low Avoiding Accommodating
Low High

Cooperativeness
(Concern for other
party’s Interests)

Figure 7: Behavioral Classifications (the Dual Concerns Model)

Avoiding conflict style is characterized by inaction and passivity, and is typically used
when an individual has low concern for his own and for the other party’s interests.
Accommodating conflict style is characterized by high concern for the other party's
interests and low self-concern. Negotiators of this type tend to make high concessions
in order to maintain stable, positive social relationships. In contrast, competitive conflict
style maximizes individual assertiveness (self-concern). Groups consisting of
competitive members generally seek domination over others, and typically see conflict
as a “win-lose” situation. At the other end, collaborating conflict style is characterized
by high concern to satisfy one's own and the other party's interests. Collaborating
negotiators see conflict as a creative opportunity, and are willing to invest time and
resources into finding a “win-win” solution. Finally, compromising conflict style is typical
for negotiators who possess an intermediate-level of concern for both personal and
other party’s interests. Compromisers anticipate mutual give-and-take interactions.

The different actions taken by the negotiators during discourse can be viewed as moves
in the utility space, where utility is computed by equation 1. In bargaining theory, the
different shares of the utility space distinguish two different types of bargaining,
integrative or “win-win” and distributive or “win-lose”. Integrative negotiations are highly
cooperative, and can be viewed as non-zero sum games where the values of different
issues shift along different and usually independent dimensions [21]. Opposing,
distributive negotiations may be viewed as a zero-sum games, where the issue value
shifts across one dimension with any gain for one party being the other’s loss [21,54].

Faratin et al. [25] has implemented a responsive and a trade-off mechanism that can be
used to generate offers and counter-offers covering all types of behaviors. In Figure 9 a
scenario of compromising agents using the responsive mechanism is illustrated. The
two agents gradually concede, making offers of decreasing utility, until an agreement is
established. In the trade-off mechanism, which results to “win-win solutions”, contracts
that increase the joint utility are searched in the pareto optimal curve (curve illustrated in
Figure 8).
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Figure 8: Negotiation example with use of the Responsive Mechanism [25]

This thesis focuses on competing behaviors where negotiators act as individual utility
maximizers. The use of trade-offs is out of the scope of this research, and will not be
further analyzed. In the following section the responsive mechanism [25], providing a
heuristic-based approach to the study of negotiations (section 2.4.1), is discussed.

3.4.1 Theresponsive mechanism

The Responsive Mechanism is based on the combination of simple functions called
tactics, to generate an offer or counter-offer of a single issue of the negotiable object.
Tactics are classified to Time Dependent (TD), Resource Dependent (RD) and Behavior
Dependent (BD), reflecting the agent’s behavior with respect to the elapsing time,
diminishing resources and counterpart’s responses respectively. These criteria are
motivated by an agent’s computational and informational bounds. For example as time
elapses and resources are consumed, offers which incur high utility may be
unattainable, and agents may prefer to make higher concessions in order to reach an
agreement. Given that the agents may consider different criteria to compute the value of
a single issue, the generation of a counter-offer is modeled as a weighted combination
of tactics. The tactics of the responsive mechanism are discussed in detail in the
following subsections.

3.4.1.1 Time dependent tactics

In this family of tactics rising recessional tendency is modeled as the deadline
approaches. Time t is the predominant factor to the formulation of the next offer and the
concession curve is what differentiates tactics in this set.

The value computed by agent a for issue i varies in the interval [min{,max®], and is
defined by a function a:(t) as follows:

. min’ +a (t)(max;—min?),if valueincreasesover time
Xiash) =

min? +(1—a’(t))(max®—min?),if value decreasesover time

A wide range of Time Dependent functions can be defined by varying a’(t). A constant
k? is also used to specify the initial value to be offered. It must be ensured that 0 < a’(t)
<1, 0<k’<1, ai(0) = k*and a’ (T2, )= 1. Two types of functions, polynomial and

exponential are mainly used to model the time-dependent function. Both types are
parameterized by a real value B which indicates the convexity degree of the curve.

Function a? (t) is thus formulated as follows:
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Polynomial functions tend to concede faster than exponential. For the same large value
of B, the polynomial function concedes faster at the beginning than the exponential one,
and then they behave similarly. Depending on the value of 3 two extreme sets showing
different patterns of behavior are identified:

Boulware Tactics: This set is adopted by “hard” negotiators who stick to their initial offer
until time is almost exhausted, whereupon they decide to concede up to the reservation
value. This behavior can be realized with values of B<1. Remaining firm in terms of
demands is a technique to handle uncertainty: when the counterparts’ preferences are
unknown, one possible strategy is to stick to the same value during the discourse.

Conceder Tactics: This set is adopted by “soft” negotiators who decide on fast
concession and quickly reach their reservation value. This behavior is realized with
values of >1.

The following Figure demonstrates the different behavioral patterns with respect to the
value of 3.
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Figure 9: Polynomial (left) and exponential (right) functions for the computation of a (t) [25]

Time Dependent tactics can be viewed as a special case of Resource Dependent
tactics, where the resource being consumed is time. Resource Dependent tactics are
discussed in the following section.

3.4.1.2 Resource dependent tactics

This family of tactics models the pressure that the limited resources (e.g. number of
negotiating agents, remaining time) and the nature of the environment impose on the
negotiators. The expected behavior is for the agent to progressively become more
conservative as the quantity of a resource diminishes. Formally, function a? (t) is

computed as follows:

a? (t) = kia + (1_ kia)e—resourcea(t)
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where the function resource®(t) measures the quantity of the resource for agent a at
time t. If the number of agents who negotiate with agent a at time t is the resource, then

resource“(t):‘Na(t)‘. As expected, the more agents negotiate with agent a, the lower

the pressure to reach an agreement with any specific individual. If time is the resource
then resource®(t)=min( 0, t-T 2

max )

3.4.1.3 Behavior dependent tactics

In this family of tactics negotiators imitate the behavior of their counterpart. The
responsive action is the result of the observation of the other party’s behavior and the
degree of imitation forms the fundamental distinctions among the available tactics of this
set. Like Boulware tactics, they can also be selected as a technique to handle
uncertainty. Whereas Boulware tactics handle uncertainty by ignoring the behavior of
the counterpart, these tactics condition their actions on the observed behavior. Three
families of tactics Relative Tit-for-Tat, Random Absolute Tit-for-Tat and Averaged Tit-

for-Tat are distinguished. ~ Given a negotiation thread: { ...,Xg72 , XgoZo®,
X202, o X X (0 X (oe | With 821 the families of tactics are formally defined as
follows:

Relative Tit-For-Tat:

This family of tactics is based on the proportional imitation of the counterpart’s behavior.
Agent a reproduces, in percentage terms, the behavior (increase or decrease)
performed by his opponent 821 steps ago. The condition of applicability of this tactic is
n>23. The offer produced is derived by the equation:

tn 26

t i(b—a)

X;
it = Min(max(———- X
20+2

i(asb) =

min’), max;)

|(a»b) J
|(b—>a)

Random Absolute Tit-for-Tat:

In this family of tactics agent a produces an offer mimicking the absolute value of
increase or decrease performed by his opponent within the last & steps. This value is
increased or decreased by a random value which belongs to the range [0,M]. If R(M) is
the function producing these random values, and s is O or 1 if the issue has a
decreasing or increasing value over time respectively, the equation illustrating the
produced offer is the following:

Xitapy = MIn(Max(XitL,e) + (Xi2a) = XiGas) + (=1)°R(M),minf), max?)

i(a—b) |(baa)
The condition of applicability of this tactic is again n>20.
Averaged Tit-for-Tat:

In this family of tactics agent a computes the average of percentages of changes in a
window of size y=1 of its counterpart’s history. When y=1 the behavior is similar to the
Relative Tit-For-Tat with d=1. The condition of applicability for this tactic is y>2. The
produced offer is derived by the equation:

tn 2y
b
Xt = min(max(——2 x4

i(a—b)

min;), max;)

|(a»b) !
|(b—>a)
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3.4.1.4 Strategy: A linear combination of tactics

Different combination of tactics can be used to determine the agent’s strategy. This
concept is similar to the concept of mixed strategies used in game theory.

Given a set of m tactics and n issues, the negotiators’ strategy is a weighted linear
combination of the tactics, formulating the strategy matrix:

Yu Y2 o Vim

ga= Voo Y2 o Vom

7/nl }/nZ J/nm

, Where each yj; denotes the weight of tactic j in value generation of issue i, and for each

issue i, Y 7; = 1.

j=1
3.4.2 Metastrategy selection

Strategy selection involves the decision of the negotiators actions and this decision
might not be crisp. As new knowledge penetrates the negotiation settings, participants
might decide to refine or completely alter their initial strategy. In the process model
adopted by Braun et al. [20] strategy selection relies among the tasks of the planning
phase and is updated during the negotiation analysis phase.

Deciding which actions to take on a specific encounter is a process influenced by a
number of factors. Thus an agent must be knowledgeable about the encounter in order
to make efficient strategic choices. Knowledge sources stem from the environment, the
data of previously concluded negotiations and from offer exchanges of current
discourse. The generic agent architecture in [20] indicates possible interactions that
help an agent formulate beliefs and estimations of the “world”, and guide his actions and
behaviors. In frameworks where fully automation is supported by a single NSA, the
agent must be skillful enough to collect relevant information and extract knowledge that
will result the generation of efficient strategies.

When an agent uses his experience to decide upon strategies prior to negotiation (at
the planning phase), he engages to a meta-level decision-making process, usually
conducted off-line, termed as meta-strategy decision. The agent takes into account the
factors that influence strategy selection, collect all relevant information, and decides an
appropriate mechanism for the interaction. An agents’ knowledge can be partitioned to
self knowledge, concerning personal resources, preferences, goals and risk attitude,
and to situation knowledge acquired by the agents’ sensors and concerning
environmental changes. The latter includes knowledge concerning the counterpart’s
strategy [55].

Strategy selection can be defined as a search problem in the space of potential
strategies. Decision making in the planning phase is equivalent to the initial selection of
the interaction mechanism, which may evolve during discourse with the use of trajectory
methods (for weight adjustment). Initial selection is guided by the current state of the
environment and the initial assumptions of the opponents’ preferences and strategy,
while the evolution and adaptation of a strategic scheme mainly depends on the
observation of the opponent’s moves and the modulation of his concessions.
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In chapter 4 a review of negotiators enhanced with learning techniques to facilitate
strategy selection at planning phase and during discourse is found.
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4. AI-BASED NEGOTIATING AGENTS

Different behaviors, reflected through the strategies, result to different negotiation
outcomes. Extensive experiments have proved that there does not exist a universal best
strategy, rather it depends on the negotiation domains, protocols, participants’ goals
and attitude towards risk, as well as counterparts’ behavior. Negotiators often have to
deal with vague data, limited information, uncertainty and time restrictions.
Enhancement of their strategic core with Al-Based techniques provides a way to
address these issues and adds value to negotiators since it allows them to extend their
knowledge and perception of the domain.

This chapter provides an overview of learning methods that form the core of state-of-the
art negotiators. The main objective is to facilitate the comprehension of the domain by
framing current systems with respect to learning objectives and phases of application
(at planning phase or during discourse), as well as to reveal current trends and virtues
of the applied methods.

4.1 Classification with respect to the learning technique

Negotiation process model adopted in most frameworks discriminates strategy selection
at the planning phase and strategy update during discourse. This has lead to the
existence of two schools when it comes to studying negotiation strategies. The first is
concerned with the selection of a strategy at a pre-negotiation phase, during formulation
of the problem. The second is concerned with strategy update, the change of behavior
during discourse, which may be due to changing preferences or environmental
parameters. We devise agents to those who intuitively adjust their behavior, and to
those who use reasoning skills in the decision-making process. In the former category
agents engage in learning methods that differ to the extent of knowledge exploration
and exploitation. Specifically, explorative techniques also imply the search for new
solutions, while repetitive techniques are based on knowledge reuse. For agents who
engage in reasoning processes to decide upon appropriate actions, learning is
introduced in the form of predictive decision making, where estimations of factors that
influence strategy selection or update serve as input to the agents’ decision making.
With respect to these factors we discriminate the following three categories: explorative,
repetitive and predictive which may be applied either at the planning phase for initial
strategy selection or during discourse.

4.1.1 Explorative strategies

Explorative strategies are equivalent to search techniques that follow a trial and error
learning process until some convergence condition is satisfied. Such techniques are Q-
learning and Genetic Algorithms (GAs).

An agent that uses reinforcement learning techniques is rewarded or punished based
on the consequences of the action taken. Each state-action pair is mapped to a value
named Q-value. When an action is performed, agent receives a reward, which is used
to evaluate the transition to a new state. The Q-value Q(i,a) of state i after taking action

a is updated after the following formula:
Q(i,a) = Q(i,a)+ mlr(i) + y max, Q(j,a) - Q(i,a)]

where m is a learning rate, r(i) is the reward gained by performing action ain state i, 7

iIs a discount parameter and j is the state attained. The reward may be positive or
negative depending on whether the action had good or bad results. There exist three
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different policies regarding knowledge exploration and exploitation. These are Greedy,
E-Greedy and Boltzman exploration. The Greedy policy favors knowledge exploitation,
and the agent tends to pick the action with the highest Q-value. The E-Greedy policy
favors knowledge exploration, as the agent picks at each state a random action with
probability € and the action with the highest Q-value with probability (1-€). Finally
Boltzman exploration is another policy favoring knowledge exploration, as the agent
picks an action at each state with a probability controlled by a temperature parameter.
Q-learning may be applied to learn from previous encounters where trials are the
previous negotiations, or from the current encounter, where trials are the previous
offers.

Cardoso and Oliveira, [56] implemented a Q-learning agent who acts in a dynamic
environment and tries to estimate which combination of tactics to use in each state.
Knowledge is acquired from previous encounters, since the state is defined by
environmental parameters that relate to the number of agents and available time of the
adaptive agent. Actions are defined as combinations of tactics and are assessed at the
end of negotiation, as positive rewards if a deal is achieved, or negative rewards
(penalties) if negotiation ends without an agreement. The measure of the reward (Q-
value) is determined by the utility or benefit that the procedure incurred to the agent.

Application of Q-learning to the current encounter requires feedback from the opponent
in order for the agent to compute the reward value used in the learning process. An
example of applying Q-learning algorithm for learning from the history of the current
negotiation can be found in [57]. The state is defined as the current offer in the form of a
sequence of values, and the action specifies how each attribute should change
(increase, maintain, or decrease) in order to generate the next offer. If the attribute
space is continuous then change is realized by a predefined amount, while if it is
ordinal, it moves to the next enumerated value. After sending an offer, the learning
agent receives qualitative feedback from the negotiating partner and calculates the
reward of its action, which is used to update the Q-value of the corresponding state-
action pair. Claus and Boutilier discuss the application of Q-learning in game-theoretic
cooperative setting with multiple players [58].

Benefits of the application of Q-Learning summarize to the increase of utility incurred to
the agents after a number of negotiation episodes. It is empirically proved that when the
counterparts had fixed strategies, the agents managed to adopt the optimal strategy,
while when the former changed their strategy the agents re-adapted their strategy.
However, an issue that is left open is the ability of Q-Learning technique to deal with
large state-action spaces. The major weakness of this procedure is that it requires many
iterations. Additionally, when Q-learning is applied during the current discourse, the
agent requires his opponents’ feedback in order to update the Q-values. It is not
guaranteed though that the opponent will agree to engage in such protocol or that he
will be truthful.

The second ‘family’ of explorative strategies consolidates in Genetic algorithms,
optimization techniques inspired by evolution. A population of candidate solutions,
encoded into chromosomes is generated and evaluated using an objective function,
termed the fitness function. The best solutions are assigned the highest fithess and are
combined with the use of selection, crossover and mutation techniques, to create new
candidate solutions that comprise the next generation. Selection, crossover and
mutation are applied with a probability, as shown in Figure 10, which describes a simple
Genetic algorithm. The cycle continues until a stopping condition, usually related to a
stable average fitness, is met.
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Figure 10:Genetic Algorithm

This technique is adopted by negotiating agents who seek for robust strategies. The
major drawback is that it requires many iterations. Application of GAs at the planning
phase is a tool that facilitates analysis of the dynamics of the interaction. It is used to
search strategies that are best responses to the counterparts’ best strategies, starting
from random points. Oliver describes a framework where strategies are formed by
simple, sequential rules that consist of acceptance thresholds and counterproposals
[59]. For each negotiator a random population of strategies is generated. The testing of
different strategies is repeated and the fitness of each one is determined by the utility it
incurs to the agent. After a number of strategies have been tested, the genetic algorithm
is run in order to generate a new population of strategies and this procedure is repeated
until an exit condition is satisfied. In [60] we find application of genetic algorithms in
domains where strategies are defined as a combination of tactics [25]. In such
approaches the chromosomes comprise of specific strategic information such as
deadlines, reservation values, weights of tactics and parameters specifying each tactic.
Individuals of the population are negotiating agents (buyers and sellers), which are
tested against each other (tournament), and those with the highest fitness are selected.
Crossover and mutation are applied with some probability to create new individuals to
the next generation of strategies. The simulations were repeated until stabilization of
populations (95% of the individuals had the same fitness) or until the number of
iterations reached a predefined threshold. In this work, as in [59], the concept is to
determine a profile of negotiation strategies that constitute equilibrium. The system is
searching for a strategy that is the best response to the best strategy of the counterpart.
Gerding, van Bragt and La Poutre analyze in [61] the negotiation results achieved by
GA-based agents, with respect to fairness and symmetry.

GAs, when applied in the planning phase, help to the analysis of the evolution of
strategies through populations. Pair-wise rankings for buyer and seller strategy
combinations lead to the most dominant strategies in each situation. Such applications
of GA are not particularly interesting when viewed in a single negotiation instance. On
the contrary, in cases where GAs are applied during the current discourse, populations
of chromosomes are used to represent the population of feasible offers. Such
application can be found in [62] where the fitness of each offer is measured with respect
to its distance from the most preferred offer, the distance from the opponents’ previous
offer and the time pressure. In each round the offers considered fit by the agent may
change. A threshold controlling the number of evolutions in a cycle, which is triggered
after n negotiation rounds, determines the exit criteria. This technique aids the agent to
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gradually learn and adapt to its opponents’ preferences. This approach does not
assume knowledge of prior negotiations and it could be also applied in dynamic
environments. An obvious limitation is that the algorithmic complexity increases with the
increase of alternatives of each negotiable attribute.

4.1.2 Repetitive Strategies

In this category we place strategies which follow a routine-based concept; Substance of
routines lays on the specific knowledge acquired by the repeated execution of an act
combined with the ability to apply this knowledge to specific situations. It has the
potential to substitute deliberate planning and decision making since it is used to
determine which operations to implement in order to achieve certain intended state.
Routinization techniques force agents to develop ‘best practices’. The most commonly
used is Case-based reasoning (CBR), where previously solved cases are maintained in
a case base and when a new problem is encountered, the system retrieves the most
similar case and adapts the solution to fit the new problem as closely as possible. CBR
IS common in negotiations, particularly in the planning phase supporting the process of
strategy or supplier selection, or during discourse in argumentative frameworks. A
commonly stated risk posed by routinization is the application of ineffective acts.
Routines in dynamic environments have proved to be of degrading efficiency, the so
called “acting inside the box situation”. As stated by Nelson and Winter, with increasing
repetitions decision making prior to the operation tends to decrease [63]. The use of
routines entails rigidity and once a solution is established, it is not further questioned.
Another weakness accumulates on the requirement to store the case base and the
difficulty to collect the information that best discriminates different situations.

When applied at planning phase, CBR technique proceeds as follows. Each case
contains information related to the agent profile and the negotiation environment, which
is used as search criteria for similar cases. If more than one similar cases are returned,
the negotiation outcome is used to select the most similar and preferred case. The
agent then uses the strategy of the old case to the current negotiation and after
negotiation is completed the case base is maintained (the new case is added to the
case base or an old case is replaced).

In [64], PERSUADER, a program that acts as a labor mediator, enters in negotiation
with each of the parties, the union and the company, proposing and modifying
compromises until a final agreement is reached. The PERSUADER’s input is a set of
conflicting goals and the output is either a plan or an indication of failure. Additionally
the system is capable of persuading the parties to change their evaluation of a
compromise. CBR is used to keep track of cases that have worked well in similar
circumstances. The most suitable case is retrieved from memory and adapted to fit the
current situation. If the parties disagree, PERSUADER appropriately repairs the
compromise and updates the case base or generates arguments to change the utilities
of the disagreeing parties. The system integrates CBR and Preference Analysis, a
decision theoretic method, to construct the initial compromise in the planning phase. If
previous similar cases are not available, the PERSUADER uses Preference Analysis to
find suitable compromises. Another CBR-based approach, found in [55], describes
multi-sensor target tracking in a cooperative domain, where each agent controls one
sensor and consumes resources (cpu, time, memory etc.). The agents are motivated to
share their knowledge about the problem, based on their viewpoint, in an effort to arrive
to a solution. The model uses case-based reasoning to retrieve the most similar case
based on the incurred utility, adapts the case to the current situation and uses the
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cases’ strategy to perform negotiations. It is proved that agents who use CBR method
perform better compared to those using a static strategy. More specifically, agents with
a static strategy had 18% worst accuracy in a cooperative framework, where they
negotiated the position of a target.

At the other end, when CBR technique is applied during the current discourse, it
proceeds as follows. The current negotiation stance is organized in decision making
episodes, where agents propose their offers. The case base is searched to retrieve the
most similar case, based on the agent profiles and series of offers and counter offers.
The best matched case is then used to generate the counter offer. An application of
CBR to the current discourse can be found in [65], where a support system that assists
negotiators with agent opponents over used cars is implemented. The system matches
current negotiation scenario with previous successful negotiation cases, and provides
appropriate counter-offers for the user, based on the best-matched negotiation case. A
contextual case organization hierarchy is used as an organization structure for
categorizing the negotiation cases and similarity filters are used to select the best-
matched case from the retrieved set of cases. Strategic moves, concessions and
counter-concessions of a past discourse, are adapted to the current situation. If no case
is found based on the organization hierarchy, the buyer uses a default strategy. This
approach considers a single negotiable attribute, price, and does not consider learning
from failure.

The virtues of repetitive strategies summarize to saving planning and decision making
costs by reusing previously applied solutions. The trade-off, often termed the ‘routine
trap’, relates to the increased risk of applying inefficient acts, if dynamics of the
negotiation environment change over time.

