An Alternative Proof for the
NP-completeness of the
GRID SUBGRAPH Problem

M.Sc. Thesis

by Dimitris A. Chatzidimitriou

supervised by Professor Dimitrios M. Thilikos, UoA

I
5

B

8

&
3
B

=2
E

£

=

2

LEGT-poviov ooy

appa ot Aoyia] xal
S
:!-" 1
<C

Shodrr oo naueisy

-

Graduate Program in Logic, Algorithms
and Computation

National and Kapodistrian University of Athens

Department of Mathematics

Athens, October 2016

H napovoa AumAwuaTtikri Epyaocia
eKTOvAONKe ota mAaiola Twv oovdwWv
yla tTnv andéktnon Tou
MetantTuylakol AtmMAwpatoc Edikevong
otn
NoyIKA KalL Oswpia AAYyopiOpwv Kat YITOAOYLOHOD
IOV QTIOVEEL TO

TuApa MaONpaTIKWY

TOL

EOvikoU kot Kamobdiotplakol MavemiotTnpiov AGnvwv

EyKp(BnKe TNV ..cvvvennenenn. and EEeTtaoTikn EmitponA
amnoteAoVEVN amd TOLG:

OVOUATETMWVLUO BaOuida Yrioypa

Abstract

In the field of Graph Drawing, there is great interest for results regarding the
embedding of a given graph on a grid, mainly due to the applications on the VLSI
circuit design. Moreover, determining whether a graph accepts a unit-length embed-
ding, i.e., a matching of its vertices and edges to vertices and edges of a large enough
grid, is the same as asking whether the graph is a subgraph of that grid.

We consider the GRID SUBGRAPH problem, in which given a planar (not neces-
sarily connected) graph G, we need to determine if G is isomorphic to a subgraph of
a large enough grid. We prove that this problem is NP-complete by employing simple
and intuitive gadgets to perform a reduction from a SAT-variant. In addition we
prove that a special case of that problem, the (k x k)-GRID SUBGRAPH problem, in

which the size of the grid is given in the input, is also NP-complete.

il

Hepiinyn

Ytov topéa ¢ ['paekng Avarapdotaong I'paenudtov vrdpyet peydio evolapépov
Y10 OTOTEAEC AT GYETIKA e TNV EUPATTION EVOC 000EVTOG YPaPN LOTOS TAV® GE o oydpa,
Kupimg AOY® TV €QaproydVv 6to oyedlacud kukhoudtov VLSI. TTo cvykekpuéva, to
EPMTNUO AV EVaL YpAPN Lo EMOEYXETAL EUPATTION HOVAdIAion UKOLS, ONAGON L0 VTIOTOL-
YLOT TOV KOPLO®OV KOl TOV OKUOV TOV YPAPNUOTOS GE KOPLOES KOl OKUES LG OPKETE
HEYAANG oYApaG, TAVTILETAL LE TO EPOTNUO OV TO YPAPN L EIVOL VITOYPAPEN O TNG CLYKE-
KPLUEVNS O AP0,

Bewpovpe to TPOPANUa Yoypaonpo Xydpog, 6to omoio 600£vtog evog emimedov (Ot
OTOPOATNTO. GUVEKTIKOV) YpaprLatog G, KOAOVUAGTE Vo amopaviovue av 1o G gival 166-
HOPQO HE KATOL0 LITOYPAPNLLL OGS OPKETE LEYAANG OoYdpas. ATOOEWKVOOVUE OTL TO TPO-
BAnua avtd eivar NP-tAnpeg ypnoipomoidvtag amid kot StousOnTikd yio vo ovayoupEe o€
avto6 pia wapairoyn tov mpofrpatog SAT (kavoroinong Aoyikng eopprovrog). IIpog avtod
OOJEIKVOOVIE OTL KOl 1] €01KT TEPITTMON TOL TPOPALOTOS GTNV omoia To Héyefog g
oyGpag givor Tpokabopiopévo, Yvmoto kot wg to TpoPAnua Yaoypaonpue (k x k)-Xydpac,
etvan emiong NP-mnpec.

v

Evyoaprotieg

[MpodTa kot kopla o HOeAA Vo ELYOPIGTACM TNV OIKOYEVELX OV KoL TOVG GIAOVS LoV
Y0 TV OYGY TOVG KO TNV OUEPLOTN KOl AdLOTPOYLATELTY) OTNPIEN TOVG 6€ KAOE [ov gy-
yeipnuoa. Eniong, ™ Zoeia, Tov Avtovn kot to Niko Tov Hov yvepioay TV OpopeLd tmv
MoOnpatikov. Télog, tov emPAETOVTA pov kKo OnAvkd Kot ta vtorota péAn e Graphka
ywo. T ovveyn Pondeta Kot KabBodnynon.

Contents

Abstract

Mepianym

Evyoprotieg

1 An introduction to Graph Theory

2 An introduction to Theory of Computational Complexity

3 Preliminaries

4 A brief look in the history of planar orthogonal drawings

5 The proof

Bibliography

vi

iii

iv

11

17

20

29

Chapter 1

An introduction to Graph Theory

In this chapter we introduce a few basic concepts and definitions of Graph Theory.

