
HELLENIC REPUBLIC
National and Kapodistrian
University of Athens

HELLENIC REPUBLIC
National and Kapodistrian

University of Athens

Archontia C. Giannopoulou

Partial Orderings and Algorithms

on
Graphs

PhD Thesis

Advisor: Dimitrios M. Thilikos

Department of Mathematics

October 2012

Abstract iii

Abstract

In the Graph Minors project, N. Robertson and P. Seymour, proved

a series of structural and algorithmic results. Some of them, such as the

Strong and the Weak Structure Theorem, the Excluded Grid Theorem

and the algorithm for Minor Containment, constitute a rich source of

many more structural as well as algorithmic results.

Furthermore, the development of Graph Minor Theory coincided with

and influenced the development of a new branch of Complexity, namely

the Parameterized Complexity Theory, introduced by R. Downey and M.

Fellows.

In this doctoral thesis we deal with a series of issues in Graph Minor

Theory and Parameterized Complexity as well as the dependence of these

two areas.

Περίληψη v

Περίληψη

Στις εργασίες Ελασσόνων Γραφημάτων, οι N. Robertson και P. Seymour

απέδειξαν μια σειρά από δομικά και αλγοριθμικά αποτελέσματα. Κάποια από

αυτά, όπως το Ισχυρό και το Ασθενές Δομικό Θεώρημα, το Θεώρημα Απαγο-

ρευμένης Σχάρας καθώς και ο αλγόριθμος για την Περιεκτικότητα Ελάσσο-

νος, αποτελούν πλούσια πηγή πολλών ακόμα δομικών αλλά και αλγοριθμικών

αποτελεσμάτων.

Επιπλέον, η ανάπτυξη της Θεωρίας Ελασσόνων Γραφημάτων συνέπεσε με

και επηρέασε την ανάπτυξη ενός νέου κλάδου της πολυπλοκότητας, την Θεω-

ρία Παραμετρικής Πολυπλοκότητας, που προτάθηκε από τους R. Downey και

M. Fellows.

Σε αυτή την διδακτορική διατριβή ασχολούμαστε με μια σειρά από ζη-

τήματα της Θεωρίας Ελασσόνων Γραφημάτων και της Θεωρίας Παραμετρικής

Πολυπλοκότητας καθώς και με την αλληλεξάρτηση των δύο αυτών περιοχών.

Preface

When I began writing this preface I realized that I would really need some

space in order to describe my experience at the Department of Mathemat-

ics of the National and Kapodistrian University of Athens (UoA), which

has hosted me academically from September 2003, when I first started

my undergraduate studies, until today. Many people contributed in the

successful completion of my studies as well as in my character’s growth

these nine years.

At this point I wish to thank them, starting with my Advisor, Prof.

Dimitrios M. Thilikos. His contribution was crucial during the course

of my studies even since my undergraduate years. His professionalism,

affability, and perseverance made our collaboration particularly pleasant

and, on his behalf, impeccable. He constitutes the exemplar of a Teacher.

Furthermore, our mathematical (and not only) conversations as well as

his numerous advices, which I deeply appreciate, encouraged me but also

averted me from many pitfalls, at the point where the title Academic

vii

http://www.math.uoa.gr
http://www.math.uoa.gr
http://www.uoa.gr
http://www.thilikos.info
http://www.thilikos.info

viii Preface

“Parent” is far more accurate than the title of the Advisor.

I also wish to warmly thank the other two members of my Three-

Member Advising Committee, Prof. Lefteris M. Kirousis and Prof.

Stavros G. Kolliopoulos. I would like to say an extra thank you to Prof.

Kirousis for the interest he showed in the Department’s Forum.

Continuing, I wish to thank Prof. Christos A. Athanasiadis, Prof.

Constantinos Dimitracopoulos, Prof. Evagelos Raptis and Prof. Daniel

Lokshtanov for doing me the honor of participating to the Seven-Member

Examining Committee of my PhD thesis. Special thanks I want to give,

alphabetically, to Prof. Dimitracopoulos, who was the Head of the Mas-

ter’s Program in Logic, μΠλ∀1 during my studies there, Prof. Lokshtanov,

for personally covering all his expenses for his travel and stay in Greece

the week that the PhD thesis’ defence took place, and Prof. Raptis, for

his impeccable cooperation at the Computer Laboratory and the Forum

of the Department.

I also thank the Department of Mathematics of UoA for the financial

support of my PhD studies by offering me a grant under the research

project 70/4/10311 of the Special Account for Research Grants of UoA.

Continuing, I wish to thank, chronologically, the Professors who hosted

me and supported me financially while visiting them. In particular, I

would like to thank:

• Prof. Isolde Adler, for hosting me at Goethe Universität, Frankfurt am

Main and her home, her financial (and not only) support as well as her

endless willingness to answer any of my questions and generously discuss

any research subject during my stay in Frankfurt in October of 2010.

• Prof. Saket Saurabh, for his full (including financial) support and his

1Inter - University Program of Graduate Studies in Logic and Theory of Algorithms

and Computation

http://lca.ceid.upatras.gr/~kirousis/
http://cgi.di.uoa.gr/~sgk/
http://cgi.di.uoa.gr/~sgk/
http://forum.math.uoa.gr
http://users.uoa.gr/~caath/
http://mpla.math.uoa.gr/en/~cdimitr/
http://mpla.math.uoa.gr/en/~cdimitr/
http://users.uoa.gr/~eraptis/
http://www.ii.uib.no/~daniello/
http://www.ii.uib.no/~daniello/
http://mpla.math.uoa.gr
http://pclab.math.uoa.gr
http://www.elke.uoa.gr
http://www.tdi.informatik.uni-frankfurt.de/~adler/
http://www2.uni-frankfurt.de/de?locale=de
http://www2.uni-frankfurt.de/de?locale=de
http://www.imsc.res.in/~saket/

Preface ix

encouragement to share any thought or doubt, during my visit in the

Institute of Mathematical Sciences, Chennai in India at spring of 2011.

His ability to make everything seem easy, as well as the tenacity according

to which he does research have been and are a great source of inspiration.

• Prof. Fedor V. Fomin, for openhandedly covering all the expenses of

my trip to Bergen at spring of 2011, enabling me to visit the Algorithms

Group of Universitetet i Bergen and attend Treewidth Workshop 2011. I

also wish to warmly thank him for his trust and support. I look forward

to taking my next research step as part of his research group.

• Prof. Daniel Král’ and Prof. Zdeněk Dvořák for financially supporting

my visit at Univerzita Karlova v Praze in Prague during the fall and

winter of 2011. I also owe a special děkuji to Prof. Jaroslav Nešetřil for

encouraging me since my first research steps.

At this point, I would like to thank μΠλ∀ and all of my Professors

there as they offered me the knowledge and the motivation that made all

of the above possible. I would like to particularly thank Prof. Yiannis N.

Moschovakis, who is the model of scientist, not just for me but also for

the majority (if not all) of his students.

Taking a small detour, I would like to mention that there were some

times where my efforts to tackle the bureaucratic issues of the Department

arrived to a dead end. I wish to kindly thank the Head of the Depart-

ment of Mathematics, Prof. Ioannis Emmanouil, as well as the Head of

the Committee of the Program of Post-graduate Studies, Prof. Antonios

Melas, for their promptitude and effectiveness towards resolving some of

them.

I should not neglect to thank Dimitris Zoros and Athanassios Kout-

sonas for making our working environment pleasant during sharing of the

room 116 and the rest of my fellow students that made our common stay

http://www.imsc.res.in
http://www.ii.uib.no/~fomin/
http://www.uib.no/fg/algo
http://www.uib.no/fg/algo
http://www.uib.no/
http://www.uib.no/rg/algo/artikler/2011/03/treewidth-workshop-2011
http://www.ucw.cz/~kral/
http://atrey.karlin.mff.cuni.cz/~rakdver/
http://www.cuni.cz/UK-2.html
http://kam.mff.cuni.cz/~nesetril/en/
http://www.math.ucla.edu/~ynm/
http://www.math.ucla.edu/~ynm/
http://users.uoa.gr/~dzoros/UoA_site/Home.html

x Preface

in the Department of Mathematics interesting and pleasant.

I also thank all of my collaborators that I have not already explicitly

thanked. These are Marcin Kamiński, to whom I am also indebted for his

support and kindness, and finally Sudeshna Kolay and Iosif Salem.

Continuing, I thank the members of the Computer Laboratory and the

Forum of the Department for the pleasant hours I spent there, as well as

LabRadio and its chat for accompanying me in many hours of studying

and resting.

I also wish to thank all of my friends who visited me during my stays

abroad and who invited me to visit them during their stays abroad. Their

presence is always welcomed.

Finally, I would like to thank my parents for the unconditional support

of all the choices that I have ever made.

«Να φεύγω τώρα είναι η ώρα κι ίσως σας ξαναδώ . . . »2

Archontia C. Giannopoulou

October 2012

Athens

2These are lyrics from a song written by Pavlos Sidiropoulos. Loosely translated,

they say that: “I am going away now, the time has come, but perhaps I will see you

again”.

http://rutcor.rutgers.edu/~mkaminski/index.html
http://pclab.math.uoa.gr/labradio/
http://pavlos-sidiropoulos.gr

Contents

Abstract iii

Περίληψη v

Preface vii

Contents xi

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 In General . 1

1.2 . . . and More Specifically 2

1.3 The Structure of This Thesis 9

1.4 The Papers . 12

xi

xii Contents

2 Basic Notions 15

2.1 Graphs . 15

2.2 Graphs on Surfaces . 24

2.3 Grids and Walls . 27

2.4 Logic . 30

3 Partial (Well-Quasi-)Orderings and Algorithms 35

3.1 Partial (Well-Quasi-)Orderings 35

3.2 Forbidding Kuratowski Graphs as Immersions 40

3.2.1 (Confluent) Families of Paths 45

3.2.2 A Decomposition Theorem 50

3.3 Algorithms . 57

4 Identifying the Obstructions for Tree-depth 61

4.1 An Introduction to Tree-depth 63

4.2 Upper Bound on the Order of the Obstructions for Gk . . . 66

4.3 A Structural Lemma for the Obstructions of Tree-depth . . 68

4.4 Acyclic obstructions for tree-depth 70

4.5 Lower Bound on the Number of the Obstructions for Gk . . 73

4.6 Obstructions for Gk, k ≤ 3 80

4.7 A Reduction for Tree-depth 84

5 Computing Immersion Obstructions 91

5.1 Preliminaries . 96

5.2 Computing Immersion Obstruction Sets 99

5.3 Tree-width Bounds for the Obstructions 103

5.4 Conclusions . 108

6 The Graph Minors Weak Structure Theorem 109

6.1 Preliminaries . 111

Contents xiii

6.2 Statement of the Main Result 114

6.3 Some Auxiliary Lemmata 118

6.3.1 An Invariance Lemma for Flatness 118

6.3.2 Pyramids and Tree-width 123

6.4 The Main Proof . 125

6.4.1 Notation . 125

6.4.2 Proof of the Main Result 126

6.5 Tilings of the Plane . 139

6.5.1 Regular Tilings of the Plane 139

6.5.2 The Theorems and the Tilings 140

7 Excluding Immersions on Surface Embedded Graphs 145

7.1 Necessary Notions . 146

7.2 Preliminary Combinatorial Lemmata 148

7.3 Main Theorem . 157

8 Parameterized Complexity and Bidimensionality Theory 163

8.1 Introduction to Parameterized Complexity 163

8.2 Distance Topological Minors 168

8.2.1 Spanners on Graphs 168

8.2.2 Duality completed . 171

8.3 Bidimensionality Theory and Subexponential Algorithms . 171

8.3.1 Bidimensionality Theory for Contractions and Minors171

8.3.2 Bidimensionality Theory for (Distance) Topological

Minors . 175

8.4 An Application to Cycle Domination and Scattered Cycle

Set . 176

8.4.1 Introduction to the Erdős-Pósa Property 176

8.4.2 The Proof . 179

xiv Contents

8.5 Kernelization . 185

9 Algorithms and Kernels on General Graphs 189

9.1 Introduction to the Bipartizations of (Hyper)graphs 189

9.2 New Lower Bound on ζ(H) and Proof of Theorem 9.1 . . . 195

9.3 Reduction Rules for AA-r-SS 201

9.4 Linear Kernel for Fixed r and Proof of Theorem 9.2 210

9.5 Lower Bound Result and Proof of Theorem 9.3 211

9.6 Conclusions . 216

10 Graph Searching: A Game Characterization of Cycle-rank219

10.1 Introduction . 219

10.1.1 Node Search in Graphs 220

10.1.2 Node Search in Digraphs 221

10.2 Searching Games for Cycle-rank 224

10.2.1 LIFO-search on Digraphs 225

10.2.2 Relating the Digraph Searching Parameters 228

10.2.3 Relation with Other Graph Parameters 234

10.3 Obstructions for Cycle-rank 234

10.4 LIFO-search in Simple Graphs 238

Bibliography 245

List of Notations 275

Correspondence of Terms 283

Index 297

List of Figures

2.1 A unique linkage in a graph. 23

2.2 A family of four nested cycles. 26

2.3 Example of an overlapping vertex of two paths. 27

2.4 The (6× 6)-grid. 27

2.5 The first two layers of a wall of height 5. 29

2.6 The vertical paths of a wall of height 5. 30

2.7 The dominating set of a graph. 32

3.1 The Kuratowski graphs. 36

3.2 Infinite anti-chain for the contraction ordering. 37

3.3 Infinite anti-chain for the topological minor ordering. 37

3.4 K5 as an immersion of the (7× 7)-grid. 39

3.5 Two graphs before an edge-sum. 41

3.6 The graph obtained after an edge-sum. 42

3.7 A (4,4)-railed annulus and a (4,4)-cylinder. 44

xv

xvi List of Figures

3.8 An example of the procedure in Lemma 3.3. 46

3.9 Case 1 in Proposition 3.1 48

3.10 Case 2 in Proposition 3.1 49

3.11 Case 3 in Proposition 3.1 50

3.12 The (4, 4)-railed annulus and the vertex v. 52

3.13 The graphs H1 and H2 of Theorem 3.7. 56

3.14 Simple non-sub-cubic graphs of branch-width 3 without K5

or K3,3 as immersions. 57

4.1 Examples of acyclic obstructions for tree-depth. 73

4.2 The forbidden graphs for G3. 82

6.1 An h-nearly embeddable graph. 113

6.2 An example of an H-minor-free graph. 114

6.3 The graph Γ6. 115

6.4 Example of Case 1 in Lemma 6.3. 120

6.5 Example of Case 2 in Lemma 6.3. 121

6.6 Example of Subase 2.1 in Lemma 6.5. 122

6.7 Example of Subcase 2.2 in Lemma 6.5. 122

6.8 The v-smooth contraction of Theorem 6.1. 128

6.9 The wall of Theorem 6.1. 129

6.10 The four subwalls of the wall in Theorem 6.1. 132

6.11 The “general” picture in Theorem 6.1. 133

6.12 A monohedral tiling of the plane. 139

6.13 The square tiling of the plane. 140

6.14 The regular triangular tiling of the plane. 141

6.15 The regular hexagonal tiling of the plane. 142

6.16 The duality of the triangular and the hexagonal tiling. . . . 143

List of Figures xvii

7.1 The important vertices the second layer of a wall of height 5.147

7.2 Example of the construction of a detachment tree. 150

7.3 Example of the statement of Lemma 7.3 152

7.4 The paths Ti in the proof of Lemma 7.4. 153

7.5 The important vertices of Lj0 , the layers L′1 and L′2, and

the paths Ri in Lemma 7.4. 154

7.6 Part of the rerouted paths in Lemma 7.4. 155

8.1 The wall W3 as a distance topological minor in a flat wall

of height 13. 170

8.2 The bidimensionality of vertex cover. 173

8.3 Bidimensionality Theory on minors and contractions. 174

8.4 The complete Bidimensionality Theory. 176

8.5 A graph with cycle domination number 1. 179

8.6 A graph with scattered cycle number 9. 180

8.7 A scattered cycle set of size 4 in Γ8. 182

9.1 A cut of a graph. 190

10.1 Trivial relations between digraph searching parameters. . . 230

10.2 A shelter of P9 that has thickness 4. 239

10.3 A monotone winning LIFO-strategy in P9 using 4 searchers. 243

List of Tables

9.1 List of known results about p-Set Splitting in chronolog-

ical order. 193

xix

CHAPTER 1

Introduction

1.1 In General . . .

Let us imagine a room occupied by n persons where some of them, say

m, pairwise mutually know each other while the rest are strangers. This

everyday situation, as well as numerous others, is modeled by the mathe-

matical notion of a graph.

More specifically, a graph G is an ordered pair of two sets (V,E), where

V is called vertex set of the graph and E is called edge set and consists of

2-subsets of V .

While the first result in Graph Theory appeared in 1736, with the

negative solution of the Bridges of Königsberg problem by L. Eüler, the

development of this theory did not start up until later and the notion

of a graph was not formally defined until 1878 [218]. Nevertheless, its

1

2 1.2. . . . and More Specifically

development was rapid during the last century, and especially during the

last decades.

The participation of Graph Theory in Mathematics is now particularly

strong both in Combinatorics and Discrete Mathematics as well as in the

Theory of Algorithms.

In this doctoral thesis, we study a series of issues in Graph Theory

related to Graph Minors Theory and to Parameterized Complexity Theory,

and try to contribute a piece of sand in the enterprises of these Theories.

(From now on, we assume that the reader has elementary knowledge of

the notions of Graph Theory and of the Theory of Algorithms.)

1.2 . . . and More Specifically

The Graph Minors Theory [185–194, 198–202, 202–209] was developed

by N. Robertson and P. Seymour towards the resolution of a conjecture,

known as Wagner’s Conjecture. The motivation of this conjecture was a

classical theorem, Kuratowski’s Theorem [142], which provided a complete

characterization of planar graphs in terms of forbidden topological minors,

and its subsequent restatement, by Wagner [221], in terms of forbidden

minors. Wagner’s Conjecture, now known as the Robertson-Seymour The-

orem [194], claimed that in every infinite family of graphs there are two

of them such that one contains the other as a minor.

The results of this theory cleared the picture in regard to the classes of

graphs that forbid some fixed graph as a minor, and constitute both the

source of inspiration of and a powerful instrument for the proofs of many

more results in Structural [83, 123–125, 196], as well as in Algorithmic [5,

51, 86, 90, 212], Graph Theory. One of the most important results, in

both of these fields, was the corollary that every graph class that is closed

1. Introduction 3

under taking of minors, that is, if a graph belongs to this graph class,

then all of its minors also belong to the graph class, can be characterized

by a finite set of forbidden graphs. For example, it is known that, for

the graph class of planar graphs, these forbidden graphs are K5 and K3,3.

As we mentioned a while ago, the importance of this result is duple. In

the Theory of Algorithms, its importance lies to the fact that in order

to decide whether a graph belongs to a graph class that is closed under

taking of minors, it is enough to check whether this graph contains one of

the forbidden graphs as a minor.

The proof of this corollary further facilitated the classification of many

NP-complete problems. The way was the following. In the framework

of the development of Graph Minors Theory, there was given a way to

construct, for any fixed graph H, a cubic time algorithm such that for

every graph G decides whether H is a minor of G (where the hidden

constants depend only on the forbidden graph H) [193]. This algorithmic

result immediately implies the existence of a cubic time algorithm that

decides whether a graph G belongs to a graph class that is closed under

taking of minors (where, as above, the hidden constants depend only on

the graph class).

However, this is just one, trivial, corollary/application of the Graph

Minors Theory to the Theory of Algorithms. But it has a major algorith-

mic drawback. While only the existence of such an algorithm is known and,

since the Graph Minors Theory is non-constructive [95], no way towards

its construction is provided, the set of forbidden graphs is, in general,

not known. Thus, in order to construct such an algorithm we first need

to identify the forbidden graphs of a class that is closed under taking of

minors.

Here, we study the parameter of tree-depth of a graph. Is it known

4 1.2. . . . and More Specifically

that, the class of graphs that have tree-depth bounded by some constant

k, Gk, is closed under taking of minors. We show that, the size of the

forbidden minors for the graph class Gk is bounded by a function on k of

order 22k−1
. Then, we give a precise structural characterization of all the

acyclic forbidden graphs of this graph class and prove that they are exactly
1
222k−1−k(1 + 22k−1−k). Moreover, we identify exactly all the forbidden

minors for k ∈ {1, 2, 3}. (For the case where k = 4 it is very easy to see

that the number of the graphs is already discouraging.) Finally, we prove

a theorem which suggests a procedure such that, starting from a graph

G whose tree-depth we are trying to compute, we may obtain a graph

of smaller size that has the same tree-depth as G. As we will see later

on such rules are particuarly important to the Parameterized Complexity

Theory.

Before we continue with the analysis of the results and the applications

of the Graph Minors Theory with respect to the minor relation, we would

like to take a short detour and discuss the immersion relation as it is also

going to be a subject of our study.

In the last paper of the Graph Minors series [211], it was proved that,

similarly to the minor relation, an infinite family of graphs contains two

graphs that are comparable with respect to the immersion relation.

This result was previously known as the Nash-Williams’ Conjecture

and its implications to the classes of graphs that are closed under taking

immersions are an analogue to the aforementioned ones for the graph

classes that are closed under taking of minors. The only difference is that,

the algorithmic application requires the recent algorithmic results of M.

Grohe, K. Kawarabayashi, D. Marx and P. Wollan in [109].

Subsequently, having been disappointed by the possible size of a set

of forbidden graphs, we try to devise more efficient mechanisms for their

1. Introduction 5

identification: Algorithms. Our main goal is to answer the following ques-

tion. Which information of a graph class that is closed under taking of

immersions are necessary in order to construct an algorithm that computes

its forbidden immersions?

Based on the framework that was devised by I. Adler, M. Grohe, and

S. Kreutzer in [4] for the case of minors, we prove that the necessary

conditions are an upper bound on the tree-width of the forbidden im-

mersions and a description of the graph class in Monadic Second Order

Logic. Moreover, by computing such an upper bound on the tree-width

of the obstructions of a graph class that is the union of two graph classes,

that are closed under taking of immersions, whose forbidden graphs are

known, we (also) propagate the notion of computability in graph classes

that are finite unions of classes of graphs that are closed under taking of

immersions and whose forbidden graphs are known.

Let us continue, however, with the celebrated results of the Graph

Minors Theory with respect to the minor ordering. Choosing the most

influential one would be a very challenging task. We would, however, dare

to claim that if one of them could assert the first place, then this is the

(Strong) Structure Theorem that appeared in GM XVI [207] and reveals

the structure of a graph that excludes some other graph as a minor. Its

statement requires some quite complicated notions and cannot be given in

the context of a more general introduction. Roughly, we could say that, if

a graph G does not contain a graph H as a minor, then G has a tree-like,

in the topological sense, structure and can be decomposed into smaller

graphs which can almost be embedded in a surface in which H cannot be

embedded.

This result constitutes both a point of reference for the proof of new

structural characterizations of graphs and a useful instrument for design-

6 1.2. . . . and More Specifically

ing many algorithms.

Inspired by the Strong Structure Theorem of the Graph Minors Theory,

we prove a structural characterization of the graphs that forbid a fixed

graph H as an immersion and can be embedded in a surface of Eüler

genus γ. In particular, we prove that a graph G that forbids some graph

H as an immersion and is embedded in a surface of Eüler genus γ has

either “small” tree-width (bounded by a function of H and γ) or “small”

edge-connectivity (bounded by the maximum degree of H).

Evenmore, inspired by Kuratowski’s Theorem and Wagner’s Theorem

we give a precise structural characterization of the graphs that do not

contain K5 and K3,3 as immersions. In particular, we show that if a

graph G contains neither K5 nor K3,3 as an immersion then in can be

constructed by repetitive unions of simpler graphs, starting either from

graphs of small decomposability (of branch-width at most 10) or from

planar graphs of maximum degree at most 3. To show this, we prove an

intermediate result on the confluence of a family of edge-disjoint paths.

Continuing the reference in Graph Minors Theory, we would like to

mention another structural result, which we could probably say that it

is of greater importance to the Theory of Algorithms than the Strong

Structure Theorem. This is the Weak Structure Theorem. The Weak

Structure Theorem was proved for the first time in GM XIII [193] and

was the key-theorem for the construction of the algorithm that decides

the containment of a graph in another graph as a minor.

According to the Weak Structure Theorem, a graph G that does not

contain a graph H as a minor and has “sufficiently large” tree-width con-

tains, after the removal of a “small” number of vertices, a flat wall as a

subgraph. The notion of flatness cannot be easily defined at this point

but we can temporarily think that the wall has been arranged in a planar

1. Introduction 7

manner inside the graph.

A huge amount of algorithmic applications is derived from this theo-

rem [4, 42, 88, 90, 106, 116–118, 120–122, 127, 130, 131, 133, 134, 138]. The

reason is that a technique, namely the irrelevant vertex technique, that

was introduced by N. Robertson and P. Seymour indicates that we can

remove a vertex from the graph, and more specifically the “middle” vertex

of the wall, and end up to an equivalent instance. For more applications

using the broader concept, see [44, 85, 115, 154].

Then, the idea behind the algorithm is the following. If we have a graph

G that does not contain a graph H as a minor then we check whether it

has “sufficiently large” tree-width. In this case, the graph contains a “big

enough” wall from which we may remove a specific vertex and obtain an

equivalent instance of smaller size. Otherwise, the graph has small tree-

width and we can solve the problem using dynamic programming.

It is easy to see that in order to apply the Weak Structure Theorem

on algorithmic problems we wish for the relation between the height of

the wall and the lower bound on the tree-width of the graph in order to

ensure the existence of the wall to be optimal.

For this reason, we prove an optimized version of the Weak Structure

Theorem, in which both the number of vertices that we need to remove in

order to find the flat wall and the relation between the tree-width of the

graph and the height of the wall are linear, and therefore optimal.

Furthermore, using this theorem and two already known results, we

discuss how the duality of some tilings of the plane can be “extended” to

the realm of the graphs that forbid some fixed apex graph as a minor.

Returning to Graph Minors Theory, we turn our attention to some of

the theories that were encouraged and inspired by its results. The first one

of them is the Parameterized Complexity Theory [66, 82, 172]. In Param-

8 1.2. . . . and More Specifically

eterized Complexity Theory, the input of every algorithmic problem is a

pair whose first component is the input graph while the second component

is a function, which is called parameterization of the problem. The aim

of the Parameterized Complexity Theory is to examine and classify the

time dependence of the solution of the algorithmic problem with respect

to each one of their parameterizations. According to M. Langston, one of

the first results that led towards this direction, was the result that every

graph class that is closed under taking of minors can be decided in cubic

time [22]. This made clear that some NP-complete problems can be solved

in cubic time when the parameter is fixed, while others are not expected

to behave in such a “good manner”.

Another theory, based on structural theorems of the Graph Minors, is

the Bidimensionality Theory [50, 83]. Bidimensionality Theory is based

on theorems according to which a graph G, that forbids another graph

H and has “sufficiently large” tree-width, also contains a graph on which

the parameter is “bidimensional”. Many times, this acts as a certificate

according to which the dependence of the running time of a parameterized

problem is “good”.

We analyze these notions and show how we can apply the optimized

version of the Weak Structure Theorem in order to design fixed parameter

tractable algorithms. We also use it to complement the Bidimensionality

“picture” beyond the relations of minors and contractions, on which it

has already been established, to graph parameters that are closed under

(distance) topological minors.

Let us now notice that, all algorithmic solutions that we have men-

tioned up to now concern either specific kinds of problems (for example,

the decision of graph classes that are closed under taking of minors) or

problems whose input is restricted (for example, the input is some graph

1. Introduction 9

G that does not contain some fixed graph as a minor). Many times this re-

strictions, indeed, allow us to design algorithms with better running times

than in the case of general graphs. However, we would also like to obtain

solutions on problems whose input is any graph.

In this thesis, we deal with the problem of max cut on hypergraphs,

that is, with the problem of set splitting. In this problem, we are given

a hypergraph and our goal is to color its vertices using two colors in

such a way that the biggest possible number of its hyperedges contains

vertices of both colors. The exact problem which we deal with is an

“above guarantee” parameterized version of r-Set Splitting. We prove a

dichotomy on its time complexity. In particular, we show that this problem

is fixed parameter tractable when r < log n, but its complexity explodes

when r ≥ log n. We also show a linear vertex-kernel when r = O(1).

Finally, we return to the graph parameter of tree-depth. We study its

extension on directed graphs from the scope of Graph Searching. We show

a complete game theoretic characterization and a min-max theorem both

for simple and for directed graphs.

1.3 The Structure of This Thesis

In Chapter 2, we define the necessary notions from Graph Theory and

Logic, which we use throughout the text.

In Chapter 3, we discuss the most important partial orderings on

Graphs and extensively mention the basic results of Graph Minors Theory

on them. Then, inspired by Kuratowski’s Theorem, we show a theorem

that decomposes the graphs that do not contain the Kuratowski graphs as

immersions. Finally, we discuss the main algorithmic applications of the

Graph Minors Theory.

10 1.3. The Structure of This Thesis

In Chapter 4, we study the parameter of tree-depth, which is closed

under taking of minors. We show that the size of the obstructions, that is,

the minor-minimal graphs that do not belong in the graph class, of Gk is

bounded by a function of k of order 22k−1
. We also give a precise structural

characterization of the acyclic obstructions, which in turn allows us to

compute exactly all the acyclic obstructions of Gk. These are 1
222k−1−k(1+

22k−1−k). Then, we identify all the forbidden minors for the cases where

k ∈ {1, 2, 3}. Finally, we show a theorem that, given a graph G of tree-

depth k, allows us to find proper subgraphs of G of tree-depth k.

In Chapter 5, we study the problem of the computation of obstruction

sets for graph classes that are closed under taking of immersions. We

show that, in order to effectively compute the obstruction set of a graph

class, it is enough to compute an upper bound on the tree-width of the

obstructions and a description of the graph class in Monadic Second Order

Logic.

In Chapter 6, we show an optimized version of the Weak Structure

Theorem of the Graph Minors Theory, in which all the parameter de-

pendencies are optimal. Furthermore, we discuss how a corollary of this

theorem and an already known theorem, that may also be obtained as

a corollary of our result, “extend” the duality of the regular tiling with

triangles and the regular tiling with hexagons to graphs that forbid an

apex graph as a minor.

In Chapter 7, we show a structural characterization for the graphs that

are embedded in a surface of Eüler genus γ and forbid a fixed graph H

as an immersion. In particular, we show that in this case, the graph has

either bounded tree-width (where the bound is a function of H and γ)

or the edge-connectivity of the graph is bounded by the maximum degree

of H.

1. Introduction 11

In Chapter 8, we define the necessary notions from Parameterized

Complexity Theory. We then show how we may apply the optimized

version of the Weak Structure Theorem in order to obtain a proof of a re-

sult of F. Dragan, F. Fomin and P. Golovach on spanners of graphs [67] in

a simpler and shorter way. We continue by discussing the basic elements

of Bidimensionality Theory and how we may use them in order to show

that two dual graph parameters have the Erdős-Pósa property. Finally, we

discuss the Kernelization Theory and its equivalence to fixed parameter

tractability.

In Chapter 9, we deal with an “above guarantee” parameterization of

Set Splitting. First, we show a generalization of the lower bound on the

size of a cut that was given by Edwards, for the case of the partition-

connected hypergraphs. Then, by combining it with two reduction rules

we show a linear vertex-kernel when the size of the hyperedges is O(1).

Subsequently, we show that the problem is fixed parameter tractable when

the size of the hyperedges is less than log n, where n is the number of the

vertices. We complement this result by showing that the problem is not

expected to belong to XP, that is, a solution cannot be computed in nf(k)

steps, when the size of the hyperedges is at least log n.

Finally, in Chapter 10, we give an alternative definition of the graph

parameter of tree-depth and for the graph parameter of cycle-rank, which

is an extension of tree-depth in digraphs, in terms of Graph Searching.

We show that the games are monotone both in the simple and in the

directed case and the number of necessary searchers does not depend on

the visibility of the fugitive. Finally, we show min-max theorems for these

parameters which reveal the structure of their obstructions.

Part of the results of this thesis has been presented in the papers [69,

97–105].

12 1.4. The Papers

1.4 The Papers

[69] Zdenek Dvorak, Archontia C. Giannopoulou, and Dimitrios M. Thi-

likos. Forbidden graphs for tree-depth. Eur. J. Comb., 33(5):969–

979, 2012.

This publication is based on parts of Chapter 4.

[97] Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thi-

likos. Lifo-search: A min-max theorem and a searching game

for cycle-rank and tree-depth. Discrete Applied Mathematics,

160(15):2089–2097, 2012.

This publication is based on parts of Chapter 10.

[98] Archontia C. Giannopoulou, Marcin Kamiński, and Dimitrios M.

Thilikos. Excluding graphs as immersions in surface embedded

graphs. unpublished manuscript.

This paper is based on Chapter 7.

[99] Archontia C. Giannopoulou, Marcin Kamiński, and Dimitrios M.

Thilikos. Forbidding kuratowski graphs as immersions. CoRR,

abs/1207.5329, 2012.

This paper is based on a part of Chapter 3.

[100] Archontia C. Giannopoulou, Sudeshna Kolay, and Saket Saurabh.

New lower bound on max cut of hypergraphs with an application

to r -set splitting. In David Fernández-Baca, editor, LATIN, vol-

ume 7256 of Lecture Notes in Computer Science, pages 408–419.

Springer, 2012.

This publication is based on Chapter 9.

1. Introduction 13

[101] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Ef-

fective computation of immersion obstructions for unions of graph

classes. In Fedor V. Fomin and Petteri Kaski, editors, SWAT, vol-

ume 7357 of Lecture Notes in Computer Science, pages 165–176.

Springer, 2012.

This publication is based on parts of Chapter 5.

[102] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Ef-

fective computation of immersion obstructions for unions of graph

classes. CoRR, abs/1207.5636, 2012.

This paper is a complete form of [101].

[103] Archontia C. Giannopoulou and Dimitrios M. Thilikos. Obstruc-

tions for tree-depth. Electronic Notes in Discrete Mathematics,

34:249–253, 2009.

This publication is a preliminary version of [69].

[104] Archontia C. Giannopoulou and Dimitrios M. Thilikos. A min-max

theorem for lifo-search. Electronic Notes in Discrete Mathematics,

38:395–400, 2011.

This publication is a preliminary version of [97].

[105] Archontia C. Giannopoulou and Dimitrios M. Thilikos. Optimizing

the graph minors weak structure theorem. CoRR, abs/1102.5762,

2011.

This paper is based on parts of Chapter 6.

CHAPTER 2

Basic Notions

Let n ∈ N. We denote by [n] the set {1, 2, . . . , n}. Moreover, for every

k ≤ n, if S is a set such that |S| = n, we say that a set S′ ⊆ S is a k-subset

of S if |S′| = k.

Given a set S, we denote by P(S) its power-set.

2.1 Graphs

Graphs, Hypergraphs, Multigraphs and Digraphs

A graph G is an ordered pair (V,E) where V is a finite set, called the

vertex set and denoted by V (G), and E is a set of 2-subsets of V , called

the edge set and denoted by E(G). We denote by n(G) the number of

vertices of G, that is, n(G) = |V (G)|, and by m(G) the number of its

edges, that is, m(G) = |E(G)|.

15

16 2.1. Graphs

If we allow E to be a subset of P(V), then we call the pair H =

(V (H), E(H)) a hypergraph.

Evenmore, if we allow E(G) to be a multiset, that is, a set S may

appear more than one times in E(G), then the graph G is called a multi-

graph.

Finally, if E(G) is a set of ordered 2-subsets of V , then G is called

a directed graph (or digraph). Unless otherwise stated, we consider finite

undirected graphs without loops or multiple edges.

The graph where V (G) = E(G) = ∅ is called empty graph.

We call two vertices v and u of a graph G adjacent if {v, u} ∈ E(G).

Moreover, for every v ∈ V (G) we say that an edge e of G is incident to v

if v ∈ e.

For a vertex v, we denote by NG(v) its (open) neighborhood , that is, the

set of vertices which are adjacent to v. The closed neighborhood NG[v] of

v is the set NG(v)∪ {v}. For U ⊆ V (G), we define NG(U) =
⋃
v∈U NG(v)

and NG[U] =
⋃
v∈U NG[v] the open and closed neighborhood of set U ,

respectively. We let degG(v) = |NG(v)| denote the degree of the vertex v in

G. Moreover, δ(G) = minv∈V (G) degG(v) and ∆(G) = maxv∈V (G) degG(v).

Note that in a multigraph G, for every v ∈ V (G), |NG(v)| ≤ degG(v). We

may omit the index if the graph under consideration is clear from the

context. A graph G is called sub-cubic if ∆(G) ≤ 3. Finally, given a

vertex v of a graph G, we denote by EG(v) the edges of G incident to v.

A graph is a path (respectively cycle) if we can arrange its vertices in

a linear (respectively cyclic) sequence in such a way that two vertices are

adjacent if and only if they are consecutive in the sequence. The endpoints

of a path are the first and the last vertex of the sequence. A walk in a

graph G is a sequence of elements of V (G) (where a vertex may appear

more than once) such that every two consecutive vertices in the sequence

2. Basic Notions 17

are adjacent. We denote by Cn (respectively Pn) the cycle (respectively

path) that has n vertices. The length of a path or a cycle is defined as

the number of its edges. Given a path P and v, u ∈ V (P) we denote by

P [v, u] its subpath with endpoints v and u.

Two graphs are called vertex-disjoint if they do not share common

vertices and edge-disjoint if they do not share common edges.

Given two paths P1 and P2, who share a common endpoint v, we say

that they are well-arranged if their common vertices appear in the same

order in both paths, that is, if S = V (P1)∩V (P2) = {u, v1, v2, . . . , v|S|−1}
and uv1v2 . . . v|S|−1 is the sequence according to which the vertices of S

appear on P1 then uv1v2 . . . v|S|−1 is also the sequence according to which

they appear in P2.

Given two vertices v, u in a graph G their distance in G, denoted by

distG(v, u), is equal to the minimum length of a path in G with endpoints

v and u. Evenmore, given a vertex v (respectively vertex set S) in a graph

G, the neighborhood of v (respectively S) at distance at most r, denoted

by N r
G[v] (respectively N r

G[S]), is the set consisting of all vertices of G of

distance at most r from v (respectively the vertices of S).

A graph G is chordal (or triangulated) if every cycle C, of length k ≥ 4,

contains a chord, where a chord is an edge joining two non-consecutive

vertices of C. A triangulation of a graph G is a chordal graph G′ such

that V (G) = V (G′) and E(G) ⊆ E(G′).

A graph is called complete if all of its vertices are pairwise adjacent

and the complete graph on n vertices is denoted by Kn. Moreover, if S is

a finite set, we denote by K[S] the complete graph with vertex set S.

A graph G is called bipartite if we can partition its vertex set into

two subsets X and Y such that every edge has an endpoint in X and an

endpoint in Y . The sets X and Y are called the parts of the partition. A

18 2.1. Graphs

bipartite graph G is called complete bipartite if for every vertex x ∈ X,

NG(x) = Y and every vertex y ∈ Y , NG(y) = X. We denote by Kq,r the

complete bipartite graph where one part has size q and the other part has

size r, where q, r ∈ N. In the case where q = 1 this graph, that is, the

graph K1,r, is also called star.

A graph is called connected if, for every partition of its vertex set into

two non-empty subsets X and Y , there is an edge that has one endpoint

in X and one endpoint in Y . A graph is called a tree if it is connected

and no subset of its vertices and its edges forms a cycle. Given a tree T ,

we call leaves its vertices of degree 1 and say that the tree is ternary if all

of its vertices that are not leaves have degree exactly 3.

Given two graphs G and G′, their union G ∪G′ and their intersection

G ∩G′ are the graphs with V (G ∪G′) = V (G) ∪ V (G′) and E(G ∪G′) =

E(G) ∪ E(G′) and, V (G ∩G′) = V (G) ∩ V (G′) and E(G ∩G′) = E(G) ∩
E(G′), respectively. If G ∩ G′ = ∅ then the graphs G and G′ are called

disjoint and their union is called disjoint union. Let C be a class of graphs

and S be a set of vertices. We denote by ∪∪∪∪∪∪∪∪∪C the graph ∪G∈CG and we set

C \ S = {G \ S | G ∈ C}.

It is easy to see that, every graph G can be uniquely expressed as

a disjoint union of connected graphs. These graphs are called connected

components of G. Let C(G) denote the connected components of a graph

G. When the connected components of a graph are trees, then the graph

is called forest.

The line graph of a graph G, denoted by L(G), is the graph (E(G), X),

where X = {{e1, e2} ⊆ E(G) | e1 ∩ e2 6= ∅ ∧ e1 6= e2}.

Given two graphs G and H, the lexicographic product G × H, is the

graph with V (G×H) = V (G)×V (H) and E(G×H) = {{(x, y), (x′, y′)} |
({x, x′} ∈ E(G)) ∨ (x = x′ ∧ {y, y′} ∈ E(H))}.

2. Basic Notions 19

Evermore, the cartesian product of G and H is the graph G ∗H, with

V (G ∗H) = V (G) × V (H) and E(G ∗H) = {{(x, y), (x′, y′)} | ({x, x′} ∈
E(G) ∧ y = y′) ∨ (x = x′ ∧ {y, y′} ∈ E(H))}.

A k-coloring of a graph G is a function f : V (G) → [k] assigning

colors to its vertices. A k-coloring is proper if no two adjacent vertices

are assigned the same color. The chromatic number of a graph G is the

minimum integer k for which G admits a proper k-coloring.

Graph Operations

Let G be a graph, v ∈ V (G) and e ∈ E(G). The graph G − v, obtained

from G after the removal of v is the graph where V (G− u) = V (G) \ {v}
and E(G − v) = {e ∈ E(G) | e ∩ {v} = ∅}. The graph G − e, obtained

from G after the removal of e is the graph where V (G − e) = V (G) and

E(G−e) = E(G)\{e}. If U ⊆ V (G) (E ⊆ E(G)) then G−U (respectively

G− E) is the graph obtained from G after the removal of the vertices of

U (respectively of the edges of E).

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from

G by contracting the edge e, that is, the endpoints x and y are replaced by

a new vertex vxy which is adjacent to the old neighbors of x and y (except

x and y). Furthermore, if one of the endpoints of e, say v has degree 2

then the contraction of e is also called dissolution of the vertex v.

The lift of two edges e1 = {x, y} and e2 = {x, z} to an edge e is

the operation of removing e1 and e2 from G and then adding the edge

e = {y, z} in the resulting graph.

Let G be a graph such that K3 ⊆ G and x, y, z be the vertices of

K3. The ∆Y -transformation of K3 in G is the following: We remove the

edges {x, y}, {y, z}, {x, z}, add a new vertex w, and then add the edges

{x,w}, {y, w}, {z, w}.

20 2.1. Graphs

Connectivity

Let k be an integer. A graph G is k-connected if, for every S ⊆ V (G) with

|S| < k, the graph G \ S is connected. The connectivity of a graph G is

the maximum integer k for which G is k-connected. A set S ⊆ V (G) for

which G \ S is not connected is called a separator of G.

Similarly, a graph G is k-edge-connected if, for every F ⊆ V (G) with

|F | < k, the graph G\F is connected. The edge-connectivity of a graph G

is the maximum integer k for which G is k-edge-connected. An edge-cut in

a graph G is a non-empty set F of edges that belong to the same connected

component of G and such that G\F has more connected components than

G. If G\F has one more connected component than G then we say that F

is a minimal edge-cut. Let F be an edge cut of a graph G and let G′ be the

connected component of G containing the edges of F . We say that F is an

internal edge-cut if it is minimal and both connected components of G′ \F
contain at least 2 vertices. Finally, if |F | = k, we call F a k-edge-cut.

Partial orderings on graphs

For a graph H we say that it is

• an induced subgraph of a graph G, denoted by H v G, if it can be

obtained from G by applying vertex deletions.

• an spanning subgraph of a graph G, denoted by H ⊆s G, if it can be

obtained from G by applying edge deletions.

• a subgraph of a graph G, denoted by H ⊆ G, if it can be obtained

from G by applying edge and vertex deletions.

• a contraction of a graph G, denoted by H ≤c G, if it can be ob-

tained from G be applying edge contractions. An alternative, and

2. Basic Notions 21

sometimes more useful for our purposes, definition of a contraction

is the following.

Let G and H be graphs and let φ : V (G) → V (H) be a surjective

mapping such that

1. for every vertex v ∈ V (H), its codomain φ−1(v) induces con-

nected graph G[φ−1(v)];

2. for every edge {v, u} ∈ E(H), the graph G[φ−1(v) ∪ φ−1(u)] is

connected;

3. for every {v, u} ∈ E(G), either φ(v) = φ(u), or {φ(v), φ(u)} ∈
E(H).

We then say that H is a contraction of G via φ and denote it by

H ≤φc G. If H ≤φc G and v ∈ V (H), then we call the codomain

φ−1(v) the model of v in G.

• a minor of a graph G, denoted by H≤mG, if it can be obtained from

G by applying edge and vertex deletions and edge contractions.

Alternatively, a graph H is a minor of G, if there is a function that

maps every vertex v of H to a connected set Bv ⊆ V (G), such

that for every two distinct vertices v, w of H, Bv and Bw share no

common vertex, and for every edge {u, v} of H, there is an edge in

G with one endpoint in Bv and one in Bu.

The graph that is obtained by the union of all Bv such that v ∈ V (H)

and by the edges between Bv and Bu in G, if there exists an edge

{v, u} in H, is called a model of H in G. A model with minimal

number of vertices and edges is called minimal model.

We say that a graph G is H-minor-free if it does not contain H

22 2.1. Graphs

as a minor. We also say that a graph class G is H-minor-free (or,

excludes H as a minor) if all its members are H-minor-free.

• a topological minor of a graph G, denoted by H ≤tm G, if it can be

obtained from G by applying vertex deletions, edge deletions, and

vertex dissolutions. Moreover, we say that a graph G is a subdivision

of a graph H, if H can be obtained from G by dissolving vertices.

• an immersion of a graph G, denoted by H≤imG, if it can be obtained

from G by applying vertex deletions, edge deletions, and edge lifts.

Equivalently, we say that H is an immersion of G if there is an

injective mapping f : V (H)→ V (G) such that, for every edge {u, v}
of H, there is a path from f(u) to f(v) in G and for any two distinct

edges of H the corresponding paths in G are edge-disjoint.

Additionally, if these paths are internally disjoint from f(V (H)),

then we say that H is strongly immersed in G.

As above, the function f is called a model of H in G and a model

with minimal number of vertices and edges is called minimal model.

Tree-width and Linkages

A tree decomposition of a graph G is a pair (X , T), where T is a tree and

X = {Xi | i ∈ V (T)} is a collection of subsets of V (G), called bags such

that:

1.
⋃
i∈V (T)Xi = V (G);

2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T), and

3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree

of T .

2. Basic Notions 23

The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is

max
i∈V (T)

{|Xi| − 1}.

The tree-width of a graph G is the minimum width over all tree decom-

positions of G. (In the case where T is a path, then the decomposition

above is called path decomposition and its width as well as the path-width

of a graph are defined similarly.)

Let r be a positive integer. An r-approximate linkage in a graph G

is a family L of paths with distinct endpoints in G such that for every

r+1 distinct paths P1, P2, . . . , Pr+1 in L, it holds that
⋂
i∈[r+1] V (Pi) = ∅.

We call these paths the components of the linkage. Let (α1, α2, . . . , αk)

and (β1, β2, . . . , βk) be elements of V (G)k. We say that an r-approximate

linkage L, consisting of the paths P1, P2, . . . , Pk, links (α1, α2, . . . , αk) and

(β1, β2, . . . , βk) if Pi is a path with endpoints αi and βi, for every i ∈ [k].

The order of such linkage is k. We call an r-approximate linkage of order

k, r-approximate k-linkage.

Figure 2.1: A unique linkage in a graph.

24 2.2. Graphs on Surfaces

Two r-approximate k-linkages L and L′ are equivalent if they have the

same order and for every component P of L there exists a component P ′

of L′ with the same endpoints. An r-approximate linkage L of a graph

G is called unique if for every equivalent linkage L′ of L, V (L) = V (L′).

When r = 1, such a family of paths is called linkage. Finally, a linkage L

in a graph G is called vital if V (L) = V (G) and there is no other linkage in

G linking the same pairs of vertices. (For an example of a unique linkage,

see Figure 2.1.)

2.2 Graphs on Surfaces

A graph which can be drawn in the plane in such a way that the edges

meet only at points corresponding to their common ends is called a planar

graph. Such a drawing of a planar graph is called a planar embedding

of the graph and a planar graph together with its embedding is called a

plane graph. Notice that if G is a plane graph then R2 \ G is open. The

connected components of R2 \ G are called the faces of G and the closed

walks, also called tours, that bound the faces are called facial cycles.

Let G be a graph. We say that G is an apex graph if there exists a

vertex v ∈ V (G) such that G \ v is planar. Moreover, we say that G is an

α-apex graph if there exists a set S ⊆ V (G) such that |S| ≤ α and G \S is

planar. We denote by an(G), the minimum k ∈ N such that G is a k-apex

graph, that is,

an(G) = min{k ∈ N | ∃S ⊆ V (G) : (|S| ≤ k ∧G \ S is planar.)}

Clearly, G = {G | an(G) = 1} is the class consisting of all apex graphs.

We say that a hypergraph H is planar if its incidence graph is planar,

where the incidence graph of a hypergraph H is the bipartite graph I(H)

2. Basic Notions 25

on the vertex set V (H) ∪ E(H) where v ∈ V (H) is adjacent to e ∈ E(H)

if and only if v ∈ e, that is, v is incident to e in H.

A surface Σ is a compact 2-manifold without boundary (we always

consider connected surfaces). If, instead of the plane, we consider a surface

Σ, we say that a graph G is Σ-embeddable, if it can be drawn in Σ in such

a way that its edges meet only at their common endpoints. Whenever we

refer to a Σ-embedded graph G we consider a 2-cell embedding of G in

Σ, where a 2-cell embedding of a graph G is an embedding in which every

face is homeomorphic to an open disk. To simplify notations we do not

distinguish between a vertex of G and the point of Σ used in the drawing

to represent the vertex or between an edge and the arc representing it.

We also consider a graph G embedded in Σ as the union of the points

corresponding to its vertices and edges. That way, a subgraph H of G

can be seen as a graph H, where H ⊆ G in Σ. Recall that ∆ ⊆ Σ

is an open (respectively closed) disc if it is homeomorphic to {(x, y) :

x2 + y2 < 1} (respectively {(x, y) : x2 + y2 ≤ 1}). The Eüler genus of a

non-orientable surface Σ is equal to the non-orientable genus g̃(Σ) (or the

crosscap number). The Eüler genus of an orientable surface Σ is 2g(Σ),

where g(Σ) is the orientable genus of Σ. We refer to the book of Mohar

and Thomassen [157] for more details on graphs embeddings. The Eüler

genus of a graph G (denoted by eg(G)) is the minimum integer γ such

that G can be embedded on a surface of the Euler genus γ.

Notice that the graphs that are embedded in the sphere S0 are the

planar graphs. Evenmore, we call such a graph, along with its embedding,

Σ0-embedded graph. Let C1, C2 be two disjoint cycles in a Σ0-embedded

graphG. Let also ∆i be the open disk of S0\Ci that does not contain points

of C3−i, i ∈ [2]. The annulus between C1 and C2 is the set S0 \ (∆1 ∪∆2)

and we denote it by A[C1, C2]. Notice that A[C1, C2] is a closed set. If

26 2.2. Graphs on Surfaces

A = {C1, . . . , Cr} is a collection of cycles of a S0-embedded graph G. We

say that A is nested if, for every i ∈ [r − 2], A[Ci, Ci+1] ∪A[Ci+1, Ci+2] =

A[Ci, Ci+2]. (See, for example, Figure 2.2)

C4

C1

C2

C3

Figure 2.2: A family of four nested cycles.

Let G be a graph embedded in some surface Σ and let x ∈ V (G). We

define a disk around x as any open disk ∆x with the property that each

point in ∆x ∩ G is either x or belongs to the edges incident to x. Let

P1 and P2 be two edge-disjoint paths in G. We say that P1 and P2 are

confluent if, for every x ∈ V (P1) ∩ V (P2), that is not an endpoint of P1

or P2, and for every disk ∆x around x, one of the connected components

of the set ∆x \ P1 does not contain any point of P2. We also say that a

collection of paths is confluent if the paths in it are pairwise confluent.

Moreover, given two edge-disjoint paths P1 and P2 in G, we say that

a vertex x ∈ V (P1) ∩ V (P2) that is not an endpoint of P1 or P2 is an

overlapping vertex of P1 and P2 if there exists a ∆x around x such that

both connected components of ∆x \ P1 contain points of P2. (See, for

example, Figure 2.3) For a family of paths P, a vertex v of a path P ∈ P
is called an overlapping vertex of P if there exists a path P ′ ∈ P, with

2. Basic Notions 27

xx

Figure 2.3: Vertex x is an overlapping vertex of the paths on the left, but

it is not an overlapping vertex of the paths on the right.

P ′ 6= P , such that v is an overlapping vertex of P and P ′.

2.3 Grids and Walls

Let k and r be positive integers where k, r ≥ 2. The (k × r)-grid is the

Cartesian product of two paths of lengths k− 1 and r− 1 respectively. A

vertex of a (k×r)-grid is a corner if it has degree 2. Thus each (k×r)-grid

has 4 corners. A vertex of a (k×r)-grid is called internal if it has degree 4,

otherwise it is called external. (For an example of a grid, see Figure 2.4.)

Figure 2.4: The (6× 6)-grid.

A wall of height k, k ≥ 1, is the graph obtained from a ((k + 1)× (2 ·
k + 2))-grid with vertices (x, y), x ∈ {1, . . . , 2 · k + 4}, y ∈ {1, . . . , k + 1},
after the removal of the “vertical” edges {(x, y), (x, y + 1)} for odd x+ y,

28 2.3. Grids and Walls

and then the removal of all vertices of degree 1. We denote such a wall by

Wk.

The corners of the wall Wk are the vertices c1 = (1, 1), c2 = (2·k+1, 0),

c3 = (2 ·k+ 1 + (k+ 1 mod 2), k+ 1) and c4 = (1 + (k+ 1 mod 2), k+ 1).

(The square vertices in Figure 2.5.) We let C = {c1, c2, c3, c4} and we call

the pairs {c1, c3} and {c2, c4} anti-diametrical.

A subdivided wall W of height k is a wall obtained from Wk after

replacing some of its edges by paths without common internal vertices.

We call the resulting graph W a subdivision of Wk and the vertices that

appear in the wall after the replacement subdivision vertices.

The non-subdivision vertices of W are called original vertices. The

perimeter P of a subdivided wall is the cycle defined by its boundary.

The layers of a subdivided wall W of height k are recursively defined

as follows. The first layer of W is its perimeter. For i = 2, · · · , dk2e, the

i-th layer of W is the (i− 1)-th layer of the subwall W ′ obtained from W

after removing from W its perimeter and all occurring vertices of degree

1 (see Figure 2.5).

If W is a subdivided wall of height k, we call brick of W any facial

cycle whose non-subdivided counterpart in Wh has length 6. We say that

two bricks are neighbors if their intersection contains an edge.

Let Wk be a wall. We denote by P
(h)
j the shortest path connecting the

vertices (1, j) and (2 · k + 2, j) and call these paths the horizontal paths

of Wk. Note that these paths are vertex-disjoint. We call the paths P
(h)
k+1

and P
(h)
1 the southern path of Wk and northern path of Wk respectively.

