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EuqaristÐec

'Eqw dei se pollèc ergasÐec na anafèroun sthn arq  k�poio apìfjegma, k�poiac shmantik c
proswpikìthtac.

“Contrariwise, if it was so, it might be; and if it were so, it would be; but as it isn’t, it
ain’t. That’s logic.” -Tweedledee

Epeid  merikoÐ mporeÐ na mhn anagnwrÐzoun ton Tweedledee wc aujentÐa, parajètw èna
enallaktikì apìfjegma.

“Listen, once you figure out what a joke everything is, being the comedian ’s the only thing
that makes sense.” -The Comedian

Ja  jela na euqarist sw pr¸ta ton Qr sto KapoÔtsh, gia thn epÐbleyh, ton qrìno tou
kai ton kìpo tou, kai ton P�no Rontogi�nnh gia to exairetikì m�jhma sthn shmasiologÐa
glwss¸n programmatismoÔ kai thn ateleÐwth upomon  tou. EpÐshc jèlw na euqarist sw kai
touc kurÐouc Eust�jio Z�qo kai Nikìlao PapaspÔrou gia thn summetoq  touc sthn trimel 
epitrop  kai ìlouc touc kajhghtèc tou MPLA, eidik�, ton KwntantÐno Dhmhtrakìpoulo
pou par� ta grafeiokratik� empìdia, kat�fere na krat sei to metaptuqiakì leitourgikì.
EpÐshc euqarist¸ touc kajhghtèc pou me enèpneusan na asqolhj¸ peraitèrw me ta majh-
matik�, kai eidik� ton Apìstolo Jwm�. Noi¸jw thn upoqrèwsh na anafèrw tic upall louc
thc grammateÐac tou MPLA, gia thn exairetik  exuphrèth (sta ìria thc eidik c metaqeÐrh-
shc) kai thn projumÐa touc k�je for� pou qreiazìmoun thn bo jeia touc, (se qronologik 
seir�) 'Anna Basil�kh, QrusafÐna Qìndrou kai Elènh Klh. QairetÐsmata se ìlouc touc,
xenitemènouc kai mh, apofoÐtouc tou MPLA, touc euqaristw gia thn parèa touc. Eidik 
mneÐa ston Alèxandro Palioud�kh diìti dÐqwc thn dik  tou sumbol , den ja eiqe pragmato-
poihjeÐ aut  h diplwmatik  ergasÐa. Kleinontac prosjètw pwc o J�noc Tsou�nac den ja
brei oÔte mia lèxh gia tupikèc grammatikèc se aut  thn ergasÐa, gia na m�jei k�poia èstw
lÐga basik�. Dustuq¸c ja qreiastei na eggrafeÐ se k�poio pl rec m�jhma perÐ twn tupik¸n
grammatik¸n, k�poia stigm  sthn akadhmaik  tou karièra.

H ergasÐa aut  eÐnai afierwmènh stic giagi�dec mou, Jètic, ErifÔlh kai Melpomènh.

Se autì to shmeÐo ofeÐlw na anafèrw pwc ìla ta l�jh, logik�, tupografik�, majhmatik�,
suntaktik� kai loip¸n eid¸n, baraÐnoun apokleistik� kai mìnon emèna. A.M.
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Chapter 1

Computability

1.1 Preliminaries

Definition 1.1 (Alphabets, words, and Languages). An alphabet Σ is a finite, nonempty
set of symbols. A word or a string is an n-tuple of symbols of Σ. Instead of writing
(a1, a2, . . . , an) we simply write a1a2 · · · an. If u = a1a2 · · · an, then we say that n is the
length of u, |u| = n. There is a unique word of length 0 and that is the empty string ε. We
denote by Σn the set of words over Σ, that are of length n. Σ∗ =

⋃
n∈N Σn, where ∗ is kleene

star, is the set of all words. If L ⊆ Σ∗ we call it a language over Σ. Therefore P (Σ∗) is the
set of all languages over Σ. Finally there is a binary operation over Σ∗ called concatenation.
Given u1 = a1a2 · · · an and u2 = b1b2 · · · bm we define u1 ·u2 = a1a2 · · · anb1b2 · · · bm. From
now on we will write u1u2 meant as the concatenation of u1 and u2. This operation can
be expanded to be used on sets of strings. Let A and B be sets of strings. We define
A ·B = AB = {w|∃x ∈ A, y ∈ B : w = xy}.

Languages represent problems. Every language L represents the question of deciding
whether a given string w is a member of a L. Does w ∈ L? Can this question be answered
algorithmically? If so, then there is a machine for that language, a machine that solves
that problem. A machine that, given string w, can answer yes or no.

There are many types of machines. The most complex machine is the Turing machine,
which, according to the Church-Turning thesis, can compute anything that is computable,
but our interest will be focused in much simpler models of computation. Models that can
solve only some computable problems. One such model is the one-way deterministic finite
automaton (1DFA).

1.2 One-way finite automata

1.2.1 One-way deterministic finite automaton

Definition 1.2. A one-way deterministic finite automaton (1DFA) is a five-tuple,

D = (Q,Σ, q1, F, δ) ,

where

• Q is a finite set of states {q1, q2, . . . , qk}

• Σ is a finite input alphabet

• q1 ∈ Q is the start state

7



8 CHAPTER 1. COMPUTABILITY

• F ⊆ Q is the set of final states

• δ : Q× Σ→ Q is the transition function.

The input is written on a tape of cells. In each cell there is one symbol written. The
machine has a head reading one cell, starting from the leftmost cell and moving one cell
at a time. The automaton switches between states, depending on the current state and
the current symbol being read, according to the transition function. The machine halts
when the head reaches the end of the input, or the automaton reaches a state from which
it cannot move to any other. Obviously the machine can make at most |w| moves before
halting. We say that D accepts w iff when the head of D reads the last symbol of the
input, it moves to a final state. The set of all strings accepted by the automaton D is
called the language of D.

We can also extend δ to Q× Σ∗. δ′ : Q× Σ∗ → Q and define it the following way:

δ′(q, a) = δ(q, a)

δ′(q, aw) = δ′(δ(q, a), w),

where a ∈ Σ, w ∈ Σ∗ and q ∈ Q. So now we can say that D accepts w if δ′(q1, w) ∈ F .

Example 1. Let Σ = {0, 1} be the binary alphabet. For reasons of convenience we will
be using this alphabet for most examples. In case we need to use another one, it will be
stated clearly. We will define a 1DFA for the language

L = {w|w ∈ Σ∗ such that the last two symbols of the string are 01 in that order }.

D = (Q,Σ, q11, {q01}, δ), where Q = {q00, q11, q10, q01} and δ transitions are according to
the table below.

δ 0 1

q00 q00 q01
q01 q10 q11
q10 q00 q01
q11 q10 q11

Another way to describe it is the following: This 1DFA we defined recognises language
L by reading every string and keeping in its memory (according to the state it is in) the
last 2 symbols. Those 2 last symbols are the indices of the states.

1.2.2 One-way nondeterministic finite automaton

Another model of computation, similar to 1DFA, is the one-way non-deterministic finite
automaton (1NFA). The concept of nondeterminism is essential to understand the differ-
ence between 1DFAs and 1NFAs. In a 1DFA the computation can be described as a path
in the state diagram of the machine, since for every state and input there is only one
state the machine can move to. This is a result of δ being a function, so for every given
(q, a) ∈ Q × Σ there is a unique state δ(q, a) ∈ Q. Nondeterminism works differently in
that aspect, since there may be more than one path, and at least one of those paths need
to lead to a final state for the whole computation to accept. Intuitively, the machine has
the ability to “guess” the correct path, or rather, run all the paths at once.
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Figure 1.1: State diagram of the 1DFA D.

Definition 1.3. A one-way nondeterministic finite automaton (1NFA) is a five-tuple,

N = (Q,Σ, q1, F, δ) ,

where Q,Σ, q1, F are as in the definition on the 1DFA and δ : Q × Σ → P(Q) is the
transition function.

Similarly to 1DFAs, for the machine to accept string w, there needs to be a path
from the starting configuration (state q1 and the head at the first symbol of w) to a final
configuration (some q ∈ F and the head at the last symbol of w). The main difference
this time is that for any pair (q, a), where q ∈ Q, a ∈ Σ, the automaton may transition
to more than one state (while definitely moving the head to the next symbol). δ(q, a) is a
set of states, the set of all states the automaton may transition to. So, if q1 ∈ δ(q, a) and
q2 ∈ δ(q, a) then the automaton may move to any of these two states. In order for the
automaton to accept w, there needs to be at least one path (among all possible paths) to an
accepting state. A note on non determinism: it doesnt matter which state, the automaton,
decides to transition to. What is essential to the computation is the possibility of having
a successful computation. In that sense we may say that the automaton, in every step,
splits into many incarnations and, if one accepts, then the automaton accepts. Or we may
suppose the automaton guesses a successful path, if one exists, and follows it.

Function δ has been changed, in order to be kept a function. We could also define δ
as a relation δ ⊆ Q × Σ × Q.Continuing in the same fashion as before, we can define an
extension of δ, δ′ : P(Q)× Σ→ P(Q)

δ′({q}, a) = δ(q, a)

δ′(S, a) =
⋃
q∈S

δ(q, a),

where a ∈ Σ, q ∈ Q and S ⊆ Q. We can then expand δ′ in δ′′ : P(Q) × Σ∗ → P(Q) as
such:

δ′′(S, a) = δ′(S, a)

δ′′(S, aw) = δ′′(δ′(S, a), w),
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where a ∈ Σ, q ∈ Q,w ∈ Σ∗, and S ⊆ Q.

So now we can say that N accepts w if δ′′(q1, w) ∩ F 6= ∅. From now on, we will be
referring to δ′ and δ′′ as δ. That means N accepts w if there exists a state qf ∈ F such
that qf ∈ δ(q1, w). And that means that, given w, there is a computation path from q0 to
qf .

Example 2. We will construct a 1NFA that recognises the language

L = {w|w ∈ Σ∗such that the fourth symbol from the end of w is the symbol 1}.

N = (Q,Σ, q0, {q4}, δ), where Q = {q0, q1, q2, q3, q4} and δ is described in the table below.

δ 0 1

q0 {q0} {q0, q1}
q1 {q2} {q2}
q2 {q3} {q3}
q3 {q4} {q4}
q4 ∅ ∅

0,1

0,1 0,10,11

q1q0 q3q2 q4

Figure 1.2: The state diagram of the 1NFA N .

Figure 1.2 repserents the states and transitions of the 1NFA. As we can see, while
reading the input string, the machine stays on the starting state. At any point, where
it reads the symbol 1, it may move to state q1, and then it will count 3 more symbols
before halting. If there are exactly 3 more symbols, the 1NFA accepts. We may say that
N guesses the 1 that is fourth from the end. If the string has that property then there is
a computation path through which N halts at the accepting state.

1.2.3 Configuration

Before we continue with the definition of another type of automaton, we introduce a
concept that will help us understand computation even further.

Definition 1.4. A configuration is a string of elements from Σ and Q that can define
clearly and fully any snapshot of the machine during its computation. A simple way to de-
scribe a configuration would be, given machine M and input w, (q, i) ∈ Q×{1, 2, . . . , |w|},
which means the machine is in state q over the i-th symbol of w. An other way to define
configurations is with a string c = uqaw, where u,w ∈ Σ∗, q ∈ Q and a ∈ Σ, and this
means that the automaton, given the input string uaw, is at state qand the head is cur-
rently reading symbol a between strings u and w. From now on we will be using this way
to describe configurations. Keep in mind that there are many possible configurations for
a given input, namely |Q| × (length of input + 1), but not all of these configurations are
reachable from the starting configuration, meaning some of these configurations might be
impossible for the machine to be in.
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From the definition of the automata, for input w ∈ Σ∗ the starting configuration is
c0 = q1w. Let w = vau, c = vqau and c′ = vapu where a ∈ Σ and v, u ∈ Σ∗. Then

if p ∈ δ(q, a), we write c
M→ c′, and say that configuration c yields configuration c′ in

one step. A configuration that does not yield any other configuration in one step is a
halting configuration. A halting configuration can be either an accepting configuration or
a rejecting configuration. An accepting configuration has to be in this form: c = wq where
q ∈ F . The set of all configurations of machine M on input w, is denoted as CM,w. This
set can be seen as a graph, where the elements of CM,w are the nodes and the possible

transitions between them ,c
M→ c′, are the edges. We call it the graph of configurations.

The number of possible configurations is (|w|+1)|Q|, where |w|+1 is the possible positions
of the head and |Q| is the possible states the machince could be in. It is obvious that in
order for string w to be accepted by the machine, there has to be a path from the starting
configuration c0 to an accepting configuration, in the graph of configurations.

Finally we define the set of functions (CM,w → B), where B = {0, 1} is the set of boolean
values true and false, represented as 1 and 0 respectively. A function f ∈ (CM,w → B)
assigns a boolean values to every configuration in set CM,w. But what does 1 and 0
mean assigned to the configurations of CM,w. The idea behind this to trace the property
of a configuration being on an accepting path in a reverse way. We start on the final
configurations ci = wqci and we assign 1 to the accepting ones (those where qci ∈ F ) and 0
to the non accepting ones. Any other configuration is assigned the value 1 if it can inherit
the property from its yeilding configurations, or the value 0 if it inherits the negation of
the property. This means that the starting configuration will be assigned a boolean value
as well. If the starting configuration is assigned the boolean value 1 then that means that
the starting configuration meets the accepting conditions. So in that case M accepts w.
Otherwise, if it is assigned the value 0 and M does not accept w.

This type of functions will help us define acceptance for the following automaton.

1.2.4 One-way alternating finite automaton

The next generalization of non determinism is alternation.

Definition 1.5. A one-way alternating finite automaton (1AFA) is a six-tuple,

A = (Q,Σ, q1, F, U, δ) ,

where Q,Σ, q1, F, δ are as in the definition of 1NFA and U ⊆ Q is the set of universal
states.

The key difference between this definition and the one of the 1NFA is the set of universal
states. We have two types of states, the existential ones and the universal ones. Every
state must be of the one or the other type. Existential states, are states similar to the
states of the 1NFAs. They can transition to more than one state, given the same symbol
of the alphabet, and they are on an accepting path, if at least one of their transitions
is. Universal states need all their transitions to be on an accepting path. Whatever
we say about the states, can be interpreted equivalently for the configurations and the
assignment of truth values to them. Configurations on existential states may yield more
than one configuration, but need only one yelding configuration to be true, in order for
them to be true. Universal configurations need all their yeilding configurations to be true,
in order for them to be true. So in order for the machine to accept there needs to be a
tree of configurations, where the leaves are accepting configurations.
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Acccoding to the above, we can recursively define PA,w : CA,w → B.