Basic graph definitions. A graph G is defined as an ordered pair (V, E') such that
ECVxVand VNE = (). The set V (also denoted V(G)) is called the graph’s vertex
set while the set E' (also denoted FE(G)) is called the edge set. Let e = {u,v} € E(G),
then the vertices v and v will be called the endpoints of e. Given a graph G and
a vertex v € V(G), the edges in E(G) that contain v as an endpoint will be called
incident to v. Also, the degree of v in G, denoted by dg(v) (or simply d(v) if G is
implied), is the number of edges incident to v. A graph G’ is a subgraph of G (denoted
by G' C G) if V(G') C V(G) and E(G’) C E(G).

In this thesis we only deal with simple graphs, i.e., graphs that don’t contain
multiple edges connecting the same vertices or loops (an edge whose endpoints are
the same).

There are many ways to represent a graph. The most visual is by drawing a dot for
each member of its vertex set and an arc connecting two dots for each corresponding
member of the edge set. A graph G is called planar if it can be embedded on the
plane, i.e., it can be drawn on the plane in such a way that its edges do not intersect
apart from any common endpoints.

We consider N to be the set of non-negative integers and for each positive integer
k we denote by [k] the set {1,2,...,k}. In Set Theory, a partition of a set S is a
collection {57, ..., Sk}, k € N, of subsets of S such that: Ule Si = Sand S;NS; =0,
Vi, j € [k] with ¢ # j. A graph is called bipartite if its vertices can be partitioned into

two sets such that every edge of the graph has exactly one endpoint in each set.

A key concept in Graph Theory is that of the isomorphism. Essentially, it is a
way to formulate when two distinct graphs are considered to be the same. We say
that two graphs G, H are isomorphic (and denote it by G ~ H) if there is a bijection
¢ : V(G) — V(H) such that for every u,v € V(G) it holds that {u,v} € E(G) if and
only if {¢(u), ¢(v)} € E(H).

A walk in a graph is an alternating sequence of vertices and edges that begins
and ends with a vertex, and each edge in the walk precedes and is preceded by its
two endpoints, respectively. A walk in which all edges are distinct is called a trail.
Furthermore, a trail in which all vertices are distinct is called a path and a trail with
the same endpoints and all internal vertices distinct is called a cycle. A graph is
connected if for every pair of its vertices there is a path in the graph connecting them.
A graph is called a forest if it contains no cycles. A connected, acyclic graph is called
a tree and its vertices of degree one are called leaves. It is easy to see that in a tree
there is a unique path between any two of its vertices. A rooted tree is a tree with a
specific vertex designated to be the root. In a rooted tree, the parent of a vertex is
the next vertex in the unique path towards the root. Obviously, every vertex apart
from the root has a parent and it is unique. The children of a vertex are the vertices
that have that vertex as a parent. A binary tree is a rooted tree in which each vertex

has at most two children.

Common graph classes and operations. Let us now consider some of the most
common classes of graphs. We define the following classes for every positive integers

r and [.

o The graph P, = ({u1, ..., ups1}, {{w, uat, oo, {ur, upgr }}) is called a path of

length r and the vertices uy, u,1 are called its endpoints.
.—.—.— L] L] L] _._.
upy U2 us Uy Upt1

Figure 1.1: The graph P,.

o The graph C, = ({uy,...,u}, {{ur, w2}, ..., {ur—1,u.}, {u,,us}}) is called a
cycle of length r.

Uz

Uy

Figure 1.2: The graph C..

o The graph K, = ({u,...,u, },{{wi,w;} | Vi,j € {1,...,r}, such that i # j})
is called a clique of size r.

41

Us Uz

Uy Uus

Figure 1.3: The graph Ks.

o Let Vo ={1,...,k}and V; = {1,...,{}. The graph (Vi x Vi, {{(zi, v:), (z;,y;)} |
V(i y:), (25,y;) € Vi x V], such that |z;—z;|+|yi—y;| = 1}) is called the (kx1)-
grid. A graph G is called a grid if it is isomorphic to a (k x k)-grid for some
k > 1. A grid is a planar bipartite graph.

Figure 1.4: The (4 x 7)-grid.

On a given graph G, we can define the following operations:
1. vertex removal,

2. edge removal,

3. vertex deletion, and

4. edge contraction.

Of these four operations, the first two are self-explanatory and for a graph G with
a vertex v € V(G) and an edge e € E(G), they are denoted by G \ v and G \ e,
respectively. For the third, let G be a graph, v a vertex of degree 2 and a, b its two
neighbours. The deletion of v from G results in the graph G' = {V(G \ v), E(G) U
{a,b} \ {{v,a},{v,b}}}, which is denoted by G — v. For the fourth, let G be a graph
with at least one edge and e = {u,v} € E(G). The contraction of e from G results in
the graph G = {V(G) U{w}\ {u, v}, E(G)U{{w, 2} | Vo € Nepo(u)UNeo () F\ {e},
which is denoted by G/e.

We say that a graph G’ is a minor of G, and denote it by G' < G, if G’ can be
obtained from G after applying any number of the above four operations in any order.
Also, if G’ can be obtained from G by applying only the first three operations, we
say that G’ is an immersion of GG, and denote it by G’ <;,, G. Obviously, if G’ can
be obtained from G by applying only the first two operations, then G’ is a subgraph
of G.

Given two graphs G; and G,, we define the union graph of G1, G5 to be the graph
{V(G1)UV(G,y), E(G1)UE(Gs)} and denote it by G; UGs. In the special case where
V(G1)NV(G3) = 0, we will call this operation the disjoint union of G, Gy and denote
it by G + Gbs.