Similarly, we denote by P
(v)
i the shortest path connecting vertices (i, 1)

and (i, k + 1) with the assumption that for, i < 2 · k + 2, P
(v)
i contains

only vertices (x, y) with x = i, i + 1. Notice that there exists a unique

subfamily Pv of {P (v)
i | i < 2 · k + 2} of k + 1 vertical paths with one

2. Basic Notions 29

c1 c2

c3c4

Figure 2.5: The first (magenta) and second (red) layers of a wall of height

5.

endpoint in the southern path of Wk and one in the northern path of Wk.

We call these paths vertical paths of Wk and denote them by P
[v]
i , i ∈ [k],

where P
(v)
1 = P

[v]
1 and P

(v)
2·k+1 = P

[v]
k+1. (See Figure 2.6.)

The paths P
[v]
1 and P

[v]
k+1 are called the western path of Wk and the

eastern path of Wk respectively. Notice that each vertex u ∈ V (Wk)\V (P),

is contained in exactly one vertical path, denoted by P
(v)
u , and in exactly

one horizontal path, denoted by P
(h)
u , of Wk. If W is a subdivision of Wk,

we will use the same notation for the paths obtained by the subdivisions

of the corresponding paths of Wk, where we assume that u is an original

vertex of W .

Let W be a wall and K ′ be the connected component of G \ P that

contains W \ P , where P is the perimeter of W . The compass K of W in

30 2.4. Logic

P
[v]
6P

[v]
1 P

[v]
2 P

[v]
3 P

[v]
4 P

[v]
5

Figure 2.6: The vertical paths of a wall of height 5.

G is the graph G[V (K ′)∪V (P)]. Observe that W is a subgraph of K and

K is connected.

2.4 Logic

A very important area of both Mathematics and Computer Science is

Logic. It has been widely explored, since Aristotle was the first to suggest

a formal system that was then used by Euclid. Although Logic and its

history are a very interesting subject, its exploration and presentation is

out of the purpose of this brief introduction. We will, however, mention

R. Dedekind (1831 - 1916), G. Peano (1858 - 1932), D. Hilbert (1862 -

1943) and K. Gödel whose contribution was determining and their results

and suggestions were ahead of their time.

Here, we consider logics over graphs. (For more on Logic see [73]

and [156].)

2. Basic Notions 31

First Order Logic over graphs

Definition 2.1. The syntax of the first-order logic is the following:

• Infinite supply of individual variables, usually denoted by lowercase

letters x, y, z.

• First-order formulas in the language of graphs are built up from

atomic formulas E(x, y) and x = y by using the usual Boolean con-

nectives ¬ (negation), ∧ (conjuction), ∨ (disjunction), → (implica-

tion),↔ (bi-implication), existential quantification ∃x and universal

quantification ∀x over individual variables.

Individual variables range over vertices of a graph. The atomic formula

E(x, y) express adjacency, and the formula x = y expresses equality. From

this, the free variables, the sentences and the semantics of first-order logic

are defined in the obvious way.

For example, a dominating set in a graph G = (V,E) is a set S ⊆ V

such that for every v ∈ V , either v belongs to S or v is adjacent to a vertex

u that belongs to S. (see Figure 2.7) The following first-order sentence

(parameterized by k) domk says that a graph has a dominating set of size

k:

∃x1∃x2 . . . ∃xk

 ∧
1≤i<j≤k

¬(xi = xj) ∧ ∀y

(
k∨
i=1

((y = xi) ∨ E(y, xi))

)

Monadic Second Order Logic over Graphs

We call signature τ = {R1, . . . , Rn} any finite set of relation symbols Ri

of any (finite) arity denoted by ar(Ri). For the language of graphs G we

32 2.4. Logic

Figure 2.7: The dominating set of a graph (red vertices).

consider the signature τG = {V,E, I} where V represents the set of vertices

of a graph G, E the set of edges, and I = {(v, e) | v ∈ e and e ∈ E(G)}
the incidence relation.

A τ -structure A = (A,RA
1 , . . . , R

A
n) consists of a finite universe A, and

the interpretation of the relation symbols Ri of τ in A, that is, for every

i, RA
i is a subset of Aar(Ri).

In MSO formulas are defined recursively from atomic formulas, that is,

from expressions of the form Ri(x1, x2, . . . , xar(Ri)) or of the form x = y

where xj , j ≤ ar(Ri), x and y are variables, by using the Boolean connec-

tives ¬,∧,∨,→, and existential or universal quantification over individual

variables and sets of variables.

Notice that, in the language of graphs, the atomic formulas are of the

form V (u), E(e) and I(u, e), where u and e are vertex and edge variables

respectively. Furthermore, quantification takes place over vertex or edge

variables or vertex-set or edge-set variables.

A graph structure G = (V (G) ∪ E(G), V G, EG, IG) is a τG-structure,

which represents the graph G = (V,E). From now on, we abuse notation

by treating G and G equally.

A graph class C is MSO-definable if there exists an MSO formula φC

in the language of graphs such that G ∈ C if and only if G |= φC , that is,

2. Basic Notions 33

φC is true in the graph G (G is a model of φC).

CHAPTER 3

Partial (Well-Quasi-)Orderings and Algorithms

3.1 Partial (Well-Quasi-)Orderings

One of the most famous graph-theoretic results is the characterization

of planar graphs in terms of forbidden topological minors, proven by K.

Kuratowski in 1930.

Theorem 3.1 (Kuratowski’s Theorem [142]). A graph G is planar if and

only if it does not contain K5 and K3,3 as topological minors.1

After the first appearance of Kuratowski’s proof in [142] numerous

alternative proofs were also proposed for this theorem (see, for exam-

ple, [62, 63, 153]).

1Allegedly, this theorem had also been proved in a manuscript of L. Pontryagin and

sometimes is also appears as Kuratowski - Pontryagin Theorem.

35

36 3.1. Partial (Well-Quasi-)Orderings

K5
K3,3

Figure 3.1: The Kuratowski graphs.

However, it was K. Wagner’s restatement and proof in terms of minors

in 1937 [221], and a consequent conjecture, known as Wagner’s Conjec-

ture2, that paved the way towards studying the minor ordering on graphs

and what ended up to be the enterprise now known as the Graph Minors

Theory.

Theorem 3.2 ([221]). A graph G is planar if and only if it does not

contain K5 and K3,3 as minors.

Let us now move into the necessary details. Notice that the two afore-

mentioned orderings on graphs, namely the minor and the topological

minor ordering, along with all other orderings that we have encountered

up to now, that is, the (induced/spanning) subgraph, the contraction, and

the immersion ordering, are partial orderings on graphs.

We call a family of graphs F an anti-chain for the partial ordering ≤
if for every two graphs G,H ∈ F neither H ≤ G nor G ≤ H, that is, if the

elements of F are mutually non-comparable with respect to the partial

ordering ≤. Formally,

Definition 3.1. A reflexive and transitive relation is called a partial order-

ing. A partial ordering ≤ on X is a well-quasi-ordering , and the elements

2According to R. Diestel, while the conjecture has been attributed to Klaus Wagner,

he himself had always denied discussing it, even after its proof appeared!

3. Partial (Well-Quasi-)Orderings and Algorithms 37

of X are well-quasi-ordered by ≤, if

• there is no strictly infinitely decreasing sequence comprising of ele-

ments of X, and

• X does not contain an infinite anti-chain.

Observe that, in the case of finite graphs there are no strictly infinitely

decreasing sequences. Thus, a partial ordering on graphs is a well-quasi-

ordering if there are no infinite anti-chains of graphs with respect to it.

One can easily see that the (induced/spanning) subgraph ordering is not a

well-quasi-ordering simply by considering the family of all cycles {Ci | i ≥
3}. Moreover, the class of graphs is not well-quasi-ordered with respect to

the contraction relation as the class of graphs {K2,r | r ∈ N} (Figure 3.2)

is an infinite anti-chain for the contraction ordering.

. . .

Figure 3.2: Infinite anti-chain for the contraction ordering.

Finally, in Figure 3.3 we may see some of the elements of an anti-chain

for the topological minor ordering. However, as we will see later on, both

the minor and the immersion ordering are well-quasi-orderings on graphs.

. . .

Figure 3.3: Infinite anti-chain for the topological minor ordering.

38 3.1. Partial (Well-Quasi-)Orderings

Conjecture 1 (Wagner’s Conjecture). The class of graphs is well-quasi-

ordered with respect to the minor ordering.

The first successful step towards resolving Wagner’s conjecture was

taken by J. Kruskal [141], who proved in 1960 that the class of trees

is well-quasi-ordered with respect to the minor ordering (also known as

Vázsonyi Conjecture). In 1963 a shorter proof (again for trees) was given

by Crispin St. John Alvah Nash-Williams [158]. The general case for the

class of all graphs required 44 more years and a series of 23 papers, known

as the Graph Minors series, until it was finally proven by N. Robertson

and P. Seymour [194] and its proof classifies it as one of the deepest results

of modern Combinatorics.

Theorem 3.3 (Graph Minors Theorem [194]). The finite graphs are well-

quasi-ordered with respect to the minor ordering.

Evenmore, in the same series of papers, the well-quasi-ordering of the

graphs with respect to immersions was proved, which was known as the

Nash-Williams’ Conjecture.

Theorem 3.4 ([211]). The finite graphs are well-quasi-ordered with re-

spect the immersion ordering.

Given a partial ordering ≤, we say that a graph class C is closed under

taking of this ordering if for any graph G that belongs to C every graph

H such that H ≤ G also belongs to C. For example, the class of planar

graphs is closed under taking minors but it is not closed under taking

immersions as K5 is an immersion of the (7× 7)-grid (Figure 3.4).

Assume now that F is a graph class closed under taking of minors

(respectively immersions) and consider the graph class F = {G | G /∈ F}.

3. Partial (Well-Quasi-)Orderings and Algorithms 39

Figure 3.4: K5 as an immersion of the (7× 7)-grid.

Let OmF (respectively OimF) be the set of minimal mutually non-comparable

graphs in F according to the minor (respectively immersion) ordering. As

the minor (respectively immersion) ordering is a well-quasi-ordering OmF
(respectively OimF) is finite. Evenmore, a graph G belongs to F if and only

if it does not contain any of the graphs H ∈ OmF (respectively H ∈ OimF)

as a minor (respectively immersion).

Indeed, assume that for some graph G ∈ F there exists a graph H ∈
OmF (respectively H ∈ OimF) such that H ≤m G (respectively H ≤im G).

As F is closed under taking of minors (respectively immersions) andG ∈ F
then H ∈ F , a contradiction to the fact that H ∈ F .

For the converse, assume that there exists a graph G that does not con-

tain any of the graphs in OmF (respectively OimF) as a minor (respectively

immersion) and G ∈ F . This is a contradiction to the fact that OmF (re-

spectively OimF) contains all the minor-minimal (respectively immersion-

minimal) elements of F .

Given a graph class F that is closed under taking of minors (respec-

40 3.2. Forbidding Kuratowski Graphs as Immersions

tively immersions) we denote by obs≤m(F) (respectively obs≤im(F)) the

set OmF (respectively OimF) and call it the minor (respectively immersion)

obstruction set of F . Finally, its elements are called minor (respectively

immersion) obstructions. For example, in the case of planar graphs, from

Wagner’s theorem, we know that the minor obstruction set is {K5,K3,3},
also called, the set of Kuratowski graphs.

Thus, from the above discussion one may obtain that.

Theorem 3.5. For every graph class F closed under taking of minors

(respectively immersions) there exists a finite set of graphs obs≤m(F) (re-

spectively obs≤im(F)) such that a graph G belongs to F if and only if it

does not contain any of the graphs in obs≤m(F) (respectively obs≤im(F))

as a minor (respectively immersion).

3.2 Forbidding Kuratowski Graphs as Immer-

sions

In the previous section, we saw that the Kuratowski graphs (K5 and K3,3)

are the minor obstructions for the class of planar graphs. Evenmore,

we saw that although the topological minor ordering is not a well-quasi-

ordering (and thus, a graph class closed under taking topological minors

is not expected to admit a characterization in terms of a finite set of

forbidden topological minors), the class of planar graphs is one of the rare

exceptions.

In this section, we prove a structural characterization of the graphs

that exclude K5 and K3,3 as immersions. First of all, notice that if a

graph G contains a graph H as a topological minor then it also contains it

as an immersion. This directly implies that if we exclude the Kuratowski

graphs as immersions we also exclude them as topological minors. Thus,

3. Partial (Well-Quasi-)Orderings and Algorithms 41

a graph G that does not contain K5 and K3,3 as immersions is also a

planar graph. In what follows, we will prove that these graphs have a

special structure; they can be constructed by repetitively, joining together

simpler graphs, starting from either graphs of small decomposability or

from planar graphs with maximum degree 3. In particular, we prove that

a graph G that does not contain neither K5 nor K3,3 as immersions can

be constructed by applying consecutive i-edge-sums, for i ≤ 3, to graphs

that are planar sub-cubic or of branch-width at most 10.

Let us first start with some necessary definitions and preliminary re-

sults.

Edge sums. Let G1 and G2 be graphs, and v1, v2 be vertices of G1 and

G2 respectively, such that |EG1(v1)| = |EG2(v2)|. Consider a bijection

σ : EG1(v1) → EG2(v2), where EG1(v1) = {ei1 | i ∈ [k]}. We define the

k-edge sum of G1 and G2 on v1 and v2 as the graph G obtained if we take

the disjoint union of G1 and G2, identify v1 with v2, and then, for each

i ∈ {1, . . . , k}, lift ei1 and σ(ei1) to a new edge ei and finally remove the

vertex v1. (See Figures 3.5 and 3.6)

v2

G2

3
2

3

G1

11
2

v1

Figure 3.5: The graphs G1 and G2 before an edge-sum.

Let G be a graph, let F be a minimal i-edge cut in G, and let G′ be

the connected component of G that contains F . Let also C1 and C2 be the

two connected components of G′ \F . We denote by C ′i the graph obtained

from G′ after contracting all edges of C ′3−i to a single vertex vi, i ∈ [2].

42 3.2. Forbidding Kuratowski Graphs as Immersions

1

G2G1
3

2

Figure 3.6: The graph obtained after an edge-sum.

We say that the graph consisting of the disjoint union of the graphs in

C(G) \ {C1, C2} ∪ {C ′1, C ′2} is the F -split of G and we denote it by G|F .

Notice that if G is connected and F is a minimal i-edge cut in G, then G

is the result of an i-edge sum of the two connected components G1 and G2

of C(G|F) on the vertices v1 and v2. From Menger’s Theorem we obtain

the following.

Observation 3.1. Let k be a positive integer. If G is a connected graph

that does not contain an internal i-edge cut, for some i ∈ [k − 1], and

v, v1, . . . , vi ∈ V (G) are distinct vertices such that degG(v) ≥ i then there

exist i edge-disjoint paths from v to v1, v2, . . . , vi.

Lemma 3.1. If G is a {K5,K3,3}-immersion free connected graph and

F is a minimal internal i-edge cut in G, for i ∈ [3], then both connected

components of G|F are {K5,K3,3}-immersion free.

Proof. For contradiction assume that G is a {K5,K3,3}-immersion free

connected graph and one of the connected components of G |F , say C ′1,

contains K5 or K3,3 as an immersion, where F is a minimal internal i-

edge cut in G, i ∈ [3]. Assume that H ∈ {K5,K3,3} is immersed in C ′1

and let f : V (H) → V (C ′1) be a model of H in C ′1. Let also v1 be the

newly introduced vertex of C ′1. Notice that if v1 /∈ f(V (H)) and v1 is not

an internal vertex of any of the edge-disjoint paths between the vertices

in f(V (H)), then f is a model of H in C1. As C1 ⊆ G, f is a model of H

3. Partial (Well-Quasi-)Orderings and Algorithms 43

in G, a contradiction to the hypothesis. Thus, we may assume that either

v1 ∈ f(V (H)) or v1 is an internal vertex in at least one of the edge-disjoint

paths between the vertices in V (H). Note that, as neither K5 nor K3,3

contain vertices of degree 1, degC′1(v1) = 2 or degC′1(v1) = 3.

We first exclude the case where v1 /∈ f(V (H)), that is, v1 only ap-

pears as an internal vertex on the edge-disjoint paths. Observe that, as

degC′1(v1) ≤ 3, v1 belongs to exactly one path P in the model defined by

f . Let v1
1 and v2

1 be the neighbors of v1 in P . Recall that, by the defi-

nition of an internal F -split, there are vertices v1
2 and v2

2 in C2 such that

{v1
1, v

1
2}, {v1

2, v
2
2} ∈ E(G). Furthermore, as C2 is connected, there exists

a (v1
2, v

2
2)-path P ′ in C2. Therefore, by substituting the subpath P [v1

1, v
2
1]

with the path defined by the union of the edges {v1
1, v

1
2}, {v1

2, v
2
2} ∈ E(G)

and the path P ′ in C2 we obtain a model of H in G defined by f , a

contradiction to the hypothesis.

Thus, the only possible case is that v1 ∈ f(V (H)). As δ(K5) = 4

and degC′1(v1) ≤ 3, f defines a model of K3,3 in C ′1. Let v1
1, v

2
1 and v3

1

be the neighbors of v1 in C ′1. We claim that there is a vertex v in C2

and edge-disjoint paths from v to v1
1, v

2
1, v

3
1 in G, thus proving that there

exists a model of K3,3 in G as well, a contradiction to the hypothesis.

By the definition of an internal F -split, there are vertices v1
2, v

2
2 and v3

2

in C2 such that {vi1, vi2} ∈ E(G), i ∈ [3]. Recall that C2 is connected.

Therefore, if for every vertex v ∈ C2, degC2
(v) ≤ 2, C2 contains a path

whose endpoints, say u and u′ belong to {v1
2, v

2
2, v

3
2} and internally contains

the vertex in {v1
2, v

2
2, v

3
2} \ {u, u′}, say u′′. It is easy to verify that u′′

satisfies the conditions of the claim. Assume then that there is a vertex

v ∈ C2 of degree at least 3. Let G′ be the graph obtained from G after

removing all vertices in V (C1) \ {v1
1, v

2
1, v

3
1} and adding a new vertex that

we make it adjacent to the vertices in {v1
1, v

2
1, v

3
1}. As G does not contain

44 3.2. Forbidding Kuratowski Graphs as Immersions

Figure 3.7: A (4,4)-railed annulus and a (4,4)-cylinder.

an internal i-edge cut, i ∈ [2], G′ does not contain an internal i-edge cut,

i ∈ [2]. Therefore, from Observation 3.1 and the fact that v /∈ {v1
1, v

2
1, v

3
1},

we obtain that there exist three edge-disjoint paths from v to v1
1, v

2
1, v

3
1 in

G′ and thus in G. This completes the proof of the claim and the lemma

follows.

Let r ≥ 3 and q ≥ 1. A (r, q)-cylinder, denoted by Cr,q, is the Cartesian

product of a cycle on r vertices and a path on q vertices. (See, for example,

Figure 3.7.) A (r, q)-railed annulus in a graph G is a pair (A,W) such

that A is a collection of r nested cycles C1, C2, . . . , Cr that are all met

by a collection W of q paths P1, P2, . . . , Pq (called rails) in a way that

the intersection of a rail and a path is always a (possibly trivial, that is,

consisting of only one vertex) path. (See, for example, Figure 3.7.) Notice

that given a graph G embedded in the sphere and a (k, h)-cylinder ((r, q)-

railed annulus, respectively) of G, then any two cycles of the (k, h)-cylinder

((r, q)-railed annulus, respectively) define an annulus between them.

Branch decompositions. A branch decomposition of a graph G is a

pair B = (T, τ), where T is a ternary tree and τ : E(G) → L(T) is a

3. Partial (Well-Quasi-)Orderings and Algorithms 45

bijection of the edges of G to the leaves of T , denoted by L(T). Given a

branch decomposition B, we define σB : E(T)→ N as follows.

Given an edge e ∈ E(T), let T1 and T2 be the trees in T \ {e}. Then

σB(e) = |{v | there exist ei ∈ τ−1(L(Ti)), i ∈ [2], such that e1∩e2 = {v}}|.

The width of a branch decomposition B is maxe∈E(T) σB(e) and the branch-

width of a graph G, denoted by bw(G), is the minimum width over all

branch decompositions of G. When |V (T)| ≤ 1 the width of the branch

decomposition is defined to be 0. The following has been proven in [111].

Theorem 3.6 ([111]). If G is a planar graph and k, h are integers with

k ≥ 3 and h ≥ 1 then G either contains the (k, h)-cylinder as a minor or

has branch-width at most k + 2h− 2.

We now prove the following.

Lemma 3.2. If G is a planar graph of branch-width at least 11, then G

contains a (4,4)-railed annulus.

Proof. Let G be a planar graph of branch-width at least 11. Then by

Theorem 3.6, G contains (4, 4)-cylinder as a minor. By the definition of

the minor relation, G contains a (4, 4)-railed annulus.

3.2.1 (Confluent) Families of Paths

Lemma 3.3. Let G be a graph and v, v1, v2 ∈ V (G) such that there exist

edge-disjoint paths P1 and P2 from v to v1 and v2 respectively. If the

paths P1 and P2 are not well-arranged then there exist edge-disjoint paths

P ′1 and P ′2 from v to v1 and v2 respectively such that E(P ′1) ∪ E(P ′2) (
E(P1) ∪ E(P2).

46 3.2. Forbidding Kuratowski Graphs as Immersions

Figure 3.8: An example of the procedure in Lemma 3.3.

Proof. Let Z = V (P1) ∩ V (P2) = {v, u1, u2, . . . , uk}, where (v, u1,

u2,. . . ,uk) is the order that the vertices in Z appear in P1, and (v, ui1 ,

ui2 ,. . . , uik) is the order that they appear in P2. As the paths are not

well-arranged there exists λ ∈ [k] such that uλ 6= uiλ . Without loss of

generality assume that λ is the smallest such integer. Also, without loss

of generality, assume that uλ < uiλ . We define

P ′1 = P1[v, uλ−1] ∪ P2[uλ−1, uiλ] ∪ P1[uiλ , v1]

P ′2 = P2[v, uλ−1] ∪ P1[uλ−1, uλ] ∪ P2[uλ, v2].

and observe that P ′1 and P ′2 satisfy the desired properties. (For an example,

see Figure 3.8).

Before proceeding to the statement and proof of the next proposition

we need the following definition. Given a collection of paths P in a graph

3. Partial (Well-Quasi-)Orderings and Algorithms 47

G, we define the function fP :
⋃
P∈P V (P) → N such that f(x) is the

number of pairs of paths P, P ′ ∈ P for which x is an overlapping vertex.

Let

g(P) =
∑

x∈
⋃
P∈P V (P)

fP(x).

Notice that f(x) ≥ 0 for every x ∈
⋃
P∈P V (P) and thus g(P) ≥ 0.

Observe also that g(P) = 0 if and only if P is a confluent collection of

paths.

Lemma 3.3 allows us to prove the main result of this section. We state

the result for general surfaces as the proof for this more general setting

does not have any essential difference than the case where Σ is the sphere

S0.

Proposition 3.1. Let r be a positive integer. If G is a graph embedded

in a surface Σ, v, v1, v2, . . . , vr ∈ V (G) and P is a collection of r edge-

disjoint paths from v to v1, v2, . . . , vr in G, then G contains a confluent

collection P ′ of r well-arranged edge-disjoint paths from v to v1, v2, . . . , vr

where |P ′| = |P| and such that E(
⋃
P∈P ′ P) ⊆ E(

⋃
P∈P P).

Proof. Let Ĝ be the spanning subgraph of G induced by the edges of the

paths in P and let G′ be a minimal spanning subgraph of Ĝ that contains

a collection of r edge-disjoint paths from v to v1, v2, . . . , vr. Let also P ′

be the collection of r edge-disjoint paths from v to v1, v2,. . . , vr in G′ for

which g(P ′) is minimum. It is enough to prove that g(P ′) = 0.

For a contradiction, we assume that g(P ′) > 0 and we prove that there

exists a collection P̃ of r edge-disjoint paths from v to v1, v2, . . . , vr in G′

such that g(P̃) < g(P ′). As g(P ′) > 0, then there exists a path, say

P1 ∈ P ′, that contains an overlapping vertex u. Let z1 be the endpoint of

P1 which is different from v. Without loss of generality we may assume

that u is the overlapping vertex of P1 that is closer to z1 in P1. Then

48 3.2. Forbidding Kuratowski Graphs as Immersions

there is a (v, z2)-path P2 ∈ P ′ such that u is an overlapping vertex of

P1 and P2. Let P̃i = P3−i[v, u] ∪ Pi[u, zi], i ∈ [2], and P̃ = P for every

P ∈ P ′ \ {P1, P2}. As Lemma 3.3 and the edge-minimality of G′ imply

that the paths P1 and P2 are well-arranged, we obtain that P̃i is a path

from v to zi, i ∈ [2]. Let P̃ be {P̃ | P ∈ P ′}. It is easy to verify that P̃ is

a collection of r edge-disjoint paths from v to v1, v2, . . . , vr. We will now

prove that g(P̃) < g(P ′).
First notice that if x 6= u, then fP̃(x) = fP ′(x). Thus, it is enough to

prove that fP̃(u) < fP ′(u). Observe that if {P, P ′} ⊆ P ′ \ {P1, P2} and u

is an overlapping vertex of P and P ′ in P ′ then u is also an overlapping

vertex of P̃ and P̃ ′ in P̃. Furthermore, while u is an overlapping vertex

in the case where {P, P ′} = {P1, P2}, it is not an overlapping vertex of P̃1

and P̃2. It remains to examine the case where |{P, P ′} ∩ {P1, P2}| = 1.

In other words, we examine the case where one of the paths P and P ′,

say P ′, is P1 or P2, and P ∈ P ′ \ {P1, P2}. Let ∆u be a disk around u

and ∆1,∆2 be the two distinct disks contained in the interior of ∆u after

removing P . We distinguish the following cases.

Figure 3.9: The paths P (black), P1 (red) and P2 (blue) and the paths P̃1

(blue) and P̃2 (red).

Case 1. u is neither an overlapping vertex of P1 and P , nor of P2 and P

(see Figure 3.9). Then it is easy to see that the same holds for the pairs

of paths P̃1 and P , and P̃2 and P . Indeed, notice that for every i ∈ [2], Pi

3. Partial (Well-Quasi-)Orderings and Algorithms 49

intersects exactly one of ∆1 and ∆2. Furthermore, as u is an overlapping

vertex of P1 and P2, both paths intersect the same disk. From the obser-

vation that P1 ∪ P2 = P̃1 ∪ P̃2, we obtain that u is neither an overlapping

vertex of P̃1 and P nor of P̃2 and P .

Case 2. u is an overlapping vertex of Pi and P but not of P3−i and P ,

i ∈ [2] (see Figure 3.10). Notice that exactly one of the following holds.

• Pi[v, u] ∪ P3−i[v, u] intersects exactly one of the disks ∆1 or ∆2,

say ∆1. Then Pi[u, zi] intersects ∆2 and P3−i[u, z3−i] intersects ∆1.

Therefore, it is easy to see that, u is not an overlapping vertex of P̃i

and P but it is an overlapping vertex of P̃3−i and P .

• Pi[u, zi] ∪ P3−i[u, z3−i] intersects exactly one of the disks ∆1 or ∆2,

say ∆1. Then Pi[v, u] intersects ∆2 and P3−i[v, u] intersects ∆1.

Therefore, it is easy to see that, u is an overlapping vertex of P̃i and

P and is not an overlapping vertex of P̃3−i and P .

(α) (β)

Figure 3.10: The paths P (black), P1 (red) and P2 (blue) and the paths

P̃1 (blue) and P̃2 (red).

Case 3. u is an overlapping vertex of both P1 and P , and P2 and P (see

Figure 3.11). As above, exactly one of the following holds.

50 3.2. Forbidding Kuratowski Graphs as Immersions

(α) (β)

Figure 3.11: The paths P (black), P1 (red) and P2 (blue) and the paths

P̃1 (blue) and P̃2 (red).

• P1[v, u] ∪ P2[v, u] intersects exactly one of the disks ∆1 or ∆2, say

∆1. Then P1[u, z1] ∪ P2[u, z2] intersects ∆2. It follows that u is an

overlapping vertex of both P̃1 and P , and P̃2 and P .

• P1[v, u] ∪ P2[u, z2] intersects exactly one of the disks ∆1 or ∆2, say

∆1. Then P1[u, z1]∪P2[v, u] intersects ∆2. It follows that u is neither

an overlapping vertex of P̃1 and P nor of P̃2 and P .

From the above cases we obtain that fP̃(u) < fP ′(u) and therefore

g(P̃) < g(P ′), contradicting the choice of P ′. This completes the proof of

the proposition.

3.2.2 A Decomposition Theorem

We prove now the following decomposition theorem for (K5,K3,3)-

immersion free graphs.

Theorem 3.7. If G is a graph not containing K5 or K3,3 as an immersion,

then G can be constructed by applying consecutive i-edge sums, for i ∈ [3],

to graphs that either are sub-cubic or have branch-width at most 10.

3. Partial (Well-Quasi-)Orderings and Algorithms 51

Proof. Observe first that a (K5,K3,3)-immersion-free graph G is also

(K5,K3,3)-topological-minor-free, therefore, from Kuratowski’s theorem,

G is planar. Applying Lemma 3.1, we may assume that G is a (K5,K3,3)-

immersion-free graph without any internal i-edge cut, i ∈ [3]. It is now

enough to prove that G is either planar sub-cubic or has branch-width at

most 10. For a contradiction, we assume that bw(G) ≥ 11 and that G

contains some vertex v of degree at least 4. Our aim is to prove that G

contains K3,3 as an immersion. First, let Gs be the graph obtained from

G after subdividing all of its edges once. Notice that Gs contains K3,3 as

an immersion if and only if G contains K3,3 as an immersion. Hence, from

now on, we want to find K3,3 in Gs as an immersion.

From Lemma 3.2, G and thus Gs, contains a (4, 4)-railed annulus as

a subgraph. Observe then that Gs also contains as a subgraph a (2, 4)-

railed annulus such that the vertex v of degree at least 4 does not belong

to the annulus between its cycles. (Figure 3.12 depicts the case where v

is inside the annulus between the second and the third cycle.) We denote

by C1 and C2 the nested cycles and by R1, R2, R3 and R4 the rails of the

above (2, 4)-railed annulus. Let A be the annulus between C1 and C2.

Without loss of generality we may assume that C1 separates v from C2

and that A is edge-minimal, that is, there is no other annulus A′ such that

|E(A′)| < |E(A)| and A′ ⊆ A.

Let now G1, G2, . . . , Gp be the connected components of A\ (C1∪C2).

Claim 1. For every i ∈ [p] and every j ∈ [2],

|NGs(V (Gi)) ∩ V (Cj)| ≤ 1.

Proof of Claim 1. Assume the contrary. Then there is a cycle C ′j such that

C ′j and Cj mod 2+1 define an annulus A′ with A′ ⊆ A and |E(A′)| < |E(A)|;
a contradiction to the edge-minimality of the annulus A.

52 3.2. Forbidding Kuratowski Graphs as Immersions

v

v

Figure 3.12: The (4, 4)-railed annulus and the vertex v.

For every l ∈ [p], we denote by ul1 and ul2 the unique neighbor of Gk in

C1 and C2 respectively (whenever they exist). We call the connected com-

ponents that have both a neighbor in C1 and a neighbor in C2 substantial.

Let

C = {Ĝi = G[V (Gi)∪{ui1, ui2}] | Gi is a substantial connected component}.

That is, C is the set of graphs induced by the substantial connected com-

ponents and their neighbors in the cycles C1 and C2. Note that every

edge of G has been subdivided in Gs and thus every edge e ∈ G for which

e∩C1 6= ∅ and e∩C2 6= ∅ corresponds to a substantial connected compo-

nent in C.
We now claim that there exist four confluent edge-disjoint paths

P1, P2, P3 and P4 from v to C2 in Gs. This follows from the facts that

Gs does not contain an internal i-edge cut, C2 contains at least 4 ver-

tices, and degGs(v) ≥ 4, combined with Observation 3.1. Moreover, from

3. Partial (Well-Quasi-)Orderings and Algorithms 53

Proposition 3.1, we may assume that P1, P2, P3 and P4 are confluent.

Let P ′i be the subpath Pi[v, vi] of Pi, where vi is the vertex in

V (Pi) ∩ V (C2) whose distance from v in Pi is minimum, i ∈ [4]. Re-

call that all edges of G have been subdivided in Gs. This implies that

there exist four (possibly not disjoint) graphs in C, say Ĝ1, Ĝ2, Ĝ3 and Ĝ4

such that vi = ui2, i ∈ [4]. We distinguish two cases.

Case 1. The graphs Ĝ1, Ĝ2, Ĝ3 and Ĝ4 are vertex-disjoint.

This implies that the endpoints of P ′1, P
′
2, P

′
3 and P ′4 are disjoint. Let G′

be the graph induced by the cycles C1, C2 and the paths P ′1, P
′
2, P

′
3, P

′
4 and

let P̂1, P̂2, P̂3 and P̂4 be confluent edge-disjoint paths from v to u1
2, u2

2, u3
2,

and u4
2 in G′ such that

(i)
∑
{e | e ∈

⋃
i∈[4]E(P̂i) \ E(A)} is minimum, that is, the number of

the edges of the paths that is outside of A is minimum, and

(ii) subject to (i),
∑
{e | e ∈

⋃
i∈[4]E(P̂i)} is minimum.

Let also Ĝ be the graph induced by C1, C2, P̂1, P̂2, P̂3, and P̂4. From

now on we work towards showing that Ĝ contains K3,3 as an immersion.

For every i ∈ [4] we call a connected component of P̂i ∩ C1 non-trivial if

it contains at least an edge.

Claim 2. For every i ∈ [4], P̂i ∩ C1 contains at most one non-trivial

connected component Qi and ui1 is an endpoint of Qi.

Proof of Claim 2. First, notice that any path from v to vi in Ĝ contains

ui1, and thus ui1 ∈ V (P̂i). Observe now that P̂i[u
i
1, u

i
2] is a subpath of

P̂i whose internal vertices do not belong to C1. Thus if ui1 belongs to a

non-trivial connected component Qi of P̂i ∩ C1, then ui1 is an endpoint

of Qi. We will now prove that any non-trivial connected component of

54 3.2. Forbidding Kuratowski Graphs as Immersions

P̂i ∩ C1 contains ui1. Assume in contrary that there exists a non-trivial

connected component P of P̂i ∩ C1 that does not contain ui1. Let u be

the endpoint of P for which dist
P̂i

(u, ui1) is minimum. Let also u′ be the

vertex in P̂i[u, u
i
1] ∩C1 such that dist

P̂i
(u, u′) is minimum. Let P ′ be the

subpath of C1 with endpoints u, u′ such that P̂i[u, u
′] ∪ P ′ is a cycle C

with C ∩ P = {u}. We further assume that the interior of P̂i[u, u
′] ∪ P ′ is

the open disk that does not contain any vertices of P̂i.

We will prove that for every path P̂j , j ∈ [4], P̂j ∩ P ′ ⊆ {u, u′}. As

this trivially holds for j = i we will assume that j 6= i. Observe that,

for every j ∈ [4], P̂j [v, u
j
1] ∩ A ⊆ C1 as for every connected component H

of A \ (C1 ∪ C2) it holds that |NGs(V (H)) ∩ V (Cj)| ≤ 1. Furthermore,

observe that P̂i[u, u
′] ∪ P ′ is a separator in Ĝ. This implies that v does

not belong to the interior of P̂i[u, u
′]∪P ′. Thus, if there is a vertex z such

that z ∈ P̂j∩(P ′\{u, u′}), j 6= i, then there is a vertex z′ ∈ P̂j∩P̂i[u, u′], a

contradiction to the confluence of the paths. We may then replace P̂i[u, u
′]

by P ′, a contradiction to (i).

We denote by vi the endpoint of Qi that is different from ui1 if Qi

is a non-trivial connected component of P̂i ∩ C1, i ∈ [4]. Observe that

P̂i = P̂i[v, vi]∪Qi∪P̂i[ui1, ui2], where we let Qi = ∅ in the case where P̂i∩C1

is edgeless, i ∈ [4]. We denote by Ti the subpath of C1 with endpoints

ui1 and ui mod 4+1
1 such that Ti ∩ {{u1

1, u
2
1, u

3
1, u

4
1} \ {ui1, u

i mod 4+1
1 }} = ∅,

i ∈ [4]. From the confluence of the paths P̂i and the fact that ui1 is an

endpoint of Qi it follows that either Qi ⊆ Ti or Qi ⊆ Ti−1, i ∈ [4], where

Ti−1 = T3+i mod 4 if i− 1 /∈ [4].

Claim 3. There exists an i0 ∈ [4] such that Ti0 ∩(Qi0 , Qi0 mod 4+1) 6= Ti0.

Proof of Claim 3. Towards a contradiction assume that for every i ∈ [4],

it holds that Ti ∩ (Qi, Qi mod 4+1) = Ti. It follows that either Qi =

3. Partial (Well-Quasi-)Orderings and Algorithms 55

Ti = P̂i[vi, v
i
1], i ∈ [4] or Qi mod 4+1 = Ti, i ∈ [4]. Notice then that

either vi = ui mod 4+1
1 , i ∈ [4], or vi mod 4+1 = ui1, i ∈ [4], respectively.

Then, we let P̃i mod 4+1 = P̂i[v, vi] ∪ P̂i mod 4+1[ui mod 4+1
1 , ui mod 4+1

2] or

P̃i = P̂i mod 4+1[v, vi mod 4+1] ∪ P̂i[ui1, ui2], i ∈ [4], respectively. Notice

that the paths P̃1, P̃2, P̃3, and P̃4 are confluent edge-disjoint paths from

v to u1
2, u

2
2, u

3
2, and u4

2 such that ∪i∈[4]P̃i is a proper subgraph of ∪i∈[4]P̂i.

Therefore, we have that∑
{e | e ∈

⋃
i∈[4]

E(P̃i)} <
∑
{e | e ∈

⋃
i∈[4]

E(P̂i)},

a contradiction to (ii).

It is now easy to see that Ĝ, and thus G, contains K3,3 as an immer-

sion. Indeed, first remove all edges of C1 \ Ti0 that do not belong to any

path P̂i, i ∈ [4]. Then lift the paths P̂i to a single edge where i 6= i0, i0

mod 4+1. Now let ui0 (ui0 mod 4+1 respectively) be the vertex of Ti0 that

belongs to P̂i0 (P̂i0 mod 4+1 respectively) whose distance from v in P̂i0

(P̂i0 mod 4+1 respectively) is minimum and lift the paths P̂i0 [v, ui0] and

P̂i0 mod 4+1[v, ui0 mod 4+1] to single edges. Notice now that Ĝ contains

the graph H2 depicted in Figure 3.13 as an immersion. Thus, we get that

Ĝ contains K3,3 as an immersion.

Case 2. There exist i1, i2 ∈ [4] such that Ĝi1 and Ĝi2 are not vertex-

disjoint.

Let Gµ be the graph induced by the cycles C1 and C2 and the graphs in C′.
We will show that Gµ contains K3,3 as an immersion. First recall that the

common vertices of Ĝi1 and Ĝi2 lie in at least one of the cycles C1 and C2.

Without loss of generality assume that they have a common vertex in C1.

Recall that, as every edge of G has been subdivided in Gs, there does not

56 3.2. Forbidding Kuratowski Graphs as Immersions

H2H1

Figure 3.13: The graphs H1 and H2.

exist an edge e ∈ Gs such that e∩Cj 6= ∅, j ∈ [2]. This observation and the

fact that there exist four rails between C1 and C2 imply that there exist at

least four graphs in C′ that are vertex-disjoint. It follows that there exist

three vertex-disjoint graphs, say Ĝi3 , Ĝi4 , Ĝi5 , in C′ with the additional

properties that Ĝi2+r ∩ Ĝi1 ∩ C1 = ∅, r ∈ [3], and that at most one of

the Ĝi3 , Ĝi4 , Ĝi5 has a common vertex with one of the Ĝi1 , Ĝi2 . Note here

that none of the Ĝi3 , Ĝi4 , Ĝi5 can have a common vertex with one of the

Ĝi1 , Ĝi2 in C2, in the case where Ĝi1 ∩ Ĝi2 ∩ C2 6= ∅. It is now easy to

see that Gµ contains H1 or (H2 respectively) depicted in Figure 3.13 as a

topological minor when Ĝi1∩Ĝi2∩C2 6= ∅ (Ĝi1∩Ĝi2∩C2 = ∅ respectively).

Observe now that H1 contains H2 as an immersion. Moreover, notice that

H2 contains K3,3 as an immersion. Thus Gµ, and therefore Gs and G,

contain K3,3 as an immersion, a contradiction.

Remark 1. It is easy to verify that our results hold for both the weak

and strong immersion relations.

We believe that the upper bound on the branch-width of the building

blocks of Theorem 3.7 can be further reduced, especially if we restrict

ourselves to simple graphs. There is an infinite family of graphs that

are not sub-cubic and have branch-width 3; two of them are depicted in

3. Partial (Well-Quasi-)Orderings and Algorithms 57

.

Figure 3.14: Simple non-sub-cubic graphs of branch-width 3 without K5

or K3,3 as immersions.

Figure 3.14. However, we have not been able to find any simple non-sub-

cubic graph of branch-width greater than 3 that does not contain K5 or

K3,3 as an immersion.

3.3 Algorithms

As we have already mentioned the proof of the Graph Minors theorem is

one of the deepest in Modern Combinatorics. However, Graph minors also

play an important role in the theory of Algorithms as many algorithmic

techniques can be derived from the structural theorems that were proved

in its context.

In this section we would like to mention, up to some extent, some of the

most important (meta-)algorithms which motivated the results presented

in the next chapter.

Theorem 3.8 ([193]). Given a fixed graph H, one can construct an al-

gorithm that decides, for any input graph G, whether H ≤m G in time

O(n(G)3), where the hidden constants in the O-notation depend only on

H.

By combining Theorem 3.8 with Theorem 3.5, the following is derived.

58 3.3. Algorithms

Theorem 3.9. Given graph class F that is closed under taking of minors

there exists an algorithm that decides, for any input graph G, whether

G ∈ F in time O(n(G)3), where the hidden constants in the O-notation

depend only on F .

It is very easy to verify the correctness of the above theorem. As it

is known, from Theorem 3.5, there exists a finite set of obstructions for

the minor-closed graph class F . Moreover, from Theorem 3.8, we can

construct, for each one of them, an algorithm that decides whether they

are contained in a graph as minors. Then, for any given graph G, we

decide whether it contains any of the obstructions. If yes, then G /∈ F .

Otherwise, G ∈ F .

While this result on minors has been widely known since 1995, it was

not until last year that the analog result was proven for the immersion

ordering. In particular, in [109], M. Grohe, K. Kawarabayashi, D. Marx

and P. Wollan proved the following.

Theorem 3.10. Given a fixed graph H, one can construct an algorithm

that decides, for any input graph G, whether H ≤im G in time O(n(G)3),

where the hidden constants in the O-notation depend only on H.

As before, Theorem 3.10 combined with Theorem 3.5 yield the follow-

ing.

Theorem 3.11. Given graph class F that is closed under taking of im-

mersions, there exists an algorithm that decides. for any input graph G,

whether G ∈ F in time O(n(G)3), where the hidden constants in the O-

notation depend only on F .

Thus, from Theorem 3.9 (respectively Theorem 3.11) one can imme-

diately prove that a graph class can be recognized in cubic time just by

3. Partial (Well-Quasi-)Orderings and Algorithms 59

proving that it is closed under taking of minors (respectively immersions).

More generally, theorems that are providing algorithmic solution to a

wide class of problems are called meta-algorithmic theorems. Through the

past decade many such theorems have appeared [24, 36, 43, 94, 165, 168]

and usually provide a generic way to identify an upper bound on the

complexity of a computational problem. The most famous one is the cele-

brated theorem of Courcelle [36], stating that given an MSO-formula there

is a linear time algorithm deciding whether an input graph G, whose tree-

width is bounded, satisfies this formula.

We would like to stress here that while Theorems 3.9 and 3.11 are of

great importance they crucially differ from Theorems 3.8 and 3.10. Notice

that the Theorems 3.8 and 3.10 explicitly state the construction of an

algorithm deciding whether an input graph G contains a fixed graph H

as a minor or as an immersion, whereas Theorems 3.9 and 3.11 only state

the existence of an algorithm that decides the membership of a graph into

a graph class closed under taking minors or immersions.

This happens because the construction of the algorithms mentioned in

the Theorems 3.9 and 3.11 assumes that the minor or immersion obstruc-

tions are known for the given graph class F . However, the proofs in the

context of the Graph Minors Theory do not provide any direction towards

the identification of the obstruction sets [95]. Furthermore, this appears

that it can actually be an extremely challenging task. The identification

of the minor obstruction sets for the parameter of tree-depth and the com-

putation of the immersion obstruction sets for graph classes closed under

taking of immersions are the subjects that we deal with in the next two

chapters.

For more on algorithmic techniques derived from the Graph Minor

60 3.3. Algorithms

Theory see Chapter 8.

CHAPTER 4

Identifying the Obstructions for Tree-depth

As we saw in the previous chapter, for every graph class C that is closed

under taking of minors or immersions there exists a cubic time algorithm

deciding the membership of a graphG in the graph class C. However, recall

that the construction of such an algorithm requires an explicit description

of the set obs≤m(C) or obs≤im(C) respectively.

Our goal in this chapter is to study ways of identifying minor ob-

struction sets. In particular, in this chapter, we would like to show how

challenging the identification of an obstruction set can be by trying to

identify the minor obstructions for the parameter of tree-depth.

The graph parameter of tree-depth (also known as the vertex ranking

problem [21], or the ordered coloring problem [132]) has received much

attention, mostly because of the theory of graph classes of bounded ex-

pansion, developed by Nešetřil and Ossona de Mendez. See, for exam-

61

62

ple, [160–169]. (For extensive details on the graph classes of bounded

expansion, see [170].) Furthermore, the tree-depth of a graph is equiva-

lent to the minimum-height of an elimination tree of a graph [45, 57, 166]

(this measure is of importance for the parallel Cholesky factorization of

matrices [147]). Let Gk be the class of all graphs with tree-depth at most

k.

In the first part of this section, we examine the sets obs≤m(Gk),
obs⊆(Gk), and obsv(Gk), where by obs⊆(Gk) and obsv(Gk) we denote

the minimal graphs according to the subgraph and induced subgraph or-

dering respectively that do not belong to Gk. From Theorem 3.5, it follows

that obs≤m(Gk) is finite for each k ≥ 0. The finiteness of obs⊆(Gk) follows

from results in [166]. Also it is easy to verify that obsv(Gk) is finite (see

Observation 4.3).

Our first result is an upper bound of 22k−1
to the order of the graphs in

obsv(Gk) for k ≥ 0. This bound also holds for obs⊆(Gk) and obs≤m(Gk)
as obs≤m(Gk) ⊆ obs⊆(Gk) ⊆ obsv(Gk) (Observation 4.2). Our next re-

sult is a structural lemma that constructs new obstructions from simpler

ones. This permits us to identify, for each k ≥ 0, all acyclic obstructions

of the graph class Gk. Evenmore, by using this characterization we prove

that the acyclic obstructions are exactly 1
222k−1−k(1 + 22k−1−k) for all re-

lations. So far, such a parameterized set of acyclic obstructions is known

only for classes of bounded pathwidth [219] and variations of it such as

search number [179], proper-pathwidth [219], linear-width [220] (see [213]

for similar results on graphs with bounded feedback vertex set number).

For general results on obstruction sets see also [3, 35, 61, 143, 181]. How-

ever, this is the first time that an exact enumeration of parameterized

obstructions has been derived. Our next result is the identification of the

sets obs≤m(Gk), obs⊆(Gk), and obsv(Gk), for k ≤ 3. For k = 3, these

4. Identifying the Obstructions for Tree-depth 63

sets have 12, 14, and 29 graphs, respectively. Finally, we show a theorem

which allows us to identify proper subgraphs of a graph G, which have the

same tree-depth as G.

For a study of the parameter of tree-depth from the scope of Graph

Searching, see Chapter 10.

4.1 An Introduction to Tree-depth

The tree-depth of a connected graph G, denoted by td(G), is defined as

follows.

Definition 4.1 (Tree-depth).

td(G) =

1 if |V (G)| = 1

1 + minv∈V (G) td(G \ v) if |V (G)| > 1

In the case where G is not connected, then td(G) = max{td(H) |
H ∈ C(G)}. (Recall that by C(G) we denote the set of the connected

components of G.)

We also say that a graph G admits a k-vertex ranking if there exists a

proper coloring ρ : V (G)→ {1, . . . , k} such that every (x, y)-path between

two vertices where ρ(x) = ρ(y) contains a vertex z with ρ(z) > ρ(x).

It was proven by J. Nešetřil and P. Ossona de Mendez that.

Lemma 4.1 ([166]). The tree-depth of a graph G is equal to the minimum

integer k such that G admits a k-vertex ranking.

Using induction, one can prove that.

Lemma 4.2 ([166]). For any non-negative integer n,

td(Pn) = dlog2(n+ 1)e.

64 4.1. An Introduction to Tree-depth

For every non-negative integer k, we denote by Gk the class of graphs

with tree-depth at most k, that is, Gk = {G | td(G) ≤ k}.
It is known that.

Lemma 4.3 ([21, 166]). If H is a minor of G, then td(H) ≤ td(G).

Thus, Lemma 4.3 has as a direct consequence that for any non-

negative integer k, Gk is minor-closed. Therefore, by Theorem 3.5, the

set obs≤m(Gk) is finite.

For every R ∈ {v,⊆}, we denote by obsR(Gk) the set of the graphs

with tree-depth strictly bigger than k that are minimal with respect to

the relation R.

Before stating the next lemma we need to give the following definitions.

Given two graphs G and H, we say that H is homomorphic to G if there is

a mapping f : V (H)→ V (G) (called homomorphism) such that for every

v, u ∈ V (H), if {u, v} ∈ E(H) then {f(u), f(v)} ∈ E(G). Moreover, we

say that G and H are isomorphic if there is a bijection g : V (H)→ V (G)

(called isomorphism) such that for every v, u ∈ V (H), {u, v} ∈ E(H) if

and only if {f(u), f(v)} ∈ E(G). In the special case where G and H are

the same graph the isomorphism is also called automorphism. We say that

two graphs G1, G2 are hom-equivalent if G1 is homomorphic to G2 and G2

is homomorphic to G1. Even, an automorphism f of a graph is said to

be involutive if and only if f ◦ f = id. Finally, given a graph G and a

function λ : V (G) → N we say that an automorphism f : V (G) → V (G)

is λ-preserving if f ◦ λ = λ and we say that f : V (G) → V (G) has the

fixed point property if, for any connected subgraph H of G, f(H)∩H = ∅
or contains a fixed point of f .

Lemma 4.4 ([166]). There exists a function F : N × N → N with

the following property: For any integer N , any graph G of order n >

4. Identifying the Obstructions for Tree-depth 65

F (N, td(G)), and any mapping g : V (G)→ [N], there exists a non-trivial

involutive g-preserving automorphism µ : G → G with the fixed point

property.

An immediate corollary of the above lemma is the following.

Lemma 4.5 ([166]). Let k ≥ 1 be an integer. Then, the graph class

Gk includes a finite subset Ĝk such that, for every graph G ∈ Gk, there

exists Ĝ ∈ Ĝk which is hom-equivalent to G and isomorphic to an induced

subgraph of G.

Furthermore, from Lemma 4.4, a tower function bound can be derived

for the order of the forbidden subgraphs.

As the purpose of this chapter is to study ways of computing obstruc-

tion sets we would like to mention here that when we are given an upper

bound on the order of the obstructions of a graph class F and an algorithm

deciding whether an input graph belongs to F then we may compute the

obstruction set of F . Indeed, notice that this can be done by enumerating

all the graphs up to this bound and deciding whether they belong to F or

not. Then, the minimal graphs not belonging to F are the obstructions of

F . Thus, for the computation of the minor obstruction set of Gk, all we

need is an algorithm deciding whether a graph G has tree-depth k.

Theorem 4.1 ([21]). For any fixed integer k, there is a polynomial time

algorithm deciding whether a graph G has tree-depth k.

However, as stated before, the bound obtained from Lemma 4.4 is a

tower function of k. We prove, in the next section, that a direct argument

shows a much better bound. Moreover, in the next sections, by combina-

torial arguments we identify the acyclic graphs in obsR(Gk), k ≥ 1 and

R ∈ {≤m,⊆,v}, and the sets obsR(Gk) for k ∈ [3] and R ∈ {≤m,⊆,v}.

66 4.2. Upper Bound on the Order of the Obstructions for Gk

4.2 Upper Bound on the Order of the Obstruc-

tions for Gk

Observation 4.1. For every k ≥ 0, all graphs in obsv(Gk),obs⊆(Gk),
and obs≤m(Gk) are connected.

Proof. Follows directly from the fact that for any graph G, td(G) =

max{td(C) | C ∈ C(G)}.

Observation 4.2. For every non-negative integer k,

obs≤m(Gk) ⊆ obs⊆(Gk) ⊆ obsv(Gk).

Observation 4.3. Let G be a graph such that G ∈ obsv(Gk), for some

integer k. Then there exists G′ ∈ obs⊆(Gk) such that V (G) = V (G′) and

E(G′) ⊆ E(G).

Proof. Let G be a counterexample of minimal size. Then there exists an

edge e such that G′ = G \ e also belongs to obsv(Gk) and V (G) = V (G′)

and E(G′) ⊆ E(G).

By Lemma 4.5 and Observation 4.3 it is easy to see that, for every

positive integer k, the sets obs⊆(Gk) and obsv(Gk) are also finite.

Theorem 4.2. For any integer k > 0, if G is a graph with td(G) > k, then

G contains a connected subgraph H with td(H) > k and |V (H)| ≤ 22k−1
.

Proof. We may assume that G is connected, otherwise from the definition

we focus on the component of G that determines its tree-depth. Also,

without loss of generality, let td(G) = k + 1. We prove the statement by

induction:

4. Identifying the Obstructions for Tree-depth 67

If td(G) = 2, then G contains at least one edge, and we may set

H = K2. If td(G) = 3, then G is not a star forest, that is, it contains

either P4 or K3 as a subgraph.

Suppose now that td(G) = k + 1, for k ≥ 3, and assume that the

statement holds for all smaller values of tree-depth. If G contains P2k as

a subgraph, then we may set H = P2k . Otherwise, each two vertices in G

are connected by a path of length at most 2k − 2.

Since td(G) > k − 1, by induction hypothesis, G contains a subgraph

H0 with td(H0) ≥ k and m ≤ 22k−2
vertices v1, . . . , vm. For each i =

1, . . . ,m, the graph G \ vi has tree-depth greater than k− 1. Hence G \ vi
contains a subgraph Hi with at most 22k−2

vertices and tree-depth at least

k.

If there exists i such that V (H0)∩V (Hi) = ∅, then we let H consist of

H0, Hi and the shortest path that connects them. For every vertex v of H,

the graph H \ v contains H0 or Hi as a subgraph, hence the tree-depth of

H \v is at least k and td(H) > k. Also, |V (H)| ≤ 22k−2+1 +2k−3 ≤ 22k−1

(for k ≥ 3).

On the other hand, if all the graphs Hi intersect H0, then we set

H = H0 ∪ H1 ∪ . . . ∪ Hm. Since all the graphs Hi are connected, the

graph H is connected as well, and it has at most m+m(22k−2−1) ≤ 22k−1

vertices. Similarly to the previous case, the graphs H \ vi contain Hi as a

subgraph (for i = 1, . . . ,m), and the graph H \ v for v different from v1,

. . . , vm contains H0 as a subgraph, hence td(H) > k.

From Theorem 4.2 and Observations 4.2 and 4.3 we obtain the follow-

ing corollary,

Corollary 4.1. All graphs in obsv(Gk) (and therefore, also in obs⊆(Gk)
and obs≤m(Gk)) have at most 22k−1

vertices.