PA,w(c) =


1 if c is accepting
0 if c is rejecting

∨{PA,w(d)|c A→ d} if qc /∈ U and c is not halting

∧{PA,w(d)|c A→ d} if qc ∈ U and c is not halting

where max is the arithmetic equivalent of the logical operator OR, and min is the eqivalent
of AND. We say that D accepts w if PA,w(c0) = 1, where c0 is the starting computation.
Alternatively we can say that, for D to accept w, there has to be a tree with root the
starting configuration, and all leafs accepting configurations, where each existential node
has one child (at most), and each universal node has all possible yielding configurations
as children.

Example 3. This time we will use a different alphabet Σ = P({1, 2, 3, 4}). The language
we will be using is

L = {ab|a, b ∈ Σ such that a ⊆ b }.
We define A = (Q,Σ, q0, {qf}, {q0}, δ), where Q = {q0, qe, q1, q2, q3, q4, qf} and δ is defined
by the transitions below.

δ(qe, a) = {qf}
δ(q0, a) =

{
{qe} if a = ∅
{qi|i ∈ a} if a 6= ∅

δ(qi, a) =

{
{qf} if i ∈ a
∅ if i /∈ a

where i ∈ {1, 2, 3, 4}.
There are no other transitions than the ones described above. The only universal state

is the starting one. How this machine works: On the first symbol it reads, the machine
makes a universal move to the states that represent the elements of that first symbol (the
symbol is a set in P({1, 2, 3, 4}). Then the machine varifies for each element that it is
contained in the second symbol. If an element of the first set is in the second set, then
the machine moves to the accepting state. If all elements of the first set are included in
the second, then all paths lead to the accepting state, and the machine accepts. In the
special case where the first symbol is the empty set, the machine just verifies that the
input consists of two symbols. The state diagram is in Figure 1.3, where ai is any set such
that i ∈ ai and accordingly, bi is any set that contains i. b is any set. Formally {i} ⊆ ai, bi.

A note on P and δ: these functions work in a reverse way to each other (even thought
the first one is over configurations and the second one over states and symbols). P assigns
the truth to the halting configurations and spreads backwards towards the starting con-
figuration while δ is applied from the starting configuration (meaning starting state and
first symbol), and finds its way through an accepting configuration (meaning a final state,
while the head has run through the whole word w).

1.2.5 The grid of configurations

Let’s take a moment now to consider a different view on the set of configurations CM,w.
As mentioned above, the set CA,w has |Q| × (|w|+ 1) distinct elements. We can describe
each configuration as an element of Q×{1, 2, . . . , |w|+ 1}. Figure 1.3 represents a way we
can describe this set.
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q1

q2

q3

q4

qe

qf

a1

a2

a3

a4

b1

b3

b4

b2

b

q0

∅

Figure 1.3: The state diagram of the 1AFA A.

We can clearly identify the starting configuration on the top left corner and the halting
configurations (the rightmost column) some of them accepting, some of them rejecting.
As long as we are looking into one-way machines, we know that each node on the grid can
only relate to the elements of the next row. This is essential to understand the accepting
process for our next machine, the one-way boolean finite automaton.

1.2.6 One-way boolean finite automaton

A boolean automaton is a generalization of all previous models.

Definition 1.6. A one-way boolean finite automaton is a five-tuple,

B = (Q,Σ, q1, F, g) ,

where Q,Σ, q1, F are as usual and g : (Q×Σ)→ (Bk → B) is a function. B = {0, 1} is the
set of boolean values true and false.

Function g assigns a boolean function g(·, ·) : Bk → B, to every combination of state
and symbol (Q× Σ). As mentioned earlier, every node on the grid of configurations, is a
configuration, having a state and a symbol that is being read. Those two define, through
g, a boolean function. So we can assign on every element of the grid a boolean function
over Bk.

For any given configuration c = uqav we define recursively PB,w : CB,w → B as follows:

PB,w(c) =


0 if c is rejecting
1 if c is accepting
g(q, a)(PB,w(d1), PB,w(d2), . . . , PB,w(dk)) if c is not halting
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a4a3a2a1 . . .

q3

q2

q1

ǫ

qk

am

Figure 1.4: The grid of configurations.

a4a3a2a1 . . .

q3

q2

q1

ǫ

qk

am

Figure 1.5: The viariables of the boolean function g(q2, a3) : Bk → B.

where di = uaqiv, meaning all k configurations of B, on input w, that are on the
column to the right of c, in the configuration grid. In other words, the function assigns a
boolean value to each node on the configuration grid, accordring to the values it assigned
on the next column.

B accepts w if PB,w(c0) = 1, where c0 the starting configuration.

1.2.7 Computability equivalence

Theorem 1 (computability equivalence of one-way finite automata [9]). For every k-state

1BFA there is a 22
k
-state 1DFA that recognises the same language.

Proof. LetM = (Q,Σ, q1, F, g) be a 1BFA. We will create a 1DFAD = (QD,Σ, q0, FD, δD),
that accepts the language of M . Let |Q| = k and u denote a k-tuple of boolean values
u = (u1, u2, . . . , uk) ∈ Bk. Let πi be the i-th projection, πi(u) = ui. Let f denote the
characteristic vector of F ,

πi(f) =

{
1 , if qi ∈ F
0 , if qi /∈ F .

Now we can define D:
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• QD = (Bk → B), the set of all functions from Bk to B.

• q0 = π1 is the starting state.

• FD = {h|h ∈ (Bk → B) : h(f) = 1}, meaning that of all functions-states in (Bk → B),
final are considered the ones that give the boolean value 1 to vector f .

• Finally the transition function is δD : QD × Σ→ QD. For every h ∈ QD = Bk → B
and a ∈ Σ, we have:

δD(h, a) = h ◦ (g(q1, a), g(q2, a), . . . , g(qk, a)), ∀a ∈ Σ.

Let ta : Bk → Bk, such that ta = (g(q1, a), g(q2, a), . . . , g(qk, a)), for a ∈ Σ. Figure 1.6
explains the moves of the transition function. The grid can be seen as a sequence of
functions of vectors (of functions). The only important configuration from the first column
is that of the starting state, so for input w = a1 · · · am, there is a function g(q1, a1) : Bk → B
that relates the value of that node to the values of the nodes of next column. From there
on the values of each column, are assigned by applying function ta : Bk → Bk, on the
values of the nodes of the next column. But D does not have to keep in its memory this
function because it can compose it with the current state-function. The composition of
h : Bk → B with ta : Bk → Bk is h ◦ ta : Bk → B.

a4a3a2a1 . . .

q3

q2

q1

ǫ

qk

am

f

tam
g(q1, a1) ta2 ta3

Figure 1.6: The functions of the vectors on the grid.

δD(π1, a1) = g(q1, a1),

δD(π1, a1a2) = g(q1, a1) ◦ ta2 ,

δD(π1, a1a2a3) = g(q1, a1) ◦ ta2 ◦ ta3 and so forth.

When the machine reaches the final state-function, it uses vector f to decide if M
accepts of rejects (that is the way we have defined set FD).

Corollary 1. All one-way finite automata we defined so far are equivalent.

Proof. It is immediate from Theorem 1, since 1BFA is a generalization of all the one-way
finite automata we defined.
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1.3 Two-way automata

The main difference between two-way automata and one-way automata is the movement of
the head that reads the input. In this case, the head can move left or move right or remain
stationary. This translates into three types of transitions in the transition function. The
computation may continue by moving the head to the left or to the right, or by remaining
at the current cell, reading the same symbol. This creates two types of problems that need
to be dealt with. The first one is quite typical. There is the possibility of the head being
driven out of the input tape. From now on we will be using two new symbols,` and a,
that cannot be part of our alphabet. The input w will be given in the form ` w a. This
will help the automata, whenever they read an end-marker, to never move any further
than that. The second problem we encounter is the possibility of the automaton entering
an infinite loop, never completing its computation. This means that the automaton may
be unable to answer for some inputs. We will consider a string w to be accepted, only if
the computation on w halts and returns a positive answer.

1.3.1 Two-way deterministic finite automaton

Definition 1.7. A two-way deterministic finite automaton (2DFA) is a five-tuple,

D = (Q,Σ, q1, F, δ) ,

where Q,Σ, q1, F are as usual and δ : Q × (Σ ∪ {`,a}) → Q × {L, S,R} is the transition
function.

Before we define acceptance there are a few things that need to be stated about δ.
The transition function works pretty much the same way in every automaton, whether
it is one-way or two-way. The differences are the following: A value in {L, S,R} defines
whether the head of the machine will move to the left, stay at the same position, or move
to the right, respectively. There is also the restriction that whenever δ(q,`) = (p, x),
x can only be R or S, while whenever δ(q,a) = (p,R), p = q and q can only be final.
The automaton D, given input w, accepts if it reaches configuration a final configuration
cf =` w a qf , where qf ∈ F . So this means that the computation starts from the starting
configuration and ends in an accepting configuration. There are two basic differences
with the one-way model. The first one is that the head is not always moving torwards
the halting configurations. Actually, a configuration could be yeilding, in one step, any
configuration on the same column, or on the two adjacent columns to its left and to its
right. The second difference is the possibility of the computation entering an infinite
loop. We can see that the set of configurations is finite. This means that in order for the
computation to never end, the path needs to repeat a set of configurations. This can be
detected if the computation path grows longer than the number of possible configurations
(by the pigeonhole principle).

The partial function PD,w : CD,w → B is defined as follows:

PD,w(c) =


1 if c is accepting
0 if c is rejecting

PD,w(d) if c is not halting and c
D→ d.

Some configurations may stay undefined (all the configurations that have no path to halting
configurations, to be exact), so this function is partial, since it can assign boolean values
only to some elements of CD,w. D accepts w if PD,w is defined on c0 and PD,w(c0) = 1.
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. . .

q3

q2

q1

qk

ama2a1 a3⊢ ⊣

Figure 1.7: The possible transitions out of configuration ` a1q2a2 · · · am a are in the frame.

a2a1 a3⊢ ⊣a4 a5 a6

q1

q2

q3

q4

q5

Figure 1.8: An example of a non ending computation (loop), on the configuration grid.

Example 4. We will define a 2DFA that recognises the language of example 3. We define
the 2DFA D = (Q,P({1, 2, 3, 4}), q1, {qf}, δ), where Q = {q1, q′1, q2, q′2, q3, q′3, q4, q′4, q5, qf}
and δ is defined as follows:

For i ∈ {1, 2, 3}, δ(qi, a) =

{
(q′i, R) if i ∈ a
(qi+1, S) if i /∈ a

For i ∈ {1, 2, 3}, δ(q′i, a) =

{
(qi+1, L) if i ∈ a
undefined if i /∈ a

δ(q4, a) =

{
(q′4, R) if i ∈ a
(q5, R) if i /∈ a

δ(q′4, a) =

{
(q5, S) if i ∈ a
undefined if i /∈ a

δ(q5, a) = (qf , R)

δ(qf ,a) = (qf , R)

There are no transitions other than the ones described. This concludes the description
of the machine. The machine moves back and forth checking one by one each element. If
an element is included in the first set, then the head moves to the right and verifies that
same element is included in the second set. Then it continues to the next elment. When
it checks the last one, returns to the first symbol and counts two symbols, before moving
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to the accepting state. The automaton is also described in Figure 1.9, where ai stands for
any set that qi ∈ ai and a′i stands for any set that qi /∈ a′i. Same goes for bi, while b stands
for any set.

q1
q′1

q2

q3

q4

q5

q′4

q′3

q′2

a1, R

a′1, S b1, L

qf

a2, R

a3, R

a4, R

b, R

⊣, R

a′4, R b4, S

b3, L

b2, La′2, S

a′3, S

Figure 1.9: The state diagram of D.

1.3.2 Two-way nondeterministic finite automaton

Definition 1.8. A two-way nondeterministic finite automaton (2NFA) is a five-tuple,

N = (Q,Σ, q1, F, δ) ,

where Q,Σ, q1, F are as usual and δ : Q×(Σ∪{`,a})→ P(Q×{L, S,R}) is the transition
function.

Function δ has the same behavior conserning ` and a, as the function of a 2DFA: if
(p, x) ∈ δ(q,`) then x ∈ {S,R} and if (p,R) ∈ δ(q,a) then p = q ∈ F . Similarly to the
1NFA, we are looking for a path among all possible computation paths, which will lead
us to an accepting configuration. This time, if there exists a path between the starting
configuration and an accepting configuration then there is an equivalent path (same start
and same end) with length no greater than the total number of configurations. This means
that, similarly to 2DFAs, if there is no path of at most that length, then there is no path
at all.

Similarly to 2DFAs, a partial function PN,w : CN,w → B is defined as follows:
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PN,w(c) =


1 if c is accepting
0 if c is rejecting

1 if c is not halting and PN,w(d) = 1 for some d such that c
N→ d

0 if c is not halting and PN,w(d) = 0 for all d such that c
N→ d

As in the 2DFA model, a path from the starting configuration c0, to an accepting
configuration exists iff PN,w is defined on c0 and PN,w(c0) = 1.

1.3.3 Partially ordered sets

As we saw on the two previous models, there is something special about our P functions,
they are partial funtions. To tackle this problem we will extend set B. We now define
set B+ = B ∪ {⊥}. The ⊥ element is called bottom element and is assigned to all the
configurations whose values are undefined. Let (B+,v) be a partial order over B+, such
that ⊥ < 1, ⊥ < 0, and 0 and 1 are not comparable. In the same way, we define the

1 0

⊥

Figure 1.10: The partial order sqsubseteq on B+.

partially ordered set ((B+)k,v) where for all a,b in (B+)k, we have a v b ⇐⇒ (∀i)(ai v
bi), where ai and bi are the i-th coodrinates of a and b, respectively. This partial order
considers the defined value greater than the undefined value. So, if a vector a is greater
than a vector b, then a is “more defined” than b i.e. has as many or fewer ⊥ elements in
the same coordinates as b. The addition of an extra symbol to the set of boolean values
creates a problem in the way we handled values so far. We need to extend the boolean
functions f ′ : (B+)k → B+ so that they agree with their restrictions over Bk, and at the
same time they do not assign arbitrary values. The rule is simple: For x ∈ (B+)k \ Bk, if
all y ∈ Bk such that x v y agree on f(y), then f ′(x) = f(y), otherwise f ′(x) = ⊥. This
simple rule can be justified as follows: If all y ∈ Bk such that x v y share the same f(y)
value, then the undefined coordinates of x do not affect the value of f(x) (they could be
set to either true or false, and the result would stay the same), otherwise, the undefined
coordinates do affect the resulting value, so f(x) cannot be defined either.