Graph drawing. An orthogonal grid embedding is a mapping that maps the ver-
tices of a (planar) graph G into grid points and the edges into interior disjoint path
segments of the grid. If all the paths of the mapping have length of one, we call the
embedding a unit-length embedding. We refer to such set of points and unit-length
segments as a grid drawing. For simplicity, we will not distinguish between the map-
ping and the resulting drawing of the graph. We consider two embeddings to be the
same if they correspond to the same drawing up to rotation, translation, and reflec-

tion. In an orthogonal grid embedding, two adjacent edges form a bend if they are

4

drawn perpendicularly. A path is called straight if it contains no bends, otherwise it
is called bending.

A careful study of the above definitions reveals the connection between the two
terminologies, namely that a graph accepts an orthogonal grid embedding if and only
if it is an immersion of some grid. Similarly, a graph accepts a unit-length embedding
if and only if it is a subgraph of some grid. A graph with the last property is sometimes
also called a partial grid in bibliography (see for example [4]).

Chapter 2

An introduction to Theory of

Computational Complexity

Intuitively, an algorithm is a set of instructions or commands that one needs to follow
in order to solve a specific problem for many possible inputs, like a recipe. The first
question one will naturally ask when tackling a problem is whether the problem can
be solved or not. But what does it mean for a problem to be solvable?

There was a great effort over the first half of the 20" century by distinguished
mathematicians such as Alonzo Church, Alan Turing, Stephen Kleene, Emil Post,
and others, to rigidly define the concept of “solvable”, or “computable”. Many dif-
ferent models were proposed independently but nearly all of them turned out to be
equivalent. Arguably the simplest and most elegant of those is the Turing Machine.
A deterministic Turing Machine (or TM for short) accepts an infinite tape as input
and consists of a head which reads a single cell of the tape at a time and the cell may
contain just one of two symbols, for example {0, 1}, or be empty. Then, according to
a predefined set of instructions, the machine can write a (new) symbol on that cell
and move to the next cell in either direction to continue its function, or halt. Al-
though at first glance it may appear that such a crude and simple computing machine
can not be very powerful, on the contrary its computing capabilities are equivalent
to the best modern computer! Of course its computation is extremely slow, but the
important thing is that any problem that can be solved by the latter, can be solved
by a TM as well.

Measuring the complexity. Having determined the computability of a certain

problem, the next natural step would be to focus on its complexity. The measures

we usually employ to that end are the running time of the machine and the required
memory, representing the time complexity and the space complexity, respectively. At
this point we should elaborate a little on what we mean exactly by “running time”.
It is customary to count a machine’s running time in steps, where in each step the
machine performs an elementary operation. As we hinted before, we have built a
problem-solving machine with certain instructions, so that it is able to solve any
instance of the problem (i.e., any possible data-input for this specific problem), not
just one. For example, if we designed a TM that computes the size of the largest cycle
in a graph, the machine could perform its computation on any possible graph given as
an input. Evidently, the machine’s running time might differ greatly between inputs
of the same size. Therefore, in order to measure its running time, we can use the
fastest computation over all instances (best-case scenario), the slowest computation
(worst-case scenario), or the expected time (average-case scenario). Of those, the
most common and the one we are going to employ, is the worst-case analysis. One
last thing we need to consider is that the running time should not be an absolute
measure, in the sense that it is normal for larger inputs to need more time than
smaller ones. Hence, we measure the running time with respect to the size of the
input, and since constants don’t matter much when the size of the input tends to
infinity, we will use the O-notation. Saying, for example, that a TM runs in linear
time (or, equivalently, in time O(n)), means that on an input of size n, there is a

constant ¢, such that the machine will stop after at most ¢ - n steps (see Figure 2.1).

Figure 2.1: f(z) = O(g(z)) since f(z) < g(z) as z tends to infinity.

The O-notation is very useful in this setting, since for very big values of n, say
of 1000 or 29 digits, it doesn’t make much difference if a TM’s running time is
(3n? + 1) or (2n% + 500), but it makes a huge difference if it is (n3/100). All that
matters is that the running time is quadratic to the size of the input instead of cubic,
i.e., O(n?) instead of O(n?®). But up to now we have only talked about the running
time of a specific TM, while there can be many (and in fact infinitely many) TMs
that solve the same problem. So what is the complexity of a problem? To answer
this question, we are going to use a min-max parameter: the complexity of a problem

is the worst-running time over all inputs, of the fastest TM that solves the problem.

Complexity classes. Now that we have defined properly complexity measures
for the problems, we can start to categorize them. For simplicity we will only deal
with decision classes, i.e., classes that contain problems whose output is only yes or
no and not, for example, the value of a function. The class of all such problems that
can be solved in polynomial time by a deterministic Turing Machine is P. Similarly,
the class of all problems that can be solved in exponential time by a deterministic
TM is EXP. Obviously, P C EXP and since there are problems that belong in EXP\ P,
we conclude that P € EXP. Up until now we only talked about deterministic Turing
Machines, but what would non-determinism mean for a TM? A deterministic TM was
defined as having a transition function which, depending on the state of the machine
and the symbol that is currently reading, “tells” the machine what to do next, i.e.,
which symbol to write on the current cell (if any) and whether to move on the previous
or next cell, or to halt. In a non-deterministic TM (or NTM for short), the transition
function is replaced by a transition relation, so instead of having a unique response
to every possible configuration (i.e., a combination of machine state - tape symbol),
it may have more than one! One way to understand that is by imagining that in each
step the machine can perform many actions simultaneously. It is like being inside a
labyrinth and upon arriving at a crossroads, the TM doesn’t need to follow just one
of the paths ahead but can follow all of them simultaneously or it can “guess” the
correct path in advance and simply follow that. Non-deterministic complexity classes
are defined analogously with their deterministic counterparts. For example, the class
NP contains the problems that can be solved in polynomial time by an NTM. The
exotic notion of non-determinism might seem extremely powerful at first, and one
would think that it gives Turing Machines much better computing capabilities, but