4.1.3 Predictive strategies

The third group relates to estimating opponents’ strategic parameters and preferences,
as well as future behaviors, in order to select the most appropriate acts, assessed in
terms of individual or joint satisfaction. The learning methods which are used to
estimate the counterpart's model, strategic parameters, preferences and future
behaviors summarize to possibilistic CBR, Bayesian learning, regression analysis and
neural networks.

In possibilistic case-based reasoning (possibilistic CBR), agents follow principles of
possibility decision theory, and use the following possibilistic rule: “the more similar the
situations are, the more possible the outcomes are similar”. This rule is expressed by
the following formula:

p(y)=max ; ;. S(s',s)®P(0',y)

Where H is the history of situations s and outcomes o of previous negotiations, and S
and P are similarity relations, comparing situations and outcomes respectively.

Each possible outcome vy, is assigned a level of plausibility (extent to which an event
may occur).This forms a possibility distribution x(y), which is aggregated with the utility

function to determine the optimal decision.

When predictive strategies are encountered in the planning phase, the agent computes
the expected utility of a potential interaction and ranks his opponents in order to
negotiate only with the most prosperous ones and save time and resources. In [66] the
buyer agent uses possibilistic CBR to predict the outcome of a future negotiation,
assuming it is in a particular situation. The situation is characterized by the negotiation
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strategy and the preferences of the buyer. The likelihood of successful negotiation is
derived from the history of previous interactions in the form of a possibility distribution
function. The expected utility of the future negotiation is an aggregate of the distribution
function with the current agents’ utility and is used to rank the negotiating partners.
Although agents save time and resources by selecting the most prosperous opponents
for negotiation, the computational complexity increases as the number of potential
outcomes, which are required to acquire the possibility distribution, increases.

When it comes to using predictive strategies during the current discourse, focus lies on
the estimation of opponents’ strategic parameters, preferences and future offers.

A significant number of applications use Bayesian learning techniques to update beliefs
about the opponents’ structure. Bayes theorem provides a way to calculate the
probability of an hypothesis H; based on its prior probability P(H,), the conditional

probability of various events given that the hypothesis is true, and the observed data e
(new evidence). Every new event is used to update the posterior probability of
hypothesis given the event according to Bayes rule:

p(H ) = P CHOP(EH)

> PeH)P(H,)

Zeng and Sycara developed Bazaar [67], a negotiating system which uses a Bayesian
network to update the knowledge and belief each agent has about the reservation value
of his opponent. The agent holds a set of hypothesis, representing reservation prices of
his counterpart, and their probabilities in his knowledge base. Domain knowledge is
encoded in the form of conditional statements where events (e) are offers of the
opponent in previous negotiations. Each offer in the current discourse is then used to
update the subjective (posterior) probability of hypotheses, by using the Bayesian
updating rule. Estimation of the opponent’s reservation value contributes to
approximating his payoff function and provides the agent with the ability to propose
more attractive offers to his counterpart. The negotiation domain in Bazaar is rather
simplified, as the authors assume a finite set of offers. Bazaar, as most systems that
apply Bayesian methods, has been critiqued on the requirement of initial knowledge of
many probabilities. Probability distributions of hypothesis representing potential
reservation prices of the opponents, as well as domain knowledge of previous offers
represented as conditional statements, constitute the prior knowledge of the system.
These probabilities are estimated based on background knowledge, previously available
data and assumptions about the form of the underlying distributions. Nevertheless if the
distributions change, the model will no longer produce reliable estimations. To the
stated weaknesses we add the fact that illustration was available only for a single
attribute (price).

Other approaches based on Bayesian learning can be found in [68] where the authors
present a classification method for learning opponents’ preference relations during
bilateral multi-issue negotiations. Similar candidate preference relations are grouped
into classes, and a Bayesian technique is used to determine the likelihood that the
opponents’ true preference relations lay in a specific class. Negotiations are conducted
over subsets of a set of objects and the goal is to increase knowledge upon the
counterparts’ preferences, so that an effective strategy can be devised. As the authors
suggest, building an initial set of classes is a difficult task, depending on the specifics of
the problem and additional information about the other party. Another work using a
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Bayesian classifier can be found in [69] where agents assign probability distributions
about their opponents’ preference structure, in order to reduce the overall
communication cost in a co-operative framework. The system suffers from the difficulty
of collecting prior probabilities as all pre-mentioned Bayesian-based approaches.

Estimating opponents’ strategic parameters has also been approached by statistical
methods, and particularly non-linear regression.

Non linear regression involves a form of analysis in which observed data Yy are modeled
by a function f which is a nonlinear combination of the model parameters and depends
on one or more independent variables as follows:

Yi = T(Bos Buses Boiti) + 8

The calculation of the parameters 8, which minimize the error term, involves an iterative
search process, which can be realized with a variety of function minimization algorithms
(i.e. steepest descent, Gauss-Newton method, Marquardt method etc.). When the agent
applies non-linear regression the main objective is to identify the counterpart’s decision
function, estimate strategic parameters as well as the counterpart’'s next offer. The
agent assumes a series of models (decision functions) and selects the one that best fits
the counterpart’s previous offers.

Hou describes a non-linear regression-based model to predict the opponents’ family of
tactics and specific parameters [2]. This approach is restrictive in that it relies on the
assumption of a known function form that models the concessions of the opponents.
The author has assumed two non-linear functions that model time and resource
dependant tactics, based on [25]. The objective is to fit the function to the opponents’
previous offers, by estimating the vector of parameters that minimizes the distance of
the actual offer and the estimated one. The optimization problem is dealt with an
iterative method combining grid search and the Marquardt algorithm. Non-linear
regression is applied in each negotiating round of the predicting agent and the authors
adopt a number of heuristics to fix their prediction upon opponents’ deadline and
reservation value. Predicting the counterpart's deadline, allows agents to avoid
negotiation breakdowns, by offering attractive deals as the deadline approaches.
Additionally, agents are able to terminate unprofitable negotiations from an early round,
since they can estimate the counterpart’s reservation value. The authors assume the
seller to be the predicting agent, and estimate the buyers’ offer at the expiration of the
formers’ deadline. If this estimation is less than the reservation value of the seller, the
buyer agent withdraws from negotiation and saves communication cost and time.
Although this approach adds value to the agents, experiments are only conducted with
pure strategies, where extreme behaviors are easier to distinguish.

An application of non-linear regression with mixed strategies can be found in [3]. The
purpose is to predict the opponents’ future offers, foresee potential negotiation threads
and adopt the strategy that will result to the most beneficial discourse. The authors have
developed four models to address the issue of mixed strategies that result from a
combination of time and behavior dependent tactics with various weights assigned.
Prediction of the counterpart’'s future offers, allows agents to foresee potential
negotiation threads and adopt more beneficial strategies. Although this model involves
more strategies than the one mentioned earlier, it does not extensively cover the space
of possible strategies as discussed in [25]. The complexity is expected to increase as
the number of assumed models increases, therefore extending this solution is not an
easy task.
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Brzostowski and Kowalczyk also take an approach based on the difference method, in
order to predict the opponents’ future offers [5]. This method has the advantage that the
agent does not need to know precisely the opponents’ strategic function. The authors
assume that the opponent uses a mixture of time and behavior dependent tactics and
try to determine to which extent he imitates the predicting agents’ behavior and to which
extent he responds to a time constraint imposed on the encounter. This is achieved with
the use of two criteria combined with time depending and imitation depending
predictions, obtained from the previous offers of the opponent, and from a combination
of opponents’ and predicting agents’ offers respectively. Results have proved that the
method is not as accurate as the non-linear regression and the accuracy of the weights
assessments still needs improvement.

Determining the sequence of counterpart’s responses has aided negotiators to identify
the optimal sequence of offers. As illustrated in Figure 11, the predictive agent foresees
the future offers of the opponent and assumes the same average concession up to a
terminal state, in order to meet an agreement.

Data used for modelling Prediction
Time

— "
= —_— 8 10

- potential offers ]-31;

.
+— prediction . by

Figure 11: An example of prediction as a response to sequence of potential offers [3]

As Brzostowski and Kowalczyk state, it turns out that various sequences of offers may
result to the same final utility, therefore offers are averaged over all the optimal
sequences in order to calculate the offer to be proposed. After the counterpart has
responded the whole mechanism is reused for further decision making in the next steps
of the negotiation. Assessment of this model is provided in terms of comparison with an
agent using a random strategy. In Figure 12 we illustrate an example of buyers’ gain in

utility.
“wanl I|Il _hEe l'
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Figure 12: The gain of buyer agent over the random strategic choice is depicted with the red bars

[5]

The area of predicting opponents’ offers during discourse has attracted much attention,
since an agent may refine his strategy and increase individual or overall gain. Other
very popular models which are used for this purpose are Neural Networks. These
models comprise of similar interconnected processing units (neurons) which receive
signals from neighboring units or external sources, and compute an output which is
propagated to other units. Connections between neurons are defined by weights which
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determine the extent to which a signal is amplified or diminished. Learning is realized
through adjustment of such weights, in order to minimize some error function. When
neural networks are used for forecasting, a window of the d+1 most recent values is
used to formulate the training patterns, where the first d values represent the networks’
input while the last one represents the desired output. The architecture of Neural
Network models is discussed in detail in Chapter 7. When Neural Networks are applied
during discourse the main objective is to forecast the counterpart’s future offers.
Forecasting involves either the estimation of the opponents’ next offer (single-lag) or the
estimation of the opponent’s offers multiple steps ahead (multi-lag).

As far as multi-lag predictions are concerned, estimations have proved valuable in
cases where the agents use forecasts to detect unsuccessful negotiations from an early
round. Such approaches have been discussed in [11] where the decision of the agents
to withdraw or not from the current negotiation is supported by determining the
providers’ offer before the clients’ deadline expires. As the authors claim, the predictive
ability has aided agents to detect up to 91.1% of unsuccessful negotiation threads and
decrease the mean duration of unsuccessful discourses up to 63.8%.

Moving to the realm of single-lag predictions, previous offers and domain-specific
information are used as input to the neural network in order to calculate the next offer of
the opponent. This encourages more sophisticated decision making, irrespective of the
type of e-market component (negotiation support system or negotiating software agent).
In [8] trading scenarios via an internet platform are facilitated with the use of
SmartAgent. This work illustrates a way of enhancing an automated agents’ strategy
with a neural network, with the purpose to predict the counterpart's next offer. The
estimation of the counterparts’ next move is used at each negotiation round to adjust
the agents’ proposal and leads to increased individual gain of the final outcome.
Particularly the seller agent is enhanced with the predictive ability and its strategic core
is formulated as follows:

IFU(RL) > U(K,)
Offer = XL + ¢
Else
Offer = X{_, — £(eq. 3)
where:
XL is the estimation of the next offer of the buyer (at time t+1)

XL, is the offer the seller would send to the buyer (at time t), based on its default
strategy

€ is a domain dependent parameter

and U(XL_,) is the utility (measure of satisfaction based on preferences and reservation
values) of offer X{_, from the sellers’ viewpoint.

We are particularly interested in the specific application of the predictive model,
because it favors adaptive behavior in every step of the process. Since only preliminary
results have been illustrated by the authors, we have conducted a number of
experiments to highlight the gain in utility of the predictive agent.

If the rule in (eq. 3) is applied until the expiration of the agents’ deadline, it is possible to
develop a manipulative agent, who takes advantage of non learning agents. Figure
13(a) illustrates an example of offers exchanged between two non-learning agents,
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while Figure 13(b) illustrates how the predictive agent may “tease” his opponent until the

time expires.
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Figure 13: (a) offer exchange of two non-learning agents and (b) seller agent adjusts his price

offers knowing the next move of the buyer

A similar approach is followed in [6] where a predictive model based on neural
networks, with the purpose to optimize an agents’ current offer is developed. The model
IS incorporated in a support tool which simulates the possible response to the offer the
user is contemplating and assesses offers and counter-offers based on the users’ utility
function. This allows the user to test various estimated counter-offers that will result
from specific offers in the current situation, without actually submitting them to the
counter-part. Optimization is therefore achieved by conducting “What-if” analysis over
the set of possible alternatives, and selecting the proposal that will result to the most
beneficial response. The authors have tested the support tool in a domain with a small
number of issues and options, thus exhaustive search could be performed to the whole
set of possible offers. As the authors claim, even small variations in the current offer can
have important impact on the expected counter-offer from the opponent. The model has
been tested for a particular negotiation case in a static domain and the accuracy of its
predictions may be less adequate in the general case. A similar negotiation support tool
is applied by Lee and Ou-Yang in a supplier selection auction market, where the
demander benefits from the suppliers’ forecasts, by selecting the most appropriate
alternative in each round [7]. The input of the support tool comprises of past offer
records and environment information such as inventory level, scheduled production plan
and surplus capacity of scheduled production plan of suppliers. In addition, order
guantity and due date are used to calculate the suppliers’ next bid. The authors provide
an illustrative example, where three alternative bids denoting minimum, middle and
maximum price are generated. The predictive model of the support tool is used to
foresee the likely relationship of the current bid price of the demander and the next bid
price of the supplier. This feature assists the demander to select the most appropriate
from the generated alternatives.

Finally a different approach, where prediction of opponent’s next offer is carried only
once during the discourse, in the pre-final round, can be found in [9]. The authors
developed an agent who applies the predictive mechanism at the pre-final step of the
process, in order to increase the likelihood of achieving an agreement, and to produce
an outcome of maximal utility. More specifically, the authors illustrate a client agent that
negotiates with a provider using a behavior-dependent strategy, and makes use of the
estimation of his opponents’ next offer one step before the expiration of his deadline.
The client makes the highest possible concession if the estimation is higher than his
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reservation price, or offers the same value as the estimation, if his reservation price is
higher. The first decision increases the likelihood of achieving an agreement, while the
second suggests an offer that is more beneficial (of higher utility) to the client.
Assessment of the predictive agent is provided in terms of comparison with the non-
predictive one. In Figure 14, the grey surface illustrates the price agreements of the
non-predictive agents, while the blue and red surfaces illustrate the price agreements
when predictive decision making was applied. Figure 14 also shows the increase of
successful negotiations even in cases where the agreement zone is reduced and the
opponents’ deadline is significantly higher.

& 3

Agreement Price
=

[0
Price Intervals Overlap B

Figure 14: The use of predictive decision making increases the stances of successful negotiations

(9]

Overall results for the set of 1239 experiments show that predictive agents increased
the number of agreements by 38%. The weakness of current connectionist approaches
summarize to the restriction of being tested solely in bounded spaces, where opponents
follow static strategies, or where negotiations are conducted over fixed, pre-defined
alternatives. An open and challenging issue lays in the application of predictive decision
making in environments with changing data distributions.

4.2 Summary of virtues and weaknesses

This chapter provides a review of the learning methods adopted by negotiating agents
who either adopt intuitive strategies or engage in predictive decision making. We aimed
to provide a categorization with respect to the learning objectives, in order to facilitate
comprehension of the domain. Our review has led to the discrimination of explorative,
repetitive and predictive strategies applied at a pre-negotiation phase or during
discourse. Under this frame we presented various systems that reflect the trends of
learning in negotiation strategies, as well as the weaknesses depending on the applied
domain. Virtues and weaknesses are summarized in Table 1:

Table 1: Virtues and weaknesses of learning methods

Explorative Virtues Weaknesses

1. Reach optimal strategy

GA 2. Analyze negotiation interactions

Increased number of iterations due to large

(in planning phase) strategy space

GA Adapt to opponent's responses, | Increased complexity as number  of

. . approach pareto-optimal solutions alternatives increases
(during discourse) PP P P

Q-L Converges in static environments Increased complexity in dynamic
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(in planning phase)

environments, as state-action pairs increase

Q-L

(during discourse)

Adapt to opponent's responses,

approach pareto-optimal solutions

Unrealistic assumption of opponents’ feedback
after each action, or difficulty in estimating the

Q-value
Repetitive
- . 1. The ‘routine trap’
CBR Save agents from decision making | 5 Maintain and search large case-base
costs in planning 3. Collect and identify domain-specific

(in planning phase)

information to discriminate situations

__ i i 4. Accuracy decreases as data
CBR 1. Decision making shortcuts in state distributions change
transitions, related to concessions

i . 2.Generation of arguments in
(during discourse) argumentative negotiations
Predictive

S . . S 1. The ‘routine trap’
Possibilistic  CBR | Estimate expected utility, facilitating 2 Maintain and separch large case-base
(in planning phase) | supplier selection Collect and identify domain-specific

information to discriminate situations

3. Accuracy decreases as data

distributions change

1. A-priori knowledge of many probability

Bayesian Learning Estimate  opponents’  reservation distributions
value 2. Models’ accuracy reduces in dynamic
environments with changing distributions
1.Estimate Opponents’ preference
relations
2.Estimate Opponents’ payoff
structure
Non-Linear 1.pararlr512i2:§ te ((r)eps%cicgtri];i str\e/t;elgle(? Assumes knowledge of function forms
Regression deadline, concession parameter)
2. Estimate Opponents’ future
offers

3. Withdraw
negotiations

from unprofitable

Difference Method

1.Estimate Opponents’ future offers

2.Withdraw from unprofitable

negotiations

Weight assessment needs improvement, less
accurate compared to non-linear regression

and neural networks

Neural Networks

Estimate Opponents’ future offers

Multi-Lag Predictions: Withdraw from

unprofitable negotiations

Single-Lag Predictions: refine offer in

each step and increase final utility

Tested in bounded domains
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5. RISK OF PREDICTIVE STRATEGIES

Although Predictive Strategies add value to the field of negotiations, an issue that has
not been studied in similar aforementioned work is that of risk encountered in predictive
settings. The focus of this chapter is to propose a predictive strategy that takes into
account the notion of risk, and allows agents to predefine the level of risk they are
willing to take. In this respect we begin with a definition and a short discussion of risk in
negotiations, and then proceed to the proposed approach and relevant illustrations.

5.1 Riskin negotiations

Risk is defined as a situation that involves exposure to bad outcomes. It generally
increases as bad outcomes are becoming more probable. According to Dyer and Sarin
an individual's preference for risky alternatives is influenced by the strength of
preference he feels for the consequences (concern for outcomes) and by his attitude
towards risk taking (risk tolerance) [70]. There is a line of work that attempts to measure
risk as a basic attribute of a lottery (a hypothetical game). The different attitudes
towards risk, risk-neutral, risk-averse and risk-seeking, are usually represented by the
utility function of the decision makers.

Decision makers who adopt the risk-averse attitude prefer the sure deal to the risky
option. Richard characteristically states that such decision makers prefer getting some
of the “best” or some of the “worst” to taking a chance on all of the “best” or all of the
“worst” [71]. In a lottery that offers different outcomes, for example a 50-50 chance of
receiving either 0$ or 100$, or a guaranteed amount of 40%, the risk averse agent would
prefer the guaranteed amount of 40$. The utility function in this case is concave, thus
the marginal utility of wealth decreases as wealth increases (each additional 1$
contributes less utility than the one before it). The property of risk aversion has its basis
on the principle of expected utility maximization, which states that the rational investor
will select the alternative that maximizes his expected utility of wealth [72].

Conversely, decision makers who adopt the risk seeking attitude prefer the risky option
to the sure deal. The utility function is convex, thus the marginal utility of wealth
increases as wealth increases.

Intuitively, a risk-seeking individual is the one who prefers taking chances, while a risk-
averse individual behaves conservatively in the face of risk. Last, a risk-neutral decision
maker equally prefers the sure deal to the risky option.

In behavioral approaches, there is a line of work apposed in [35] that associate a
negotiator’s attitude towards risk with his outcome frame, that is his conception of the
dispute as positive, involving gains and profits (gain frame) or as negative, involving
losses and costs (loss frame). More specifically negotiators with a gain frame demand
less, concede more and settle more easily than those with a loss frame. The former
tend to adopt a risk-averse attitude, while the latter tend to adopt a risk-seeking attitude.
Additionally losses are more aversive than equivalent gains are attractive. As Schneider
states ‘people have a stronger desire to minimize losses than to maximize gains’ [73].

A negotiation strategy that takes into account an agent’s attitude towards risk, the
Zeuthen Strategy, is also discussed in [21]. In Zeuthen Strategy the notion of risk is

related to an agent’s willingness to risk conflict. More specifically Risk R2: A* -[0,1],

where A?is the space of possible actions of agent a, is defined as the utility loss of the

agent if he accepts his counterpart’s offer, divided by his utility loss if they do not agree
and negotiation terminates with the conflict deal (a deal specified at a pre-negotiation
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stage). As R? approaches 1, agent has less to lose from a conflict and is more willing
to stay in negotiation and not concede. Conversely as R approaches 0, agent is more
willing to make a concession. Intuitively, as R? grows agent becomes more risk-
seeking.

Since negotiating agents may adopt different attitudes towards risk, it is important to
take such attitudes into account when generating predictive strategies. In this respect, a
risk-related parameter is embodied in the strategy of learning agents, as described in
the next section.

5.2 The proposed predictive strategy

If the two agents do not employ any learning technique, and each applies the default
strategy, as illustrated in [25], an agreement will be established at a point which we term
the “Meeting Point” (MP). The proposed predictive strategy is based on the assumption
that in each decision making step, if the negotiators decide to send a counter-offer, the
risk-averse agent will adopt a conservative behavior and generate an offer that will be
accepted by his counterpart, while the risk-seeking agent will provoke gradual
concessions of his counterpart, so as to increase his individual gain. The main objective
of the proposed predictive strategy is to prolong negotiation beyond MP and increase
the incurred utility of the agent, by taking into account the two extreme attitudes. In this
respect, the agent pre-defines a reference point that is related to his willingness to
prolong the discourse. He adopts the risk seeking behavior until that reference point and
the risk-averse behavior from the reference point until expiration of his deadline or
termination of the discourse. This behavior is illustrated in Figure 15.
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Figure 15: The predictive strategy

At this point it is essential to distinguish the different usages of the predictive skill. When
agents employ a predictive strategy as the one described in [8], they run into the danger
of prolonging the negotiation process, and increase the risk the other party exhausts his
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deadline and walks out of the process. Prolongation is due to the fact that the
counterpart tends to respond with a counter-offer to the predictive agent, which is the
case of a risk-seeking attitude. On the other hand, when agents employ a predictive
strategy at the pre-final step of the process, as the one discussed in [9] [10], they
manage to increase the number of successful negotiations if the counterpart has equal
or higher deadline than the predictive agent. In this second case, the predictive agent
sends an offer that is likely to be accepted by the counterpart, which is the case of a
risk-averse behavior.