This partial order can help us create another partial order on (C → B+). Let P1, P2 ∈
(C → B+). We say that P1 v∗ P2 if P1(x) v P2(x), for all x ∈ C. This relation can
be described as: P2 is more defined than P1. There is a bottom element in this poset,
⊥∗, which is the function not defined anywhere: ⊥∗(x) = ⊥, for all x ∈ C. By definition
⊥∗ v P , for all P ∈ (C → B+).

1.3.4 Two-way alternating finite automaton

Definition 1.9. A two-way alternating finite automaton (2AFA) is a six-tuple,

A = (Q,Σ, q1, F, U, δ) ,
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where Q,Σ, q1, F, U are the same as in the one-way model and δ : Q × (Σ ∪ {`,a}) →
P(Q× {L, S,R}) is the transition function.

The same restrictions for δ over the end-markers apply and the set of states U plays
the same role as in the one-way model. We define PA,w : CA,w → B as follows:

PA,w(c) =


1 if c is accepting
0 if c is rejecting

∨{PA,w(d)|c A→ d} if c is not halting and qc /∈ U
∧{PA,w(d)|c A→ d} if c is not halting and qc ∈ U

We may now extend PA,w(c) to P ′A,w : CA,w → B+. This function helps up define functional

τ : (CA,w → B+)→ (CA,w → B+) the following way:

τ(P )(c) =


1 if c is accepting
0 if c is rejecting

∨{P (d)|c A→ d} if c is not halting and qc /∈ U
∧{P (d)|c A→ d} if c is not halting and qc ∈ U and c

for all P ∈ (CA,w → B+). By ⊥∗, the bottom element of (CA,w → B+), where all configu-
rations are valued undefined, and this functional, we create a non-decreasing sequence of
functions in (CA,w → B+).

PA,w,0 = ⊥∗
PA,w,i = τ(PA,w,i−1)

The set (CA,w → B+) is finite (due to CA,w and B+ being finite), therefore this non-
decreasing sequence (in the sence of more or equally defined) has a least fixed point. We
denote this least fixed point PA,w,τ , and by definition τ(PA,w,τ ) = PA,w,τ , which means
that this function contains the minimum amount of information that can be derived from
the rules of PA,w. Therefore we say that A accepts w when PA,w,τ (c0) = 1, where c0 is the
starting configuration.

1.3.5 Two-way boolean finite automaton

Definition 1.10. A two-way boolean finite automaton (2BFA) is a five-tuple,

B = (Q,Σ, q1, F, g) ,

where Q,Σ, q1, F are as in the one-way model and g : (Q× (Σ ∪ {`,a}))→ (B3k → B) is
a function.

Function g, as in 1BFAs, assigns a boolean function g(·, ·) : B3k → B, to every com-
bination of state and symbol (Q × Σ). As mentioned earlier, every node on the grid of
configurations, is a configuration, having a state and a symbol that is being read. Those
two define, through g, a boolean function. So we can assign on every element of the grid a
boolean function over B3k. Similarly to the above, we define PB,w : CB,w → B as follows:

PB,w(c) =


1 if g(qc, ac) is the constant function 1
0 if g(qc, ac) is the constant function 0
g(qc, ac)(PB,w(d1), PB,w(d2), . . . , PB,w(d3k))if g(qc, ac) is not a constant function
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We also define functional τ : (CB,w → B+)→ (CB,w → B+) as follows:

τ(P )(c) =


1 if g(qc, ac) is the constant function 1
0 if g(qc, ac) is the constant function 0
g(qc, ac)(P (d1), P (d2), . . . , P (d3k)) if g(qc, ac) is not a constant function

for all P ∈ (CB,w → B+), where g(q, a) is a boolean function dependent on function g
(given in the definition of B), with domain (B+)3k. The first k configurations, d1,d2,. . . ,dk,
are the configurations yielded by c when the head moves to the left. The next k con-
figurations dk+1, dk+2 . . . d2k are the configurations yielded by c when the head remains
stationary. Finally, d2k+1, d2k+2 . . . d3k are the last k configurations yielded by c with head
position to the right of the cell of c. All of these are the configurations that c may yield
in one step. If q ∈ F then g(q,a) = 1 the constant function of B3 → B, but there might
be other constant functions g(q, a) as well. Similarly to 1AFAs, we define the following
sequence:

PB,w,0 = ⊥∗
PB,w,i = τ(PB,w,i−1)

We denote this least fixed point PB,w,τ , and by definition τ(PB,w,τ ) = PB,w,τ , which means
that this function contains the minimum amount of information that can be derived from
the rules of PB,w. Acceptance is defined the same way it was defined for the 2AFA: B
accepts w when PB,w,τ (c0) = 1 where c0 is the starting configuration.

1.3.6 Computability equivalence

Theorem 2 (computability equivalence [10]). All the two-way finite automata defined in
this chapter are equivalent and they are equivalent with the one-way finite automata as
well.

Proof. It is clear from Lemma 1 and Lemma 2 below that for every 2BFA there is an
equivalent 1DFA. All other two-way models are restrictions of the 2BFA, therefore all
two-way models are equivalent to each other and equivalent to 1DFAs.

We will introduce a restriction of the 2AFA model, named deterministic-movement
2AFA. This model with serve as an intermediate model, for prooving the equivalence of
2BFAs and 1DFAs.

Definition 1.11. A deterministic-movement two-way alternating finite automaton (DM-
2AFA) is a six-tuple,

A = (Q,Σ, q1, F, U, δ) ,

where Q,Σ, q1, F, U, δ are as in the 2AFA model. Beyond the standard restrictions of δ over
the two end-markers, whenever the head moves to the left or right, the machine can only
make a deterministic transition to another state. Formally, δ is allowed to have only 3 types
of moves: δ(q, a) = {(p, L)}, δ(q, a) = {(p,R)} and δ(q, a) = {(p1, S), (p2, S), . . . , (pm, S)}.
Hence every step is repsectively deterministic with head movement to the left or determin-
istic with head movement to the right, or existential or universal with no head movement.
Finally, the DM-2AFA ends all its computations moving right after the right end-marker,
meaning, the machine cannot halt while the head is not positioned over the right end-
marker.
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Lemma 1 (2BFA to DM-2AFA). For every k-state 2BFA there is a 2(3k + 26k)-state
DM-2AFA that recognises the same language.

Proof. Let M = (Q,Σ, q1, F, g) be a 2BFA. We will construct a DM-2AFA A = (QA,Σ, q1,
FA, UA, δ) such that they accept the same language. We will need to substitute the boolean
functions g(q, a) : B3k → B, with existential and universal moves. Every g(q, a) : B3k → B
can be written in conjunctive normal form. This is essential to the construction of the
DM-2AFA. The description of A is as follows:

• Defining QA: We define the set Q− = {q−|q ∈ Q}, which consists of one negative
state for each original state in Q = Q+.

We also define Q+
L = {qL|q ∈ Q} and Q+

R = {qR|q ∈ Q}, that are just sets similar to
Q+, only tagged with an L or an R, for left and right. Similarly, we define Q−L and
Q−R.

Let Q+
lit = Q+ ∪Q+

L ∪Q+
R and Q−lit = Q− ∪Q−L ∪Q−R, and Qlit = Q+ ∪Q− ∪Q+

L ∪
Q+
R ∪Q−L ∪Q−R. It is immediate that |Qlit| = 6k.

In a similar fashion, we call Q+
c the set of all clauses that can be made using the

elements of Qlit as variables. We can easily describe Q+
c as the powerset of Qlit,

Q+
c = P(Qlit). That way, every subset of Qlit denotes the clause of the elements of

that subset. We also define Q−c = {q−|q ∈ Q+
c }.

We name the set Q+
A = Q+ ∪Q+

c ∪Q+
L ∪Q+

R, the set of positive states.

Finally, we define the set Q−A = {q−|q ∈ Q+
A}, the mirror set of Q+

A, which is identical
but with a tag of the minus symbol on each element, the set of negative states. So
obviously Q−A = Q− ∪Q−c ∪Q−L ∪Q−R.

All preparation is over. We finally define QA = Q+
A ∪Q−A. If |Q+| = k then we can

see that |QA| = 2(3k + 26k).

• FA is the set of accepting states. Let F+ = F and F− = {q−|q ∈ F+}. Then
FA = F ∪ (Q− \ F−).

• Defining UA: UA = Q+∪Q−c . On a side note, the set of existential states is Q+
c ∪Q−.

The remaining states Q+
L , Q

+
R, Q

−
L , Q

−
R are states that move deterministically, so we

may add them to any of the two sets.

• δ : (QA× (Σ∪{`,a}))→ P(QA×{L,R, S}) is the transition function which will be
described in detail below.

According to our restrictions, a state q ∈ QA can be either universal, existential, or de-
terministic. So, it is immediate that δ(q, a) = {(qi, S), (qj , S), . . . , (qm, S)} in case q is
existential or universal, and δ(q, a) = {(qi, L)} or δ(q, a) = {(qi, R)} in case q is determin-
istic.

Here is how δ works:

• Q+
L , Q

+
R, Q

−
L , Q

−
R: The function is defined over these sets as follows.

δ(qL, a) = {(q, L)} , δ(qR, a) = {(q,R)} , δ(q−L , a) = {(q−, L)} , δ(q−R , a) = {(q−, R)}

for all q ∈ Q+, and these are the only deterministic moves.
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• Q+
c and Q−c : Each state in one of these sets represents a clause of a number of

variables among Q+, Q+
L , Q

+
R. As described earlier Q+

c = P(Qlit), so that means
qc ∈ Q+

c is in fact qc ∈ P(Qlit).

So for qc ∈ Q+
c , δ(qc, a) = {(q, S)|q ∈ qc}.

And for q−c ∈ Q−c , δ(q−c , a) = {(q∗, S)|q ∈ qc}, where q∗ =


q− if q ∈ Q+

lit

p if q ∈ Q−lit
and q = p−.

• Q+ and Q−: We know that g(q, a) is a boolean function in (B3k → B). Every
such function can be written in conjunctive normal form (CNF). CNF consists of a
number of clauses under conjunction. Let Cg(q,a) ⊆ Q+

c be the set of clauses of the
CNF form of g(q, a). We have two sets that represent all clauses, Q+

c and Q−c .

In case q ∈ Q then δ(q, a) = {(p, S)|p ∈ Cg(q,a)}.
In case q− ∈ Q− then δ(q−, a) = {(p−, S)|p ∈ Cg(q,a)}.

This completes the description of δ. Machine A makes the same computation as machine
M , but has many more states to eliminate existential and universal moves while the head
moves left or right, and to replace boolean functions with CNFs. The elements of the sets
Q+
L and Q+

R work as representatives of the states of the initial machine: Q+
L solves the

problem of non-deterministic, or universal, movement to the left, and Q+
R the problem of

non-deterministic, or universal, movement to the right. So, for example, if at any point the
machine has to move left to state p, it just moves to pL first, without moving its head, and
then pL moves the head deterministicaly to the left, while moving to state p. The other
two methods used, the set of clauses and the duplication of the states (under the “minus”
tag), are just tools for replacing the boolean functions in the computational process. What
was done in one step in M , now takes three steps in A: For the boolean function g(q, a),
we construct the equivalent CNF. So q becomes a universal state, connecting under its
universal branching the states for the appropriate clauses. Then the clause-states find their
literals. If a literal has negation, then the rest of the computation moves to the mirror
states, which have symmetrical transitions. All transitions stay within the mirror states,
until a negative literal is found again. That is why the accepting and rejecting states have
been reversed on the mirror machine. (Another way to interpret the duplication of the
states is to consider it as method for counting modulo 2, the number of negations along
each path.)

Lemma 2 (DM-2AFA to 1DFA). For every k-state DM-2AFA there is a 2k2
k
-state 1DFA

that recognises the same language.

Proof. We will construct a 1DFA that recognises the same language as a given DM-2AFA.
The DM-2AFA we will be using has one important characteristic: it starts its computation
from the starting state at the far right of the input, a. This model is equivalent to the
original DM-2AFA, by the addition of a new starting state that moves the head to the
other end of the input, berofe finally transitioning to the original starting state. Also, the
input of the 1DFA is exactly the same as the input of the restricted 2AFA, including `
and a at the start and end of the input, respectively.

Given a DM-2AFAM = (Q,Σ, qs, F, U, δ), we construct a 1DFAD = (QD,Σ, s0, FD, δD).
We also define Q̄ = {q̄|q ∈ Q}.

• The set of states is QD = P(Q× P(Q̄)).
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• The starting state is s0 = δD(`).

• FD = {t ∈ QD|∃(q1, A) ∈ t : A = F} is the set of accepting states.

• δD : QD × (Σ ∪ {`,a}) → QD is the transition function which will be described in
detail below.

The set of states of an automaton is its memory. In case of D, the set of states consists
of sets of pairs (q, A), where q ∈ Q and A ⊆ Q̄. Let’s suppose that D is in state p ∈ QD
and the head is over the ai symbol of the input. Consider the grid of configurations in
Figure 1.11. If (q, A) ∈ p then there is a valid tree of computation of M , that corresponds

q3

q2

q1

qk

a2a1 a3⊢ a4 . . .

Figure 1.11: The first column is that of the roots and the second is that of the tagged
leaves.

to a valid tree of configurations of M with the following charecteristics: The root of tree
is the configuration of state q, while head is over symbol ai. The leaves of the tree are
the configurations with states those of set A, while the head reads symbol ai+1 Finally,
all nodes, but the leaves, are on first i + 1 columns (since the machine has read only the
first i symbols and has considered ` as a first symbol without reading it). Keep in mind,
it doesnt matter what ai+1 is, at this point. Also p does not know what the actual tree
of configurations is, but knows the fact that a valid tree, with the above characteristics,
exists. So every pair in p represents a valid tree of configuration, with root configuration
in the first marked column, and leaves on the second marked column, in Figure 1.11. Let’s
name every pair a limb and p ∈ QD, a set of limbs.

So δD(p, ai+1) = p′, where p′ is the set of limbs of D, while its head is over symbol
ai+1. The question that arises is the following: Knowing the limbs of D, while its head is
over symbol ai (this is p), and knowing the next symbol, ai+1, can we deduce the limbs of
D, while its head is over symbol ai+1 (this is p′). We will show how to calculate δD(q, a).