that is yet to be proven. It is easy to see that these three complexity classes have the

following relation (Figure 2.2):
P C NP C EXP,

but none of the two inclusions has been proven to be proper yet, although we know

that at least one of them must be proper (since P C EXP).

EXP

NP

Figure 2.2: The relation between P, NP, and EXP.

Reductions and NP-completeness. An equivalent definition for NP is the fol-
lowing: NP is the class of problems that have polynomial size certificates. A certificate
for a yes-instance is a string that can be checked deterministically in polynomial time
and verifies that this is indeed a yes-instance. Consider for example the HAMILTON
PATH problem, in which given a graph, we are asked to determine whether it con-
tains a path that includes every vertex of the graph. By the latter definition, this
problem is obviously in NP since its certificate is the Hamilton path itself, which can
be checked in polynomial (or linear to be exact) time if it is indeed a subgraph of the
input graph, but we don’t know if it is in P (and we believe it is not) since no one
seems to be able to design a polynomial-time algorithm to find it.

The complexity classes is of course a useful tool for categorizing problems. It
would be of little use though if we didn’t have a means to compare two problems
directly. For that we define the concept of reduction and we will say that a problem
A is at least as hard as B (and denote it by A < B) if B reduces to A, that is if there

exists a polynomially computable transformation f from instances of B to instances
of A, such that for every instance = of B, x is a yes-instance of B if and only if f(x)
is a yes-instance of A. For simplicity, we shall call f the reduction from B to A.
Intuitively, the existence of a reduction means that if we could solve problem A, we
would transform instances of B to equivalent instances of A, solve them, and in doing
so we would have solved B. That is why we say that A is easier than B.

As we mentioned earlier, we know of problems that belong in P and of problems
that belong in NP, but we know of no problems that belong in NP \ P. Having said
that, one can observe that not all problems in NP have the same difficulty. Some
appear to be harder than others. In fact, there are some to which we can reduce
any other problem in NP! We call such problems NP-hard, and one way to show
that P = NP would be to solve one of those problems in polynomial time. So, a
problem being NP-hard means that it is at least as difficult as any other problem in
NP. But of course that is true for any problem outside NP as well. We will call the
NP-hard problems that actually belong in NP, NP-complete. Interestingly enough,
the majority of interesting problems that are not obviously extremely difficult, end
up to be NP-complete. The easiest way to show that a problem is NP-complete (and

in fact the one that we will use in our proofs) is by the following procedure.
1. Show that the problem has polynomially verifiable certificates.
2. Present a reduction from a known NP-complete problem to the problem at hand.
3. Prove that the reduction creates equivalent instances.

4. Argue that the reduction can be constructed in polynomial time.

10

Chapter 3

Preliminaries

In this chapter we present the main problem, our approach, and some known results

and a lemma that we will need for our proof.

The problem we examine in this thesis is the following.

Grid Subgraph
Input: A graph G
Question: Is G a subgraph of some grid?

And we will prove the following theorem.
Theorem 3.1. The problem GRID SUBGRAPH is NP-complete.

In fact by tweaking our gadgets a little one can prove something more general,
namely that the problem GRID SUBGRAPH is NP-complete even when the input graph
is restricted to be a tree. Unfortunately, to do that the gadgets and the proof become
too complex to be valuable since this result follows directly from [7].

First we will prove that if we restrict the grid in question to a certain size the
problem can easily be shown to be NP-complete. The formulation of the problem is

the following:

(k x k)-Grid Subgraph
Input: A graph G and a positive integer k.
Question: Is G' a subgraph of the (k x k)-grid?

11

Theorem 3.2. The problem (k x k)-GRID SUBGRAPH is NP-complete.

Proof. First we show that (k x k)-GRID SUBGRAPH is in NP. Indeed, a certificate is a
unit-length embedding of the graph, which can easily be checked in polynomial time
for being legitimate. To prove that it is NP-complete, we will describe a reduction
from the famous PARTITION problem. In this, we need to decide whether a given set
S of positive integers can be partitioned into two subsets S; and Sy such that the
sum of the numbers in S; equals the sum of the numbers in Ss.

Let S ={s1,...,8,}, for some n € N, be an instance of the PARTITION problem.
From S we will construct a graph Gg such that S is a yes-instance for PARTITION if
and only if Gg is a yes-instance for (k x k)-GRID SUBGRAPH, for some k € N. Let
m = X" s;. If mis odd or m = 0, then let Gg = K3, otherwise the construction is

the following.
 Construct the (k x k)-grid, for k = (m +1)/2.

e Remove from the grid the vertices (i,1) and (1,7) for every i,j € {3,...,k}
resulting in the graph Gg (see also Figure 3.1). Notice that these vertices are

exactly m.

o For each i € [n], perform the operation G;_; + Ps;. In other words, for each

s; € S we add to the above partial grid a path graph of length s;.

e Let Gg =G,,.