The reformed strategy illustrated in [74] [75], combines the virtues of the two strategies
with the introduction of a parameter noted risk portion (RP). The proposed strategy is a
predictive strategy that allows agents pre-specify in percentage terms how much they
are willing to prolong the negotiation process in order to achieve a more satisfying
outcome compared to the outcome they would achieve in the non-learning case.

In subsection 5.2.1 the predictive strategy is described, and in subsection 5.2.3 the RP
parameter is used to analyze the different negotiation outcomes, taking into account
opponent agents employing various types of behaviors. The objective of this section is
to illustrate the trade-off of increasing the utility of agreements with the number of
successful negotiations. In subsection 5.2.4 we discuss the issue of setting appropriate
values to the RP parameter.

5.2.1 Description of the strategy

At each time step t agent a estimates the next offer of his counterpart,
X :(%;a),ﬁ;;;%),.. X )T. The proposed decision rule makes use of the default

b—a "1 Mn(b—a)

strategy (S?) of the predictive agent to generate offers until the detection of a “meeting
point” (MP) with the “opponent”. MP is a point which would result an established
agreement if the agent was guided solely by his default strategy. When such point is
detected, and according to the agent’s attitude towards risk, agent risks staying in the
negotiation in order to maximize the utility of the final agreement. In this respect two
extreme attitudes can be generated: risk-seeking and risk-averse. The risk-seeking
agent is willing to spend all the remaining time until expiration of his deadline engaging
in an adaptive behavior to turn the estimations of his counterpart’'s responses to profit.
This risk-seeking behavior is based on the decision rule discussed in [8] and is
extended to support multiple issues. More specifically:

Risk-seeking Behavior:

For each issuei
If issue value is increasing with time

t St+l
Xitasb) = Xipsa) ~€

Else

t ot+l
Xiasby — Xitpa) T €

End For
Generate Offer X!, =(x! X; X o))

a—b 1(a—b) * M2(a—b) ' "1 Mn(a—b)

where ¢ is a domain dependent parameter.
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On the other hand risk-averse agents follow a more conservative behavior when they
detect an MP. They use the prediction as discussed in [9] [10] and thereafter do not
make any further concessions and insist on sending their previous offer, waiting for the
opponent to establish an agreement.

Risk-Averse Behavior:
When MP is detected:
For each issue i

t ot+l

Xi(a—>b) — Xi(b—>a)
End For
If t>MP:

For each issue i

t t-2

Xi(a—sb) — Xi(asb)

End For

t t t t \'
Generate Offer X (xl(aﬁb),xz(aﬁb),..., Xn(aab))

a—>b
Fusions of the two extreme attitudes have led to the specification of risk portions (RPSs)
which characterize the predictive agent’s behavior after the detection of MP. As shown
in Figure 15, RP* determines the percentage of the distance between MP and deadline
T2 that agent a is willing to adopt the risk-seeking behavior. After RP* is consumed
agent adopts the risk-averse behavior. For a predictive agent who is not willing to take
any risks RP? is set to 0%, while for an agent who is willing to risk until expiration of his

deadline RP?® is set to 100%. The decision making rule repeated in each step is thus
formulated as follows:

it Ue(Xyt)>us(x,,

)defauh (detection of MP)

If RP® is not consumed

Generate Offer adopting Risk-Seeking Behavior
Else

Generate Offer adopting Risk-Averse Behavior

Else

Generate Offer (X!, )
where (X;Hb)default is the offer generated by agent a at time t based on his default
strategy.

In the following example we consider negotiations conducted between an electricity
provider and a consumer agent over the service terms of an electricity trade. The
negotiable object is characterized by four attributes representing the number of Kwh,
the Price per Kwh (measured in euro cents), the Penalty term (percentage of the sum
which will be returned to the consumer in case of dissatisfaction), and the duration of
service provision (measured in hours). The deadline of the consumer is set to 150
rounds and that of the producer is set to 152 rounds. We assume that the two agents
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have opposing interests; the consumer will start from a low price and a low number of
Kwh, which he will increase in each round, while he will start from a high percentage of
returns and high service duration which he will decrease in each round. At the same
time the producer will initially request high price per Kwh, and high number of Kwh
which he will lower in each round, and low penalty and duration of service provisioning
which he will increase in each round. In the example we assume that the two agents
have set the same reservation (min and max) values as demonstrated in Table 2.

Table 2: The reservation values of the negotiable attributes

Attribute Min Value Max Value Consumer Role | Provider Role
Duration (in hours) 10 30 | Decreasing Increasing
Kwh 20 200 | Increasing Decreasing
Price (euro cents) 10 100 | Increasing Decreasing
Penalty (% returns) 5 80 | Decreasing Increasing

Figure 16(a) illustrates the negotiation discourse of the two agents when they do not
employ any learning techniques. The offered values of each negotiable attribute in each
round are depicted with blue for the consumer and with red for the producer. In the non-
learning case (Figure 16(a)), negotiation terminates at round 116, where the consumer
agent decides to accept his counterpart’s offer. The final offer vector (Duration, Kwh,
Price, Penalty) is (14.95, 155.36, 77.68, 23.59) and the utility incurred to the consumer
agent is 0.248.

Figure 16(b) illustrates a discourse where the consumer agent applies the proposed
strategy with RP=0%. At round 116, the consumer agent detects the meeting point (MP)
and initiates the predictive behavior. Since RP is set to 0% (it is consumed upon
detection of MP), the agent generates the risk-aversive behavior and sends the
predicted offer to his counterpart. Negotiation terminates at round 117, where the
provider decides to accept the consumer’s offer. The final offer vector (Duration, Kwh,
Price, Penalty) is (15.40, 151.34, 75.67, 25.27) and the utility incurred to the consumer
agent is 0.2703. Note that in case RP=0%, the predictive strategy incurs 2.23%
absolute increase in utility, without much prolongation of the negotiation discourse. The
maximum prolongation of the discourse when the risk-averse behavior is applied is by 1
round (the counterpart will accept the predictive agent’s proposal in the next round).

In continuance, in Figure 16(c) we illustrate a discourse with a consumer agent who
uses the proposed strategy with RP=50%. At round 116, the consumer detects the MP
and adopts the risk-seeking behavior, until round 134 where the RP is consumed. The
offer sent at round 134 is based on the risk-averse behavior and the offer vector
(Duration, Kwh, Price, Penalty) = (20.66, 101.39, 51.30, 45.42) is accepted by the
provider at round 135. The utility incurred to the consumer in this case is 0.5403, thus
the absolute increase compared to the non-learning case is 29.23%.

Finally we demonstrate how a predictive agent with RP 100% may “tease” his opponent
until an agreement is established. The consumer agent makes use of his default
strategy until round 116, where the meeting point MP is detected. The agent risks
staying in negotiation after round 116, and makes use of the risk-seeking behavior until
exhaustion of his deadline, in order to attain a more eligible deal. At round 150, where
RP is consumed, the consumer sends his final offer based on the risk-aversive
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behavior. The final offer vector (Duration, Kwh, Price, Penalty) = (29.35, 25.84, 12.92,
77.56) is accepted by the provider. The utility incurred to the consumer in this case is
0.9675, yielding 71.95% absolute increase in utility compared to the non-learning case.
The discourse when the consumer’s RP is set to 100% is illustrated in Figure 16(d).
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Figure 16: (a): Negotiation between two non learning agents, (b): Negotiation with a consumer
agent employing the proposed strategy with RP=0%, (c): Negotiation with a consumer agent
employing the proposed strategy with RP=50%, (d): Negotiation with a consumer agent employing

the proposed strategy with RP=100%

5.2.2 Rationality of the two extreme behaviors

In the proposed strategy the risk-averse agent sends an offer that increases the
probability his counterpart will accept, while the risk seeking agent sends an offer that
increases the probability his counterpart will respond with a counter-offer. In this section
the rationality of the two extreme behaviors is examined. By definition, for two agentsa
and bwith opposing interests, the following two rules apply:

Rule 1: If each attribute xi‘gaﬁb) of agent’s aselected counter-offer X(t;Hb) lies between
the respective attribute x}gb‘ia) of the counterpart’s previous offer X (tgja) and the respective
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attribute X, ,,, of the estimation X‘ml , agent bwill accept X

his deadline (t, <T?

)|f he has not reached

(a—b

max

Rule 2: If each attribute X,(aﬂb) of agent’s a selected counter-offer X (ab) Surpasses each

ot+l

respective attribute X;, ,,, of the estimation th agent bwill not accept the offer, but

) )
rather propose counter-offer X(tgga) if he has not reached his deadline (t, <T?

max

As stated in [72], the rational agent should try to maximize his expected utility of wealth.
In the general case, if we consider two agents a and bwho engage in a negotiation
discourse, the negotiation thread at time t,, formulated by the exchanged offers, is
X L X2 X } and it is agent’s aturn to make a move. Supposing that agent a

ac>b T a—b? b—a

is a predlctlve agent, his knowledge at time t, consists of the negotiation thread X
and the prediction of his counterpart’s next offer X 2 . According to (eq. 2 in section

b—a
3.3) the agent may accept his counterpart’s proposal, reject the proposal and terminate
the process, or send a counter-offer. Since rejection is only selected when the time
deadline set by the agent is expired, if t,<T?2 , agent a must decide either to accept

max !
tn—l - tn
X, , or to send a counter-offer X »

The first option would result a guaranteed deal, and the expected utility of the agent
would be U a(X(tgja)) . The second option would trigger the following reactions of agenth

Quit, if t, >T>
Ct2+1 = ACCGpt X(a—>b)’ If U (X a—>b)) >U (x b—>a)) (4)
Send X'  otherwise

(b—a)’

If P,

it + Paccept » Poend @€ the probabilities of agent b quitting negotiation, accepting X (an)
and sending counter- offerx(gga) respectively, agent’s a expected utility if he selects to
send counter-offer XU ist Py U (X(ip) + Poue *U *(BATNA) + Py, *U* (X 52,)
where BATNA is defined as the best alternative to negotiating agreement, which results
to zero utility (U®(BATNA) = 0). The rational agent will prefer to send counteroffer X(Hb)

, If the expected utility of sending the counteroffer is higher than the expected utility of
the guaranteed deal (which results from accepting his counterpart’s proposal), thus the

agent will send X (ot IF:

end

P

Accept *U a(X aab)) + I:>Send *U (X(gia) >U a(X(ttn);la)) (5)

The risk-averse behavior discussed in 5.2.1, is consistent with Rule 1, as X; ) = ngga)

In this case, the probabilities Py, , P » Psens @re formulated as follows:
PSend =0
PAccept =1- I:)Quit (6)
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From (5) and (6) the condition that must be satisfied so that risk-averse agent a rather
sent a counter-offer is the following:
Paccent *U ™ (X (1)) >U* (X(50) (1)

Accept

IfP

Accept —1o0r P

o — 0, the inequality (7) is satisfied by definition.

Moving to the other end, the agent with a risk-seeking attitude would rather take the all

or nothing deal. This agent makes an offer X(t;ﬁb) that will provoke his opponent to

respond with a counter-offer rather than accept the deal. This will result to gradual
concessions from the side of the non-learning agent, and the final deal will yield very
high utility to the predictive agent. This behavior is consistent with Rule 2, as the
predictive agent sends an offer that surpasses the estimation by the constant¢. In this

case the probabilities P, , P P, are formulated as follows:

uit 7 © Accept !

P

Accept

=0

Poend =1— PQuit 8)

And the condition of applicability is formulated as follows:
Pons *U (X 32,) >U(X570)  (9)

(b—a

— 0, inequality in (9) is satisfied by definition.

uit

If Pserg > 1 or P,

From the above it is proved that both behaviors satisfy the rationality condition if
PQuit —0.
5.2.3 An illustration

This section is attributed to the investigation of the effect the strategy described in 5.2.1
has on the negotiation outcome. Since the objective is to increase the utility that incurs
to the predictive agent, focus is set on studying the change of the agent’s utility, as well
as the change of the number of agreements with variable RP values. For this reason a
number of experiments are conducted assuming negotiations between a predictive
agent with the perfect forecasting tool (yielding zero error) who makes very accurate
estimations and a non-learning counterpart employing many different types of time-
dependent behaviors. In the experiments conducted, the strategy of the counterpart is
known to the predictive agent, who simply applies the expected values of the
counteroffers to the decision rule discussed in 5.2.1. In subsection 5.2.3.1 we give a
brief description of the simulator which produces negotiation environments and
outcomes and in subsection 5.2.3.2 we illustrate the results.

5.2.3.1 Simulator

For the conduction of the experiments we have developed a simulator that produces
negotiator objects in Java (Jdk version 1.6), which are then extended in Matlab (version
2008R) and enhanced with learning techniques. The negotiator objects are capable of
conducting bilateral multi-issued negotiations. Experiments involve the generation of
different negotiation environments, with provider and consumer agents, described as
follows:

Negotiation Environment = {I’P’ TSP S min® min®", max™, max®",wW " W °°”}

max ! " max ?
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WhereT?2 is the negotiation deadline, S® is the strategy, min® :(minj‘,ming‘,...,minﬁ]‘)T

T . . .
and max® :(maxf,maxg,...,maxﬁ) are the vectors with the minimum and maximum

a
n

values set for each issue respectively, and W*® = (Wf‘,wg,...,w )T is the vector with the

preference weights for each issue set by agent a.

A variable @ is used to describe the degree of intersection between the negotiation
intervals of the two agents. More specifically, ® = (CI)l,CI)Z,...,CDn)T , Where each ®; € [0,

0.99]' indicates the overlapping degree of ranges specified for issue i by the two
agents.

The attributes of the Negotiation Environment as well as the learning parameters when
agents employ predictive strategies constitute the simulators’ input. The utility functions
of the negotiators are linear and are computed with respect to each agent’s reservation
values. The simulator’s output consists of the utilities incurred to each agent, the time
and number of iterations of the discourse, as well as the analytic negotiation thread.
Simulators’ input and output data is illustrated in Figure 17.

Provider

1. Reservation Values |

2. Preference Weights | R ‘

3. Strategy Matrix I | 1. Contract ‘
| 4. Time Deadline i ! 2. Incurred Utility for
|| each negotiator
QQQ,SEm,e,,r ,,,,,,,,,,,,,,, Simulator i 3. Negotiation Time

1. Reservation Values | | 4. Negotiation Steps

2. Preference Weights | | 5. Negotiation Thread

3. Strategy Matrix N
| 4. Time Deadline

i 5. Learning Params

Figure 17: Simulator’s input and output data (Consumer employs a predictive strategy)

The negotiator objects implemented for the simulator can perform learning tasks, and
may engage in negotiations following the predictive strategy discussed in section 5.2.1.
In the following subsection we provide information concerning the parameter values
used in the experiments, as well as the results of the negotiations with respect to the
different risk attitudes.

5.2.3.2 Results

The proposed strategy is tested with consumer agents assumed to have perfect
predicting skills and providers following TD strategies. The experimental workbench
issues nine different scenarios with respect to deadline, and overlap of agreement
zones of the two negotiators ( {TS" =T TS <TP TC TP } x {P=0, $=0.33,

max max ' " max max !

®=0.66} ), where T2 e [50:100:350], a={Con,Pr}, and @ is the parameter that

indicates the overlap of the agreement zones. In each scenario a variety of concession
curves, defined by parameter  ={0.2, 0.5, 0.8, 1, 3, 5, 7}, is considered in order to build
the default strategies of the opposing agents. For each of the 2352 generated
negotiation environments different RPs are set to the predictive agent (consumer) (

! Full overlap is equivalent to ®=0, while almost non-overlapping regions are equivalent to ®=0.99
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RP®" e [0:5:100]), leading to an overall of 49392 experiments. The objective is to
measure the gain of consumer agent with respect to the RP parameter, and highlight
the value of forecasting counterpart’s next offer in multi-issued negotiations. The above
settings are illustrated in Table 3.

Table 3: Negotiation Settings

Overlap ®=0 ®=0.33 ®=0.66

Parameters Consumer Provider Consumer Provider Consumer Provider

Kwh(min) 20 -0 20 79.4 20 138.8
Kwh(max) 200 200 200 2594 200 318.8
Price(min) 10 10 10 39.7 10 69.4
Price(max) 100 100 100 129.7 100 159.4
Penalty(min) 5 5 5 29.75 5 54.5
Penalty(max) 30 30 30 104.75 30 129.5
Duration(min) 10 10 10 16.6 10 23.2
Duration(max) 30 30 30 36.6 30 43.2
Tmt;x [50:100:350 [50:100:3 [50:100:35 [50:100:3 [50:100:35 [50:100:3
] 50] 0] 50] 0] 50]
TD D TD TD D D
s° B=[0.2,0.50 PB=[0.2,0.5 PB=[0.2,0.5, PB=[0.2,0.5 B=[0.2,0.5, P=[0.2,0.5
.8,1,3,5,7] ,0.8, 0.8, ,0.8, 0.8, ,0.8,1,3,5,
1I3I5I7] ll3l5l7] 1I31517] 1I3I5I7] 7]
RP " [0:5:100] [0:5:100] [0:5:100]

From a total of 2352 negotiation environments, average utilities of negotiations
conducted between non-learning agents (AvguUtil_NL) and between predictive and non-
learning agents employing different RP values (AvgUtil_Lrp)) are computed. Since
utilities are specified in range [0,1], the average absolute increase in utility incurred to
the agent who employs the proposed strategy is computed as follows:

AvgAbsInc g, = (AvgUtil_L g, —AvgUtil_NL)*100%

Figure 18 depicts the average absolute increase for each RP value.
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Figure 18: (%) Average gain in Utility with respect to RP

As it is shown in Figure 18 an agent with RP 0% incurs an average increase of 0.94% in
utility, while an agent with RP 100% incurs an average increase of 12.05% in utility.
Additionally, the concavity of the curve shows that the marginal increase of the utility
decreases as RP grows. For different values of RP>60%, the increase in utility does not
change significantly.

However employment of the predictive strategy increases the time (number of
negotiation rounds) of the discourse, as the learning agent continues the negotiation
after detection of the meeting point (MP). The time consumed, TCons, in each
NegotiationRounds

MiN(T s Tova)
negotiations between non-learning agents the average consumed time (AvgCons_NL)
is computed. For each RP value the average consumed time AvgCons_L e is also
computed. Finally the average absolute increase of the time consumed by the agent

who employs the proposed strategy is derived as follows:
AVgAbsCons g, = (AvgCons_L . —AvgCons_NL)*100%

negotiation round is normalized thus: TCons = . For the total of 2352

Figure 19 illustrates the increase of negotiation time with respect to the risk portion.
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Figure 19: (%) Average Increase of Negotiation Time with respect to RP

As it is shown in Figure 19 the average increase of negotiation time is 0.96% when RP
is set to 0% and 23.07% when RP is set to 100%.

Prolonging the negotiation procedure is the main cause of decrease of negotiating
agreements, as it likely that the counterpart reaches his deadline and terminates the
process. From a total of 2352 negotiations conducted between non-learning agents the
number of agreements (Num_NL) is computed. The number of agreements of
negotiations conducted between predictive and non-learning agents for each RP value
(Num_Lrp)) is also computed. The average relative decrease of the number of
established agreements by the agent who employs the proposed strategy is derived as
follows:

Num _ NL—-Num_ L
Num _ NL

Figure 20 illustrates how the number of agreements is affected by the adoption of the
predictive strategy.

AvgDecAgreement qp, = ®) *100%

25

201

(%)

Average Decrease of Agreements
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a 10 40 s B0 70 80 90 100
RF (%)

Figure 20: (%) Average Decrease of the number of agreements with respect to RP

More specifically, when RP is set to 0% the number of agreements is not decreased,
while when RP is set to 100%, the number of agreements shows an average decrease
of 20.78%.

From the experiments conducted, it is proved that as RP value increases the agent may
increase his individual utility. For each negotiation environment experiments were
conducted for the 21 predefined RP values. However, some of the selected RPs did not
necessarily satisfy the rationality condition ( P,, —0), and this led to negotiation

breakdowns. As it is observed, failing to establish an agreement increases with
increasing RP value, as the counterpart reaches his deadline before the predictive
agent adopts the risk-averse behavior. Setting the appropriate RP values is crucial for a
predictive agent who wishes to attain the maximum possible utility gain and avoid
negotiation failures, as we discuss in the following subsection.

uit

5.2.4 Setting appropriate RP values

Selecting appropriate RP values can help adopt rational behavior and therefore avoid
risks of failures. Appropriate selections can be made if estimations of the opponent’s
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deadline are also available. In case opponent’s deadline is shorter than player’s
deadline, RP can be set just before the expiration of the opponent’s deadline. The
predictive agent can make use of the risk-seeking behavior until that point and then
employ the risk-averse behavior, which will result in acceptance from the counterpart,
before the expiration of the latter's deadline.

A

In order to set appropriate RPs, if an estimation of the counterpart's deadline T?, is

A

available, predictive agentashould distinguish the two cases: If T”

max

falls in agent’'s a

turn, then he should adopt the risk-averse behavior at round T

max

- 2. On the contrary, if

it falls in agent’s bturn, then agent should adopt the risk-averse behavior at round 'I:n?ax -
1. In the first case RP can be set upon detection of MP as follows:

b J— —
RP: (rmax 2) MP
T2, —MP

max

A

*100% (10)

A

While in the second case RP can be set upon detection of MP as follows:
(Tn

max _1)_ MP
T2 —MP

max

RP = *100% (11)

Equations 10 and 11 apply if opponent’s deadline is shorter than the player’s deadline.
Contrarily, the predictive agent can set RP to 100%. In this respect the predictive agent
can attain the maximal possible increase of his individual utility by adopting the risk
seeking behavior after detection of MP, and the risk-averse behavior only in the final
round. Estimating the counterpart's deadline is beyond the scope of this thesis.
However, to assess the extension with the appropriate RP values, we have assumed
knowledge of the opponent’s deadline by the predictive agent. The proposed strategy
with the appropriate RP values when applied to the experimental settings discussed in
5.2.3.2 (2352 cases), yields very satisfying results as the average absolute increase in
utility is 12.017%, the average absolute increase of the consumed time is 22.53%, and
the average relative decrease of the number of agreements is reduced to 0.61%.