68 4.3. A Structural Lemma for the Obstructions of Tree-depth

4.3 A Structural Lemma for the Obstructions of

Tree-depth

In this section, we prove a lemma for tree-depth that permits us to build

obstructions from simpler ones. We, first, consider the following observa-

tions.

Observation 4.4. Let G be a connected graph such that td(G) = k and

ρ : V (G)→ [k] a k-vertex ranking of G. Then |ρ−1(k)| = 1.

Proof. If v1 and v2 are two (non-adjacent) vertices in ρ−1(k), then there

exists a path with endpoints v1, v2. Observe that all internal vertices of

this path have color smaller than k, a contradiction.

Observation 4.5. If G ∈ obsv(Gk) (or obs⊆(Gk) or obs≤m(Gk)) then,

for every v ∈ V (G), there exists a (k + 1)-vertex ranking ρ such that

ρ(v) = k + 1.

Proof. As G ∈ obsv(Gk) (or obs⊆(Gk) or obs≤m(Gk)), G \ v admits a k-

vertex ranking ρ. Then ρ∪ (v, k+1) is the required (k+1)-vertex ranking

of G.

Let G1 and G2 be two disjoint graphs and let vi ∈ V (Gi), for i ∈ [2].

We define

j(G1, G2, v1, v2) = (V (G1) ∪ V (G2), E(G1) ∪ E(G2) ∪ {{v1, v2}}).

Observation 4.6. Let G1 and G2 be disjoint graphs where td(G1) ≤ k

and td(G2) ≤ k. Let vi ∈ V (Gi), i ∈ [2]. Then the graph G =

j(G1, G2, v1, v2) has tree-depth at most k + 1.

Proof. Let ρi be a k-vertex ranking of Gi, i ∈ [2]. Then ρ = ρ1 ∪ ρ2 \
{(v1, ρ1(v1))} ∪ {(v1, k + 1)} is a (k + 1)-vertex ranking of G.

4. Identifying the Obstructions for Tree-depth 69

Observation 4.7. Let G1 and G2 be disjoint connected graphs such that

td(G1) ≥ k and td(G2) ≥ k. Let vi ∈ V (Gi), i ∈ [2]. Then, the graph

G = j(G1, G2, v1, v2) has tree-depth at least k + 1.

Proof. Assume, in contrary, that there exists a k-vertex ranking ρ :

V (G) → [k]. Notice that ρ−1(k) 6= ∅, otherwise td(G) < k contradict-

ing the fact that td(G1) ≥ k. Combining this fact with Observation 4.4,

G has a unique vertex v where ρ(v) = k. Without loss of generality, we

assume that v ∈ V (G1). Then, the restriction of ρ to G2 gives a (k − 1)-

vertex ranking of it, a contradiction.

Lemma 4.6. Let k be a positive integer and let R ∈ {v,⊆,≤m} . Let

G1 and G2 be disjoint graphs such that G1, G2 ∈ obsR(Gk−1) and let v1 ∈
V (G1), v2 ∈ V (G2). Then j(G1, G2, v1, v2) ∈ obsR(Gk).

Proof. Let G1 and G2 such that G1, G2 ∈ obsR(Gk−1) and let vi ∈ V (Gi),

i ∈ [2]. We set G = j(G1, G2, v1, v2). We first prove that td(G) = k + 1.

Indeed, Observation 4.6 yields td(G) ≤ k + 1 and Observation 4.7 yields

td(G) ≥ k + 1.

We now have to prove that if G′ is the result of the removal or the

contraction of some edge e in G, then td(G′) ≤ k (this also covers the

case of a vertex removal as, from the way G was defined, G is connected

and thus the removal of a vertex implies the removal of at least one edge).

We examine first the case where e = {v1, v2}. If G′ = G \ e, then from

the definition, td(G) = max{td(G1), td(G2)} ≤ k. If G′ = G / e, then

from Observation 4.5, there exists a k-vertex ranking ρi of Gi such that

ρi(vi) = k, i ∈ [2]. Then if vnew is the result of the contraction of e we

70 4.4. Acyclic obstructions for tree-depth

have that ρ : V (G′)→ [k] where

ρ(x) =


ρ1(x) if x ∈ V (G1) \ {v1}

ρ2(x) if x ∈ V (G2) \ {v2}

k if x = vnew

is a k-vertex ranking of G′, therefore td(G′) ≤ k.

Finally, we examine the case where e is an edge of G1 or G2. Without

loss of generality we assume that e1 ∈ E(G1). Because G1 ∈ obs⊆(Gk−1),

there exists a (k − 1)-vertex ranking ρ′1 of G1 \ e (and G1 / e). From

Observation 4.5, since G2 ∈ obs⊆(Gk−1), there exists a k-vertex ranking

ρ2 of G2 such that ρ2(v2) = k. It is easy to see that ρ′1 ∪ ρ2 is a k-

vertex ranking of G′, thus td(G′) ≤ k and this completes the proof of the

lemma.

4.4 Acyclic obstructions for tree-depth

For every integer k ≥ 0, we recursively define the graph class Tk as follows.

Let T0 = {K1} and, for every k ≥ 1, we set

Tk = {j(G1, G2, v1, v2) | G1, G2 ∈ Tk−1, vi ∈ V (Gi), i ∈ [2]}

The above definition permits us to state Lemma 4.6 as follows.

Observation 4.8. For every positive integer k and every R ∈ {v,⊆,≤m},
Tk ⊆ obsR(Gk).

Lemma 4.7. For any positive integer k, if G ∈ Tk, then for any vertex

v ∈ V (G) there exists a leaf u 6= v of G such that the tree created from

G \ u by adding a leaf adjacent to v also belongs to Tk.

4. Identifying the Obstructions for Tree-depth 71

Proof. Assume, that this holds for any tree in Tk−1, k ≥ 2. Let G1, G2 ∈
Tk−1 and vi ∈ V (Gi), i ∈ [2], such that G = j(G1, G2, v1, v2). Consider an

arbitrary vertex v ∈ V (G), and let us show that there exists a leaf u of G

that we can move to v while preserving membership in Tk. Without loss of

generality, we may assume that v ∈ V (G1). By the induction hypothesis,

there exists a vertex u′ ∈ V (G1) such that the tree created from G1 \u′ by

adding a leaf adjacent to v is also in Tk−1. If u′ 6= v1 we may set u = u′.

Otherwise, let u′′ be the leaf of G2 that can be moved to v2. In this case,

we can set u = u′′: Moving the leaf u′′ to v has the same result as moving

it to v2, moving the leaf u′ to v, and replacing the edge e by an edge

between u′′ and the vertex of G1 that used to be adjacent to u′.

In Lemma 4.6 we described a procedure that for any non-negative

integer k constructs graphs G ∈ obsv(Gk+1) from disjoint graphs G1, G2 ∈
obsv(Gk) (by adding an edge that connects a vertex v1 of G1 and a vertex

v2 of G2). With the following lemma we fully characterize and construct

all the acyclic graphs in obsv(Gk+1) for every non-negative integer k.

Lemma 4.8. Let G be a tree in obsv(Gk) for k ≥ 1. Then there exists

an edge e ∈ E(G) such that if {G1, G2} = C(G \ {e}) then G1, G2 ∈
obsv(Gk−1).

Proof. We examine the non-trivial case where k ≥ 2 assuming that the

statement holds for all acyclic obstructions of smaller tree-depth. From

Observation 4.6, we obtain that for each edge e = {v1, v2} ∈ E(G), at

least one of the connected components G1, G2 of G \ e has tree-depth at

least k. We claim that G contains at least one edge e = {v1, v2} such that

both connected components of G \ e have tree-depth k. Suppose that this

is not correct. Then we can direct each edge e = {v1, v2} of E(G) such

that its tail belongs to the connected component of G \ e that has tree-

72 4.4. Acyclic obstructions for tree-depth

depth strictly less than k. We denote this directed tree by T̃ . As k ≥ 2, T̃

contains internal vertices. Moreover, all edges of T̃ that are incident to a

leaf are directed away from it. It follows that T̃ contains an internal vertex

v of out-degree 0. This means that each, say Gi, connected component of

G \ v has a (k − 1)-vertex ranking ρi. Then ρ = {(v, k)} ∪
⋃
i=1,...,m ρi is

a k-vertex ranking of G, a contradiction and this completes the proof of

the claim.

Let now Gi be the connected component of G \ e that contains vi,

i ∈ [2]. If one, say G1, is not in obsv(Gk−1) then it contains an in-

duced subgraph G′1 such that G′1 ∈ obsv(Gk−1). Additionally, there is

a unique path P in G that connects G′1 with G2. Observe that since

G ∈ obsv(Gk−1), G is exactly the union of G′1, G2 and P . We need to

show that P has no inner vertices. Suppose that this is not the case, and

let w be the inner vertex of P adjacent to a vertex v ∈ V (G1). By the

induction hypothesis, G′1 and G2 satisfy the conditions of Lemma 4.7, thus

G1 contains a leaf u such that the graph obtained from G1 by moving t

he leaf u to v belongs to obsv(Gk−1). This implies that we may remove

the vertex u from G and consider w to be its replacement. The created

graph is a proper induced subgraph of G and has tree-depth k + 1, a

contradiction. This completes the proof of the lemma.

Observe now that the following is a direct consequence of Lemmata 4.6

and 4.8.

Theorem 4.3. Let k be a non-negative integer. Then Tk is the set of all

acyclic graphs in obsv(Gk).

Corollary 4.2. For every non-negative integer k, Tk is the set of all

acyclic graphs in obs⊆(Gk) (or in obs≤m(Gk)). (See Figure 4.1)

Proof. Follows directly from Observations 4.2 and 4.8.

4. Identifying the Obstructions for Tree-depth 73

T3

−→ −→ −→
T0 T1 T2

Figure 4.1: Examples of acyclic obstructions.

4.5 Lower Bound on the Number of the Obstruc-

tions for Gk

In this section, we prove that |Tk| = 1
222k−1−k(1 + 22k−1−k), k ≥ 1. This

gives a lower bound on |obs≤m(Gk)|, k ≥ 2. As we shall see later we can

identify the elements of the sets obs⊆(Gi), obs≤m(Gi), and obsv(Gi), for

i = 0, 1, 2, 3.

For a tree G ∈ Tk such that G = j(G1, G2, v1, v2), we call v1v2 the

middle edge of G.

Observation 4.9. If k is a non-negative integer then every graph in Tk
has exactly 2k vertices. This implies that the middle edge of a graph G ∈ Tk
is unique.

Consider also the following.

Observation 4.10. Let T 1, T 2 be two trees and ei = {vi1, vi2} ∈ E(T i),

i ∈ [2]. If φ is an isomorphism from T 1 to T 2 such that φ(v1
i) = v2

i ,

i ∈ [2], and T ji is the connected component of T j \ ej that contains vji ,

i ∈ [2], j ∈ [2], then φi = {(x, y) ∈ φ | x ∈ V (T 1
i)} is an isomorphism

from T 1
i to T 2

i , i ∈ [2].

74 4.5. Lower Bound on the Number of the Obstructions for Gk

It is easy to see that the automorphisms of a graph form a group. We

use notation Aut(G) for the automorphism group of a graph G. Obser-

vation 4.10 easily implies the following.

Observation 4.11. Let T be a tree and e = {v1, v2} ∈ E(T). If φ ∈
Aut(T) satisfies φ(vi) = v3−i, i ∈ [2], and Ti is the connected component

of T \ e that contains vi, i ∈ [2], then φ′ = {(x, y) ∈ φ | x ∈ V (T1)} is an

isomorphism from T1 to T2.

Observation 4.12. Let G1, G2 be disjoint graphs such that G1, G2 ∈ Tk,

k ≥ 1, and vi ∈ V (Gi), i ∈ [2]. If φ ∈ Aut(G), where G =

j(G1, G2, v1, v2), then φ(e) = e.

Proof. Follows directly from Observation 4.9.

Lemma 4.9. Let G ∈ Tk for k ≥ 1, e = {v1, v2} ∈ E(G) the middle

edge and φ ∈ Aut(G). If there exists v ∈ V (G) such that φ(v) = v, then

φ(vi) = vi, i ∈ [2].

Proof. We examine the non-trivial case where k ≥ 2. Suppose, in contrary,

that φ(vi) = v3−i, i ∈ [2]. We denote by G1, G2 the connected components

of G \ e where, without loss of generality, v, v1 ∈ V (G1). From Observa-

tion 4.11, φ′ = {(v1, v2) ∈ φ | v1 ∈ V (G1)} is an isomorphism of G1 to G2,

a contradiction since φ′(v) = φ(v) = v.

We now proceed to the proof of the following.

Lemma 4.10. Let k be a non-negative integer. For any G ∈ Tk and

φ ∈ Aut(G), if there exists v ∈ V (G) such that φ(v) = v then φ = id.

Proof. We use induction on k. For k = 0 the claim is trivial. Assume now

that the claim holds for k = n ≥ 0. Let k = n + 1. We denote by e =

4. Identifying the Obstructions for Tree-depth 75

{v1, v2} ∈ E(G) the middle edge and by G1, G2 the connected components

of G\e, where vi ∈ V (Gi), i ∈ [2]. Since φ ∈ Aut(G), from Lemma 4.9, it

follows that φ(vi) = vi, i ∈ [2]. Hence φ is an isomorphism from G \ e to

G \ e. From Observation 4.10, φi = {(v, u) ∈ φ | v ∈ V (Gi)} ∈ Aut(Gi),

i ∈ [2]. Observe that φi(vi) = φ(vi) = vi, i ∈ [2]. Since Gi ∈ Tn, i ∈ [2],

by the induction hypothesis, φi, i ∈ [2], is the trivial automorphism of Gi.

Therefore, φ = id.

Let G be a graph and v ∈ V (G). We denote by trG(v) the orbit of the

automorphism group of G that contains v, that is,

trG(v) = {u ∈ V (G) | ∃φ ∈ Aut(G) such that φ(u) = v}.

Lemma 4.11. Let G1, G2 be disjoint graphs such that G1, G2 ∈ Tk,

v2, v
′
2 ∈ V (G2) such that v2 ∈ trG2(v′2) and v1 ∈ V (G1). Then G =

j(G1, G2, v1, v2) and G′ = j(G1, G2, v1, v
′
2) are isomorphic.

Proof. Let id ∈ Aut(G1) and φ ∈ Aut(G2), such that φ(v2) = v′2. Then

id ∪ φ is an isomorphism from G to G′.

Lemma 4.12. Let G1, G2 be disjoint graphs such that G1, G2 ∈ Tk,

v2, v
′
2 ∈ V (G2) such that v2 6∈ trG2(v′2) and v1 ∈ V (G1). Then G =

j(G1, G2, v1, v2) and G′ = j(G1, G2, v1, v
′
2) are not isomorphic.

Proof. Assume, in contrary, that φ is an isomorphism from G to G′. Ob-

servation 4.12 implies that either φ(v1) = v1 and φ(v2) = v′2 or φ(v1) = v′2

and φ(v2) = v1. We first exclude the case where φ(v1) = v1 and φ(v2) = v′2.

Indeed, from Observation 4.10, φ′ = {(x, y) ∈ φ | x ∈ V (G2)} ∈ Aut(G2)

and moreover φ′(v2) = φ(v2) = v′2, a contradiction since v2 6∈ trG2(v′2).

Thererefore, φ(v1) = v′2 and φ(v2) = v1. From Observation 4.10,

76 4.5. Lower Bound on the Number of the Obstructions for Gk

φi = {(x, y) ∈ φ | x ∈ V (Gi)} is an isomorphism from Gi to G3−i, i ∈ [2].

Then ψ = φ1 ◦ φ2 ∈ Aut(G2) and ψ(v2) = φ1(φ2(v2)) = φ1(φ(v2)) =

φ1(v1) = v′2. It follows that v2 ∈ trG2(v′2), a contradiction.

Given a graph G, we say that G is asymmetric if it has a trivial auto-

morphism group. Moreover, we say that a graph G is 2-asymmetric if its

only non-trivial automorphism is an involution without fixed points.

Lemma 4.13. Let k be a non-negative integer and let G1, G2 be two

disjoint non-isomorphic graphs such that G1, G2 ∈ Tk. Then the graph

G = j(G1, G2, v1, v2) is asymmetric.

Proof. Suppose that φ ∈ Aut(G) and φ 6= id. From Lemma 4.10, φ(v) 6= v

for all v ∈ V (G) and from Observation 4.12, φ(vi) = v3−i, i ∈ [2]. From

Observation 4.11, G1 is isomorphic to G2, a contradiction.

Lemma 4.14. Let k be a non-negative integer and let G1, G2 be two

disjoint graphs such that G1, G2 ∈ Tk. If φ is an isomorphism from

G1 to G2 and vi ∈ V (Gi), i ∈ [2], such that φ(v1) /∈ trG2(v2), then

G = j(G1, G2, v1, v2) is asymmetric.

Proof. Suppose that ψ ∈ Aut(G) and ψ 6= id. From Lemma 4.10, ψ(v) 6=
v for all v ∈ V (G) and from Observation 4.12, ψ(v1) = v2 and ψ(v2) = v1.

From Observation 4.11, χ = {(x, y) ∈ ψ | x ∈ V (G1)} is an isomorphism

from G1 to G2. Moreover, φ ◦ χ−1 is an automorphism of G2 mapping v2

to φ(v1), contradicting the assumption that φ(v1) 6∈ trG2(v2).

Lemma 4.15. Let k be a non-negative integer and let G1, G2 be two dis-

joint graphs such that G1, G2 ∈ Tk. If φ : V (G1) → V (G2) is an isomor-

phism from G1 to G2 and vi ∈ V (Gi), i ∈ [2], are two vertices such that

φ(v1) ∈ trG2(v2), then G = j(G1, G2, v1, v2) is 2-asymmetric.

4. Identifying the Obstructions for Tree-depth 77

Proof. Since φ(v1) ∈ trG2(v2), there exists an isomorphism ψ : V (G1) →
V (G2) such that ψ(v1) = v2. Observe that χ = ψ ∪ ψ−1 is an automor-

phism of G, and that χ is an involution without fixed points. Consider

an automorphism χ′ 6= id of G. From Lemma 4.10 and Observation 4.12,

χ′(v1) = v2 and from Observation 4.11, χ′1 = {(x, y) ∈ χ′|x ∈ V (G1)} is

an isomorphism of G1 and G2. Then χ′1 ◦ ψ−1 is an automorphism of G2

that fixes v2, and from Lemma 4.10, χ′1 = ψ. We conclude that χ′ = χ,

and thus Aut(G) = {id, χ} and G is 2-asymmetric.

From Theorem 4.3 and Lemmata 4.13, 4.14, and 4.15 follows directly

that.

Observation 4.13. If G is a graph such that G ∈ Tk then G is either

asymmetric or 2-asymmetric.

For every integer k ≥ 0, we define the following partition of Tk:

Ak = {G ∈ Tk | Aut(G) = {id}} and Bk = {G ∈ Tk | Aut(G) 6= {id}}.

We denote αk = |Ak|, βk = |Bk|, and τk = |Tk| = αk + βk. We also

set γk = 2k−2. A direct consequence of Observations 4.9 and 4.13 is the

following.

Observation 4.14. Let k ≥ 2 be an integer. Then the automorphism

group of each graph G ∈ Ak (respectively G ∈ Bk) has exactly γk+2 (re-

spectively γk+1) orbits.

Observation 4.15. β0 = α1 = α2 = 0 and α0 = β1 = β2 = 1.

Theorem 4.4. For every integer k ≥ 1, τk = 22k−(2k+1) + 22k−1−(k+1).

Proof. First observe that for k ∈ [2] the claim holds. Let G be a graph.

Recall that G ∈ Tk if and only if G = j(G1, G2, v1, v2) for some Gi ∈ Tk−1,

78 4.5. Lower Bound on the Number of the Obstructions for Gk

and vi ∈ V (Gi), i ∈ [2]. Therefore, in order to count τk it is sufficient to

count the ways to choose G1, G2 ∈ Tk−1 and vi ∈ V (Gi), i ∈ [2], and not

end up with isomorphic graphs. Let G1, G2 be graphs such that Gi ∈ Tk−1

and vi ∈ V (Gi), i ∈ [2]. We define

A1
k = {G | G = j(G1, G2, v1, v2), G1 6' G2, Gi ∈ Ak−1

and vi ∈ V (Gi), i ∈ [2]} (4.1)

A2
k = {G | G = j(G1, G2, v1, v2), G1 6' G2, Gi ∈ Bk−1

and vi ∈ V (Gi), i ∈ [2]} (4.2)

A3
k = {G | G = j(G1, G2, v1, v2), G1 6' G2, G1 ∈ Ak−1, G2 ∈ Bk−1,

and vi ∈ V (Gi), i ∈ [2]} (4.3)

A4
k = {G | G = j(G1, G2, v1, v2), G1 'φ G2, Gi ∈ Ak−1,

and vi ∈ V (Gi), i ∈ [2], such that φ(v1) 6∈ trG2(v2)} (4.4)

A5
k = {G | G = j(G1, G2, v1, v2), G1 'φ G2, Gi ∈ Bk−1,

and vi ∈ V (Gi), i ∈ [2], such that φ(v1) 6∈ trG2(v2)} (4.5)

B1
k = {G | G = j(G1, G2, v1, v2), G1 'φ G2, Gi ∈ Ak−1,

and vi ∈ V (Gi), i ∈ [2], such that φ(v1) ∈ trG2(v2)} (4.6)

B2
k = {G | G = j(G1, G2, v1, v2), G1 'φ G2, Gi ∈ Bk−1,

and vi ∈ V (Gi), i ∈ [2], such that φ(v1) ∈ trG2(v2)}. (4.7)

By their definitions, the above sets are a partition of Tk. From Lemma 4.13

(for Relations (4.1)–(4.3)) and from Lemma 4.14 (for Relations (4.4)

and (4.5)), the union of the first five is a subset of Ak. Moreover, from

Lemma 4.15 (applied to Relations (4.6) and (4.7)) the union of the last

two is a subset of Bk. We conclude that Ak =
⋃

i=1,...,5

Aik and Bk = B1
k∪B2

k.

From Observation 4.14, Lemmata 4.11 and 4.12, and Relations (4.1)–

(4.7) we derive that

4. Identifying the Obstructions for Tree-depth 79

|A1
k| =

(
αk−1

2

)
· γ2

k+1,

|A2
k| =

(
βk−1

2

)
· γ2

k ,

|A3
k| = αk−1 · γk+1 · βk−1 · γk,

|A4
k| = αk−1 ·

(
γk+1

2

)
|A5

k| = βk−1 ·
(
γk
2

)
|B1
k| = αk−1 · γk+1

|B2
k| = βk−1 · γk

Therefore,

αk =

(
αk−1

2

)
γ2
k+1 +

(
βk−1

2

)
γ2
k + αk−1

(
γk+1

2

)
+

βk−1

(
γk
2

)
+ αk−1βk−1γkγk+1 (4.8)

βk = αk−1γk+1 + βk−1γk (4.9)

By simplifying (4.8),

αk =
1

2

[(
γ2
k+1α

2
k−1 + γ2

kβ
2
k−1 + 2αk−1βk−1γkγk+1

)
−

(αk−1γk+1 + βk−1γk)]

=
1

2

(
β2
k − βk

)
.

It follows (using Relation (4.9)) that,

τk =
1

2

(
β2
k + βk

)
and βk = γkβ

2
k−1

80 4.6. Obstructions for Gk, k ≤ 3

Let δk = 2k−1 − k and observe that βk = 2δk = 22k−1−k, for every integer

k ≥ 2. Then τk = 22k−(2k+1) + 22k−1−(k+1), k ≥ 3, and the theorem

follows.

4.6 Obstructions for Gk, k ≤ 3

It is easy to prove that

• obs≤m(G0) = obs⊆(G0) = obsv(G0) = {K1},

• obs≤m(G1) = obs⊆(G1) = obsv(G1) = {K2},

• obs≤m(G2) = obs⊆(G1) = {K3, P4} and obsv(G2) = {K3, P4, C4}.

Let D be the set of the graphs that appear inside the outer polygon in

Figure 4.2. In this section we prove that obs⊆(G3) = D.

Theorem 4.5. For any graph G, td(G) > 3 if and only if G contains one

of the graphs in D as a subgraph.

Proof. Since each of the graphs in D is connected and has tree-depth four,

it suffices to show that any connected graph with tree-depth four contains

one of them as a subgraph. Suppose for contradiction that this is not the

case, and let G be a connected graph with tree-depth four that contains

none of the graphs in D as a subgraph. We may assume that G is minimal,

that is, that td(G\e) = 3 and td(G\v) = 3 for any edge e ∈ E(G) and any

vertex v ∈ V (G). The graph G cannot contain any cycles of length greater

than four, otherwise, it would contain C5, C6, C7, or P8 as a subgraph.

Let G′ be a 2-connected subgraph of G, and suppose that |V (G′)| ≥ 5.

Observe that G′ contains a 4-cycle C = v1v2v3v4. Consider a vertex

v5 ∈ V (G′) \ V (C). Since G′ is 2-connected, there exists a path P with

distinct endpoints in C such that v5 ∈ V (P) and |V (P) ∩ V (C)| = 2.

4. Identifying the Obstructions for Tree-depth 81

Since G does not contain cycles of length at least 5, P has length two and

joins two opposite vertices of C, say v1 and v3. If the subgraph induced by

V (C) ∪ {v5} contains any of the edges {v2, v4}, {v2, v5} or {v4, v5}, then

G contains C5 as a subgraph, hence we may assume that this is not the

case. Also, none of v2, v4 and v5 may be incident with any other vertex of

G, otherwise G would contain K2
4 . Consider the graph H obtained from

G by removing the edge {v1, v5}. By the minimality of G, td(H) = 3.

The graph H is connected, hence H contains a vertex v such that H \ v
is a star forest. If v = v1 or v = v3, then G \ v is a star forest, which

is contradiction with td(G) = 4. However, H \ v for any other vertex v

contains P4 as a subgraph. This is a contradiction, hence we may assume

that any 2-connected subgraph of G has at most four vertices.

Let us now consider the case where G contains a 4-cycle C = v1v2v3v4.

If both edges {v1, v3} and {v2, v4} are in G, then G contains K4 as a

subgraph, thus we may assume this is not the case. Suppose first that

{v1, v3} is an edge (thus {v2, v4} is not an edge). If v2 or v4 is adjacent

to a vertex outside of C, then G contains K1
4 as a subgraph. Otherwise,

consider the graph H obtained from G by removing the edge {v1, v3}. By

the minimality of G, there exists a vertex v such that H \v is a star forest.

The vertex v must belong to C. Since G\v is not a star forest, v 6= v1 and

v 6= v3, hence we may assume that v = v2. Since H \ v2 is a star forest,

v4 is the only neighbor of v1 and v3 in H \ v2. But then H = C, and

tree-depth of G would be only three, which is a contradiction; therefore,

any 4-cycle in G is induced.

Let C = v1v2v3v4 be an induced 4-cycle in G. Since G does not contain

K2
4 as a subgraph, the vertices of V (G) \ V (C) can only be adjacent to

two non-adjacent vertices of C, say v1 and v3. Since td(G) = 4, we have

G 6= C and we may assume that there exists a vertex v5 ∈ V (G) \ V (C)

82 4.6. Obstructions for Gk, k ≤ 3

Figure 4.2: The forbidden graphs for G3.

adjacent to v1. Let us consider the graph H obtained from G by removing

the edge v1v4. By the minimality of G, there exists a vertex v such that

H \ v is a star forest. Since v5v1v2v3v4 is a path, v must be v1, v2, or v3.

If v = v1 or v = v3, then G\v is a star forest, hence v = v2. However, this

4. Identifying the Obstructions for Tree-depth 83

means that G \ v1 is a star forest, which is a contradiction, thus G does

not contain any 4-cycle.

Consider now the case where G contains a triangle C = v1v2v3. The

graph G cannot contain another triangle disjoint from C, since otherwise

it would contain K3P
1
4 or K3K3 as a subgraph. Together with the fact

that each nontrivial 2-connected subgraph of G is a triangle, this implies

that all the triangles in G intersect in one vertex. We may assume that

there is at least one vertex v4 not belonging to C adjacent to v1, and that

all triangles in G contain the vertex v1.

The vertex v1 is a cut-vertex in G. The graph G \ v1 is not a star

forest, hence one of its components contains a triangle or P4. All triangles

in G contain the vertex v1, hence one of the components of G\v1 contains

a path P of length three.

If P is disjoint with C, then G contains a subgraph K3P
1
4 or K3P

2
4 .

It follows that C is the only triangle in G and that the path P intersects

C \v1. If the degree of both v2 and v3 is greater than two, then G contains

the subgraph K3
4 , thus we may assume that degree of v2 is two and that

P = v2v3v5v6 for some vertices v5 and v6. Similarly, G \ v3 contains P4

as a subgraph, hence we may assume that there is a vertex v7 adjacent

to v4. However, the graph G then would contain K2K3K2 as a subgraph.

Therefore, G does not contain a triangle, and it must be a tree.

It is however easy to verify using Theorem 4.3 that the only tree-depth

critical trees with tree-depth four are P8, P 1
4P

2
4 and P 2

4P
2
4 . It follows

that any graph with td(G) > 3 contains one of the graphs in D as a

subgraph.

Corollary 4.3. The set obs≤m(G3) contains exactly all the graphs de-

picted in the inner polygon in Figure 4.2.

84 4.7. A Reduction for Tree-depth

Proof. Follows directly from Observation 4.2 and the fact that C5≤mC6

and C5≤mC7.

Corollary 4.4. The set obsv(G3) contains exactly all the graphs in Fig-

ure 4.2.

Proof. Follows by inspection, using Observation 4.3.

Notice that the obstructions for Gk have at most 2k vertices for k ∈ [3].

Hence Theorem 4.2 is not sharp even in this case (it only claims that the

obstructions have at most 16 vertices). We conclude this section with the

following conjecture.

Conjecture 2. For every k ≥ 1, the order of the graphs in obsv(Gk) is

bounded by 2k.

4.7 A Reduction for Tree-depth

In this section, towards the effort of trying to identify minimal graphs

that do not belong to the graph class Gk, we prove a reduction which

facilitates the identification of these graphs with respect to relations that

allow vertex removals.

In particular, we suggest a procedure which permits us to remove a

vertex set from a graph G while preserving its tree-depth.

Given a graph G we say that a set S ⊆ V (G) is a set of siblings if for

every x, y ∈ S, NG(x) = NG(y). Consider the following.

Observation 4.16. Let G be a graph and ρ be a k-vertex ranking of G.

Let also v1, v2 ∈ V (G) such that {v1, v2} ∈ E(G) and ρ(v1) < ρ(v2). Then

ρ(v2) /∈ ρ(NG\{v2}(v1)).

We now prove the following general reduction-lemma.

4. Identifying the Obstructions for Tree-depth 85

Lemma 4.16. Let k be a positive integer, G be a graph and S ⊆ V (G) be

a set of siblings of G each of degree k. Let also G′ = G \ S′ where S′ is

any subset of S such that |S′| ≤ |S| − k. Then td(G) = td(G′).

Proof. We examine the non-trivial case where |S| ≥ k + 1. We denote

S′′ = S \ S′ = {ui | i ∈ |S′′|}. As G′ is a subgraph of G, it is enough

to prove that td(G) ≤ td(G′). Let ρ′ : V (G′) → {1, . . . , t} be a vertex

ranking of G′. Let N = {vi | i ∈ [k]} be the common neighbourhood

of the vertices in S′′ and without loss of generality assume that ρ′(vi) ≤
ρ′(vi+1), i ∈ [k − 1]. Notice that |S′′| ≥ k and without loss of generality

assume that ρ′(ui) ≤ ρ′(ui+1), i ∈ [|S′′| − 1]. We need the following claim.

Claim 4. Let P be a (z′, z)-path in G where z ∈ S′′, z′ ∈ (G\S′′)\N , and

ρ′(z) = ρ′(z′). Let P ′ be the portion of P between z′ and the first vertex,

say x, in N (recall that N is a separator of G). Then there exists a vertex

y ∈ V (P ′) \ {z′} such that ρ′(y) > ρ′(z′).

Proof of Claim 4. It is enough to observe that the path P ′′ = (V (P ′) ∪
{z}, E(P ′) ∪ {{x, z}}) should contain an internal vertex y where ρ′(y) >

ρ′(z′).

In what follows we construct a vertex ranking ρ : V (G) → {1, . . . , t}.
Let

m =

max{i | ρ′(u1) > ρ′(vi)}+ 1 if A = {i | ρ′(u1) > ρ′(vi)} 6= ∅

1 otherwise

and observe that m ≤ k + 1. We claim that

ρ = {(x, ρ′(x)) | x ∈ V (G′) \ (S′′ ∪
⋃

i∈[m−1]

{vi})} ∪ σ

86 4.7. A Reduction for Tree-depth

where

σ =

{(vi, ρ′(ui+1)) | i ∈ [m− 1]} ∪ {(x, ρ′(u1)) | x ∈ S} m 6= k + 1

{(vi, ρ′(ui)) | i ∈ [m− 1]} ∪ {(x, ρ′(v1)) | x ∈ S} m = k + 1

is a t-vertex ranking of G.

First we examine the case where m = 1. Then observe that

ρ′′ = {(x, ρ′(x)) | x ∈ V (G′) \ S′′} ∪ {(x, ρ′(u1)) | x ∈ S′′}

is a t-vertex ranking of G′. It is easy to observe that ρ′′∪{(x, ρ′(u1)) | x ∈
S′} is a t-vertex ranking of G that is equal to ρ.

We examine now the case where 1 < m ≤ k + 1. As A 6= ∅, Observa-

tion 4.16 implies that

ρ′(ui) < ρ′(ui+1), i ∈ [|S′′| − 1] (4.10)

ρ′(vi) < ρ′(vi+1), m ≤ i ≤ k − 1 (4.11)

ρ′(NG′\S′′(
⋃

i∈[m−1]

{vi})) ∩ ρ′(S′′) = ∅ (4.12)

thus, from (4.10), |ρ′(S′′)| = |S′′| ≥ k. We distinguish the following cases:

Case 1. 1 < m < k + 1. We claim that

ρ′′ = {(x, ρ′(x)) | x ∈ V (G′) \ (S′′ ∪
⋃

i∈[m−1]

{vi})} ∪

{(vi, ρ′(ui+1)) | i ∈ [m− 1]} ∪ {(x, ρ′(u1)) | x ∈ S′′}

is a t-vertex ranking of G′. Indeed, ρ′′ is a proper coloring of G′ because

of (4.10), (4.11), and (4.12). To prove that ρ′′ is a t-vertex ranking, we

consider a (z′, z)-path P between two vertices z, z′ ∈ V (G′) where ρ′′(z) =

ρ′′(z′). We observe the following.

4. Identifying the Obstructions for Tree-depth 87

Claim 5. |ρ′′(N)| = k.

Proof of Claim 5. It follows directly from (4.10) and (4.11).

We distinguish the following subcases.

Subcase 1.1. If one, say z, of the endpoints of P belongs to S′′, then P

contains at least one vertex vi, i ∈ N . If i ∈ A then ρ′′(vi) ≥ ρ′(u2) >

ρ′(u1) = ρ′′(z). If i ∈ [k] \A, then ρ′′(vi) = ρ′(vi) > ρ′(u1) = ρ′′(z).

Subcase 1.2. If one, say z, of the endpoints of P belongs to N ′ = {vi | i ∈
A}, then we assume that z = vi and, from Claim 5, z′ ∈ (V (G′) \S′′) \N .

Let P ′ be the portion of P between z′ and the first vertex x in N . Then

from Claim 4, there exists a vertex y ∈ V (P ′) \ {z′} where ρ′(y) > ρ′(z′).

Observe that ρ′(z′) = ρ′′(z′) and ρ′′(y) ≥ ρ′(y). Therefore, ρ′′(y) > ρ′′(z′)

and we are done as y ∈ V (P ′) ⊆ V (P).

Subcase 1.3. If one, say z, of the endpoints of P belongs to N \N ′, then

again from Claim 5, z′ ∈ (V (G′) \ S′′) \ N . Let P ′ be the portion of P

between z′ and the first vertex x in N . If w = z then P ′ = P and we are

done. If x 6= z, we define P ′′ = (V (P ′)∪{u1, z}, E(P)∪{{x, u1}, {u1, z}})
and observe that ρ′(z) = ρ′′(z′) and ρ′(z′) = ρ′′(z′). Therefore, P ′′ con-

tains some internal vertex y where ρ′(y) > ρ′(z) = ρ′′(z). Notice also that

ρ′(u1) < ρ′(z), thus y ∈ V (P ′). It also holds that ρ′′(y) ≥ ρ′(y), therefore

ρ′′(y) > ρ′′(z) and we are done as y ∈ V (P ′) ⊆ V (P).

Subcase 1.4. If both z, z′ belong in (V (G′) \S′′) \N , then we examine the

non-trivial case where V (P) ∩ S′′ 6= ∅ (recall that the new coloring, only

increases the colors not in S′′). Let P ′ (respectively P ′′) be the portion

of P between z (respectively z′) and the first vertex x (respectively x′) in

88 4.7. A Reduction for Tree-depth

N . We define the path P ′′′ = P ′ ∪ P ′′ ∪ ({u1, x, x
′}, {{x, u1}, {x′, u1}}).

Again ρ′(z) = ρ′′(z′) and ρ′(z′) = ρ′′(z′) and let y be a vertex in P ′′′

where ρ′(y) > ρ′(z) = ρ′′(z). If y ∈ V (P ′) ∪ V (P ′′) then we are done as

ρ′′(y) ≥ ρ′(y) and V (P ′) ∪ V (P ′′) ⊆ V (P). If y = u1, then we are also

done as S′′ ∩ V (P) 6= ∅ and the color assigned by ρ′′ to every vertex in

S′′ ∩ V (P) 6= ∅ is equal to ρ′(u1).

We just proved that ρ′′ is a t-vertex ranking of G′. It remains now to

observe that ρ′′ ∪ {(x, ρ′(u1)) | x ∈ S′} is a t-vertex ranking of G that is

equal to ρ.

Case 2. m = k + 1. We claim that

ρ′′ = {(x, ρ′(x)) | x ∈ V (G′) \ (
⋃

i∈[m−1]

{vi} ∪ S′′)} ∪

{(vi, ρ′(ui)) | i ∈ [m− 1]} ∪ {(x, ρ′(v1)) | x ∈ S′′}

is a t-vertex ranking of G′.

Observe first that Claim 5 is again true from (4.10).

We distinguish the following subcases.

Subcase 2.1. If one, say z, of the endpoints of P belongs to S′′, then P con-

tains at least one vertex vi, i ∈ N . Then ρ′′(vi) ≥ ρ′(u1) > ρ′(v1) = ρ′′(z).

Subcase 2.2. If one, say z, of the endpoints of P belongs to N , then we

assume that z = vi and, from Claim 5, z′ ∈ (V (G′) \ S′′) \ N . Let P ′

be the portion of P between z′ and the first vertex x in N . Then from

the Claim 4, there exists a vertex y ∈ V (P ′) \ {z′} where ρ′(y) > ρ′(z′).

Observe that ρ′(z′) = ρ′′(z′) and ρ′′(y) ≥ ρ′(y). Therefore, ρ′′(y) > ρ′′(z′)

4. Identifying the Obstructions for Tree-depth 89

and we are done as y ∈ V (P ′) ⊆ V (P).

Subcase 2.3. If both z, z′ belong to (V (G′) \S′′) \N , then we examine the

non-trivial case where V (P) ∩ S′′ 6= ∅ (recall that the new coloring, only

increases the colors not in S′′). Let P ′ (respectively P ′′) be the portion

of P between z (respectively z′) and the first vertex x (respectively x′) in

N . We define the path P ′′′ = P ′ ∪ P ′′ ∪ ({u1, x, x
′}, {{x, u1}, {x′, u1}}).

Again ρ′(z) = ρ′′(z′) and ρ′(z′) = ρ′′(z′) and let y be a vertex in P ′′′

where ρ′(y) > ρ′(z) = ρ′′(z). If y ∈ V (P ′) ∪ V (P ′′) then we are done as

ρ′′(y) ≥ ρ′(y) and V (P ′) ∪ V (P ′′) ⊆ V (P). If y = u1, then we are done as

ρ′′(x) ≥ ρ′(u1) and x ∈ V (P ′) ∪ V (P ′′) ⊆ V (P).

We just proved that ρ′′ is a t-vertex ranking of G′. It remains to

observe that ρ′′ ∪ {(x, ρ′(v1)) | x ∈ S′} is a t-vertex ranking of G that is

equal to ρ.

CHAPTER 5

Computing Immersion Obstructions

The development of the Graph Minor Theory constitutes a vital part of

modern Combinatorics. A lot of theorems that were proved and techniques

that were introduced in its context appear to be of crucial importance in

Algorithmics and Parameterized Complexity Theory as well as in Struc-

tural Graph Theory. Such examples are the Excluded Grid Theorem [197],

the Structural Theorems in [193, 207] and the Irrelevant Vertex Technique

in [185]. (For examples of algorithmic applications, see [50, 109] and Chap-

ter 8).

However, while the minor ordering has been extensively studied

throughout the last decades [4, 29, 185, 193, 197, 207, 210, 211], the im-

mersion ordering has only recently gained more attention [58, 109, 216].

Recall that one of the fundamental results that appeared in the last paper

of the Graph Minors series was the proof of Nash-Williams’ Conjecture (see

91

92

Section 3.1), that is, the class of all graphs is well-quasi-ordered by the

immersion ordering [211].

As we have already seen, a direct corollary of these results is that a

graph class C, which is closed under taking immersions, can be character-

ized by a finite family obs≤im(C) of minimal, according to the immersion

ordering, graphs that are not contained in C. Furthermore, in [109], it

was proven that there is an O(|V (G)|3) algorithm that decides whether

a graph H is an immersion of a graph G (where the hidden constants

depend only on H). Thus, an immediate algorithmic implication of the

finiteness of obs≤im(C) and the algorithm in [109], is that it can be decided

in cubic time whether a graph belongs to C or not (by testing if the graph

G contains any of the graphs in obs≤im(C) as an immersion). In other

words, these two results imply that membership in an immersion-closed

graph class can be decided in cubic time. (See also Section 3.3)

Recall here that the same meta-algorithmic conclusion holds for the

minor ordering from the proofs in [193] and [194]. Evenmore, this result,

that is, the existence of a cubic time algorithm deciding the membership

of a graph in a graph class that is closed under minors, broadened the

perspectives towards the understanding of the NP-hard problems. It was

actually at that point, according to M. Langston, that it became clear what

seemed to be as “different levels of hardness” between these problems [22].

Notice for example, for the well-known k-Vertex Cover problem, that

the class of graphs admitting a vertex cover of size at most k is closed

under taking of minors. Therefore, for every fixed k there is a cubic

time algorithm deciding whether a graph has a vertex cover of size k.

However, no similar result can be expected for the k-Coloring problem,

as it is known to be NP-hard for every fixed k ≥ 3. The observation of

this gap in the time complexity of the NP-hard problems encouraged the

5. Computing Immersion Obstructions 93

development of the Parameterized Complexity Theory [66, 82, 172] by M.

Fellows and R. Downey (see also Chapter 8). This theory has proven to

be very powerful and has majorly advanced during the past decades (for

example, see [10, 23, 24, 41, 50]).

Nevertheless, recall that, the aforementioned meta-algorithmic result

for an immersion-closed graph class C assumes that the family obs≤im(C)
is known. Evenmore, as the proofs in [194] and [211] are non-constructive

(see [95]), no generic algorithm is provided that allows us to identify these

obstruction sets for every immersion-closed graph class. Moreover, even

for fixed graph classes, this task can be extremely challenging as such a set

could contain many graphs and no general upper bound on its cardinality

is known other than its finiteness [69] (see, also, the previous chapter).

The issue of the computability of obstruction sets for minors and im-

mersions was raised by M. Fellows and M. Langston [78, 79] and the chal-

lenges towards computing obstruction sets soon became clear. In par-

ticular, in [79], M. Fellows and M. Langston showed that the problem

of determining obstruction sets from machine descriptions of minor-closed

graph classes is recursively unsolvable (which directly holds for the immer-

sion ordering as well). Evenmore, in [37], B. Courcelle, R. Downey and

M. Fellows proved that the obstruction set of a minor-closed graph class

cannot be computed from a description of the minor-closed graph class in

Monadic Second Order Logic (MSO). Thus, a consequent open problem is

to identify the information that is needed for an immersion-closed graph

class C in order to make it possible to effectively compute the obstruction

set obs≤im(C).

Several methods have been proposed towards tackling the non con-

structiveness of these sets (see, for example, [29, 78]) and the problem

of algorithmically identifying minor obstruction sets has been extensively

94

studied [4, 29, 37, 78, 79, 144]. In [29], it was proven that the obstruction

set of a minor-closed graph class F which is the union of two minor-closed

graph classes F1 and F2 whose obstruction sets are given can be com-

puted under the assumption that there is at least one tree that does not

belong to F1∩F2. Evenmore, in [4], it was shown that the aforementioned

assumption is not necessary.

In this section, we initiate the study for computing immersion ob-

struction sets. In particular, we deal with the problem of computing the

set obs≤im(C) for families of graph classes C that are constructed by fi-

nite unions of immersion-closed graph classes. Notice that the union and

the intersection of two immersion-closed graph classes are also immersion-

closed, hence their obstruction sets are of finite size. It is also easy to see

that, given the obstruction sets of two immersion-closed graph classes, the

obstruction set of their intersection can be computed in a trivial way. We

prove that there is an algorithm that, given the obstruction sets of two

immersion-closed graph classes, outputs the obstruction set of their union.

Our approach is based on the derivation of an upper bound on the tree-

width of the obstructions of an immersion-closed graph class. Notice that

the combination of a machine description of an immersion-closed graph

class F with an upper bound on the size of the forbidden graphs makes this

computation possible, but neither the machine description of the graph

class nor the upper bound alone are sufficient information. Moreover, as

mentioned before, no generic procedure is known for computing such an

upper bound. We build on the machinery introduced by I. Adler, M.

Grohe and S. Kreutzer in [4] for computing minor obstruction sets. In

particular, we will ask for an MSO-description of an immersion-closed

graph class instead of a machine description, and a bound on the tree-

width instead of an upper bound on the size of the obstructions of the

5. Computing Immersion Obstructions 95

immersion-closed graph class.

For this, we adapt the results on [4] so to permit the computation of

the obstruction set of any immersion-closed graph class, under the condi-

tions that an explicit upper bound on the tree-width of its obstructions

can also be computed and the class can be defined in MSO. We present

this algorithm at Lemma 5.4, and with that we conclude the computabil-

ity part of the chapter. Our next step is a combinatorial result proving

an upper bound on the tree-width of the obstructions of the union of two

immersion-closed graph classes, whose obstruction sets are known. We

then show that the obstruction set of their union can be effectively com-

puted. Our combinatorial proofs significantly differ from the ones in [4]

and make use of a suitable extension of the Unique Linkage Theorem of

K. Kawarabayashi and P. Wollan [124].

The remainder of this chapter is structured as follows. In Section 5.1

we state the basic notions that we use throughout the section as well as

few well-known results. In Section 5.2 we present our computability result,

that is, we prove that the obstruction set of an immersion-closed graph

class can be computed when an upper bound on the tree-width of its ob-

structions and an MSO-description of the graph class are known. We do

so by proving a version of Lemma 3.1 of [4], adapted to the immersion

ordering. In Section 5.3 we provide the bounds on the tree-width of the

graphs that belong to the set obs≤im(C1 ∪ C2) by assuming that the sets

obs≤im(C1) and obs≤im(C2) are known, where C1 and C2 are immersion-

closed graph classes. By doing this we propagate the computability of im-

mersion obstruction sets to finite unions of immersion-closed graph classes.

96 5.1. Preliminaries

5.1 Preliminaries

We define an ordering ≤ between finite sets of graphs as follows: F1 ≤ F2

if and only if

1.
∑
G∈F1

|V (G)| <
∑
H∈F2

|V (H)| or

2.
∑
G∈F1

|V (G)| =
∑
H∈F2

|V (H)| and
∑
G∈F1

|E(G)| <
∑
H∈F2

|E(H)|.

Definition 5.1 (An equivalent definition of obstruction sets.). Let C be

an immersion-closed graph class. A set of graphs F = {H1, . . . ,Hn} is

called (immersion) obstruction set of C, and is denoted by obs≤im(C), if

and only if F is a ≤-minimal set of graphs for which the following holds:

For every graph G, G does not belong to C if and only if there exists a

graph H ∈ F such that H≤imG.

Remark 2. While we have already defined obstructions sets we also wish

to include Definition 5.1 as it may facilitate the understanding of the proof

of Lemma 5.4.

Recall that, because of the seminal result of N. Robertson and P. Sey-

mour [211], for every immersion-closed graph class C, the set obs≤im(C)
is finite.

In [210], N. Robertson and P. Seymour proved a theorem which is

known as The Vital Linkage Theorem. This theorem provides an upper

bound for the tree-width of a graph G that contains a vital k-linkage

L such that V (L) = V (G), where the bound depends only on k. A

stronger statement of the Vital Linkage Theorem was recently proved by

K. Kawarabayashi and P. Wollan [124], where instead of asking for the

linkage to be vital, it asks for it to be unique. Notice here that a vital

5. Computing Immersion Obstructions 97

linkage is also unique. As in some of our proofs (for example, the proof

of Lemma 5.5) we deal with unique but not necessarily vital linkages we

make use of the Vital Linkage Theorem in its latter form which is stated

below.

Theorem 5.1 (The Unique Linkage Theorem [124, 210]). There exists a

computable function w : N → N such that the following holds. Let L be a

(1-approximate) k-linkage in G with V (L) = V (G). If L is unique then

tw(G) ≤ w(k).

Monadic Second Order Logic

Lemma 5.1. The class of graphs that contain a fixed graph H as an

immersion is MSO-definable by an MSO-formula φH .

Proof. Let V (H) = {v1, v2, . . . , vn} and E(H) = {e1, e2, . . . , em}. Let also

φH be the following formula.

φH :=∃E1, E2, . . . , Em∃x1, x2, . . . , xn

[
(
∧
i∈[n]

V (xi)) ∧ (
∧
j∈[m]

Ei ⊆ E)∧

(
∧
i 6=j

xi 6= xj) ∧ (
∧
p 6=q

Ep ∩ Eq = ∅) ∧ (
∧

er={vk,vl}∈E(H)

path(xk, xl, Er))
]
,

where path(x, y, Z) is the MSO formula stating that the edges in Z form

a path from x to y. This can be done by saying that the set Z of edges is

connected and every vertex v incident to an edge in Z is either incident

to exactly two edges of Z or to exactly one edge with further condition

that v = x or v = z. Thus, path(x, y, Z) can be expressed in MSO by the

98 5.1. Preliminaries

following formula.

[(x 6= y) ∧ ∃p, q(Z(p) ∧ Z(q) ∧ I(x, p) ∧ I(y, q)∧

∀p′ ∈ Z(I(x, p′)→ p = p′) ∧ ∀q′ ∈ Z(I(y, q′)→ q = q′))∧

∀w(V (w) ∧ w 6= x ∧ w 6= y ∧ ∃q1(Z(q1) ∧ I(w, q1))→

∃q2, q3(Z(q2) ∧ Z(q3) ∧ q2 6= q3 ∧ I(w, q2) ∧ I(w, q3)))∧

∀p1, p2, p3(Z(p1) ∧ Z(p2) ∧ Z(p3)∧

∃m(V (m) ∧ I(u, p1) ∧ I(u, p2) ∧ I(u, p3))→
∨
i 6=j

(pi = pj))]

It is easy to verify that φH is the desired formula.

We now state a theorem which plays a crucial role in the proof of

our algorithm for the computation of immersion obstructions for general

immersion-closed graph classes.

Theorem 5.2 ([13, 36]). Let φ be a fixed MSO-formula. There is an

algorithm such that, for every positive integer k and every graph G,

whose tree-width is upper bounded by k and is given together with a tree-

decomposition, decides where φ is satisfied by the graph G .

In [4], I. Adler, M. Grohe and S. Kreutzer provide tools that allow

us to use Theorem 5.2, when an upper bound on the tree-width of the

obstructions is known and an MSO-description of the graph class can be

computed, in order to compute the obstruction sets of minor-closed graph

classes. We adapt their machinery to the immersion ordering and prove

that the tree-width of the obstructions of immersion-closed graph classes

is upper bounded by some function that only depends on the graph class.

This provides a generic technique to construct immersion obstruction sets

when the explicit value of the function is known. Then, by obtaining such

a computable upper bound on the tree-width of the graphs in obs≤im(C),

5. Computing Immersion Obstructions 99

where C = C1∪C2 and C1, C2 are immersion-closed graph classes whose ob-

struction sets are given, we show that the set obs≤im(C) can be effectively

computed.

5.2 Computing Immersion Obstruction Sets

In this section we prove the analogue of Lemma 2.2 in [4] (Lemma 5.2) and

the analogue of Lemma 3.1 in [4] (Lemma 5.4) for the immersion ordering.

We first state the combinatorial lemma of this section.

Lemma 5.2. There exists a computable function f : N → N such that

the following holds. Let H and G be graphs such that H≤imG. If G′ is a

minimal subgraph of G with H≤imG′ then tw(G′) ≤ f(|E(H)|).

The proof of Lemma 5.2 is omitted as a stronger statement will be

proved later on (Lemma 5.7). We continue by giving the necessary defini-

tions in order to prove the analogue of Lemma 3.1 in [4] for the immersion

ordering.

Extension of MSO For convenience, we consider the extension of the

signature τG to a signature τex that pairs the representation of a graph G

with the representation of one of its tree-decompositions.

Definition 5.2. If G is a graph and T = (X , T) is a tree-decomposition

of G, τex is the signature that consists of the relation symbols V,E, I of

τG , and four more relation symbols VT , ET , IT and X.

A tree-dec expansion of G and T , is a τex-structure

Gex = (V (G) ∪ E(G) ∪ V (T) ∪ E(T),

V Gex , EGex , IGex , V Gex
T , EGex

T , IGexT , XGex)

100 5.2. Computing Immersion Obstruction Sets

where V Gex
T = V (T) represents the node set of T , EGex

T = E(T) the edge

set of T , IGexT = {(v, e) | v ∈ e ∩ V (T) ∧ e ∈ E(T)} the incidence relation

in T and XGex = {(t, v) | t ∈ V (T) ∧ v ∈ Xt ∩ V (G)}.

We denote by CTk the class of tree-dec expansions consisting of a graph G

with tw(G) ≤ k, and a tree decomposition (X , T) of G of width(X , T) ≤ k.

Lemma 5.3 ([4]). It holds that:

1. If G is a graph and (X , T) is a tree decomposition of it whose width

is at most k then the tree-width of the tree-dec expansion of G is at

most k + 2.

2. There is an MSO-sentence φCTk such that for every τex-structure G,

G |= φCTk if and only if G ∈ CTk .

A classic result [13] (see Theorem 5.2) states that we can decide, for

every k ≥ 0, if an MSO-formula is satisfied in a graph G of tw(G) ≤ k.

An immediate corollary of this result and Lemma 5.3 is the following.

Corollary 5.1. We can decide, for every k, if an MSO-formula φ is

satisfied in some G ∈ CTk .

Theorem 5.3 ([4]). For every k ≥ 0, there is an MSO-sentence φTk such

that for every tree-dec expansion G ∈ CTl of G, for some l ≥ k, it holds

that G |= φTk if and only if tw(G) = k.

Definition 5.3. A graph class C is layer-wise MSO-definable, if for every

k ∈ N we can compute an MSO-formula φk such that G ∈ C ∧ tw(G) ≤ k
if and only if G |= φk, where G ∈ CTk is the tree-dec expansion of G.

Definition 5.4. Let C be an immersion-closed graph class. The width of

C, width(C) is the minimum positive integer k such that for every graph

G /∈ C there is a graph G′ ⊆ G with G′ /∈ C and tw(G′) ≤ k.