For this we will need to define the set Q∗D = P(Q × P(Q̄ ∪ Q)), a superset of QD.
Every element in z ∈ Q∗D, is a set of pairs just like the elements of QD. The difference
is that for (q, A) ∈ z, A has tagged and untagged elements. So (q, A) ∈ z means that
there is a tree of configurations just as above, with the difference that the leaves of the
tree may be the states of configurations over symbol ai as well. The states of these
configurations are the untagged elements of A. We need the untaggeed elements to produce
δD(p, a). Let’s define the process that determines δD(p, a). We will define six functionals:
Bp,i : P(Q× P(Q ∪ Q̄))→ P(Q× P(Q ∪ Q̄)), for 1 ≤ i ≤ 6. For X ∈ P(Q× P(Q ∪ Q̄)):
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• Bp,1(X) = {(q, {q})|q ∈ Q}

• Bp,2(X) = {(q, C)|(q,A) ∈ X,A ⊆ C} ∪ {(q,B ∪ C)|(q,B ∪ {p}), (p, C) ∈ X}.

• Bp,3(X) = {(q, {q1, q2, . . . , qm})|q is universal and δ(q, a) = {(q1, S), (q2, S),
. . . , (qm, S)}}.

• Bp,4(X) = {(q, {q′})|q is existential and (q′, S) ∈ δ(q, a)}.

• Bp,5(X) = {(q, {q̄′})|δ(q, a) = {(q′, R)}}.

• Bp,6(X) = {(q, A)|δ(q, a) = {(q′, L)}, (q′, Ā) ∈ p,A ⊆ Q}.

The basic intuition behind this construction is this: With functionals Bp,1, Bp,3, Bp,4 we
add to set X all the limbs of trivial configuration trees of machine M , that can be created
while the head of the machine remains stationary over the symbol a. In more detail: Bp,1
adds the trivial limbs of trees that consist of one node, Bp,3 adds the limbs of trees that
consist of only a root and the leaves, for every universal state and its transitions on a, and
Bp,4 adds the limbs of trees that consist of only a root and a leave for every existential
state and each of its transitions on a. Functional Bp,6 adds to set X all the limbs of trees
of configurations of M that can be created if we combine the roots of the limbs of p with
the nodes-configurations of M while the head is over symbol a. Functional Bp,2 adds to X
all the limbs of trees that can be created by the combination of the already created trees
of Bp,1, Bp,3, Bp,4, Bp,6 and Bp,2 it self, by replacing the leaves of limbs with roots of other
limbs. It also adds new limbs with expanded set of leaves. Finally, functional Bp,5 is the
one responsible for adding to X the limbs with tagged elements. For every tree in X it
adds a tree with leaves configuration over the next symbol of a, if there is the equivalent
transition on δ.

Now we can define Bp(X) : P(Q× P(Q ∪ Q̄))→ P(Q× P(Q ∪ Q̄)) such that:

Bp(X) = Bp,1(X) ∪Bp,2(X) ∪Bp,3(X) ∪Bp,4(X) ∪Bp,5(X) ∪Bp,6(X) ∪X

There is a sequence created by this function over sets: ∅, Bt(∅), Bp(Bp(∅)), . . . It is obvious
that for every X ∈ P (Q × P(Q ∪ Q̄)), we have X ⊆ Bp(X). It is also clear that P (Q ×
P(Q ∪ Q̄)) is a finite set. Therefore, the ascending sequence created by this function has
a least fixed point Xfx, such that Xfx = Bp(Xfx). So, now we can define

δD(p, a) = {(q, A) ∈ Xfx|A ⊆ Q̄}.

In other words, we keep only the elements of the fixpoint that have the tagged leaves.
There are two special cases: δD(`) = δD(∅,`) is the starting case. This is because we
suppose the machine starts with the head over the first symbol of the output, to the right
of `. So the first state is all the possble trees of computation the machine can have when
it was read only `. This includes trivial trees of one state. δD(q,a) is the same as any
symbol, with the difference that this time (q, A) ∈ δD(q,a) means that the set A is the set
of leaves that go right after `, where the computation halts. As we seen above, if q = qs
and A = F then the tree of configurations has root the starting configuration and leaves
the accepting configuration. In that case the machine accepts the input. This concludes
the description of δD.

Hence, D accepts a string w if δD(s0,` w a), namely if there is a computation tree
of M , with root the starting state q1, on a and leaves the accepting states on a. This is
exactly the definition of acceptance for M .
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Chapter 2

Complexity

2.1 Problems

This chapter presents the computational complexity classes related to the computational
models of the previous chapter. But what does complexity mean for a finite automaton?
In a Turing machine, computational complexity measures the resources that the machine
uses in solving a problem, mainly the time, meaning the number of steps the machine
makes before halting, and space, namely the number of cells the machine uses on its tape.
In a finite automaton the main resource of study is its size, namely its number of states.
But in order to relate the number of states of an automaton to a problem, we need to
redefine problems.

Definition 2.1. A problem is an infinite sequence of languages (Lh)h≥1 = (L1, L2, L3, . . . ).

Example 5. In the problem RETROCOUNT = (RETROCOUNTh)h≥1, we are given a
binary string of arbitrary length and we are asked to check that the h-th rightmost digit
is 1. Formally, for every h ≥ 1 the input alphabet is Σ = {0, 1} and

RETROCOUNTh = {w ∈ Σ∗| the h-th symbol from the end of w is the symbol 1}.

Example 6. In the problem INCLUSION = (INCLUSIONh)h≥1, we are given two subsets
of {1, 2, . . . , h} and we are asked to check that the first one is included in the second.
Formally, for every h ≥ 1 the input alphabet is Σh = P({1, 2, . . . , h}) and

INCLUSIONh = {w ∈ Σ∗h|w = ab where a, b ∈ Σh and a ⊆ b}.

Example 7. In the problem LENGTH = (LENGTHh)h≥1, we are given a unary string
and we are asked to check that its length is h. Formally, for every h ≥ 1 the input alphabet
is Σ = {0} and

LENGTHh = {0h}.

Example 8. In the problem LONGLENGTH = (LONGLENGTHh)h≥1, we are given a
unary string and we are asked to check that its length is 2h. Formally, for every h ≥ 1 the
input alphabet is Σ = {0} and

LONGLENGTHh = {02h}.

27
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2.2 One-way machines

Definition 2.2. We call 1D the class of problems that can be solved by sequences of
1DFAs with polynomialy many states. In other words,

1D = {(Lh)h≥1|∃ polynomial p and sequence of 1DFAs (Mh)h≥1

such that L(Mh) = Lh and |QMh
| ≤ p(h), for all h}.

In a similar fashion, we define 1N and 1A as the classes of problems that can be solved by
sequences of 1NFAs and 1AFAs, respectively, of polynomial size.

Definition 2.3. We call 21D the class of problems that can be solved by sequences of
1DFAs with exponentially many states. In other words,

21D = {(Lh)h≥1|∃ polynomial p and sequence of 1DFAs (Mh)h≥1

such that L(Mh) = Lh and |QMh
| ≤ 2p(h), for all h}.

Proposition 1. LENGTH ∈1D.

Proof. A 1DFA can count a word of length h with h + 1 states. Specifically, Dh =
({q0, q1, . . . , qh}, {0}, q0, {qh}, δ), and δ(qi, 0) = qi+1 for all i = 0, 1, . . . , h−1. This machine
counts the h first 0s in the input word, then it halts. If the input has length more or less
than h then the machine does not accept. Hence, Dh solves LENGTHh with h+ 1 states,
for all h.

Proposition 2. LONGLENGTH ∈ 21D.

Proof. A 1DFA can count a word of length 2h with 2h+ 1 states. Similarly to Proposition
1, Dh = ({q0, q1, . . . , q2h}, {0}, q0, {q2h}, δ), and δ(qi, 0) = qi+1 for all i = 0, 1, . . . , 2h − 1.
This machine counts the 2h first 0s in the input word, then it halts. If the input has length
more or less than 2h then the machine does not accept. Hence, Dh solves LONGLENGTHh

with 2h + 1 states, for all h.

Proposition 3. RETROCOUNT /∈1D.

Proof. By contradiction. This problem RETROCOUNTh cannot be solved by a 1DFA
with poly(h) many states. Intuitively, in order to know what the h-th rightmost symbol
is, the machine needs to remember each one of the last h digits at all times. In order to
remember those digits, it needs 2h states. Formally, we use the pigeonhole principle: If
the machine has fewer than 2h states, then there are two different strings u1, u2, of length
h, that work as the part of the input that has already been read, and they both lead to
the same state q. These two string are different on at least one position. The rightmost
position they differ is of interest to us. We call it the i-th position. We append to u1, u2
an arbitrary string u of lenth h − i, creating strings w1 = u1u and w2 = u2u. When
the machine reads the two new strings, the h-th rightmost symbols are the i-th rightmost
symbols of u1, u2 concatenated with u. The h− 1 rightmost symbols are the same in both
strings w1, w2 and reading the h-th rightmost symbol the machine moves to the same state
q for both strings. So, on both strings the 1DFA has the same computation after the h-th
rightmost symbol, and finishes in the same state. But this state is either accepting or not.
Either way, one of the strings has to be accepted and the other has to be rejected, so the
same state is acceping and rejecting at the same time. That is clearly false.
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Proposition 4. RETROCOUNT ∈1N.

Proof. In Example 2, we constructed a 1NFA that recognises RETROCOUNT4. If we
generalize that construction, we can see that every RETROCOUNTh can be recognised
by a (h+ 1)-state 1NFA.

Proposition 5. INCLUSION /∈1N.

Proof. By contradiction. Suppose there is a 1NFA N that recognises INCLUSIONh with
poly(h) states. Let a1, a2, . . . , a2h be a list of all symbols in P({1, 2, . . . , h}). Then N
accepts all inputs of the form aiai. So every such input has an accepting path of length 2,
of the form q0 → qi → qf , where q0 the starting state and qf an accepting state. When the
machine moves to state qi it has already read the first symbol, and the head is over the
second symbol of the input. We do know that there are 2h symbols ai, but only poly(h)
states qi. By the pigeonhole principle, this means, that for large enough h there are two
first symbols ai and aj , where ai 6= aj , that produce the same middle state qi = qc = qj .
This means that qc ∈ δ(q0, ai) and qc ∈ δ(q0, aj) and also δ(qc, ai)∩ F 6= ∅ 6= δ(qc, aj)∩ F .
From these two facts it is obvious that aiaj , ajai ∈ INCLUSIONh, but this is not possible
since the two sets are not equal.

Proposition 6. INCLUSION ∈1A.

Proof. In Example 3, we constructed a 1AFA that recognises INCLUSION4. If we gen-
eralize that construction, we can see that every INCLUSIONh can be recognised by a
(h+ 3)-state 1AFA.

We have shown the computability equivalence of the one-way models, but not the
detailed 1NFA-1DFA equivalence. The subset construction is a typical way to construct
a 1DFA that recognises the same language as a given 1NFA.

Theorem 3. For every k-state 1NFA there is an equivalent 2k-state 1DFA.

Proof. Let N = (Q,Σ, q1, F, δ) be a 1NFA. There is a 1DFA D = (QD,Σ, {q1}, FD, δD)
such that L(D) = L(N), where

• QD is the powerset of Q.

• FD consists of all X ∈ P(Q) such that F ∩X 6= ∅.

• δD is the transition function, such that δD(S, a) = δ(S, a) according to the extension
of δ, as defined in Subsection 1.2.1.

It can easily be proven by induction (on the length of w) that, for all w ∈ Σ∗: δ(q1, w) =
δD({q1}, w). This means that δ(q1, w)∩F 6= ∅ ⇐⇒ δD({q1}, w) ∈ FD, so w ∈ L(N) ⇐⇒
w ∈ L(D).

We need to note that the set of states QD is the powerset of Q and thus D has
exponentially more states. Many of these states might not be reachable, so they may be
ignored, but this is the general way to construct an equivalent 1DFA. The above proof is
about the computablity equivalence of the two models, but also provides an algorithm to
create a 1DFA that is equivalent to the given 1NFA.

Corollary 2. 1N⊆ 21D
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The natural question that follows is: What is the relation between 1N and 1D?

Theorem 4. 1D(1N

Proof. We need to show two things. First that 1D⊆1N and second that 1N\1D6= ∅.
1D⊆1N: It is immediate from the definition of the 1NFA and the 1DFA that the former is
a generalization of the later. A family of 1DFAs with polynomialy many states is in fact
a family of 1NFAs with polynomialy many states. So 1D⊆1N.

RETROCOUNT /∈1D. This has been proven in Proposition 3. This means that there
can be no 1DFA with polynomialy many states (with respect to h) that recognises the
mentioned problem

RETROCOUNT ∈1N. As we have seen in Proposition 4, this problem is in 1N.

As a result the exponential blow up of the subset construction is an inescapable barrier.
And so, there is a computational gap between 1D and 1N.

2.3 Two-way machines

Classes analogous to the ones defined above for one-way machines can be defined for
two-way machines, as well.

Definition 2.4. We call 2D the class of problems that can be solved by sequences of
2DFAs with polynomially many states. In other words,

2D = {(Lh)h≥1|∃ polynomial p and sequence of 2DFAs (Mh)h≥1

such that L(Mh) = Lh and |QMh
| ≤ p(h), for all h }.

In a similar fashion, we call 2N and 2A the classes of problems that can be solved by
polynomial-size sequences of 2NFAs and 2AFAs, respectively.

Proposition 7. INCLUSION ∈2D.

Proof. We have proven in Example 4 that INCLUSION4 can be solved by a 2DFA. That
construction can be generalized to prove that INCLUSIONh can be recognised by a (2h+3)-
state 2DFA, for every h ≥ 1. The description is as follows: D = (Q,P({1, 2, . . . , h}), q1
, {qf}, δ), where Q = {qh+1, qh+2, qf} ∪

⋃
1≤i≤h{qi, q′i} and δ is defined as follows:

For 1 ≤ i ≤ h, δ(qi, a) =

{
(q′i, R) if i ∈ a
(qi+1, S) if i /∈ a

For 1 ≤ i ≤ h, δ(q′i, a) =

{
(qi+1, L) if i ∈ a
undefined if i /∈ a

δ(qh+1, a) = (qh+2, R)

δ(qh+2, a) = (qf , R)

δ(qf ,a) = (qf , R)

The are no transitions other than the ones described.

Proposition 8. LONGLENGTH /∈2N.

Proof. By contradiction. Suppose there is a poly(h)-state 2NFA N that recognises

LONGLENGTHh. This means that the machine accepts only the word 02
h
. So, on input

02
h
, there is at least one configuration path from the starting configuration to an accepting

configuration. For the following proof we take one of these paths into consideration. We
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may suppose that there are no cycles in this path (meaning that no configuration appears
more than once) since, in case there are cycle, we may remove them and the remaining
path will still be accepting.