Another issue that needs to be clarified is that the RP value does not measure risk in
absolute terms. Agents who negotiate under different negotiation settings (with different
preferences, deadlines or opponents) and who have set the same RP value do not
necessarily take the same risks. To make this issue clearer, suppose agentawith a
deadline at 500 and RP of 50%. If the agent reaches MP at round 450, he will continue
with the risk seeking behavior for 25 more steps and then adopt the risk-averse
behavior. If the same agent negotiates with a different opponent and reaches MP at
round 100, he will adopt the risk-seeking behavior at round 200 and then the risk-averse
behavior. The risk taken when employing the risk-seeking behavior after round 450 is
not the same with the risk taken when employing the risk-seeking behavior after round
100, since the likelihood that the counterpart reaches his deadline is greater in the first
case. On the other hand when agents negotiate under the same settings RP can be
used to compare their risk attitudes (i.e. we can say that agent a is more risk-averse
than agent b if he has a lower RP value).
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6. FORECASTING TOOLS

In the previous chapters we have provided an overview of negotiation strategies
enhanced with learning techniques, and we have presented a strategy taking into
account the different attitudes towards risk, considering agents with perfect predictive
skills. In this chapter focus is set on the type of learning model employed by the agents,
for the purpose of predicting the counterpart’'s next offer. In this respect, we provide a
classification of forecasting tools, and provide a comparison over those that have been
used in negotiations.

6.1 A Classification

Forecasting is a similar but rather less general concept compared to predicting future
events, and involves the estimation of the expected value of a variable in a future time.
Forecasting is widely applied in business and economics, with the scope to estimate
outcomes, trends, cycles, seasonality, randomness and autocorrelation of economic
and business data.

An early classification of forecasting methods makes a distinction between qualitative
and quantitative models. Qualitative models are judgmental approaches that base
forecasts on the observation of current trends, and identify systematic changes more
quickly. Among these are Executive Opinions, Delphi, Sales-Force polling, Consumer
Surveys, Sales Forecast, Grass Roots, Market Research and Historical Analogy.
Quantitative models have their basis to statistics and mathematics and are further
categorized to simulation, cause and effect and time-series models.

Simulation methods involve the use of analogs to model complex systems. These
analogs can take on several forms. In the case of negotiations game analogs are used,
and the interactions of the players are symbolic of social interactions.

Time-series models include all models in which future values are predicted on the basis
of analysis of past series of data. Methods used in the complexity of past data analysis
are classified to univariate methods, in which a variable is predicted solely from its past
values and multivariate methods, in which other variables are also accounted. Another
discriminative issue is related to stationarity of data. Estimation to modeling stationary
and non-stationary time-series is discussed by Box and Jenkins and involves iterative
use of the three stage process of identification, estimation and diagnostic checking [76].
Autoregressive (AR), Moving Average (MA) and mixed Autoregressive Moving Average
(ARMA) are very popular univariate time-series models. ARIMA (Autoregressive
Integrated Moving Average) methodology, popularized by Box and Jenkins, attempts to
describe the movements of a stationary time series as a function of autoregressive and
moving average parameters. Other techniques applied in trend stationary series (eg.
weighted moving average, exponentially weighted moving average series), rise from the
need to deal with trend and seasonal patterns [77].

Nevertheless these models lie on the assumption of homoscedasticity (constant error
variance), which is considered unrealistic in many areas of economics and finance. For
this purpose models which allow error variance to vary over time, such as the
Autoregressive Conditional Heteroscedasticity model (ARCH) [78] and the Generalized
Autoregressive Conditional Heteroskedasticity model (GARCH) [79], have been
proposed for studying economic time-series.

Finally, cause-and-effect models capture relationships of the predicting variable with
other variables, and these relationships are also accounted to the prediction. Popular
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cause and effect methodologies have their origin to econometrics, regression (e.g. least
squares, max likelihood or stepwise) and Neural Networks [80].

In the following section the separating line between negotiation and other routine
forecasting problems is drawn to identify distinctions and challenges.

6.2 Forecasting in negotiations

When physical negotiations are transferred to electronic settings the agents need to
represent their owners as closely as possible and acquire their owner’s interests,
strategies and preferences in a given domain. Forecasting the counterpart’'s next offer is
equivalent to forecasting his behavior at each subsequent step of the interaction. But
what are the possible behaviors a negotiating partner may adopt during the discourse?

In the third chapter we discussed the Dual Concerns model, which describes five
behavioral classifications regarding cooperativeness and assertiveness [19]. Thomas
and Kilmann developed the five behavioral classifications to elicit the different
bargaining styles [81], and Ludwig, Kersten and Huang have suggested the use of
Thomas-Kilmann Conflict Mode Instrument to measure the conflict mode styles of
negotiators [82]. In their work the authors identify three types of concession curves
which reflect the recessional tendency of negotiators with respect to the conflict mode
styles. These are concave, linear and convex curves. Concave concession curves are
used to model high concessions at the beginning of negotiations and small concessions
at the end. Linear concession curves yield equal concessions at each time step, while
convex curves characterize small concessions at the beginning and bigger concessions
at the end. Results showed that negotiators who adopt compromising behaviors have
concave concession graphs, negotiators who adopt accommodating behaviors have
linear concession graphs, while negotiators who adopt competing behaviors have
convex concession graphs.

Additionally, as presented in the third Chapter, Faratin et al. suggest a more generic
and domain independent view of modeling negotiator behaviors with the use of formal
decision functions [25]. Time and resource dependent strategies are modeled through
different types of polynomial and exponential functions, and incorporate various types of
concession curves (concave, linear and convex). On the other hand many types of
behavior dependent tactics which mimic the relevant recessional tendency of the
counterpart cannot be explicitly defined by a polynomial or an exponential function.
Lastly, hybrid strategies which stem from mixtures of the aforementioned strategies may
emerge, increasing the domain of possible behaviors.

We therefore conclude that the distinctive feature of forecasting the counterpart’s future
offers to other routine forecasting problems relies on the dynamic nature of the process.
The evolving rules of the subsequent offers depend on the negotiator’'s behavior, which
iIs modeled through the different concession curves. Yet the behavior or strategy of
negotiators, which is motivated by their goals and preferences, is not always disclosed,
therefore the function form is not known a priori. Additionally, it is not always feasible to
describe the behavior of an agent by a well known function, as is the case with agents
adopting random behaviors.

From a general perspective, traditional forecasting methods presented in section 6.1,
with the exception of Neural Networks, require specific assumptions over the underlying
data distributions. Most time-series models lie on the assumption of homoscedasticity,
which is guaranteed through the Breusch-Pagan test [83]. ARCH and GARCH models,
which allow variable error variance, are appropriate only if the residuals follow specific
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function forms [79]. Regression, in order to be applied, requires that the residuals are
not correlated, in which case autoregressive models are more appropriate [84].

On the other hand, Neural Networks are applicable in the general case and for this
reason they are big challengers to conventional forecasting methods. Hornik,
Stinchombe and White have proved the universality of Neural Networks which are
applicable in the general case, without assuming implicit knowledge of the function that
maps input to output data [85].

Methodologies that have been used for the purpose of forecasting the counterpart’s
future offers can be summarized into those based on statistical approaches (particularly
non-linear regression) [2] [3] mathematical models based on differences [4] [5], and
connectionist approaches, particularly some special types of neural networks [6] [7] [8]
[9]1 [10] [11] [12].

Experiments have shown that mathematical models give poorer results when compared
to non-linear regression models [3]. The authors characteristically state that “Compared
to the approach based on the difference method, the regression-based prediction is
more precise and results in higher utility gains of the adaptive negotiation agent”. The
objective of regression is to estimate the parameter vector of the generation functions,
SO as to minimize some error function and appropriately fit the counterpart’'s previous
offers. Non-linear regression is applied in each negotiating round of the predicting agent
over the whole dataset. However, such models are more restrictive than artificial neural
networks, since they require the assumption of a known function form of the
counterpart’s behavior. As applied in [3] they are tied to specific offer generation
functions. Additionally it is argued that applying non-linear regression is not appropriate
in the general case, since it is not guaranteed that the residuals are not correlated.

Setting focus on other mathematical models, in [86] the superiority of forecasting the
counterpart’s next offer using neural network models is empirically demonstrated. More
specifically, polynomial approximation using a 7th order polynomial, which was proven
to be the most appropriate for this purpose, as well as approximation with the use of
cubic splines were employed to estimate the counterpart’'s next offer one step before
the expiration of his deadline. Numerous experiments were conducted covering many
different negotiation scenarios, and results showed that the agent who applied the
forecasting strategy which was based on neural networks, yielded higher utility gains
and smaller estimation error. The author suggested that polynomial approximation was
not as accurate due to polynomial oscillations, and cubic splines were difficult to
extrapolate.

Summarizing, it can be concluded that the current trend in forecasting the negotiation
counterpart’s next offer lies on neural networks, which are reviewed in the following
section.
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7. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNSs) represent a multidisciplinary subject with roots in
neuro-sciences, mathematics, statistics, physics, computer science and engineering.
Numerous books have been written concerning ANNSs. In almost every introductory
section we encounter the biological analog of the artificial neuron, and the
corresponding functions of the interconnected neurons in the human brain. The design
of Artificial Neural Networks is indeed inspired by neurobiological elements;
nevertheless it is important to recognize that artificial neurons are truly primitive and that
the structural organization of levels in the human brain cannot be re-created with
artificial networks. The interested reader may refer to [87]. As stated by Krose and van
der Smagt, “an artificial neural network consists of a pool of simple processing units
(nodes/neurons) which communicate by sending signals to each other over a large
number of weighted connections” [88]. Each processing unit receives input from
neighbor or external sources and computes an output signal which is propagated to
other units. It is conceived as a primitive function and artificial neural networks may also
be defined as networks of primitive functions [89]. Each processing unit is split to two

functional parts: an integration function g:R" — R which reduces the n input arguments
to a single numerical value, and an activation function f : R — R, which produces the
nodes’ output. Figure 21 depicts the general structure of a processing unit.

n ~

Xg — g | Ff o} > flglx1,x0,..,x5 )

A

Figure 21: General structure of a processing unit

Knowledge of the neural network is highly distributed among the interconnection
weights. Primitive functions along with interconnection weights are combined to produce

the network functionF : R" — R™ . Therefore a neural network provides mapping from
input to output space. This mapping is learned by adjusting the interconnected weights
with respect to some learning rule.

The main differences of neural network models lie in the primitive functions used by
each processing unit, the interconnection patterns and the timing of the transmission of
information. In general two fundamentally different classes of network architectures are
identified: feedforward and networks with feedback connections. In Feedforward Neural
Networks (FFNN), neurons are organized in the form of layers. In the simplest form, an
input layer of source nodes projects to an output layer of neurons. In the general case
intermediate layers of neurons (hidden layers) intervene between input and output layer,
enabling the network to extract higher order statistics. This class of networks is strictly
acyclic and every node of each layer is connected to nodes of the adjacent layer.
Networks with feedback connections on the contrary, allow connections of nodes with
other nodes of the same or preceding layers. If the network contains cycles,
computation is not straightforward and computing units need to be synchronized.

Another distinctive criterion relates to the learning method which is used for network
training. Learning algorithms are divided to supervised and unsupervised. In supervised
learning, knowledge of the environment is represented by a set of input-output
examples. This class of learning techniques is further divided to reinforcement and
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error-correction learning. In reinforcement learning, reward signals are assigned after
the presentation of each example, and weight correction is based on the input vector. In
error-correction learning, examples are used to formulate the training set and instruct
the neural network with the desired output of each particular input. The magnitude of the
error of the produced output together with the input vector is used to adjust the network
weights in a step-wise manner. After the network is trained it can be applied to perform
calculations with unknown input.

On the contrary unsupervised learning does not assume the existence of input-output
pairs, rather it focuses on the extraction of relevant information within the redundant
training samples. Popular feed-forward networks using supervised learning are
Perceptron, Adaline, Multi-Layer Perceptron (MLP), Radial Basis Function Networks
(RBFNSs), functional link networks. Self organizing maps are feedforward networks using
unsupervised learning. Networks with feedback connections using supervised learning
are recurrent networks, (time-delay networks ), Boltzman machines, cellular neural
networks, competitive learning and Kohonen networks. Finally networks with feedback
connections using unsupervised learning are Hopfield network, and ART.

In general, the learning tasks of neural networks are classification, clustering, pattern
association, function approximation, forecasting, time series analysis, feature extraction,
signal processing and control [87]. In the next subsection we provide a historical review.

7.1 A historical review of artificial neural networks

The first formal mathematical description of an artificial neuron was provided by Mc
Culloch and Pitts [157]. In their work the authors bridged principles of neurophysiology
and mathematical logic, and showed that a sufficient number of simple neurons could
be used to compute any function. The next important development in neural networks
came in 1949, with Hebbs’ Organization of Behavior [90]. In this book Hebb states the
synaptic modification of a learning organism and the creation of neural assemblies as a
result of such modification. Hebbs’ book has been inspiring for the development of
learning and adaptive systems [91]. Two classical models the ‘Perceptron’, proposed by
Rosenblatt [92], and Adaline, proposed by Widrow and Hoff [93], constitute the first
functional artificial neural networks. The goal of the perceptron was to learn the
association d: {-1,1}" — {-1,1}, given a number of input,output samples. The difference
between Perceptron and Adaline lies in the training procedure. The publication of
Minsky and Papert’s Perceptrons [94], discouraged research in the area of ANN, since
severe restrictions on the representational power of perceptrons were detected and
presented. With single layer perceptrons only linear classifiers could be constructed or
in the case of function approximations, only linear relationships could be represented.
This problem was solved with the introduction of multi-layer perceptrons (MLPs), and
the adjustment of weights using the backpropagation algorithm [95] [96]. Another
important activity in the field, was the introduction of self-organizing maps using
competitive learning by von der Malsburg and Willshaw [97] [98]. Grossberg established
a new principle of self-organization known as Adaptive Reasonance Theory (ART) [99]
[100] [101], which introduced a bottom-up recognition layer and a top-down generative
layer. In 1982, Hopfield introduced Hopfield networks with feedback connections [102],
bringing current research efforts to a common mathematical frame. The same year,
Kohonens’ publication on self-organizing maps, [103], received great attention and still
constitutes a benchmark for testing and evaluation of innovative models. An alternative
to multi-layer perceptrons (MLPs) was introduced by Broomhead and Lowe, with the
design of feedforward networks using Radial Basis Functions (RBFs). Poggio and
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Girosi, enriched the theory of RBFs by applying Tikhonovs’ regularization theory [104].
Finally in the early 1990s, Vapnik invented support vector machines (SVM) for pattern
recognition, regression and density estimation problems [105] [106] [107] [108]. In the
next subsection we focus on ANNSs that are used for prediction.

7.2 Artificial neural networks for prediction

Artificial Neural Networks (ANNs) are promising tools for predicting future values of
business data. Their success is attributed to their unique features and powerful pattern
recognition capability. ANNs have global and local function approximation ability, which
allows them to capture complex data relations. Classical Neural Networks which have
been used for predictions are Multi-Layer Perceptrons (MLPs), Radial Basis Functions
(RBFs)(function approximation), Functional Link Networks (function approximation),
Recurrent Networks (function approximation, interpolation, forecasting), Time Delay
Networks (forecasting and time-series analysis). In the next subsections we provide a
review of MLPs and RBFs which are the most popular ANNs that are used in
negotiation forecasting.

7.2.1 Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP), is a feedforward fully connected network (every node of
each layer is connected with every other node of the adjacent layer) and is considered
one of the most classical models of ANN. Figure 22 shows the layered structure of an
MLP with one hidden layer.

Figure 22: Structure of an MLP network with one hidden layer

Nodes in the input layer only transmit information from external sources and do not
perform any computations, while in the hidden and output layers, they follow the general
structure depicted in Figure 21. Typically the input signal propagates through the
network in a forward direction, on a layer-by-layer basis. The resulting outputs of each
layer are in turn applied to the next layer in a sequential manner, until the networks’
output is computed. Design issues considering the number of hidden layers and nodes
in each layer, as well as the activation functions for each node are related with the task
the network is designated. In the case of forecasting and function approximation, MLP
nodes use additive aggregation functions. In the hidden layer, nodes have smooth non
linear activation functions, following sigmoidal nonlinearity (most commonly used are
logistic and tangent hyperbolic functions), while in the output layer they have linear
activation functions. Another issue concerning the networks’ free parameters relates to
the interconnection weights. In most cases initial weights are selected to follow a
uniform distribution (-a,a). The network learns the association from input to output space
and accordingly adjusts the weights through the training procedure which is discussed
in detail in the following section.
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7.2.1.1 MLP Training

As stated earlier the network is an implementation of a composite function from input to
output space, and the learning problem consists of finding the optimal combination of
weights so that the network function ® approximates a given function f. However,
function f is not given explicitly, but implicitly through input-output examples. We
consider a network that needs to adjust its free parameters in order to provide an
accurate mapping of m input to k output space. If we have N input vectors
y(n) =[y,(n),y,(n),...y,(n)]" and the desired output vectorsd(n) =[d, (n),d,(n),....d, (M]"

with n € [1,N], the error signal of output node j after presenting input pattern n is defined
as the distance of the computed output y,(n) with the desired output for that particular

pattern d,(n) . This relation is given by:
e;(n) =d;(n) - y;(n) (eq.12)

Instantaneous value of the total error energy E

« IS obtained by summing %ef for all

neurons in the output layer, thus:

l Kk
= :EZef (eq. 13)
j=1

The average squared error energy is then obtained by summing the error energies of all
patterns and normalizing with respect to the set size N:

1 N
Eavg :WzlE(n) (eq 14)

The objective of the training procedure is to adjust the interconnected weights, so as to
minimize the error function given by eq. 14. A common practice is to divide the original
data patterns to training, validation and test set. The training algorithm is applied to the
training set. Validation set is needed for the application of an early stopping method to
guarantee better generalization, and the test set is used for overall assessment, since
the error of the test set is a common indicative measure. Training procedure is defined
as incremental or online if weight updates take place after the presentation of each input
pattern, and batch or offline if weight updates are performed after the presentation of all
training patterns. Training procedures are classified to first order methods (i.e. Error
Back Propagation), where the updates of the interconnection weights are based on the
direction of the gradient and second order methods (i.e. Newtons’'method, Gauss-
Newton and Levenberg and Marquardt method, one step secant (OSS), scaled
Conjugate Gradient and Conjugate Gradient (CG)) which account more information
about the shape of the error function [109]. Second order methods are applicable only in
batch training mode and result to faster convergence. Amongst the most popular of the
batch training mode procedures is the Levenberg and Marquardt (LM) method [110]. In
the following subsections we provide a detailed description of Error Back Propagation,
Newton, Gauss-Newton and Levenberg and Marquardt method.

7.2.1.2 First Order Learning Methods - Back propagation

Back-propagation consists of two passes through the different layers of the network: a
forward pass, where the input vector is propagated and the vectors’ output is computed
and a backward pass, where the error signal is propagated backward through the
network. The interconnection weights are adjusted in order to ‘move’ the networks’
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response closer to the desired output. To delve into the functional details of the
algorithm, we borrow the notation from Haykin [89].

Each pattern n is sequencially presented to the network. In the forward pass each node
j at layer |+1 computes the output signal aggregating the signals of the preceding layer |
and passing the result to its activation function. Particularly, if the preceding layer has m

nodes, then node j will compute u;(n) =ijiyi (n) , where w; is the inter-connection
i-0

weight between neuron i in layer | and neuron j in layer I+1, and Y;(n) is the signal

produced at the i node of layer I. This value will form the input to the node’s activation

function ¢, , thus the computed output for node j will be: y; (n) = ¢, (u;(n)). Minimization

of the error energy E using the back-propagation algorithm is similar in rationale to

the Least Mean Square Algorithm (LMS). The partial derivative is expressed according
to the chain rule as follows:

OE(n) _ OE(n) 2e;(n) oy;(n) du;(n)

= (eq. 15)

ow,,(n) G, (n) ay, () au, (n) ow,,(n)
The distinct partial derivatives are:

oE(n) _

2. (n) =€, (eq. 16)

oe; (n)

- .17

oy, (eq. 17)

oy,

au () ¢'(u;(n) (eq. 18)

ou;(n) _

o, () yi(n) (eq. 19)

Thus applying eqg. 16-19 to eq. 15 gives us:

oE(n) _

ow,(n) e;¢'(u;(n)y;(n) (eq. 20)

There are two training modes using the back-propagation algorithm. Online or
incremental and offline or batch-mode. In incremental learning weight adjustment takes
place after the presentation of each example. The correction of the interconnection
weight w; is defined by the delta rule:

oE(n)
ow;; (n)

where n is the learning rate parameter of the back-propagation algorithm. The minus (-)
sign in eq. 20, accounts for gradient descent in the weight space (towards the direction

which reduces the value E(n) ). Applying eg. 20 to eq.21 gives:

AW =-7

N

(eq. 21)

Aw; =n8;(n)y;(n)  (eq. 22)

where §,(n) is the local gradient of node j given by the relation
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__0E(n) _ .
5;(n) = —auj(n) e,¢'(u;(n)) (eq.23).

If j is a neuron in the output layer the local gradient is the product of the error signal e,
and the derivative ¢'(u;(n) ), both terms associated with neuron j. However, if j is a
neuron in the hidden layer, the local gradient is the product of the derivative ¢'(u;(n))

and the weighted sum of the local gradients &, computed for the neurons of the next
layer that are connected to neuron |.

In batch-mode or offline training, weight update is performed after the presentation of all
patterns as shown in eq. 24:

Awy; = 77251 (ny;(n) (eq. 24)

In both training modes, examples are presented multiple times during the training
procedure. A full presentation of the entire set of examples is termed an epoch, thus
learning takes place on an epoch-by-epoch basis, until the network weights stabilize
and some convergence criteria, often related to reaching a minimum value of the
averaged squared error are met.

Batch-mode training is based on the computation of the true gradient of the error
surface and convergence is guaranteed (the proof is based on Kolmogorov’s theorem).
Incremental training is stochastic in nature, since it approximates the true gradient.
However, incremental training requires less storage capacity.

7.2.1.3 Accelerating the back-propagation Process

Back-propagation is guaranteed to converge to a local minimum of mean squared error
(MSE) after a number of iterations. Nevertheless, the error surface (MSE with respect to
the network weights) may be uneven or highly jagged, resulting to a number of local
minima, different from the global minimum being searched. In order to avoid being
trapped to a local minimum, it is desirable to compute the average direction of MSE in a
small region, rather than the precise gradient at one point. In [95], a heuristic to
approximate the average gradient and allow weight adjustment towards the general
direction of MSE decrease is proposed. This heuristic is based on relating the weight
changes of iteration (n), with the weight changes of the preceding iteration (n-1).
Implementation of this rule is accomplished through the generalization of the delta rule,
with addition of a momentum term as shown in eq. 25.