5. Computing Immersion Obstructions 101

Note that Lemma 5.2 ensures that the width of an immersion-closed

graph class is well-defined.

Observation 5.1. If C1 and C2 are immersion-closed graph classes then

the following hold.

1. For every graph G /∈ C1 ∪ C2, there exists a graph G′ ⊆ G such

that G′ /∈ C1 ∪ C2 and tw(G′) ≤ max{r(|E(H)|, |E(J)|) | H ∈
obs≤im(C1), J ∈ obs≤im(C2)}, where r is the function of Lemma 5.7

and thus,

2. For every graph G /∈ C1, there exists a graph G′ ⊆ G such that

G′ /∈ C1 and tw(G′) ≤ max{f(|E(H)|) | H ∈ obs≤im(C1)}, where f

is the function of Lemma 5.2.

Finally, we state the analogue of Lemma 3.1 in [4] for the immersion

ordering.

Lemma 5.4. There exists an algorithm that, given an upper bound l ≥ 0

on the width of a layer-wise MSO-definable class C, and a computable

function f : N → MSO such that for every positive integer k, f(k) = φk,

where φk is the MSO-formula defining C ∩ Tk, it computes obs≤im(C).

Proof. In order to prove the Lemma it is enough to prove the following.

Claim 6. For any finite family of graphs F = {F1, . . . , Fn}, it is decidable

whether the following two following conditions are unsatisfiable for a given

graph G.

1. G ∈ C and there exists an F ∈ F such that F≤imG.

2. G /∈ C and for every F ∈ F , F �im G.

102 5.2. Computing Immersion Obstruction Sets

To see that the above Claim is enough, first notice that if F is a finite

family of graphs for which the formulas χ and ψ are unsatisfiable then F is

a forbidden immersion characterization of C, that is, a graph G belongs to

C if and only if it does not contain any of the graphs in F as an immersion.

By definition, obs≤im(C) is the minimum such family according to the

relation ≤ defined in Section 5.1. Thus, if Claim 6 holds, we can find the

set obs≤im(C) by enumerating, according to ≤, all the finite families of

graphs F and deciding, for each one of them, if the formulas χ and ψ are

unsatisfiable.

Proof of Claim 6. Let G be a graph in C such that F≤imG, for some

F ∈ F . Lemma 5.2 implies that there exists a graph G′ ⊆ G such that

tw(G′) ≤ f(|E(F)|) and F≤imG′, where f is the function of Lemma 5.2.

Observe that G′ ∈ C. Thus, χ is satisfiable if and only if there exists a

graph in C, whose tree-width is bounded from max{f(|E(F)|) : F ∈ F},
that satisfies it, where f is the computable function of Lemma 5.2. Let

φC be the formula defining C ∩ Tk in CTk , and φF ≡
∨
F∈F φF , where φF

is the formula from Lemma 5.1 and k = max{f(|E(F)|) : F ∈ F}. Notice

that there exists some graph G ∈ C that models φF if and only if φC ∧ φF
is satisfiable for some G′ ∈ CTk . From Corollary 5.1, this is decidable.

Let G /∈ C be a graph such that F �im G, for every F ∈ F . Recall that

the width of a graph class C is the minimum positive integer k such that for

every graph G /∈ C there is a G′ ⊆ G with G′ /∈ C and tw(G′) ≤ k. Thus, G

contains a subgraph G′ with tree-width at most w such that G′ /∈ C, where

w is computable by Lemma 5.2. Observe that F �im G′, for every F ∈ F .

If φ′C is the MSO-sentence defining C ∩ Tw (given by the hypothesis), then

there exists a graph G /∈ C such that F �im G, for every F ∈ F if and only

if ¬φ′C ∧¬φF is satisfiable in CTw . The decidability of whether ¬φ′C ∧¬φF
is satisfiable in CTw follows, again, from Corollary 5.1.

5. Computing Immersion Obstructions 103

As Claim 6 holds, the lemma follows.

Corollary 5.2. There is an algorithm that given an MSO formula φ and

k ∈ N, so that φ defines an immersion closed-graph class C of width at

most k, computes the obstruction set of C.

We would like to remark here that while Lemma 5.4 states the neces-

sary conditions for the computation of the immersion instruction set for

any immersion-closed graph class, this result is generic and there is no

uniform way for computing either an upper bound on the width of C or

an MSO-description of C.
In what follows, by proving some combinatorial lemmata, we are able

to conclude that if C1 and C2 are two immersion-closed graph classes, whose

obstruction sets are known, then the set obs≤im(C1 ∪ C2) is computable.

5.3 Tree-width Bounds for the Obstructions

In this section, we give an upper bound on the tree-width of the immersion

obstructions of the graph class C1 ∪ C2 where C1 and C2 are immersion-

closed graph classes, given that their obstruction sets are known. In order

to do this, we first prove a generalization of the Unique Linkage Theorem.

Then we introduce the notion of an r-approximate edge-linkage and work

on the minimal graphs not belonging to C1 ∪ C2.

Finally, as it is trivial to compute an MSO-description of C1 ∪C2 when

we are given the sets obs≤im(C1) and obs≤im(C2), we show that the ob-

struction set of C1 ∪ C2 is computable.

Lemma 5.5. There exists a computable function f : N→ N such that the

following holds. Let G be a graph that contains a 2-approximate k-linkage

L̃ such that V (L̃) = V (G). If L̃ is unique, then tw(G) ≤ f(k).

104 5.3. Tree-width Bounds for the Obstructions

Proof. Let G be a graph that contains a unique 2-approximate k-linkage

L̃ with V (L̃) = V (G) that links the sets A = (α1, α2, . . . , αk) and B =

(β1, β2, . . . , βk) in G. Denote by T the set A ∪ B and consider the graph

Gb with

V (Gb) = V ((G \ T)×K2) ∪ T
E(Gb) = E((G \ T)×K2) ∪ {{t, t′} | t, t′ ∈ T ∧ {t, t′} ∈ E(G)}

∪ {{t, (v, x)} | t ∈ T ∧ x ∈ V (K2) ∧ v ∈ V (G) ∧ {t, v} ∈ E(G)},

where V (K2) = {1, 2}. It is easy to see that Gb contains a k-linkage that

links A and B. Let G′ be a minimal induced subgraph of Gb that contains

a k-linkage L′ that links A and B. From Theorem 5.1, it follows that

tw(G′) ≤ w(k). (5.1)

From now on we work towards proving that G≤mG′. In order to achieve

this, we prove the following two claims for G′.

Claim 7. If L′ is a k-linkage in G′ that links A and B then for every

vertex v ∈ V (G) \ T no path of L′ contains both (v, 1) and (v, 2).

Proof. Towards a contradiction, assume that for some vertex v ∈ V (G)\T ,

there exists a (t, t′)-path P of L′ that contains both (v, 1) and (v, 2).

Without loss of generality, assume also that (v, 1) appears before (v, 2) in

P . Let y be the successor of (v, 2) in P and notice that y 6= (v, 1). From

the definition of Gb and the fact that G′ is an induced subgraph of Gb,

{y, (v, 1)} ∈ E(G′) \ E(L′). By replacing the subpath of P from (v, 1) to

y with the edge {(v, 1), y}, we obtain a linkage in G′ \ (v, 2) that links A

and B. This contradicts to the minimality of G′.

Claim 8. If L′ is a k-linkage in G′ that links A and B then for every

vertex v ∈ V (G) \ T , V (L′) ∩ {(v, 1), (v, 2)} 6= ∅.

5. Computing Immersion Obstructions 105

Proof. Assume, in contrary, that there exists a linkage L′ in G′ and a ver-

tex x ∈ V (G)\T such that L′ links A and B and V (L′)∩{(x, 1), (x, 2)} = ∅.
Claim 7 ensures that, after contracting the edges {(v, 1), (v, 2)}, v ∈
V (G) \ T (whenever they exist), the corresponding paths compose a 2-

approximate k-linkage L̃′ of G \ {x} that links A and B. This is a contra-

diction to the assumption that L̃ is unique. Thus, the claim holds.

Recall that T ⊆ V (G′) and that G′ is an induced subgraph of Gb.

Claim 8 implies that we may obtain G from G′ by contracting the edges

{(v, 1), (v, 2)} for every v ∈ V (G) \ T (whenever they exist). As G≤mG′,
from (5.1), it follows that, tw(G) ≤ w(k).

We remark that, the previous lemma holds for any graph G that

contains an r-approximate k-linkage. This can be seen by substituting

(G \ T)×K2 with (G \ T)×Kr in the proof.

We now state a lemma that provides an upper bound on the tree-width

of a graph G, given an upper bound on the tree-width of its line graph

L(G).

Lemma 5.6. Let k be a positive integer. If G is a graph with tw(L(G)) ≤
k then tw(G) ≤ 2k + 1.

Proof. Suppose that G is graph such that L(G) admits a tree decomposi-

tion of width at most k and recall that every vertex of L(G) corresponds

to an edge of G. We construct a tree decomposition T of G from a tree

decomposition TL of L(G) by replacing in each bag of TL every vertex of

L(G) by the endpoints of the corresponding edge in G. It is easy to verify

that this is a tree decomposition of G. Therefore, tw(G) ≤ 2k + 1.

106 5.3. Tree-width Bounds for the Obstructions

Before we proceed to the next lemma, we need to introduce the no-

tion of an r-approximate k-edge-linkage in a graph. Similarly to the

notion of an r-approximate linkage, an r-approximate edge-linkage in a

graph G is a family of paths E in G such that for every r + 1 distinct

paths P1, P2, . . . , Pr+1 in E, it holds that ∩i∈[r+1]E(Pi) = ∅. We call

these paths the components of the edge-linkage. Let (α1, α2, . . . , αk) and

(β1, β2, . . . , βk) be elements of V (G)k. We say that an r-approximate edge-

linkage E, consisting of the paths P1, P2, . . . , Pk, links (α1, α2, . . . , αk) and

(β1, β2, . . . , βk) if Pi is a path with endpoints αi and βi, for every i ∈ [k].

The order of E is k. We call an r-approximate edge-linkage of order k,

r-approximate k-edge-linkage. When r = 1, we call such a family of paths,

an edge-linkage.

Lemma 5.7. There exists a computable function r such that the follow-

ing holds. Let G1, G2 and G be graphs such that Gi≤imG, i ∈ [2]. If

G′ is a minimal subgraph of G where Gi≤imG′, i ∈ [2], then tw(G′) ≤
r(|E(G1)|, |E(G2)|).

Proof. Let G′ be a minimal subgraph of G such that Gi≤imG′, i ∈ [2].

Notice that the edges of Gi compose a ki-edge-linkage Ei in G, where

ki = |E(Gi)|, i ∈ [2]. Furthermore, observe that the paths of E1 and E2

constitute a 2-approximate k-edge-linkage E of G, where k = k1 + k2.

Indeed, notice that in contrary to linkages, we do not require the paths

that are forming edge-linkages to have different endpoints. The minimality

of G′ implies that
⋃
{P | P ∈ E} = G′. Denote by A = (vi1 , vi2 , . . . , vik)

and B = (vj1 , vj2 , . . . , vjk) the vertex sets that are edge-linked by E in G′

and let Ĝ be the graph with

V (Ĝ) = V (G′) ∪ {uiq | q ∈ [k]} ∪ {ujq | q ∈ [k]},

E(Ĝ) = E(G′) ∪ {tiq | q ∈ [k]} ∪ {tjq | q ∈ [k]},

5. Computing Immersion Obstructions 107

where the vertices uiq and ujq , q ∈ [k], are new, tiq = {uiq , viq}, q ∈ [k],

and tjq = {ujq , vjq}, q ∈ [k].

Consider the line graph of Ĝ, L(Ĝ), and notice that E corresponds

to a 2-approximate k-linkage L from AL to BL in L(Ĝ), where AL =

(ti1 , ti2 , . . . , tik) and BL = (tj1 , tj2 , . . . , tjk). This is true as, from the con-

struction of Ĝ, all the vertices in AL and BL are distinct. The minimality

of G′ yields that V (L) = V (L(Ĝ)) and implies that L is unique. From

Lemma 5.5, we obtain that tw(L(Ĝ)) ≤ f(k). Therefore, from Lemma 5.6,

we get that tw(Ĝ) ≤ p(f(k)), where p is the function of Lemma 5.6. Fi-

nally, as G′ ⊆ Ĝ, tw(G′) ≤ r(k1, k2), where r(k1, k2) = p(f(k1 + k2)).

Notice that Lemma 5.2 follows from Lemma 5.7 when we set G2 to be

the empty graph. Finally, we show that given two immersion-closed graph

classes C1 and C2, the immersion-closed graph class C1 ∪ C2 is layer-wise

MSO-definable.

Observation 5.2. If C1 and C2 are immersion-closed graph classes then

C = C1 ∪ C2 is a layer-wise MSO-definable graph class defined, for every

k ≥ 0, by the formula

φk ≡

 ∧
G∈obs≤im (C1)

¬φG

 ∨
 ∧
H∈obs≤im (C2)

¬φH

 ∧ φTk
where φG and φH are the formulas described in Lemma 5.1, and φTk the

formula of Theorem 5.3 .

We are now able to prove our main result.

Theorem 5.4. Let C1 and C2 be two immersion-closed graph classes. If

the sets obs≤im(C1) and obs≤im(C2) are given then the set obs≤im(C1∪C2)

is computable.

108 5.4. Conclusions

Proof. Observation 5.2 provides us with an MSO-description of the

immersion-closed graph class C1 ∪ C2, and Lemma 5.7 gives us an upper

bound on the width of C1 ∪ C2. Therefore, Lemma 5.4 is applicable.

5.4 Conclusions

In this chapter, we further the study on the constructibility of obstruction

sets for immersion-closed graph classes. In particular, we provide an upper

bound on the tree-width of the obstructions of a graph class C, which is the

union of two immersion-closed graph classes C1 and C2 with obs≤im(C1)

and obs≤im(C2) given. Then, using that result, we prove that obs≤im(C)
is computable.

In [211], N. Robertson and P. Seymour claimed that the class of graphs

is also well-quasi-ordered under the strong immersion ordering. However,

a full proof of this result has not appeared so far. We remark that the

combinatorial results of this chapter, that is, the upper bounds on the

tree-width of the obstructions, also hold for the strong immersion ordering.

Thus, if the claim of N. Robertson and P. Seymour holds, the obstruction

set of the union of two strongly immersion-closed graph classes, whose

obstruction sets are given, can be effectively computed.

Finally, it was proven by B. Courcelle, R. Downey and M. Fellows [37]

that the obstruction set of a minor-closed graph class C cannot be com-

puted by an algorithm whose input is a description of C as an MSO-

sentence. The computability of the obstruction set of an immersion-closed

graph class C, given solely an MSO description of C, remains an open prob-

lem.

CHAPTER 6

The Graph Minors Weak Structure Theorem

The Graph Minors series of Robertson and Seymour appeared to be a rich

source of structural results in Graph Theory with multiple applications

in Algorithms. One of the most celebrated outcomes of this project was

the existence of an O(n3) step algorithm for solving problems such as the

Disjoint Path and the Minor Containment. A basic ingredient of

these algorithms is a theorem, proved in paper XIII of the series [193],

revealing the local structure of graphs excluding some graph as a minor.

This result, now called the weak structure theorem, asserts that there is

a function f : N × N → N such that for every integer k, every h-vertex

graph H, and every graph G, one of the following holds:

1. G contains H as a minor,

2. G has treewidth at most f(k, h), or

109

110

3. G contains a set X of at most
(
h
2

)
vertices (called apices) such that

G \X contains as a subgraph the subdivision W of a wall of height

k that is arranged inside G in a “flat” manner (flatness condition).

To make the above statement precise we need to clarify the flatness con-

dition in the third statement above. We postpone this complicated task

until Section 6.2 and instead, we roughly visualize W in a way that the

part of G \X that is located inside the perimeter P of W can be seen as

a set of graphs attached on a plane region where each of these graphs has

bounded treewidth and its boundary with the other graphs is bounded by

3.

The algorithmic applications of the weak structure theorem reside in

the fact that the graph inside P can be seen as a bidimensional structure

where, for several combinatorial problems, a solution certificate can be

revised so that it avoids the middle vertex of the subdivided wall W .

This is known as the irrelevant vertex technique and can be seen as a

reduction of an instance of a problem to an equivalent one where this

“irrelevant vertex” has been deleted. The application of this technique

has now gone much further than its original use in the Graph Minors

series and has evolved to a standard tool in Algorithmic Graph Minors

Theory (see [42, 44, 106, 133, 134, 138] for applications of this technique).

In this chapter we prove an optimized version of the weak structure

theorem. Our improvement is twofold: first, the function f is now linear

on k and second, the number of the apices is bounded by h− 5. Both our

optimizations are optimal as indicated by the graph J obtained by taking

a (k× k)-grid (for k ≥ 3) and making all its vertices adjacent with a copy

of Kh−5. Indeed, it is easy to verify that J excludes H = Kh as a minor,

its treewidth is k + h − 5 and becomes planar (here, this is equivalent to

the “flatness” condition) after the removal of exactly h− 5 vertices.

6. The Graph Minors Weak Structure Theorem 111

Our proof deviates significantly from the one in [193]. It builds on

the (strong) structure theorem of the Graph Minors that was proven in

paper XVI of the series [207]. This theorem reveals the global structure

of a graph without a Kh as a minor and asserts that each such graph can

be obtained by gluing together graphs that can “almost be embedded”

in a surface where Kh cannot be embedded (see Section 6.1 for the exact

statement). The proof exploits this structural result and combines it with

the fact, proved in [83], that apex-free “almost embedded graphs” without

a (k × k)-grid have treewidth O(k).

The organization of this chapter is the following. In Section 6.1 we

give the definitions of all the tools that we are going to use in our proof,

including the Graph Minors structure theorem. The definition of the flat-

ness condition is given in Section 6.2, together with the statement of our

main result. Some lemmata concerning the invariance of the flatness prop-

erty under certain local transformations are given in Subsection 6.3.1 and

further definitions and results concerning apex vertices are given in Sub-

section 6.3.2. The proof of our main result is presented in Section 6.4.

Finally, in Section 6.5 we see how two already known results and a new

one can be obtained from our main result and how the duality and self-

duality of some regular tilings can be “expanded” to the realm of the

graphs that exclude a fixed apex graph as a minor.

6.1 Preliminaries

Graph Minors structure theorem. The proof of our result is using

the Excluded Minor Theorem from the Graph Minors. Before we state it,

we need some definitions.

Definition 6.1 (h-nearly embeddable graphs). Let Σ be a surface and

112 6.1. Preliminaries

h > 0 be an integer. A graph G is h-nearly embeddable in Σ if there is a

set of vertices X ⊆ V (G) (called apices) of size at most h such that graph

G − X is the union of (possibly empty) subgraphs G0, . . . , Gh with the

following properties:

i) There is a set of cycles C1, . . . , Ch in Σ such that the cycles Ci are

the borders of open pairwise disjoint discs ∆i in Σ;

ii) G0 has an embedding in Σ in such a way that G0 ∩
⋃
i=1,...,h ∆i = ∅;

iii) graphs G1, . . . , Gh (called vortices) are pairwise disjoint and for 1 ≤
i ≤ h, V (G0) ∩ V (Gi) ⊂ Ci;

iv) for 1 ≤ i ≤ h, let Ui := {ui1, . . . , uimi} be the vertices of V (G0) ∩
V (Gi) ⊂ Ci appearing in an order obtained by clockwise traversing of

Ci. We call vertices of Ui bases of Gi. Then Gi has a path decompo-

sition Bi = (Bi
j)1≤j≤mi , of width at most h such that for 1 ≤ j ≤ mi,

we have uij ∈ Bi
j .

Given a tree decomposition (X , T) of a graph G, where X is the

set of the bags of the decomposition, for every i ∈ V (T) we de-

note by Xi the closure of the bag Xi ∈ X , that is, Xi is the graph

G [Xi] ∪
(
∪j∈NT (i)K [Xi ∩Xj]

)
. (We would like to mention here that the

graph Xi is also referred as torso at node i.)

Observation 6.1. If G is a graph and (X , T) is a tree decomposition of

G then there exists an X ∈ X such that tw(X) ≥ tw(G).

We also need the simple following result.

Lemma 6.1. If G is a graph and X ⊆ V (G), then tw(G−X) ≥ tw(G)−
|X|.

6. The Graph Minors Weak Structure Theorem 113

vortices

apices

G1

G0

c1

surface Σ

≤ h
A

G2 c2 ch
Gh

Figure 6.1: An h-nearly embeddable graph.

We say that a tree decomposition (X , T) of a graph G is small if for

every i, j ∈ V (T), with i 6= j, Xi * Xj .

A simple proof of the following lemma can be found in [82].

Lemma 6.2. The following hold.

1. If G is a graph and (X , T) is a small tree decomposition of G then

|V (T)| ≤ |V (G)|.

2. Every graph G has a small tree decomposition of width tw(G).

The following proposition is known as the Graph Minors structure

theorem [207]. (For an example1 of an H-minor-free graph, see Figure 6.2)

1As the figures only aim to facilitate intuition the surface Σ is depicted as a torus.

Note, however, that we work on general surfaces of bounded genus.

114 6.2. Statement of the Main Result

Proposition 6.1. There exists a computable function f : N → N such

that, for every non-planar graph H with h vertices and every graph G

excluding H as a minor there exists a tree decomposition (G = {Gi | i ∈
V (T)}, T) where for every i ∈ V (T), Gi is an f(h)-nearly embeddable

graph in a surface Σ on which H cannot be embedded.

Figure 6.2: An example of an H-minor-free graph.

6.2 Statement of the Main Result

We define Γk as the following (unique, up to isomorphism) triangulation

of the (k × k)-grid. Let Γ be a plane embedding of the (k × k)-grid such

that all external vertices are on the boundary of the external face. We

triangulate internal faces of the (k × k)-grid such that, in the obtained

graph, all the internal vertices have degree 6 and all non-corner external

6. The Graph Minors Weak Structure Theorem 115

vertices have degree 4. The construction of Γk is completed if we connect

one corner of degree two with all vertices of the external face (we call this

corner loaded). For an example, see Γ6 in Figure 6.3. We also use notation

Γ∗k for the graph obtained from Γk if we remove all edges incident to its

loaded vertex that do not exist in its underlying grid.

Figure 6.3: The graph Γ6.

We define the (k, l)-pyramid to be the graph obtained if we take the

disjoint union of a (k × k)-grid and a clique Kl and then add all edges

between the vertices of the clique and the vertices of the grid. We denote

the (k, l)-pyramid by Πk,l.

Compasses and rural devisions. Let W be a subdivided wall in a

graph G. We say that W is flat in G if its compass K in G has no (c1, c3)-

path and (c2, c4)-path that are vertex-disjoint.

Observation 6.2. If G is a graph containing a flat wall W as a subgraph

then any subdivision of W is also flat in the graph G′ obtained from G by

the subdivisions of the wall.

116 6.2. Statement of the Main Result

If J is a subgraph of K, we denote by ∂KJ the set of all vertices v such

that either v ∈ C or v is incident with an edge of K that is not in J , that

is,

∂KJ = {v ∈ V (J) | v ∈ C or ∃e ∈ E(K) \ E(J) : v ∈ e}.

A rural division D of the compass K is a collection

(D1, D2, . . . , Dm)

of subgraphs of K with the following properties:

1. {E(D1), E(D2), . . . , E(Dm)} is a partition of E(K) into non-empty

subsets,

2. For i, j ∈ [m], if i 6= j then ∂KDi 6= ∂KDj and V (Di) ∩ V (Dj) =

∂KDi ∩ ∂KDj ,

3. For each i ∈ [m] and all x, y ∈ ∂KDi there exists a (x, y)-path in Di

with no internal vertex in ∂KDi,

4. For each i ∈ [m], |∂KDi| ≤ 3, and

5. The hypergraph HK = (
⋃
i∈[m]

∂KDi, {∂KDi | i ∈ [m]}) is planar,

its incidence graph can be embedded in a closed disk ∆ such that

c1, c2, c3, and c4 appear in this order on the boundary of ∆ and for

each hyperedge e of H there exist |e| mutually vertex-disjoint paths

between e and C in K.

We call the elements of D flaps. A flap D ∈ D is internal if

V (D) ∩ V (P) = ∅.

We can now state the main result of this chapter.

6. The Graph Minors Weak Structure Theorem 117

Theorem 6.1. There exists a computable function f such that, for every

two graphs H and G and every k ∈ N, one of the following holds:

1. H is a minor of G.

2. tw(G) ≤ f(h) · k, where h = n(H).

3. ∃A ⊆ V (G) with |A| ≤ an(H) − 1 such that G \ A contains as a

subgraph a flat subdivided wall W where

• W has height k and

• the compass of W has a rural division D such that each internal

flap of D has treewidth at most f(h) · k.

We postpone the proof of Theorem 6.1 until Section 6.4 and we conclude

this section with a brief description of the proof. A main ingredient is the

Strong Structural Theorem, that is, Proposition 6.1, asserting that every

H-minor free graph G can be seen as a tree decomposition such that, for

every node Gi, the graph Gi is a f(h)-nearly embeddable graph. Given

that the graph G has treewidth at least f(h)·k where f(h) is “big enough”

(depending on the excluded graph H), there should exist a node Gi of the

tree decomposition such that the treewidth of Gi is still big enough while

all other nodes have smaller treewidth. This, according to the result of [83],

implies that the f(h)-nearly embeddable graph Gi contains as a subgraph

the subdivision W of a “big enough” (but still depending linearly on k)

wall that is flatly embedded in a surface, in the sense that its perimeter is

the boundary of a disk whose interior, the compass of W , contains, among

other parts of Gi, the rest of W .

Our next, and more technical, step is to extract from this “local”

structure, concerning Gi, a wall and a rural division of its compass in the

118 6.3. Some Auxiliary Lemmata

general graph G. For this, we treat all other parts of the tree decompo-

sition as flaps of bounded treewidth that contain at most three non-apex

vertices of Gi.

At this point, it follows that the third assertion of Theorem 6.1 holds

for the augmented graph G′ that is obtained from G if we add all “virtual”

edges that are edges of Gi but not of Gi. The proof concludes by showing

that, even if the removal of these virtual edges my harm parts of the

subdivided wall W and the corresponding rural division, these parts can be

reconstructed by collections of paths inside the flaps that are now attached

on the compass of Gi.

6.3 Some Auxiliary Lemmata

The main results in this section are Lemmata 6.6 and 6.10 that are used

for the proof of our main result in Section 6.4.

6.3.1 An Invariance Lemma for Flatness

Before proving the main results of this section we need to state the fol-

lowing folklore result. (See, for example, Proposition 1.7.2 in [60].)

Proposition 6.2. Let G and H be graphs such that H ≤m G. If ∆(H) ≤
3, then H ≤tm G.

We also need the following definition. Let G = G0 ∪G+, where G0 is

a graph embedded in a surface Σ of Euler genus γ and let G+ is another

graph that might share common vertices with G0. Let also H be a graph

and v ∈ V (H). We say that G contains H as a v-smooth contraction if

H ≤φc G for some φ : V (G) → V (H) and there exists a closed disk D

in Σ such that the vertices of G+ are outside of D and all the vertices

6. The Graph Minors Weak Structure Theorem 119

of G that are outside D are exactly the model of v, that is, φ−1(v) =

V (G) \ (V (G) ∩D).

Lemma 6.3. Let k be a positive integer and G be a graph that is h-nearly

embedded in a surface of Euler genus γ without apices and contains Γ2·k+8

as a v-smooth contraction, where v is the loaded corner of Γ2·k+8. Then

G contains as a subgraph a subdivided wall of height k whose compass can

be embedded in a closed disk ∆ such that the perimeter of W is identical

to the boundary of ∆.

Proof. Assume that Γ2·k+8 is a v-smooth contraction of G via φ, where v

is the loaded corner of Γ2·k+8. Without loss of generality, let

V (Γ2·k+8) = {1, . . . , 2 · k + 8}2,

where v = (2 · k + 8, 2 · k + 8). Let R be the set of external vertices of

Γ2·k+8 and let G′ = G \
⋃
x∈R φ

−1(x). As G contains Γ2·k+8 as a v-smooth

contraction and v ∈ R, it follows that G′ is embedded inside an open

disk ∆′. Moreover G′ can be contracted to Γ∗2·k+6 via the restriction of

φ to V (G′). From the definition of a wall, it follows that Γ∗2·k+6 contains

Wk+2 as a subgraph. As G′ contains Γ∗2·k+6 as a minor, it follows that G′

contains Wk+2 as a minor. Evenmore, as Wk+2 has maximum degree 3,

from Proposition 6.2, it is also a topological minor of G′. Therefore G′

contains as a subgraph (embedded in ∆′) a subdivided wall of height k+2.

Among all such subdivided walls, let Wex be the one whose compass has

the minimum number of faces inside the annulus Φ = ∆ex \∆ ⊆ ∆′ where

∆ex and ∆ are defined as the closed disks defined so that the boundary of

∆ex is the first layer of Wex and the boundary of ∆ is the second one.

Let W be the subdivided wall of G′ whose perimeter is the boundary

of ∆. By definition, all vertices of the compass K of W are inside ∆. It

120 6.3. Some Auxiliary Lemmata

now remains to prove that the same holds also for the edges of K. Suppose

in contrary that {x, y} is an edge outside ∆. Clearly, both x and y lie on

the boundary of ∆ and {x, y} is inside the disk ∆∗ defined by some brick

of Wex that is inside Φ. We distinguish two cases:

Case 1: {x, y} are in the same brick, say A of W . Then, there is a

path of this brick that can be replaced in W by {x, y} and substitute W

by a new subdivided wall corresponding to an annulus with less faces, a

contradiction. (See, Figure 6.4.)

Figure 6.4: Example of Case 1 in Lemma 6.3.

Case 2: {x, y} are not in the same brick of W . Then x and y should belong

in neighboring bricks, say B and C respectively. Let A be the unique brick

of Wex that contains x and y and w be the unique common vertex in A,B

and C. Observe that there a path PB of B connecting x and w and a

path PC of C connecting y and w. Then we substitute W by a new wall

as follows: we replace w by x, PC by {x, y}, and see PB as a subpath of

the common path between B and C. (See, Figure 6.5.)

Again, the new wall corresponds to an annulus with less faces, a con-

tradiction.

Lemma 6.4 ([83]). There is a function f : N × N → N such that if G is

a graph h-nearly embedded in a surface of Euler genus γ without apices,

6. The Graph Minors Weak Structure Theorem 121

yy

w

wx

Figure 6.5: Example of Case 2 in Lemma 6.3.

where tw(G) ≥ f(γ, h) · k, then G contains as a v-smooth contraction the

graph Γk with the loaded corner v.

Lemma 6.5. Let h be a positive integer and G be a graph that contains a

flat subdivided wall W of height h. If K3 is a subgraph of the compass of

W then after applying a ∆Y -transformation in K3 the resulting graph also

contains a flat subdivided wall W ′ of height h as a subgraph. Moreover,

W ′ is isomorphic to a subdivision of W .

Proof. We examine the non-trivial case where E(K3)∩E(W) 6= ∅. Observe

that, asW does not contain triangles, |E(K3)∩E(W)| < 3. In what follows

we denote by x, y, z the vertices of K3, w the vertex that appears after

the transformation, and distinguish the following cases.

Case 1. K3 and W have exactly one common edge, say {x, y}. As w is

a new vertex, the path (x,w, y) that appears after the ∆Y -transformation

has no common internal vertices with W . In this case, we replace the edge

{x, y} in W by the edges {x,w}, {w, y}.
Case 2. K3 and W have exactly two common edges, say {x, y} and

{x, z}. We distinguish the following two subcases.

Subcase 2.1. x is an original vertex and x is not a corner of W . Let

q be the third vertex in the neighborhood of x. Observe that the ∆Y -

transformation is equivalent to removing the edge {y, z}, which is not an

122 6.3. Some Auxiliary Lemmata

edge of the wall, and subdividing the edge {x, q}. Then the lemma follows

from Observation 6.2. (See, Figure 6.6)

q x xq

Figure 6.6: Example of Subase 2.1 in Lemma 6.5.

Subcase 2.2. x is not an original vertex or x is a corner. Then the

∆Y -transformation is equivalent to removing the edge {y, z}, which is not

an edge of W , and then substituting {y, x} by {y, w} and {x, z} by {w, z}.
(See, Figure 6.7)

Figure 6.7: Example of Subcase 2.2 in Lemma 6.5.

Observe that in all the above cases the resulting wall W ′ remains flat

and is isomorphic to a subdivision of W and the lemma follows.

By applying inductively Observation 6.2 and Lemma 6.5 we derive the

following.

Lemma 6.6. Let h be a positive integer and G be a graph that contains

a flat subdivided wall W of height h as a subgraph. If we apply a sequence

of subdivisions or ∆Y -transformations in G, then the resulting graph will

contain a flat subdivided wall W ′ of height h as a subgraph. Moreover, W ′

is isomorphic to a subdivision of W .

6. The Graph Minors Weak Structure Theorem 123

6.3.2 Pyramids and Tree-width

Let us first state the next.

Proposition 6.3 ([197]). Let n be a positive integer. If H is a planar

graph with |V (H)|+ 2|E(H)| ≤ n, then H is isomorphic to a minor of the

2n× 2n-grid.

Combining Proposition 6.3 with Eűler’s formula for planar graphs we

obtain the following.

Lemma 6.7. If G is a planar graph then G is isomorphic to a minor of

the (14 · n(G)− 24)× (14 · n(G)− 24)-grid.

From the above lemma we obtain the following.

Lemma 6.8. Let h be an integer. If G is an h-apex graph then G is

isomorphic to a minor of Π14·(n(G)−h)−24,h.

Lemma 6.9. Let G be the graph obtained by a ((k+d
√
he)× (k+d

√
he))-

grid if we make its vertices adjacent to a set A of h new vertices. Then G

contains Πk,h as a minor.

Proof. We denote by G′ the grid used for constructing G and let G1 and

G2 two disjoint subgraphs of G′ where G1 is isomorphic to a (k × k)-grid

and G2 is isomorphic to a (α × α)-grid where α = d
√
he. Remove from

G all vertices not in A ∪ V (G1) ∪ V (G2). Then remove all edges of G′

incident to V (G2) and notice that in the remaining graph F , the vertices

in A ∪ V (G2) induce a graph isomorphic to Kh,α2 which, in turn, can be

contracted to a clique on the vertices of A. Applying the same contractions

in F one may obtain Πk,h as a minor of G.

124 6.3. Some Auxiliary Lemmata

Lemma 6.10. Let G,H be graphs such that H is not a minor of G and

there exists a set A ⊆ V (G) such that G \ A contains a wall W of height

g(h)·(k+1)−1 as a subgraph, where g(h) = 14·(h−an(H))+d
√

an(H)e−
24 and h = n(H). If |A| ≥ an(H) then there exists an A′ ⊆ A such that

G\A′ contains a wall W ′ ⊆W of height k as a subgraph with the property

that if K ′ is the compass of W ′ in G \ A′ then V (K ′) ∩ (A \ A′) = ∅.
Evenmore, |A′| < |A|.

Proof. Let A = {αi | i ∈ [|A|]} and Pg(h) = {W(m,l) | (m, l) ∈ [g(h)]2}
be a collection of (g(h))2 disjoint subwalls W(m,l), (m, l) ∈ [g(h)]2 of W

with height k. For every (m, l) ∈ [g(h)]2, we denote by K(m,l) the compass

of W(m,l) in G \ A and let q(m,l) = (q1
(m,l), q

2
(m,l), . . . , q

|A|
(m,l)) be the binary

vector where for every j ∈ |A|,

qj(m,l) =

1 if ∃v ∈ V (K(m,l)) : {v, αj} ∈ E(G)

0 if ∀v ∈ V (K(m,l)) : {v, αj} /∈ E(G)

We claim that there exists an (m′, l′) ∈ [g(h)]2 such that q(m′,l′) 6=
(1, 1, . . . , 1). Indeed, assume in contrary, that for every (m, l) ∈ [g(h)]2,

q(m,l) = (1, 1, . . . , 1). We will arrive to a contradiction by showing that H

is a minor of G. For this, consider the graph

G′ = G[V (W) ∪
⋃

(m,l)∈[g(h)]2

V (K(m,l))] ⊆ G.

For every (m, l) ∈ [g(h)]2, contract each K(m,l) to a single vertex and this

implies the existence of a (g(h)×g(h))-grid as a minor of G′ and therefore

of G \ A as well. Moreover, for each vertex v of this grid it holds that

each vertex in A is adjacent to some vertex of the model of v, therefore

G contains the graph J obtained after we take a (g(h) × g(h))-grid and

connect all its vertices with an(H) new vertices. From Lemma 6.9, G

6. The Graph Minors Weak Structure Theorem 125

contains Π14·(n(h)−an(H))−24,an(H) as minor. Applying now Lemma 6.8, we

obtain that G contains H as a minor, a contradiction. Therefore, there

exist (m′, l′) ∈ [g(h)]2 and j0 ∈ [|A|] such that qj0(m′,l′) = 0. The lemma

follows for A′ = A \ {αj0} and W ′ = W(m′,l′).

6.4 The Main Proof

6.4.1 Notation

Below, we define the notation which is useful to the proof of the main

result.

Given a tree decomposition T = (X = {Xi | i ∈ V (T)}, T) of a

graph G a vertex i0 ∈ V (T) and a set of vertices I ⊆ NT (i0), we define

Ti0,I as the collection of connected components of T \ i0 that contain

vertices of I. Given a subtree Y of T , we define GY = G[∪i∈V (Y)Xi] and

GY = ∪i∈V (Y)Xi.

Observation 6.3. Given a tree decomposition T = (X = {Xi |
i ∈ V (T)}, T) of a graph G, a vertex i0 ∈ V (T), and a set of

vertices I ⊆ NT (i0), it holds that for every T1, T2 ∈ Ti0,I , GT1 ∩ GT2
is a complete graph.

Given a family of graphs F , a graph G and a set of vertices S ⊆ V (G),

we define the class F∗S,G as the collection of the connected components

in the graphs of F \ S and the class FS,G as the set of graphs in F∗S,G
that have some common vertex with G \ S. We say that two graphs

G1, G2 ∈ FS,G are G-equivalent if V (G1) ∩ V (G \ S) = V (G2) ∩ V (G \ S)

and let F1
S,G, . . . ,F

ρ
S,G be the equivalence classes defined that way. We

denote by PF ,S,G = {∪∪∪∪∪∪∪∪∪F1
S,G, . . . ,∪∪∪∪∪∪∪∪∪F

ρ
S,G}, that is, for each equivalence

126 6.4. The Main Proof

class F iS,G we construct a graph in PF ,S,G, by taking the union of the

graphs in F iS,G.

6.4.2 Proof of the Main Result

Before proving the main result let us prove the following.

Observation 6.4. Let T be a tree, k ∈ N and w : V (T) → N such that

there exists at least one vertex v ∈ V (T) with w(v) ≥ k. There exists a

vertex u ∈ V (T) with w(u) ≥ k such that at most one of the connected

components of T \ u contains a vertex u′ with w(u′) > k.

Proof. Let Y = {v ∈ V (T) | w(v) ≥ k}. Pick a vertex r of T and let v

be a vertex of Y with maximum distance away from r. It is easy to verify

that the lemma holds for v.

We may now proceed with the main proof of this section.

Proof of Theorem 6.1. Let G be a graph that excludes H as a minor. By

Proposition 6.1, there is a computable function f1 such that there exists

a tree decomposition

T = (X = {Xi | i ∈ V (T)}, T)

ofG, where for every i ∈ V (T), the graphsXi are f1(h)-nearly-embeddable

in a surface Σ of genus f1(h). Among all such tree-decompositions we

choose T = (X , T) such that:

(i) T is small.

(ii) Subject to (i), T has maximum number of nodes.

(iii) Subject to (ii), the quantity
∑

i,j∈V (T)
i 6=j

|Xi ∩Xj | is minimized.

6. The Graph Minors Weak Structure Theorem 127

Notice that, from Lemma 6.2, Condition (i) guaranties the possibility of

the choice of Condition (ii). We use the notation G to denote the graph

GT and we call the edges of E(G) \ E(G) virtual.

Let w : V (T) → N such that w(i) = tw(Xi). Observation 6.4 and

Observation 6.1 imply that there exists a vertex i0 ∈ V (T) such that

tw(Xi0) ≥ tw(G) and at most one of the connected components of T \ i0
contains a vertex j such that w(j) > w(i0). We denote by Ai0 the set of

apices of the graph Xi0 and by F the graph Xi0 \Ai0 (notice that F ⊆ G
but F is not necessarily a subgraph of G as F may contain virtual edges).

From Lemma 6.1 and the choice of i0 it holds that

tw(F) = tw(Xi0 \Ai0) ≥ tw(Xi0)− |Ai0 | ≥ tw(G)− |Ai0 |. (6.1)

Recall that |Ai0 | ≤ f1(h). Let f2 be the two-variable function of

Lemma 6.4. We define the two-variable function f3 and the one-variable

functions f4 and f5 such that

f5(h) = 14 · (h− an(H)) + d
√

an(H)e − 24

f4(h) = f5(h)|Ai0 |−an(H)+1

f3(h, k) = f2(f1(h), f1(h)) · (4k · f4(h) + 12) + f1(h)

As F is f1(h)-nearly embeddable in Σ and does not contain any apices,

from (6.1) and Lemma 6.4, we obtain that if tw(G) ≥ f3(h, k) then F

contains the graph Q = Γ4k·f4(h)+12 as a v-smooth contraction, where v is

the loaded corner of Q. (See Figure 6.8.)

From Lemma 6.3, it follows that F contains as a subgraph a flat sub-

divided wall W ′ of height 2k · f4(h) + 2 whose compass K ′ in F can be

embedded in a closed disk ∆ such that the perimeter of W ′ is identical to

the boundary of ∆. Furthermore, notice here, that W ′ is inside the same

128 6.4. The Main Proof

Figure 6.8: On the left: The graph F nearly embedded on Σ (with-

out apices), where the dashed parallelogram represents the disk of the

v-smooth contraction. On the right: The content of the disk.

disk where the preimage of the vertices of the v-smooth contraction where

embedded. (See Figure 6.9.)

Let

I ′ = {i ∈ NT (i0) | Xi ∩ V (K ′) 6= ∅}.

In other words, I ′ corresponds to all nodes of the tree decomposition T ,

adjacent to i0, that have vertices “inside” the compass of the subdivided

wall W ′ in F (dashed parallelogram in Figure 6.9).

Claim 9. For every i ∈ I ′, |V (K ′) ∩Xi| ≤ 3.

Proof of Claim 9. As K ′ is clearly planar, every clique in K ′ has size at

most 4. Furthermore, K ′ does not contain K4 as a subgraph.

Indeed, if so, one of the triangles of the clique would be a separator of

G. We denote the vertices of this triangle by z1, z2, and z3. Let then z

be the vertex of the clique that is different from z1, z2, and z3, and S be

6. The Graph Minors Weak Structure Theorem 129

Figure 6.9: On the left: The graph F nearly embedded on Σ (without

apices), where the dashed parallelogram represents the perimeter of the

wall. On the right: Part the content of the disk.

the vertices contained in the interior of the disk defined by the separating

triangle, where z ∈ S.

We may assume that there exists a vertex j ∈ I ′ that contains all

the vertices of the clique, that is, {z, z1, z2, z3} ⊆ Xj . Indeed, towards a

contradiction assume that there is no such vertex. Then, we may modify

T in order to construct a small tree decomposition T ′ with more bags

than T in the following way.

We add a new vertex j0 in T , and a new bag Xj0 containing all vertices

of the clique, the vertices belonging to the interior of the separating trian-

gle of the clique, and all apices of Xi0 , that is Xj0 = {z1, z2, z3} ∪S ∪Ai0 .

We then remove S from Xi0 . Finally we add the edge {i0, j0}, remove all

the edges between the neighbors i ∈ I ′ of i0 in T , whose common vertices

with Xi0 are either apices or vertices of S and the clique, and make them

130 6.4. The Main Proof

adjacent to j0 instead. Formally, let T ′ = (Y, T ′), with

V (T ′) = V (T) ∪ {j0}, where j0 /∈ V (T),

E(T ′) = (E(T) \ {{i, i0} | i ∈ NT (i0)

∧(Xi ∩Xi0) ⊆ S ∪ {z1, z2, z3} ∪Ai0}) ∪

{{i, j0} | i ∈ NT (i0)

∧(Xi ∩Xi0) ⊆ S ∪ {z1, z2, z3} ∪Ai0} ∪

{i0, j0}, and

Y = {Xi | i ∈ V (T) \ {i0}} ∪ {Yi0 , Yj0},

where Yi0 = Xi0 \S and Yj0 = {z1, z2, z3}∪S ∪Ai0 . Notice that, as z1, z2,

and z3 induce a separating triangle in K ′ there is no i ∈ V (T) such that

Xi ∩{z1, z2, z3} 6= ∅ and Xi ∩ [V (K ′) \ (S ∪{z1, z2, z3})] 6= ∅. This implies

that T ′ is indeed a tree decomposition. It is also easy to verify that T ′ is

small. Indeed, notice that neither Yi0 ⊆ Yj0 nor Yj0 ⊆ Yi0 . Evenmore, for

every i ∈ V (T) \ {i0}, neither Xi ⊆ Yj0 nor Xi ⊆ Yi0 , as this would imply

Xi ⊆ Xi0 which is a contradiction to the fact that T is small. Finally

notice that if there exists an i ∈ V (T) \ {i0} such that Yj0 ⊆ Xi, then

{z, z1, z2, z3} ⊆ Yj0 ⊆ Xi, a contradiction to the hypothesis as then by the

definition of a tree decomposition there exists a vertex j ∈ I ′ such that

Xj contains all the vertices of the clique.

It is also easy to see that for every i ∈ V (T) \ {i0}, Yi0 * Xi. Thus,

T ′ contradicts to the choice of T (Condition (ii)). Therefore, there exists

a vertex j ∈ I ′, say j0, such that {z, z1, z2, z3} ⊆ Xj0 .

We will now prove that T does not satisfy Condition (iii). Similarly,

as above, we modify T into a tree decomposition T ′′ in the following

way. We remove S from Xi0 and add it to Xj0 . Then, we remove all the

edges between the neighbors i ∈ I ′ \ j0 of i0 in T , whose common vertices

6. The Graph Minors Weak Structure Theorem 131

with Xi0 are either apices or vertices of S and the clique, and make them

adjacent to j0 instead.

Formally, let T ′′ = (Z, T ′′) be the tree decomposition of G with

V (T ′′) = V (T),

E(T ′′) = (E(T) \ {{i, i0} | i ∈ (NT (i0) \ {j0})

∧(Xi ∩Xi0) ⊆ S ∪ {z1, z2, z3} ∪Ai0}) ∪

{{i, j0} | i ∈ NT (i0)

∧(Xi ∩Xi0) ⊆ S ∪ {z1, z2, z3} ∪Ai0}, and

Z = {Xi | i ∈ V (T) \ {i0, j0}} ∪ {Zi0 , Zj0},

where Zi0 = Xi0 \ S and Zj0 = Xj0 ∪ S. It is again easy to see that T ′′ is

a small tree decomposition of G. Notice also that T and T ′′ contain the

same amount of bags. Furthermore, it is easy to see that∑
D,D′∈Z
D 6=D′

|D ∩D′| <
∑

L,L′∈X
L6=L′

|L ∩ L′|,

a contradiction to the choice of T (Condition (iii)). Therefore, K ′ does

not contain any clique of size 4.

Recall now that for every i ∈ I ′, F [V (K ′)∩Xi] ⊆ K ′ is a clique. Thus,

for every i ∈ I ′, |V (K ′) ∩Xi| ≤ 3.

Recall now that Ti0,I′ is the collection of connected components of

T \ i0 that contain vertices of I ′ and recall also that there exists at most

one tree in Ti0,I′ , say T ′, that contains a vertex i1 with w(i1) > w(i0). Let

W ′ = {W ′1,W ′2,W ′3,W ′4} be the collection of vertex-disjoint subwalls of W ′

of height f4(h) ·k not meeting the vertices of P
(h)
k·f4(h)+2 and P

[v]
k·f4(h)+2 (see

Figure 6.10).

132 6.4. The Main Proof

Figure 6.10: The paths P
(h)
k·f4(h)+2 (cyan - dashed) and P

[v]
k·f4(h)+2 (magenta

- dotted) and the corresponding walls for k = 1 and f4(h) = 3.

From Claim 9, Xi1 has at most 3 vertices in common with K ′, therefore

there exists a subwall W̃ ∈ W ′ of height f4(h) · k, with compass K̃ in F

such that V (K̃) ∩ V (GT ′) = ∅. (For the “big picture”, see Figure 6.11.)

Consequently, if we set

Ĩ = {i ∈ NT (i0) | Xi ∩ V (K̃) 6= ∅}

we have that Ĩ ⊆ I ′ \ {i1} and for every tree T̃ ∈ Ti0,Ĩ ⊆ Ti0,I′ \ {T
′}

it holds that max{w(i) | i ∈ V (T̃)} ≤ f3(h, k). Therefore, for every

T̃ ∈ Ti0,Ĩ , tw(GT̃) ≤ f3(h, k). As GT̃ is a subgraph of GT̃ , it follows that

for every T̃ ∈ Ti0,Ĩ , tw(GT̃) ≤ f3(h, k). (6.2)

From Claim 9, it follows that for every T̃ ∈ Ti0,Ĩ , the vertices in

V (GT̃) ∩ V (K̃) induce a clique in K̃ with at most 3 vertices, where some

of its edges may be virtual.

6. The Graph Minors Weak Structure Theorem 133

Figure 6.11: The compass K̃ of the wall W̃ is inside one of the four

parallelograms belonging to the interior of the dashed parallelogram.

Let Ṽ = V (F) \ V (K̃) and F ′ = {GT̃ | T̃ ∈ Ti0,Ĩ}. Notice that

K̃ = F \ Ṽ . We denote by F the class PF ′,Ṽ ,F . Our aim now is to use the

graphs in F in order to define the compass of W̃ in the graph G \Ai0 and

construct the rural division of that compass.

Claim 10. For every connected component Y of T \ {i0} that contains a

vertex iY of Ĩ, there is a vertex in GY \Xi0 connected with V (K̃)∩V (GY)

with |V (K̃) ∩ V (GY)| vertex-disjoint paths whose internal vertices belong

to GY \Xi0.

Proof of Claim 10. First, observe that, GY has at least one connected

component G′Y that contains the vertices in V (K̃)∩V (GY) and such that

V (G′Y) \ Xi0 6= ∅. Otherwise, observe that we may safely remove the

vertices in V (K̃) ∩ V (GY) from the bags Xi, i ∈ V (Y) and end up to a

contradiction in the choice of T (Condition (iii)). Evenmore, Condition (ii)

134 6.4. The Main Proof

implies that Xi0 is not a separator of G′Y . Notice then that every vertex

in V (K̃) ∩ V (GY) has a neighbor in G′Y \Xi0 , as if not, we would again

end up to a contradiction in the choice of T (Condition (iii)). As G′Y is

connected there exists a vertex v ∈ V (G′Y) \Xi0 and vertex-disjoint paths

from v to the vertices of V (K̃) ∩ V (GY).

We call the edges in Ẽ = E(K̃)\E(G) useless. We also call all vertices

in V (∪∪∪∪∪∪∪∪∪F) \ V (K̃) flying vertices. The non-flying vertices of a graph R in

F are the base of R. Notice that, from the definition of F , each graph R in

F is a subgraph of the union of some graphs of F ′. From Observation 6.3

and (6.2), It follows that

(a) all graphs in F have treewidth at most f3(h, k)

Observation 6.3 and Claim 9 yields that

(b) the base vertices of each R induce a clique of size 1,2, or 3 in K̃.

Also, from Claim 10 and the fact that Ṽ ∪Ai0 ⊆ Xi0 , we have that

(c) each pair of vertices of some graph in F are connected in G by a

path whose internal vertices are flying.

Note that each clique mentioned in (b) may contain useless edges. More-

over, from (c), all virtual edges of K̃ are edges of such a clique. Let

G̃ = (V (G), Ẽ ∪ E(G)), that is, we add in G all useless edges.

It now follows that G̃ \Ai0 contains the wall W̃ as a subgraph and the

compass of W̃ in G̃ \Ai0 is

K̃+ = K̃ ∪
⋃
R∈F

R

Notice that the wall W̃ remains flat in G̃. Indeed, suppose that Q1 and

Q2 are two vertex-disjoint paths between the two anti-diametrical corners

6. The Graph Minors Weak Structure Theorem 135

of W̃ such that the sum of their lengths is minimal. As not both of Q1 and

Q2 may exist in K̃, some of them, say Q1 contains some flying vertex. Let

R be the graph in F containing that vertex. Then there are two vertices

x and y of the base of R met by Q1. From (b), {x, y} is an edge of K̃+

and we can substitute the portion of Q1 that contains flying vertices by

{x, y}, a contradiction to the minimality of the choice of Q1 and Q2.

Let Ẽ+ = E(K̃+)\E(∪∪∪∪∪∪∪∪∪F), that is, Ẽ+ is the set of edges of K̃ not con-

tained in any graph R of F . It follows that all useless edges are contained

in Ẽ+, that is,

Ẽ ⊆ Ẽ+ (6.3)

For every e ∈ Ẽ+, we denote by G̃e the graph formed by the edge e (that

is, the graph G̃[e]) and let E = {G̃e | e ∈ Ẽ+}. We set D̃+ = F∪E . Notice

that,

For every graph R ∈ F , ∂K̃+R is the base of R (6.4)

For every graph G̃e ∈ E , ∂K̃+G̃e = V (G̃e) (6.5)

Claim 11. D̃+ = F ∪ E is a rural division of K̃+.

Proof of Claim 11. Properties 1 and 2, follow from the construction of

the graphs in F and E . Moreover, Properties 3 and 4 follow from (c)

and (b) respectively. For Property 5, recall that W̃ is a subwall of W ′

whose compass K ′ in F can be embedded in a closed disk ∆ such that the

perimeter of W ′ is identical to its boundary. This implies that K̃ can be

embedded in a closed disk ∆̃ ⊆ ∆ such that the corners c1, c2, c3, and c4

of W̃ appear in this order on its boundary. We now consider the following

136 6.4. The Main Proof

hypergraph:

H̃+ = (∪∪∪∪∪∪∪∪∪{∂K̃+D | D ∈ D̃+}, {∂K̃+D | D ∈ D̃+}).

Notice that V (H̃+) = V (K̃). We can now construct I(H̃+) by applying,

for each D ∈ D̃+, the following transformations on the planar graph K̃.

• If |∂K̃+D| = 1, we add a new vertex and an edge that connects it

with the unique vertex of ∂K̃+D.

• If |∂K̃+D| = 2, we subdivide the edge of K̃[∂K̃+D] (recall that

K̃[∂K̃+D] is isomorphic to K2).

• If |∂K̃+D| = 3, we apply a ∆Y -transformation in K̃[∂K̃+D] (recall

that K̃[∂K̃+D] is isomorphic to K3).

From Observation 6.2 and Lemma 6.5, it follows that the obtained

graph remains embedded in ∆̃ (thus, it is also planar). It now remains to

show that for each e ∈ E(H̃+) there exist |e| vertex-disjoint paths between

e and C in K̃+. Notice that for each e ∈ E(H+) the vertices of e belong

to K̃. Finally, there are |e| paths between e and C, otherwise we would

have a contradiction to the choice of the tree-decomposition. For this,

notice that if there do not exist |e| vertex-disjoint paths between e and C

then there exists a separator of e and C of size strictly smaller that |e|.
Then using similar arguments as in the proofs of Claim 9 and Claim 10

we end up contradicting the choice of T . Therefore all conditions required

for Claim 11 hold.