There are three possible symbols the head may be reading: `, 0 and a. Suppose N has
k = poly(h) states. Let’s also suppose N starts its computation from the right end-marker.
In the mentioned computation path, the machine may visit the left end-marker at most
k times. (If it visits it more than k times, then the computation path visits the same
configuration more than once. We already eliminated this possibility.) This means that
the machine traverses the whole input at most k+1 times (moving from one end-marker to
the other). Each time, the machine traverses the 2h 0s, while having only poly(h) states.
By the pigeonhope principle, and for large enough h, there has to be a state that appears
more than once in the same traversal. In that case the machine, while moving either
towards the left or the right, is at state q and is reading symbol 0, more than once. The
interval of 0s between the two earliest such occurrences, is now called a segment. Suppose
the length of the segment in the first traversal is l1. So, this 0l1 segment may be repeated
any number of times, and the machine will not notice the difference. For each traversal,
we have at least one segment. So, we have at most k + 1 segments, if we choose one from
each traversal. Suppose we have m ≤ k + 1 segments. Then we define the product of the
lengths of all those segments p = l1l2 · · · lm. Machine N accepts 02

h+p. This is because p
is li · pi for some pi, a multiple of each segments length, so it can be added to the word
and the machine will not notice in any of its traversals. So N accepts a word that is not
02

h
. We have reached a contradiction.

Unfortunately, the separating lines between the classes 2D and 2N are not as clear
as for the corresponding classes of one-way automata. We do not know whether 2D and
2N are equal or not. This is a difficult question to answer. Its structure resembles the
structure of the P versus NP question, so a similar approach is through complete problems.

2.4 Reductions

A reduction of a problem A to a problem B is a systematic way of transforming the
instances of A so that they can be solved as instances of B. In that case, problem A is
at most as hard as B, since a machine that solves B can solve A as well, with a small
transformation. The machine that transforms the instances of A into instances of B is
called a transducer. But in order for a transducer to show that a problem is at most
as hard as another, the transformation taking place has to be “easy”. The transducer
shouldnt be strong enough to solve A on its own. It has to be of limited size and/or head
movement. The first transducer that we will define is the one-way deterministic finite
transducer, or 1DFT. Like all transducers, 1DFTs are machines with two tapes, one for
reading the input and one for printing the output. The machine does not have the ability
to write on the first tape or read the second one.

2.4.1 One-way deterministic finite transducer

Definition 2.5. A one-way deterministic finite transducer (1DFT) is a five-tuple,

T = (Q,ΣA,ΣB, q1, qf , δ)

where

• Q is the set of states,



32 CHAPTER 2. COMPLEXITY

• ΣA is a finite input alphabet,

• ΣB is a finite output alphabet,

• q1 ∈ Q is the starting state,

• qf ∈ Q is the final state, and

• δ : (Q× ΣA)→ (Q× Σ∗B) is the transition function.

The second coordinate of δ(·, ·) dictates what will be printed on the second tape. The
two alphabets may have no relation to each other.

Definition 2.6. Let L = (Lh)h≥1 and L′ = (L′h)h≥1 be problems We write L ≤1D L′

and say that L reduces to L′ in one-way polynomial size, if there is a sequence of 1DFTs
(Th)h≥1 and two polynomials e and s such that every Th has ≤ s(h) states and maps
instances of Lh to instances of L′e(h) so that for all x:

x ∈ Lh ⇒ Th(x) ∈ L′e(h) and x ∈ Lch ⇒ Th(x) ∈ (L′e(h))
c.

A special case of a one-way polynomial size reduction called homomorphic reduction,
occurs when the 1DFTs have only one state, namely when s(h) = 1, for all h.

Two major properties essential to reductions are transitivity and closure.

Transitivity is a property that seems natural when we think of what a reduction means
in an abstract way. If L is at most as hard as L′, and L′ is at most as hard as L′′, then
surely L should be at most as hard as L′′.

Theorem 5. L ≤1D L′ and L′ ≤1D L′′ ⇒ L ≤1D L′′, for any three problems L, L′, L′′.

Proof. For a fixed h ≥ 1, by L ≤1D L′, there is a 1DFT T with s(h) states, that transforms
the instances of Lh to instdances of L′e(h) for some polynomials s, e. Similarly L′ ≤1D L′′

implies that there is a 1DFT T ′ with s′(e(h)) states, that transforms the instances of L′e(h)
to instances of L′′e′(e(h)).

Let T = (Q,ΣA,ΣB, q1, qf , δ) and T ′ = (Q′,ΣB,ΣC , q
′
1, q
′
f , δ
′). We define a 1DFT

Tc = (Q × Q′,ΣA,ΣC , (q1, q
′
1), (qf , q

′
f ), δc), which simulates both T and T ′. We define δc

depending on δ and δ′:

δc((q, q
′), a) = ((p, p′), w′), where δ(q, a) = (p, w) and δ′(q′, w) = (p′, w′).

This machine transforms an instance of L in to an instance of L′′. We can verify
this by monitoring the movement of the second coordinate state. The second coordinate
state moves the way T ′ moves, producing the same output, only slower, since for every
movement it makes in the second coordinate, it has already made several steps in the
first coordinate which simulates the process of T . So the basic idea is that we have two
different coordinates to simulate the two different 1DFTs we are combining. The resulting
machine Tc has s(h) · s′(e(h)) states, and the output is an instance of L′′e′(e(h)).

Closure is a similar to transitivity, in abstract way. If a problem is at most as hard as
another problem in a complexity class, then the first problem should be in that complexity
class as well.

Theorem 6. L ≤1D L′ and L′ ∈ 1D⇒ L ∈ 1D, for any two problems L, L′.
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Proof. For a fixed h ≥ 1, L ≤1D L′ means that there is a 1DFT T with s(h) states, that
transforms the instances of Lh to instdances of L′e(h), for e, s polynomials. L′ ∈1D means

that there is a 1DFA M and s′ a polynomial, such that the number of states of M is
bounded by s’(h). The proof is the same in technical terms as the one for transitivity. We
create a 1DFA Mc = (Q×Q′,ΣA, (q1, q

′
1), Fc, δc), combining T = (Q,ΣA,ΣB, q1, qf , δ) and

M = (Q′,ΣB, q
′
1, F, δ

′) the same way we combined T and T ′ previously. The only thing
to be defined is the set of accepting states and δc:

Fc = {(qf , p)|p ∈ F}

and

δc((q, q
′), a) = (p, p′), where δ(q, a) = (p, w) and δ′(q′, w) = p′.

Example 9. In the problem COMPOSITION = (COMPOSITIONh)h≥1 we are given
two partial functions f, g : {1, 2, . . . , h} ⇀ {1, 2, . . . , h} and we are asked to check that
f(g(1)) = 1. Formally, for every h ≥ 1 the input alphabet is Σh = ({1, 2, . . . , h} ⇀
{1, 2, . . . , h}) and

COMPOSITIONh = {fg|f, g ∈ Σh and f(g(1)) = 1 }.

Proposition 9. COMPOSITION ≤1D RETROCOUNT.

Proof. The 1DFT reads the first symbol f , and prints the symbols h(f(1)), h(f(2)), . . . ,
h(f(h)) where

h(x) =

{
1 if x = 1
0 if x 6= 1.

Then it moves to the right and reads the second symbol g and prints g(1) − 1 times the
symbol 0.

This transormation creates positive instances of RETROCOUNTh out of positive in-
stances of COMPOSITIONh and negative instances of RETROCOUNTh out of negative
instances of COMPOSITIONh: The question we need to ask is which is the h-th rightmost
symbol. The output sequence by the machine is h(f(1)), h(f(2)), . . . , h(f(h)), 0, 0,
. . . , 0. The number of 0s is g(1) − 1. So the total length of the sequence is h + g(1) − 1.
If we want to find the h-th rightmost symbol we have to substract h − 1. Therefore the
symbol we are looking for is the g(1)-th from left. That is h(f(g(1))). So f(g(1)) = 1 iff
the h-th rightmost symbol is 1. This transducer produces a one-way polynomial reduction:
The transducer needs only to print a sequence for a symbol and then a sequence of 0s for
the second symbol of the input. So only two states are needed.

Example 10. In the problem ROLLCALL = (ROLLCALLh)h≥1 we are given a list of
numbers from {1, 2, . . . , h} and we are asked to check that every number from that set
appears at least once. Formally, for every h ≥ 1 the input alphabet is Σh = {1, 2, . . . , h},
and

ROLLCALLh = {w ∈ Σ∗h| every number in {1, 2, . . . , h} appears at least once in w}.

Proposition 10. INCLUSION ≤1D ROLLCALL.
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Proof. There is a transducer that transforms the instances of INCLUSIONh to instances
of ROLLCALLh, with the following process. The transducer reads the first symbol a of
the input and then prints all the elements of the set ac = {1, 2, . . . , h} \ a, in ascend-
ing order. Then, the transducer moves the reading head to the right, reads the second
symbol b and prints all the elements of b, in ascending order again.This transormation
creates accepting instances of ROLLCALLh out of accepting instances of INCLUSIONh

and negative instances of ROLLCALLh out of negative instances of INCLUSIONh: Since
a, b ∈ {1, 2, . . . , h}, then a ⊆ b iff ac ∪ b = {1, 2, . . . , h}. The elements printed on the
output tape are those of ac and b. If a * b, then there is a x such that x /∈ b and x ∈ a.
So, x /∈ b and x /∈ ac. This means that x was not printed in any of the two strings.
This transduced produces a one-way polynomial reduction: This tranducer reads the first
symbol and prints a string, then moves to the second state, reads the second symbol and
prints another string. This means the transducer needs only two states.

2.4.2 One-way nondeterministic finite transducer

There are several other types of transducers that define other types of reductions.

Definition 2.7. A one-way nondeterministic finite transducer (1NFT) is a six-tuple,

T = (Q,ΣA,ΣB, q1, qf , δ)

where Q,ΣA,ΣB, q1, qf are the same as for 1DFTs and δ : (Q× ΣA)→ P(Q× Σ∗B) is the
transition function.

We say that T transforms an instance x ∈ Σ∗A into a string T (x) ∈ Σ∗B, if all compu-
tations that end at the accepting state output the same string T (x). Otherwise T is not
defined on x.

Definition 2.8. Let L = (Lh)h≥1 and L′ = (L′h)h≥1 be problems We write L ≤1N L
′ and

say that L reduces to L′ in nondeterministic one-way polynomial size, if there is a sequence
of 1NFTs (Th)h≥1 and two polynomials e and s such that every Th has s(h) states and
maps instances of Lh to instances of L′e(h) so that for all x:

x ∈ Lh ⇒ Th(x) ∈ L′e(h) and x ∈ Lch ⇒ Th(x) ∈ (L′e(h))
c or Th(x) is undefined.

Lemma 3. L ≤1N L
′ and L′ ≤1N L

′′ ⇒ L ≤1N L
′′, for any three problems L, L′, L′′.

Proof. Nondeterministic one-way polynomial-size reductions are transitive and the proof
of transitivity uses the same construction as the corresponding proof for ≤1D.

Let T , T ′ and Tc be the same as in the case of transitivity for ≤1D. The transducer Tc
produces the same output for each input and for every possible path that ends in (qf , q

′
f ).

This is because, since its simulation of T has reached qf as the final state, then the
simulated output string is same for all possible paths of computation. So the input of the
simulated T ′ is the same for all paths, and the simulation of the second machine reaches
q′f , the accepting state, then the output of T ′ is the same for all accepting computation
paths. This proves that the output of Tc is the same for all accepting paths. So Tc as
defined in Theorem 5, satisfies the requirements to reduce L to L′′.

Lemma 4. L ≤1N L
′ and L′ ∈ 1N⇒ L ∈ 1N, for any two problems L, L′.
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Proof. 1N is closed under ≤1N, by the same construction as in the case for ≤1D. The proof
is similar to that of transitivity.

2.4.3 Two-way deterministic finite transducer

Definition 2.9. A two-way deterministic finite transducer (2DFT) is a six-tuple,

T = (Q,ΣA,ΣB, q1, qf , δ)

where Q,ΣA,ΣB, q1, qf are the same asfor 1DFTs and δ : (Q × (ΣA ∪ {`,a})) → (Q ×
Σ∗B × {L, S,R}) is the transition function.

Similarly to two-way finite automata we use ` and a to mark the start and end of
the input respectively, since the head of the input tape will be moving in both directions.
The head on the output tape works in the same way as all previous transducers worked,
meaning it can move only to the right. For an output to be considered valid, T has to
finish its computation in the accepting state. As in Chapter 1, we assume that δ cannot
move to the left of the left end-marker, or to the right of the right end-marker, unless it
is moving right to a final state.

Definition 2.10. Let L = (Lh)h≥1 and L′ = (L′h)h≥1 be problems. We write L ≤2D L′

and say that L reduces to L′ in two-way polynomial-size, if there is a sequence of 2DFTs
(Th)h≥1 and two polynomials e and s such that every Th has s(h) states and maps instances
of Lh to instances of L′e(h) so that for all x:

x ∈ Lh ⇒ Th(x) ∈ L′e(h) and x ∈ Lch ⇒ Th(x) ∈ (L′e(h))
c or Th(x) is undefined.

Two-way polynomial-size reductions may not be transitive. The reason is that when we
try to simulate the two machines by a new one, the intermediate tape needs to be accessible
in a two-way fashion, meaning any cell might be revisited. This creates a problem for the
simulating transducer, since it cannot remember the content of the intermediate tape,
since the alphabet ΣB may be exponentially larger than h. As a result, the machine
cannot remember the spot of the intermediate tape, since the intermediate string is of
arbitrary length. We will define a restriction of the above reduction, one that will have
the property of transitivity.

Definition 2.11. We call a sequence of 2DFTs T = (Th)h≥1 laconic if every Th performs
≤ p(h) printing steps on each input, where p is polynomial.

Definition 2.12. Let L = (Lh)h≥1 and L′ = (L′h)h≥1 be problems. We write L ≤lac
2D L′

and say that L reduces to L′ in two-way polynomial-size/print, if there is a laconic sequence
of 2DFTs (Th)h≥1 and two polynomials e and s such that every Th has s(h) states and
maps instances of Lh to instances of L′e(h) so that for all x:

x ∈ Lh ⇒ Th(x) ∈ L′e(h) and x /∈ Lh ⇒ Th(x) /∈ (L′e(h)).

Lemma 5. L ≤lac
2D L′ and L′ ≤lac

2D L′′ ⇒ L ≤lac
2D L′′, for any three problems L, L′, L′′.