- m/2 o

m/2

Figure 3.1: The graph Gj.

The above construction is obviously polynomial.

12

To complete the reduction, let us first assume that S is a yes-instance of PAR-
TITION. Then, there are sets Si,5, C 5, such that the sum of the numbers in 5
is equal to the sum of the numbers in S;. Equivalently, the sum of the paths that
correspond to the members of S; is equal to the sum of the paths that correspond to
the members of Sy and is, in fact, equal to m/2. Then all the paths that come from
Sp can vertically “fit into” the first column that is missing from the partial grid Gy,
while the paths that come from Sy can horizontally “fit into” the missing first line.
Therefore, G is indeed a subgraph of the (k x k)-grid.

Conversely, suppose that Gg is a subgraph of the (k x k)-grid. The only way that
is possible is if the vertices of the paths that correspond to the members of S were
associated to the vertices of the first line and first column of the grid in the subgraph
mapping (other than the first two vertices of the line and column). Let us call A
the members of S that correspond to the paths associated to the first line and B the
members of S that correspond to the paths associated to the first column. Then the
sum of the length of the paths corresponding to A is equal to the sum of the length
of the paths corresponding to B. Equivalently, the sum of the members of A is equal
to the sum of the members of B, and since {A, B} is a partition of S, it follows that
S is a yes-instance of PARTITION. [

Moreover, (k X k)-GRID SUBGRAPH is shown to be NP-complete even when re-
stricted to connected graphs in [12].

Our reduction. In order to show the NP-completeness of the GRID SUBGRAPH, we
will reduce to it the problem PLANAR(< 3,3)-SAT, first introduced by Dahlhaus,
Johnson, Papadimitriou, Seymour, and Yannakakis [3]. This is a restriction of the
PLANAR 3-SAT, proven to be NP-complete by Lichtenstein [9]. In the general prob-
lem of 3-SAT, given a formula ¢ consisting of a set X = {x1,xs,...,x,} of variables
and a set C' = {c1,¢a,...,cn} of 3-element clauses (i.e., subsets of the set of literals
for X, where if x; is a variable, the corresponding literals are x; and ;), the question
is whether there exists a satisfying truth assignment for X and C, where a truth
assignment for X is a subset T of the literals for X that contains precisely one of z;,
7; for each i, 1 < i <mn, and T satisfies C' if for all clauses ¢; € C,¢; NT # (). We will
say that the variable z; is true if the literal x; € T and z; is false if 7; € T.

The natural graph to associate this problem with is the bipartite incidence graph
G, consisting of a vertex for each element of X UC and an edge between two vertices

x;,c; if and only if the clause c¢; contains either of the literals x; or ;. A planar

13

3-SAT formula is a formula ¢ whose incidence graph Gy is planar and the goal of
the corresponding PLANAR 3-SAT problem is to determine whether a given planar
3-SAT formula is satisfiable. A planar (< 3,3)-SAT formula is a formula ¢ whose
incidence graph G is planar and has the additional restriction that each variable ap-
pears in exactly 3 clauses, twice in its non-negated form and once in negated and also
each clause can contain either 2 or 3 literals instead of exactly 3. The corresponding

problem is the following.

Planar (< 3,3)-SAT
Input: A planar (< 3,3)-SAT formula C
Question: Is C' satisfiable?

Not surprisingly, the problem was proven to be hard.

Proposition 3.3. [3] PLANAR (< 3,3)-SAT is NP-complete.

Given a graph G and a set X C V(G), we denote by Ex(G) the edges of G
that are incident to vertices in X. A signed graph is a triple (G, X, f) where G is a
graph, X C V(@) is an independent set in G, and f : Ex(G) — {4, —} is a function
assigning positive or negative signs to the edges of Ex(G). Given such a graph, we
also set C' =V(G) \ X.

Given a signed graph (G, X, f), a subdivision of (G, X, f) is any signed graph
(G', X, f") obtained from G after replacing each edge e of F(G) with a non-trivial path
P. and where f’ assigns signs to Ex(G’) such that, for each edge e = {v,u} € Ex(QG)
where v € X, the sign f(€') of the unique edge €’ of P, that is incident to v is the
same as f(e). We call the vertices of G’ introduced after this subdivision (i.e., the

vertices of G’ that are not in G) subdivision vertices of G.

Lemma 3.4. Let (G, X, f) be a signed graph such that
1. each vertex of G that is not in X has degree 2 or 3
2. each vertex in X has degree 3,

3. and for every v € X, the two of its incident edges are positively signed and the

other one is negatively signed.

14

Then there is a signed graph (G', X, f') that is a subdivision of (G, X, f), satisfies
conditions 1, 2, and 3 above (where G is replaced by G' and X remains the same),

and G' is a subgraph of a grid such that

all positively signed edges are vertical edges,

e all negatively signed edges are horizontal and have their rightmost endpoint in

X

)

e ifv e C and e is a vertical edge incident to v, then v is not the upmost endpoint

of e, and

e if v € C and v has degree 2 in G', then both edges of G' that are incident to v

are horizontal.