Our aim now is to find in G \ Ai0 a flat subdivided wall Ŵ of height

f4(h) · k. From (b),(c), and (6.4), all the useless edges of K̃ are induced

by the sets ∂K̃+R, R ∈ F , where K̃[∂K̃+R] is isomorphic to either K2

6. The Graph Minors Weak Structure Theorem 137

or K3. Our next step is to prove that, in both cases, we may find a flat

subdivided wall in G \ Ai0 of height f4(h) · k that does not contain any

useless edges.

Case 1. K̃[∂K̃+R] is isomorphic to K2. Then, from (c), there exists

a path in R whose endpoints are the vertices of ∂K̃+R and such that its

internal vertices are flying.

Case 2. K̃[∂K̃+R] is isomorphic to K3. Claim 10, combined with the

facts that Ṽ ∪ Ai0 ⊆ Xi0 and that ∀R∈F ∂K̃+R ⊆ Xi0 , imply that there

exists a flying vertex vR in R and vertex-disjoint paths between vR and

the vertices of ∂K̃+R whose internal vertices are also flying.

The above case analysis implies that for each R ∈ F the edge {x, y} or

the triangle with vertices {x, y, z}, induced by ∂K̃+R may be substituted,

using subdivisions or ∆Y -transformations by a flying path between x and

y or by three flying paths from a flying vertex vR to x, y, and z respectively.

As all edges of these paths are flying, they cannot be useless and therefore

they exist also in G\Ai0 . We are now in position to apply Observation 6.2

and Lemma 6.6 and obtain that G̃\Ai0 contains a flat subdivided wall Ŵ

of height f4(h) · k such that

(I) E(Ŵ) ∩ Ẽ = ∅ (recall that Ẽ is the set of the useless edges) and

(II) Ŵ is isomorphic to a subdivision of W̃ .

Therefore, from (I), Ŵ is a flat subdivided wall of height f4(h)·k in G\Ai0 .

Let C̃ and Ĉ be the corners of W̃ and Ŵ respectively. We denote by

σ be the bijection from C̃ to Ĉ induced by the isomorphism in (II). We

also enhance σ by defining φ = σ ∪ {(x, x) | x ∈ V (W̃) \ C(W̃)}.
Let K̂ be the compass of Ŵ in G \Ai0 . We claim that

138 6.4. The Main Proof

D̂ = {D ∩ K̂ | D ∈ D̃+}

is a rural division of K̂. This is easy to verify in what concerns Properties

(1–4). Property (5) follows from the observation that the mapping φ,

defined above, is an isomorphism between HK̃+ and H
K̂

.

So far, we have found a flat subdivided wall Ŵ in G \Ai0 and a rural

division of its compass K̂. As each flap in D̂ is a subgraph of a flap in D̃+

we obtain that all flaps in D̂ have treewidth at most f3(h, k). By applying

Lemma 6.10 |Ai0 | − an(H) + 1 times, it follows that there exists a set

A ⊆ Ai0 , such that |A| ≤ an(H)− 1 and G \A contains a flat subdivided

wall W of height k such that W ⊆ Ŵ . Moreover, V (K) ∩ Ai0 = ∅, where

K is the compass of W in G \A. As above,

D = {D ∩K | D ∈ D̂}

is a rural devision of K, where all of its flaps have treewidth at most

f3(h, k). The theorem follows as f3 is a linear function of k.

The following corollary gives a more precise description of the structure

of apex minor free graphs.

Corollary 6.1. There exists a computable function f such that for every

two graphs H and G, where H is an apex graph, and every k ∈ N one of

the following holds:

1. tw(G) ≤ f(h) · k, where h = |V (H)|.

2. H is a minor of G.

3. G contains a flat subdivided wall W where

• W has height k and

6. The Graph Minors Weak Structure Theorem 139

• the compass of W has a rural division D such that each internal

flap of D has treewidth at most f(h) · k.

6.5 Tilings of the Plane

In this section we state three theorems that can be obtained from Theo-

rem 6.1. Two of them are already known and we are going to use them

in the chapter after the next one while the third can be used to tie all of

them together through tilings.

However, before we move on to these theorems, let us first define some

notions from the tilings of the plane that are necessary.

6.5.1 Regular Tilings of the Plane

A tiling of the plane T is a countable family of closed sets T = {T1, T2, . . .}
that cover the plane without gaps or overlaps. Explicitly, the union of the

sets T1, T2, . . . is to be the whole plane and the interiors of the sets Ti are

pairwise disjoint.

Figure 6.12: A monohedral tiling of the plane.

The tiles that we deal with in this section are topological disks and

we only consider monohedral tilings, where a tiling is monohedral when

140 6.5. Tilings of the Plane

all the tiles in it have the same size and shape. For an example of a

monohedral tiling, see Figure 6.12. A monohedral tiling of the plane by a

regular polygon is called regular tiling of the plane.

In the next subsection we are going to see that each one of the three

theorems that we mentioned induce a different regular tiling of the plane,

where one of them is self-dual and the other two are dual, in the graph-

theoretic sense.

6.5.2 The Theorems and the Tilings

Let us now start stating the theorems.

Theorem 6.2 (Excluded Grid Theorem for Minors [53]). There exists a

computable function f : N → N such that for every two graphs H and G,

and k ∈ N, if tw(G) ≥ f(n(H)) · k and G does not contain H as a minor

then G contains the (k × k)-grid as a minor.

Figure 6.13: The square tiling of the plane.

It is very easy to see how this can be obtained from Theorem 6.1 as

the (k × k)-grid is a minor of a wall of height k. Notice now that the

6. The Graph Minors Weak Structure Theorem 141

(k × k)-grid can be considered as the regular square tiling of the plane.

(See Figure 6.13.)

Let us now go on to the next.

Theorem 6.3 (Excluded Grid Theorem for Contractions [83]). There

exists a computable function f : N → N such that for every two graphs

H and G, where H is a connected apex graph, and k ∈ N, if tw(G) ≥
f(n(H)) · k and G does not contain H as a minor then G contains Γk as

a contraction.

As above it is fairly easy to see that Theorem 6.3 can be obtained

as a corollary of Corollary 6.1. Let us again notice that the (k × k)-

triangulated grid can be consider as the regular triangular tiling of the

plane. (See Figure 6.14.)

Figure 6.14: The regular triangular tiling of the plane.

Let us now move on to the last theorem of this section, which as above,

asserts the existence of a large wall as a topological minor in a graph G

of big enough tree-width that excludes a graph H as a minor.

142 6.5. Tilings of the Plane

Theorem 6.4 (Excluded Grid Theorem for Topological Minors). There

exists a computable function f : N→ N such that for every two graphs H

and G, and k ∈ N, if tw(G) ≥ f(n(H)) · k and G does not contain H as

a minor then G contains Wk as a topological minor.

It is very easy to confirm that to aforementioned theorem can be ob-

tained from Theorem 6.1. Notice now that, as above, the wall of height k

can be considered as the regular hexagonal tiling of the plane, where the

tiles are also named honeycombs. (See Figure 6.15.)

Let us notice here that while the honeycombs of the tiling and the

bricks of the wall are equivalent in the topological sense, they are not

equivalent to the geometric sense.

Figure 6.15: The regular hexagonal tiling of the plane.

Remark 3. Let us notice here that Theorem 6.3 differs from Theorems 6.2

and 6.4 in the following sense. While in Theorems 6.2 and 6.4 it is enough

to exclude any graph H as a minor in order to ensure the existence of

the grid and the wall as a minor and a topological minor, respectively,

in order to assert the existence of the triangulated grid as a contraction,

6. The Graph Minors Weak Structure Theorem 143

the restriction that H is an apex graph is necessary [83]. We would also

like to comment here that in the chapter after the next we are going

to use Theorem 6.4 and a variation of it in order to define the notion

of bidimensionality on graph parameters that are closed under taking of

(distance) topological minors.

It is known that, in the plane, the square tiling is self-dual in the

topological sense and the hexagonal and the triangular tilings are dual.

See, for example, Figure 6.16.

Figure 6.16: The duality of the triangular and the hexagonal tiling.

Let us now notice the following.

Observation 6.5. Both the duality of the hexagonal and the triangular

tiling and the self-duality of the square tiling can be “expanded” from the

plane to the realm of the apex-minor-free graphs with large enough tree-

width.

CHAPTER 7

Excluding Immersions on Surface Embedded Graphs

In the previous chapter we saw how we can prove an optimized version of

the Weak Structure Theorem, by building on the Graph Minors Strong

Structure Theorem. As we have repeatedly seen the minor relation has

been extensively studied (see, for example, [14, 25, 69, 105, 139, 193, 195,

197, 213, 219]).

However, the immersion ordering only recently attracted the attention

of the research community [1, 17, 58, 101, 109, 119]. In [58], DeVos et al.

proved that for every positive integer t, every simple graph of minimum

degree at least 200t contains the complete graph on t vertices as a (strong)

immersion and in [81] Ferrara et al., given a graph H, provide a lower

bound on the minimum degree of any graph G in order to ensure that H

is contained in G as an immersion. More recently, in [216], Seymour and

Wollan proved a structure theorem for graphs excluding complete graphs

145

146 7.1. Necessary Notions

as immersions.

In terms of graph colorings, Abu-Khzam and Langston in [1] provided

evidence supporting the immersion ordering analog of Hadwiger’s Con-

jecture, that is, the conjecture stating that if the chromatic number of a

graph G is at least t, then G contains the complete graph on t vertices

as an immersion, and proved it for t ≤ 4. This conjecture is proven for

t = 5, 6 and t ≤ 7 by Lescure and Meyniel in [146] and by DeVos et al.

in [59] independently. The most recent result on colorings is an approxi-

mation of the list coloring number on graphs excluding the complete graph

as immersion [119].

Finally, in terms of algorithms, in [109], Grohe et al. gave a cubic time

algorithm that decides whether a fixed graph H is contained in the input

graph G as immersion.

In this chapter, inspired by the Graph Minors Weak Structure The-

orem, we prove a structural characterization for the graphs that can be

embedded in some surface of bounded genus. In particular, we show that

if G is a graph that is embeddable in a surface of Eüler genus γ and H is

a fixed graph then one of the following happens: Either G has bounded

tree-width (by a function that depends only on γ and H), or G has “small”

edge-connectivity (where the bound depends only on H), or G contains

H as an immersion.

Let us now move to the following notions that are necessary for the

proof of this result.

7.1 Necessary Notions

Walls continued. Let W be a wall of height k. We denote by Li the

i-th layer of W , i ∈ dk2e. We also denote by Ai the annulus defined by the

7. Excluding Immersions on Surface Embedded Graphs 147

cycles Li and Li+1, that is, by the i-th and (i+ 1)-th layer, i ∈ [dk2e − 1].

Given an annulus A defined by two cycles C1 and C2, we denote by A
o

the interior of A, that is, A \ (C1 ∪ C2).

A subdivided wall of height k is called tight if

1. the closed disk defined by the innermost (dk2e-th) layer of W is edge-

maximal (for reasons of uniformity we will denote this disk by Ad k
2
e),

2. for every i ∈ [dk2e − 1] the annulus Ai is edge-maximal under the

condition that Ai+1 is edge-maximal.

Given a wall W and a layer L of W , different from the perimeter of

W , let W ′ be the sub-wall of W with perimeter L. W ′ is also called

the sub-wall of W defined by L. We call the following vertices, important

vertices of L; The original vertices of W that belong to L and have degree

2 in the underlying non-subdivided wall of W ′ but are not the corners

of W ′ (where we assume that W ′ shares the original vertices of W). See

Figure 7.1.

Figure 7.1: The important vertices the second layer of a wall of height 5.

148 7.2. Preliminary Combinatorial Lemmata

Observation 7.1. A layer L of a wall W that is different from its perime-

ter and defines a sub-wall W ′ of W of height k contains exactly 4k − 2

important vertices.

From Lemma 6 in [83] and Lemma 6.3 we obtain the following.

Lemma 7.1. Let G be a graph embedded in a surface of Eüler genus γ. If

tw(G) ≥ 48 · (γ + 1)
3
2 · (k+ 5) then G contains as a subgraph a subdivided

wall of height k, whose compass in G is embedded in a closed disk ∆.

Orthogonal drawings An orthogonal drawing of a graph G in a grid Γ

is a mapping which maps

• vertices v ∈ V (G) to sub-grids Γ(v) (called boxes) such that for every

u1, u2 ∈ V (G) with u1 6= u2, Γ(u1) ∩ Γ(u2) = ∅, and

• edges {u1, u2} ∈ E(G) to (u′1, u
′
2)-paths whose internal vertices be-

long to Γ−
⋃
v∈V (G) Γ(v), their endpoints u′i (called joining vertices

of Γ(ui)) belong to the perimeter of Γ(ui), i ∈ [2], and for every

two disjoint edges ei ∈ E(G), i ∈ [2], the corresponding paths are

edge-disjoint.

It is known that.

Lemma 7.2 ([19]). If G is a simple graph then it admits an orthogonal

drawing in an (m+n
2 × m+n

2)-grid. Furthermore, the box size of each vertex

v is deg(v)+1
2 × deg(v)+1

2 .

7.2 Preliminary Combinatorial Lemmata

Detachment tree of P in u Let G be a graph embedded in a closed

disk ∆, v, v1, v2, . . . , vk distinct vertices of G and P = {Pi | i ∈ [k]} be a

7. Excluding Immersions on Surface Embedded Graphs 149

family of k confluent edge-disjoint paths such that Pi is a path from v to

vi, i ∈ [k]. Let u ∈ V (G) \ {v, vi | i ∈ [k]} belonging to more than one

paths in P. Assume that Pu = {Pi1 , Pi2 , . . . , Pir} is the family of paths

in P that contain u. Let ∆u be a closed disk around u. We denote by

e1
ir

and e2
ir

the edges of Pij incident to u, j ∈ [r]. Given any edge e with

u ∈ e we denote by ue its common point with the boundary of ∆u. We

construct a tree Tu in the following way and call it, the detachment tree

of P in u.

Consider the outerplanar1 graph obtained from the boundary of ∆u by

adding the edges {u1
eij
, u2

eij
}, j ∈ [r]. We subdivide the edges {ue1ij , ue2ij },

j ∈ [r], resulting to a planar graph. For every bounded face f of the

graph, let V (f) denote the set of vertices that belong to f . We add a

new vertex vf in its interior and we make it adjacent to the vertices of

(V (f) ∩ {ue | e ∈ u}) \ {u1
eij
, u2

eij
| j ∈ [r]}. Finally we remove the edges

whose both endpoints lie on the boundary of ∆u. We denote this tree by

Tu. Notice that for every e with u ∈ e, the vertex ue is a leaf of Tu. (See

Figure 7.2.)

We replace u by Tu in the following way. First we subdivide every

edge e ∈ G incident to u, and denote by ue the vertex added after the

subdivision of the edge e. We denote by Gs the resulting graph. Consider

now the graph Gr = (Gs \ u) ∪ Tu (where, without loss of generality, we

assume that V (G \ u)∩ V (Tu) = {ue | u ∈ e}). The graph Gr is called the

graph obtained from G by replacing u with the detachment tree of P in u.

Given a family of paths P, we denote by O(P) the set of vertices in P
that belong to more than one paths.

Observation 7.2. Let k, h be positive integers and G be a multigraph

1A graph is called outerplanar if it is a plane graph and all of its vertices lie in the

outer face.

150 7.2. Preliminary Combinatorial Lemmata

(δ)

P1 u

∆u
P2

P3

u3
2

u1
2

u2
2

u3
1

ue1

ue3

ue4

u2
1

u

u1
2

u2
2

u3
1

ue1

ue3

ue4

u2
1

u1
2

u2
2

u3
1 ue3

ue4

u2
1

ue1

u3
2

ue2ue2

ue2

u1
1

u1
1

u3
2 u1

1

(α) (β)

(γ)

Figure 7.2: Example of the construction of a detachment tree.

containing as a subgraph a subdivided wall W of height h, whose compass

C is embedded in a closed disk ∆. Furthermore, let v, vi, i ∈ [k], be vertices

of W such that, there exists a confluent family P of k edge-disjoint paths

from v to the vertices vi, i ∈ [k]. Finally, let u ∈ V (C) \ {v, vi | i ∈ [k]}
belonging to more than one paths of P. The graph Gr obtained from G by

replacing u with the detachment tree of P in u, Tu, contains as a subgraph

a subdivided wall W ′ of height h, whose compass is embedded in ∆ and

there exists a family P ′ of k confluent edge-disjoint paths from v to vi,

i ∈ [k], in W ′ such that O(P ′) ⊆ O(P) \ {u}.

Proof. Notice first that it is enough to prove the observation for the case

where u ∈ V (W). Let e1, e2 (and e3) be the edges of W that are incident

to u. Notice now that the vertices ue1 , ue2 (and ue3) are leaves of Tu.

Thus, from a folklore result, there exists a vertex u′ ∈ V (Tu) such that

there exist 2 (or 3) internally vertex-disjoint paths from u′ to ue1 and ue2

7. Excluding Immersions on Surface Embedded Graphs 151

(and ue3).

We now state the following auxiliary defitions. Let G be a multigraph

that contains as a subgraph a wall of height k whose compass is embedded

in a closed disk. Let v ∈ Ad k
2
e, that is, let v be a vertex contained in the

closed disk defined by the innermost layer of W . Let also P be a path

from v to the perimeter of W . For each layer j of the wall, 2 ≤ j ≤ dk2e,
we denote by xjP the first vertex of P (starting from v) that also belongs

to Lj and we call it incoming vertex of P in Lj .

We denote by P j the maximal sub-path of P that contains v and is

entirely contained in the wall defined by Lj . We denote by yjP its endpoint

in Lj and call it outgoing vertex of P in Lj . Notice that xjP and yjP are

not necessarily distinct vertices.

Lemma 7.3. Let l and k be positive integers, G be a graph, W be a tight

subdivided wall of height k, that is a subgraph of G and whose compass is

embedded in a closed disk ∆, and v be a vertex such that v ∈ Ab k
2
c. If there

exist l vertex-disjoint paths Pi, i ∈ [l], from v to vertices of the perimeter

then there is a brick B of W with B∩Ao

j−1 6= ∅ that contains both yjPi and

xj−1
Pi

.

Proof. Assume the contrary. Then it is easy to see that we can construct

an annulus A′j such that Aj (A′j and |E(Aj)| < |E(A′j)|, a contradiction

to the tightness of the wall. (See Figure 7.3.)

Lemma 7.4. Let k be a positive integer and G be a multigraph that con-

tains as a subgraph a subdivided wall W of height at least 4 · k2 + 1, whose

compass K is embedded in a closed disk ∆. Let also V be a set of k vertices

lying in the perimeter P of W , whose mutual distance in the underlying

non-subdivided wall is at least 2. If there exist a vertex v ∈ A2·k2+1 and k

152 7.2. Preliminary Combinatorial Lemmata

xj−1
Pi

yjPi yjPi

xj−1
Pi

Figure 7.3: We replace the dotted line of the wall by the dashed line.

internally vertex-disjoint paths from v to vertices of P , then there exist k

vertex-disjoint paths from v to the vertices of V in K.

Proof. Assume first, without loss of generality, that the wall W is tight.

Let P1, P2, . . . , Pk be the paths from v to P and, without loss of general-

ity, let [P1, P2, . . . , Pk, P1] be the cyclic ordering according to which they

appear in W clockwise. Our objective is to reroute the paths Pi, i ∈ [k],

so that they end up to the vertices of V . Let let P ′i be the sub-path of Pi

that starts from v and stops the first time Pi meets the (k+ 1)-th layer of

W , that is, P ′i = Pi[v, x
k+1
Pi

], i ∈ [k].

We set j0 = k2 + 1. Consider the layer Lj0 and for every i ∈ [k], let Ti

denote the path of Lj0 starting from xj0i and ending in xj0i+1 (considered

clockwise), where in the case i = k we abuse notation and assume that

xj0k+1 = xj01 (see Figure 7.4). Let also i0 ∈ [k] be the index such that the

path Ti0 contains the maximum number of important vertices amongst

the Ti’s. Without loss of generality, we may assume that i0 = dk2e. From

Observation 7.1, as Lj0 defines a sub-wall W ′ of W of height 2 ·k2 + 1, Lj0

contains exactly 8 · k2 + 2 important vertices. Thus, at least 7k important

vertices are contained in the interior of Ti0 . Let {u1, u2, . . . , uk} be a set

of successive important vertices in Ti0 appearing in this order from xj0i0 to

xj0i0+1, such that the paths Ti0 [xj0i0 , u1] and Ti0 [uk, x
j0
i0+1] internally contain

7. Excluding Immersions on Surface Embedded Graphs 153

at least 3k important vertices.

Ti0

xj03

xj02
xj0k

xj0i0+1

xj0i0+2
Ti0+1

Lj0
xj0i0

xj01

T2

Tk T1

Figure 7.4: The paths Ti, i ∈ [k].

Notice that, without loss of generality, we may assume that the vertices

ui, i ∈ [k], belong to the northern path of W ′. Recall here that each

original vertex w of W ′ ⊆W \ P is contained in exactly one vertical path

P
[v]
w of W . For every i ∈ [k] we assign a path Ri to the vertex ui in

the following way. Let Ri be the maximal subpath of P
[v]
ui that has ui

as an endpoint and does not contain any of the vertices belonging to the

interior of the disk defined by Lj0 in the compass of W . Note here that,

by the way they were defined, the paths Ri, i ∈ [k], are vertex-disjoint

(See Figure 7.5).

For every i ∈ [k], we denote by ufi the important vertex of Lk+1 that

also belongs to Ri. It is easy to notice that in the annulus defined by Lk+1

and L1 there exist k vertex-disjoint paths from the vertices ufi , i ∈ [k], to

the vertices of V . In the remainder of the proof, using subpaths of the

paths Ri, i ∈ [k], and of the dk−2
2 e successive layers of W that precede

Lj0 we reroute the paths P ′i , i ∈ [k], so that they end up to the vertices

ufi , i ∈ [k]. Note that such a construction will complete the proof of the

lemma.

154 7.2. Preliminary Combinatorial Lemmata

L′2 = Lj0−2

u1 u2 u3 u4 u5

Lj0

R1 R2 R3 R4 R5

L′1 = Lj0−1

Figure 7.5: The important vertices of Lj0 , the layers L′1 and L′2, and the

paths Ri.

First, notice that for k odd (respectively, even), Lj0 contains one (re-

spectively, two vertex-disjoint) path F1 (respectively, paths F1 and F2)

from xj0i0 to ui0 (respectively, from xj0i0 to ui0 and from xj0i0+1 to ui0+1).

Consider now the dk−2
2 e successive layers of W preceding Lj0 , that is,

the layers L′j = Lj0−j , j ∈ [dk−2
2 e]. For every j ∈ [dk−2

2 e], let uji0−j be the

first time the path Ri0−j meets L′j when starting from ui0−j . Evenmore,

in the case where k is odd (respectively, even), for every j ∈ [dk−2
2 e], let

uji0+j (respectively, uji0+1+j) be the first time the path Ri0+j (respectively,

Ri0+1+j) meets L′j starting from ui0+j (respectively, ui0+1+j). (See, for

example, the vertices inside the squares in Figure 7.5.)

Towards our ultimate goal, we now need to prove the following.

Claim 12. Let k be an odd (respectively, even) integer. For ev-

ery j ∈ [dk−2
2 e], there exist two vertex-disjoint paths F 1

j and F 2
j be-

7. Excluding Immersions on Surface Embedded Graphs 155

tween the pairs of vertices (xj0−ji0−j , u
j
i0−j) and (xj0−ji0+j , u

j
i0+j) (respectively,

(xj0−ji0+1+j , u
j
i0+1+j)) that do not intersect the paths {Rl | i0− j < l < i0 + j}

(respectively, {Rl | i0 − j < l < i0 + 1 + j}).

Proof of Claim 12. Indeed, this holds by inductively applying the combi-

nation of Lemma 7.3 with the assertion that for every j ≤ 2 · k2 + 1 and

every p, q with 1 < p < q < k, the outgoing vertices of Pp−1 and Pq+1 and

the incoming vertices of Pp and Pq in the layer Lj , y
j
p−1, yjq+1, xjp, and xjq

respectively appear in Lj respecting the clockwise order

[yjp−1, x
j
p, x

j
q, y

j
q+1]

in the tight wall W .

We recursively construct a family P̃ = {P̃i | i ∈ [k]} of paths from v to

{ufi | i ∈ [k]} in the following way.

xj0−1
4

u1 u2 u3 u4 u5

Lj0

R1 R2 R3 R4 R5

L′1 = Lj0−1L′2 = Lj0−2
xj01xj02xj03 xj04xj05

xj0−2
5

xj0−2
1

xj0−1
2

Figure 7.6: Part of the rerouted paths.

156 7.2. Preliminary Combinatorial Lemmata

First we set,

P̃i0 = Pi0

[
v, xj0i0

]
∪ F1 ∪Ri0

[
ui0 , u

f
i0

]
P̃i0+1 = Pi0+1

[
v, xj0i0+1

]
∪ F2 ∪Ri0+1

[
ui0+1, u

f
i0+1

]
where P̃i0+1 is only considered when k is even. Then, for every j ≤ dk−2

2 e,
we set

P̃i0−j = Pi0−j

[
v, xj0−ji0−j

]
∪ F 1

j ∪Ri0−j
[
ui0−j , u

f
i0−j

]
Evenmore, for every j ≤ dk−2

2 e, we set

P̃i0+j = Pi0+j

[
v, xj0−ji0+j

]
∪ F 2

j ∪Ri0+j

[
uji0+j , u

f
i0+j

]
in the case where k is odd, and

P̃i0+1+j = Pi0+1+j

[
v, xj0−ji0+1+j

]
∪ F 2

j ∪Ri0+1+j

[
uji0+1+j , u

f
i0+1+j

]
in the case where k is even.

Claim 12 implies that the paths in P̃ = {P̃i | i ∈ [k]} are vertex-

disjoint. This completes the proof of the lemma. For a rough estimation

of the position of the paths in the wall see Figure 7.6.

We now prove the main result of this section.

Lemma 7.5. Let k be a positive integer and G be a k-edge-connected

multigraph embedded in a surface of Eüler genus γ that contains a subdi-

vided wall W of height at least 4 · k2 + 1 as a subgraph, whose compass

C is embedded in a closed disk ∆. Let also S be a set of vertices in the

perimeter of W whose mutual distance in the underlying non-subdivided

wall is at least 2. If |S| ≤ k then there exist a vertex v in W and |S|
edge-disjoint paths from v to the vertices of S.

7. Excluding Immersions on Surface Embedded Graphs 157

Proof. Let v ∈ A2k2+1 and u ∈ L1 be vertices belonging to the closed disk

defined by the layer L2·k2+1 and to the perimeter of the wall respectively.

As G is k-edge-connected there exist k edge-disjoint paths P1, P2, . . . , Pk

connecting v and u. By Proposition 3.1, we may assume that the paths

are confluent. Let P ′ = {P ′i | i ∈ [k]} be the family of paths P ′i = Pi[v, x
1
i],

i ∈ [k].

Let also V be the set of vertices in V (C) \ (V (L1)∪{v}) that are con-

tained in more than one path in P ′. We obtain the graph Ĝ by inductively

replacing every vertex z ∈ V with the detachment tree of P ′ in z. From

Observation 7.2, Ĝ contains a wall Ŵ of height 4 · k2 + 1 whose compass

is embedded in ∆. Notice also that, as no changes have occurred in the

perimeter of W , W and Ŵ share the same perimeter. Furthermore, Ŵ

contains k internally vertex-disjoint paths from v to the perimeter of Ŵ .

Thus, from Lemma 7.4, Ŵ contains k vertex-disjoint paths from v to S. It

is now easy to see, by contracting the trees Tz, z ∈ V (C) \ (V (L1)∪ {v}),
that W contains k edge-disjoint paths from v to S.

7.3 Main Theorem

We now state and prove the main theorem of this chapter.

Theorem 7.1. There exists a computable function f : N → N such that

for every graph G embedded in a surface of Eüler genus γ and every graph

H one of the following holds:

1. tw(G) ≤ f(γ) · λ · k, where λ = ∆(H) and k = m(H).

2. G is not λ-edge-connected.

3. H≤imG.

158 7.3. Main Theorem

Proof. Let

f(γ, λ, k) = 48 · (γ + 1)
3
2 ·
(

4 (4λ+ 1) k

2
+ 5

)
,

and assume that tw(G) ≥ f(γ, λ, k) and that G is λ-edge-connected. From

Lemma 7.1, we obtain that G contains as a subgraph a subdivided wall

W of height 2 · (2λ+ 1)k whose compass is embedded in a closed disk.

In what follows, using this wall, we will construct a model of H in the

compass of the wall. From Lemma 7.2, H admits an a orthogonal drawing

ψ in an (
m(H) + n(H)

2
× m(H) + n(H)

2

)
-grid,

where the box size of each vertex v ∈ V (H) is

deg(v) + 1

2
× deg(v) + 1

2
.

Notice now that ψ can be scaled to an orthogonal drawing φ to the

grid Γ of size(
2 (4λ+ 1) (m(H) + n(H))

2
+ 1

)
×2

(
2 (4λ+ 1) (m(H) + n(H)) + 2

2
+ 1

)
,

where the box size of each vertex is

(4(deg(v))2 + 2)× 2(4(deg(v))2 + 2),

the joining vertices of each box have mutual distance at least 2 in the

perimeter of the box and no joining vertex is a corner of the box.

Evenmore, for every vertex u, u ∈ Im(φ) \ ∪v∈V (H)Γ(v) of degree

4, that is, for every vertex in the image of φ that is contained in the

intersection of two paths, there is a box in the grid of size (4 deg(u)2 +

2) × 2(4 deg(u)2 + 2), denoted by Q(u), containing only this vertex and

vertices of the paths it belongs to. We denote by ui, i ∈ [4], the vertices

7. Excluding Immersions on Surface Embedded Graphs 159

of Im(φ) belonging to the boundary of Q(u) and, for uniformity, also call

them joining vertices of Q(u).

Towards finding a model of H in the compass of the wall let us observe

that the grid Γ contains as a subgraph a wall of height

(4λ+ 1) (m(H) + n(H))

such that each one of the boxes, either Γ(v), v ∈ V (H), or Q(v), where

v is the intersection of two paths in the image of φ contains a wall W (v)

of height 4 deg(v)2 + 1 and the joining vertices of Γ(v) (the vertices vi,

i ∈ [4], respectively) belong to the perimeter of the wall and have distance

at least 2 in it.

Consider now the mapping of H to W where the boxes Γ(v) and Q(v)

are mapped into sub-walls W (v) of W of height 4 deg(v)2 + 1 joined to-

gether by vertex-disjoint paths as induced by the orthogonal drawing φ.

From Lemma 7.5, as every W (v) has height 4 deg(v)2 + 1 and its compass

is embedded in a closed disk, there exist a vertex zv ∈ V (W (v)) and deg(v)

edge-disjoint paths from zv to the joining vertices of W (v). It is now easy

to see that the compass of W , and thus G, contains a model of H.

An immediate corollary of Theorem 7.1 is that.

Corollary 7.1. There exists a computable function f : N → N such that

for every graph G embedded in a surface of Eüler genus γ and every k ∈ N
one of the following holds:

1. tw(G) ≤ f(γ) · k3.

2. G is not k-edge-connected.

3. Kk+1≤imG.

160 7.3. Main Theorem

Let us also notice that in the case where the graph H is the (k×k)-grid

then Theorem 7.1 impies that.

Corollary 7.2. There exists a computable function f : N → N such that

for every graph G embedded in a surface of Eüler genus γ and every k ∈ N
one of the following holds:

1. tw(G) ≤ f(γ) · k2.

2. G is not 4-edge-connected.

3. (k × k)-grid is an immersion of G.

However, a straightforward argument shows that.

Theorem 7.2 (Excluded Grid Theorem for Immersions). There exists a

computable function f : N → N such that for every graph G that is em-

bedded in a surface of Eüler genus γ and every k ∈ N one of the following

holds:

1. tw(G) ≤ f(γ) · k.

2. G is not 4-edge-connected.

3. (k × k)-grid is an immersion of G.

Proof. Let

f(γ, k) = 48 · (γ + 1)
3
2 · ((43 + 3) · k + 5).

Assume that G is 4-edge-connected and that tw(G) ≥ f(γ, k). From

Lemma 7.1, since tw(G) ≥ f(γ, k), it follows thatG contains as a subgraph

a subdivided wall W of height (43 +3)k, whose compass in G is embedded

in a closed disk ∆.

7. Excluding Immersions on Surface Embedded Graphs 161

Consider the k2 subwalls of W of height (43 + 1) that occur after

removing from it the paths P
[v]
(43+3)j

, P
[h]
(43+3)j

, i, j ∈ [k]. For every i, j ∈ [k],

we denote by W(i,j) the subwall that is contained inside the disk that is

defined by the paths P
(h)
(43+3)(i−1)

, P
(h)
(43+3)i

, P
[v]
(43+3)(j−1)

, and P
[v]
(43+3)j

. In

the case where j = 1 and i = 1, we abuse notation and consider as

P
(h)
(43+3)(j−1)

and P
[v]
(43+3)(j−1)

the paths P
(h)
1 and P

[v]
1 , respectively.

From Lemma 7.5 and the hypothesis that G is 4-edge-connected, for

k = 4, it follows that in the compass of each one of the subwalls {W(i,j) |
i, j ∈ [k]} we may find a vertex v(i,j) and four edge-disjoint paths from

v(i,j) to the vertices vn(i,j), v
s
(i,j), v

w
(i,j), and ve(i,j), that lie in the northern,

southern, western, and eastern path of the wall, respectively.

Finally, we consider the function g((i, j)) = v(i,j) that maps the vertex

(i, j) of the (k × k)-grid to the vertex v(i,j) of the wall W(i,j). Is now easy

to see that g is an immersion model of the (k × k)-grid in the compass of

the wall W and the theorem follows as f is linear on k.

Theorem 7.2 asserts that every graph that is embedded in a surface

of Eüler genus γ, has large enough tree-width, and large enough edge-

connectivity contains a large enough grid as an immersion. The theorems

that ensure the existence of large grids in graphs are called excluded grid

theorems and, as we will see in the next chapter, play an important role

in Bidimensionality Theory.

CHAPTER 8

Parameterized Complexity and Bidimensionality Theory

8.1 Introduction to Parameterized Complexity

As we already mentioned in Chapter 5, the meta-algorithm obtained from

the results of P. Seymour and N. Robertson that recognizes, in cubic

time, the classes of graphs that are closed under taking of minors had

as a consequence the observation that the NP-complete problems have

“different hardness levels”.

Let us consider, for example, the problems k-Vertex Cover and

k-Coloring.

163

164 8.1. Introduction to Parameterized Complexity

k-Vertex Cover
Input: A graph G and an integer k.

Parameter: k.

Question: Is there a set S ⊆ V (G) with |S| ≤ k such that

the graph G \ S does not contain any edges?

k-Coloring
Input: A graph G and an integer k.

Parameter: k.

Question: Is there a proper coloring of the vertices

of G using k colors?

As the class of graphs that have a vertex cover of size k is closed under

taking of minors there exists a cubic time algorithm that recognizes it (and

the hidden constants only depend on the class, that is, on the integer k).

In contrast to k-Vertex Cover, a polynomial time algorithm for the

problem of k-Coloring is not to be expected when k is greater or equal

to 3 as it is known that 3-Coloring is an NP-complete problem and such

a result would mean that P = NP.

Let us then observe that, the the dependence of the complexity of

these problems on the the integer k is crucially different. The goal of

parameterized complexity is to find ways of solving NP-hard problems

more efficiently than brute force. In particular, the aim is to restrict the

combinatorial explosion to a parameter that is hopefully much smaller

than the input size.

Formally, given an alphabet Σ, a parameterization of Σ∗ is any func-

tion κ : Σ∗ → N. Then, for every problem L ⊆ Σ∗, the pair (L, κ), where

κ is a parameterization of Σ∗, is called a parameterized problem. In or-

der to distinguish between parameterized and classical problems we will

8. Parameterized Complexity and Bidimensionality Theory 165

use the prefix p-, so, for example, the problem Vertex Cover in its

parameterized form will be written as p-Vertex Cover.

Let us notice here that the parameterization κ of a problem may be

any function. The understanding of the dependence of the complexity of

a parameterized problem on its parameterization constitutes one of the

most important study subjects of Parameterized Complexity. (For more

details regarding the parameterization of a problem see [77].)

The natural parameterization is the one in which the parameteriza-

tion κ maps Σ to the desired solution size. For example then natural

parameterization for p-Vertex Cover is its size.

As it is known, in Classical Complexity there is a series of successive

inclusions of complexity classes. The most important ones of them are:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

Many complexity classes, from the scope of Parameterized Complexity,

and their inclusions are depicted below:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.

It is also conjectured that these inclusions are strict. Let (I, k) be an

instance of a parameterized problem. We say that this problem belongs

to the complexity class FPT, or is fixed-parameter tractable, if there is an

algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the

size of the input and f is an arbitrary computable function depending on

the parameter k only.

For example, from the meta-algorithm of N. Robertson and P. Sey-

mour, we may obtain that p-Vertex Cover belongs to FPT. The fol-

lowing simple recursive algorithm solves p-Vertex Cover (where the

parameter is the solution size) in 2k · n time.

166 8.1. Introduction to Parameterized Complexity

1. If E(G) = 0, then return YES.

2. If k = 0, then return NO.

3. Choose and edge e = {u, v} of the graph.

4. Recursively call the algorithm for (G− u, k − 1) and (G− v, k − 1)

and return YES if at least one of these inputs returns YES.

The technique used in this algorithm is called bounded-depth search

tree technique. For more on this technique see, for example [15, 30, 32,

80, 84, 107, 173–175]. For more on algorithmic techniques, see [11, 34, 47,

89, 108, 128, 148, 184, 215].

In the context of Parameterized Complexity Theory, the complexity

class of fixed parameter tractable problems is equivalent to the class of

the polynomial time solvable problems in Classical Complexity.

Similarly to the polynomial time and logarithmic space reductions of

Classical Complexity, we may define FPT reductions in Parameterized

Complexity. In particular, let us consider two parameterized problems

(L, κ) and (L′, κ′) on the alphabets Σ and Σ′ respectively. A function

R : Σ∗ → Σ′∗ is called an FPT reduction of the problem (L, κ) to the

problem (L′, κ′) if the following hold:

1. For every x ∈ Σ∗, x belongs to L if and only if R(x) belongs to L′,

2. The problem of computing R belongs to FPT with parameter κ(x),

that is, it can be computed in time f(κ(x)) · |x|O(1), where f is a

computable function, and

3. There exists a computable function g : N → N such that for every

x ∈ Σ∗, κ′(R(x)) ≤ g(κ(x)).

8. Parameterized Complexity and Bidimensionality Theory 167

It is easy to see that the complexity class FPT is closed under FPT

reductions. The notions of hard and complete problems are defined in

a similar way as in Classical Complexity if, instead of polynomial time

reductions, we consider FPT reductions.

Just as NP-hardness is used as evidence that a problem probably is not

polynomial time solvable in terms of Classical Complexity, the proof that

a problem is hard for some of the complexity classes W[1], W[2], . . . , W[P],

and XP gives evidence that the problem is unlikely to be fixed-parameter

tractable.

The main classes in this hierarchy are: The principal analogue of the

classical intractability class NP is W[1], which is a strong analogue, be-

cause a fundamental problem complete for W[1] is the k-Step Halting

Problem for Nondeterministic Turing Machines (with unlimited

nondeterminism and alphabet size) — this completeness result provides

an analogue of Cook’s Theorem in Classical Complexity. In particular this

means that an FPT algorithm for any W[1]-hard problem would yield a

O(f(k)nc) time algorithm for k-Step Halting Problem for Nonde-

terministic Turing Machines. A convenient source of W[1]-hardness

reductions is provided by the result that k-Clique is complete for W[1].

The problem k-Dominating Set is complete for W[2] and XP is the class

of all problems that are solvable in time O(ng(k)). Finally, we should not

neglect to mention the class para-NP which consists of all the problems that

can be solved in FPT time by a non-deterministic Turing Machine. For

an extensive introduction to Parameterized Complexity, see [66, 82, 172].

168 8.2. Distance Topological Minors

8.2 Distance Topological Minors

8.2.1 Spanners on Graphs

In [67], F. Dragan, F. Fomin, and P. Golovach proved that the problem

k-Tree-width t-Spanner is fixed parameter tractable when we are re-

stricted to the class of graphs that exclude some apex graph H as a minor.

For this proof they first showed that.

Theorem 8.1 ([67]). Let G be a planar graph and S be a t-spanner of G.

If G has tree-width k then S has tree-width Ω(kt).

Then, they used the idea of its proof in order to show the more general

combinatorial result.

Theorem 8.2. Let H be an apex graph. If S is a t-spanner of a graph

G that does not contain H as a minor, then S has tree-width Ω(tw(G))

(where the hidden constants in Ω depend only on the size of H and on t).

The proof of the theorem above is based on the Theorem of E. Demaine

and M. Hajiaghayi which ensures the existence of a large enough grid in

a graph G that excludes some graph H as a minor and has large enough

tree-width (see Theorem 6.2).

The proof of Theorem 8.2, however, occupies several pages and needs

to deepen in the Graph Minors Theory. In this section we show how we

may extend Theorem 6.1 in order to prove Theorem 8.2 in a simpler way.

Let us start we the notion of the t-spanner.

Let t be a positive integer, G be a graph, and S be a spanning subgraph

of G. We say that S is a (multiplicative) t-spanner of G if for every

x, y ∈ V (G), distS(x, y) ≤ t · distG(x, y). We call t the stretch factor

of S.

8. Parameterized Complexity and Bidimensionality Theory 169

We also say that a graph H is a distance topological minor of a graph

G if H ≤tm G and for every u, v ∈ V (H), it holds that distH(u, v) ≤
distG(u, v).

We will now prove two lemmata which, when combined with Corol-

lary 6.1, permit us to find the wall of height k as a distance topological

minor in a graph G that does not contain a fixed apex graph H as a minor

and has large enough tree-width.

Lemma 8.1. Let k and d be positive integers, G be a graph that contains a

flat subdivided wall W of height k as a subgraph, and x, y ∈ V (W). If there

exist d vertex-disjoint cycles Ci, i ∈ [d], in the compass of W separating

x and y such that Ci 6= P , i ∈ [d], where P is the perimeter of W , then

distG(x, y) > d.

Proof. First, recall that, we denote by ci, i ∈ [4], the corners of the wall

according to the order they occur in P , that is, the pairs {c1, c3} and

{c2, c4} are the pairs of the anti-diametrical corners.

Assume now, in contrary, that there exist d distinct cycles Ci, i ∈ [d],

in the compass of W separating x, y but distW (x, y) ≤ d. Let Q be a

shortest path with endpoints x and y. As the distance between x and y is

at most d and Q is a shortest path joining them, then Q contains at most

d − 2 internal vertices. Thus, there exists an i ∈ [d] such that the cycle

Ci and the path Q are vertex-disjoint, that is, V (Ci) ∩ V (Q) = ∅. This

implies that we may find two vertex-disjoint paths with endpoints c1, c3

and c2, c4. This contradicts to the hypothesis that W is flat. Therefore,

the lemma holds.

Lemma 8.2. Let k be a positive integer. If G is a graph that contains a

flat subdivided wall W of height 6 · k + 1 as a subgraph, then G contains

Wk as a distance topological minor.

170 8.2. Distance Topological Minors

Figure 8.1: The wall W3 as a distance topological minor in a flat wall of

height 13.

Proof. Recall that W contains 6k+1 vertical and 6k+1 horizontal paths,

P
[v]
1 , P

[v]
2 , . . . , P

[v]
6k+2 and P

(h)
1 , P

(h)
2 , . . . , P

(h)
6k+2. Let us consider the subwall

of W whose perimeter is the cycle defined by the paths P
[v]
k+1, P

[v]
5k+1,

P
(h)
k+1, P

(h)
5k . This is a wall of height 2k + 1. It is now easy to see, from

Lemma 8.1, that inside this wall we may find the wall of height k as a

distance topological minor. (See, for example, Figure 8.1.)

We are now able to prove the following.

Theorem 8.3 (Excluded Grid Theorem for Distance Topological Minors).

There exists a computable function f such that for every two graphs H and

G, where H is an apex graph, and k ∈ N, if tw(G) ≥ f(n(H)) · k and

G does not contain H as a minor, then G contains Wk as a distance

topological minor.

Proof. Assume that G does not contain H as a minor and that tw(G) ≥
f(n(H)) · (6k+1), where f is the function from Corollary 6.1. Then, from

Corollary 6.1, G contains as a subgraph a flat subdivided wall of height

6 · k + 1. Thus, from Lemma 8.2, G contains the wall of height k as a

8. Parameterized Complexity and Bidimensionality Theory 171

distance topological minor.

By following the proof of Theorem 8.1 in [67] and applying this more

general theorem, it is easy to see that, we may obtain Theorem 8.2.

8.2.2 Duality completed . . .

As observed in Remark 3, the Theorems 6.3 and 6.4 extend the duality

of the regular triangular and hexagonal tilings in the realm of the graphs

that exclude a fixed apex graph H as a minor and have large enough

tree-width. We would like to also observe here the following.

Remark 4. The relations of contractions and distance topological minors

are dual.

8.3 Bidimensionality Theory and Subexponen-

tial Algorithms

8.3.1 Bidimensionality Theory for Contractions and Minors

As we discussed in the previous section, the aim of Parameterized Com-

plexity is the better understanding of the dependence of the complexity

of the “hard problems” on the parameter k. In this section we exclusively

deal with problems that are fixed parameter tractable, that is, they are

solvable in time f(k) · nO(1), where f : N → N is a computable function,

and more specifically we deal with f .

From the results in [28, 82, 126] there is evidence according to which

when the input of a parameterized problem, where k is the parameter,

is any general graph then the construction of an FPT algorithm for the

problem with f(k) = 2o(k) is not expected. Nevertheless, after a series of

172 8.3. Bidimensionality Theory and Subexponential Algorithms

results, is started to become apparent that for many problems, if the input

of the algorithm is restricted on special graph classes, such as, for example,

the class of planar graphs, then these are solved by an FPT algorithm with

f(k) = 2o(k) (see, for example, [6, 7, 48–50, 52–55, 64, 87, 92]). Such an

FPT algorithm is called subexponential.

Bidimensionality Theory provides a general technique according to

which we may ensure the existence of subexponential algorithms when

two specific conditions, a mathematical one and an algorithmic one, are

met. The special interest in Bidimensionality Theory lies in the fact that,

even though its results are mainly algorithmic, it is based on fundamental

mathematical theorems of Graph Minors.

A special case of the theorem that consists the fundamental mathe-

matical cornerstone in Bidimensionality Theory is the following:

Theorem 8.4 ([197]). Let k ∈ N. If G is a planar graph that does not

contain the (k × k)-grid as a minor then tw(G) ≤ 6k − 5.

We call a parameter P bidimensional under taking of minors with den-

sity δ if

1. P is closed under taking of minors and

2. If R is the (r × r)-grid then P (R) = (δr)2 + o((δr)2).

For example, in Figure 8.2 one may see that vertex cover is bidimen-

sional with density 1√
2
.

Similarly, we call a parameter P bidimensional under taking of con-

tractions with density δ if

1. P is closed under taking of contractions and

2. If Γk is the (r × r)-triangulated grid then P (Γk) = (δr)2 + o((δr)2).

8. Parameterized Complexity and Bidimensionality Theory 173

Figure 8.2: The bidimensionality of vertex cover.

Bidimensionality Theory is applied on graph parameters that are

closed under taking of minors or contractions and such that, for the pa-

rameterized problem of computing the parameter, parameterized by the

tree-width of the input graph, there exists an FPT algorithm with running

time 2O(tw(G))nO(1). (See Figure 8.3.)

Consider, for example, the following parameterization of p-Vertex

Cover.

p-Vertex Cover

Input: A graph G and an integer k.

Parameter: tw(G).

Question: Is there a subset S ⊆ V (G) with |S| ≤ k such that

the graph G \ S does not contain any edges?

According to results of F. Dorn in [65] there exists an algorithm that

solves the problem in 2O(tw(G))nO(1) time. Notice however that the fact

174 8.3. Bidimensionality Theory and Subexponential Algorithms

Minor−free

Planar

Apex−minor−free

Bounded Genus

Contractions Minors

Figure 8.3: Bidimensionality Theory on minors and contractions.

that vertex cover is bidimensional under taking of minors implies the fol-

lowing. If the tree-width of a graph G is Ω(
√
k) then the graph contains

the grid of size (2
√
k×2
√
k), which does not admit a vertex cover of size k.

Then, we may immediately answer that G does not admit a vertex cover

of size k. Briefly, for an subexponential algorithm for p-Vertex Cover,

where the input is a graph G that does not contain some graph H as a

minor, we follow the steps below.

1. We run Amir’s constant approximation algorithm for tree-width. [12]

2. If tw(G) = Ω(f(n(H)))
√
k then the algorithm returns NO, otherwise

tw(G) = O(f(n(H)))
√
k.

3. We run the 2O(tw(G))nO(1) time algorithm for p-Vertex Cover.

8. Parameterized Complexity and Bidimensionality Theory 175

As tw(G) = O(f(n(H)))
√
k we conclude that p-Vertex Cover can

be solved in time 2O(
√
k)nO(1).

8.3.2 Bidimensionality Theory for (Distance) Topological Minors

Although up to now bidimensionality of a parameter has only been defined

for graph parameters that are closed under taking of minors or contrac-

tions, as above, we may define the notion of bidimensionality for graph

parameters that are closed under taking of topological minors or distance

topological minors.

A parameter P is called bidimensional under taking of topological mi-

nors with density δ if

1. P is closed under taking of topological minors and

2. If Wk is the wall of height k then P (Wk) = (δk)2 + o((δk)2).

Similarly, a parameter P is called bidimensional under taking of dis-

tance topological minors with density δ if

1. P is closed under taking of distance topological minors and

2. If Wk is the wall of height k then P (Wk) = (δk)2 + o((δk)2).

As above, if there exists an FPT algorithm that computes the param-

eter in single exponential time on tree-width, then Theorems 6.4 and 8.3

ensure the existence of a subexponential algorithm for that paremeter in

the case where the input is a graph that excludes some graph H as a

minor. Note here that in the case where the parameter is closed under

taking of distance topological minors then the excluded graph H should

be an apex graph. (See Figure 8.4.)

176 8.4. An Application to Cycle Domination and Scattered Cycle Set

Planar

Apex−minor−free

Bounded Genus

minors

Minor−free

Contractions

Minors

(Topological)

+
Distance

Topological

Figure 8.4: The complete Bidimensionality Theory.

8.4 An Application to Cycle Domination and

Scattered Cycle Set

8.4.1 Introduction to the Erdős-Pósa Property

In 1965, P. Erdős and L. Pósa proved that there is a function f : N → R
such that, given any k ∈ N, every graph contains either k vertex-disjoint

cycles or a set of at most

f(k) =

4k log k + 4k log log k + 17k − 1 if k ≥ 2

1 if k = 1
(8.1)

vertices meeting all its cycles [76].

8. Parameterized Complexity and Bidimensionality Theory 177

More generally, let H be a (not necessarily finite) family of graphs. A

packing of H in G is a set of vertex-disjoint subgraphs of G isomorphic

to a graph in H. The size of the packing is equal to the number of the

vertex-disjoint subgraphs. The packing number of H in G, denoted by

νH(G), is equal to the maximum size of a packing in G. The dual notion

of packing in graphs is the notion of covering. A covering of H in G is

a set of vertices S in G such that the graph G \ S does not contain any

subgraph isomorphic to a graph in H. The size of a covering S is equal

to |S|. The covering number of H in G, denoted by τH(G), is equal to the

minimum size of a covering in G.

It is easy to observe the following.

Observation 8.1. Let H be a family of graphs and G be a graph. If

νH(G) ≥ k then τH(G) ≥ k.

Let H be the family of all cycles. (In this case the set S for which

|S| = τH(G) is also called feedback vertex set of G.) Then the Erdős-Pósa

theorem can be restated as below.

Theorem 8.5. Let G be a graph and k ∈ N. If νH(G) < k then τH(G) <

f(k), where f is the function 8.1 and H is the family of all cycles.

Erdős-Pósa property of a graph class H. We say that a family of

graphs H has the Erdős-Pósa property if there exists a function f : N→ R
such that

νH(G) ≤ τH(G) ≤ f(νH(G)).

It was shown by R. Diestel in [60] that if H is the class of all graphs

that can be contracted to a fixed planar graph H, then H has the Erdős-

Pósa property for an exponential function f . The bound on f was later

178 8.4. An Application to Cycle Domination and Scattered Cycle Set

made linear by F. Fomin, S. Saurabh and D. M. Thilikos for the case where

G belongs to a fixed non-trivial minor-closed graph class G [91].

In the case where H is the family consisting of all directed cycles

and G is a directed graph the Erdős-Pósa property was conjectured by T.

Gallai [74] in 1968 and for all directed graphs by D. Younger in 1973 [222].

The case where k = 2, was proved in [155] by W. McCuaig. The planar

case was resolved by B. Reed and F. Shepherd in [183]. Finally, the

general case was resolved by B. Reed, N. Robertson, P. Seymour, and

R. Thomas [182]. Specifically,

Theorem 8.6 ([182]). There exists a function f : N→ R such that, given

a directed graph G and k ∈ N, G has either k vertex-disjoint directed cycles

or a set S of vertices, with |S| ≤ f(k), that meets all directed cycles.

In this section we consider the extension of the Erdős-Pósa property

in two graph parameters other than the packing number and the covering

number. In particular, let H be a family of graphs and G be a graph. The

r-scattering number of H in G, is the maximum number of vertex-disjoint

copies of graphs of H in G whose closed neighborhoods at distance r are

mutually disjoint. We also define the r-dominating number of H in G, as

the minimum size of a vertex set S in G such that for every copy of a

graph H ∈ H, S ∩N r
G[V (H)] 6= ∅.

Very recently, Z. Dvořák proved that if H consists of the graph with

one vertex, then the r-scattering number and the r-dominating number

have the Erdős-Pósa property [68] for all graphs G ∈ F , where F is a

graph class of bounded expansion.

In the next subsection, inspired by a proof in [91], we prove that if H
is the family of all cycles and r = 1, then the 1-scattered number of H in

G and the 1-dominating number of H in G have the Erdős-Pósa property

when G is a graph that excludes a fixed apex graph as a minor.

8. Parameterized Complexity and Bidimensionality Theory 179

8.4.2 The Proof

Let Fc be the family of all cycles. We define the cycle domination number

of G as

cdom(G) = min{k | ∃D ⊆ V (G) : [(|D| ≤ k) and

(∀G′ ⊆ G)(G′ ∈ Fc =⇒ ∃v ∈ D(N(v) ∩ V (G′) 6= ∅))},

that is, cdom(G) ≤ k if there exists a set D of cardinality at most k such

that for every cycle C in G there is a vertex v ∈ D with dist(v, C) ≤ 1.

(See, for example, Figure 8.5.)

Figure 8.5: A graph with cycle domination number 1.

For every graph G, the scattered cycle number of G is defined as

scs(G) = max{k | ∃V1, V2, . . . , Vk subsets of V (G) such that

∀i, j ∈ [k] with i 6= j,N [Vi] ∩N [Vj] = ∅ and

∀i∈[k]∃C∈Fc : C ⊆ G[Vi]}.

In other words, scs(G) ≥ k if G contains k cycles C1, C2, . . . , Ck whose

neighborhoods are disjoint. (See, for example, Figure 8.6.)

180 8.4. An Application to Cycle Domination and Scattered Cycle Set

Figure 8.6: A graph with scattered cycle number 9.

Observation 8.2. For every graph G, scs(G) ≤ cdom(G).

Observation 8.3. If H and G are graphs such that H is a contraction of

G then scs(H) ≤ scs(G).