Proof. For a fixed h ≥ 1, by L ≤lac
2D L′, there is a laconic 2DFT T with s(h) states, that

transforms the instances of Lh to instdances of L′e(h) and has printing steps bounded by

p(h), for some polynomials s, e, p. Similarly L′ ≤lac
2D L′′ implies that there is a laconic 2DFT
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T ′ with s′(e(h)) states, that transforms the instances of L′e(h) to instances of L′′e′(e(h)) and

has printing steps bounded by p′(h), for some polynomials s′, e′, p′.
The proof is similar to the initial proof of transitivity, with the addition of two counters

of size p(h). The counters keeps in the “memory” of the machine the position of the output
head of the first 2DFT and the position of the reading head of the second 2DFT that is
being simulated. Every time the second machine is moving its “hypothetical” head to the
left, the composing new machine changes the counter, and simulates the first machine from
the start. At some point the simulation of the first machine “prints” the cell the second
machine is expecting (when the two counters have the same value), and then the second
2DFT being simulated, reads the symbol it was waiting for, and continues its deterministic
computation. The number of states needed stays polynomial, since the counter needs only
be polynomially large.

Let T = (Q,ΣA,ΣB, q1, qf , δ) and T ′ = (Q′,ΣB,ΣC , q
′
1, q
′
f , δ
′). We define a 1DFT

Tc = ((Q ∪ {q0}) × Q′,ΣA,ΣC , (q1, q
′
1), (qf , q

′
f ), δc), which simulates both T and T ′. We

define δc depending on δ and δ′:

δc((q, q
′, l1, l2), a) = ((p, p′, l1, l2), w

′, X), where δ(q, a) = (p, w,X) and δ′(q′, w) = (p′, w′).

δc((q, q
′, l1, l2), a) =


((q0, q

′, 1, l2), εC , L) if q = q0 and a 6=`
((q1, q

′, 1, l2), εC , R) if q = q0 and a =`
((p, q′, l∗1, l2), εC , X) if l1 < l2 and q 6= q0
((p, p′, l∗1, l

∗
2), w′, X) if l1 = l2 and q 6= q0

((q0, q
′, 1, l2), εC , X) if l1 > l2 and q 6= q0

where δ(q, a) = (p, w,X) and δ′(q′, w) = (p′, w′, Y ), l∗1 = l1 + |w| and

l∗2 =


l2 − 1 if Y = L
l2 if Y = S
l2 + 1 if Y = R.

Thus the number of states needed is O(p(h)2s(h)s′(e(h))).

Lemma 6. L ≤lac
2D L′ and L′ ∈ 2N⇒ L ∈ 2N, for any two problems L, L′.

Proof. Closure can be proven the same way, using the fact that the printing steps of the
transducer is bounded by a polynomial. In the same way we can combine a 2DFT with
bounded printing steps, with a 2DFA (Same proof as above, cartesian product of states,
the second coordinate makes a move whenever the first simulated machine “prints” the
cell that was on demand etc).

We create a 2DFAMc = ((Q∪{q0})×Q′,ΣA, (q1, q
′
1), Fc, δc), combining T = (Q,ΣA,ΣB,

q1, qf , δ) and M = (Q′,ΣB, q
′
1, F, δ

′) the same way we combined T and T ′ previously. The
only thing to be defined is the set of accepting states and δc:

Fc = {(qf , p)|p ∈ F}

and

δc((q, q
′, l1, l2), a) =


((q0, q

′, 1, l2), L) if q = q0 and a 6=`
((q1, q

′, 1, l2), R) if q = q0 and a =`
((p, q′, l∗1, l2), X) if l1 < l2 and q 6= q0
((p, p′, l∗1, l

∗
2), X) if l1 = l2 and q 6= q0

((q0, q
′, 1, l2), X) if l1 > l2 and q 6= q0
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where δ(q, a) = (p, w,X) and δ′(q′, w) = (p′, Y ), l∗1 = l1 + |w| and

l∗2 =


l2 − 1 if Y = L
l2 if Y = S
l2 + 1 if Y = R.

This means that 2D is closed under ≤lac
2D.

2.5 Completeness

First we need to define a problem.

Example 11. In the problem One-Way Liveness, OWL = (OWLh)h≥1, the alphabet is
the set of all h-tall, two-column, directed graphs, with arrows from the left column to the
right column. A string w is seen as an h-tall, (|w|+1)-column, directed graph, with arrows
from the nodes of each column to the ones of its adjacent one to the right. We are asked
to check that there is a path from the leftmost column to the rightmost column. That
path is called live. When a graph has a live path, we say it is live. Formally, for every
h ≥ 1 the input alphabet is Σh = P({1, 2, . . . , h}2) and

OWLh = {w ∈ Σ∗h| w has a live path}.

Figure 2.1: A string w of Σ∗h.

Proposition 11. OWL ∈1N.

Proof. We will construct an (h + 1)-state 1NFA N that recognises OWLh. Let 1NFA
N = (Q,Σ, qs, F, δ), where

• Q = {qs, q1, q2, . . . , qh} is the set of states: Every state qi corresponds the i-th node
of every column.

• Σh is the alphabet defined above.

• F = Q: All states are final.

We now describe δ and the reason why it works.
For qs: δ(qs, a) = {qj | there is an arrow (i→ j) ∈ a}. These are the transitions of the

starting state. The intention here is that a is the first symbol of the input. If a node, on
the right column of a is reachable, then there is a transition to the state representing that
node. In a sense, this first transition ignores the first column. There just has to be an i
such that i→ j ∈ a.

For qi : δ(qi, a) = {qj | there is an arrow (i→ j) ∈ a}. These are the transitions of the
general case. At state qi, reading symbol a, if (i→ j) ∈ a then the machine may transition
to state qj .
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It is straightforward to see that an accepting computation represents a path from a
node in the first column to a node in the last column, which means that a node in the last
colum is reachable from a node in the first column.

The next problem is a generelization of OWL since each graph is also allowed to have
arrows from right to left and within the same column.

Example 12. In the problem Two-Way Liveness, TWL = (TWLh)h≥1, the alphabet is
the set of all h-tall, two-column, directed graphs. A string w is seen as an h-tall, (|w|+1)-
column, directed graph, with arrows between the nodes of the same column or of adjacent
ones. Again, we are asked to check that there is a path from the leftmost column to the
rightmost column. Formally, for every h ≥ 1 the input alphabet is Γh = P({1, 2, . . . , 2h}2)
and

TWLh = {w ∈ Γ∗h| w has a live path}.

Figure 2.2: A string w of Γ∗h.

Proposition 12. TWL ∈2N.

Proof. We will construct a (2h + 1)-state 2NFA N that recognises TWLh. We let 1NFA
N = (Q,Γh, qs, F, δ), where

• Q = {qs, q1, q2, . . . , qh, qh+1, qh+2, . . . , q2h} is the set of states: qs is the starting state,
used only in the first move, q1, q2, . . . , qh are the states that correspond to the left
column of each symbol a and qh+1, qh+2, . . . , q2h are the states that correspond to
the right column.

• F = {q1, q2, . . . , qh}: all the left-column states are final states.

We now describe δ and the reason why it works. For i, j ≤ h and a ∈ Γh:

For qs: δ(qs, a) = {(qh+j , S)| there is an arrow (i→ (h+ j)) ∈ a}. This is similar to
the one-way case. From the start state we simply move to the right-column states that
are reachable. We have the privilege to ignore the first column. We can completely ignore
any arrows of the form i→ j in the first symbol, those thansitions are of no use to us.

For qh+i: δ(qh+i, a) = {(qu, S)| there is an arrow ((h+ i)→ u) ∈ a}⋃{(qi, R)}, where
1 ≤ u ≤ 2h. Whenever the machine is in a right-column state it has two options. It can
either change state according to the arrows of the current input symbol without moving
the head, or move the head to the right and transition to the corresponding left-column
state.

For qi: δ(qi, a) = {(qu, S)| there is an arrow (i→ u) ∈ a}⋃{(qh+i, L)}, where 1 ≤ u ≤
2h. This is the symmetrical case of the above. The machine has two options at any time
its head is on a in state qi. Either it can follow an arrow from the current symbol a, or it
can move its head to the left.

δ(qh+i,`) = ∅. This is the case of the machine moving to the left column of the first
symbol, and then moving the head to the left to `. The path ends here, rejecting the
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computation, since there is no information we can further acquire. If there is a live path
going through the current configuration, then there is a live path from the starting state
as well.

δ(qi,a) = {(qi, R)}. This is an accepting situation. Following arrows, the machine has
reached the right column of the last symbol. There, it has the non-deterministic option to
move to the right. Moving to the right, it reads a, deducing that the previous symbol was
the last one and that there is a path reaching the last column Therefore it moves right
and halts in an accepting state.

The above are the only acceptable moves of the machine.

Again, it is straightforward that the machine moves nondeterministically following
every possible arrow. If there is a live path, then there is an accepting computation path
for N , and vice versa.

These problems are proven to be complete in 1N and 2N respectively. Here is the proof
of the second case. The first case can be deduced easily from the second one.

Lemma 7. Every problem in 2N can be reduced to TWL

Proof. The basic idea is that a 2h-tall, two-way, multi-column graph can simulate the
transitions of a given h-state 2NFA. Note that in the following proof we will be using
2NFAs that may only move their head either left or right at any step of the computation
(the head cannot remain stationary). This is equivalent to the standard 2NFA, since it
can be simulated by doubling the states, so for every state, every time the original 2NFAs
head has to remain stationary, the head moves to the left (or the right), the machine enters
the clone state and returns to the original state and tape cell. We will show how to encode
an input a1a2 · · · an of an h-state 2NFA N = (Q,Σ, q1, F, δ) where Q = {q1, q2, . . . , qh}
into an instance of TWL g(x) = g(`)g(a1)g(a2) · · · g(an)g(a), in such way that N accepts
the input iff there is a live path in the instance of TWL. We need to define g so that N
accepts x iff there is a path from the leftmost to the rightmost column in g(x). Obviously,
g : Σ ∪ {`,a} → Γ2h where Γ2h is the set of all 2h-tall, directed, two-column graphs.

The symols of Γ2h that g uses look like this:

The left nodes are named l1, l2, . . . , lh, L1, L2, . . . , Lh and the nodes on the right column
are named R1, R2, . . . , Rh, r1, r2, . . . , rh. In order to define g, we describe its behavior over
`, Σ, and a.

• g(`) = {l1 → R1}
⋃{ri → Rj | for every (qj , R) ∈ δ(qi,`)}.

The first set of the union is for the starting state. It states that the only node from
the leftmost column from which there can be a path is the one that corresponds to
the starting state. The second set of the union is for the case where the head moves
to ` and then moves back right to state qj . This is case (a) of Figure 2.3, where q1
is the starting state.

• g(a) = {li → Rj |for every (qj , R) ∈ δ(qi, a)}⋃{rj → Rj |for every (qj , R) ∈ δ(qi, a)}⋃{li → Lj |for every (qj , L) ∈ δ(qi, a)}⋃{ri → Lj |for every (qj , L) ∈ δ(qi, a)}.
Whenever (qj , R) ∈ δ(qi, a), we add two arrows that point to Rj : One from li,
in case the machine’s previous move was from left to right, and one from ri, in
case the machine’s previous move was from right to left. Symmetricaly, whenever
(qj , L) ∈ δ(qi, a) we add two arrows that point to Lj : One from li, in case the
machine’s previous move was from left to right, and one from ri, in case the machines
previous move was from right to left. This is case (b) of Figure 2.3.
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Figure 2.3: The three cases for g(x), in an example where h = 4.

• g(a) = {li → Lj |for every (qj , L) ∈ δ(qi,a)}⋃{li → Ri|for every qi ∈ F}.
Similarly for the right end-marker, the first set of the union is for the case where
the head moves to a and to state qi, but qi is not a final state, so it moves back left
to state qj . The second set is for the final states. In order for a path to reach the
rightmost column it needs to be at an accepting state reading the right end-marker,
so a path can only end on an accepting configuration. This is case (c) of Figure 2.3,
where q1 and q3 are the final states.

So, now we can rephrase: x is accepted by N iff g(x) is live; or, equivalently, there
is a path in N from state q1 on ` to a final state on dashv iff there is a path from the
leftmost to the rightmost column in g(x). So, for every possible transition on the graph of
configurations of N (described as CN,w in Chapter 1), there is an arrow in g(` w a), and
every possible computation path of N corresponds to a path in g(` w a). Also, concerning
the end-markers, the only node that has on arrow from the leftmost column is the one
corresponding to the starting state, so there cannot be a live path from another node
(valid computation paths start from the starting configuration), and the only nodes that
are reachable on the rightmost column are the ones that correspond to final states, so live
paths end only at those nodes (valid computations end at accepting configurations). This
concludes the encoding of the computation ofN as an instance of TWL2h, so that whenever
N has an accepting computation there is a live path in the graph and conversely.

Lemma 8. If TWL∈2D via a sequence 2DFAs with s(h) states, then any problem in 2N
can be solved by a sequence of 2DFAs with s(h) states.
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Proof. Given a 2DFA G that solves TWL and a 2NFA N with poly(h)-states, we can
construnct a 2DFA D that recognises the same problem as N , with the same set of states
as G, by simulating the computation of G. We need only to clarify how D works on the
edges, since the input of G has an extra symol on the edges (g(`) and g(a)). In any other
case δD(q, ai) = δG(q, g(ai)).

Right end-marker: when the head of G moves to the right to g(a) then if the head
doesnt leave the two last symbols g(a) and a the movement of G is predetermined since it
is no longer affected by the input and will either, eventually move back to the last symbol
of the input or it will end its computation in some state, while reading g(a) or a. In that
sence, if G ends up in an accepting state over a, D can move right away to a and to a
final state. Similarly for the case G moves to a non final state with no transitions, then D
does the same. In case G eventually moves its head left from g(a), to symbol g(an) and
in state q, then D moves to the right to a and then back to symbol an and state q.

Left end-marker can be dealt in a similar way to the right end-marker. When G moves
left to g(`) then the machine will, at some point, either move right back to g(a1) and to
state q, or it will not. In the first case D, after moving left to `, moves back to the right,
to g(a1) and q, and in the second case the machine moves to the left to ` to a non final
state with no transitions for `.

Starting state: G starts from symbol g(`), while D starts from a1, So to find the
starting state we monitor the movement of G, until its head reaches g(a1) (again the
movement is predetermined). The head might move between g(`) and ` but eventually it
will move to the right to symbol g(a1) and state q′. State q′ is set as the starting state of
D. There is the chance the machine does not move to g(a1) and halts. In that case the
machine recognises the empty language. This completes the description of D.