Ay (n) = aAw (1—1) + 75, (n)y, ()~ (eq. 25)

where ¢« is the momentum constant.

Another heuristic for accelerating back-propagation learning algorithm stems from
adjustment of the learning rate parameter . A small value of n signifies small changes
of the weights at each iteration step, thus smoother trajectories in weight space with the
cost of a slower rate of learning. High values of n speed up the rate of learning, but
result to high oscillations, turning the network unstable. A simple heuristic is to increase
the learning rate at every iteration that improves performance by a significant amount
and to decrease it at every iteration that worsens performance.
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7.2.1.4 Second Order methods — Newton’s method

Second order methods are based on optimization techniques which account more
information about the shape of the error function than the direction of the gradient.
These methods are applicable only in batch training mode and result to faster
convergence. In second order methods, a Taylor series approximation is used to
expand the error surface E,, about the weight vector of the n" iteration w(n) (eq. 26)

1
Eavg Wiy + AWy = By (W) ) + 9 AW, +EAW(TH)H(n)AW(n) (eq. 26)

avg

where g, is the local gradient vector, and H ,is the local Hessian matrix. The optimal

value of the adjustment szn) is obtained by differentiating eq.26 and setting to zero, in
which case we get:

sz‘n) =—H (‘nl) Ieny (€9.27)

Eq.27 constitutes the essence of Newtons’ method, where the problem is solved in one
iteration. However, inversion of the Hessian matrix is computationally expensive and
requires the Hessian to be non singular and positive definite, which is not guaranteed.

To overcome the aforementioned problems, approximation of the Hessian matrix H is
attempted (Quasi-Newton and Conjugate-Gradient method). Among the most popular
second order optimization techniques lies the Levenberg and Marquardt method. It is a
method which combines Gauss-Newton and gradient descent.

7.2.1.5 Gauss-Newton and the Levenberg and Marquardt method

According to Gauss-Newton method, in regions where the error is small, the Hessian
matrix can be approximated by the Jacobian matrix J as follows:

H=J"J (eq.28)

Combination of Gauss-Newton and gradient descent was proposed by Levenberg [111],
resulting to the following weight update formula:

AWy =—(H + A1) VE = (3T + A)Aw,,, =JTE (eq. 29)

Small values of A reduce the affect of gradient descent, and the update rule reduces to
the Newton step. On the contrary, with large values of A second order information is
ignored and the rule reduces to gradient descent. A is Levenberg’s damping factor and
its value is adjusted at each iteration with respect to the error at the produced weight
vector. It is increased if the error is reduced otherwise it is decreased. Intuitively the
algorithm follows the gradient descent until it approaches the region of the minimum
error, where it gradually switches to Newton’s step (using the quadratic approximation).
Marquardt improved the algorithm by replacing the identity matrix with the diagonal of
the Hessian resulting to equation 29:

(37 + Adiag[H])Aw,,, =JTE  (eq. 30)

With Marquardt’'s formula [112], even in cases of high values of A where the algorithm is
performing a gradient descent, second order information is accounted. Particularly,
each component of the gradient is scaled according to the curvature of the error surface
which is proportional to the Hessian. Larger steps are taken in the direction with low
curvature (flat terrains) and smaller in the direction with high curvature (steep inclines),
addressing the classical problem of the “error valleys”.
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LM method has been noted as the fastest and most efficient method for training small
and moderate-sized neural networks [113].

7.2.2 Radial Basis Function Networks (RBFN)

Radial Basis Function Networks (RBFN), a popular alternative to the MLPs, are two
layered feedforward networks which perform exact interpolation of a set of data points in
a multidimensional space. Each unit in the hidden layer implements a radial basis
function, enabling a non linear transformation of input to hidden space, while each node
in the output layer performs linear combination of the hidden layers’ output, enabling a
linear transformation of hidden to output space. The rationale behind the nonlinear
transformation, followed by the linear transformation is tracked in Covers’ theorem on
the separability of patterns [114], which states that “a complex pattern classification
problem cast in a high dimensional space nonlinearly is more likely to be linearly
separable than in a low-dimensional space” — hence the reason for making the
dimension of the hidden layer of an RBFN high. Radial basis functions were introduced
by Powel [115] to solve the real multivariate interpolation problem, and were first used in
neural networks by Broomhead and Lowe [116]. Figure 23 illustrates the structure of an
RBFN.

Figure 23: Structure of a RBFN

For an input pattern X, the output F(x) of the RBFN is given by eq. 31:
F(x) = wa([x —x) (eq. 31)
k=1

where wy is the weight vector which connects the k™ hidden unit with the units of the
output layer, ¢(|x - x,[) is a set of n nonlinear functions, known as radial basis functions,

|| denotes a norm that is usually Euclidean, and xx are known data points that comprise

the centers of the Radial Basis Functions. For a set of n patterns {(xp,tp)}, p ={1,2,...n},
the interpolation condition which needs to be satisfied is given by eq. 32:

F(x,)=t, (eq.32)
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In simple RBFNs each input vector is set as an RBF center, therefore the hidden layer
comprises of as many units as the available patterns. Inserting equation 31 to 32 we

obtain the following set of linear equations

¢11 ¢12 ¢1n W, tl

t
P Pz P |Vl Tl iy Z T (eq. 33)

¢n1 ¢n2 ¢nn W, tn
where ¢, = ¢(Hxi _XiH) (1) =1,2,..,n

If matrix ® is nonsingular and therefore invertible, the weight vector can be determined
by:
W=0o"T

There is a large class of Radial Basis Functions that is covered by Michelli’'s theorem
[117], and for which matrix ® is invertible for distinct patterns (Multiquadrics, Inverse
multiquadrics and Gaussian Functions).

Nevertheless, RBFNs are prone to overfitting and result in degraded generalization
performance [116]. Regularization theory proposed by Tikhonov [118] provides a
solution to the so called bias-variance problem. Poggio and Girosi [104] explain the use
of regularization theory to Radial Basis Function Networks as a method for improved
generalization to new data. Regularization theory leads to the design of a network with
the same structure as the simple RBFN, termed regularization network. This network
has a number of desirable properties; it is universal approximator, as it approximates
arbitrarily well any multivariate continuous function given a large number of hidden units
and it has best approximation property, as there exists a choice of coefficients that
provides the best approximation of an unknown function f.

The one-to-one correspondence between the hidden units and the training input data x;
turns the network prohibitively expensive to implement for large training sets (inversion
of a nxn matrix grows polynomially with n, O(n®). To address this issue, a suboptimal
solution which approximates the regularized solution is searched in a lower dimensional
space. This approach emerges the so called generalized radial basis function networks,
which have the same architecture as the regularized RBFNs, but use less basis
functions in the hidden layer. The output of each hidden unit is defined by a green
function, with the difference that the center c¢; does not necessarily coincide with any of
the available input vectors x;.

7.3 Selection of MLPs to estimate the next offer

At this point it is essential to underline the particular requirements of a negotiation
interaction and justify the selection of MLPs with one hidden layer, as an enhancement
tool to the predictive agents.

In automated negotiations with incomplete knowledge, no prior information concerning
agent’'s preferences, goals, strategies and deadlines is exchanged between the
underlying parties. Enhancing agents with predictive tools has proved significant, since
they adopt strategies that assist them in formulating the offers to be proposed, and yield
more satisfying outcomes. Each proposed offer plays a crucial role in the formation of
the negotiation outcome and in the progress of the overall procedure. As Hindriks states
in [119], “In the analysis of negotiation strategies, not only the outcome of a negotiation
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is relevant, but also the bidding process itself is important. Mistakes made during the
bidding can have an enormous impact on both players. Examples from human
negotiations are of the form: a wrong offer can upset relationships, even causing the
other party to walk away”.

The same issue has also been pointed out by Carbonneau et al. in [6], where the
authors claim that even small variations in the current offer can have important impact
on the expected counter-offer from the opponent. Since the exchanged offers depend
on the prediction of the counterpart’'s future offers, accuracy is a key factor to the
forecasting tool. Furthermore, negotiating agents have limited capacity and resources.
In many negotiation domains, agents need to keep their size low, and abide with severe
time restrictions.

As far as accuracy is concerned, it is noted that FFNNs such as MLPs and RBFNs are
universal approximators, capable of approximating any continuous function.

More particularly, an MLP with a single hidden layer having sigmoidal activation
functions and an output layer using linear activation functions can approximate well any
continuous multivariate function to any accuracy [85] [120] [121] [122]. Cybenko’s proof
[120] is based on the Hahn—Banach theorem and is concise. The proof of Hornik et al.
[85] is based on the Stone—Weierstrass theorem, while Funahashi [121] proved the
same problem using an integral formula. Xiang’'s proof [122] is derived from a
piecewise-linear approximation of the sigmoidal activation function.

RBFN is a popular alternative to the MLP, which has universal approximation and
regularization capabilities. Theoretically, the RBFN can also approximate any
continuous function arbitrarily well, if the RBF is suitably chosen [104 [123] [124].

Although MLPs and RBFNs are considered equivalent, MLPs are global approximators,
have greater generalization ability and are good candidates for extrapolation. On the
contrary RBFNs are local approximators and the extension of a localized RBF to its
neighborhood is determined by its variance, which restricts the RBFN from extrapolation
beyond the training data. (page 334 of [109]). Other types of networks such as
Recurrent Neural Networks (RNNs), which have at least one feedback loop, are also
universal approximators of dynamical systems. However, due to the difficulty of applying
backpropagation and due to higher training times, they have not been used for the
purpose of forecasting the counterpart’s next offer.

Considering that the size of agents should be kept small, localized RBFNs have an
additional shortcoming. In order to achieve accuracy similar to that of MLPs, they
require more data and more hidden units. More specifically, to approximate a wide class
of smooth functions, the number of hidden units required for the MLP with one hidden
layer is polynomial with respect to the input dimensions, while the number for the
localized RBFN is exponential [125].

MLPs require fewer resources due to their small size (compared to RBFNs). For this
reason, and because they have been selected by the majority of the aforementioned
applications, this research focuses on the class of MLPs with one hidden layer. In the
next section we outline the main characteristics of the MLPs that have been applied for
forecasting the counterpart’s next offer.
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7.4 Architecture of MLPs

In the third chapter the strategy of state of the art agents who conduct single-lag
predictions to improve their individual utility was discussed. In this section we will delve
into the architectural details of the MLPs that are used for such purpose.

In SmartAgent [8] the provider agent predicts the next offer of the consumer agent by
using an MLP with one hidden layer. The negotiations conducted are single-issued, and
the values of the three preceding offers of the opponent constitute the network’s input.
The number of nodes in the hidden layer is not clearly specified; rather it is left an open
issue. As the authors state the number of nodes in the hidden layer is set during
network training, through trial and error. The output layer consists of one node which
represents the value of the counterpart’s next offer. The architecture of the 3xnx1 MLP
is illustrated in Figure 24:

Xb—>s1-5 Xb—bst--‘ Xla—bnl-l
Figure 24: Architecture of the employed MLP [8]

The training set is extracted online, during negotiation. At the beginning of each
discourse there is a time window required by the MLP to adapt to the negotiation
context, therefore the MLP’s learning capability cannot be exploited before the first p
proposals (p5). The MLP is trained with the use of Back -propagation with adaptive
learning rate. In Oprea’s paper only preliminary results are illustrated, where simple and
small 3x3x1 networks are used. Weights are initialized in the range of [-0.1, 0.1]. As a
pre-training step, 20 runs with 2 different weight initializations and 10 different training
sets were used, and the weight vectors that resulted to the best performance (smallest
errors) were selected.

Another agent-based application that exploits the learning capability of neural networks
is the one described in [9]. The authors compare the results of application of an MLP
and an RBFN in forecasting the next offer. In their work the Consumer agent makes use
of the neural network to predict the Provider's next offer in single-issued bilateral
negotiations. As far as the MLP is concerned, the network’s input is formulated by the 9
past offers of the opponent, and the network’s output consists of a single linear node
which represents the estimated offer. The MLP has one hidden layer with three non-
linear nodes. Training is conducted offline, with the use of Levenberg and Marquardt
method. It should be noted that the MLP is trained at a pre-negotiation stage, with data
from past interactions and is then applied during the discourse. Since the network is
trained only once before initiation of the process, the authors have tried to include
various training patterns from different negotiation domains.
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Application of MLPs for the purpose of estimating the counterpart's next offer is also
described in [6], where an NSS that assists providers of bicycle parts in bilateral
negotiations with bicycle producers is developed.

The negotiable object has four issues (Price, Delivery, Payment and Returns), that take
discrete values. The neural network employed has thirty nine inputs, resulting from past
offers (last sellers’ and buyers’ and the first offer), the current offer, and statistical
information (maximum, minimum, standard deviation and average value of each issue).
It also has ten hidden nodes and four output nodes, one for each predicted attribute of
the estimated offer. The transfer function in the hidden layer is a tan-sigmoid function,
while in the output layer is a linear function. The 39x10x4 MLP is illustrated in Figure 25.
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Figure 25: Architecture of the employed MLP [6]

Network training is conducted offline using past negotiation data with the Levenberg-
Marquardt algorithm. The approach is tested with data obtained from bilateral
negotiations conducted with the use of Inspire negotiation system. The Inspire dataset
considered 6310 offers.

A similar work, where an NSS is enhanced with an MLP, is provided by Lee and Ou-
Yang [7]. An artificial neural network is applied to a supplier selection auction market, as
a negotiation support tool of the demander. In particular, the network is used to forecast
the suppliers’ next bid price, and allow the demander to appropriately choose among a
list of alternatives. The network consists of 9 inputs resulting from combination of
environment-specific information (quantity, due date, inventory level, scheduled
production plan, surplus capacity, current time step) and offer-specific information
(providers’ last offer and consumers’ last and current offers). It also has a single hidden
layer with twelve neurons (selected by means of trial-and-error experiments), and one
output neuron that reflects the predicted bid price. Training is conducted at a pre-
negotiation stage with data collected from simulations of the negotiation process, by
using the online back-propagation algorithm (with momentum term). Extensive
experiments are illustrated resulting from 247 negotiation sessions (5982 training
patterns and 1386 test patterns).
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Table 4 summarizes the characteristics of agent systems employing ANNs with the
purpose of predicting their counterpart’s next offer. Categorization is made with respect
to the agent system, model or platform, the number of negotiable attributes, the side of
the agent employing the prediction (consumer or producer/provider), the mechanism
used for offer generation (based on particular functions or generated by a human
counterpart), the phase of application during a negotiation discourse, technical
and extensiveness of the discussed

characteristics of the ANNs employed,
experiments.

Table 4: Technical characteristics of agents and negotiation support systems using neural

network models for single-lag predictions

Agent or | Automated NSS (Carbonneau, | NSS in a supplier | Automated Automated
Negotiation Negotiator Kersten and Vahidov, [6]) | selection auction | Negotiator Negotiator
Support SmartAgent market (Papaioannou, (Papaioannou,
System platform [8] (Lee and Ou- | Roussaki, and | Roussaki, and
Yang, [7]) Anagnostou, Anagnostou,
) El))
# of Negotiable | 1 issue 4 issues 1issue 1issue 1issue
Issues
Agent Provider Provider (Itex | Consumer predicts | Consumer Consumer
employing agent predicts | manufacturing, a producer | provider's next bid | predicts predicts
prediction consumers’ of bicycle gears) predicts provider's next | provider's next
next offer consumers’ next offer bid bid
(Cypress Cycles, a bicycle
producer)
Offer Based on | Human (acquired from | Based on Lee’s | Based on | Based on
generation Faratin et al., | INSPIRE negotiation | and Ou-Yang's, | Faratin et al., | Faratin et al.,
mechanism 1998 system) 2009 iterative | 1998 1998
strategy
ANN model MLP MLP MLP MLP RBF
Input Features | The 3 | 39 inputs resulting from | 9 inputs resulting | The 9 last offers | The 9 last offers
previous past offers (last provider's | from combination | of the opponent of the opponent

offers of the

opponent

and consumer's and the

first offer), the current

offer, and statistical

information (maximum,
minimum, standard

deviation and average

value of each issue)

of environment-

specific

information
(quantity, due
date, inventory
level,  scheduled
production  plan,
surplus

capacity,current

time step) and
offer-specific
information
(providers’ last
offer and
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consumers’ last

and current offers)

Number of | Left open (3 | 10 12 3 3
Hidden Nodes used for
illustrative
purposes)
Number of | 1 4 1 1 1
Output Nodes
Training Back Levenberg and Marquardt | Backpropagation Levenberg and | Orthogonal
Function propagation method with regularization | with momentum | Marquardt Least Squares
with adaptive | parameter term method (OLS) for the

learning rate

selection of RBF
unit centers and
Linear Least
Squares to train
the networks’

weights

Training Mode On-line Initially trained in Batch | Online trained with | Initially trained in | Initially trained in
trained  with | mode data extracted | Batch mode Batch mode
data extracted from different
from different negotiation
negotiation contexts (then use
contexts (then network with test
use network data)
with test data)

Experimental Preliminary Limited to the specific | Extensive (5.982 | Extensive (3 | Extensive 3

results domain training patterns/ | families of | families of

1.386 test | tactics resulting | tactics resulting
patterns) to 1239 data | to 1.239 data
patterns) patterns)

Application of | In every | In every decision making | In every decision | Once at the pre- | Once at the pre-

Predictive decision step making step final step of the | final step of the

mechanism making step negotiation negotiation
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8. PROBLEM STATEMENT — INTRODUCING SESSION-LONG
LEARNING AGENTS

In the previous chapter we discussed why MLPs are preferred for predicting the
counterpart’s next offer. However, literature review reveals high diversity of the models
applied in terms of the selected architecture (input, and hidden nodes), the training
procedure and application of the networks, as well as the data considered to formulate
the training sets. In this respect we try to address the following issues:

How should training and application of the models be performed in order to capture the
dynamics of changing negotiation environments?

How can the architecture of such models be optimized?

As far as the first issue concerned, it is evident that ANNs which are employed by
current state of the art negotiators are particularly tied to bound domains, since in the
majority they are trained and applied to environments with data of the same underlying
distributions. The networks are trained before the initiation of the current negotiation
instance with data from previous interactions, and are then set to operate in the current
discourse. In some cases, ‘synthetic data’, produced from simulations of different
negotiation environments, is used to acquire the training patterns. In order to handle
multiple scenarios, large sized training sets are generated, and even more complex
models are designed to accurately fit the data. As a consequence, the predictors’
accuracy depends heavily on ‘synthetic data’ or on data acquired from previous
negotiations. Although these models yield very satisfying results when data distributions
do not change, we argue that they cannot capture negotiation dynamics in changing
environments.

As far as the second issue is concerned, literature review revealed lack of a commonly
stated approach on what should constitute the input of the predictive model. In some
cases the network’s input was formulated by the counterpart’s responses, while in
others the past offers of both partners were considered. Moreover, there exists a line of
work where outside options, related to demand curves, or other statistical parameters
were introduced along with the negotiators’ previous offers.

In this chapter we argue that retraining the MLPs is crucial to increase accuracy of the
forecasting tool and yield significant gains to the predictive agents. In this respect we
introduce Session-long Learning Agents and compare them with agents who train their
networks only at a pre-negotiation phase (Pre-Trained Agents, PTAS).

8.1 Retraining MLPs with data acquired from the current thread

Evidently, a negotiator may periodically change his strategy and/or preferences due to
changes that occur in the environment. This is illustrated in [126] who discuss the
impact of “outside options in automated negotiations”. Van Bragt and La Poutre also
discuss how an agent may be programmed to constantly change his strategy for
defensive purposes (to avoid being exploited by learning agents) [127]. As stated in
section 7.3 it is important for a learning model to provide accurate predictions even in
dynamic environments. When agents act in turbulent settings, it is not rational to expect
exhaustion of all possible scenarios in order to formulate the training set. The novel
aspect of this research lies in the field of application of Neural Networks in negotiations
and not in the algorithmic design of Neural Networks. More specifically, it highlights the
need to use MLPs trained with the “real” data, which are the data acquired from the
current negotiation thread, rather than train MLPs with past or synthetic data before
initiation of the process, and only apply them during the discourse. In the proposed
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approach the network is both trained and applied in each negotiation round by the
predictive agent. By definition, using the “real” data to formulate the training set is
expected to increase the model’'s accuracy, and consequently lower the error values
given by (eq.12) and (eg.13) in Chapter 7. In page 208 of [87] it is stated that using a
training set representative of the environment of interest is a factor that significantly
affects generalization error.

Moreover, the size of the network can be small, since only a few examples will be
available for training (page 208 of [87]).

As far as training with the “real” data is concerned, two options are available. The first is
to consider retraining with the “real” data MLPs that have been initially trained with data
from previous interactions, and the second is to consider small MLPs with random initial
weights, that are periodically retrained during the discourse.

The first option is not considered, since the size of such networks would have to be
large to accommodate all training samples. Even if it were realistic to construct an MLP
that exhausts all possible interactions, generation of very large training sets would be
required, and as a consequence the resulting network would have more hidden neurons
and parameters (weights and biases) to be estimated. This could have an effect not
only on memory requirements for the agents, but also on training time. More
specifically, the LM method requires storage of the Jacobian matrix which is defined as

a (|Dataset|xO)xP matrix, where |Dataset] is the size of the training set, O is the number

of output nodes and P is the number of parameters (weights and biases). As stated in
[128] there is memory limitation for large sized patterns. Furthermore, in [129] it is
shown that the LM method is also very “expensive” in terms of number of operations for
networks that have a significant number of parameters. This is due to the fact that the
number of computational steps required for matrix inversion at each iteration is O(P).

For the aforementioned reasons we investigate the use of small MLPs, with random
initial weights, that are trained with the “real” data during the negotiation interaction. The
term Session-Long Learning Agents is hereafter attributed to those agents that exploit
the “real” data.