Proof. An algorithm of Shiloach efficiently embeds a planar graph of size n and degree
at most 3 in a grid of size k = O(n?) [11, 13]. The rest of the proof, regarding the
orientation of the signed edges, is straightforward. If we subdivide every edge of the
drawing thrice, we can replace the signed edges with paths whose first edges have the
required orientation (see the case-by-case analysis for the vertices in X in Figure 3.2,
the rest of the vertices are treated similarly). Hence, any signed planar graph of
degree at most 3 that can be embedded in the (k x k)-grid can also be embedded in
the (3k x 3k)-grid so that its signed edges have the required orientation. [

15

Figure 3.2: The case-by-case analysis. The vertices in X are the central vertices and

the red dashed paths correspond to the negative edges.

16

Chapter 4

A brief look in the history of

planar orthogonal drawings

Research on algorithms for drawing graphs and in particular for results on planar
orthogonal drawings was heavily motivated during the ’80s and ’90s by problems in
the VLSI circuit design and simulation of parallel architectures [5, 10, 13, 14]. This
is only natural since an orthogonal graph drawing closely resembles the layout of a
circuit. There are three parameters that are usually considered in such graph drawing:
the area needed (i.e., the size of the grid in which the graph is embedded), the length
of the paths of the embedding that correspond to edges of the graph, and the total
number of bends. In this setting, a bend is an internal vertex of a path of the drawing
that represents an edge, whose two adjacent edges are perpendicular. Avoiding bends
is important in applications to light or microwave circuits where a separate device
is required every time a corner is turned. Garg and Tamassia showed in [6] that is
NP-complete to decide whether a a graph can be embedded in a grid without bends,
therefore the corresponding minimization problem is also NP-complete.

The first question one would ask is whether a given graph accepts a planar or-
thogonal embedding. From [11, 17] we know that any planar graph with n vertices
and maximum degree at most 4, accepts a planar orthogonal embedding in a grid
of size at most O(n?). Since the longest wire in a VLSI circuit can determine the
performance of the circuit, the next logical step is to minimize the longest path of
the embedding. Unfortunately, it is NP-hard to determine the minimum values of
the total path length, maximum path length, and the required area over all possible
planar orthogonal drawings of a given graph (see related results in [1, 2, 7, 8, 12]).

The next step then would be to restrict the maximum path length to one, i.e., a

17

single edge. In that case we are talking about a unit-length embedding and this is
possible only if the original graph is a subgraph of some grid. Not surprisingly, the
first negative result in this direction came from Gregori [7] in 1989, who proved that
the problem is NP-complete even if we restrict the input graph to be a binary tree. In
fact, combining results from [1], [4], and [7] we have a complete dichotomy of when
the problem is NP-complete or polynomially solvable, depending on the degrees of
its vertices, which is presented in the following table (it also appears in [4]). A little
surprising is the fact that the problem remains NP-complete even when restricted to

most classes of trees, apart from the trivial ones.

Complete Complexity Dichotomy for the GRID SUBGRAPH Problem

Set of vertex degrees General graphs Trees
{1} P P
{2} P -
{3} P -
{4} P -

{1,2} P P
{1,3} NP-complete NP-complete
{1,4} P P
{2,3} NP-complete -
{2,4} NP-complete -
{3,4} P -
{1, 2,3} NP-complete NP-complete
{1,2,4} NP-complete NP-complete
{1,3,4} NP-complete NP-complete
{2,3,4} NP-complete —
{1,2,3,4} NP-complete NP-complete

Graph-drawing algorithms. In 1974, Shiloach [11] provided an efficient algorithm
that outputs a planar orthogonal embedding for any planar graph with maximum
degree at most 3, which we are also using in the proof of Lemma 3.4. This algorithm
is optimal in the sense that there are certain graph classes (of infinite size) that can
only be embedded in a grid of size at least quadratic to its size. Of course for certain
other classes there are algorithms that draw them in a smaller area. In particular,

in the same work Shiloach also provided an algorithm for drawing trees of maximum

18

degree at most 3 in an area of size O(nlogn), while a few years later, in 1981,
Valiant [17] presented an algorithm for drawing trees of maximum degree at most 4
in a linear area. Regarding algorithms that try to minimize the number of bends,
Storer in [12] describes three algorithms that use different techniques to achieve that
but they run in time O(n?). Tamassia and Tollis improved on that in [15] and [16],

by achieving linear time, using more complex techniques.

19

Chapter 5

The proof

Proof of Theorem 3.1. That GRID SUBGRAPH is in NP is immediate since a cer-
tificate is a unit-length embedding of the graph. To complete the proof, we will
provide a reduction to it by the PLANAR(< 3,3)-SAT. Namely, given an instance
of PLANAR(Z 3,3)-SAT, we convert it into an instance of GRID SUBGRAPH, such
that the constructed instance has a solution if and only if the PLANAR(< 3,3)-SAT
instance had a solution.

Let ¢ be an instance of PLANAR(< 3,3)-SAT, X and C its variable and clause
sets respectively, and G, its incidence graph. For the rest of the proof X and C will
be used as the corresponding vertex sets that constitute V(Gy). Since each variable
appears in exactly 3 clauses and each clause contains at most 3 literals, the maximum
degree of G is 3. Due to Lemma 3.4, there is an orthogonal grid embedding S of G,
of size k = O(n?) with the following properties:

o For each vertex z; € X there are 3 edges incident to x;, two vertical and one
horizontal with x; as its rightmost endpoint. The two paths starting from the
vertical edges connect x; to the two vertices ¢j,c, € C, such that the clauses
c;,cr of ¢ contain the positive literal z;. The third path connects z; to the

clause-vertex whose corresponding clause contains the negative literal ;.

o Each vertex ¢ € C either has two incident edges, both horizontal, or three
incident edges, with only one of them being vertical and with ¢ as its lowest

endpoint.