Theorem 7 (The Sakoda-Sipser completeness theorem). TWL is 2N-complete.

Proof. 2D is closed under the above reduction therefore 2N is closed as well. This means
TWL is 2N-complete.

It can be proven in an analogous way that OWL is 1N-complete.

Corollary 3. OWL is 1N-complete.

2.6 Hierarchy

By analogy to P, NP, coNP and the polynomial hierarchy of Turing machine complexity,
there are two hierarchies, one for one-way machines, and another for two-way machines,
which generalize the classes 1N, co1N and 2N, co2N, respectively.

Definition 2.13. 1Σk and 1Πk are the classes of problems that can be solved by one-
way alternating finite automata with polynomially many states, that make at most k −
1 alternations between existential and universal states, starting with an existential or
universal state, respectively.

Here 1Π0 = 1D = 1Σ0, 1Σ1 = 1N and 1Π1 = co1N.

Proposition 13. 1Σk = co1Πk.



42 CHAPTER 2. COMPLEXITY

Proof. let L be a problem in 1Πk. Then there is a sequence of 1AFAs, with polynomially
many states that make at most k−1 alternations between existential and universal states,
starting with a universal state, that solves L. We construct another sequence of 1AFAs.
This one has the same states and the same transitions with the previous one, but the
set of universal states and the set of final states has been reversed. The sequence solves
problem Lc ∈ co1Πk, but the problem is automatically in 1Σk by Definition 2.13.

In a similar fashion, for every problem L ∈ 1Σk there is Lc which can be solved by a
sequence of 1AFAs, according to the above construction. This proves that L ∈ co1Πk.

There are results concerning this hierarchy:

Theorem 8. (V. Geffert [11]) There are witnesses for the following proper inclusions, for
all k ≥ 1:

1Σk ⊃ 1Σk−1 1Πk ⊃ 1Σk−1
1Σk ⊃ 1Πk−1 1Πk ⊃ 1Πk−1

Also, 1Σk and 1Πk are incomparable, for all k ≥ 1.

This means that this hierarchy is infinite and redundant. In a completely identical
way there is the two-way hierarchy.

Definition 2.14. 2Σk and 2Πk are the classes of problems that can be solved by two-
way alternating finite automata with polynomially many states, that make at most k −
1 alternations between existential and universal states, starting with an existential or
universal state respectively.

Here 2Π0 = 2D = 2Σ0 and 2Σ1 = 2N.

Theorem 9. (V. Geffert [11]) There are witnesses for the following proper inclusions for
k ≥ 2:

2Σk ⊃ 2Σk−1 2Πk ⊃ 2Σk−1
2Σk ⊃ 2Πk−1 2Πk ⊃ 2Πk−1

Also, 2Σk and 2Πk are incomparable, for all k ≥ 2.

Similarly to the one-way hierarchy, this means that this hierarchy is infinite.
The differences with the one-way hierarchy are the following. It is not known whether

co2Σk = Πk. As described earlier, it is not known whether 2Σ0 ⊆ 2Σ1 is a proper inclusion
(2D ⊆ 2N), as also 2Π0 ⊆ 2Π1. Finally it is not known whether 2Σ1 = 2N and 2Π1 are
comparable or not.

In the same theorem, Geffert proves some relations between the two hierarchies. Apart
from the obvious 2Σk ⊃ 1Σk and 2Πk ⊃ 1Πk, he also proves the following.

Theorem 10. (V. Geffert [11]) There are witnesses for the following proper inclusions
for k ≥ 2. (the first group are results from the previous theorems):

2Σk ⊃ 1Σk−1 2Πk ⊃ 1Σk−1
2Σk ⊃ 1Πk−1 2Πk ⊃ 1Πk−1

and for the following classes of problems there are witnesses that prove them not to be
empty

1Σk \ 2Σk−1 1Πk \ 2Σk−1
1Σk \ 2Πk−1 1Πk \ 2Πk−1

Finally, 2Σk and 1Πk are incomparable and so are 1Σk and 2Πk.
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Figure 2.4: The two hierarchies for one-way and two-way machines, respectively.

2.7 Relations to computational complexity of TM

So, the basic problem this chapter revolves around is the 2D versus 2N question. Sakoda
and Sipser conjectured that 2D(2N. The question is hard to answer so, even stronger
conjectures were made. First we define three restrictions of 2N:

Definition 2.15. The restriction of 2N to instances of exponential length is called 2N/exp.
Respectively, 2N/poly is the restriction of 2N to instances of polynomial length, and
2N/const to instances of constant length.

At this point we need to define some restrictions of TWL:

Example 13. The problem LongTWL = (LongTWLh)h≥1 is a restriction of TWL. The
alphabet is the same as in TWL and the input is bounded by an exponential function of
h. Formally, for every h ≥ 1 the input alphabet is Σh = P({1, 2, . . . , 2h}2) and

LongTWLh = {w ∈ Σ∗h| |w| ≤ 2h and w has a live path}.
Example 14. The problem ShortTWL = (ShortTWLh)h≥1 is a restriction of TWL. The
alphabet is the same as in TWL and the input is bounded by a polynomial function of h.
Formally, for every h ≥ 1 the input alphabet is Σh = P({1, 2, . . . , 2h}2) and

ShortTWLh = {w ∈ Σ∗h| |w| ≤ h and w has a live path}.
Example 15. The problem CTWL = (CTWLh)h≥1 is a restriction of TWL. The alphabet
is the same as in TWL and the input is of length 2. Formally, for every h ≥ 1 the input
alphabet is Σh = P({1, 2, . . . , 2h}2) and

CTWLh = {w ∈ Σ∗h| |w| = 2 and w has a live path}.
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Theorem 11. longTWL is complete in 2N/exp.

Proof. According to the Sakoda-Sipser theorem TWL is 2N-complete, therefore any L ∈2N
can be reduced to TWL. Also longTWL ∈2N/exp since longTWL is a problem in 2N with
instances of exponential length. So, if L ∈2N/exp, then it can be reduced to longTWL,
since the g transformation described in Lemma 3 increases the length of all instances by
2. In case the instances of L are of length O(f(h)) ≥ O(2h) then we define h′ = p(h) such
that O(2h

′
) = O(2p(h)) ≥ O(f(h)). Then Lh reduces to longTWLh′ . In other words, the

reduction described keeps the size of the instances of L in 2N/exp.

Theorem 12. ShortTWL is complete in 2N/poly.

Proof. TWL is 2N-complete. Also shortTWL ∈2N/poly since shortTWL is in 2N and its
instances are of polynomial length. If L ∈2N/poly then L reduces to TWL. But L has
instances of polynomial length. Threrefore, through the g transformation, an instance of L
reduces to an instance of TWL of polynomial length as well In case the instances of L are
of length O(p(h)) ≥ O(h) then we can define h′ = p(h). Then Lh reduces to shortTWLh′ .
Therefore ShortTWL is 2N/poly-complete.

It is still unknown whether any of these restrictions are in 2D, so we can focus on
the smallest of these subclasses, TWL/const. The difference of this subclass from the
other two, is that the other two have known complete problems, the two mentioned above.
It is not known if 2N/const has a complete problem, and it hasn’t been proven that
CTWL∈2N/const is complete. This is an issue that will be considered in the next chap-
ter. Furthermore, it is not known whether 1N⊆2D either. As a result, the frontline of
problems that are conjectured not to be in 2D are CTWL, TWL and OWL. So, our basic
question remains, the relation between 2D and 2N is uncertain. Through this chapter the
analogy of P versus NP question becomes more clear, the distance between determinis-
tic polynomial resource and non-deterministic polynomial resource. But is this quenstion
important to complexity? What is the actual relation of the 2D versus 2N question with
Turing machince computational complexity? It turns out that the size complexity of two-
way finite automata is related to the space complexity of Turing machines. The result
connecting two-way automata size complexity with Turing machine space complexity is
the following:

Theorem 13 (C. Kapoutsis [15]).

2D ⊇ 2N/poly ⇐⇒ L/poly ⊇ NL
2D ⊇ 2N/exp ⇐⇒ LL/polylog ⊇ NLL ,

L is complexity class of all problems that can be solved by a deterministic Turing
machine in logarithmic space. NL is complexity class of all problems that can be solved
by a nondeterministic Turing machine in logarithmic space. LL is complexity class of all
problems that can be solved by a deterministic Turing machine in log log n space, where
n is the length of the input. NLL is complexity class of all problems that can be solved
by a nondeterministic Turing machine in log log n space. L/poly is complexity class of
all problems in L that have instances shorter than a polynomial of n. LL/polylog is
complexity class of all problems in LL that have instances shorter than a polynomial of
log n.
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We also note that the L versus NL qestion is the biggest open problem in Turing
machine space complexity.
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Chapter 3

CTWL and 2N/const

3.1 Introduction

In this last chapter we will describe a small effort to prove CTWL complete in 2N/const.
The other restrictions of TWL can be proven to be complete problems in their according
classes, immediately from the Sakoda-Sipser theorem: longTWL is 2N/exp-complete and
shortTWL is 2N/poly-complete. But there is something fundamental about CTWL and
2N/const that does not seem right. There is a gap in all the possible instances of problems
in 2N/const, which are unbounded, and the instances of CTWL, that are of constant length
2. The Sakoda-Sipser theorem proves that an instance of length m of a problem L in 2N
can be transformed into an instance of TWL of length m + 2, and then it is shown how
to construct a 2DFA that solves L out of a 2DFA that solves TWL, with twice as many
states. This is why this proof is valid for proving that longTWL is 2N/exp-complete and
shortTWL is 2N/poly-complete. It keeps the length of the input practically the same. But
this is not helpful with the case of CTWL, since this problem has instances of constant
length 2, and we need to prove that we can reduce to it any problem with instances of
constant length no matter what this constant may be. The same question can be expressed
for any other problem-candidate for 2N/const-completeness. It seems that our reductions
are not suitable for this kind of work.

The reductions we have introduced so far are not capable of proving CTWL to be
2N/const-complete, or any problem for that matter. Let’s suppose we want to prove
CTWL to be 2N/const-complete. In order for this to be true, any other problem in
2N/const needs to reduce to it. Let’s define problem 4TWL, the restriction of TWL to
instances of length 4. This means we need to map every instance of length 4 to an instance
of length 2. If all 4 symbols of the input of 4TWL have vital information for determining
inclusion or exclusion in 4TWL, then by the pigeonhole principle, we need to include the
information of 2 cells of the original instance to one cell of the output. Can this be done?
The size of the alphabet of TWLh is 2(2h)

2
, and surely a polynomial-size transducer can

not keep in its memory even one symbol of this alphabet. If it could, it would be useless
for proving reductions in 2N. Due to the size of the alphabet we could apply the pigeonhole
principle to the number states, compared to the number of possible h-tall, directed, two-
column graphs. The result is the transducer cannot transfer the information intact. The
same argument is valid for any problem in 2N/const. For any problem we want to prove to
be complete, there is another problem with greater length of instances, in an exponential
alphabet. Restrictions of TWL provide such examples.

47
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3.2 Defining a new reduction

So, we need a reduction that can print the information of k cells into fewer cells, without
keeping the information of any cell in its memory. Could there be a reduction, with respect
to which CTWL can be proven to be 2N/const-complete? How would such a reduction
manage to compress the information of the input tape? A natural idea is to be able to
print more than once in every cell of the output. But then, should the machine be able
to read the output tape? That would make it too powerful. That is because keeping in
its memory once one symbol, would equal in memory an exponential number of states
(in case the alphabet is exponential). But can the machine print on a cell that has been
printed on before, without knowing what was printed on it? Let’s suppose it can. Let’s
suppose the cells of the tape have a stucture, that allows the machine to print on top of a
cell that has something printed on, without erasing the already accumulated information,
but combining the existing information and the information that is about to be printed.
This way the machine will be able to accumulate information, and build up to the final
output of the process. But this requires a different kind of tape, one with some kind of
structure, and an alphabet that is related to that structure.

Let’s make it a bit more practical. Let’s take a look at the alphabet of TWL, h-tall,
two-way, two-column graphs. Every symbol of that alphabet can be represented as a set
of arrows. Similar to the way we represent any graph as a set of edges, an h-tall, two-way,
two-column graph can be a subset of the set [2h]× [2h]. So, each cell can be structured so
that it can have a special spot for each element in that set. Every time the machine prints
the set a over the previous “symbol”-set b, it adds the elements of a over the elements of
b that are printed already. So there is a operation applied on the tape, the union of a and
b.

Now let’s take a step back and look at a more general case. Let Σ be the alphabet and
v a partial order on Σ. Before we define the machines we need some basic terms of order
theory.

Definition 3.1. Let (Σ,v) be a partially ordered set and S ⊆ Σ. An element x ∈ Σ is
an upper bound of S if s v x for all s ∈ S. A lower bound is an x ∈ Σ such that x v s for
all s ∈ S. The set of all upper bounds of S is Su and the set of all lower bounds is Sl. If
Su has a least element x, then x is called a least upper bound. Dually, if Sl has a greatest
element x, then x is called the greatest lower bound.

Definition 3.2. We define x ∨ y to be the least upper bound of {x, y}, and we call it x
join y. Dually, we define x ∧ y to be the greatest lower bound of {x, y}, and we call it x
meet y.

Definition 3.3. A partially ordered set (poset) P is a lattice if x ∨ y and x ∧ y exist for
all x, y ∈ P . A partially ordered set P is a join-semilattice if x ∨ y exists for all x, y ∈ P .

Definition 3.4. Let L be a lattice. An element x ∈ L is join irreducible if x 6= ⊥ and
x = a ∨ b implies x = a or x = b for all a, b ∈ L.

Unfortunately, this definition cannot serve us if we need to use the more general struc-
ture of a partially ordered set. For this case we will define a similar property.

Definition 3.5. Let v be a partial order over Σ. We call prime elements of Σ, Primes(v),
the set of all a ∈ Σ such that a v b1 ∨ b2 ⇒ a v b1 or a v b2.

Let’s define now the deterministic automaton that has a tape with the required struc-
ture.
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Definition 3.6. A 2DFA with structured-cell input (2DFAv) is a tupleM = (Q,Σ, q0, qf , δ,v
) where

• Q is the set of states,

• Σ is the input alphabet,

• q0 is the starting state,

• qf the final state,

• δ :
(
Q×(Primes(v)∪{`,a})×{+,−}

)
→
(
Q×{L, S,R}

)
is the transition function,

and

• v is a partial order on Σ.