8.2 Introducing static session-long learning agents (SSLAS)

In this section we describe a Static Session-long Learning Agent (SSLA), which is
defined as a session-long learning agent with a fixed MLP architecture during the
discourse. Without loss of generality, the predictive agent is assumed to be the
consumer who initiates the negotiation process at time t;=0. The two agents take
alternate turns until an agreement is established or until any of the two agents decides
to terminate the procedure. At time t, the series of offers sent by the provider is the
fO”OWing: {X113r—>Con, XE)’r—>Con y e 'Xg’;iCOn '

In the general case, the forecasting tool of the SSLA makes use of the n previous
counterpart’s offers to estimate the next offer (at time t+1), as is illustrated in Figure 26.
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Offer at
t-1

Offer at

3 Offer at

t+1

Offer at
t-2*n+1

Figure 26: Forecasting tool of the negotiator

At time t the consumer formulates a new training set which is constructed from the
series of the counterpart’s offers. It should be noted that in order to apply the LM
method, at least two training patterns are required, therefore the MLP is initially trained

at round tit = 2*n+4. The size of the dataset |Dataset| at time t 2 tiy; is given by
|Dataset| = % —n (eq. 34)

|Dataset| is initially 2 in order to apply the LM method, and increases by 1 in each turn of

the predictive agent. After training the MLP, SSLA makes use of the network to estimate
his counterpart’s next offer.

More specifically the actions an SSLA undertakes at each predictive round t are the
following:

Step 1. Receive Opponent’s Offer, X524 con
Step 2. Update Negotiation Thread by storing the received offer
Step 3. Formulate training set:

Consider a time series of the opponent’s past offers: {X(lpr_>00n), X(?,’,r_>Con),..., X(tp’rl_>00n)}

Formulate the set of input-output patterns with respect to the number of input nodes
Step 4. Use the patterns yielded in Step 3 to train the network with the LM method

Step 5. Formulate current input pattern{X "¢, - X or cont
Step 6. Apply input to the trained network

Step 7. Obtain forecast of opponent’s next offer, X5t . .
Step 8. Generate the offer the consumer would send based on its default strategy

Xt
Con—Pr(Default)

Step 9. Evaluate offers produced at steps 7 and 8, with respect to the consumer’s utility
function (CompUte U(Xg‘{"iCOn) and U(XzonaPr(Default))

Step 10. Generate next offer based on the decision rule described in 5.2.1
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The forecasting tool of the SSLA was selected to be very small and consist of three
inputs (n=3), representing the three previous offers of the counterpart (as in [8]), and
two hidden nodes (P=2). This architecture is even simpler than the one proposed in [8],
since it uses one hidden neuron less.

Although the optimal network architecture cannot be extracted from theoretical findings,
it is rather empirically found that the ratio of learning parameters with respect to the size
of the training data should be kept small. As stated in ([130], [131]) the generalization
error can be decomposed into an approximation error due to the number of parameters
and to an estimation error due to the finite number of data available. A bound for the
generalization error E is given by

1/2

PniIn(P|Dataset)) —Ino

E< O(ij +0 ( | |) (35)
P |Dataset|

where n is the number of input units, P is the number of hidden nodes, & is a confidence
parameter, 6 € (0,1), and |Dataset| is the size of the dataset. Since in each subsequent
step |Dataset| increases, the bound of the generalization error E given in (35) is
expected to decrease.

Applying in (eq. 35) n=3 and |Dataset|: 2 (minimum value required by the LM method),
yields that the agent can initially train and use the MLP at the tenth round.

As far as complexity is concerned, storage of the Jacobian matrix (|Dataset|xP), as well

as computations for matrix inversion that are of order O(P?®), are required at each
iterative step of the LM method. The LM is considered efficient since it can be defined
as a polynomial time algorithm (an algorithm that has time complexity that is bounded
by a polynomial in the length of the input) [132].

In the following section we focus on comparing the SSLA with Pre-Trained Agents
(PTAs) to highlight that the significant increase in the accuracy of the forecasting tool
when retraining is performed.

8.3 Comparative lllustration with current State of the Art

In subsection 8.3.1 we describe the Pre-Trained Agent (PTA) and discuss how such an
agent may be generated with the use of “synthetic data”. In subsection 8.3.2 we conduct
a number of experiments to compare SSLAs and PTAs under the same negotiation
settings.

8.3.1 Current state of the art: pre-trained agents (PTAS)

Unlike SSLAs, PTAs use MLPs initially trained with data from previous interactions.
More particularly the actions undertook by a PTA are the following:

At a pre-Negotiation Stage:

Step 1. Formulate training set:

Consider numerous negotiation threads(from past or simulated interactions) and extract
a time-series of opponent’s offers from each thread
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Formulate sets of input-output patterns with respect to the number of input nodes. The
patterns will account all scenarios of Stepl.a

Step 2. Train the network with input-output patterns yielded from Step1.
During Negotiation, at each negotiation round t:

Step 1. Receive Opponent’s Offer X524 con

Step 2. Update Negotiation Thread by storing the received offer

Step 3. Formulate current input

Step 4. Feed current input to the pre-trained network

Step 5. Obtain forecast of opponent’s next offer X5t .,

Step 6. Generate the offer PTA would send based on its default strategy X¢on-pr (pefault)

Step 7. Evaluate offers yielded in steps 5 and 6, with respect to consumer’s utility
function (CompUte U(Xg'l:iCon) and U(XgonaPr(Default))

Step 8. Generate next offer based on the decision rule described in section 5.2.1

The data used for the formation of the training set is acquired by conducting
negotiations between non-learning agents, based on the scenarios discussed in [9], as
they are described analytically and can be easily reproduced. Three experimental sets
are presented, each leading to the construction of a different MLP. Consequently three
MLPs (MLP1, MLP2, MLP3), fitting the data acquired from the respective experimental
set, are used for the generation of three instances of pre-trained agents. For each
experimental set, the negotiation parameters concerning the reservation values
[Pricemin,Pricemax]), the deadline (‘Tmax’), as well as each agent’s strategy (‘Strategy’)
and level of concession (), are cited in Table 5. The first set consists of cases where
the providers have significantly longer time to negotiate and deal with consumers of
varying reservation values, resulting to various overlaps of agreement zones (0% -
100%). 100% overlap of the agreement zone is attained when the agents have common
reservation values. Providers are selected to follow a linear TD strategy (B=1) and
consumers a BD strategy, responding to the offers of their opponent. The second
experimental set comprises of scenarios where there is 100% overlap of the agreement
zone, and the consumers negotiate with providers of various strategies and deadlines.
Finally, the third experimental set consists of cases where consumers deal with
providers who adopt a variety of concession strategies and reservation values, resulting
to various overlaps of agreement zones. 10.201 different negotiation scenarios yield
from the first experimental set, 90 from the second and 2827 from the third.

Table 5: Values of negotiating parameters of the 3 experimental sets
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Exp. Setl Set 2 Set 3
Consumer | Provider Consumer Provider Consumer | Provider

Param.

PI’iCE(min) 0 0 0 0 0 0

Pricemax) [0:1:100] 100 100 100 [0:1:100] 100

Tmax 100 [100:1:200] 100 [100:20:200] | 100 200

Strategy BD TD (B=1) BD TD BD TD
=[0.1:0.1:0. =[0.1:0.05:1,
9, 1:2:11] 2:1:10]

Negotiations are conducted between non-learning agents, following the protocol
discussed in [25]. Data collected from each negotiation instance consists of the
alternate offers exchanged by the two agents (negotiation thread). The threads are
separately collected for each experimental set and are used for the formation of training,
validation and test set. The number of counterpart’s past offers which will be accounted
for prediction, rations the number of neurons in the input layer. Determining the network
architecture therefore lies on determining the number of input features as well as the
number of hidden neurons (one hidden layer is used as it is also assumed in existing
systems). One common practice for such decision is through empirical search. Data
from each experimental set is split to training, validation and test sets in a proportion of
70:15:15. The optimal number of neurons in the hidden layer as well as the number of
opponents’ past offers which constitute the networks’ input, is such that minimizes the
MSE (eq. 14) of the test set. Three up to twenty five past offers were tested for the
networks’ input, and one up to twenty five neurons were tested for the construction of
the hidden layer. For each input-hidden node combination, ten different runs of MLP
training were conducted using the LM method and the average MSE of the test set was
computed.

From the experiments we conclude that the simplest networks which yield very low MSE
of the test set, consist of three hidden and four input nodes (MLP1) when data from the
first experimental set is used, four hidden and three input nodes (MLP2) when data from
the second experimental set is used and two hidden and three input nodes (MLP3)
when data from the third experimental set is used. PTAL1, PTA2 and PTA3 are the
generated PTAs that use MLP1, MLP2 and MLP3 respectively.

8.3.2 Comparison of PTAs and SSLAs

This section focuses on the comparison of SSLA and the three PTAs, in settings
different from those accounted for the generation of the training data. Each agent
negotiates with a non-learning counterpart, following the risk-seeking predictive
mechanism (RP=100%) discussed in section 5.2.1.

The forecasting method employed by negotiating agents should be highly accurate, fast
and with low memory requirements. Since MLPs in PTAs are only trained once before
initiation of the process, while MLPs in SSLAs are trained at each negotiation step,
PTAs are faster than SSLAs. However, the time required for training the MLP of an
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SSLA with the LM method is a few milliseconds, and it is still considered efficient.
Furthermore, the SSLA has a small MLP and has lower storage requirements than the
PTA. Focus is set on measuring the accuracy of intermediate predictions, which will be
used as the evaluation measure. In each negotiation round the absolute error defined
as the difference between the prediction and the actual value (eq. 12) is saved.
Assessment is provided through the computation of the mean of the absolute errors and
other statistical information (standard deviation and maximum value) in each negotiation
instance. The purpose of the comparison is to illustrate the deviation of the error as the
agents negotiate in new settings and highlight the ability of SSLA to provide more
accurate predictions. Three sets of experiments are conducted in order to test the
performance of each PTA and compare with the SSLA. Parameters of the negotiation
environments used in the competitions are illustrated in Table 6.

Table 6: Experimental settings to test the behavior of PTAs as distributions of real data deviate

those used for training their ANNs

Exp. Set 1 Set 2 Set 3
Consumer Provider Consumer Provider Consumer Provider
Param.
Pricemin | O 0 0 0 0 0

Pricemax | [100:100:100 | [100:100:100 | [100:100:1000 | [100:100:10000] | [100:100:100 | [100:100:100000]

00] 00] 0] 000]
tmax 100 [25:25:500] | 100 100 100 200
Strategy | BD D (B=1) BD D BD D
(B=[0.1:0.1:0.8, (8=[0.1:0.4:0.9,
1:1:11]) 11:25)

As expected, SSLA outperformed the three PTAs, emphasizing the need to develop
agents who extract the training set during the negotiation discourse. Figure 27 illustrates
a comparison of the SSLA with each PTA depicting the stem plots of the mean, the
standard deviation, and the maximum value of the absolute errors in each negotiation
instance, with respect to the providers’ deadline and reservation value. Statistical
measures of the PTAs are depicted with blue circles and of the SSLA with red squares.
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Figure 27: Comparison between SSLA and the three PTAs (blue circles illustrate results of the
PTA and red squares results of the SSLAs). Stem plots of the mean of the absolute errors when
PTA uses ANN1(a), ANN2 (d), and ANN3 (g). Stem plots of standard deviation of the absolute
errors when PTA uses ANN1(b), ANN2 (e), and ANN3 (h). Stem plots of the maximum of absolute
errors when PTA uses ANN1(c), ANN2(f), and ANN3(i)

The continuous variables MeanSSLA and MeanPTAL, indicating the mean value of the
absolute errors in each negotiation instance of SSLA and PTAL respectively, were
tested if they follow the normal distribution using one-sample Kolmogorov-Smirnov non-
parametric test. In both cases the normality assumption is violated at a significance
level of a=0.05. A way to compare the means of MeanSSLA and MeanPTAL is by using
Kolmogorov-Smirnov non-parametric tests for two independent samples. In both tests p-
value<0.05, therefore there is a statistically significant difference for the error means
between SSLA and PTA1 agents (MeanSSLA is significantly less than MeanPTA1). The
same procedure was followed with PTA2 and PTAS3. In both cases it is proved that there
is a statistically significant difference between SSLA and the two PTAs (MeanSSLA is
significantly less than MeanPTA2 and than MeanPTA3).

Although the SSLA is generally more accurate than the PTAs in all experimental sets,
as the mean of the absolute errors is reduced by 92.67%, it does not yield satisfying
results in negotiations with short deadline. This is due to the small size of the training
data set compared to the number of parameters of the neural network that need to be
learned. The incorporation of an optimization technique, genetic algorithm, for the
selection of the networks’ architecture to address this issue is discussed in Chapter 9,
with the introduction of an Adaptive Session-long Learning Agent (ASLA).
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9. OPTIMIZING MLP ARCHITECTURE

Since the size of the dataset and the error bound given in (35) is changing in each
round, it is desirable to let off the static and investigate more dynamic structures.
Hereby we address the second issue discussed in Chapter 8, concerning optimization
of the MLP applied by the SSLA. The novel aspect of this research lies again in the field
of applying Neural Networks in negotiations. We introduce the Adaptive Session-Long
Learning Agent (ASLA) who optimizes its structure and subset of input features during
the negotiation discourse with the use of a genetic algorithm. This contradicts the case
of the SSLA where only a fixed number of the opponent’s previous offers are
considered. In section 9.1 we discuss how genetic algorithms can be combined with
Neural Networks and in section 9.2 we introduce the ASLAs. Finally in section 9.3 we
compare ASLAs with SSLAs introduced in the previous chapter.

9.1 Genetic algorithms to optimize MLP architectures

As mentioned in Chapter 4, Genetic algorithms, are stochastic, population-based search
and optimization techniques based on principles of evolution. The decision variables are
coded into solution strings of finite length over an alphabet of certain cardinality. These
strings are termed individuals or chromosomes, and the characters that comprise them
are termed genes. For each solution, a method that assigns a fitness level is applied in
order to distinguish preferred from bad solutions. The essence of genetic algorithms is
to evolve the solutions of each population with the use of genetic operators. In a simple
genetic algorithm, an initial population of solutions is randomly generated. Selection
methods are applied and the most promising individuals of the population are placed in
a mating pool. Genetic operators, such as crossover, inversion and mutation, are further
applied and the evolved solutions comprise the next generation. The same procedure is
repeated until some convergence criteria, usually related with the establishment of
equilibrium among the solutions, are met [133].

Genetic algorithms have been widely combined with neural networks as a means of
optimizing the networks’ structure, parameters, or input features. The interested reader
may refer to [134] for applications of GAs for feature subset selection, to [135] [136]
[137] [138] [139] [140] [141] for specification of optimal parameters such as
interconnection weights or training parameters, and to [142] [143] [144] for applications
where genetic algorithms search the optimal topology of a Neural Network. Individuals
may encode information from all of the above problem spaces, and therefore GAs may
yield solutions which combine optimization of networks’ parameters, subset of features
and/or structure [145] [146]. Since we are most concerned with defining the subset of
input features as well as the network topology of a session-long learning agent, we
continue with a brief description of utilizing GAs to solve the problems at hand. The
main issues under consideration are the coding scheme and the factors which are
related to the fitness function.

In the problem of subset selection, candidate solutions are represented by binary
vectors in m dimensional space, where m is the number of potential features. Each
gene, represented by a bit 1 or O, indicates the existence or non-existence of a
particular input feature, and the fitness assigned to the individual is related to the
networks’ accuracy if the corresponding subset is used [134]. Alternatively, in cases
where the search involves finding the number of past values which will constitute the
input of a time series predictor, genes represent the binary values of this number.
Moving to the realm of evolving the network’s architecture, one of the key issues is to
decide how much information will be encoded in a chromosome [147]. On one hand,
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each individual must contain detailed information about interconnections between
nodes, number of intermediate layers and neurons. This representation scheme is also
termed direct encoding and may result to infinitely large search spaces, if we consider
the number of potential network topologies and sizes. On the other hand, in indirect
encoding, only some characteristics of the network’s architecture are included. One way
of performing indirect encoding is through parametric representation, where a set of
network parameters, such as number of hidden neurons or layers, are included in the
individual. Input feature selection and optimization of the networks’ topology through
parametric representation are often combined in the solution string, enabling
simultaneous evolution of the input space and the networks’ structure. In [148] [149]
[150] [151] [152] a neural network with one hidden layer is assumed and a genetic
algorithm to search optimal subset of input features and number of hidden neurons is
used.

In all aforementioned systems, the mean square error (MSE) is a fithess-related factor
and for this reason evaluating each individual presupposes construction of the
corresponding neural network and computation of the MSE. In this work, a pseudocode
for evolving the network’s architecture is considered based on the implementation of a
simple genetic algorithm [153] and the typical cycle of evolution of architectures [154]:

Step 1. Randomly generate the initial population P

Step 2. Decode each individual (chromosome) into an architecture
Step 3. Evaluate individuals:

Train each network with a predefined training algorithm and parameters

Define the fitness of each individual according to the training result and other
performance criteria, such as the complexity of the architecture

Repeat

Step 4. Select a set of promising individuals and place them in the mating pool

Step 5. Apply crossover to generate offspring individuals

Step 6. Apply mutation to perturb offspring individuals

Step 7. Replace P with the new population

Step 8. Evaluate all individuals in P (as in step 3)

Until certain termination criteria are met

In the next section this algorithm is applied to the case of Session-Long Learning
Agents.

9.2 Introducing adaptive session-long learning agents (ASLAS)

As mentioned earlier, the available information to the predictive agent (Con) at time t is
formed by the negotiation thread{x(OCOn_)Pr),X%Pr_)COn) ...... XEE&—)Con)}’ which consists of
subsequent offers exchanged by the two agents Con and Pr up to that time. Unlike
SSLA, the ASLA considers not only the series of his counterpart’s past offers, but also
the series of his own past offers, to formulate the subset of input features. Particularly,
in order to find the optimal subset which will guide the prediction, two time series are

taken into account: one resulting from past offers of the predicting agent

{X?Con—>Pr)’X(2Con—>Pr) ...... XE(_Z?)n—>Pr)}’ and one resulting from the past offers of the
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opponent{x%PHCon),x(3pr_)C0n) ...... XEELCon)}' The encoded information represents the

number of previously offered values of each agent. Using a binary grammar, three bits
are sufficient to encode up to seven past offers for each agent. Consequently a 6-bit
length string represents the subset of input features. Since it has been proved that an
MLP with one hidden layer can conduct function approximation, and since it has been
widely used by existing predicting agents, the architecture of a two layered MLP is
assumed, and focus is set on searching the optimal number of hidden units. In an
attempt to keep the network small, three bits are used for the representation of the
hidden units, resulting to a chromosome of nine bits which simultaneously evolves the
subset of input features and architecture of the network (Figure 28).

010 — 101 - 001
et = Y-
number.of Number.of Numberof
predicting opponents' hidden.neurons
agents. past past.offers
offers

Figure 28: A chromosome consisting of 9 bits is used to evolve the input subset and the number

of hidden neurons of the neural network

The ASLA applies the algorithm illustrated in 9.1 and appropriately adjusts the
architecture of the employed MLP. Every time the genetic algorithm is run, the agent
selects the MLP with the lowest fitness function. He then applies the MLP to forecast his
counterpart’s response in a similar way to that of the SSLA.

More specifically, the ASLA initially generates a random population of individuals (Step
1). Each individual is translated to the respective MLP (Step 2) which is then trained and
evaluated (Step 3).

The training patterns are extracted from the current negotiation thread. If the available
number of previous predicting agent’s offers at decision making time t is m, and for
opponent’s offers is n, where m,n € {0,1,...,t/2} and m+n>0, the first input-output
2m+2,if 2Zm-2n-1>0

example is extracted at timet'= ) ,
2n+2,if 2m-2n-1<0

and the size of the available dataset at time t is |Dataset| =1+%t'.

As far as the objective (fitness) function is concerned, since |Dataset|must be at least 2

to apply the LM method, the ASLA favors solutions that result to |Dataset| >2.

Furthermore, in cases where it is possible to divide the available data in three sets
(training, validation and test set), the objective (fitness) function, which is minimized
through the GA solver, is proportional to the MSE of the test set. Preference is given to
solutions which result to more data patterns, in order to apply an early stopping learning
method, which guarantees better generalization.

After evaluation, the most promising individuals are placed in the mating pool (Step 4),
and GA operators are applied (Steps 5 and 6) to formulate the new population (Step 7).
The new individuals are in turn evaluated (Step 8) and the process is repeated for 10
generations. The trained MLP that yields from the most promising individual is applied
for the purpose of forecasting the counterpart’s next offer.

It is important to note that implementation of ASLA advances the state of the art in the
field of applying Neural Networks in negotiations to predict the counterpart’s responses.
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It is based on an optimization technique and illustrates a pathway of finding a sub-
optimal structure and subset of input features for the network. It could be used as a
reference point in the development of other forecasting tools that assist negotiators.
Additionally, it is a way of addressing the issue of heterogeneity of existing systems
when it comes to selecting the offers of the negotiation thread which will constitute the
input of the forecasting tool. Lack of uniformity in the considered subset of input features
is evident in Table 4 of Section 7.4.

Optimization is expected to reduce oscillations around the mean error and not yield very
high error values, which may mislead the involved agent. In the following section SSLAs
and ASLAs are compared.

9.3 Comparison of SSLAs and ASLAs

A variety of negotiation scenarios are considered for the comparison of SSLAs and
ASLAs. In the first sub-section details concerning the negotiation settings are illustrated,
while in the next sub-section results are presented and discussed.

9.3.1 The negotiation settings

For the generation of negotiation environments nine different negotiation scenarios are
considered with respect to the overlap in agreement zones and available time to each
negotiator, as in [155]. The scenarios involve single-issued negotiations between
provider and consumer agents and are depicted in Figure 29:
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Figure 29: Negotiating scenarios used to test the session-long learning agents (a) Scenario 1:

Equal Deadline and full overlap, (b) Scenario 2: Equal Deadline and partial overlap (®=0.33), (c)

Scenario 3: Equal Deadline and partial overlap (®#=0.66), (d) Scenario 4: Pr. with higher deadline

and full overlap, (e) Scenario 5: Pr. with higher deadline and partial overlap (#=0.33), (f) Scenario

6: Pr. with higher deadline and partial overlap (®#=0.66), (g) Scenario 7: Cons. with higher deadline

and full overlap, (h) Scenario 8: Cons. with higher deadline and partial overlap ($=0.33), (i)

Scenario 9: Cons. with higher deadline and partial overlap ($=0.66)

For each scenario TD and BD producer’s strategies are considered. As mentioned
earlier, TD strategies represent many different types of concession curves with respect
to reseeding time, and BD strategies represent counterparts following imitative tactics.
The Relative Tit-For-Tat family measuring the average concession of the opponent
agent the last Window steps is used in the BD strategies. Experimental parameter
values are outlined in Table 7.