The vertices of R = V(S5)\ V(G) will be called residual vertices of S. From S we will
construct a grid-like graph G’ that will be able to “fit into” a grid (i.e., G’ will be a

20

subgraph of some grid) if and only if the formula is satisfiable.

The construction is the following:

1. First, subdivide each edge of S 11 times. Now S is a subgraph of the (11k x 11k)-
grid. Let P be the set of the new vertices which will be called peripheral vertices.
Obviously, up to this point, (X, C, R, P) is a partition of V'(S). Let m; be the the
maximum distance between ¢; and any of the vertices x; whose corresponding

literals appear in the clause c;.

2. For each vertex in v € X, replace the closest 27 of its surrounding peripheral
vertices (i.e., those that are at distance at most 9 from v), and the edges con-
necting those with a gadget as shown in Figure 5.1. Notice that these form a

subgraph of the (19 x 19)-grid around v.

a a

Figure 5.1: The variable gadget around the variable vertex v.

3. In this step we replace all remaining edges (not the ones added in the previous
step) with paths, forming corridors around the vertices, hence we call this the
corridor gadget. For each vertex in C'U RU P of degree 2, if it has two adjacent

edges on a straight line, replace each edge with two parallel edges each at

21

distance 2 from the original edge and if it has two adjacent edges forming a
bend (i.e., they are perpendicular), then replace them with two bending paths
of length 2 and 10, and two perpendicular edges in the corner as shown in
Figure 5.2. Also, for each vertex in C' of degree 3, replace its adjacent edges
with two bending paths of length 2 and a straight path of length 6, as shown
in Figure 5.3. This will leave all the peripheral, residual, and clause vertices

isolated.

g h i
° o o
g h 1
—o—0— —
fe e
®cC % oc
od od
—eo—o—o EE——
a b ¢
%% i

Q0

"
NZ

Figure 5.3: The corridor gadget for vertices of degree 3.

4. Remove the isolated peripheral and residual vertices, so that the corridors are
empty inside, apart from the vertices of C' and connect each clause vertex ¢; € C'

with a path of size 2 to the closest vertex below (as shown by the dashed red

22

lines in Figure 5.4).

C,

i
.
AEEEEEEEEEEEEl

Figure 5.4: The clause gadget.

5. The graph created thus far is obviously a subgraph of the (12k x 12k)-grid. We
now add all the vertices and edges of the (12k x 12k)-grid that contains our

graph, that are not within any gadget (variable or corridor).

6. Finally, connect each vertex ¢; € C' to a (3 x 5)-grid with a path of length m;
as in Figure 5.5. This will be called the anchor gadget.

Figure 5.5: The anchor gadget.

The resulting graph G’ is the corresponding instance of the GRID SUBGRAPH
problem. We shall now take a closer look at the gadgets employed.

23

o The variable gadget has 3 “entrances” which are connected to its surrounding
corridor gadgets. At the end of each entrance there is an empty area containing
a dashed purple-colored part. These areas will be called ports and the dashed
parts flaps. The left entrance, port, and flap are called negative (since they
correspond to the negative literal of the variable), while the two right ones
are called positive. The big empty area in the center of the variable gadget
is called the hole. In a drawing, the flaps can be placed on either side of the
edges they are attached to. Also notice that if either of the two positive flaps
is drawn inside the hole, then the negative must be drawn outside of it, i.e., in
the negative port, but both of the positive flaps can be drawn there at the same
time. Conversely, if the negative flap is drawn inside the hole, then both of the

positive flaps must be drawn outside, i.e., in the positive ports.

« Each clause vertex has an anchor gadget attached to it. Obviously, these anchors
are too big to be drawn inside the corridors and thus have to be drawn inside
the variable gadgets and, more specifically, in their ports. Since each clause
vertex is located in a corridor leading to the variables appearing in the clause,

then the anchor must be drawn in a port of one of those variable gadgets.

To complete the proof, we have to prove that ¢ is satisfiable if and only if G’ is a
subgraph of the (11k x 11k)-grid.

Suppose first that ¢ has a satisfying assignment. In that assignment, for every
clause ¢; there is at least one literal of a variable z; appearing in ¢; that is true.
Then, in G’ the anchor attached to the clause vertex ¢; can be placed in the port
of the corresponding literal of the variable vertex x;. If this is the negative literal,
then the negative flap will be drawn inside the hole and the positive flaps in their
ports, hence no other anchor can be drawn inside the positive ports, which means
that the positive literals cannot satisfy another clause. Likewise, if it is a positive
literal, then the anchor will be drawn in a positive port, the corresponding positive
flap will be drawn inside the hole, and the negative flap in its port, which means two
things: first, the negative literal cannot be the true one in the clause it appears, and
second, the other positive literal may be, since the second positive flap can also be
drawn inside the hole. That way, all the anchors can be drawn in ports, thus G’ is
indeed a subgraph of the (11k x 11k)-grid.