In this section we prove that the cycle domination number and the

scattered cycle number satisfy the Erdős-Pósa property in the classes of

graphs that exclude a fixed apex graph as a minor.

Theorem 8.7. Let G be a graph class that excludes a fixed apex graph as

a minor. There is a constant cG (depending only on G) such that for every

graph G ∈ G, it holds that

scs(G) ≤ cdom(G) ≤ cG · scs(G).

Recall here that Theorem 6.3 asserts the existence of the triangulated

8. Parameterized Complexity and Bidimensionality Theory 181

grid Γk as a contraction in a connected graph of large enough tree-width

that excludes a fixed graph H as a minor.

By applying Theorem 6.3 we obtain the following simple lemma that

is crucial in the proof of Theorem 8.7.

Lemma 8.3. If G be a graph class that excludes a fixed apex graph H as

a minor then there is a constant σG depending only on G such that for any

graph G ∈ G, tw(G) ≤ σG · scs(G).

Proof. Let scs(G) ≤ k. If m = dk1/2e+ 1, then

scs(Γ4m) > k.

As Γ4m contains a scattered cycle set of size k, Observation 8.3 implies

that G does not contain Γ4m as a contraction.

Then, from Theorem 6.3, there is a constant σG depending only on G
such that tw(G) ≤ σG ·m and this concludes the proof of the lemma. (See,

for example, Figure 8.7)

For our purposes, we enhance the definition of a tree decomposition

(X , T) as follows; T is a rooted tree on some node r where Xr = ∅ and

each one of its nodes have at most two children that are one of the kinds

below.

1. Introduce node: A node t that has only one child t′ where Xt ⊃ Xt′

and |Xt| = |Xt′ |+ 1.

2. Forget node: A node t that has only one child t′ where Xt ⊂ Xt′ and

|Xt| = |Xt′ | − 1.

3. Join node: A node t that has exactly two children t1 and t2 such

that Xt = Xt1 = Xt2 .

182 8.4. An Application to Cycle Domination and Scattered Cycle Set

Figure 8.7: A scattered cycle set of size 4 in Γ8.

4. Base node: A node t that is a leaf of T , is different from the root,

and Xt = ∅.

A tree decomposition satisfying the aforementioned properties is called

a nice tree decomposition. It is easy to see that each tree decomposition

can be transformed to a nice tree decomposition while maintaining the

same width, for example see [26]). In this section, when we refer to a tree

decomposition (X , T) we presume that it is nice.

Given a tree-decomposition (X , T) and some node t of T we define as

Tt the subtree rooted on t. Clearly, it r is the root of tree, Tr = T . We

also define Gt = G[
⋃
s∈V (Tt)

Xs]. For every t ∈ V (T), we denote its parent

8. Parameterized Complexity and Bidimensionality Theory 183

in T by π(t) and its child by α(t) (in the case where t is a join node we

choose arbitrarily one of its chidren).

Evenmore, we define the set crt(G,T), which we call the set of critical

nodes of T , in the following recursive way; if t is a leaf then t /∈ crt(G,T),

that is, t not a critical node of T . Otherwise, t is critical if and only

if Xt ∪
⋃
s∈crt(Gt,T)

Xα(s) does not dominate all cycles of Gt but Xα(t) ∪⋃
s∈crt(Gt,T)

Xα(s) does. Notice that if t ∈ V (T) is a critical node, then t

is also a forget node. For any graph G, let

crt(G) = min{crt(G, T) | T is a tree decomposition of G}.

Observation 8.4. Let k be a non-negative integer. If G is a graph such

that crt(G) > k then scs(G) > k.

Given a graph G, we call a triple (V1, S, V2) d-separation triple of G if

|S| ≤ d and {V1, S, V2} is a partition of V (G) such that there is no edge

in G with a vertex in V1 and a vertex in V2.

Lemma 8.4. Let G be a class of graphs that exclude a fixed apex graph

H as a minor and let G ∈ G such that scs(G) = k ≥ 1. Then there is a

σG ·
√
k-separation triple (V1, X, V2) of G, with k

3 ≤ crt(G[V1]) ≤ 2k3 and

crt(G[V1]) + crt(G[V2]) ≤ k, where σG is a constant that depends only on

G.

Proof. From Lemma 8.3, there is a tree decomposition T = (X , T) of G

of width at most σG
√
k, where σG is a constant that depends only on G.

Let q : V (T)→ N such that q(t) = crt(Gt, T). Observe that:

(i.) If t is a leaf, then q(t) = 0 from the definition.

(ii.) If t is an introduce node then q(t) = q(α(t)) as Xt ⊆ Xα(t).

184 8.4. An Application to Cycle Domination and Scattered Cycle Set

(iii.) If t is a forget node, q(t) − q(α(t)) ∈ {0, 1}. This holds because t

can be either a critical node or not.

(iv.) If t is a join node, then q(t) = q(t1) + q(t2), where t1 and t2 are its

children in T as q(t) cannot be a critical node.

(v.) q(r) = crt(G, T) if r is the root, as Gr = G.

From the above follows that there exists a unique node t ∈ V (T) such that

q(t) > 2k3 and if t′ is a child of t, then q(t′) ≤ 2k3 . Notice that t is either

a forget or a join node.

In the case where t is a forget node, let V1 = V (Gt) \ Xt, V2 =

V (G) \ (V1 ∪ Xt), and X = Xt, and observe that crt(G[V1]) ≤
⌊

2
k

3

⌋
and crt(G[V2]) ≤

⌊
2
k

3

⌋
.

In the case where t is a join node, then q(t1) ≤ 2k3 and q(t2) ≤ 2k3

but q(t1) + q(t2) = q(t) > 2k3 , where t1 and t2 are the children of t. This

implies that, without loss of generality, q(t1) ≤ k
3 . Let V1 = V (Gt1) \Xt1 ,

V2 = V (G) \ (V1 ∪ Xt1), and X = Xt1 . We conclude that in both cases
k
3 ≤ crt(G[V1]) ≤ 2k3 and crt(G[V1]) + crt(G[V2]) ≤ k.

We our now able to prove our main theorem.

Proof of Theorem 8.7. Let G be a graph in G. Notice that it is enough to

prove the second inequality. Using induction on scs(G) we will prove that

cdom(G) ≤ β · σG · crt(G)− γ · σG ·
√

crt(G).

When scs(G) = 0, the claim holds trivially. Assume now that scs(G) = k,

where k ≥ 1. From Lemma 8.4, G contains a σG ·
√
k-separation triple,

where k
3 ≤ crt(G[V1]) ≤ 2k3 and crt(G[V1]) + crt(G[V2]) ≤ k. Observe

that cdom(G) ≤ cdom(G1) + cdom(G2) + |X|.

8. Parameterized Complexity and Bidimensionality Theory 185

The induction hypothesis implies that for some δ ∈ [1
3 ,

2
3],

cdom(G) ≤ β · σG · δ · k − γ · σG
√
δ · k +

β · σG · (1− δ) · k − γ · σG
√

(1− δ) · k + σG ·
√
k.

This is upper bounded by β = 3.54 and γ = 2.54. Thus, the theorem

follows from Observation 8.4 for cG = 3.54 · σG .

8.5 Kernelization

In this section we present another notion from Parameterized Complexity

that is going to be useful in the next chapter, the notion of kernelization.

In kernelization our aim is to preprocess an instance of a hard problem

so that we obtain a new equivalent instance of smaller size. Then, as the

instance of our problem has shrunk a lot we may apply a “brute force”

algorithm to solve it. Notice here that we want the preprocessing to run

efficiently (in particular, in polynomial time).

Formally, a parameterized problem Π is said to admit a g(k) kernel if

there is a polynomial time algorithm that transforms any instance (x, k)

to an equivalent instance (x′, k′) such that |x′| ≤ g(k) and k′ ≤ g(k). If

g(k) = kO(1) or g(k) = O(k) we say that Π admits a polynomial kernel

and linear kernel respectively.

The kernelization of a parameterized occurs with the assistance of re-

duction rules. A reduction rule is a polynomial time algorithm that takes

an an input an instance (I, k) of a problem Π and outputs an equivalent

instance (I ′, k′) of Π. We apply these reduction rules so to obtain a kernel

of Π.

The notion of kernelization is really important in Parameterized

Complexity Theory as it equivalent to the notion of fixed parameter

186 8.5. Kernelization

tractability.

Theorem 8.8 ([171]). For every parameterized problem (Π, κ), the fol-

lowing are equivalent:

1. (Π, κ) is fixed parameter tractable.

2. Π is decidable and (Π, κ) admits a kernel.

We would like to mention here that many times this theorem appears

erroneously without the condition that Π is decidable.

For example, let’s see how we may obtain a quadratic kernel for k-

Vertex Cover.

Observation 8.5. Let G be a graph for which we try to find a vertex cover

of size at most k. If there exists a vertex v ∈ V (G) such that degG(v) > k,

then v belongs to all vertex covers of G of size at most k.

Indeed, notice that if v is not contained in a vertex cover V of G of

size at most k, then all its neighbors belong to V . This however is a

contradiction since v has more than k neighbors.

Observation 8.6. If G is a graph with ∆(G) ≤ k that admits a vertex

cover of size k, then G has at most k2 edges.

Then the following is a quadratic kernel for k-Vertex Cover.

First we check whether k = 0. In this case if G has no edges we output

a trivially positive instance of the problem otherwise we output a trivially

negative instance.

Otherwise, if k > 0 then if G has a vertex v with degG(v) > k, we

recursively run the algorithm with input (G − v, k − 1). Otherwise, we

check whether G has at most k2 edges. If yes, we output (G, k), otherwise

8. Parameterized Complexity and Bidimensionality Theory 187

we output a trivially negative instance.

We would like to mention here that the above kernelization is at-

tributed to Buss and is called Buss Kernelization [66].

This is a simple example of a kernelization technique. There are many

more techniques either for single problems (see, for example [9, 47, 90])

or for classes of problems (see, for example [24, 135]). However, further

mentioning these techniques is out of the purposes of this section.

Finally, we would like to mention that there exist many proofs of ex-

pected lower bounds on the size of the kernel of a fixed parameter tractable

problem. The lower bound occurs under the condition that if a kernel of

smaller size is existent then some unresolved conjecture of Parameterized

Complexity fails. For example, in Classical Complexity, it is known that

3-Sat is not solvable in polynomial time unless P = NP. The most famous

of these conditions when we work on lower bounds of kernels is the Expo-

nential Time Hypothesis that was proposed by R. Impagliazzo, R. Paturi,

and R. Zane [126].

Definition 8.1 (Exponential Time Hypothesis). Let φ be an instance

of 3-Sat on n variables and m clauses. There does not exists an 2o(m)

algorithm that decides whether there exists a satisfying assignment on the

variables of φ.

In the next chapter we study a parameterization of Set Splitting.

CHAPTER 9

Algorithms and Kernels on General Graphs

9.1 Introduction to the Bipartizations of (Hy-

per)graphs

Max Cut is a well known classical problem. Here, the input is a graph

G and a positive integer k and the objective is to check whether there is

a cut of size at least k. A cut of a graph is a bipartition of the vertices of

a graph into two disjoint subsets. See, for example, the bipartition that is

induced by the vertex sets of same color in Figure 9.1.

The size of the cut is the number of edges whose endpoints are in dif-

ferent subsets of the bipartition. Max Cut is NP-hard and has been the

focus of extensive study, from the algorithmic perspective in Computer Sci-

ence as well as the extremal perspective in Combinatorics. In this chapter

we focus on a generalization of Max Cut to hypergraphs and study this

189

190 9.1. Introduction to the Bipartizations of (Hyper)graphs

Figure 9.1: A cut of a graph.

generalization with respect to Extremal Combinatorics and Parameterized

Complexity.

Recall that a hypergraph H consists of a vertex set V (H) and a set

E(H) of subsets of P(V (H)), called hyperedges. A hyperedge e ∈ E(H) is

a subset of the vertex set V (H). By V (e) we denote the subset of vertices

corresponding to the hyperedge e. A hypergraph is called an r-hypergraph

if the size of each hyperedge is upper bounded by r. Given a hypergraph

2-coloring, φ : V (H) → {−1, 1}, we say that it splits a hyperedge e if

V (e) has a vertex assigned 1 as well as a vertex assigned −1 under φ.

In Max r-Set Splitting, a generalization of Max Cut, we are given

a hypergraph H and a positive integer k, and the objective is to check

whether there exists a coloring function φ : V (H) → {−1, 1} such that

at least k hyperedges are split. This problem is the main topic of this

chapter.

For a graph G, let ζ(G) be the size of a maximum cut. Erdős [75]

observed that ζ(G) ≥ m/2 for graphs with m edges. To see this notice

that a random bipartition of the vertices of a graph G with m edges gives

a cut with size at least m/2. A natural question was whether the bound

on ζ could be improved. Answering a question of Erdős [75], Edwards [70]

proved that for any graph G on m edges ζ(G) ≥
⌈
m
2 +

√
m
8 + 1

64 −
1
16

⌉
.

In the same paper Edwards also showed that for every connected graph

9. Algorithms and Kernels on General Graphs 191

G on n vertices and m edges, ζ(G) ≥ m
2 + n−1

4 . These bounds are known

to be tight (see [27] for a survey on this area). The first result of this

chapter generalizes this classical result. For an r-hypergraph H, let ζ(H)

be the maximum number of hyperedges that can be split by a hypergraph

2-coloring. Let H be a hypergraph with vertex set V (H), and edge set

E(H) = {e1, e2, . . . em}. Observe that a random 2-coloring that sets each

vertex of hypergraph H to 1 or −1 with equal probability always splits at

least µH =
∑m

i=1(1 − 2/2|ei|) =
∑m

i=1(1 − 21−|ei|) number of hyperedges.

Indeed, to see this, notice that there exist 2|ei| possible 2-colorings of its

vertices and only two of them do not split ei (the ones where all vertices

are assigned color either 1 or -1). Then the linearity of expectation yields

the above equality.

We show that if an r-hypergraph H is “partition connected” then

ζ(H) ≥ µH + n−1
r2r−1 .

Theorem 9.1. Let H be a partition connected r-hypergraph with an n

sized vertex set V (H) and edge set E(H) = {e1, e2, . . . , em}. Then ζ(H) ≥
µH + n−1

r2r−1 , where µH =
∑m

i=1(1− 21−|ei|).

Since the definition of partition connectivity coincides with the def-

inition of connectivity on graphs, for partition connected uniform 2-

hypergraphs (every hyperedge has size exactly 2), ζ(H) ≥ m
2 + n−1

4 . The

notion of uniform 2-hypergraphs is same as that of ordinary graphs, thus,

for r = 2, we get the old result of Edwards. Proof of Theorem 9.1 could

also be thought of as a generalization of a similar proof obtained in [38]

for ordinary graphs.

We use our combinatorial result to study an above guarantee version of

Max r-Set Splitting in the realm of parameterized complexity. Studies

on problems parameterized above guaranteed combinatorial bounds are in

vogue. A simple example of such a problem is the decision problem that

192 9.1. Introduction to the Bipartizations of (Hyper)graphs

takes as input a planar graph on n vertices and an integer k, where the

parameter is k, and asks if there is an independent set of size at least
n
4 + k. An independent set of size at least n/4 is guaranteed by the Four

Color Theorem. Could this problem be solved in time O(ng(k)), for some

function g? Is there an FPT algorithm? No one knows. This is a nice

and simple example of this research theme, which is quite well-motivated

and that has developed strongly since it was introduced by Mahajan and

Raman [151].

Mahajan and Raman showed that several above guarantee versions of

Max Cut and Max Sat are FPT. Later, Mahajan et al. [152] published

a paper with several new results and open problems around parameteri-

zations beyond guaranteed lower and upper bounds. In a breakthrough

paper Gutin et al. [112] developed a probabilistic approach to problems

parameterized above or below tight bounds. Alon et al. [8] combined this

approach with methods from Algebraic Combinatorics and Fourier Anal-

ysis to obtain an FPT algorithm for parameterized Max r-Sat beyond

the guaranteed lower bound. Other significant results in this direction

include quadratic kernels for ternary permutation constraint satisfaction

problems parameterized above average and results around systems of lin-

ear equations over field with two elements [38, 39, 113, 136].

A standard parameterized version of Max r-Set Splitting is de-

fined by asking whether there exists a hypergraph 2-coloring that splits at

least k hyperedges. This version of Max r-Set Splitting, called p-Set

Splitting, has been extensively studied in parameterized algorithms. In

p-Set Splitting we do not restrict the size of hyperedges to at most r as

in the case of Max r-Set Splitting. Dehne, Fellows, and Rosamond [46]

initiated the study of p-Set Splitting and gave an algorithm running in

time O∗(72k). They also provided a kernel for the problem with at most

9. Algorithms and Kernels on General Graphs 193

History of p-Set Splitting

Dehne, Fellows, and Rosamond WG 2003 O∗(72k)

Dehne, Fellows, Rosamond, and Shaw IWPEC 2004 O∗(8k)

Lokshtanov and Sloper ACiD 2005 O∗(2.6499k)

Chen and Lu COCOON 2007 O∗(2k)

Lokshtanov and Saurabh IWPEC 2009 O∗(1.96k)

Nederlof and van Rooij IPEC 2010 O∗(1.8213k)

Table 9.1: List of known results about p-Set Splitting in chronological

order. The O∗() notation suppresses the polynomial factor.

2k hyperedges. Later Dehne, Fellows, Rossmand, and Shaw [47] obtained

an algorithm with running time O∗(8k). Continuing this chain of improve-

ment Lokshtanov and Sloper [150] gave an algorithm with running time

O∗(2.65k) and obtained a kernel with both the number of vertices and the

number of hyperedges at most 2k. Later, Chen and Lu [33] provided a

randomized algorithm with running time O∗(2k) for a weighted version of

problem. In 2009, Lokshtanov and Saurabh [149] gave an algorithm with

running time O∗(1.96k) and a kernel with at most 2k hyperedges and at

most k variables. The current fastest algorithm is given by Nederlof and

van Rooij [159] and runs in time O∗(1.8213k). We refer to Table 9.1 for a

quick reference on the history of the p-Set Splitting problem.

From now onwards we only consider r-hypergraphs. If we have a hy-

peredge of size one then it can never be split and hence we can remove it

from consideration. So we assume that every hyperedge is of size at least

2 and at most r. Let H be a hypergraph with vertex set V (H) and edge

set E(H) = {e1, e2, . . . em}. Since every hyperedge is of size at least 2, we

have that µH ≥ m/2. Thus, the standard parameterization of Max r-Set

194 9.1. Introduction to the Bipartizations of (Hyper)graphs

Splitting is trivially FPT because of the following argument. If k ≤ m/2
then the answer is yes else we have that m ≤ 2k and hence n ≤ 2kr. In

this case we can enumerate all the {1,−1}-colorings to V (H) and check

whether anyone of them splits at least k hyperedges and answer accord-

ingly. Thus given an r-hypergraph H, the more meaningful question is

whether there exists a {1,−1}-coloring of V (H) that splits at least µH +k

clauses. In other words, we are interested in the following above average

version of Max r-Set Splitting.

Above Average r-Set Splitting (AA-r-SS)

Instance: An r-hypergraph H and a non-negative integer k.

Parameter: k.

Question: Does there exist 2-coloring of V (H) that splits at

least µH + k hyperedges?

It is known by the results in [136] that AA-r-SS is FPT for a constant

r (r = O(1)). From an algorithmic point of view, a natural question is

whether AA-r-SS is FPT when the sizes of hyperedges is at most r(n) for

some function of n. If yes, how far can we push the function r(n)? On

the algorithmic side, using Theorem 9.1 we get the following result.

Theorem 9.2. For every fixed constant α < 1, AA-α log n-SS is FPT.

We complement the algorithmic result by a matching lower bound

result which states the following.

Theorem 9.3. Unless NP ⊆ DTIME(nlog logn), AA-dlog ne-SS is not in

XP.

Theorems 9.2 and 9.3 are in sharp contrast to a similar question about

AA-Max-r-Sat. Let F be a CNF formula on n variables and m clauses

and let r1, . . . , rm be the number of literals in the clauses of F . Then

9. Algorithms and Kernels on General Graphs 195

asat(F) =
∑m

i=1(1− 2−ri) is the expected number of clauses satisfied by a

random truth assignment (the truth values to the variables are distributed

uniformly and independently). In AA-Max-r-Sat we are given a r-CNF

formula F (all clauses are of size at most r) and a positive integer k,

and the question is whether there is an assignment that satisfies at least

asat(F)+k clauses. Here k is the parameter. In [40], it is shown that AA-

Max-r(n)-Sat is not FPT unless Exponential Time Hypothesis fails [126],

where r(n) ≥ log logn+φ(n) and φ(n) is any unbounded strictly increasing

function. However, they also show that Max-r(n)-Sat-AA is FPT for any

r(n) ≤ log logn−log log log n−φ(n), where φ(n) is any unbounded strictly

increasing function.

The proof of Theorem 9.2 also shows that AA-r-SS admits a ker-

nel with O(k) vertices for fixed r. Earlier, only a linear “bikernel” was

known [136]. The proofs of Theorem 9.1 and 9.2 combine the properties

of Fourier coefficients of pseudo-Boolean functions, observed by Crowston

et al. [38], with results on a certain kind of connectivity of hypergraphs.

The proof of Theorem 9.3 is inspired by a similar proof given in [40].

9.2 New Lower Bound on ζ(H) and Proof of The-

orem 9.1

In this section we obtain the new lower bound on ζ(H), the maximum

number of hyperedges that can be split in an r-hypergraph H by a hyper-

graph 2-coloring. Towards this we first define the notion of hypergraph

connectivity and hypergraph spanning tree.

Hypergraph Connectivity and Hypergraph Spanning Tree.

With every hypergraph H we can associate the following graph: The

196 9.2. New Lower Bound on ζ(H) and Proof of Theorem 9.1

primal graph, also called the Gaifman graph, P (H) has the same vertices

V (H) as H and two vertices u, v ∈ V (H) are connected by an edge in

P (H) if there is a hyperedge e ∈ E(H), such that {u, v} ⊆ V (e). We

say that H is connected or has r components if the corresponding primal

graph P (H) is connected or has r components. Now we define the notions

of strong cut-sets and forests in hypergraphs.

Definition 9.1 (Strong Cut-Set and Partition Connectivity). A subset

X ⊆ E(H) is called a strong cut-set if the hypergraph H ′ = (V,E(H)\X)

has at least |X|+ 2 connected components. A hypergraph H is partition

connected if it does not have a strong cut-set.

Definition 9.2 (Hypergraph Forest). A forest F of a hypergraph H is a

pair (F, g) where F is a forest, in the normal graph theoretic sense, with

vertex set V (H) and edge set E(F), and g : E(F)→ E(H) is an injective

map such that for every {u, v} ∈ E(F) we have {u, v} ⊆ V (g({u, v})).
The number of edges in F is |E(F)|.

Observe that if a forest F has |V (H)| − 1 edges then F is a spanning

tree on V (H). In this case we say that F is a hypertree of H. Frank,

Király, and Kriesell proved the following duality result relating spanning

trees and strong cut-set in hypergraphs [93, Corollary 2.6].

Proposition 9.1 ([93]). A hypergraph H contains a hypertree if and only

if H does not have a strong cut-set.

A 2-coloring of a hypergraph H is a function c : V (H) → {−1, 1}.
We say that a hyperedge e of H is split by c if some vertex in V (e) is

assigned 1 and some vertex is assigned −1. We denote by split(c,H) the

set of hyperedges split by c. (We may omit the hypergraph if it is clear

from the context.) The maximum number of hyperedges split over all such

2-colorings is denoted by split(H).

9. Algorithms and Kernels on General Graphs 197

Observation 9.1. Let H be a hypergraph, e be a hyperedge of H, and

v ∈ V (e) be a vertex of H. If c is a 2-coloring of H then e is not split if

and only if c(v) · c(u) = 1 for every u ∈ V (e) \ {v}.

For every i ≥ 2, let mi be the number of hyperedges of H that have size

i. For every r-hypergraph H, we rewrite µH as follows, µH =
∑r

i=2(1 −
2−(i−1))mi.

Let H be a hypergraph that does not have a strong cut-set. Here, we

will show that for such hypergraphs, there exists a 2-coloring that splits

far more than the average. This will be crucial both for our kernelization

(Theorem 9.7) and algorithmic (Theorem 9.2) results. For this we will

also need a result on boolean functions.

Results from Boolean Functions. A function f that maps {−1, 1}n

to R is called a pseudo-boolean function. It is well known that every

pseudo-boolean function f can be uniquely written as

f(x1, . . . , xn) = f̂(∅) +
∑

I∈2[n]\∅

f̂(I)
∏
i∈I

xi,

where each f̂(I) is a real. This formula is called the Fourier expansion of

f and the f̂(I) are the Fourier coefficients of f . See [177] for more details.

By x̄ we represent (x1, . . . , xn).

Theorem 9.4 ([38]). Let f(x̄) = f̂(∅)+
∑
I∈F

f̂(I)
∏
i∈I

xi be a pseudo-boolean

function of degree r > 0, where F is a family of non-empty subsets of [n]

such that I ∈ F if and only if f̂(I) 6= 0, and f̂(∅) is the constant term of

f . Then

max
x∈{−1,1}n

f(x̄) ≥ f̂(∅) +

⌊
rankA− 1 + r

r

⌋
·min{|f̂(I)| | I ∈ F},

198 9.2. New Lower Bound on ζ(H) and Proof of Theorem 9.1

where A is a (0, 1)-matrix with entries αij such that αij = 1 if and only if

term j of the sum contains xi.

Now we are ready to give the proof of Theorem 9.1.

Proof of Theorem 9.1. Let H be an r-hypergraph and 1, . . . , n be an ar-

bitrary ordering of vertices in V (H). Let x1, . . . , xn be n variables cor-

responding to 1, . . . , n respectively. With every hyperedge e ∈ E(H) we

associate a polynomial fe(x̄). For a given e ∈ E(H), let j be the largest

index inside V (e). Then

fe(x̄) = 1− 1

2|e|−1

∏
i∈V (e)\{j}

(1 + xixj).

Notice that for every δ = (δ1, δ2, . . . , δn) ∈ {−1, 1}n, we may define

a 2-coloring cδ of V (H) such that cδ(i) = δi and, conversely, for every

2-coloring c we may define a vector δc ∈ {−1, 1}n. Observe then that,

given a 2-coloring c of H, fe(δc) = 1 if and only if e is split by c. Thus

fe(δc) = 0 if and only if e is not split by c. Hence, it is enough to prove that

maxȳ f(ȳ) ≥ µH + n−2
r·2r−1 , where f(x̄) =

∑
e∈E(H)

fe(x̄) is a pseudo-boolean

function of degree r > 0 and ȳ ∈ {−1, 1}n. Next we show that it indeed

holds.

Let,

f(x̄) =
∑

e∈E(H)

1− 1

2|e|−1

∏
i∈V (e)\{j}

(1 + xixj)


=

r∑
i=2

mi −
∑

e∈E(H)

1

2|e|−1

∏
i∈V (e)\{j}

(1 + xixj).

Notice, for every e ∈ E(H),
1

2|e|−1
xpxj and

1

2|e|−1
x2
jxpxq appear in the

terms of
∏

i∈V (e)\{j}

(1 +xixj) for every {p, q} ⊆ V (e)\{j}. We use this fact

9. Algorithms and Kernels on General Graphs 199

later. We rewrite f(x̄) as,

f(x̄) =
r∑
i=2

mi −
r∑
i=2

1

2i−1
mi +

∑
I∈F

cI
∏
i∈I

x
λ(I,i)
i

=
r∑
i=2

(
1− 1

2i−1

)
mi +

∑
I∈F

cI
∏
i∈I

x
λ(I,i)
i ,

where F is a family of subsets of [n] such that for each set I ∈ F ,

1. 2 ≤ |I| ≤ r,

2. |cI | ≥ 1
2r−1 , and

3. for every i ∈ I, λ(I,i) is a positive integer.

Then, as above, for every e ∈ E(H),
1

2|e|−1
xpxj and

1

2|e|−1
x2
jxpxq appear

in f(x̄) for every {p, q} ⊆ V (e) \ {j}.
Let,

fp(x̄) =
r∑
i=2

(
1− 1

2i−1

)
mi +

∑
I∈F

cI
∏
i∈I

x
λ(I,i) mod 2

i .

Clearly fp : {−1, 1}n → R is a pseudo-boolean function. Then, for every

x̄ ∈ {−1, 1}n, f(x̄) = fp(x̄). Therefore, maxx̄ f(x̄) = maxx̄ fp(x̄). Notice

that fp(x̄) can also be written as

fp(x̄) =
r∑
i=2

(
1− 1

2i−1

)
mi +

∑
I∈F ′

c′I
∏
i∈I

xi,

where F ′ is a family of subsets of [n] such that

1. 2 ≤ |I| ≤ r and

2. |c′I | ≥
1

2r−1 for every I ∈ F ′.

200 9.2. New Lower Bound on ζ(H) and Proof of Theorem 9.1

Then, for every hyperedge e ∈ E(H), the term xpxq, p, q ∈ V (e) with

p 6= q appears in
∑
I∈F ′

c′I
∏
i∈I

xi. Before we proceed we rewrite fp(x̄) as

fp(x̄) = f̂(∅) +
∑
I∈F ′

f̂(I)
∏
i∈I

xi,

where f̂(∅) = µH is the constant term of fp and f̂(I) = c′I , for every

I ∈ F ′.
Note that fp(x̄) has degree rp with 2 ≤ rp ≤ r. From Theorem 9.4, it

follows that

max
x̄

fp(x̄) ≥ f̂(∅) +

⌊
rankA− 1 + rp

rp

⌋
·min{|f̂(I)| : I ∈ F ′},

where A is a (0, 1)-matrix with entries αij such that αij = 1 if and only if

term j ∈ I contains xi. As H does not contain a strong cut-set, H has a

hypertree T (Hypothesis and Proposition 9.1). Moreover, recall that for

every hyperedge e ∈ E(H), the term xpxq, p, q ∈ V (e) with p 6= q appears

in fp(x̄). Thus, the edge-vertex incidence matrix of T is a submatrix of

A. It is known that the edge incidence matrix of a connected graph on n

vertices has rank at least n − 1, thus we have that the rankT is n − 1.

We also know that the rank of a matrix is at least as much as any of its

submatrices. This implies that rankA ≥ n− 1 and

max
x̄

fp(x̄) ≥ f̂(∅)+

⌊
n− 1− 1 + r

r

⌋
·min{|f̂(I)| | I ∈ F ′} ≥ µH+

n− 1

r · 2r−1
.

To see the last inequality let us assume that n = pr + q, where 0 ≤ q ≤
r − 1. Then if q ≥ 2 we have that

⌊
p+ q+r−2

r

⌋
≥ p + 1 and this gives

the desired result. In other cases we have q ≤ 1 and that gives us that⌊
p+ q+r−2

r

⌋
≥ p ≥ n−1

r . As maxx̄ f(x̄) = maxx̄ fp(x̄), this completes the

proof by applying Theorem 9.4.

9. Algorithms and Kernels on General Graphs 201

9.3 Reduction Rules for AA-r-SS

In this section, we present two reduction rules for AA-r-SS. These will be

of crucial importance towards the proof of Theorem 9.2.

When the hypergraph H is disconnected we can give a simple reduction

rule.

Reduction Rule 1 ([149]). : Let (H, k) be an instance of AA-r-SS

such that P (H) has connected components P (H)[C1], . . . , P (H)[Ct]. Let

v1, . . . , vt be vertices such that vi ∈ Ci. Construct a hypergraph H ′ from H

by unifying the vertices v1, . . . , vt. In particular V (H ′) = V (H) \ {vi | 2 ≤
i ≤ t} and for every hyperedge e ∈ E(H) make the edge e′ ∈ E(H ′) where

e′ = e if vi /∈ e for every i ∈ [t], and e′ = (V (e) \ {vi | 2 ≤ i ≤ t}) ∪ {v1}
otherwise. We obtain (H ′, k).

Our next reduction rule takes care of the case when the hypergraph

has a strong cut-set. While this reduction rule first appeared in [149], for

the sake of completeness, we wish to present here its complete proof. The

rest of this section is devoted to the proof of the following.

Theorem 9.5 ([149]). There is a polynomial time algorithm that given

a strong cut-set X of a connected hypergraph H = (V (H), E(H)) finds

a cut-set X ′ ⊆ X such that X ′ 6= ∅ and there exists a coloring χ such

that |split(χ,H)| = split(H) and χ splits all the hyperedges in X ′. In

fact, it shows that given any coloring c, there exists a coloring χ such that

split(χ,H) = split(c,H) ∪X ′.

We first five an algorithmic version of Proposition 9.1 which is central

to the proof of Theorem 9.5. Given a forest F = (F, g) we classify the

edges of E(H) as follows. An edge e ∈ E(H) is

202 9.3. Reduction Rules for AA-r-SS

• a forest edge if there exists an edge f in E(F) such that g(f) = e,

• a cut edge if there exist two connected components C1 and C2 of F

such that V (e) ∩ V (C1) 6= ∅ and V (e) ∩ V (C2) 6= ∅,

• an unused edge if there does not exist an edge f in E(F) such that

g(f) = e; that is e is not in the image of the map g.

We remark that an edge e can be a forest edge as well as a cut edge at

the same time. Similarly an edge can be a cut edge as well as an unused

edge at the same time.

Definition 9.3. For a hypergraph H = (V (H), E(H)), a forest F =

(F, g) and e1, e2 ∈ E(H), we say that an edge e2 follows e1 if e1 is a

forest edge of F and e2 is a cut edge with respect to F ′ = (F ′, g′) where

F ′ = (V (H), E(F) \ {g−1(e1)}) and g′(f) = g(f) for f ∈ E(F ′).

We are now in position to state and prove the algorithm version of

Proposition 9.1 which will be used later on.

Theorem 9.6 ([149]). There is a polynomial time algorithm that given a

connected hypergraph H = (V (H), E(H)) and a forest F = (F, g) of H

such that |E(F)| < |V (H)|−1 finds either a forest F ′ = (F ′, g′) of H with

|E(F ′)| ≥ |E(F)|+ 1 or a strong cut-set X of H.

Proof. Given a hypergraph H = (V (H), E(H)) and a forest F = (F, g) of

H, a sequence of hyperedges L(H,F) = e1e2 . . . et such that ei ∈ E(H) is

called an augmenting sequence if (a) e1 is a cut edge, (b) ei+1 follows ei

for all 1 ≤ i ≤ t, and (c) et is an unused edge.

We first prove that if there exists an augmenting sequence with respect

to a forest F = (F, g) of H then there exists a forest F ′ = (F ′, g′) of H

with |E(F ′)| ≥ |E(F)| + 1. We prove this by induction on the length

9. Algorithms and Kernels on General Graphs 203

of the shortest augmenting sequence t. If t = 1 then L(H,F) = e1. In

this case e1 is a cut edge as well as an unused edge. Since e1 is a cut

edge there exists two connected components C1 and C2 of F such that

V (C1) ∩ V (e1) 6= ∅ and V (C2) ∩ V (e1) 6= ∅. Let u ∈ V (C1) ∩ V (e1)

and v ∈ V (C2) ∩ V (e1). Now define F ′ = (V (H), E(F) ∪ {{u, v}}) and

g′ : E(F ′)→ E(H) as g′(f) = g(f) if f ∈ E(F) and g′({u, v}) = e1. Since

we have added an edge between two distinct components of F , we have

that the F ′ is also a forest and has one more edge than that in F .

Assume now that t ≥ 2 and that if we are given a forest F = (F, g) of

H and a shortest augmenting sequence L(H,F) of length at most t′ < t

then there exists a forest F ′ = (F ′, g′) of H with |E(F ′)| ≥ |E(F)| +
1. Let F = (F, g) be a forest and L(H,F) = e1e2 . . . et be a shortest

augmenting sequence of F with length t. Observe that e1 is a cut edge.

Hence there exist two connected components C1 and C2 of F such that

V (C1) ∩ V (e1) 6= ∅ and V (C2) ∩ V (e1) 6= ∅. Let u ∈ V (C1) ∩ V (e1) and

v ∈ V (C2) ∩ V (e1). Furthermore e1 is a forest edge and hence we let

f ∈ E(F) such that g(f) = e1. Now we construct a forest F∗ = (F ∗, g′) as

follows. We let F ∗ = (V (H), E(F)∪{{u, v}}\{f}) and g′ : E(F ∗)→ E(H)

as g′(f) = g(f) if f ∈ E(F) and g′({u, v}) = e1. Now we show that the

L(H,F∗) = e2 . . . et is an augmenting sequence of length at most t− 1 for

F∗.
To show this we will use the following properties of L(H,F).

• if t > 1 then e1, e2, . . ., et−1 are forest edges;

• if t > 1 then e2, . . ., et−1 are not cut edges with respect to F .

The first property follows from the definition of L(H,F) and the second

from the choice of L(H,F) to be a shortest augmenting sequence.

We first show that e2 is a cut edge with respect to F∗. Indeed, recall

204 9.3. Reduction Rules for AA-r-SS

that e2 is not a cut edge with respect to F . Then there exists exactly one

connected component C of F such that V (e2)∩C 6= ∅ and therefore V (e2)

intersects with at most one of the C1 and C2. However, as e2 follows e1,

then there are connected components C ′ and C ′′ of E(F) \ {f} such that

V (e2)∩C ′ 6= ∅ and V (e2)∩C ′′ 6= ∅. This implies that C = C ′∪C ′′∪{f}. It

is easy to see that if C 6= C1 and C 6= C2 then C ′ and C ′′ are also connected

components of F∗ and therefore e2 is a cut edge of F∗. In the case where

C = C1 (C = C2, respectively) then without loss of generality assume that

u ∈ V (C ′) (v ∈ V (C ′), respectively). This implies that C ′ ∪C2 ∪ {{u, v}}
(C ′∪C1∪{{u, v}}, respectively) and C ′′ are connected components of F∗

and therefore e2 is a cut edge of F∗.

Notice now that g(E(F)) = g′(E(F ∗)), thus we have that et is an

unused edge of F∗. The only thing that remains to be proved is that ej+1

follows ej for j ∈ {2, . . . , t−1} with respect to F∗. Let ej be a hyperedge,

j ∈ {2, . . . , t− 1}, and let u1 and u2 be two vertices in V (ej+1) that lie in

different connected components of F \g−1(ej). We prove that u1 and u2 lie

in different connected components of F ∗\g′−1(ej). Suppose not, then there

is a path P from u1 to u2 in F ∗ \ g′−1(ej). If P does not contain g′−1(e1)

then P is a path from u to v in F \ g−1(ej) because g′−1(ej) = g−1(ej)

and g′−1(e1) is the only edge in F ∗ that is not in F . This contradicts that

ej+1 follows ej with respect to F . If P contains g′−1(e1) then u1 and u2

must lie in different connected components of F ∗ \ g′−1(e1) = F \ g−1(e1).

But, as L(H,F) is of shortest length, ej+1 does not follow e1 with respect

to F , and hence u1 and u2 must lie in the same connected component

F \ g−1(e1), a contradiction. Thus, we conclude that ej+1 follows ej with

respect to F∗.

Hence we have shown that L(H,F∗) = e2 . . . et is an augmenting se-

quence of length at most t− 1 for F∗. This implies that F∗ has a shortest

9. Algorithms and Kernels on General Graphs 205

augmenting sequence of length at most t − 1 and hence by the induction

hypothesis this implies that there exists a forest F ′ = (F ′, g′) of H with

|E(F ′)| ≥ |E(F ∗)|+ 1 = |E(F)|+ 1.

For the other part of the proof we show that if we do not have an aug-

menting sequence then we have a strong cut-set. We say that a hyperedge

e is reachable from a hyperedge e∗ ∈ Y if there exists a sequence of hyper-

edges e∗e1 . . . ele and e1 follows e∗, ei+1 follows ei for i ∈ {1, . . . , l − 1},
and e follows el. Let Y be the set of cut edges with respect to F and X

be the set of all hyperedges containing Y and all those hyperedges which

are reachable from a hyperedge in X. We claim that X is the desired

strong cut-set. Let H ′ = (V (H), E(H) \X) be the hypergraph obtained

from H by removing the hyperedges from X. Now we show P (H ′) has

at least |X| + 2 connected components. Observe that all the edges in X

are forest edges, otherwise there would exist an augmenting sequence. Let

X−1 = {g−1(x) | x ∈ X}. The forest F which we started with has at

least two components and hence when we remove the edges from X−1

it has at least |X| + 2 connected components. We show that for every

connected component C, of F ′ = (V (H), E(F) \X−1) , P (H ′)[V (C)] is a

connected component. Suppose not, then there exist two connected com-

ponents C1 and C2 of F ′ such that there exists a hyperedge e /∈ X such

that V (e) ∩ V (C1) 6= ∅ and V (e) ∩ V (C2) 6= ∅. Let u ∈ V (e) ∩ V (C1)

and v ∈ V (e) ∩ V (C2). Since e is not a cut edge, u and v are in the same

component of F . Since u and v are not in the same component of F ′ there

is a hyperedge e′ ∈ X such that u and v are in different components of

F \ g−1(e′). Hence e follows e′, a contradiction.

We have proved that for a connected hypergraph H = (V (H), E(H))

and a forest F = (F, g) of H such that |E(F)| < |V (H)| − 1, either there

exists a forest F ′ = (F ′, g′) of H with |E(F ′)| ≥ |E(F)|+ 1 or there exists

206 9.3. Reduction Rules for AA-r-SS

a strong cut-set X of H. We can make our proof constructive if we have

a way to find a shortest augmenting path with respect to F . In what

follows we show how to find a shortest augmenting path corresponding

to F by reducing this to finding a shortest path in an auxiliary directed

graph. We define a graph G′ with vertex set V (G′) = {ve | e ∈ E(H)},
that is, for every hyperedge e ∈ E(H) we add a vertex ve to E(G). We

add an edge from ve to vf if f follows e with respect to F . Hence to find

a shortest augmenting sequence it is sufficient to do a breadth first search

in G′ starting from {ve ∈ V (G′) | e is a cut edge} and checking whether a

vertex vf corresponding to an unused hyperedge is reached. It is clear that

this procedure takes polynomial time. If we find an augmenting sequence

then we can find the desired forest F ′ in polynomial time and if we do

not find an augmenting sequence then we can find the desired cut-set X

as described in the proof in polynomial time.

Given a graph G a matching M in G is a set of edges where no two

of them share a vertex and a set S ∈ V (G) is saturated by M if for every

v ∈ S there exists an edge e ∈M such that v ∈ e.
We may now proceed to the proof of Theorem 9.5.

Proof of Theorem 9.5. Let H∗ = (V (H), E(H) \X) and let |X| = t. By

assumption, X is a strong cut-set and hence the primal graph P (H∗) has at

least t+2 connected components. Let the connected components of P (H∗)

be C = {C1, . . . , Cq} where q ≥ t+ 2 and X = {e1, . . . , et}. We construct

an auxiliary bipartite graph B with vertex set A∪B with a vertex ai ∈ A
for every edge ei ∈ X and a vertex bi ∈ B for every connected component

Ci ∈ C. There is an edge {ai, bj} if V (ei) ∩ V (Cj) 6= ∅.
We prove the statement of the lemma by induction on |X|. For the base

case we assume that |X| = 1 and X = {e1}. In particular, we show that

9. Algorithms and Kernels on General Graphs 207

given any f : V (H)→ {−1, 1} there exists a function g : V (H)→ {−1, 1}
such that split(g) = split(f)∪{e1} which will prove the desired assertion.

If e1 ∈ split(f) the statement follows, so assume that e1 /∈ split(f). Since

P (H) is connected we have that {a1, bj}, j ∈ {1, . . . , q} are edges in B.

Let g : V (H) → {−1, 1} be such that g(v) = f(v) if and only if v /∈ C1.

That is, for all vertices in C1, g flips the assignment given by f .

Observe that e1 ∈ split(g) since V (e1) contains a vertex u ∈ C1 and

a vertex v ∈ C2. Since f(u) = f(v), g(u) 6= g(v) and hence e1 ∈ split(g).

As X is a strong cut-set of H and X = {e1} for every edge e in split(f)

we have that V (e) is completely contained in one of the components and

hence, e ∈ split(f) implies e ∈ split(g). This completes the proof for the

base case. So we assume that |X| ≥ 2 and that the statement of the lemma

holds for all X ′ satisfying the conditions of the lemma and |X ′| < |X|. In

the inductive step we consider two cases:

(a) there does not exist a matching in B which saturates A; or

(b) there is a matching saturating A in B.

In Case (a), by Hall’s theorem [114], we know that there exists a subset

A′ ⊆ A , A′ 6= ∅ such that |A′| > |N(A′)| and such a set can be found in

polynomial time. We claim that X ′ = X \{ej | aj ∈ A′} is a strong cut-set

and is of smaller size than X. It is clear that |X ′| < |X| as A′ 6= ∅. We now

show that X ′ is indeed a strong cut-set. Let C′ = C \ {Cj | bj ∈ N(A′)}.
Observe that in H ′ = (V (H), E(H) \ X ′), every Ci ∈ C′ is a connected

component. The size of C′ is bounded as follows

|C′| = |C|−|N(A′)| ≥ (t+2)−|N(A′)| > (t+2)−|A′| = t−|A′|+2 = |X ′|+2,

and hence X ′ is indeed a strong cut-set. In this case the statement of the

lemma follows from the induction hypothesis as |X ′| < |X|.

208 9.3. Reduction Rules for AA-r-SS

For Case (b) we assume that we have a matching M saturating A.

Without loss of generality, let M be {{a1, b1}, . . . , {at, bt}}. Let U =

{bt+1, . . . , bq} be the set of vertices in B that are not saturated by M .

Iteratively we construct a set U ′ containing U as follows. Initially we set

U ′ := U and Ã = A.

• Check whether there exists a neighbor of a vertex in U ′ in Ã; if yes

go to the next step. Otherwise, output U ′.

• Let aj be a vertex in Ã having a neighbor in U ′. Set U ′ := U ′ ∪{bj}
(bj is the matching endpoint of aj in B), Ã := Ã \ {aj} and go to

the first step.

Let U ′ be the set returned by the iterative process above. Observe that,

as P (H) is connected, there exists at least one vertex aj having a neighbor

in U . Therefore the above process enters the second step at least once and

hence U (U ′ and Ã (A. Let A′ = A \ Ã and let X ′ = {ej | aj ∈ A′}.
In what follows we prove that X ′ is the desired subset of X mentioned in

the statement of the lemma.

We first show that X ′ is a strong cut-set. Let C′ = {Cj | bj ∈ U ′}.
Notice that, from the construction, there is no vertex in Ã that has a

neighbor both in U ′ and B \ U ′. This implies that every Ci ∈ C′ is

a connected component of H ′ = (V (H), E(H) \ X ′). The size of C ′ is

bounded as follows

|C′| = |U ′| = |U |+ |A′| ≥ |A′|+ 2 = |X ′|+ 2,

and hence X ′ is a strong cut set.

We show that given any f : V (H) → {−1, 1} there exists a function

g : V (H)→ {−1, 1} such that split(g) = split(f)∪X ′. This will complete

the proof of the theorem. Let U ′\U = {b1′ , b2′ , . . . , br′} and without loss of

9. Algorithms and Kernels on General Graphs 209

generality assume that b1′ , b2′ , . . ., br′ is the order in which these elements

are included in the set U ′. Let Bi = B[U ∪{b1′ , . . . , bi′}∪{a1′ , . . . , ai′}] and

Hi be the hypergraph induced by the vertices in V (C1′) ∪ · · · ∪ V (Ci′) ∪
e1′ ∪ · · · ∪ ei′ . Iteratively we construct the function g : V (H)→ {−1, 1} as

follows. Initially we set g := f and i := 1 and repeat the following until

i = r:

Check whether ei′ ∈ split(g,Hi). If yes i := i+ 1 and repeat.

Otherwise let Ci′ be the connected component corresponding

to bi′ having vertex set V (Ci′). Now for every vertex u ∈
V (Ci′) change g(u) to −f(u). Basically, we flip the assignment

of −1 and 1 in the vertex set V (Ci′). Set i := i+ 1 and repeat

the procedure.

Now we show that split(g) = split(f) ∪ X ′. Notice that if e /∈ X then,

as X is a strong cut-set of H, there exists a connected component C ∈ C
such that e ⊆ C. Notice then that either g(v) = f(v) for every v ∈ e or

g(v) = −f(v) for every v ∈ V . By combining this with Observation 9.1 we

obtain that e ∈ split(f) if and only if e ∈ split(g). Notice now that, by

the way X ′ was constructed, if e ∈ X \X ′ then V (e)∩V (Ci′) = ∅, i ∈ [r].

Observe that g(v) = f(v), v ∈ V (H)\(V (C1′)∪· · ·∪V (Cr′)) and hence e ∈
split(g) if and only if e ∈ split(f). It remains to show that if e ∈ X ′, then

e ∈ split(g). Notice that if, at step i, e′i /∈ split(g,Hi) then every vertex

is assigned the same color by g. Furthermore, notice that by construction

there exists a bj′ ∈ {b1′ , b2′ . . . , b(i−1)′} such that V (ei′) ∩ V (Cj′) 6= ∅ and

recall that ei′∩V (Ci′) 6= ∅. As the color of the vertices in V (Ci′) changes we

obtain that after this step of the algorithm completes ei′ is split. Finally,

observe that for every q < i, eq′ ∈ split(g,Hq′) and Hq′ ⊆ Hi′ \ V (Ci′).

This implies that all the edges eq′ , with q < i, remain split after flipping

210 9.4. Linear Kernel for Fixed r and Proof of Theorem 9.2

the colors of the vertices in V (Ci′). Thus after the rth step of the procedure

we have that split(g) = split(f) ∪X ′. This concludes the proof.

Notice now that Theorem 9.5 results in the following reduction rule.

Reduction Rule 2. : Let (H, k) be an instance of AA-r-SS and X ′ be

a set as defined in Theorem 9.5. Remove X ′ from the set of hyperedges

and reduce k to k −
∑

e∈X′
1

2|e|−1 , that is, obtain an instance (H ′, k −∑
e∈X′

1
2|e|−1), where E(H ′) = E(H) \X ′.

Now we argue the correctness of Reduction Rule 2. Let (H, k) be an

instance of AA-r-SS and X ′ be as in the Theorem 9.5. By Theorem 9.5

we know that there exists a coloring χ such that

|split(χ,H)| = split(H)

and χ splits all the hyperedges in X ′. This implies that in H ′ at least

µH +k−|X ′| ≥ µH′ +
∑
e∈X′

(
1− 1

2|e|−1

)
+k−|X ′| ≥ µH′ +k−

∑
e∈X′

1

2|e|−1

hyperedges are split. For the other direction observe that if in H ′ we

have µH′ + k −
∑
e∈X′

1

2|e|−1
hyperedges split then in H we have µH′ + k −∑

e∈X′

1

2|e|−1
+ |X ′| hyperedges split. The last inequality implies that in

H we have µH + k split hyperedges. This proves the correctness of the

Reduction Rule 2.

9.4 Linear Kernel for Fixed r and Proof of The-

orem 9.2

In this section, we combine our results from the previous section with

known reduction rules obtained in [149] for p-Set Splitting (that we

9. Algorithms and Kernels on General Graphs 211

proved in the previous section) to obtain the desired kernel for AA-r-SS

when r = O(1). Finally, we give the proof of Theorem 9.2.

Theorem 9.7. For a fixed r, AA-r-SS admits a kernel with O(k) vertices.

Proof. Let (H, k) be a reduced instance of AA-r-SS, that is, we cannot

apply Reduction Rules 1 and 2. As Reduction Rule 1 does not apply, H is

connected. Moreover, as Reduction Rule 2 does not apply H does not have

a strong cut-set. From Theorem 9.1, it follows that if k ≤ n−1
r·2r−1 then it is

a YES-instance. Otherwise, n−1
r·2r−1 ≤ k, thus n ≤ r · 2r−1k+ 1 = O(k).

Proof of Theorem 9.2. As in the proof of Theorem 9.7 we assume that

(H, k) is a reduced instance and hence H is partition connected. For

the simplicity of an argument choose α = 1/2 and thus r = log
√
n.

From Theorem 9.1, it follows that if k ≤ n−1
r·2r−1 then it is a YES-instance.

Otherwise, n−1
r·2r−1 ≤ k, thus n ≤ r · 2r−1k + 1. Substituting r = log

√
n,

we get that 2n ≤ (log
√
n)
√
nk + 1. This implies that k ≥ n

1
2
−ε for every

fixed ε > 0. Since we can always solve AA-r-SS for any r in time 2n, we

get that AA-α log n-SS can be solved in time O∗(2k
2

1−ε
). We remark that

we could have chosen α = 1− δ for any fixed constant δ.

9.5 Lower Bound Result and Proof of Theo-

rem 9.3

In this section, we will show that AA-dlog ne-SS is not in XP unless NP

⊆ DTIME [nlog logn]. Towards this we will give a suitable reduction from

r-Nae-Sat. A r-CNF formula φ = C1 ∧ · · · ∧ Cm is a boolean formula

where each clause has size at least 2 and at most r and each clause is a

disjunction of literals. r-Nae-Sat is a variation of r-Sat, where given a r-

CNF formula φ = c1∧· · ·∧cm on n variables, say V (φ) = {x1, . . . , xn}, the

212 9.5. Lower Bound Result and Proof of Theorem 9.3

objective is to find a {0, 1}-assignment to V (φ) such that all the clauses

get split. An assignment splits a clause if at least one of its literals gets

the value 1 and at least one of its literals gets the value 0. We call an

assignment that splits every clause a splitting assignment.

Proof of Theorem 9.3. We will prove the theorem in three steps. First, we

prove that r-Nae-Sat is NP-complete for r = dlog ne+1. Throughout this

proof r is set to dlog ne+ 1. It is known that dlog ne-Sat is NP-complete

even when the input has at most cn clauses [40].

In order to show that r-Nae-Sat is NP-complete we will give the

standard reduction to it from dlog ne-Sat. Let φ = C1 ∧ · · · ∧ Cm be

an instance to dlog ne-Sat. We introduce a new global variable z and

create an instance φ′ = C ′1 ∧ · · · ∧ C ′m for r-Nae-Sat by taking Ci ∧ z
for each clause Ci of φ. If there is a satisfying assignment π of φ then

at least one literal in each clause of φ is set to 1. Now, π ∪ {z = 0}
is an assignment satisfying φ′ and splitting each clause. Conversely, if τ

is a splitting satisfying assignment for φ′ then so is the complementary

assignment τ ′ (the one obtained from τ by flipping 0’s to 1 and 1’s to

0’s). In one of the two assignments, say τ , z = 0 and some other literal in

each clause is set to 1. Thus the restriction of τ to the variables of φ is a

satisfying assignment for φ.

Our second step is to show a many one reduction from r-Nae-Sat to r-

Set-Splitting running in time O(nlog logn). In r-Set-Splitting we are

given an r-hypergraph and the objective is to check whether there exists a

splitting hypergraph 2-coloring (a hypergraph 2-coloring that splits every

hyperedge). Recall, we defined hypergraph 2-coloring as a function from

V (H) to {−1, 1}. However, for this proof we will make it a function from

vertex set of H to {0, 1}.
Let φ = C1 ∧ · · · ∧ Cm be an instance of r-Nae-Sat, with n sized

9. Algorithms and Kernels on General Graphs 213

variable set V (φ) and m ≤ γn clauses, for some fixed constant γ. We

want to construct an instance H of r-Set-Splitting. For each variable

x of φ, H has two vertices x1 and x2. For each clause C of φ we construct

a corresponding hyperedge Ch of H in the following way: If a variable

x appears in the positive form in C then we include x1 in Ch and if ¬x
appears in C then we include x2 in Ch. Essentially, x1 corresponds to x

and x2 to ¬x.