Table 7: Values of parameters covering the nine negotiation scenarios

cenarios Scenario 1 Scenario 2 Scenario 3
Parametets
Consumer | Producer Consumer Producer Consumer Producer
Pricemin 0 0 0 33 0 66
Pricemax 100 100 100 133 100 166
tmax TD [50:50:350] | Equal to Cons. | [50:50:350] Equal to Cons. | [50:50:350] Equal to Cons.
BD | [50:100:35 | Equalto Cons. | [50:100:350] | Equal to Cons. | [50:100:350] Equal to Cons.
0]
Strategy | TD (B=0.1) B (B=0.1) B B=0.1) (B =[0.1:0.2:0.9,
=[0.1:0.2:0.9, =[0.1:0.2:0.9, 1:4:29))
1:4:29]) 1:4:29))
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BD | TD BD (Window = | TD BD (Window = | TD BD (Window =
1,3,5,7,10 1,3,5,7,10 1,3,5,7,10
@ I D | g | D | [ )
[0.1,1,20]) [0.1,1,20]) [0.1,1,20])
cenarios Scenario 4 Scenario 5 Scenario 6
P t
arameteR Consumer Producer Consumer Producer Consumer Producer
Pricemin 0 0 0 33 0 66
Pricemax 100 100 100 133 100 166
tmax TD [50:50:350] 375 [50:50:350] 375 [50:50:350] 375
BD [50:100:350] | 375 [50:100:350] | 375 [50:100:350] 375
Strategy | TD B =0.1) (B B =0.1) B B=0.1) (B =[0.1:0.2:0.9,
=[0.1:0.2:0.9, =[0.1:0.2:0.9, 1:4:29))
1:4:29)) 1:4:29))
BD | TD BD (Window = | TD BD (Window = | TD BD (Window =
1,3,5,7,10 1,3,5,7,10 1,3,5,7,10
@ I D | | D | [ )
[0.1,1,20]) [0.1,1,20]) [0.1,1,20])
cenarios Scenario 7 Scenario 8 Scenario 9
P t
arameteR Consumer Producer Consumer Producer Consumer Producer
Pricemin 0 0 0 33 0 66
Pricemax 100 100 100 133 100 166
tmax TD 375 [50:50:350] 375 [50:50:350] 375 [50:50:350]
BD | 375 [50:100:350] 375 [50:100:350] 375 [50:100:350]
Strategy | TD B=0.1) B (B=0.1) B B=0.1) (B =[0.1:0.2:0.9,
=[0.1:0.2:0.9, =[0.1:0.2:0.9, 1:4:29))
1:4:29)) 1:4:29))
BD | TD (3 = | BD (Window= | TD BD (Window = | TD BD (Window =
[0.1,1,20]) [1,3,5,7,10]) ® - [1,3,5,7,10]) ® [1,3,5,7,10])
[0.1,1,20]) [0.1,1,20])

The SSLA and the ASLA negotiate under the different scenarios, following the decision
rule described in 5.2.1. Apposition of the results is provided in the following paragraph.
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9.3.2 Experimental results

Performance of the forecasting method is evaluated in terms of accuracy of
intermediate predictions. ASLAs are not as fast as SSLAs and have higher storage
requirements. However, the main concern here is to investigate the optimization of the
MLP structure so as to increase the accuracy of the forecasting tool and study the effect
it has on the negotiation outcome. The ASLA is expected to yield better results and can
be used as a reference point when testing the accuracy of other forecasting tools in
negotiations.

It is a fact that the ASLA is a smoother predictive model as it proves more accurate with
decreased standard deviation and maximum error values. A number of experiments are
conducted to cover the scenarios described in 9.3.1. For each step of the consumer
involving estimation of the counterpart’s next value, the absolute difference between the
actual offer of the provider and the prediction is measured (absolute error given in eq.
12 of Chapter 7). At the end of each negotiation, the mean, the standard deviation and
the maximum value of the absolute errors are computed. Summarized statistics for each
scenario are further acquired with the computation of average and maximum values.
More specifically, AvgMean in Table 8 refers to the mean of the mean errors computed
in each negotiation of a particular scenario and Max Mean refers to the maximum of the
mean errors. Accordingly, AvgStd and MaxStd refer to the average and maximum
standard deviation observed, and finally AvgMax and Highest Max stand for the
average and maximum of the highest error values acquired in negotiations of each
scenario. Detailed results with respect to the negotiation scenario and strategy of the
opponent are illustrated in Table 8. In the same table “Inst.” indicates number of
negotiation instances that result from each particular scenario and “Pr. Used” indicates
the number of negotiation instances where the predictive agent (SSLA or ASLA) made
use of the forecasting tool.
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Table 8: Average and Maximum values of statistic measures acquired at each scenario

easures Inst. | Pr. Used Avg Mean Max Mean Avg Max Highest Max Avg Std Max Std

Scenario/ Stat SSLA | ASLA | SSLA |ASLA |SSLA |ASLA |SSLA |ASLA |SSLA | ASLA SSLA | ASLA SSLA | ASLA

Sc1 |TD 91 |82 89 058 |025 |622 |257 |6.66 117 | 10242 | 7.72 1.21 0.37 2266 | 2.54
BD 60 |36 36 973 |599 |18392 [32.25 |110.85 |3846 |10295 |19536 |21.28 | 9.57 346.99 | 62.14

Ssc2 |TD 91 |91 91 035 |028 |211 |38 |[522 429 |36.28 |34.93 0.74 071 4.45 7.90
BD 60 |36 36 1368 | 1153 |30.36 |43.28 |78.3 66.37 | 2133 |169.25 |19.15 |16.22 51.02 | 34.68
sc3 | TD 91 |91 91 048 |028 |412 |216 |1095 |7.29 |223.14 |127.14 |1.49 0.97 2677 | 15.19
BD 60 |56 56 1338 |4.08 |36.81 |2268 |9217 |56.66 |41151 |131.08 |20.17 | 10.63 91.78 | 32.65

Sc4 |TD 91 |91 91 016 |012 |058 |063 |269 311 | 17.44 |14.02 0.38 0.42 2.37 1.73
BD 60 |36 36 607 |431 |66.08 |3022 |46.69 |20.32 |41553 |106.04 |11.41 |5.69 132.59 | 38.65

Sc5 | TD 91 |91 91 016 |012 |066 |113 |3.26 294 |3979 |2264 0.42 0.42 4.38 4.93
BD 60 |56 56 2564 | 22.64 |89.18 |52.16 |11548 |81.43 |517.43 |26478 |36.65 | 28.64 128.93 | 68.11
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Sc6 TD 91 91 91 0.16 0.12 0.76 1.22 4.18 3.64 100.59 51.73 0.47 0.49 7.69 7.61
BD 60 56 56 17.26 | 6.61 4438 |33.26 | 1329 62.15 | 442.7 188.92 26.26 13.66 71.23 40.96
Sc7 TD 91 91 91 0.4 0.28 3.15 2.57 5.63 4.64 68.81 26.4 0.81 0.72 8.2 5.14
BD 60 56 56 0.53 0.31 3.19 0.7 10.84 4.80 107.89 13.39 1.48 0.71 13.87 1.92
Sc8 TD 91 91 91 0.51 0.34 8.9 3.98 10.28 6.82 334.81 47.96 15 0.98 49.85 7.27
BD 60 56 56 10.33 | 3.39 39.4 17.73 | 69.09 46.09 | 677.07 98.5 15.83 9.06 90.69 32.36
Sc9 TD 91 91 91 0.43 0.24 3.62 4.67 11.10 3.74 476.61 38.64 1.29 0.61 36.54 10.81
BD 60 56 56 10.6 7.09 57.55 |25.64 | 14431 61.78 | 3050 145.83 20.84 12.54 285.28 33.9
Totals | TD 819 810 817 0.36 0.23 8.9 4.67 6.66 4.18 476.61 127.14 0.92 0.63 49.85 15.19
BD 540 444 444 1191 | 7.33 183.92 | 52.16 | 88.96 48.67 | 3050 264.78 19.23 11.86 346.99 68.11
Overall | TD,BD | 1359 | 1254 1261 6.13 3.78 183.92 | 52.16 | 47.81 26.42 | 3050 264.78 10.07 6.24 346.99 68.11
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For a more convenient illustration of the results, the comparison of AvgMean,
MaxMean, AvgMax, HighestMax, AvgStd and MaxStd incurred to SSLA and ASLA, in
cases where counterpart adopts TD and BD strategies, is depicted in Figure 30
(a),(b),(c),(d),(e) and (f) respectively. The values of the SSLA negotiating with a TD and
a BD counterpart are illustrated with blue and yellow squares, and the values of the
ASLA negotiating with a TD and a BD counterpart are illustrated with red and green
squares respectively.
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Figure 30: The values of AvgMean, Max Mean, Avg Max, Highest Max, Avg Std and Max Std in

each scenario

The ASLA is shown to be more accurate in the general case since it yields reduction of
the mean of absolute errors (AvgMean) by 38.34%, reduction of AvgMax by 44.75%
and reduction of AvgStd by 38.03%.
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More specifically, when the ASLA deals with counterparts following TD strategies the
same measures (AvgMean, AvgMax and AvgStd) are reduced by 36.11%, 37.24%, and
31.52% respectively, while when he deals with counterparts following BD strategies
AvgMean, AvgMax and AvgStd are reduced by 38.45%, 45.29%, and 38.32%.

The continuous variables MeanSSLA_TD and MeanASLA_TD, indicating the mean
value of the absolute errors in each negotiation instance of SSLA and ASLA when
facing an opponent with a time dependent strategy respectively, were tested if they
follow the normal distribution using one-sample Kolmogorov-Smirnov non-parametric
test. In both cases the normality assumption is violated at a significance level of a=0.05.
The means of MeanSSLA _TD and MeanASLA_TD are compared by using Kolmogorov-
Smirnov non-parametric tests for two independent samples. In both tests p-value<0.05,
therefore there is a statistically significant difference for the error means between SSLA
and ASLA agents (MeanASLA_TD is significantly less than MeanSSLA_TD). The same
procedure was followed with SSLA and ASLA when facing an opponent with behavior
dependent strategy. It is proved that AvgMean of ASLA is significantly less than
AvgMean of SSLA.

Similarly, it is proved that AvgMax and AvgStd of an ASLA are significantly less than
AvgMax and AvgStd of the SSLA respectively, in all cases (both when counterparts
adopt time dependent and behavior dependent strategies).

SSLAs and ASLAs can be safely used in cases where the counterpart’s strategy can be
expressed by continuous functions. In the scenarios described, these are the cases with
TD strategies, yielding to SSLA and ASLA AvgMean of 0.36% and 0.23%, AvgMax of
6.66% and 4.18%, and AvgStd of 0.92% and 0.63%.

On the contrary, when opponents’ behavior is sharp (as is the case in BD strategies),
neural networks are less accurate and cannot be safely used. In the experiments
conducted, cases with BD strategies yield to SSLA and ASLA AvgMean of 11.91% and
7.33%, AvgMax of 88.96% and 48.67%, and AvgStd of 19.23% and 11.86%
respectively.

It is expected that in cases where counterparts adopt hybrid strategies, linear
combinations of TD and BD, the accuracy of SSLAs and ASLAs will be proportional to
the level of time dependency. Since the objective of the forecasting tool is to support
agents increase their utility, SSLAs and ASLAs are also compared in terms of the
attained utility. It is proved that in TD cases the SSLA’s average gain increases by
1.27% and the ASLA’s by 2.74% compared to non-learning agents.
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10. EXTENDING TO MULTI-ISSUED NEGOTIATIONS

In the previous chapters the value of session-long learning agents was illustrated.
SSLAs and ASLAs were proved more accurate than current state of the art Pre-Trained
Agents (PTAs), yielding significant gains. Although ASLAs have increased accuracy
compared to SSLAs, they have high requirements of computational power and time. For
this reason we focus on SSLAs and discuss how their architecture can be extended to
support multi-issued negotiations. In section 10.1 we present two ways of applying the
MLPs to estimate the counterpart’s future offer vectors, and in section 10.2 we illustrate
experimental results of the extended SSLAs in the domain of electricity distribution.

10.1 Applying MLPs to estimate future offer vectors

The actions performed by the predictive agents in multi-issued negotiations are the
same with the actions performed by the predictive agents in single-issued negotiations.
At time step t, the negotiation thread can be analyzed to two time series, one which
comprises of the past offers of the predictive agent (Con), and one which comprises of
the counterpart’s (Pr) responses. The latter time-series is expressed as follows:

1 3 t—(2*J,+1) t-1 . ) .
X proscony » X proscony 1+ X prscen) 1+ X procomyf + Where Jg is the counterpart’s previous

offers that are taken into account by the predictive agent. The actions the predictive
agent undertakes at each round t are the following:

Step 1. Receive Opponent’s Offer, X' con

Step 2. Update Negotiation Thread by storing the received offer
Step 3. Formulate training set:

Consider a time series of the opponent’s past offers: {X(lp,_>Con), Xfp,_>00n) Xf;,l_>00n)}
Formulate the set of input-output patterns with respect to the number of input nodes of
the MLP(s)

Step 4. Use the patterns yielded in step 3 to train the network(s)

Step 5. Formulate current input pattern{X "5 - X or con }

Step 6. Apply input to the trained network(s)

Step 7. Obtain forecast of opponent’s next offer, X b

Pr—Con

Step 8. Apply the estimation to generate the next offer according to strategy described
in5.2.1

The difference in the case of multi-issued negotiations lies in the design of the neural
networks employed by the predictive agents. Hereby we examine two cases; in the first
an MLP is considered for each issue, thus for a negotiation over n negotiable attributes
n individual MLPs are constructed. Each MLP comprises of J; input nodes representing
the counterpart’s J; previously offered values of the particular issue, J, nodes in the
hidden layer, and one node in the output layer representing the predicted response.
The values of J; and J, are selected after empirical evaluation. Training using the
Levenberg and Marquardt (LM) method is conducted during the negotiation session, as
in the case of single-issued negotiations. Each network is initialized with random
weights and in every negotiation round the network is re-trained with data extracted
from the current thread. Such a network is illustrated in Figure 31.
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Figure 31: An MLP is used for the prediction of each attribute value

In the second case a single MLP undertakes the task of prediction. If the J; previous
offers of the opponent are considered for negotiations over n attributes, then an MLP
with n*J; input nodes, J, nodes in the hidden layer and n nodes in the output layer is
constructed. As in the first case, the network is initialized with random weights and is
trained in each round of the predicting agent with data extracted from the current
negotiation thread using the LM method. Values of J; and J, are also empirically
evaluated. Such a network is illustrated in Figure 32.

Duration (t+1)

Penalty (t+1)

Figure 32: A single MLP is used for the prediction of all attribute values of the offer vector

In both cases, the forecasting tool of the predictive agent makes use of the J; previous
counterpart’s offers to estimate the next offer (at time t+1). The network(s) at the
beginning of the discourse have random weights. A training set is formulated in each
round based on the current negotiation thread (step 3) and it is used to retrain the
network (step 4). At time t the consumer formulates a new training set which is
constructed from the series of the counterpart’s offers as illustrated in Figure 30 and
Figure 31. It should be noted that in order to apply the LM method, at least two training
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patterns are required, therefore the MLP is initially trained and employed at round tni; =
2*J1+4. The size of the dataset |Dataset| at time t2tiy; is given by (36):

|Dataset| = % -J, (36)

|Dataset| is initially 2 in order to apply the LM method, and increases by 1 at each turn of

the predictive agent. At each round, after training the MLP(s), the predictive agent
makes use of the network(s) to estimate his counterpart’s next offer. The LM method is
selected for network training in both cases as it is considered one of the most efficient
and popular second order learning methods for networks that are not very large. It also
converges much faster than other algorithms, as it is a polynomial time algorithm. In the
next section we proceed with the experimental evaluation.

10.2 Experimental results

In Chapter 5 we presented the results of the proposed predictive strategy when agents
with “perfect predicting skills” were considered. In this section we present the results
when agents employ the neural networks discussed in 10.1. Since focus is set on
searching (sub)optimal number of input and hidden nodes, in 10.2.1 we justify the
selection of the search space of MLPs’ architecture and in 10.2.2 we implement the two
cases discussed in 10.1 and outline the results.

10.2.1 Searching (sub)optimal number of input and hidden nodes

Although the optimal network architecture cannot be extracted from theoretical findings,
it is rather empirically found that the ratio of learning parameters with respect to the size
of the training data should be kept small. As discussed in section 8.2 the bound of the
generalization error is given by:

1/2

mJ, In(J,|Dataset)) — In &

E<olL|+o AUCH ) (37)
, |Dataset|

where m is the number of input units, J, is the number of hidden nodes, & is a
confidence parameter, 6 € (0,1), and |Dataset| is the size of the dataset. Since in each

subsequent step |Dataset| increases, the bound of the generalization error E given is
expected to decrease.

There are several rules of thumb that allow as to empirically set (sub)optimal number of
*

. . . L . m*J
input and hidden units. In [87] it is stated that the ratlom
m*J, indicates the parameters that need to be adjusted through the training procedure)

must be kept as low as possible if a low bound for the generalization error is desired.
Particularly, for a good generalization, we need to have the size of the training set
*J

2

, (where the product

| Dataset] satisfy|Dataset|:O(m J One rule of thumb discussed by the author is that

“with an error of 10%, the number of training examples needed should be about ten
times the number of free parameters (M*J,) in the network”.
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The negotiation settings considered in Chapter 5 comprise of deadlines set to 50, 150,
250 and 350 rounds. As mentioned earlier, the generalization error is expected to

decrease in each negotiation round as |Dataset| increases. We assume that the J;

previous offers and J, hidden nodes are selected from the set {2,3,4,5}x{2,3,4,5}. In an

attempt to justify the selection of the number of the input and hidden nodes, we have

*‘]2

_m7J,
|Dataset]

reduction of the generalization error bound. In the first case, where a single MLP is used
for each issue, the number of input nodes m equals J;. Maximum reduction is achieved
when 2 input and 2 hidden nodes are used. The error for the different deadlines (if
negotiation reaches the final round) can be reduced to 0.17 for a deadline of 50 rounds,
0.05 for a deadline of 150 rounds, 0.03 for a deadline of 250 rounds, and 0.02 for a
deadline of 350 rounds. As expected, increasing the number of input or hidden nodes
increases the error bound, which in the case of J;=5 and J»=5 is 1.25, 0.35, 0.2, 0.14
for deadlines of 50,150,250 and 350 rounds respectively. The same applies in the case
of a single MLP, where there are more parameters that need to be adjusted and the
error bound is higher compared to the error in the first case. More specifically, for 4
negotiable attributes m equals 4*J; and the number of input and hidden nodes are
selected from the set {4,12,16,20}x{2,3,4,5}. In this case the highest reduction of the
error bound is yielded with the selection of 4 input and 2 hidden nodes and is 0.68, 0.2,
0.12 and 0.08 for a deadline of 50, 150, 250 and 350 respectively. The highest error
bounds are observed with the selection of 20 input and 5 hidden nodes (5, 1.4, 0.8 and
0.56 for negotiations of 50, 150, 250 and 350 rounds respectively). As the rule of thumb
indicates that the ratio is desired to be less than 0.1, we have not considered higher
values of J; and J, with the above settings (the error bound in these cases would
surpass the desired value indicated).

computed the ratio at the expiration of the deadline to see the maximum

Moreover, if a few opponents’ past offers are considered, the predictive strategy can be
applied from an earlier round. As stated in 10.1, the learning mechanism can be applied
when at least two input-output patterns are extracted from the negotiation thread. If we
consider a window of counterpart’s 2,3,4 and 5 previous offers, the first estimation of the
counterpart's next offer is derived in the 8", the 10", the 12", and the 14™ round
respectively. As the window of the counterpart’s previous offers increases, application of
the learning tool is delayed. Additionally, the number of training patterns is reduced in
the first rounds.

Finally, another reason for preferring small MLPs relates to the agent's bounded
resources. Storage of the Jacobian matrix (|Dataset|xJ2), as well as computations for

matrix inversion that are of order O(Jf) are required at each iterative step of the LM
method. For this reason the number of hidden units must be kept small.

10.2.2 Experiments

To assess the two cases we generate 192 negotiation environments based on the
following settings. Nine different scenarios with respect to deadline and overlap of
agreement zones of the two negotiators are considered. ( {TSr =T , T2 <T™ ,
-I-Con >-|-Pr

o ST} x {®=0, $=0.33, ®=0.66} ), where T2 e [50:100:350], a={Con,Pr}, and &

max

Is the parameter indicating overlap of the agreement zones. In each scenario the
concession curves, defined by parameter 3 = {0.8, 3}, are considered in order to build
the default strategies of the opposing agents.
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The above settings are illustrated in Table 9.

Table 9: Negotiation settings

. ®=0 ®=0.33 ®=0.66
Overlap :
Parameters Consumer Provider Consumer Provider Consumer Provider
Kwh(min) 79.4 138.8
20 20 20 20
Kwh 259.4
wh(max) 200 200 200 200 318.8
Pri . 7 4
rice(min) 10 10 10 39 10 69
Price(max) 129.7 159.4
100 100 100 100
Penalty(min) 29.75 54.5
5 5 5 5
P It 104.75 129.5
enalty(max) 80 80 80 80
Duration(min) 10 10 10 16.6 10 23.2
Duration(max) 30 30 30 36.6 30 43.2
T° [50:100:350]  [50:100:350] [50:100:350] [50:100:350]  [50:100:350]  [50:100:350]
max
TD TD TD TD D TD
o
S B=[0.8, 3] B=[0.8, 3] B=[0.8,3] B=[0.8, 3] B=[0.8, 3] B=[0.8, 3]

In both cases, preprocessing, in terms of normalization, is applied to the input data set.
The original input and output patterns (InputX and OutputY respectively) are normalized
and the matrices NormallnputX and NormalOutputY that are returned fall in the interval
[-1,1]. The minimum and maximum values of the original inputs (InputXmin, InputXmax)
and outputs (OutputYmin and OutputYmax) are stored. After the network has been
trained InputXmin and InputXmax are used to transform the new input that is applied to
the network. OutputYmin and OutputYmax are used to convert the networks' output to
the original scale (that of the output patterns).We have used Matlab’s mapminmax
function for the normalization process, which transforms r € [rmin, Imax] t0 t € [tmin, tmax],
based on the following formula:

t —t . )*(r—r,
t= ( max mln) ( mm) +tmin
r-max_rmin

Furthermore, error calculation is performed similarly in both cases. In each decision
making step t the consumer makes an estimation of his counterpart’s next offer
ot+l ot+l

~ A \T . . . .
Xt :(x;g%),xz(b%),.. X ) . This estimation is compared to the true offer vector of

b—a "1 n(b—a)

the counterpart at time t+1 X!* =(xt+l X5t Xt )T and the absolute error is

b—a 1(b—a) ' M2(b—a) """ "n(b—a)
computed in terms of Euclidean distance. The absolute error signal yielded by the
estimation of each attribute i at time t is defined as the distance of the computed output

Ko, With the desired output X, ,,, . This relation is given by:
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t — i+l ot+l
ei - Xi(b—>a) - Xi(b—>a) (38)

The error of the prediction at round t is then computed by the following equation:

E' =1/Zn)(e§)2 (39)
j=1

It should be noted that the outputs are transformed in the original scale before
calculating the error. The mean of the absolute errors in each discourse is used as an
indicative measure to compare the networks applied.