Suppose that G’ is a subgraph of some grid. Then, it must also be a subgraph of
the (11k x 11k)-grid and all the anchor gadgets are drawn in ports of variable gadgets.

24

As we observed, inside each variable gadget can be drawn at most two anchors in the
positive ports, or at most one anchor in the negative port. So, let us consider the

following truth assignment for each variable:
« if an anchor was drawn in its negative port, then that variable is false,

« if at least one anchor is drawn in one of its positive ports, then that variable is

true,

o and if no anchor was drawn in the ports of that variable gadget, then that

variable can either be true or false, so we set it arbitrarily to true.

That way, all clauses contain at least one true literal (the one with the anchor inside
the corresponding vertex gadget) and there is no variable with both literals true, since
that would mean that an anchor has been placed in both the negative and a positive
port of the corresponding variable vertex, which is absurd. Hence, ¢ is satisfiable.
Finally, it is evident that given a formula ¢, then G4, S, and G’ can all be

constructed in quadratic time, thus the reduction is indeed polynomial.]

To clarify the gadgets used in the reduction, we provide a brief example. Consider
the planar (< 3,3)-SAT formula

¢ = (r1 Va2 VT3) A (21 VT2) A (22V 3) A (T1 V 23),

which contains exactly 4 clauses and 3 variables. In the formula’s incidence graph
Gy (see Figure 5.6), every variable-vertex is connected to each clause-vertex whose

corresponding clause in the formula contains at least one of the variable’s literals.

Then, using Shiloack’s algorithm, we derive the graph S from Figure 5.7, which
is an orthogonal grid embedding of G4 on the (6 x 10)-grid.

After we subdivide each edge 11 times, we get a subgraph of the (72 x 120)-grid.

25

C1 €2 €3 Cq

X1 xo €3

Figure 5.6: The incidence graph G4. The square vertices correspond to clauses and

the disc vertices to variables.

Cq
® 2
C
L2 F N

Figure 5.7: The orthogonal grid embedding S of G,. Again, the square vertices

correspond to clauses and the disc vertices to variables.

Next we add the variable, clause, and corridor gadgets (see Figure 5.9).

Finally, we “fill” the rest of the grid and add the anchor gadgets (see Figure 5.10).
Notice that all the anchor gadgets can be placed in the ports, hence the graph is a yes-
instance of GRID SUBGRAPH and therefore ¢ is satisfiable. Moreover, by observing in
which ports the anchors were placed, we can obtain a truth assignment that satisfies

the formula, namely x; + True, x5 < False, and x3 < True.

26

@
C3
@
Ca
L o @ -) W% I3
@
Cy

Figure 5.8: After subdividing each edge of S 11 times.

C4T
u | N) CST -
e mai Fmedt
a! @' o ;1 9 @' Ty E;J @. T3 ;E
HEEE ”EH;Er ::EH;E
ul | ClTI s g (.

Figure 5.9: After adding the variable, clause, and corridor gadgets.

27

‘PLIS ' Ul poppoquid o urd YdeIs o) 9oUIs o[RYSIIes ST RNULIO o[, :)] G 9INSIq

28

Bibliography

1]

2]

3]

[4]

S. N. Bhatt and S. S. Cosmadakis. The complexity of minimizing wire lengths
in vlsi layouts. Information Processing Letters, 25(4):263 — 267, 1987.

F. J. Brandenburg. Nice drawings of graphs are computationally hard, pages
1-15. Springer Berlin Heidelberg, Berlin, Heidelberg, 1990.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23:864-894, 1994.

V. G. de Sa, G. D. da Fonseca, R. C. Machado, and C. M. de Figueiredo. Com-
plexity dichotomy on partial grid recognition. Theoretical Computer Science,
412(22):2370 — 2379, 2011.

G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Algorithms for draw-
ing graphs: An annotated bibliography. Computational Geometry: Theory and
Applications, 4(5):235-282, Oct. 1994.

A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601-625, Feb. 2002.

A. Gregori. Unit-length embedding of binary trees on a square grid. Information
Processing Letters, 31(4):167 — 173, 1989.

P. J. Idicula. Drawing trees in grids. Masters Thesis, 1990.

D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
2(11):329-343, 1982.

Y.-B. Lin, Z. Miller, M. Perkel, D. Pritikin, and I. Sudborough. Expansion
of layouts of complete binary trees into grids. Discrete Applied Mathematics,
131(3):611 — 642, 2003.

29

[11]

[12]

[13]

[14]

Y. Shiloach. Arrangements of planar graphs on the planar lattice. Ph.D. Thesis,
1976.

J. A. Storer. On minimal-node-cost planar embeddings. Networks, 14(2):181-
212, 1984.

R. Tamassia. Planar orthogonal drawings of graphs. In IEEE International

Symposium on Clircuits and Systems. IEEE, 1990.

R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and
readability of diagrams. [EEE Trans. Syst. Man Cybern., 18(1):61-79, Jan.
1988.

R. Tamassia and 1. Tollis. Efficient embedding of planar graphs in linear time.
In Proc. IEEFE Int. Symp. on Clircuits and Systems, pages 495-498, 1987.

R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEFE
Transactions on Circuits and Systems, 36(9):1230-1234, Sep 1989.

L. Valiant. Universality considerations in vlsi circuits. [EEE Transactions on
Computers, C-30:135-140, 1981.

30