Now, we describe an algorithm that, given a variable x of φ, outputs

a collection Sx of hyperedges of size r. Let Sx1 = {{x1, x2}}. For i =

2, . . . , r − 1, we do as follows.

We let Sxi = Sxi−1 and, while there exists a hyperedge S ∈ Sxi
such that |S| = i, introduce r new vertices wSj , j ∈ [r], add the

sets {wS1 , wS2 , . . . , wSr } and S∪{wSj }, j ∈ [r], in Sxi and remove

the set S.

Add the hyperedges of Sx = Sxr−1 to the hypergraph H. Notice that after

the execution of step i ∈ [r − 1] all the hyperedges contained in the set

Sxi are of size either i + 1 or r. Thus, every hyperedge in Sxr−1 has size

exactly r.

Summarizing the construction we have following set of hyperedges:

{Ch | C a clause of φ} ∪
(⋃
x∈V (φ)

Sx
)
.

The vertex set of H consists of vertices appearing in these clauses.

It is easy to see that for any splitting assignment τ of φ we have a

splitting {0, 1}-coloring of H by setting x1 = τ(x) and x2 = τ(¬x) and

by assigning 0 or 1 to newly added vertices in a way that splits all the

hyperedges that do not contain vertices that correspond to variables of φ.

We can assign 0 or 1 to newly added vertices in consistent way because all

214 9.5. Lower Bound Result and Proof of Theorem 9.3

the hyperedges that do not contain vertices that correspond to variables

of φ are pairwise disjoint.

To prove the converse we show the following auxiliary claim. The claim

will allow us to argue that in any splitting 2-coloring of H the vertices x1

and x2 corresponding to a variable x will always be assigned either 0 and

1, respectively, or 1 and 0, respectively.

Claim 13. For every i ∈ {2, . . . , r − 1} and every 2-coloring χ that

splits all the hyperedges in Sxi , there are hyperedges S1, S2 ∈ Sxi such that

{x1, x2} ⊆ S1 ∩ S2, |S1| = |S2| = i+ 1, and S′i = Si \ {x1, x2}, i ∈ [2], are

monochromatic and χ(S′1) ∩ χ(S′2) = ∅ (that is, the colors on vertices of

S′1 and S′2 are disjoint).

Proof. We prove this claim using induction on i. For base case let i = 2.

In this case we know that Sx2 is precisely {wS1 , wS2 , . . . , wSr } and S ∪{wSj },
j ∈ [r], where S = {x1, x2}. Since {wS1 , wS2 , . . . , wSr } is split we know

that there exist a, b ∈ [r], such that χ(wSa) = 0 and χ(wSb) = 1. Take

S1 = S∪{wSa } and S2 = S∪{wSb }. Clearly, this satisfies all the properties

described in the statement of the claim.

Assume now that the claim holds for ` = i ≥ 2. Let χ be a splitting

2-coloring of Sx`+1. To apply induction we would like to show that χ′, the

restriction of χ to the vertices of Sx` , is a splitting 2-coloring of Sx` . How-

ever, new vertices are added in Sx`+1 only when there exists a hyperedge

S ∈ Sx` such that |S| = `. And for this case we introduced r new vertices

wSj , j ∈ [r] = {1, . . . , r}, added the sets {wS1 , wS2 , . . . , wSr } and S ∪ {wSj },
j ∈ [r], in Sxi and removed the set S. The set {wS1 , wS2 , . . . , wSr } in Sx`+1

forces that the vertices in S can not be assigned all 0 or all 1′s under χ

and thus, under χ′. This proves that χ′ splits all the sets of size ` in Sx` .

Furthermore all other sets in Sxi are of size r and hence are also present in

9. Algorithms and Kernels on General Graphs 215

Sx`+1 and thus automatically get split by χ′. This proves that χ′ is indeed

a splitting 2-coloring for Sx` .

Thus, from the inductive hypothesis there are hyperedges Q1 and Q2

of size ` such that Qj \ {x1, x2}, j ∈ [2], are monochromatic but not with

the same color. Notice now that there are vertices wQ1
p , p ∈ [r], and

wQ2
q , q ∈ [r], such that the hyperedges {wQ1

1 , . . . , wQ1
r }, {wQ2

1 , . . . , wQ2
r },

Qp1 = Q1∪{wQ1
p }, p ∈ [r], and Qq2 = Q2∪{wQ2

q }, q ∈ [r], all appear in Sx`+1

and are split by χ. Therefore, there are vertices wQ1
p1 , w

Q1
p2 , and wQ2

q1 , w
Q2
q2

such that χ(wQ1
p1) 6= χ(wQ1

p2) and χ(wQ2
q1) 6= χ(wQ2

q2). This implies that we

can select S1 = Q
pj
1 and S2 = Qqs2 , j, s ∈ [2], such that Q

pj
1 \ {x1, x2}

and Qqs2 \ {x1, x2} are monochromatic but not with the same color. This

completes the proof of the claim.

Now we give the proof of the reverse direction. Let χ be a splitting

{0, 1}-coloring of H. Then by Claim 13 we get that each pair (x1, x2) is

colored differently. The last assertion is easy to see as the only way we can

split S1 and S2 coming from Claim 13 is by assigning x1 and x2 different

colors for every variable x ∈ V (φ) under χ. By setting x = χ(x1) for each

variable of φ we get a splitting assignment for φ.

From the construction, it follows that the total number of vertices in

H is at 2n+nT , where T = r(rr−2−1)
r−1 , and the total number of hyperedges

in H is γn+n(T +1). Therefore, the number of hyperedges is linear in the

number of vertices of the hypergraph. Since r = dlog ne+ 1 we have that

the time to construct our instance will take (log n)O(logn) = nO(log logn).

For the third step we will show that if we have an algorithm for AA-

(dlog ne + 1)-SS running in time ng(k) then we can solve (dlog ne + 1)-

Nae-Sat with n variables and γn clauses (the number of clauses is linear

in number of variables) in nO(log logn) time. This is contradictory unless

NP ⊆ DTIME(nlog logn).

216 9.6. Conclusions

Given an instance φ of (dlog ne+ 1)-Nae-Sat with n variables and γn

clauses we first apply the reduction to (dlog ne+ 1)-Set-Splitting. This

gives us an instance H with n′ vertices and δn′ hyperedges for some fixed

constant δ. However, µH = (1− 1
2logn′

) · δn′ = δn′− δ. Thus, we can check

whether H has a splitting 2-coloring by taking k = dδe as a parameter in

AA-(dlog ne+ 1)-SS and running the algorithm for AA-(dlog ne+ 1)-SS.

Since k = dδe is a constant, the algorithm with running time ng(k) runs in

polynomial time. This completes the proof.

Thus, we have shown that there exists a fixed constant β such that

AA-β log n-SS is not XP unless NP⊆ DTIME(nlog logn). This completes

the proof of the theorem.

9.6 Conclusions

In this chapter, we generalized an old result by Edwards on the size of a

max cut on connected graphs to partition connected r-hypergraphs. We

then used this result to show an above guarantee version of Max r-Set

Splitting FPT. There are several interesting problems that are still open

in parameterized study of problems above guaranteed lower bounds, as

well as in the specific directions pursued in this paper. Most notable ones

are:

• Is the lower bound of µH + n−1
r2r−1 on ζ(H) for partition connected

r-hypergraphs tight? That is, is there an infinite family of partition

connected r-hypergraphs where ζ(H) = µH + n−1
r2r−1 ?

• Is dlog ne-Set-Splitting with linear number of clauses NP-

complete?

• Is the question of finding an independent set of size n
4 + k on planar

9. Algorithms and Kernels on General Graphs 217

graphs FPT? Even obtaining an algorithm in XP remains elusive.

CHAPTER 10

Graph Searching: A Game Characterization of Cycle-rank

10.1 Introduction

Graph searching games are increasingly becoming a popular way to char-

acterize, and even define, practical graph parameters. There are many

advantages to a characterization by graph searching games: it provides

a useful intuition which can assist in constructing more general or more

specific parameters; it gives insights into relations with other, similarly

characterized parameters; and it is particularly useful from an algorith-

mic perspective as many parameters associated with such games are both

structurally robust and efficiently computable.

219

220 10.1. Introduction

10.1.1 Node Search in Graphs

One of the most common graph searching games is the node-search game.

In this game several searchers and one fugitive occupy vertices of the graph

and make simultaneous moves. The (omniscient) fugitive moves along

searcher-free paths of arbitrary length whereas the searchers’ movements

are not constrained by the topology of the graph. The goal of the game

is to minimize the number of searchers required to capture the fugitive

by cornering him in some part of the graph and placing a searcher on the

same vertex.

This game has been extensively studied and several important graph

parameters such as tree-width [56, 217] and path-width [137] can be char-

acterized by natural variants of this game. One variation frequently used,

indeed the one which separates tree-width and path-width, is whether the

location of the fugitive is known or unknown to the searchers.

Another common variation is whether the searchers use a monotone

or a non-monotone searching strategy, that is, whether their strategy

provides to the fugitive access to already searched areas (non-monotone

strategy) or not (monotone strategy). Monotone search strategies lead

to algorithmically useful decompositions, whereas non-monotone strate-

gies are more robust under graph operations and hence reflect structural

properties. Therefore, showing that monotone strategies require no more

searchers than non-monotone strategies is an important and common ques-

tion in the area. Whilst node-search games on undirected graphs tend to

enjoy monotonicity [20, 145, 217], on digraphs the situation is much less

clear [2, 16, 140].

10. Graph Searching: A Game Characterization of Cycle-rank 221

10.1.2 Node Search in Digraphs

Node-search games naturally extend to digraphs. However, in the transla-

tion another variation arises depending on how one views the constraints

on the movement of the fugitive. One interpretation is that in the undi-

rected case the fugitive moves along paths, so the natural translation would

be to have the fugitive move along directed paths. Another view is that

the fugitive moves to some other vertex in the same connected component,

and here the natural translation would be to have the fugitive move within

the same strongly connected component.1 Both interpretations have been

studied in the literature, the former giving characterizations of parameters

such as DAG-width [18, 176] and directed path-width [16] and the latter

giving a characterization of directed tree-width [129].

We define a variant of the node-search game in which only the most

recently placed searchers may be removed; that is, the searchers must

move in a last-in-first-out (LIFO) manner and we show that the minimum

number of searchers required to capture a fugitive on a (di)graph with a

LIFO-search is independent of:

• Whether the fugitive is visible or invisible,

• Whether the searchers use a monotone or non-monotone search, and

• Whether the fugitive is restricted to moving in searcher-free strongly

connected components or along searcher-free directed paths.

This result is somewhat surprising: in the standard node-search game

these options give rise to quite different parameters [16, 18, 140].

1A digraph G is strongly connected if for every two vertices u, v ∈ V (G) it contains

a path from u to v and a path from v to u.

222 10.1. Introduction

We show that on digraphs the LIFO-search game characterizes a pre-

existing measure, cycle-rank – one of the possible generalizations of tree-

depth to digraphs (though as the definition of cycle-rank predates tree-

depth by several decades, it is perhaps more correct to say that tree-depth

is an analogue of cycle-rank on undirected graphs).

The cycle-rank of a digraph is an important parameter relating digraph

complexity to other areas such as regular language complexity and asym-

metric matrix factorization. It was defined by Eggan in [71], where it was

shown to be a critical parameter for determining the star-height of reg-

ular languages. The success of tree-depth [72, 96, 110] rekindled interest

in it as an important digraph parameter, especially from an algorithmic

perspective.

It is well known that tree-depth can be characterized by a node-search

game where a visible fugitive plays against searchers that are only placed

and never moved [96]. In that paper, Ganian et al. considered one exten-

sion of this game to digraphs. Here we consider another natural extension,

where the visible fugitive moves in strongly connected sets, and show that

it also characterizes cycle-rank. From the above, we also obtain that the

LIFO-search parameter is equivalent to the one of tree-depth.

Our final result uses these graph searching characterizations to define a

dual parameter that characterizes structural obstructions for cycle-rank.

We consider two kinds of obstructions. The first one is obtained from

defining the notion of directed shelters. The second one is motivated by

the havens of [129]. Both the directed shelters and LIFO-havens define

simplified strategies for the fugitive. The game characterization then im-

plies that these structural features are necessarily present when the cycle-

rank of a graph is large. By showing that the aforementioned simplified

strategies are also sufficient for the fugitive, we obtain a rare instance of

10. Graph Searching: A Game Characterization of Cycle-rank 223

an exact min-max theorem relating digraph parameters. This also implies

that the notion of shelters when transferred to simple graphs characterizes

structural obstructions for tree-depth.

The results appearing in this chapter can be summarized with the

following characterizations of cycle-rank and tree-depth respectively.

Theorem 10.1. Let G be a digraph, and k a positive integer. The follow-

ing are equivalent:

(i) G has cycle-rank at most k − 1.

(ii) On G, k searchers can capture a fugitive with a LIFO-search strat-

egy.

(iii) On G, k searchers can capture a visible fugitive restricted to moving

in strongly connected sets with a searcher-stationary search strategy.

(iv) G has no LIFO-haven of order greater than k.

(v) G has no directed shelter of thickness greater than k.

Theorem 10.2. Let G be a non-empty graph and k be a positive integer.

Then the following are equivalent.

(i) G has tree-depth at most k.

(ii) On G, k searchers can capture an invisible and agile fugitive with a

monotone LIFO-search strategy.

(iii) On G, k searchers can capture an invisible and agile fugitive with a

LIFO-search strategy.

(iv) Every shelter in G has thickness at most k.

224 10.2. Searching Games for Cycle-rank

(v) On G, k searchers can capture a visible and agile fugitive with a

monotone LIFO-search strategy.

This chapter is organised as follows. In Section 10.2, we define the

LIFO-search and searcher-stationary games and show that they charac-

terize cycle-rank. In Section 10.3, we prove the min-max theorem for

cycle-rank. In Section 10.4, we consider simple graphs and argue that our

results imply the existense of a min-max theorem for LIFO-search and

that the LIFO-search parameter is equivalent to the one of tree-depth.

10.2 Searching Games for Cycle-rank

Definition 10.1 (Cycle-rank). The cycle-rank of a digraph G, cr(G), is

defined as follows:

• If G is acyclic then cr(G) = 0.

• If G is strongly connected then cr(G) = 1 + minv∈V (G) cr(G \ {v}).

• Otherwise cr(G) = maxH cr(H) where the maximum is taken over

all strongly connected components H of G.

We begin by formally defining the LIFO-search game, and its variants,

for digraphs. Each variation of the LIFO-search game gives rise to a

digraph parameter corresponding to the minimum number of searchers

required to capture the fugitive under the given restrictions. The main

result of this section is that for any digraph all these parameters are equal.

Furthermore, we show they are all equal to one more than the cycle-rank

of the digraph.

10. Graph Searching: A Game Characterization of Cycle-rank 225

10.2.1 LIFO-search on Digraphs

In summary, for the graph searching game in which we are interested

the fugitive can run along searcher-free directed paths of any length, the

searchers can move to any vertex in the graph, and the fugitive moves

whilst the searchers are relocating. In this game, as in the classical node

search game, the searchers first announce their move. Then the fugitive

moves taking into account this information and finally the searchers carry

their already announced move. The searcher’s strategy may apply two

types of moves in each step: either placement of a searcher on a vertex

or removal of a searcher from a vertex with the restriction that only the

most recently placed searchers may be removed. If a searcher is placed on

the fugitive then he/she is captured and the searchers win, otherwise the

fugitive wins. The goal is to determine the minimum number of searchers

required to capture the fugitive. The variants we are primarily interested

in are whether the fugitive is visible or invisible, and whether or not the

fugitive must stay within the same strongly connected component when

he/she is moving. As our fundamental definitions are dependent on these

two options, we define four game variants: i, isc, v, vsc, corresponding

to the visibility of the fugitive and whether he/she is constrained to moving

within strongly connected components, that is, i and v correspond to an

invisible and a visible fugitive respectively while isc and vsc correspond

to an invisible and visible fugitive as above with the addition that the

fugitives move inside the same strongly connected component. Then we

parameterize our definitions by these variants.

Let us fix a digraph G. A position in a LIFO-search on G is a pair

(X,R) where X ∈ V (G)∗ and R is a (possibly empty) induced subgraph

of G \ {|X|}, where {|X|} denotes the set of vertices in X. Intuitively

X represents the position and ordered placement of the searchers and R

226 10.2. Searching Games for Cycle-rank

represents the part of G that the fugitive can reach (in the visible case) or

the set of vertices where he/she might possibly be located (in the invisible

case). We say that a position (X,R) is

• an i-position if there are no edges in G from R to G \R,

• an isc-position if it is a union of strongly connected components of

G \ {|X|},

• a v-position if there are no edges in G from R to G \ R and G[R]

has a strongly connected component C with no edges from G \C to

C, and

• a vsc-position if R is a strongly connected component of G \ {|X|}.

To reflect how the game transitions to a new position during a round of

the game we say, for gv ∈ {i, isc, v, vsc}, a gv-position (X ′, R′) is a gv-

successor of (X,R) if either X � X ′ or X ′ � X, with |{|X|}∆{|X ′|}| = 1,

and

• (for gv ∈ {i, v}) For every v′ ∈ V (R′) there is a v ∈ V (R) and a

directed path in G \ ({|X|} ∩ {|X ′|}) from v to v′, or

• (for gv ∈ {isc, vsc}) For every v′ ∈ V (R′) there is a v ∈ V (R)

such that v and v′ are contained in the same strongly connected

component of G \ ({|X|} ∩ {|X ′|}).

Ideally we would like to assume games start from (ε,G). However, in

the visible variants of the game this might not be a legitimate position.

Thus, for gv ∈ {v, vsc}, if (ε,G) is not a gv-position we include it as a

special case, and set as its gv-successors all gv-positions of the form (ε, R).

We observe that in all variants, the successor relation is monotone in the

10. Graph Searching: A Game Characterization of Cycle-rank 227

sense that if (X,R) and (X,S) are positions with S ⊆ R and (X ′, S′)

is a successor of (X,S), then there is a successor (X ′, R′) of (X,R) with

S′ ⊆ R′.
For gv ∈ {i, isc, v, vsc}, a (gv-LIFO-)search in a digraph G from gv-

position (X,R) is a (finite or infinite) sequence of gv-positions (X,R) =

(X0, R0), (X1, R1), . . . where for all i ≥ 0, (Xi+1, Ri+1) is a gv-successor

of (Xi, Ri). A LIFO-search is complete if either Rn = ∅ for some n, or it

is infinite. We observe that if Rn = ∅, then Rn′ = ∅ for all n′ ≥ n.

We say that a complete LIFO-search is winning for the searchers if

Rn = ∅ for some n, otherwise it is winning for the fugitive. A complete

LIFO-search from (ε,G)

• is monotone if Ri+1 ⊆ Ri for all i, that is, the fugitive does not

occupy positions of the graph from which he/she has already been

banned,

• is searcher-stationary if Xi � Xi+1 for all i where Ri 6= ∅, and

• uses at most k searchers if |Xi| ≤ k for all i.

Whilst a complete LIFO-search from (ε,G) describes a single run of

the game, we are more interested in the cases where one of the players

(particularly the searchers) can always force a win, no matter what the

other player chooses to do. For this, we introduce the notion of a strategy.

For gv ∈ {i, isc, v, vsc}, a (searcher) gv-strategy is a (partial2) function σ

from the set of all gv-positions to V (G)∗ such that for all (X,R), σ(X,R)

is the first component of a gv-successor of (X,R); so with the possible

exception of (X,R) = (ε,G), either σ(X,R) � X or X � σ(X,R). A

2A strategy need only be defined for all positions (X,R) that can be reached from

(ε,G) in a LIFO-search consistent with the strategy. However, as this definition is

somewhat circular, we assume strategies are total.

228 10.2. Searching Games for Cycle-rank

gv-LIFO-search (X0, R0), (X1, R1), . . . is consistent with a gv-strategy σ

if Xi+1 = σ(Xi, Ri) for all i ≥ 0. A strategy σ is winning from (X,R) if

all complete LIFO-searches from (X,R) consistent with σ are winning for

the searchers. Likewise, a strategy is monotone (searcher-stationary, uses

at most k searchers) if all consistent complete LIFO-searches from (ε,G)

are monotone (searcher-stationary, use at most k searchers respectively).

We say k searchers can capture a fugitive on G in the gv-game with a

(monotone) LIFO-search strategy if there is a (monotone) gv-strategy

that uses at most k searchers and is winning for the searchers from (ε,G).

For gv ∈ {i, isc, v, vsc}, we define the (monotone) i-LIFO-search

number of G, LIFOgv(G) (LIFOmgv(G)), as the minimum k for which

there is a (monotone) winning gv-strategy that uses at most k searchers.

We also define the visible, strongly connected, searcher-stationary search

number of G, SSvsc(G), as the minimum k for which there is a searcher-

stationary winning vsc-strategy that uses at most k searchers.

In Section 10.3, we will also consider fugitive gv-strategies: a partial

function ρ from V (G)∗×P(G)×V (G)∗ to induced subgraphs of G, defined

for (X,R,X ′) if (X,R) is a gv-position and X ′ is the first component of a

gv-successor of (X,R). A LIFO-search (X0, R0), (X1, R1), . . . is consistent

with a fugitive gv-strategy ρ if Ri+1 = ρ(Xi, Ri, Xi+1) for all i ≥ 0, and

a fugitive strategy is winning if all consistent complete LIFO-searches are

winning for the fugitive. In this section, a strategy will always refer to a

searcher strategy.

10.2.2 Relating the Digraph Searching Parameters

We observe that in all game variants, a strategy that is winning from

(X,R) can be used to define a strategy that is winning from (X,R′) for

any R′ ⊆ R: the searchers can play as if the fugitive is located in the

10. Graph Searching: A Game Characterization of Cycle-rank 229

larger space; and from the monotonicity of the successor relation, the

assumption that the actual set of locations of the fugitive is a subset of

the assumed set of locations remains invariant. One consequence is that a

winning strategy on G defines a winning strategy on any subgraph of G,

so the search numbers we have defined are monotone with respect to the

subgraph relation.

Proposition 10.1. Let G be a digraph and G′ a subgraph of G. Then:

• SSvsc(G′) ≤ SSvsc(G), and

• LIFOgv(G′) ≤ LIFOgv(G) for

gv ∈ {i, isc, v, vsc, mi, misc, mv, mvsc}.

Another consequence is that a winning strategy in the invisible fugi-

tive variant defines a winning strategy when the fugitive is visible; and a

winning strategy when the fugitive is not constrained to moving within

strongly connected components defines a winning strategy when he/she

is. This corresponds to our intuition of the fugitive being more (or less)

restricted. Also, in all game variants, a monotone winning strategy is

clearly a winning strategy, and because a searcher-stationary LIFO-search

is monotone, a winning searcher-stationary strategy is a monotone win-

ning strategy. These observations yield several inequalities between the

search numbers defined above. For example LIFOvsc(G) ≤ LIFOmi(G) as

any winning monotone i-strategy is also a winning vsc-strategy. The full

set of these relations is shown in a Hasse diagram in Figure 10.1, with the

larger measures towards the top.

The main result of this section is that all these digraph parameters are

equal to one more than cycle-rank.

230 10.2. Searching Games for Cycle-rank

LIFOmi(G)

LIFOi(G) LIFOmv(G) LIFOmisc(G) SSvsc(G)

LIFOv(G) LIFOisc(G) LIFOmvsc(G)

LIFOvsc(G)

Figure 10.1: Trivial relations between digraph searching parameters.

Theorem 10.3. For any digraph G:

1 + cr(G) = LIFOmi(G) = LIFOi(G) = LIFOmisc(G) = LIFOisc(G)

= LIFOmv(G) = LIFOv(G) = LIFOmvsc(G) = LIFOvsc(G)

= SSvsc(G).

Proof. From the above observations, to prove Theorem 10.3 it is sufficient

to prove the following three inequalities:

(1) LIFOvsc(G) ≥ SSvsc(G),

(2) SSvsc(G) ≥ 1 + cr(G), and

(3) 1 + cr(G) ≥ LIFOmi(G).

These are established with the following series of lemmata.

Lemma 10.1. For any digraph G, LIFOvsc(G) ≥ SSvsc(G).

Proof. We show that if a vsc-strategy is not searcher-stationary then it

is not a winning strategy from (ε,G). The result then follows as this

10. Graph Searching: A Game Characterization of Cycle-rank 231

implies every winning vsc-strategy is searcher-stationary. Let σ be a

vsc-strategy, and suppose (X0, R0), (X1, R1), . . . is a complete vsc-LIFO-

search from (X0, R0) = (ε,G) consistent with σ which is not searcher-

stationary. Let j be the least index such that Xj � Xj+1 and Rj 6= ∅.
As X0 = ε, there exists i < j such that Xi = Xj+1. By the minimality

of j, and the assumption that we only place or remove one searcher in

each round, i = j − 1. As Xj−1 � Xj , Rj ⊆ Rj−1, and as Xj+1 � Xj ,

Rj ⊆ Rj+1. As Rj 6= ∅, it follows that Rj−1 and Rj+1 are the same

strongly connected component of G \ {|Xj−1|}. Thus (Xj−1, Rj−1) is a

vsc-successor of (Xj , Rj). As σ(Xj , Rj) = Xj+1 = Xj−1, it follows that

(X0, R0), (X1, R1),. . ., (Xj−1, Rj−1), (Xj , Rj), (Xj−1, Rj−1), (Xj , Rj), . . .

is an infinite, and hence complete, vsc-LIFO-search (from (ε,G)) consis-

tent with σ. As Ri 6= ∅ for all i ≥ 0, the LIFO-search is not winning for

the searchers. Thus σ is not a winning strategy.

Lemma 10.2. For any digraph G, SSvsc(G) ≥ 1 + cr(G).

Proof. We prove this by induction on |V (G)|. If |V (G)| = 1, then

SSvsc(G) = 1 = 1 + cr(G).

Now suppose SSvsc(G′) ≥ 1+cr(G′) for all digraphs G′ with |V (G′)| <
|V (G)|. We first consider the case when G is not strongly connected.

From Proposition 10.1, SSvsc(G) ≥ maxH SSvsc(H), where the maximum

is taken over all strongly connected components H of G. As G is not

strongly connected, |V (H)| < |V (G)| for all strongly connected compo-

nents H of G. Therefore, by the induction hypothesis,

SSvsc(G) ≥ max
H

SSvsc(H)

≥ max
H

(1 + cr(H))

= 1 + cr(G).

232 10.2. Searching Games for Cycle-rank

Now suppose G is strongly connected. Let σ be a winning searcher-

stationary vsc-strategy which uses SSvsc(G) searchers. As (ε,G) is a le-

gitimate vsc-position, if (X,R) is a vsc-successor of (ε,G) then |X| = 1.

Thus |σ(ε,G)| = 1. Let σ(ε,G) = v0. As σ is a searcher-stationary

strategy which uses the minimal number of searchers, it follows that

SSvsc(G \ {v0}) = SSvsc(G)− 1. Thus, by the induction hypothesis,

SSvsc(G) = SSvsc(G \ {v0}) + 1

≥ (1 + cr(G \ {v0})) + 1

≥ (1 + min
v∈V (G)

cr(G \ {v})) + 1

= 1 + cr(G).

Lemma 10.3. For any digraph G, 1 + cr(G) ≥ LIFOmi(G).

Proof. We also prove this by induction on |V (G)|. If |V (G)| = 1, then

1 + cr(G) = 1 = LIFOmi(G).

Now suppose 1 + cr(G′) ≥ LIFOmi(G′) for all digraphs G′ with

|V (G′)| < |V (G)|. First we consider the case when G is not strongly

connected. As |V (H)| < |V (G)| for each strongly connected component

H, by the inductive hypothesis, there is a monotone i-strategy, σH , which

captures a fugitive using at most 1 + cr(H) searchers. From the def-

inition of cycle-rank, for each strongly connected component H of G,

cr(G) ≥ cr(H), thus σH uses at most 1 + cr(G) searchers. We define a

monotone i-strategy which captures a fugitive on G with at most 1+cr(G)

searchers as follows. Intuitively, we search the strongly connected compo-

nents of G in topological order using the monotone strategies σH . More

precisely, let H1, H2, . . . ,Hn be an ordering of the strongly connected com-

10. Graph Searching: A Game Characterization of Cycle-rank 233

ponents of G such that if there is an edge from Hi to Hj then i < j. We

define σ as follows.

• σ(ε,G) = σH1(ε,H1),

• For 1 ≤ i, if {|X|} ⊆ Hi and R = R′∪
⋃n
j=i+1Hj where ∅ 6= R′ ⊆ Hi,

σ(X,R) = σHi(X,R
′),

• For 1 ≤ i < n, if ∅ 6= {|X|} ⊆ Hi and R =
⋃n
j=i+1Hj then σ(X,R) =

X ′ where X ′ is the maximal proper prefix of X.

From the definition of i-successors and the ordering of the strongly con-

nected components if (X0, R0), . . . (Xn, Rn) is an i-LIFO-search on G

where {|Xn|} ⊆ Hi and
⋃
j>iHj ⊆ Rn−1 ⊆

⋃
j≥iHj , then

⋃
j>iHj ⊆

Rn ⊆
⋃
j≥iHj . It follows (by induction on the length of a LIFO-search)

that every LIFO-search from (ε,G) consistent with σ can be divided into

a sequence of LIFO-searches λ1, λ2, . . . , λn, where λi can be viewed as a

LIFO-search consistent with σHi with
⋃
j>iHj added to the second com-

ponent of every position. Thus if each σHi is monotone, winning and uses

at most 1 + cr(G) searchers, then σ is also monotone, winning and uses

at most 1 + cr(G) searchers.

Now suppose G is strongly connected. Let v0 be the vertex which

minimizes f(v) = cr(G \ {v}). Let G′ = G \ {v0}, so cr(G) = 1 + cr(G′).

By the induction hypothesis, there exists a winning monotone i-strategy

σ′ which uses at most 1+cr(G′) searchers to capture a fugitive on G′. We

define an i-strategy σ on G which uses at most 2 + cr(G′) = 1 + cr(G)

searchers as follows. Initially, place (and keep) a searcher on v0, then play

the strategy σ′ on G \ {v0}. More precisely, σ(ε,G) = v0 and σ(v0X,R) =

v0 ·σ′(X,R). Clearly any LIFO-search consistent with σ can be viewed as

a LIFO-search consistent with σ′ prepended with the position (ε,G) and

234 10.3. Obstructions for Cycle-rank

where the first component of every position is prepended with v0. Thus if

σ′ is monotone, then σ is monotone, and if σ′ is winning then σ is winning.

Thus σ is a monotone winning i-strategy which uses at most 1 + cr(G)

searchers.

10.2.3 Relation with Other Graph Parameters

With a characterization of cycle-rank in terms of several graph searching

games we can compare it with other digraph measures defined by similar

games. In particular, the directed path-width of a digraph, dpw(G), which

can be characterized by an invisible-fugitive graph searching game [16],

and the DAG-depth, dd(G) which can be characterized by a visible-

fugitive, searcher-stationary searching game [96]. Whilst the relations we

present here are known [96, 110], using the game characterizations we

obtain a more simple and more intuitive proof.

Corollary 10.1. For any digraph G,

dpw(G) ≤ cr(G) ≤ dd(G)− 1.

10.3 Obstructions for Cycle-rank

In this section, we consider the dual parameter arising from considering

the graph searching games from the fugitive’s perspective. We show that it

can be characterized by two types of structural features, akin to the havens

and brambles used to dually characterize tree-width [217]. To do so we

first define the notion of the directed shelter of a digraph, a structural

obstruction which we show to be dual to cycle-rank.

Definition 10.2. A directed shelter of a digraph G is a collection S of non-

empty strongly connected sets of vertices such that for any non-minimal

10. Graph Searching: A Game Characterization of Cycle-rank 235

S ∈ S ⋂
{S′ : S′ ∈MS(S)} = ∅,

where MS(S) is the ⊆-maximal elements of {S′ ∈ S : S′ ⊂ S}. The

thickness of a shelter S is the minimal length of a maximal ⊆-chain.

The second structural obstruction we consider is motivated by the

definition of a haven in [129], a structural feature dual to directed tree-

width.

Definition 10.3. A LIFO-haven of order k of a digraph G is a function

h from V (G)<k to induced subgraphs of G such that:

(H1) h(X) is a non-empty strongly connected component of G \ {|X|},
and

(H2) If X � Y and |Y | < k then h(Y) ⊆ h(X).

Whilst Adler [2] has shown that the havens of [129] do not give an

exact min-max characterization of directed tree-width and Safari [214] has

shown that directed versions of havens and brambles give rise to distinct

parameters, we show that LIFO-havens and directed shelters both give a

tight min-max characterization of cycle-rank.

Theorem 10.4 (Min-max Theorem for Cycle-rank). Let G be a digraph

and k a positive integer. The following are equivalent:

(i) G has cycle-rank less than k.

(ii) G has no LIFO-haven of order greater than k.

(iii) G has no directed shelter of thickness greater than k.

236 10.3. Obstructions for Cycle-rank

Proof. (i) ⇒ (ii). Assume that it is not the case that G has no LIFO-

haven of order greater than k, that is, G has a LIFO-haven h of order at

least k + 1. We show that the fugitive has a winning strategy against k

searchers, so by Theorem 10.3, cr(G) ≥ k. Define a vsc-strategy ρ for

the fugitive (against k searchers) by defining ρ(X,R,X ′) = h(X ′) for all

suitable triples (X,R,X ′). From (H1), (X ′, ρ(X,R,X ′)) is a valid vsc-

position. Furthermore, (H2) implies that if (X,R) is a vsc-position such

that R = h(X), then (X ′, ρ(X,R,X ′)) is a vsc-successor of (X,R), so ρ is

a vsc-strategy (defined for all LIFO-searches that use at most k searchers).

Also, if (X0, R0), (X1, R1) . . . is a complete LIFO-search consistent with

ρ then Ri = h(Xi) for all i > 0. As h(X) 6= ∅ when |X| ≤ k, it follows

that all consistent complete LIFO-searches that use at most k searchers

are winning for the fugitive. Thus ρ is a winning strategy for the fugitive,

so LIFOvsc(G) > k. By Theorem 10.3, cr(G) ≥ k.

(ii)⇒ (iii). We show that a directed shelter S of thickness at least k

can be used to define a haven of order at least k. For each X ∈ V (G)<k we

define SX ∈ S inductively as follows. For X = ε, let Sε be any ⊆-maximal

element of S. Note that {S ∈ S | S ⊂ Sε} is a directed shelter of thickness

at least k − 1. Now suppose X = X ′v, SX′ is defined, SX′ ∩ {|X ′|} = ∅,
and SX′ = {S ∈ S | S ⊂ SX′} is a directed shelter of thickness at least

k − 1 − |X ′|. From the definition of a directed shelter, there exists a ⊆-

maximal element of SX′ that does not contain v, as otherwise v ∈ S for all

S ∈ MS(SX′). Let SX be that element. As SX′ ∩ {|X ′|} = ∅ and v /∈ SX ,

it follows that SX ∩ {|X|} = ∅. Further, {S ∈ S | S ⊂ SX} is a directed

shelter of thickness at least (k − 1 − |X ′|) − 1 = k − 1 − |X|, satisfying

the assumptions necessary for the next stage of the induction. Now for

all X ∈ V (G)<k, SX is a non-empty strongly connected set such that

SX ∩ {|X|} = ∅. Thus there is a unique strongly connected component of

10. Graph Searching: A Game Characterization of Cycle-rank 237

G \ {|X|} that contains SX . Defining h(X) to be that component we see

that h satisfies (H1). For (H2), from the definition of SX , if X � Y and

|Y | < k, then SX ⊇ SY , so h(X) ⊇ h(Y). Therefore h is a haven of order

at least k.

(iii) ⇒ (i). Again, we prove the contrapositive. Suppose cr(G) ≥ k.

Let G′ be a strongly connected component of G which has cycle-rank at

least k. We prove by induction on k that G′, and hence G, has a directed

shelter of thickness at least k + 1. Every digraph with |V (G)| ≥ 1 has a

directed shelter of thickness 1: take S = {{v}} for some v ∈ V (G). Thus

for k = 0, the result is trivial. Now suppose for k′ < k every digraph

of cycle-rank at least k′ contains a directed shelter of thickness at least

k′+1. For v ∈ V (G′), let G′v = G′\{v}. From the definition of cycle-rank,

cr(G′v) ≥ k − 1 for all v ∈ V (G′). Thus, by the induction hypothesis, G′v

contains a directed shelter, Sv, of thickness at least (k − 1) + 1. As v /∈ S
for all S ∈ Sv, it follows that S = {G′} ∪

⋃
v∈V (G′) Sv is a directed shelter

of G. As Sv has thickness at least k for all v ∈ V (G′), S has thickness at

least k + 1.

Combining Theorems 10.3 and 10.4 we obtain the following.

Theorem 10.5. Let G be a digraph and k a positive integer. The following

are equivalent:

(i) G has cycle-rank at most k − 1.

(ii) On G, k searchers can capture a fugitive with a LIFO-search strat-

egy.

(iii) On G, k searchers can capture a visible fugitive restricted to moving

in strongly connected sets with a searcher-stationary search strategy.

(iv) G has no LIFO-haven of order greater than k.

238 10.4. LIFO-search in Simple Graphs

(v) G has no directed shelter of thickness greater than k.

10.4 LIFO-search in Simple Graphs

In this section, we consider the consequences of our results to simple

graphs. Given a graph G, we define the digraph Gd where V (Gd) = V (G)

and E(Gd) = {(x, y) | {x, y} ∈ E(G)}, that is, Gd is obtained from G

after replacing every edge {x, y} ∈ E(G) with the arcs (x, y) and (y, x).

From Definitions 10.1 and 4.1 we get that.

Observation 10.1. For every graph G, td(G) = cr(Gd) + 1.

We now give the definition of shelters when restricted to simple graphs.

Definition 10.4 (Shelter). A shelter of G is a collection S of non-empty

connected sets in G such that for every non-minimal set S ∈ S no vertex

belongs to all its children, in other words,⋂
{S′ | S′ ∈MS(S)} = ∅,

where MS(S) is the ⊆-maximal elements of {S′ ∈ S : S′ ⊂ S}. The

thickness of a shelter S is the minimal length of a maximal ⊆-chain.

In Figure 10.2 you can see a shelter of P9 of thickness 4 and in Fig-

ure 10.3 you can see the steps of a monotone winning LIFO-strategy in P9

using at most 4 searchers.

Observation 10.1 ensures that we may restate Theorem 10.5 for simple

graphs in the following way.

Theorem 10.6. Let G be a non-empty graph and k be a positive integer.

Then the following are equivalent.

(i) G has tree-depth at most k.

10. Graph Searching: A Game Characterization of Cycle-rank 239

Figure 10.2: A shelter of P9 that has thickness 4.

(ii) On G, k searchers can capture an invisible and agile fugitive with a

monotone LIFO-search strategy.

(iii) On G, k searchers can capture an invisible and agile fugitive with a

LIFO-search strategy.

(iv) Every shelter in G has thickness at most k.

(v) On G, k searchers can capture a visible and agile fugitive with a

monotone LIFO-search strategy.

However, we wish to also include a simpler straightforward proof for

the case of ordinary graphs.

Proof. (i)⇒ (ii): We proceed by induction on the quantity k · (|V (G)| −
2) + |C(G)| where k = td(G). Notice that k · (|V (G)| − 2) + |C(G)| ≥ 0,

where the equality holds when |V (G)| = 1, and therefore k = 1. In such

a case, the winning strategy is R = [ε, x] where {x} = V (G). Suppose

now that the statement holds for all G where k · (|V (G)| − 2) + |C(G)| <
ρ and let G be a graph such that k · (|V (G)| − 2) + |C(G)| = ρ. Let

240 10.4. LIFO-search in Simple Graphs

C(G) = {G1, . . . , Gσ} where σ = |C(G)|. From the definition of tree-depth

it follows that ki = td(Gi) ≤ k, for i ∈ {1, . . . , σ}. We distinguish two

cases.

Case i. If σ ≥ 2, then ki · (|V (Gi)| − 2) + |C(Gi)| ≤ k · (|V (Gi)| − 2) +

1 < k · (|V (Gi)| − 2) + σ = ρ, i ∈ {1, . . . , σ} and, from the induction

hypothesis, there exists a monotone winning strategy Ri for Gi using at

most ki searchers. Then R = R1 ⊕ . . . ⊕ Rσ is a monotone winning

strategy on G using at most k searchers (we use the term ⊕ to denote the

concatenation of two sequences).

Case ii. If σ = 1, then from the definition of tree-depth, G contains a

vertex x such that the graph G− = G \ x has tree-depth k− = k − 1. As

the tree-depth of G− is a positive integer, it follows that k ≥ 2. Notice

now that k− · (|V (G−)| − 2) + |C(G−)| ≤ k · (|V (G)| − 2) − k + 2 <

k · (|V (G)| − 2) + 1 = k · (|V (G)| − 2) + σ = ρ. Therefore, we may apply

the induction hypothesis on G− and obtain a monotone winning strategy

R− = [w1, . . . , wρ] on G− using at most k − 1 searchers. But then the

strategy R = [ε, xw1, . . . , xwρ] is a monotone winning strategy on G using

at most k searchers.

(iii) ⇒ (iv): We prove the contrapositive using induction on k. On

other words, we show that for every k ≥ 0, if K is a shelter of G that has

thickness at least k + 1, then there is no winning strategy on G using at

most k searchers. For k = 0 this is obvious as we need at least one searcher

to capture a fugitive escaping in a non-empty graph. Assume now that

the statement is correct for all k where 0 ≤ k < k′. We will now prove

that it also holds for k = k′.

Let K be a shelter of G of thickness at least k + 1 with mini-

mum number of maximal sets. Notice that such a shelter should have

only one maximal set, as for every maximal set T of K, {T} ∪ {S |

10. Graph Searching: A Game Characterization of Cycle-rank 241

S is a descendant of T in K} is also a shelter of G of thickness at least

k + 1. Let X be the maximal set of K. We assume that G is connected,

otherwise we work on the connected component of G that contains the

maximal set of K. Let R = [w0, . . . , wρ] be a winning strategy on G using

at most k searchers and of minimum length. We say that the i-th move

of R is a starting move if wi−1 = ε. Clearly R should have at least one

starting move as the first placement move is one of them. Moreover, R
cannot have any other starting move. Indeed, if the i-th move is such

a move where i > 1, then R′ = [wi−1, wi, . . . , wρ] would also be a win-

ning strategy using at most k searchers, contradicting the minimality of

R. This implies that the searcher placed first is never removed from the

graph. Assume now that x is the vertex where the first placement move

occurs. We claim that G− = G \ x contains a shelter K− of thickness at

least k. We distinguish two cases.

Case 1. If x intersects X then, from the definition of a shelter, x cannot

belong to all the children of X. Let X− be such a child. Notice that X−

is the maximal set of the shelter K− defined by X− and its descendants.

It follows that K− is a shelter of G \ x of thickness at least k.

Case 2. If x does not intersect X, then K = K \ x and thus K− = K is

a shelter of G− = G \ x of thickness at least k + 1 ≥ k. Notice now that

the strategy R− = [w−1 , . . . , w
−
ρ], created if we remove x from wi for each

i ∈ {1, . . . , ρ}, is a winning strategy on G− using at most k− 1 searchers,

contradicting the induction hypothesis for k = k′ − 1.

(iv)⇒ (i): Again we prove the contrapositive, that is, for every k ≥ 1,

if td(G) ≥ k, then there exists a shelter of G that has thickness at least

k. The case where k = 1 is obvious as every connected component of a

non-empty graph is a one element shelter of thickness 1. Assume now that

the statement is correct for all k where 0 ≤ k < k′. We will prove that it

242 10.4. LIFO-search in Simple Graphs

also holds for k = k′. Let G be a graph where td(G) ≥ k and let G′ be

one of its connected components that has tree-depth at least k. We prove

that G′ has a shelter K of thickness at least k. As K is also a shelter of

G, G has a shelter of thickness k. As td(G′) ≥ k and G′ is connected, it

follows that for every x ∈ V (G′), td(G′ \ x) ≥ k − 1. From the induction

hypothesis, for every x ∈ V (G′), G(x) = G′ \ x contains a shelter K(x)

of thickness at least k − 1. Notice that K = {V (G′)} ∪
⋃
x∈V (G′)K(x) is

a shelter of G′, as
⋂
x∈V (G′)(V (G′) \ x) = ∅. Moreover, K has thickness

one more than the minimum thickness of K(x), x ∈ V (G′), therefore K is

a shelter of thickness at least k, as required.

Finally, it is trivial to see that (ii)⇒ (v) (since we can follow the same

strategy in the case where the fugitive is visible), while for (v)⇒ (ii) it is

enough to recall that from the results in [96] there is a searcher-stationery

strategy for a visible and agile fugitive which is also a monotone LIFO-

search strategy.

10. Graph Searching: A Game Characterization of Cycle-rank 243

Figure 10.3: A monotone winning LIFO-strategy in P9 using 4 searchers.

Bibliography

[1] Faisal N. Abu-Khzam and Michael A. Langston. Graph coloring

and the immersion order. In Tandy Warnow and Binhai Zhu, edi-

tors, COCOON, volume 2697 of Lecture Notes in Computer Science,

pages 394–403. Springer, 2003.

[2] Isolde Adler. Directed tree-width examples. Journal of Combinato-

rial Theory, Series B, 97(5):718–725, 2007.

[3] Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Ob-

structions for linear rankwidth at most 1. CoRR, abs/1106.2533,

2011.

[4] Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing ex-

cluded minors. In Shang-Hua Teng, editor, SODA, pages 641–650.

SIAM, 2008.

[5] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel

Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Tight

245

246 Bibliography

bounds for linkages in planar graphs. In Luca Aceto, Monika Hen-

zinger, and Jiri Sgall, editors, ICALP (1), volume 6755 of Lecture

Notes in Computer Science, pages 110–121. Springer, 2011.

[6] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier.

Fixed parameter algorithms for dominating set and related problems

on planar graphs. Algorithmica, 33(4):461–493, 2002.

[7] Jochen Alber, Hans L. Bodlaender, Henning Fernau, and Rolf Nie-

dermeier. Fixed parameter algorithms for planar dominating set

and related problems. In 6th Scandinavian Workshop on Algorithm

Theory—SWAT 2000 (Bergen), pages 97–110. Springer, Berlin,

2000.

[8] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and

Anders Yeo. Solving max-r-sat above a tight lower bound. In SODA,

pages 511–517, 2010.

[9] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and An-

ders Yeo. Solving max-r-sat above a tight lower bound. Algorithmica,

61(3):638–655, 2011.

[10] Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast fast.

In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,

Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, ICALP (1),

volume 5555 of Lecture Notes in Computer Science, pages 49–58.

Springer, 2009.

[11] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. Assoc.

Comput. Mach., 42(4):844–856, 1995.

Bibliography 247

[12] Eyal Amir. Approximation algorithms for treewidth. Algorithmica,

56(4):448–479, 2010.

[13] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems

for tree-decomposable graphs. Journal of Algorithms, 12:308–340,

1991.

[14] Stefan Arnborg, Andrzej Proskurowski, and Derek G. Corneil. For-

bidden minors characterization of partial 3-trees. Discrete Mathe-

matics, 80(1):1–19, 1990.

[15] R. Balasubramanian, Michael Fellows, and Venkatesh Raman. An

improved fixed-parameter algorithm for vertex cover. Information

Proccessing Letters, 65:163–168, 1998.

[16] János Barát. Directed path-width and monotonicity in digraph

searching. Graphs and Combinatorics, 22(2):161–172, 2006.

[17] Rémy Belmonte, Pim van ’t Hof, Marcin Kaminski, Daniël

Paulusma, and Dimitrios M. Thilikos. Characterizing graphs of

small carving-width. In Guohui Lin, editor, COCOA, volume 7402 of

Lecture Notes in Computer Science, pages 360–370. Springer, 2012.

[18] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan

Kreutzer. DAG-width and parity games. In Proceedings of the 23rd

International Symposium on Theoretical Aspects of Computer Sci-

ence, pages 524–536, 2006.

[19] Therese C. Biedl and Michael Kaufmann. Area-efficient static and

incremental graph drawings. In Rainer E. Burkard and Gerhard J.

Woeginger, editors, ESA, volume 1284 of Lecture Notes in Computer

Science, pages 37–52. Springer, 1997.

248 Bibliography

[20] Daniel Bienstock and Paul D. Seymour. Monotonicity in graph

searching. Journal of Algorithms, 12:239–245, 1991.

[21] Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks,

Dieter Kratsch, Haiko Müller, and Zsolt Tuza. Rankings of graphs.

SIAM J. Discrete Math., 11(1):168–181 (electronic), 1998.

[22] Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel

Marx, editors. The Multivariate Algorithmic Revolution and Be-

yond - Essays Dedicated to Michael R. Fellows on the Occasion of

His 60th Birthday, volume 7370 of Lecture Notes in Computer Sci-

ence. Springer, 2012.

[23] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and

Danny Hermelin. On problems without polynomial kernels. J. Com-

put. Syst. Sci., 75(8):423–434, 2009.

[24] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Pen-

ninkx, Saket Saurabh, and Dimitrios M. Thilikos. (Meta) Kerneliza-

tion. In Proceedings of the 50th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS 2009), pages 629–638. IEEE,

2009.

[25] Hans L. Bodlaender and Dimitrios M. Thilikos. Graphs with branch-

width at most three. Journal of Algorithms, 32:167–197, 1999.

[26] Hans Leo Bodlaender and Ton Kloks. Efficient and constructive

algorithms for the pathwidth and treewidth of graphs. Journal of

Algorithms, 21:358–402, 1996.

[27] B. Bollobás and A. D. Scott. Better bounds for Max Cut. In Contem-

Bibliography 249

porary combinatorics, volume 10 of Bolyai Soc. Math. Stud., pages

185–246. János Bolyai Math. Soc., Budapest, 2002.

[28] Liming Cai and David Juedes. On the existence of subexponen-

tial parameterized algorithms. Journal of Computer and System

Sciences, 67(4):789 – 807, 2003. Parameterized Computation and

Complexity 2003.

[29] Kevin Cattell, Michael J. Dinneen, Rodney G. Downey, Michael R.

Fellows, and Michael A. Langston. On computing graph minor ob-

struction sets. Theor. Comput. Sci., 233(1-2):107–127, 2000.

[30] L. Sunil Chandran and Fabrizio Grandoni. Refined memorization

for vertex cover. Inf. Process. Lett., 93(3):123–131, 2005.

[31] Moses Charikar, editor. Proceedings of the Twenty-First An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,

Austin, Texas, USA, January 17-19, 2010. SIAM, 2010.

[32] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: further

observations and further improvements. J. Algorithms, 41(2):280–

301, 2001.

[33] Jianer Chen and Songjian Lu. Improved algorithms for weighted

and unweighted set splitting problems. In COCOON, volume 4598

of Lecture Notes in Computer Science, pages 537–547, 2007.

[34] Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Haji-

aghayi, Marcin Pilipczuk, and Michal Pilipczuk. Designing fpt al-

gorithms for cut problems using randomized contractions. CoRR,

abs/1207.4079, 2012.

250 Bibliography

[35] Janka Chleb́ıková. The structure of obstructions to treewidth and

pathwidth. Discrete Applied Mathematics, 120(1-3):61–71, 2002.

[36] Bruno Courcelle. The monadic second-order logic of graphs. I.

Recognizable sets of finite graphs. Information and Computation,

85(1):12–75, 1990.

[37] Bruno Courcelle, Rodney G. Downey, and Michael R. Fellows.

A note on the computability of graph minor obstruction sets for

monadic second order ideals. In Proceedings of the First Japan-New

Zealand Workshop on Logic in Computer Science (Auckland, 1997),

volume 3, pages 1194–1198 (electronic), 1997.

[38] Robert Crowston, Michael R. Fellows, Gregory Gutin, Mark Jones,

Frances A. Rosamond, Stéphan Thomassé, and Anders Yeo. Simul-

taneously satisfying linear equations over F2: Maxlin2 and max-r-

lin2 parameterized above average. In FSTTCS, volume 13 of LIPIcs,

pages 229–240, 2011.

[39] Robert Crowston, Gregory Gutin, Mark Jones, Eun Jung Kim, and

Imre Z. Ruzsa. Systems of linear equations over F2 and problems

parameterized above average. In SWAT, volume 6139 of Lecture

Notes in Computer Science, pages 164–175, 2010.

[40] Robert Crowston, Gregory Gutin, Mark Jones, Venkatesh Raman,

and Saket Saurabh. Parameterized complexity of maxsat above av-

erage. In LATIN, pages 184–194, 2012.

[41] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk,

Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving

connectivity problems parameterized by treewidth in single expo-

nential time. In Ostrovsky [178], pages 150–159.

Bibliography 251

[42] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally exclud-

ing a minor. In LICS’07, pages 270–279. IEEE Computer Society,

2007.

[43] Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole

Schweikardt. Approximation schemes for first-order definable op-

timisation problems. In LICS, pages 411–420. IEEE Computer So-

ciety, 2006.

[44] Anuj Dawar and Stephan Kreutzer. Domination problems in

nowhere-dense classes. In IARCS Annual Conference on Foun-

dations of Software Technology and Theoretical Computer Science

(FSTTCS 2009), pages 157–168, 2009.

[45] P. de la Torre, R. Greenlaw, and A. A. Schäffer. Optimal edge

ranking of trees in polynomial time. Algorithmica, 13(6):592–618,

1995.

[46] Frank K. H. A. Dehne, Michael R. Fellows, and Frances A. Rosa-

mond. An fpt algorithm for set splitting. In WG, volume 2880 of

Lecture Notes in Computer Science, pages 180–191, 2003.

[47] Frank K. H. A. Dehne, Michael R. Fellows, Frances A. Rosamond,

and Peter Shaw. Greedy localization, iterative compression, modeled

crown reductions: New fpt techniques, an improved algorithm for set

splitting, and a novel 2k kernelization for vertex cover. In IWPEC,

volume 3162 of Lecture Notes in Computer Science, pages 271–280,

2004.

[48] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi,

and Dimitrios M. Thilikos. Bidimensional parameters and local

treewidth. SIAM J. Discrete Math., 18(3):501–511, 2004.

252 Bibliography

[49] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi,

and Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-

center in planar graphs and map graphs. ACM Trans. Algorithms,

1(1):33–47, 2005.

[50] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and

Dimitrios M. Thilikos. Subexponential parameterized algorithms

on bounded-genus graphs and H-minor-free graphs. Journal of the

ACM, 52(6):866–893, 2005.

[51] Erik D. Demaine, Mohammad Taghi Hajiaghayi, Naomi Nishimura,

Prabhakar Ragde, and Dimitrios M. Thilikos. Approximation al-

gorithms for classes of graphs excluding single-crossing graphs as

minors. J. Comput. Syst. Sci., 69(2):166–195, 2004.

[52] Erik D. Demaine and Mohammadtaghi Hajiaghayi. Bidimension-

ality: new connections between FPT algorithms and PTASs. In

Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2005), pages 590–601, New York, 2005. ACM-

SIAM.

[53] Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of

grid minors in treewidth with applications through bidimensionality.

Combinatorica, 28(1):19–36, 2008.

[54] Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Dimitrios M.

Thilikos. Exponential speedup of fixed-parameter algorithms for

classes of graphs excluding single-crossing graphs as minors. Algo-

rithmica, 41:245–267, 2005.

[55] Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Dimitrios M.

Bibliography 253

Thilikos. The bidimensional theory of bounded-genus graphs. SIAM

J. Discrete Math., 20(2):357–371, 2006.

[56] Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos.

Fugitive-search games on graphs and related parameters. Theoretical

Computer Science, 172(1-2):233–254, 1997.

[57] J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller. On vertex

ranking for permutation and other graphs. In STACS 94 (Caen,

1994), volume 775 of Lecture Notes in Comput. Sci., pages 747–758.

Springer, Berlin, 1994.