Taking the first case, the predicting agent constructs an MLP for each negotiable issue.
Negotiations with RP set to 100% are conducted and the average error of the predictive
mechanism is computed. The subset of input features J; expressing the past offers of
the opponent for a particular issue, as well as the number of hidden nodes are searched
in the space {2,3,4,5}x{2,3,4,5}. The search space comprises of 16 neural networks and
is selected to be small since only a few patterns extracted from the current thread will
be available for training. At the end of each negotiation, the mean of the absolute errors
is computed for each network. The same procedure is also repeated in the second
case, where a single neural network is used to predict the counterpart’'s next offer
vector. For an offer which consists of n=4 attributes and for the case where the J; €
{2,3,4,5} previously sent offers of the opponent are considered, the (sub)optimal number
of input and hidden nodes is searched in the space {8,12,16,20}x{2,3,4,5}.

For each case 192 negotiation environments are generated and 16 ANNs are tested,
leading to a total of 3072 experiments. The overall mean of the absolute errors is used
to assess the predictive models.

Results show that the neural network yielding the smallest error and smallest standard
deviation comprises of 5 input and 4 hidden nodes, when an MLP is constructed
separately for each issue (first case). For this ANN the average increase in utility
attained by the predictive agent is 10.78%. On the other hand, in the second case
where a single MLP is employed for the prediction of the counterpart’s response, the
smallest average error is yielded when 8 input nodes (stemming from the counterpart’s
2 previous offer vectors) and 5 hidden nodes are used. This model returns an average
increase in utility of 10.5%. The smallest average standard deviation is yielded when 20
input and 5 hidden nodes are used. The last ANN yields 10.34% average increase in
utility. The low value of the average standard deviation signifies smoother predictive
curves, as estimations do not deviate much from the mean. Table 10 summarizes the
results with respect to the combination of input-hidden nodes.
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Table 10: Mean errors and mean standard deviations for each combination of (input,hidden)

nodes in the MLP, are illustrated for each case. Minimum values are depicted in bold style.

Mean Error Mean Std Deviation Avg Increase in
Utility (%)
Hidden 2 3 4 5 2 3 4 5
Input
Case 1
21162 136 16 1.81|3.49 1.67 197 2.07 6.85
31160 1.20 1.17 1.26 [3.03 1.72 1.38 1.47 6.86
41169 111 103 1.08|3.44 1.37 1.19 1.29 7.5
51157 107 098 107|291 132 116 1.26 10.78
Case 2
81119 0.63 0.53 049 |3.63 1.38 1.03 0.97 10.5
121114 0.64 050 051321 1.18 0.88 0.92 10.34
16 [1.00 0.61 055 051227 1.14 0.98 0.89 10.09
2011.10 0.69 0.53 0.52(3.02 1.35 0.97 0.83 9.54

The error measured in the two cases is not directly comparable to other related work, as
the negotiation domains are not the same. It should be noted that aforementioned work
involving single-lag predictions considers only single-issued negotiations between
automated agents. In [6] although negotiations with four issues are conducted, the
domain is static and the negotiable issues take predefined discrete values. The simple
MLP employed by the SSLAs is herein extended to support multi-issued negotiations,
leading to the two different designs illustrated in Figures 31 and 32. From the
experiments conducted it is shown that extending the proposed MLP to support multi-
issued negotiations can also capture the negotiation dynamics, as in both cases the
proposed networks yield low mean of the absolute errors and mean standard deviation,
and incur a significant increase to the predictive agent’s utility.
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11. EPILOGUE

Predictive decision making is characteristic to current state of the art socio-technical
systems that guide negotiation processes under electronic settings. From semi-
automated negotiation support systems, to fully automated platforms where all
processes are undertaken by software agents, the back end participants are particularly
benefitted by the use of models of computational intelligence. Such models provide
estimations about the behavior of the negotiator's counterparts and allow users or
agents acting on their behalf, to adapt their strategy and evaluate risks and dynamics of
current negotiation. The first four chapters of this thesis provide the foundations related
to the negotiation domain, terminologies and classifications, research methodologies
and software platforms, as well as description of negotiation protocols and strategies
that constitute state of the art negotiating agents.

In the fifth chapter, a predictive strategy employed by an autonomous agent who
engages in multi-issued negotiations is presented and assessed. The strategy allows
the predictive agent to adapt his consequent offers with respect to the estimations of his
counterpart’s responses. As different attitudes towards risk may emerge, a risk-related
parameter is also embodied to the strategy. We have considered a number of
negotiation environments and we have measured the average increase in utility that
incurs to the predictive agent compared to the non-learning one. An agent with a highly
risk-seeking attitude achieves on average 12.05% increase in utility, while a predictive
agent with a more conservative behavior (risk-averse) achieves 0.94% increase in
utility. However, the trade-off of the highly increased utility is the decrease of the
number of agreements, which is due to prolongation of the negotiation time. In the case
of the highly risk-seeking agent the number of agreements is decreased by 20.78%
compared to the non-learning case. To address this issue the risk-related parameter
must be appropriately set in each negotiation discourse. Our proposed approach to
appropriately set the parameter requires estimation of the counterpart’'s deadline. To
illustrate the proposed decision-making rule we have assumed knowledge of the
counterpart’s deadline and we have reproduced the same experimental settings. From
the experiments conducted, the average increase in utility is 12.017% and approaches
the average increase of the risk-seeking agent. At the same time the average decrease
of agreements is reduced to 0.61%.

In the remainder of this thesis the skill of forecasting the counterpart’s future offers is
further investigated and selection of Multi-layer Perceptrons (MLPSs) is preferred to other
learning models. The sixth Chapter provides a brief overview and comparison of the
forecasting tools employed by negotiators, and the seventh Chapter provides a
justification of the selection of MLPs, based on bibliographical research. Current
systems which base their learning models on data acquired from previous interactions
or from synthetic data provide satisfying results in static negotiation environments
(where data distributions do not change). Such systems are once trained in an offline
mode and are thereafter expected to operate in a real environment. However, when
data distributions change, the systems no longer provide accurate estimations. A new
perspective to the issue is introduced, by highlighting the need of learning during the
negotiation session, as discussed in Chapter 8. Such an approach is viable in open,
dynamic negotiation environments. A number of experiments are conducted to support
this argument and disclose the inability of initially pre-trained networks to capture the
dynamics of changing distributions. “Session-long learning” agents, trained with the data
of the current negotiation thread, prove capable of capturing the negotiation dynamics.
In Chapter 8 we introduce Static Session-long Learning Agents (SSLAs), which employ
a simple static neural network model. To illustrate the superiority of SSLAs compared to
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agents that employ pre-trained networks (Pre-Trained Agents, PTAS) in cases where
data distributions change, we have conducted a number of experiments considering
single-issued negotiations and we have computed the absolute error yielded in each
decision making step. SSLAs are proved more accurate, as the mean of the errors is
reduced by 92.67% compared to the PTAs. However, they do not yield satisfying results
in negotiations with short deadline. This is due to the small size of the training data set
compared to the number of parameters of the neural network that need to be learned.
The incorporation of an optimization technique for the selection of the networks’
architecture to address this issue is discussed in Chapter 9, with the introduction of an
Adaptive Session-long Learning Agent (ASLA). ASLA evolves its structure and input
features with the use of a genetic algorithm in each negotiation round. We empirically
prove the superiority of ASLAs compared to SSLAs as far as accuracy is concerned.
More specifically, we have conducted a number of experiments and we have computed
the mean, the standard deviation and the maximum values of the absolute errors at the
end of each negotiation. ASLAs are proved more accurate as the average mean of the
absolute errors is reduced by 38.34%, the average of the maximum values is reduced
by 44.75% and the average of the standard deviation is reduced by 38.03%. ASLA is a
smoother predictive model as it proves more accurate with decreased standard
deviation and maximum error values. However it is not as fast as SSLA and has higher
storage requirements, which makes it difficult to apply in real situations. In the appendix
we also examine the employment of a simple evolving connectionist structure (eMLP),
which adapts its structure with each new training pattern, and is much faster than ASLA
as it conducts one-pass learning. However agents enhanced with eMLP structures are
less accurate than agents enhanced with MLP structures.

The idea of static session-long learning agents is extended to support multi-issued
negotiations. Forecasting is again conducted with the use of Multilayer Perceptrons
(MLPs) and the training set is extracted during the negotiation session. Two cases are
examined: one where separate MLPs are used to estimate each negotiable attribute
and one where a single MLP is used to estimate the counterpart’s response. It is shown
that simple MLPs with one hidden layer are adequate for forecasting the counterpart’s
offer vectors, and are tested in order to find the appropriate number of nodes on input
and hidden layer. The network that yields the lowest error, incurs to the predictive agent
10.78% average absolute increase of his individual utility (gain), which is close to the
increase in utility incurred by the highly risk-seeking agent enhanced with a perfect
forecasting tool.

This thesis contributes to the field of negotiation with the proposal of a predictive
strategy that incorporates different attitudes towards risk, as well as to the field of
application of neural networks in negotiations with the introduction of session-long
learning agents. It is concluded with the discussion of future research issues.
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12. Future research issues

In this section we outline a number of issues that can be considered for future research.
The first relates to the domain of application of the predictive strategy. The decision rule
of the risk-seeking agent, as well as the decision rule discussed in [8], cannot safely be
used in the case where counterparts adopt pure Behavior Dependent strategies, as the
latter would imitate the ‘smart’ behavior of the predictive agents and would push back
from the agreement as well. For this reason the predictive agents presented in this
thesis were only tested with non-learning counterparts who followed Time Dependent
strategies. However, in hybrid strategies, where linear combinations of time and
behavior dependent tactics are considered, success of the proposed strategy is
expected to depend on the weight of the time dependent tactic. In order to broaden the
applicability of the proposed strategy, estimation of behavior dependency could also be
enhanced to the decision rule. An interesting approach concerning estimation of time
and behavior dependent weights is based on the difference method and is found in [5].
Another issue left for future research is the investigation of predictive strategies in co-
operative environments, where the objective is to maximize the joint rather than the
individual utility. Moving to the realm of the employed forecasting tool, ASLAs have
proved more efficient than SSLAs. However the trade-off is the increased computational
resources and time of convergence. An issue left for future research is therefore to test
other adaptive and more efficient structures with the predictive agents. Examples of
such structures are the Evolving Fuzzy Neural Networks (EFUNNs) and DENFIS, which
are Evolving Connectionist Systems (ECoS) that continuously, evolve their structure
and functionality to capture the dynamics of turbulent settings.
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TERMINOLOGY

English Term Greek Term
Risk averse ATTO0TPO®N KIVOUVOU
Electronic markets HAEKTPOVIKEG ayopEG

Socio-technical systems

KoIVWVIKO-TEXVIKA CUOTHUATA

Negotiation domain

Meploxn diamrpayudreuong

Negotiation software agent

MpdakTopag AoyIouIKoU
dIATTPAYUATEUONG

Adaptive session-long learning agent

MpdakTopag pe BUVANIKO
MovTéAO pdbnong TTou
eKTTAIOEUETAI HE OEDOPEVA TNG
TpEXouoag dIATTPAYUATEUONG

Session-long learning agent

MpdakTopag pe povréAo padnong
TToU ekTTaIdeUETAl HE OEDOUEVA
TNG TPEXOUOOG
dIaTTPAYUATEUONG

Pre-Trained Agent

MpdakTopag pe PovréAo TToU
EKTTaIOEUETAI Mia popd oTn
@aon oxedlaouou

Static session-long learning agent

MpdkTOPAG PE OTATIKO HOVTEAO
MABNONG TToU eKTTAIOEUETAI PE
dedopéva TnG TPEXoUCAG
dlaTTpayuaTEUONg

Risk seeking

Potrr) 1TpOg TOV KivOuvo
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ACRONYMS
ART Adaptive Reasonance Theory
ASLA Adaptive Session-long Learning Agent
ADEPT | Advanced Decision Environment for Process Tasks
Al Atrtificial Intelligence
ANN Artificial Neural Network
AR Autoregressive
ARCH Autoregressive Conditional Heteroscedasticity
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
BD Behavior Dependent
BATNA Best Alternative to Negotiating Agreement
CBR Case Based Reasoning
CG Conjugate Gradient
E-Market | Electronic Marketplace
ENS Electronic Negotiation System
ENT Electronic Negotiation Table
eNAs e-Negotiation Agents
ECoS Evolving Connectionist Systems
EFuNN Evolving Fuzzy Neural Network
F2F Face to Face
FENN Feedforward Neural Network
FeNAs Fuzzy e-Negotiation Agents
Generalized Autoregressive Conditional
GARCH | Heteroscedasticity
GA Genetic Algorithm
HV High Voltage
ITA Intelligence Trading Agency
INSS InterNeg Support System
LMS Least Mean Squares
LM Levenberg and Marquardt
LV Low Voltage
MSE Mean Squarred Error
MV Medium Voltage
MP Meeting Point
MA Moving Average
MAGNET | Multi Agent Negotiation Testbed
MLP Multi-Layer Perceptron
NAA Negotiation Agent Assistant
NSA Negotiation Software Agent
NSS Negotiation Support System
0SS One Step Secant
PTA Pre-Trained Agent
RBF Radial Basis Function
RBFN Radial Basis Function Network
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RNN Recurrent Neural Network

RAE Regulatory Authority for Energy

RD Resource Dependent

RP Risk Portion

SLA Service Level Agreement

SSLA Static Session-long Learning Agent
SVM Support Vector Machine

TD Time Dependent
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APPENDIX
Application of a simple ECoS (eMLP) to estimate the next offer

Considering evolving structures when data are extracted from the current negotiation
thread (case of session-long learning agents) has been highlighted in Chapter 9, where
the employed ANNs evolve their structure with the use of a genetic algorithm. Since
time is crucial in negotiations and GAs require a lot of interactions to converge, research
has been guided to the use of Evolving Connectionist Systems (ECoS) which employ
fast learning algorithms. In this section we illustrate an agent engaging in on-line one-
pass learning to predict his counterpart’'s response with the use of a simple ECoS,
eMLP [156]. In the next section we describe the eMLP and its advantages over classical
neural networks. Results of the ECoS-based negotiator are also presented.

Integrating ECoS with automated negotiators

ECoS are flexible structures that are capable of accommodating new data without
forgetting previously learned ones (local learning), keeping the training time low. More
specifically, “an ECOS is an adaptive, incremental learning and knowledge
representation system that evolves its structure and functionality, where in the core of
the system is a connectionist architecture that consists of neurons and connections
between them” [156]. ECoS have the following attractive features: they may evolve in
open space, engage in incremental lifelong learning in an online mode, learn both as
individual systems and as evolutionary populations of such systems, partition the
problem space locally, allowing for fast adaptation, have evolving structures and trace
the evolving processes over time. Hereby we present the integration of a simple ECoS,
eMLP, with a negotiating agent who adopts the strategy described in section 5.2.1. The
characteristic feature of the eMLP is the creation of rule nodes that provide appropriate
mappings from input to output subspaces. As new patterns are presented, the eMLP
changes its structure either by creating a new rule node to represent the new
association or by adjusting the centers of an already associated rule node. In more
detail eMLPs have three layers of neurons: an input layer which represents the input
features, an evolving layer which comprises of the rule nodes that represent prototypes
of input-output data associations and an output layer which represents the output
features. Each rule node R; in the evolving layer is associated with the center of a
hypersphere from the input space, represented by a weight vector W1(R;) and with the
center of a hypersphere from the output space, represented by a weight vector W»(R;).
W1 (Rj) and W3(R;) constitute the interconnection weights from input to evolving layer
and from evolving to output layer respectively. Rule nodes “move” to accommodate new
input-output examples. A new example (x,y) is considered in association with a rule
node R; if x falls in the input receptive field and y falls in the output reactive field of the
rule. The first condition is satisfied if the distance of the input x with the center W1 (Rj) of
the rule node is less than a threshold (specified by the Radius of R;). Similarly, the
second condition is satisfied if the distance of output y with the calculated output is less
than an error threshold. Distances are measured as normalized Hamming distances. As
long as input x falls in the input receptive and output reactive field of the most highly
activated rule node, the one for which the distance of its input center W1(R;) and input x
IS minimum, the weight vector W;(R;) is adjusted through unsupervised learning
depending on the distance of x and W1(R;), while W;(R;) is adjusted through supervised
learning based on the Widrow-Hoff Least Mean Squares (LMS) delta algorithm. More
details about the weight adjustment formulas can be found in [156]. If the new example
(x,y) cannot be associated with any of the existing nodes, a new rule node is created by
setting its initial weights W1(Rj) to x and W»(R;) to y. Initially the network does not
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contain any rule nodes in the evolving layer and it is gradually built. When eMLP is
employed by predictive negotiating agents, it is trained in each decision-making step by
propagating the data patterns extracted from the current negotiation thread. At time step
t, the negotiation thread can be analyzed to two time series, one which comprises of the
past offers of the predictive agent (agent b), and one which comprises of the
counterpart’s (agent a) responses. If the predictive agent is the one who initiates the
interaction at time step O (eg. consumer agent), the latter time-series is expressed as

FOHOWSI{X (1 py s X gaspy rever X (airpy vevs X (s} - The previously Jy offers can be extracted

from the latter series by considering the subsequent offers from time t;=t-(2*J;+1) until
time t,= t-1. These offers are propagated to the input layer of the eMLP to infer the
prediction of the counterpart’s offer at time t+1. At the same time the training set is
augmented with the addition of a new data pattern extracted from the J; +1
counterpart’s responses. More specifically the offers sent from t;’= t-(2*J;+3) until t,’ =
t-3 constitute the new input pattern while the offer sent at t-1 constitutes the related
output pattern. The learning algorithm employed uses one-pass-learning, thus only one
data pattern is propagated to the eMLP at each decision making step. In the following
paragraph we illustrate results of the integration of eMLP with negotiating agents.

Illustrative results

A number of negotiations are conducted between a provider and a consumer agent
a={Con,Pr}, over service terms of electricity trade, characterized by four negotiable
attributes: number of Kwh, Price per Kwh, Penalty terms, and Duration of service
provision. The latter agent uses the predictive strategy discussed in section 5.2.1 setting
RP to 100%. The experimental workbench issues various scenarios with respect to
deadline T2 , and overlap of agreement zones of the two negotiators. The overlap of

agreement zones is defined by a parameter ® < [0,1]. When @ is set to 0 the two
agents have equal reservation values, while when @ is set to 1, there does not exist a
solution in accord with the preferences set by the two agents. Various concession
curves of TD group of strategies, defined by a parameter B are considered in order to
build the default strategies of the agents. The parameters of the 192 generated
negotiation environments are depicted in Table 11.

Table 11: Negotiation Settings

D=0 ®=0.33 ®=0.66
Overlap :
Parameters Consumer Provider Consumer Provider Consumer Provider
Kwh(mi 79.4 138.
wh(min) 20 20 20 9 20 38.8
Kwh(max) 259.4
200 200 200 200 318.8
Price(min) 10 10 10 39.7 10 69.4
Pri 129.7 159.4
rice(max) 100 100 100 9 100 >9
Penalty(min) 29.75 54.5
5 5 5 5
P It 104.75 129.5
enalty(max) 80 80 80 80
D i i 16. 23.2
uration(min) 10 10 10 6.6 10 3
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Duration(max) 30 30 30 36.6 30 43.2

T o [50:100:350] [50:100:350] [50:100:350] [50:100:350] [50:100:350]  [50:100:350]
max

S” B=[0.8, 3] B=[0.8, 3] B=[0.8,3] B=[0.8, 3] B=[0.8, 3] B=[0.8, 3]

(TD)

The predictive agent constructs an eMLP for each negotiable issue. Error threshold and
initial value of the evolving node’s radius are set to 0.001 and maximum value of the
radius of each node’s input hypersphere is set to 0.1, to test the performance of eMLPs.
The number of the counterpart’s previously offered values J; are obtained from the set
{2,3,4,5}, thus 4*192= 768 experiments are conducted and the average error of the
predictive mechanism is computed. In each decision making step the agent makes an
estimation of the counterpart’s next offer. This estimation is compared to the true offer
vector of the counterpart and the absolute error is computed in terms of Euclidean
distance. At the end of each negotiation, the mean, the average standard deviation and
the maximum value of the absolute errors is computed. Overall assessment of the 768
experiments is provided through the computation of mean and maximum values of the
above measures. Additionally the increase in terms of utility which incurs to the
predictive agent compared to the non learning one is also computed. Results are
illustrated in Table 12.

Table 12: Results of predictive strategy when agents are enhanced with e-MLP

Measures: Mean of Abs  Avg of Std Max of Abs  Avg Utility
Errors of Abs Errors Increase(%)
Errors
#Previous Mean Max Mean Max Mean Max
Offers
2 51 5841 1.09 292 7.46 14.73 5.316
3 532 6.18 127 351 8.19 17.18 5.315
4 498 599 108 29 7.36 15.12 5.318
5 4.8 584 0.9 258 6.79 14.11 5.327

The values in Table 12 are not normalized; they rather express maximum and average
values of error vectors, computed as Euclidean distances. The values related to the
Mean of Absolute errors are desired to be low for a model to be accurate. The low
values of average standard deviations signify that there are not high oscillations around
the mean of the absolute errors, and that the predictive curves are quite smooth. Finally
the low values of Maximum absolute errors are also desirable since high values could
misguide the predictive agents. The eMLP which yields the minimum mean error and
incurs the maximum increase in utility to the predictive negotiator is attained when the 5
previously sent offers of the counterpart constitute the input features. It is worth noticing
that all models have very low average standard deviations, which justifies the decision
of integrating ECoS with automated negotiators.
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