[58] M. DeVos, Z. Dvořák, J. Fox, J. McDonald, B. Mohar, and

D. Scheide. Minimum degree condition forcing complete graph im-

mersion. ArXiv e-prints, January 2011.

[59] Matt DeVos, Ken-Ichi Kawarabayashi, Bojan Mohar, and Haruko

Okamura. Immersing small complete graphs. Ars Math. Contemp.,

3(2):139–146, 2010.

[60] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in

Mathematics. Springer-Verlag, Berlin, third edition, 2005.

[61] Michael J. Dinneen and Liu Xiong. Minor-order obstructions for the

graphs of vertex cover 6. Journal of Graph Theory, 41(3):163–178,

2002.

[62] G. A. Dirac and S. Schuster. A theorem of Kuratowski. Nederl.

Akad. Wetensch. Proc. Ser. A. 57 = Indagationes Math., 16:343–

348, 1954.

254 Bibliography

[63] G. A. Dirac and S. Schuster. Corrigendum: “A theorem of Kura-

towski”. Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math.,

23:360, 1961.

[64] Frederic Dorn. Dynamic programming and fast matrix multiplica-

tion. In Proceedings of the 14th Annual European Symposium on

Algorithms (ESA 2006), volume 4168 of Lecture Notes in Comput.

Sci., pages 280–291. Springer, Berlin, 2006.

[65] Frederic Dorn. Designing Subexponential Algorithms: Problems,

Techniques & Structures. PhD thesis, Universitetet i Bergen, 2007.

[66] Rodney G. Downey and Michael R. Fellows. Parameterized complex-

ity. Monographs in Computer Science. Springer-Verlag, New York,

1999.

[67] Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach. Spanners

in sparse graphs. J. Comput. Syst. Sci., 77(6):1108–1119, 2011.

[68] Zdenek Dvorak. Constant-factor approximation of domination num-

ber in sparse graphs. CoRR, abs/1110.5190, 2011.

[69] Zdenek Dvorak, Archontia C. Giannopoulou, and Dimitrios M. Thi-

likos. Forbidden graphs for tree-depth. Eur. J. Comb., 33(5):969–

979, 2012.

[70] C. S. Edwards. Some extremal properties of bipartite subgraphs.

Canad. J. Math., 25:475–485, 1973.

[71] L. C. Eggan. Transition graphs and the star-height of regular events.

Michigan Mathematical Journal, 10(4):385–397, 1963.

Bibliography 255

[72] Stanley Eisenstat and Joseph Liu. The theory of elimination trees

for sparse unsymmetric matrices. SIAM Journal of Matrix Analysis

& Applications, 26(3):686–705, 2005.

[73] Herbert B. Enderton. A mathematical introduction to logic. Aca-

demic Press, 1972.

[74] P. Erdős, G.O.H. Katona, and Hongrie) Colloquium on graph theory

(1966. Tihany. Theory of Graphs: Proceedings of the Colloquium [on

Graph Theory], Held at Tihany, Hungary, September 1966. Edited

by P. Erdős and G. Katona. Akadémiai Kiadó, 1968.

[75] P. Erdős. On some extremal problems in graph theory. Israel J.

Math., 3:113–116, 1965.

[76] Paul Erdős and Louis Pósa. On independent circuits contained in a

graph. Canad. J. Math., 17:347–352, 1965.

[77] Michael R. Fellows, Bart M.P. Jansen, and Frances Rosamond. To-

wards fully multivariate algorithmics: Parameter ecology and the

deconstruction of computational complexity. European Journal of

Combinatorics, (0):–, 2012.

[78] Michael R. Fellows and Michael A. Langston. Nonconstructive tools

for proving polynomial-time decidability. J. Assoc. Comput. Mach.,

35(3):727–739, 1988.

[79] Michael R. Fellows and Michael A. Langston. On search, decision,

and the efficiency of polynomial-time algorithms. J. Comput. System

Sci., 49(3):769–779, 1994.

256 Bibliography

[80] Henning Fernau. A top-down approach to search-trees: Improved

algorithmics for 3-hitting set. Electronic Colloquium on Computa-

tional Complexity (ECCC), (073), 2004.

[81] Michael Ferrara, Ronald J. Gould, Gerard Tansey, and Thor

Whalen. On h-immersions. Journal of Graph Theory, 57(3):245–

254, 2008.

[82] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.

Texts in Theoretical Computer Science. An EATCS Series. Springer-

Verlag, Berlin, 2006.

[83] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos.

Contraction obstructions for treewidth. J. Comb. Theory, Ser. B,

101(5):302–314, 2011.

[84] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure

and conquer: Domination - a case study. In Lúıs Caires, Giuseppe F.

Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, ed-

itors, ICALP, volume 3580 of Lecture Notes in Computer Science,

pages 191–203. Springer, 2005.

[85] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevargh-

ese Philip, and Saket Saurabh. Hitting forbidden minors: Approx-

imation and kernelization. In Thomas Schwentick and Christoph

Dürr, editors, STACS, volume 9 of LIPIcs, pages 189–200. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[86] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket

Saurabh. Planar f-deletion: Approximation and optimal fpt algo-

rithms. CoRR, abs/1204.4230, 2012.

Bibliography 257

[87] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket

Saurabh. Bidimensionality and EPTAS. In 22st ACM–SIAM Sym-

posium on Discrete Algorithms (SODA 2011), 2011.

[88] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket

Saurabh. Subexponential algorithms for partial cover problems. Inf.

Process. Lett., 111(16):814–818, 2011.

[89] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimen-

sionality and geometric graphs. In Rabani [180], pages 1563–1575.

[90] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dim-

itrios M. Thilikos. Linear kernels for (connected) dominating set

on h-minor-free graphs. In Rabani [180], pages 82–93.

[91] Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos.

Strengthening erdös-pósa property for minor-closed graph classes.

Journal of Graph Theory, 66(3):235–240, 2011.

[92] Fedor V. Fomin and Dimitrios M. Thilikos. Fast parameterized algo-

rithms for graphs on surfaces: Linear kernel and exponential speed-

up. In Proceedings of the 31st International Colloquium on Au-

tomata, Languages and Programming (ICALP 2004), volume 3142 of

Lecture Notes in Computer Science, pages 581–592. Springer, 2004.

[93] András Frank, Tamás Király, and Matthias Kriesell. On decom-

posing a hypergraph into k connected sub-hypergraphs. Discrete

Applied Mathematics, 131(2):373–383, 2003.

[94] Markus Frick and Martin Grohe. Deciding first-order properties

of locally tree-decomposable structures. J. ACM, 48(6):1184–1206

(electronic), 2001.

258 Bibliography

[95] Harvey Friedman, Neil Robertson, and Paul Seymour. The meta-

mathematics of the graph minor theorem. In Logic and combina-

torics (Arcata, Calif., 1985), volume 65 of Contemp. Math., pages

229–261. Amer. Math. Soc., Providence, RI, 1987.

[96] Robert Ganian, Petr Hlinený, Joachim Kneis, Alexander Langer,

Jan Obdrzálek, and Peter Rossmanith. On digraph width measures

in parameterized algorithmics. In 4th International Workshop on

Parameterized and Exact Computation (IWPEC 2009), pages 185–

197, 2009.

[97] Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thi-

likos. Lifo-search: A min-max theorem and a searching game

for cycle-rank and tree-depth. Discrete Applied Mathematics,

160(15):2089–2097, 2012.

[98] Archontia C. Giannopoulou, Marcin Kaminski, and Dimitrios M.

Thilikos. Excluding graphs as immersions in surface embedded

graphs. unpublished manuscript.

[99] Archontia C. Giannopoulou, Marcin Kaminski, and Dimitrios M.

Thilikos. Forbidding kuratowski graphs as immersions. CoRR,

abs/1207.5329, 2012.

[100] Archontia C. Giannopoulou, Sudeshna Kolay, and Saket Saurabh.

New lower bound on max cut of hypergraphs with an application to

r -set splitting. In David Fernández-Baca, editor, LATIN, volume

7256 of Lecture Notes in Computer Science, pages 408–419. Springer,

2012.

[101] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Ef-

fective computation of immersion obstructions for unions of graph

Bibliography 259

classes. In Fedor V. Fomin and Petteri Kaski, editors, SWAT, vol-

ume 7357 of Lecture Notes in Computer Science, pages 165–176.

Springer, 2012.

[102] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Ef-

fective computation of immersion obstructions for unions of graph

classes. CoRR, abs/1207.5636, 2012.

[103] Archontia C. Giannopoulou and Dimitrios M. Thilikos. Obstructions

for tree-depth. Electronic Notes in Discrete Mathematics, 34:249–

253, 2009.

[104] Archontia C. Giannopoulou and Dimitrios M. Thilikos. A min-max

theorem for lifo-search. Electronic Notes in Discrete Mathematics,

38:395–400, 2011.

[105] Archontia C. Giannopoulou and Dimitrios M. Thilikos. Optimizing

the graph minors weak structure theorem. CoRR, abs/1102.5762,

2011.

[106] Petr A. Golovach, M. Kaminski, D. Paulusma, and D. M. Thilikos.

Induced packing of odd cycles in a planar graph. In Proceedings of

the 20th International Symposium on Algorithms and Computation

(ISAAC 2009), volume 5878 of Lecture Notes in Comput. Sci., pages

514–523. Springer, Berlin, 2009.

[107] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier.

Graph-modeled data clustering: Exact algorithms for clique gen-

eration. Theory Comput. Syst., 38(4):373–392, 2005.

[108] Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-

260 Bibliography

parameter algorithms for closest string and related problems. Al-

gorithmica, 37(1):25–42, 2003.

[109] Martin Grohe, Ken ichi Kawarabayashi, Dániel Marx, and Paul Wol-

lan. Finding topological subgraphs is fixed-parameter tractable. In

STOC, pages 479–488, 2011.

[110] Hermann Gruber. Digraph Complexity Measures and Applications

in Formal Language Theory. In 4th Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS 2008), pages

60–67, 2008.

[111] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar

branchwidth with respect to the largest grid minor size. In Otfried

Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, ISAAC (2),

volume 6507 of Lecture Notes in Computer Science, pages 85–96.

Springer, 2010.

[112] Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. A

probabilistic approach to problems parameterized above or below

tight bounds. J. Comput. Syst. Sci., 77(2):422–429, 2011.

[113] Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. All

ternary permutation constraint satisfaction problems parameterized

above average have kernels with quadratic numbers of variables. In

ESA (1), volume 6346 of Lecture Notes in Computer Science, pages

326–337, 2010.

[114] P. Hall. On representatives of subsets. Journal of the London Math-

ematical Society, 10:26–30, 1935.

Bibliography 261

[115] Pinar Heggernes, Pim van ’t Hof, Bart M. P. Jansen, Stefan Kratsch,

and Yngve Villanger. Parameterized complexity of vertex deletion

into perfect graph classes. In Olaf Owe, Martin Steffen, and Jan Arne

Telle, editors, FCT, volume 6914 of Lecture Notes in Computer Sci-

ence, pages 240–251. Springer, 2011.

[116] Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and

Christophe Paul. Obtaining a bipartite graph by contracting few

edges. In Supratik Chakraborty and Amit Kumar, editors, FSTTCS,

volume 13 of LIPIcs, pages 217–228. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2011.

[117] Ken ichi Kawarabayashi and Yusuke Kobayashi. The edge disjoint

paths problem in eulerian graphs and 4-edge-connected graphs. In

Charikar [31], pages 345–353.

[118] Ken ichi Kawarabayashi and Yusuke Kobayashi. An improved algo-

rithm for the half-disjoint paths problem. SIAM J. Discrete Math.,

25(3):1322–1330, 2011.

[119] Ken ichi Kawarabayashi and Yusuke Kobayashi. List-coloring graphs

without subdivisions and without immersions. In Rabani [180],

pages 1425–1435.

[120] Ken ichi Kawarabayashi, Stephan Kreutzer, and Bojan Mohar. Lin-

kless and flat embeddings in 3-space and the unknot problem. In

Jack Snoeyink, Mark de Berg, Joseph S. B. Mitchell, Günter Rote,

and Monique Teillaud, editors, Symposium on Computational Ge-

ometry, pages 97–106. ACM, 2010.

[121] Ken ichi Kawarabayashi, Zhentao Li, and Bruce A. Reed. Recogniz-

ing a totally odd k4-subdivision, parity 2-disjoint rooted paths and

262 Bibliography

a parity cycle through specified elements. In Charikar [31], pages

318–328.

[122] Ken ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A sim-

pler linear time algorithm for embedding graphs into an arbitrary

surface and the genus of graphs of bounded tree-width. In FOCS,

pages 771–780. IEEE Computer Society, 2008.

[123] Ken ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The

graph minor algorithm with parity conditions. In Ostrovsky [178],

pages 27–36.

[124] Ken ichi Kawarabayashi and Paul Wollan. A shorter proof of the

graph minor algorithm: the unique linkage theorem. In Leonard J.

Schulman, editor, STOC, pages 687–694. ACM, 2010.

[125] Ken ichi Kawarabayashi and Paul Wollan. A simpler algorithm and

shorter proof for the graph minor decomposition. In Lance Fortnow

and Salil P. Vadhan, editors, STOC, pages 451–458. ACM, 2011.

[126] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which

problems have strongly exponential complexity? J. Comput. Syst.

Sci., 63(4):512–530, 2001.

[127] Takehiro Ito, Marcin Kaminski, Daniël Paulusma, and Dimitrios M.

Thilikos. Parameterizing cut sets in a graph by the number of their

components. Theor. Comput. Sci., 412(45):6340–6350, 2011.

[128] Weijia Jia, Chuanlin Zhang, and Jianer Chen. An efficient param-

eterized algorithm for m-set packing. J. Algorithms, 50(1):106–117,

2004.

Bibliography 263

[129] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin

Thomas. Directed tree-width. Journal of Combinatorial Theory

(Series B), 82(1):138–154, 2001.

[130] Marcin Kaminski and Naomi Nishimura. Finding an induced path

of given parity in planar graphs in polynomial time. In Rabani [180],

pages 656–670.

[131] Marcin Kaminski and Dimitrios M. Thilikos. Contraction checking

in graphs on surfaces. In Christoph Dürr and Thomas Wilke, editors,

STACS, volume 14 of LIPIcs, pages 182–193. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2012.

[132] Meir Katchalski, William McCuaig, and Suzanne Seager. Ordered

colourings. Discrete Math., 142(1-3):141–154, 1995.

[133] Ken-ichi Kawarabayashi and Yusuke Kobayashi. The induced dis-

joint path problem. In Proceedings of the 13th Conference on In-

teger Programming and Combinatorial Optimization (IPCO 2008),

volume 5035 of lncs, pages 47–61. Springer, Berlin, 2008.

[134] Ken-ichi Kawarabayashi and Bruce Reed. Odd cycle packing. In

Proceedings of the 42nd ACM Symposium on Theory of Computing

(STOC 2010), pages 695–704, New York, NY, USA, 2010. ACM.

[135] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Pe-

ter Rossmanith, Ignasi Sau, and Somnath Sikdar. Linear kernels and

single-exponential algorithms via protrusion decompositions. CoRR,

abs/1207.0835, 2012.

[136] Eun Jung Kim and Ryan Williams. Improved parameterized algo-

rithms for above average constraint satisfaction. In Dániel Marx and

264 Bibliography

Peter Rossmanith, editors, IPEC, volume 7112 of Lecture Notes in

Computer Science, pages 118–131. Springer, 2011.

[137] Lefteris Kirousis and Christos Papadimitriou. Searching and peb-

bling. Theoretical Computer Science, 47(3):205–218, 1986.

[138] Yusuke Kobayashi and Ken-ichi Kawarabayashi. Algorithms for find-

ing an induced cycle in planar graphs and bounded genus graphs.

In Proceedings of the twentieth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA 2009), pages 1146–1155. ACM-SIAM,

2009.

[139] Athanassios Koutsonas, Dimitrios M. Thilikos, and Koichi Ya-

mazaki. Outerplanar obstructions for matroid pathwidth. Electronic

Notes in Discrete Mathematics, 38:541–546, 2011.

[140] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions

and monotonicity in digraph searching. In 34th International Work-

shop on Graph-Theoretic Concepts in Computer Science (WG 2008),

pages 336–347, 2008.

[141] J. B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vaz-

sonyi’s conjecture. Trans. Amer. Math. Soc., 95:210–225, 1960.

[142] Kazimierz Kuratowski. Sur le problème des courbes gauches en

topologie. Fund. Math., 15:271–283, 1930.

[143] J. Lagergren. Upper bounds on the size of obstructions and inter-

twines. Journal of Combinatorial Theory. Series B, 73:7–40, 1998.

[144] Jens Lagergren. The size of an interwine. In Serge Abiteboul and Eli

Shamir, editors, ICALP, volume 820 of Lecture Notes in Computer

Science, pages 520–531. Springer, 1994.

Bibliography 265

[145] Andrea S. LaPaugh. Recontamination does not help to search a

graph. Journal of the ACM, 40(2):224–245, 1993.

[146] F. Lescure and H. Meyniel. On a problem upon configurations con-

tained in graphs with given chromatic number. In Lars Dovling An-

dersen, Ivan Tafteberg Jakobsen, Carsten Thomassen, Bjarne Toft,

and Preben Dahl Vestergaard, editors, Graph Theory in Memory of

G.A. Dirac, volume 41 of Annals of Discrete Mathematics, pages

325 – 331. Elsevier, 1988.

[147] Joseph W. H. Liu. The role of elimination trees in sparse factoriza-

tion. SIAM J. Matrix Anal. Appl., 11(1):134–172, 1990.

[148] Daniel Lokshtanov. New Methods in Parameterized Algorithms and

Complexity. PhD thesis, Universitetet i Bergen, 2009.

[149] Daniel Lokshtanov and Saket Saurabh. Even faster algorithm for

set splitting! In IWPEC, pages 288–299, 2009.

[150] Daniel Lokshtanov and Christian Sloper. Fixed parameter set split-

ting, linear kernel and improved running time. In ACiD, volume 4

of Texts in Algorithmics, pages 105–113, 2005.

[151] Meena Mahajan and Venkatesh Raman. Parameterizing above guar-

anteed values: Maxsat and maxcut. J. Algorithms, 31(2):335–354,

1999.

[152] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Param-

eterizing above or below guaranteed values. J. Comput. Syst. Sci.,

75(2):137–153, 2009.

[153] Yury Makarychev. A short proof of Kuratowski’s graph planarity

criterion. J. Graph Theory, 25(2):129–131, 1997.

266 Bibliography

[154] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algo-

rithmica, 57(4):747–768, 2010.

[155] William McCuaig. Intercyclic digraphs. In Neil Robertson and

Paul D. Seymour, editors, Graph Structure Theory, volume 147 of

Contemporary Mathematics, pages 203–246. American Mathemati-

cal Society, 1991.

[156] Elliott Mendelson. Introduction to mathematical logic (3. ed.). Chap-

man and Hall, 1987.

[157] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns

Hopkins University Press, Baltimore, MD, 2001.

[158] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proc.

Cambridge Philos. Soc., 59:833–835, 1963.

[159] Jesper Nederlof and Johan M. M. van Rooij. Inclusion/exclusion

branching for partial dominating set and set splitting. In IPEC,

volume 6478 of Lecture Notes in Computer Science, pages 204–215,

2010.

[160] Jaroslav Nesetril and Patrice Ossona de Mendez. The grad of a graph

and classes with bounded expansion. Electronic Notes in Discrete

Mathematics, 22:101–106, 2005.

[161] Jaroslav Nesetril and Patrice Ossona de Mendez. First order prop-

erties on nowhere dense structures. J. Symb. Log., 75(3):868–887,

2010.

[162] Jaroslav Nesetril and Patrice Ossona de Mendez. How many f’s are

there in g? Eur. J. Comb., 32(7):1126–1141, 2011.

Bibliography 267

[163] Jaroslav Nesetril and Patrice Ossona de Mendez. On nowhere dense

graphs. Eur. J. Comb., 32(4):600–617, 2011.

[164] Jaroslav Nesetril, Patrice Ossona de Mendez, and David R. Wood.

Characterisations and examples of graph classes with bounded ex-

pansion. Eur. J. Comb., 33(3):350–373, 2012.

[165] Jaroslav Nešetřil and Patrice Ossona de Mendez. Linear time low

tree-width partitions and algorithmic consequences. In STOC’06:

Proceedings of the 38th Annual ACM Symposium on Theory of Com-

puting, pages 391–400. ACM, New York, 2006.

[166] Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, sub-

graph coloring and homomorphism bounds. European J. Combin.,

27(6):1022–1041, 2006.

[167] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes

with bounded expansion. I. Decompositions. European J. Combin.,

29(3):760–776, 2008.

[168] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes

with bounded expansion. II. Algorithmic aspects. European J. Com-

bin., 29(3):777–791, 2008.

[169] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes

with bounded expansion. III. Restricted graph homomorphism du-

alities. European J. Combin., 29(4):1012–1024, 2008.

[170] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity:

Graphs, Structures, and Algorithms. Algorithms and Combinatorics.

Springer, 2012.

[171] Rolf Niedermeier. Invitation to fixed-parameter algorithms, 2002.

268 Bibliography

[172] Rolf Niedermeier. Invitation to fixed-parameter algorithms, vol-

ume 31 of Oxford Lecture Series in Mathematics and its Applica-

tions. Oxford University Press, Oxford, 2006.

[173] Rolf Niedermeier and Peter Rossmanith. Upper bounds for vertex

cover further improved. In Christoph Meinel and Sophie Tison, ed-

itors, STACS, volume 1563 of Lecture Notes in Computer Science,

pages 561–570. Springer, 1999.

[174] Rolf Niedermeier and Peter Rossmanith. An efficient fixed-

parameter algorithm for 3-hitting set. J. Discrete Algorithms,

1(1):89–102, 2003.

[175] Rolf Niedermeier and Peter Rossmanith. On efficient fixed-

parameter algorithms for weighted vertex cover. J. Algorithms,

47(2):63–77, 2003.

[176] Jan Obdržálek. DAG-width: Connectivity measure for directed

graphs. In Proceedings of the 17th ACM-SIAM Symposium on Dis-

crete Algorithms, pages 814–821, 2006.

[177] Ryan O’Donnell. Some topics in analysis of boolean functions. In

STOC, pages 569–578, 2008.

[178] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foun-

dations of Computer Science, FOCS 2011, Palm Springs, CA, USA,

October 22-25, 2011. IEEE, 2011.

[179] T. D. Parsons. The search number of a connected graph. In Pro-

ceedings of the Ninth Southeastern Conference on Combinatorics,

Graph Theory, and Computing (Florida Atlantic Univ., Boca Ra-

Bibliography 269

ton, Fla., 1978), Congress. Numer., XXI, pages 549–554, Winnipeg,

Man., 1978. Utilitas Math.

[180] Yuval Rabani, editor. Proceedings of the Twenty-Third Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Ky-

oto, Japan, January 17-19, 2012. SIAM, 2012.

[181] Siddharthan Ramachandramurthi. The structure and number of

obstructions to treewidth. SIAM J. Discrete Math., 10(1):146–157,

1997.

[182] Bruce A. Reed, Neil Robertson, Paul D. Seymour, and Robin

Thomas. Packing directed circuits. Combinatorica, 16(4):535–554,

1996.

[183] Bruce A. Reed and F. Bruce Shepherd. The gallai-younger conjec-

ture for planar graphs. Combinatorica, 16(4):555–566, 1996.

[184] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle

transversals. Oper. Res. Lett., 32(4):299–301, 2004.

[185] Neil Robertson and P. D. Seymour. Graph minors. XXII. irrelevant

vertices in linkage problems. To appear.

[186] Neil Robertson and P. D. Seymour. Graph minors—a survey. In

Surveys in combinatorics 1985 (Glasgow, 1985), volume 103 of Lon-

don Math. Soc. Lecture Note Ser., pages 153–171. Cambridge Univ.

Press, Cambridge, 1985.

[187] Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic

aspects of tree-width. J. Algorithms, 7(3):309–322, 1986.

270 Bibliography

[188] Neil Robertson and P. D. Seymour. Graph minors. V. Excluding a

planar graph. J. Comb. Theory Series B, 41:92–114, 1986.

[189] Neil Robertson and P. D. Seymour. Graph minors. VII. Disjoint

paths on a surface. J. Combin. Theory Ser. B, 45(2):212–254, 1988.

[190] Neil Robertson and P. D. Seymour. Graph minors. X. Obstructions

to tree-decomposition. J. Combin. Theory Ser. B, 52(2):153–190,

1991.

[191] Neil Robertson and P. D. Seymour. Graph minors. XI. Circuits on

a surface. J. Combin. Theory Ser. B, 60(1):72–106, 1994.

[192] Neil Robertson and P. D. Seymour. Graph minors. XII. Distance on

a surface. J. Combin. Theory Ser. B, 64(2):240–272, 1995.

[193] Neil Robertson and P. D. Seymour. Graph minors. XIII. The dis-

joint paths problem. Journal of Combinatorial Theory. Series B,

63(1):65–110, 1995.

[194] Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner’s

conjecture. J. Combin. Theory Ser. B, 92(2):325–357, 2004.

[195] Neil Robertson, P. D. Seymour, and Robin Thomas. Linkless em-

beddings of graphs in 3-space. Bulletin of the Amer. Math. Soc.,

28(1):84–89, 1993.

[196] Neil Robertson and Paul Seymour. Excluding a graph with one

crossing. In Graph structure theory (Seattle, WA, 1991), pages 669–

675. Amer. Math. Soc., Providence, RI, 1993.

Bibliography 271

[197] Neil Robertson, Paul Seymour, and Robin Thomas. Quickly ex-

cluding a planar graph. J. Combin. Theory Ser. B, 62(2):323–348,

1994.

[198] Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a

forest. J. Comb. Theory, Ser. B, 35(1):39–61, 1983.

[199] Neil Robertson and Paul D. Seymour. Graph minors. iii. planar

tree-width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

[200] Neil Robertson and Paul D. Seymour. Graph minors. VI. Disjoint

paths across a disc. J. Comb. Theory, Ser. B, 41(1):115–138, 1986.

[201] Neil Robertson and Paul D. Seymour. Graph minors. IV. Tree-width

and well-quasi-ordering. J. Comb. Theory, Ser. B, 48(2):227–254,

1990.

[202] Neil Robertson and Paul D. Seymour. Graph minors. IX. disjoint

crossed paths. J. Comb. Theory, Ser. B, 49(1):40–77, 1990.

[203] Neil Robertson and Paul D. Seymour. Graph minors. VIII. A ku-

ratowski theorem for general surfaces. J. Comb. Theory, Ser. B,

48(2):255–288, 1990.

[204] Neil Robertson and Paul D. Seymour. Graph miners .XIV. Extend-

ing an Embedding. J. Comb. Theory, Ser. B, 65(1):23–50, 1995.

[205] Neil Robertson and Paul D. Seymour. Graph minors: XV. Giant

Steps. J. Comb. Theory, Ser. B, 68(1):112–148, 1996.

[206] Neil Robertson and Paul D. Seymour. Graph minors: XVII. Taming

a vortex. J. Comb. Theory, Ser. B, 77(1):162–210, 1999.

272 Bibliography

[207] Neil Robertson and Paul D. Seymour. Graph minors. XVI. Exclud-

ing a non-planar graph. J. Comb. Theory, Ser. B, 89(1):43–76, 2003.

[208] Neil Robertson and Paul D. Seymour. Graph minors. XVIII. Tree-

decompositions and well-quasi-ordering. J. Comb. Theory, Ser. B,

89(1):77–108, 2003.

[209] Neil Robertson and Paul D. Seymour. Graph minors. XIX. Well-

quasi-ordering on a surface. J. Comb. Theory, Ser. B, 90(2):325–385,

2004.

[210] Neil Robertson and Paul D. Seymour. Graph minors. XXI. Graphs

with unique linkages. J. Comb. Theory, Ser. B, 99(3):583–616, 2009.

[211] Neil Robertson and Paul D. Seymour. Graph minors XXIII.

Nash-Williams’ immersion conjecture. J. Comb. Theory, Ser. B,

100(2):181–205, 2010.

[212] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic pro-

gramming for h-minor-free graphs. In Joachim Gudmundsson, Julián

Mestre, and Taso Viglas, editors, COCOON, volume 7434 of Lecture

Notes in Computer Science, pages 86–97. Springer, 2012.

[213] Juanjo Rué, Konstantinos S. Stavropoulos, and Dimitrios M. Thi-

likos. Outerplanar obstructions for a feedback vertex set. Eur. J.

Comb., 33(5):948–968, 2012.

[214] Mohammad Ali Safari. D-width: A more natural measure for di-

rected tree width. In Proceedings of the 30th International Sym-

posium on Mathematical Foundations of Computer Science, pages

745–756, 2005.

List of Notations 273

[215] Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Effi-

cient algorithms for detecting signaling pathways in protein interac-

tion networks. In Satoru Miyano, Jill P. Mesirov, Simon Kasif, Sorin

Istrail, Pavel A. Pevzner, and Michael S. Waterman, editors, RE-

COMB, volume 3500 of Lecture Notes in Computer Science, pages

1–13. Springer, 2005.

[216] Paul Seymour and Paul Wollan. The structure of graphs not admit-

ting a fixed immersion. unpublished manuscript.

[217] Paul D. Seymour and Robin Thomas. Graph searching, and a min-

max theorem for tree-width. Journal of Combinatorial Theory (Se-

ries B), 58:22–33, 1993.

[218] John Joseph Sylvester. Chemistry and algebra. Nature, 17:284, 1878.

[219] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic

forbidden minors for the family of graphs with bounded path-width.

Discrete Mathematics, 127(1/3):293–304, 1994.

[220] Dimitrios M. Thilikos. Algorithms and obstructions for linear-

width and related search parameters. Discrete Applied Mathematics,

105:239–271, 2000.

[221] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Math.

Ann., 114(1):570–590, 1937.

[222] D. H. Younger. Graphs with interlinked directed circuits. In Proceed-

ings of the Midwest Symposium on Circuit Theory, pages XVI 2.1 –

XVI 2.7. Institute of Electrical and Electronics Engineers, 1973.

274 List of Notations

List of Notations

[n] [n] = {1, 2, . . . , n}. 15

{|X|} . 225

∪∪∪∪∪∪∪∪∪C The union of all the graphs that belong to

the graph class C. 18

v The induced subgraph relation. 20

⊆s The spanning subgraph relation. 20

⊆ The subgraph relation. 20

≤c The contraction relation. 20

≤φc The contraction relation via the mapping φ. 21

≤m The minor relation. .21

≤tm The topological minor relation. 22

275

276 List of Notations

≤im The immersion relation. 22

¬ Boolean connective of negation.. .31

∧ Boolean connective of conjuction. 31

∨ Boolean connective of disjunction. 31

→ Boolean connective of implication. 31

↔ Boolean connective of bi-implication. 31

∃ Existential quantifier. .31

∀ Universal quantifier. 31

A
o

The interior of the annulus A. 147

A[C1, C2] The annulus defined by the cycles C1 and C2.25

an(G) The apex number of the graph G. 24

ar(R) The arity of the relation symbol R. 31

Aut(G) The automorphism group of the graph G.74

bw(G) The branch-width of the graph G. 45

Cn The cycle of length n. 17

C(G) The set of all the connected components of

the graph G. 18

cdom(G) The cycle domination number of the graph G. 179

cr(G) The cycle-rank of the digraph G. 224

List of Notations 277

dd(G) . 234

degG(v) The degree of the vertex v in graph G. 16

distG(v, u) The distance of the vertices v and u in graph G. 17

dpw(G) . 234

E(G) The edge set of the graph G. 15

EG(v) The edges of the graph G that are incident

to the vertex v. 16

E(x, y) The atomic formula of adjacency. 31

EGex
T . 100

eg(G) The Eüler genus of the graph G. 25

FPT The class of the fixed-parameter tractable problems. . 165

Gex . 99

g̃(Σ) The non-orientable genus of the surface Σ. 25

g(Σ) The orientable genus of the surface Σ. 25

G ∪G′ The union of the graphs G and G′. 18

G ∩G′ The intersection of the graphs G and G′. 18

G×H The lexicographic product of the graphs G and H.18

G ∗H The cartesian product of the graphs G and H. 19

G− v The graph obtained from graph G after

we remove the vertex v. 19

278 List of Notations

G− e The graph obtained from graph G after

we remove the edge e. 19

G− U The graph obtained from graph G after

we remove the vertex set U . 19

G− E The graph obtained from graph G after

we remove the edge set E. 19

G/e The graph obtained when in the graph G

we contract the edge e. 19

I(H) The incidence graph of the hypergraph H. 24

IGexT . 100

Kn The complete graph on n vertices. 17

K[S] The complete graph with vertex set S.17

Kq,r The complete bipartite graph whose parts have

q and r vertices respectively. .18

K1,r The star with r leaves. 18

L(G) The line graph of the graph G. 18

LIFOi(G) . 228

LIFOv(G) . 228

LIFOmi(G) . 228

LIFOmv(G) . 228

LIFOisc(G) . 228

List of Notations 279

LIFOvsc(G) . 228

LIFOmisc(G) . 228

LIFOmvsc(G) . 228

NG(v) The open neighborhood of the vertex v in graph G. . . . 16

NG[v] The closed neighborhood of the vertex v in graph G. . .16

NG(U) The open neighborhood of the vertex set U

in graph G. .16

NG[U] The closed neighborhood of the vertex set U

in graph G. .16

N r
G[v] The neighborhood of the vertex v at distance r

in the graph G. .17

N r
G[S] The neighborhood of the vertex set S at distance r

in the graph G. .17

obs≤m(F) The minor obstruction set of

the graph class F . 40

obs≤im(F) The immersion obstruction set of

the graph class F . 40

P(S) The power-set of S. 15

Pn The path of length n. .17

P [u, v] The subpath of the path P whose endpoints

are the vertices v and u. 17

280 List of Notations

P
(h)
j Horizontal path of a wall. .28

P
(h)
k+1 The southern path of a wall of height k. 28

P
(h)
1 The northern path of a wall of height k. 28

Pv The family of the vertical paths of a wall.28

P
[v]
i Vertical path of a wall. 29

P
[v]
1 The western path of a wall of height k. 29

P
[v]
k+1 The eastern path of a wall of height k. 29

P
(v)
u The vertical path of a wall of height k

that contains the vertex u.. .29

P
(h)
u The horizontal path of a wall of height k

that contains the vertex u.. .29

P (H) The primal graph of the hypergraph H. 196

para-NP . 167

scs(G) The scattered cycle number of the graph G. 179

split(c,H) The set of the hyperedges of the hypergraph H

that are split by the 2- coloring c. 196

split(H) The maximum number of hyperedges that are split

by a 2-coloring of the hypergraph H. 196

SSvsc(G) . 228

Tk The set of the acyclic obstructions for

for the class of graphs with tree-depth at most k. 70

List of Notations 281

trG(v) The orbit of the automorphism group of G that

contains the vertex v. .75

V (G) The vertex set of the graph G. .15

V Gex
T . 100

V (e) The vertices of the hyperedge e. 190

Wk The wall of height k. 28

W[1] . 167

W[2] . 167

width(C) The width of the graph class C. .100

XGex . 100

XP . 167

Γk The triangulated grid of height k. 114

Γ∗k . 115

δ(G) The minimum degree of the graph G. 16

∆(G) The maximum degree of the graph G. 16

ζ(G) The size of a maximum cut of the

(hyper)graph G. 190

µH . 191

νH(G) The packing number of the family of graphs

H in graph G. 177

282 List of Notations

Πk,l The (k, l)-pyramid. 115

τex . 99

τH(G) The covering number of the family of graphs

H in graph G. 177

Correspondence of Terms

annulus δακτύλιος

railed με ράγες

antichain αντιαλυσίδα

automorphism αυτομορφισμός

λ-preserving λ-διατηρητικός

involutive ανελικτικός

base βάση

bikernel διπυρήνας

bound φράγμα

super-exponential υπερ-εκθετικό

upper άνω

bramble βάτος

branch decomposition κλαδοαποσύνθεση

width πλάτος

branch-width κλαδοπλάτος

283

284 Correspondence of Terms

brute force ωμή βία

chord χορδή

clique κλίκα

color χρώμα

coloring χρωματισμός

graph γραφήματος

proper έγκυρος

ordered διατεταγμένος

component συνιστώσα

connected συνεκτική

conjuctive normal form κανονική συζευκτική μορφή

contraction σύνθλιψη

edge ακμής

smooth στρωτή

cross-cap καπάκι διασταυρώσεων

cut τομή

cut-set διαχωριστής υπεργραφήματος

strong ισχυρός

cycle κύκλος

facial οψιακός

length μήκος

cycle rank τάξη κύκλου

cylinder κύλινδρος

DAG-depth βάθος ΔΑΓ

DAG-width πλάτος ΔΑΓ

digraph διγράφημα

strongly connected ισχυρά συνεκτικό

Correspondence of Terms 285

disjoint paths ξένα μονοπάτια

dissolution διάλυση

drawing σχεδιασμός

orthogonal ορθογώνιος

box κουτί

joining vertex συνδετική κορυφή

edge ακμή

incident προσπίπτουσα

parallel παράλληλη

edge lift ανύψωση ακμών

edge-cut ακμοδιαχωριστής

internal εσωτερικός

minimal ελαχιστικός

edge-linkage ακμοδέσμωση

r-approximate r-προσεγγιστική

component συνιστώσα

links συνδέει

order τάξη

edge-sum ακμοάθροισμα

embedding εμβάπτιση

2-cell 2-κελιών

family οικογένεια

cycle κύκλων

nested εμφωλευμένων

paths μονοπατιών

confluent σύρροη

forest δάσος

286 Correspondence of Terms

fugitive φυγάς

invisible αόρατος

omniscient σοφός

visible ορατός

graph γράφημα

apex απόγειο

2-asymmetric 2-ασύμμετρο

asymmetric ασύμμετρο

bipartite διμερές

complete πλήρες

chordal χορδικό

complete πλήρες

connected συνεκτικό

directed διατεταγμένο

strongly connected ισχυρά συνεκτικό

edge-connected ακμοσυνεκτικό

Σ-embeddable Σ-εμβαπτίσιμο

Σ0-embedded Σ0-εμβαπτισμένο

empty κενό

incidence πρόσπτωσης

line γραμμικό

H-minor-free H-ελεύθερο-ελάσσονος

h-nearly embeddable h-σχεδόν εμβαπτίσιμο

planar επίπεδο

face όψη

plane ενεπίπεδο

primal πρωτογενές

subcubic υποκυβικό

Correspondence of Terms 287

triangulated τριγωνοποιημένο

triangulation τριγωνοποίηση

graph class κλάση γραφημάτων

bounded expansion φραγμένης επέκτασης

covering κάλυμμα

H-minor-free H-ελεύθερη-ελάσσονος

MSO-definable ΜΔΛ-ορίσιμη

layer-wise κάτα στρώσεις

packing συσκευασία

width πλάτος

graph connectivity συνεκτικότητα γραφήματος

graph edge-connectivity ακμοσυνεκτικότητα γραφήματος

graph searching ανίχνευση γραφημάτων

graph separator διαχωριστής γραφήματος

graphs γραφήματα

disjoint ξένα

edge- ως προς ακμές

vertex- ως προς κορυφές

disjoint union ξένη ένωση

hom-equivalent ομο-ισοδύναμα

homomorphic ομομορφικά

intersection τομή

isomorphic ισομορφικά

union ένωση

grid σχάρα

corner γωνία

loaded φορτωμένη

vertex κορυφή

288 Correspondence of Terms

external εξωτερική

internal εσωτερική

haven άσυλο

LIFO- ΤΕΠΕ-

homomorphism ομομορφισμός

hyperedge υπερακμή

split χωρισμένη

hypergraph υπεργράφημα

connected συνεκτικό

partition ως προς διαμερίσεις

hypertree υπερδέντρο

hypothesis υπόθεση

exponential time εκθετικού χρόνου

isomorphism ισομορφισμός

kernel πυρήνας

linear γραμμικός

polynomial πολυωνυμικός

kernelization πυρηνοποίηση

linear-width γραμμοπλάτος

linkage δέσμωση

r-approximate r-προσεγγιστική

component συνιστώσα

links συνδέει

order τάξη

unique μοναδική

vital ζωτική

Correspondence of Terms 289

logic λογική

arity πλειομέλεια

first-order πρωτοβάθμια

syntax σύνταξη

interpretation ερμηνεία

second-order δευτεροβάθμια

atomic formula ατομικός τύπος

monadic μοναδική

syntax σύνταξη

structure δομή

universe σύμπαν

loop θηλιά

matching ταίριασμα

saturated κορεσμένο

max cut μέγιστη τομη

max sat μέγιστη ΙΛΤ

minor containment περιεκτικότητα ελάσσονος

multigraph πολυγράφημα

multiset πολυσύνολο

NAE-SAT ΟΟΙ-ΙΛΤ

neighborhood γειτονιά

closed κλειστή

open ανοικτή

number αριθμός

chromatic χρωματικός

list λίστας

covering καλύμματος

290 Correspondence of Terms

cycle dominating κυριαρχίας κύκλων

r-dominating r-κυριαρχίας

packing συσκευασίας

scattered cycle σκεδασμένων κύκλων

r-scattering r-σκέδασης

search ανίχνευσης

obstruction παρεμπόδιση

orbit τροχιά

ordering διάταξη

partial μερική

well-quasi-ordering καλή

parameterization παραμετροποίηση

natural τυπική

part of bipartition μέρος διαμέρισης

path μονοπάτι

endpoints άκρα

path-width πλάτος μονοπατιού

directed διατεταγμένο

proper γνήσιο

paths μονοπάτια

confluent σύρροα

well-arranged καλώς-κατεταγμένα

problem πρόβλημα

fixed parameter tractable παραμετρικά βατό

parameterized παραμετροποιημένο

product γινόμενο

cartesian καρτεσιανό

Correspondence of Terms 291

lexicographic λεξικογραφικό

property ιδιότητα

fixed point σταθερού σημείου

pyramid πυραμίδα

rails ράγα

reduction αναγωγή

reduction rule κανόνας αναγωγής

relation σχέση

contraction σύνθλιψη

model μοντέλο

immersion εμβύθιση

strong ισχυρή

minor ελάσσον

minimal model ελαχιστικό μοντέλο

subdivision υποδιαίρεση

topological minor τοπολογικό ελάσσον

distance απόστασης

3-SAT 3-ΙΛΤ

searcher ανιχνευτής

separation triple διαχωριστική τριάδα

sequence ακολουθία

augmenting επαυξητική

set σύνολο

dominating κυριαρχίας

edge ακμών

obstruction παρεμπόδισης

immersion εμβυθίσεων

292 Correspondence of Terms

minor ελασσόνων

siblings αδερφών κορυφών

vertex κορυφών

feedback ανάδρασης

set splitting διαχωρισμός συνόλων

above average άνω μέσου όρου

shelter καταφύγιο

directed διατεταγμένο

thickness πάχος

thickness πάχος

spanner παράγοντας

multiplicative πολλαπλασιαστικός

stretch factor συντελεστής έκτασης

F -split F -σχίσμα

star αστέρι

strategy στρατηγική

monotone μονότονη

non-monotone μη-μονότονη

searcher stationary σταθμευμένων ανιχνευτών

subgraph υπογράφημα

induced εναγόμενο

spanning παραγόμενο

surface επιφάνεια

compact συμπαγής

Eüler genus γένος Eüler

manifold πολλαπλότητα

boundary όριο

orientable προσανατολισμένη

Correspondence of Terms 293

Eüler genus γένος Eüler

technique τεχνική

irrelevant vertex μη-σχετικής

theorem θεώρημα

excluded grid αποκλεισμένης σχάρας

four color τεσσάρων χρωμάτων

graph minor ελασσόνων γραφημάτων

meta-algorithmic μετα-αλγοριθμικό

structure δομικό

strong ισχυρό

weak ασθενές

theory θεωρία

bidimensionality δισδιαστατότητας

graph minor ελασσόνων γραφημάτων

parameterized complexity παραμετρικής πολυπλοκότητας

tiling πλακόστρωση

monohedral μονοεδρική

regular κανονική

tour περιοδεία

tree δέντρο

detachment αποκόλλησης

elimination διαγραφής

minimum height ελάχιστου ύψους

leaves φύλλα

ternary τριαδικό

tree decomposition δεντροαποσύνθεση

bag τσάντα

closure κλειστότητα

294 Correspondence of Terms

node κορυφή

base βάσης

forget λήθης

introduction εισαγωγής

join σύνδεσης

small μικρή

torso κορμός

width πλάτος

tree-dec expansion δεντρό-επέκταση

tree-depth βάθος δέντρου

tree-width δεντροπλάτος

directed διατεταγμένο

vertex κορυφή

degree βαθμός

overlapping επικαλύπτουσα

vertex cover κάλυμμα κορυφών

vertex ranking διαβάθμιση κορυφών

vertices κορυφές

adjacent γειτονικές

apices απόγειες

distance απόσταση

vortex στρόβιλος

walk περίπατος

wall τοίχος

brick τούβλο

neighboring γειτονικά

compass περιφέρεια

Correspondence of Terms 295

corner γωνία

antidiametrical pairs αντιδιαμετρικά ζεύγη

flat ισόπεδος

height ύψος

layer στρώμα

paths μονοπάτια

eastern ανατολικότερο

horizontal οριζόντια

northern βορειότερο

southern νοτιότερο

vertical κάθετα

western δυτικότερο

perimeter περίμετρος

rural division περιφερειακή διαίρεση

flap πτερύγιο

internal flap εσωτερικό πτερύγιο

subdivided υποδιαιρεμένος

subdivision υποδιαίρεση

tight σφικτός

vertex κορυφή

important σημαντική

original πρωταρχική

subdivision υποδιαίρεσης

Index

algorithm

subexponential, 172

annulus, 25

railed, 44

anti-chain, 36

assignment

splitting, 212

automorphism, 64

λ-preserving, 64

involutive, 64

branch decomposition, 44

width, 45

branch-width, 45

chord, 17

color, 19

coloring

graph, 19

proper, 19

hypergraph, 196

k-Coloring, 164

component

connected, 18

conjecture

Nash-Williams’, 38

Vázsonyi, 38

Wagner, 38

contraction

edge, 19

graph, 20

model of vertex, 21

smooth, 118

cut of a graph, 189

297

298 Index

size, 189

cut-set

strong, 196

cycle, 16

facial, 24

length, 17

cycle rank, 224

cylinder, 44

digraph, 16

strongly connected, 221

edge

incident, 16

edge lift, 19

edge sum, 41

edge-connectivity of a graph, 20

edge-cut, 20

internal, 20

minimal, 20

edge-linkage, 106

r-approximate, 106

component, 106

order, 106

Eüler genus of a graph, 25

Fourier expansion, 197

coefficients, 197

exponential time hypothesis, 187

face of planar graph, 24

family

cycles

nested, 26

paths

confluent, 26

forest, 18

hypergraph, 196

fugitive, 220

omniscient, 220

graph, 15

apex, 24

α-apex, 24

asymmetric, 76

2-asymmetric, 76

bipartite, 17

complete, 18

chordal, 17

complete, 17

connected, 18

k-connected, 20

directed, 16

strongly connected, 221

k-edge-connected, 20

Σ-embeddable, 25

Σ0-embedded, 25

empty, 16

Gaifman, 196

incidence, 24

Index 299

line, 18

H-minor-free, 21

nearly embeddable, 111

outerplanar, 149

planar, 24

plane, 24

primal, 196

sub-cubic, 16

triangulated, 17

triangulation, 17

graph class

covering, 177

H-minor-free, 22

MSO-definable, 32

layer-wise, 100

packing, 177

width, 100

graph connectivity, 20

graph embedding

2-cell, 25

planar, 24

graph separator, 20

graphs

disjoint, 18

disjoint union, 18

edge-, 17

hom-equivalent, 64

homomorphic, 64

intersection, 18

isomorphic, 64

union, 18

vertex-, 17

grid, 27

corner, 27

triangulated, 114

loaded corner, 115

vertex

external, 27

internal, 27

homomorphism, 64

honeycomb, 142

hyperedge, 190

split, 196

hypergraph, 16

connected, 196

partition, 196

planar, 24

r-hypergraph, 190

hypertree, 196

immersion, 22

model, 22

minimal, 22

strong, 22

isomorphism, 64

kernel, 185

300 Index

linear, 185

polynomial, 185

LIFO-haven, 235

order, 235

isc-LIFO-search, 225, 227

complete, 227

fugitive strategy, 228

consistent, 228

winning, 228

monotone, 227

isc-position, 226

searcher-stationery, 227

isc-strategy, 227

isc-successor, 226

using k searchers, 227

winning

for the fugitive, 227

for the searchers, 227

i-LIFO-search, 225, 227

complete, 227

fugitive strategy, 228

consistent, 228

winning, 228

monotone, 227

i-position, 226

searcher-stationery, 227

i-strategy, 227

i-successor, 226

using k searchers, 227

winning

for the fugitive, 227

for the searchers, 227

vsc-LIFO-search, 225, 227

complete, 227

fugitive strategy, 228

consistent, 228

winning, 228

monotone, 227

vsc-position, 226

searcher-stationery, 227

vsc-strategy, 227

vsc-successor, 226

using k searchers, 227

winning

for the fugitive, 227

for the searchers, 227

v-LIFO-search, 225, 227

complete, 227

fugitive strategy, 228

consistent, 228

winning, 228

monotone, 227

v-position, 226

searcher-stationery, 227

v-strategy, 227

v-successor, 226

Index 301

using k searchers, 227

winning

for the fugitive, 227

for the searchers, 227

linkage, 24

r-approximate, 23

component, 23

order, 23

unique, 24

vital, 24

logic

first-order

syntax, 31

second-order

monadic, 31

matching, 206

saturated, 206

Max Cut, 189

minor, 21

topological, 22

distance, 169

multigraph, 16

multiset, 16

Nae-Sat, 211

neighborhood

at distance r, 17

closed, 16

open, 16

number

chromatic, 19

covering, 177

cycle domination, 179

r-dominating, 178

isc-LIFO-search, 228

monotone, 228

i-LIFO-search, 228

monotone, 228

vsc-LIFO-search, 228

monotone, 228

v-LIFO-search, 228

monotone, 228

packing, 177

scattered cycle, 179

r-scattering, 178

obstruction

immersion, 40

minor, 40

orbit of group

automorphism, 75

orthogonal drawing, 148

box, 148

joining vertex, 148

parameter

bidimensional

302 Index

under taking of contractions,

172

under taking of distance topo-

logical minors, 175

under taking of minors, 172

under taking of topological

minors, 175

parameterization of a problem, 164

natural, 165

part of partition, 17

partial ordering, 36

well-quasi-ordering, 36

path, 16

endpoints, 16

length, 17

path decomposition, 23

width, 23

path-width, 23

paths

confluent, 26

well-arranged, 17

problem

fixed-parameter tractable, 165

parameterized, 164

product

cartesian, 19

lexicographic, 18

property

Erdős-Pósa, 177

fixed point, 64

pseudo-Boolean function, 197

pyramid, 115

rails of annulus, 44

FPT reduction, 166

reduction rule, 185

relation

contraction, 20

smooth, 118

immersion, 22

minor, 21

minimal model, 21

model, 21

subdivision, 22

subgraph, 20

induced, 20

spanning, 20

topological minor, 22

distance, 169

searcher, 220

separation triple, 183

set

dominating, 31

edge, 15

feedback

vertex set, 177

Index 303

obstruction

immersion, 40

minor, 40

siblings, 84

vertex, 15

Set Splitting

Above Average, 194

Max, 190

shelter, 238

directed, 234

thickness, 235

thickness, 238

spanner

multiplicative, 168

stretch factor, 168

split, 42

star, 18

subdivision of a graph, 22

subgraph, 20

induced, 20

spanning, 20

k-subset, 15

surface, 25

Eüler genus, 25

orientable

Eüler genus, 25

theorem

excluded grid, 161

for contractions, 141

for distance top. minors, 170

for immersions, 160

for minors, 140

for topological minors, 141

graph minors, 38

Kuratowski, 35

meta-algorithmic, 59

strong structure, 114

unique linkage, 97

weak structure, 109

tiling, 139

monohedral, 139

regular, 140

tour, 24

∆Y -transformation, 19

tree, 18

detachment, 149

leaves, 18

ternary, 18

tree decomposition, 22

bag, 22

closure, 112

nice, 182

base node, 182

forget note, 181

introduce node, 181

join node, 181

304 Index

small, 113

torso, 112

width, 23

tree-dec expansion, 99

tree-depth, 63

tree-width, 23

vertex

degree, 16

disk around, 26

important, 147

overlapping, 26

vertex bipartition, 189

k-Vertex Cover, 164

vertex dissolution, 19

vertex ranking, 63

vertices

adjacent, 16

distance, 17

vortex, 112

walk, 16

wall, 27

brick, 28

compass, 29

corners, 28

anti-diametrical pairs, 28

flat, 115

height, 27

layer, 28

i-th, 28

neighboring bricks, 28

path

eastern, 29

horizontal, 28

northern, 28

southern, 28

vertical, 29

western, 29

perimeter, 28

rural division, 116

flap, 116

internal flap, 116

subdivided, 28

tight, 147

vertices

original, 28

subdivision, 28

	Abstract
	Περίληψη
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	In General …
	… and More Specifically
	The Structure of This Thesis
	The Papers

	Basic Notions
	Graphs
	Graphs on Surfaces
	Grids and Walls
	Logic

	Partial (Well-Quasi-)Orderings and Algorithms
	Partial (Well-Quasi-)Orderings
	Forbidding Kuratowski Graphs as Immersions
	(Confluent) Families of Paths
	A Decomposition Theorem

	Algorithms

	Identifying the Obstructions for Tree-depth
	An Introduction to Tree-depth
	Upper Bound on the Order of the Obstructions for Gk
	A Structural Lemma for the Obstructions of Tree-depth
	Acyclic obstructions for tree-depth
	Lower Bound on the Number of the Obstructions for Gk
	Obstructions for Gk, k3
	A Reduction for Tree-depth

	Computing Immersion Obstructions
	Preliminaries
	Computing Immersion Obstruction Sets
	Tree-width Bounds for the Obstructions
	Conclusions

	The Graph Minors Weak Structure Theorem
	Preliminaries
	Statement of the Main Result
	Some Auxiliary Lemmata
	An Invariance Lemma for Flatness
	Pyramids and Tree-width

	The Main Proof
	Notation
	Proof of the Main Result

	Tilings of the Plane
	Regular Tilings of the Plane
	The Theorems and the Tilings

	Excluding Immersions on Surface Embedded Graphs
	Necessary Notions
	Preliminary Combinatorial Lemmata
	Main Theorem

	Parameterized Complexity and Bidimensionality Theory
	Introduction to Parameterized Complexity
	Distance Topological Minors
	Spanners on Graphs
	Duality completed …

	Bidimensionality Theory and Subexponential Algorithms
	Bidimensionality Theory for Contractions and Minors
	Bidimensionality Theory for (Distance) Topological Minors

	An Application to Cycle Domination and Scattered Cycle Set
	Introduction to the Erdős-Pósa Property
	The Proof

	Kernelization

	Algorithms and Kernels on General Graphs
	Introduction to the Bipartizations of (Hyper)graphs
	New Lower Bound on (H) and Proof of Theorem 9.1
	Reduction Rules for AA-r-SS
	Linear Kernel for Fixed r and Proof of Theorem 9.2
	Lower Bound Result and Proof of Theorem 9.3
	Conclusions

	Graph Searching: A Game Characterization of Cycle-rank
	Introduction
	Node Search in Graphs
	Node Search in Digraphs

	Searching Games for Cycle-rank
	LIFO-search on Digraphs
	Relating the Digraph Searching Parameters
	Relation with Other Graph Parameters

	Obstructions for Cycle-rank
	LIFO-search in Simple Graphs

	Bibliography
	List of Notations
	Correspondence of Terms
	Index