So (Σ,v) is a partially ordered set and Primes(v) is the set of prime elements of that
poset. The transition function δ is defined over the prime elements. Let x ∈ Primes(v)
and a ∈ Σ. Then {+,−} are the elements that define the two seperate cases, x v a
or x 6v a. In the special case where the head of the machine is over an end-marker,
δ(q,`,+) = δ(q,`,−) and δ(q,a,+) = δ(q,a,−). This model is a restricted 2DFA model,
that can have only transitions based on the prime elements of Σ. When x v y ⇐⇒ x = y,
the automaton is a standard 2DFA. We continue with the definition of the transducer.

Definition 3.7. A 2DFT with structured-cell input and structured-cell output (2DFT-
OP where OP stands for over printing) is a tuple T = (Q,Σ1,Σ2, q0, qf , δ,v1,v2) where
Q,Σ1,Σ2, q0, qf are as in a standard 2DFT, and:

• v1 is a partial order on Σ1,

• v2 is a partial order on Σ2,

• δ :
(
Q× (Primes(v1) ∪ {`,a})× {+,−}

)
→
(
Q× {L, S,R} × (Σ2 ∪ { })× {S,R}

)
is the transition function.

So (Σ1,v1) and (Σ2,v2) are partially ordered sets and Primes(v1) and Primes(v2)
are their sets of prime elements, respectively. The output tape head can move only to the
right or remain stationary. The transition function δ is defined over the prime elements of
Σ1 and the end-markers. Let x ∈ Primes(v1) and a ∈ Σ1. Then {+,−} are the elements
that define the two seperate cases, x v1 a or x 6v1 a. In other words, in every state
the machine has two transitions for a prime element. One transition in case the prime
element is contained in the symbol being read, and one transition for the other case. This
machine behaves in the same way as the 2DFAv, over the end-markers. This model can
only have transitions based on the prime elements of Σ1 (and the end-markers), and can
print symbols of Σ2 or . On the output tape the machine can print a symbol on top of
another symbol. To write a ∈ Σ2 ∪ { } on a cell that contains b ∈ Σ2 ∪ { } means to
replace b with plub(b, a), where

plub(b, a) =

{
a ∨ b if a ∨ b exists
a if a ∨ b does not exist.

The above definition allows us to define the following reduction.
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Definition 3.8. Let (Lh)h≥1 and (L′h)h≥1 be problems. We write L ≤2D-OP L′ and say
that L reduces to L′ in two-way overprint polynomial-size, if there is a sequence of 2DFT-
OPs (Th)h≥1 and two polynomials e and s such that every Th has s(h) states and maps
instances of Lh to instances of L′e(h) so that for all x:

x ∈ Lh ⇒ Th(x) ∈ L′e(h) and x ∈ Lch ⇒ Th(x) ∈ (L′e(h))
c.

We will show that the reduction we defined can solve the problem we encountered
earlier: This machine can transform an instance of a given length to an instance of smaller
length.

Example 16. The problem 4TWL = (4TWLh)h≥1 is a restriction of TWL. The alphabet
is the same as in TWL and the input is of length 4. Formally, for every h ≥ 1 the input
alphabet is Σh = P({1, 2, . . . , 2h}2) and

4TWLh = {w ∈ Σ∗h| |w| = 4 and w has a live path}.

Proposition 14. 4TWL ≤2D-OP CTWL.

Proof. There is a 2DFT-OP T that reduces 4TWLh to CTWL3h. The process is described
below. Suppose that the instance of 4TWL is w = abcd.

On reading a, the output head is over the first cell of the output tape. T prints the
symbol e which is obtained from a as follows. For every arrow i→ j ∈ a:

• if i, j ≤ h, then i→ j ∈ e;

• if i ≤ h and j > h, then i→ (3h+ j) ∈ e;

• if i > h and j ≤ h, then (3h+ i)→ j ∈ e; and

• if i, j > h, then (3h+ i)→ (3h+ j) ∈ e.

Note that e and a have the same number of arrows. Also i ≤ h means that i is on the left
column of a and i > h means that i is on the right column of a. Then the machine moves
its input head and its output head to the right.

T reads the second symbol b, and prints the symbol f1 that is derived from b as follows.
For every arrow i→ j ∈ b:

• if i, j ≤ h, then i→ j ∈ f1;

• if i ≤ h and j > h, then i→ (h+ j) ∈ f1;

• if i > h and j ≤ h, then (h+ i)→ j ∈ f1; and

• if i, j > h, then (h+ i)→ (h+ j) ∈ f1.

Afterwards the reading head moves to symbol c, while the output head stays on the same
cell.

Similarly, on the next move, T reads the third symbol c, and prints on the same cell
the symbol f2 which is derived from c as follows. For every arrow i→ j ∈ c:

• if i, j ≤ h, then (h+ i)→ (h+ j) ∈ f2;

• if i ≤ h, and j > h then (h+ i)→ (2h+ j) ∈ f2;

• if i > h, and j ≤ h then (2h+ i)→ (h+ j) ∈ f2; and
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Figure 3.1: The first step of the transducer.

• if i, j > h, then (2h+ i)→ (2h+ j) ∈ f2.

Again T moves its input head to the right, and the output head remains stationary.
Finally, T reads the fourth symbol d, and prints on the same cell the symbol f3 which

is derived from d as follows. For every arrow i→ j ∈ c:

• if i, j ≤ h, then (2h+ i)→ (2h+ j) ∈ f3;

• if i ≤ h and j > h, then (2h+ i)→ (5h+ j) ∈ f3;

• if i > h and j ≤ h, then (5h+ i)→ (2h+ j) ∈ f3; and

• if i, j > h, then (5h+ i)→ (5h+ j) ∈ f3.

Then the machine moves both of its heads to the right over the right end-marker and
halts.
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Figure 3.2: The second step of the transducer.

The main idea is that while in b we have two columns with arrows, in f1 we move
those two columns and place the first one on top of the second one. In that way, we have
the same arrows and the same problem, in one fewer column, but in the same number of
nodes. The process continues in the same sense and we create a 3h-tall left column with
three h-tall blocks. Each block corresponds to a column of the input abcd. Accordingly,
the arrows of c move between the second block of the left column and the third block.
Symbol d connects the third block with the right column. The whole idea is represented
in the figures. In that way, a path that is live in the instance of 4TWLh is live in in the
instance CTWL3h, and vice versa. The transducer described above needs only four states,
to count which symbol it is reading, in order to print on the correct block.

3.3 Outcome

Theorem 14. If L is solved by a k-state 2NFA and all its instances are of length ≤ l,
then L ≤2D-OP CTWL(l+1)2k via an (l + 1)-state 2DFT-OP, where v1 is equality and v2

is the standard ⊆.

Proof. The main idea is similar to Lemma 3. Let h = (l + 1)2k If a 2k-tall, two-way,
multi-column graph can simulate the transitions of an arbitrary k-state 2NFA N on some
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Figure 3.3: The third step of the transducer.

input x, then an h-tall, two-way, 3-column graph can simulate N on x as well, as long
as there is a bound l for the length of x. Conveniently, the input of CTWLh is a h-tall,
two-way, 3-column graph. Let N = ({q1, . . . , qk},ΣN , q1, FN , δN ) be a k-state 2NFA, with
all instances of length ≤ l. We will define the 2DFT-OP T that transforms the input
string of N , x =` a1a2 · · · as a, into an instance T (x) of CTWLh, where s ≤ l.

T = ({p0, p1, . . . , pl+1},ΣN ,Σ2, p0, pl+1, δT ,=,⊆)

where Σ2 is the set of h-tall, two-way, two-column graphs, represented as sets of arrows
i→ j for i, j ∈ {1, 2, . . . , 2h}. We define δT in the following way:

• δT (p0,`) = (p1, R, g(`, 0), R) is the transition of T on the starting configuration,

• δT (pi, a) = (pi+1, R, g(a, i), S) is the transition of T in the general case,

• δT (pi,a) = (pl+1, R, g(a, i), R) is the transition of T when the head reads the right
end-marker, and the output head prints, moves to the right and the machine ends
its process.

We can sum up the movement of the head by looking at the above transitions: The reading
head moves one step at a time. The printing head starts at the first symbol, prints g(`, 0)
and moves to the next cell. It remains at the second cell, printing g(a, i) over the cell
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Figure 3.4: The fourth step of the transducer.

each time the reading head reads symbol a, while being in state qi and then the machine
moves to state qi+1. When the reading head reads a, the printing head prints g(a, i), and
moves to the right, while the machine moves to the final state. Now we only need to define
g :
(
ΣN ∪{`,a}

)
×{0, 1, . . . , l+ 1} → Σ2 to conclude this construction of T . g takes in to

account the symbol being read and the state machine T is in, and returns the symbol of
Σ2 that is going to be printed over. Let hi = (i− 1)2k. We define g in relation to δN :

• g(`, 0) = {1→ h+ 1} ∪ {h+ k +m→ h+ j|(qj , R) ∈ δN (qm,`)}.
This makes δT print an arrow for the starting configuration on the left column to
the middle column. h + j is the j-th node on the second column in each graph of
Σ2. The second part is about all the computation paths that, when coming from
the symbol a1 (first in input) to `, move to the right of ` back to a1 and to state qj .

• g(a, i) = {hi +m→ hi + 2k + j|(qj , R) ∈ δN (qm, a)}
∪{hi + 3k +m→ hi + 2k + j|(qj , R) ∈ δN (qm, a)}
∪{hi +m→ hi + k + j|(qj , L) ∈ δN (qm, a)}
∪{hi + 3k +m→ hi + k + j|(qj , L) ∈ δN (qm, a)}.

Here, we have separated the h-tall, two-column graph in l+ 1 blocks. Each block is
2k-tall. hi is the offset of the i-th block. Every arrow that we describe is between that
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block and the next one. To sum up, for every possible transition N can make while
reading symbol a, there are two arrows in g that represent exactly that transition
(one arrow for the case where the head has arrived in a from the right and one more
for the case where the head has arrived in a from the left).

• g(a, i) = {hi +m→ hi + k + j|(qj , L) ∈ δN (qm,a)}
∪{hi +m→ h+ hi +m|qm ∈ FN}.

Similarly to the first case, we have two possible movements under the rigth end-
marker. The first set corresponds to computation paths that go right to a, read the
symbol, and move left to as to a state qj . The second set corresponds to the final
movement of any accepting configuration path: from being some state on the right
end-marker, the machine moves to the right into an empty cell without changing
state, and halts.

The above transformation is identical to the Sakoda-Sipser transformation, with only
difference that we place the graphs in blocks we have created vertically in the middle
column of the input. If N accepts x, then, there is a path from the starting configuration,
through the transitions of δN , that ends at an accepting configuration. Equivalently, for
a path in CTWL2(l+2)s to be live, it has to start from the first column (from the first
column only the starting configuration of N has arrow to the middle column), it must
follow the arrows that correspond to the transitions of δN (for every arrow in g(x) there
is a transition from one configuration to another, and vice versa), and finally it has to
reach the third column (the only configurations reachable in the third column are those
that correspond to the accepting configurations, through valid transitions). So now we
can rephrase: x is accepted by Nh ⇐⇒ T (x) is live.

The above lemma has two concequences.

Corollary 4. Every problem in 2N/const ≤2D-OP-reduces to CTWL.

Proof. Let (Lh)h≥1 a problem in 2N/const. This means the instances of Lh are of length
≤ l = const(h) and are solved by a 2NFA the number of states k ≤ p(h), for some
polynomial p. According to Theorem 14 there is a family of 2DFT-OPs that can reduce
(Lh)h≥1 to CTWL(l+1)2k. If we replace l and k accordingly we can reduce (Lh)h≥1 to
CTWL(const(h)+1)2p(h), where (const(h) + 1)2p(h) is a polynomial of h, via a family of
const(h)-state 2DFT-OPs.

Corollary 5. Every problem in 2N/poly ≤2D-OP-reduces to CTWL.

Proof. Proof is similar to the one above. The instances of Lh are of length ≤ s(h) and
k ≤ p(h). So, every (Lh)h≥1 can reduce to CTWL(s(h)+1)2p(h) via a family of s(h)-state
2DFT-OPs.

Theorem 15. If L reduces to L′ via an r-state 2DFT-OP, with output cells structured by
a semilattice and L′ can be solved by an s-state 2DFAv that has instances of length ≤ l,
then L is solved by a 2DFA with O(rsl2) states.
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Proof. Let T = (QT ,Σ1,Σ2, q0, qf , δT ,=,v) be the 2DFT-OP andM = (QM ,Σ2, p0, pf , δM
,v) be the 2DFAv of the statement. We will construct a 2DFA D with O(rsl2) states
that recognises L. We now describe D = (QD,Σ1, s0, FD, δD):

• QD = (QT ∪ {q′}) × QM × [l + 1] × [l + 1] is such that we can keep in track of the
states of T , M and their heads while we simulate their computation,

• s0 = (q0, p0, 1, 1) since in the beginning both machines are in their starting states
and both heads are on the first cell of their tape,

• FD = {(qf , pf , l1, l2)|0 ≤ l1, l2 ≤ l + 1} and

• δD : QD × (Σ1 ∪ {`,a})→ QD × {L, S,R} will be defined below.

In defining δD; we have to keep track of both machines being simulated. We have the
following cases:

• If D is in a state of the form (q′, ..., 0, ...) then the simulation of T has been restarted.
While D is in any of these states, it moves its head all the way to the first symbol
of the tape, and starts the simulation of T again.

– δD((q′, p, 0, l2), a) = ((q′, p, 0, l2), L), for all a ∈ Σ2. This movement is while the
head moves to the left.

– δD((q′, p, 0, l2),`) = ((q0, p, 1, l2), R). This movement is the last one: after the
head has reached the left end-marker, it moves right to the first symbol of the
input and to the starting state of T .

• If D is in a state of the form (qf , p, ..., ...) and its head is reading a then the simulation
of T has halted. We have two subcases:

– If p = pf , then δD((qf , pf , l1, l2),a) = (qf , pf , l1, l2), R). This means that the
simulation of M halts and then D halts, as well.

– If p 6= pf , then δD((qf , p, l1, l2),a) = (q′, π1(δM (p,a,+)), 0, l∗2), L), where

l∗2 =

{
l2 if π2(δM (p,a,+)) = S
l2 − 1 if π2(δM (p,a,+)) = L

Note that πi is used the it was defined in Chapter 1. This is the case when D
simulates the computation of M and the head of M moves to the right end-
marker. What actually happens is that M moves to the right after the last cell,
and D starts simulating T to see what will be printed on that cell. But that cell
will not be printed, instead machine T moves to a and enters the final state,
so D knows that T will halt. This means that the head of M is over the right
end-marker of its simulated input. So T needs not be simulated any further, D
knows the moves M makes over the right end-marker.

• If D is in a state (q, p, l1, l2) where q 6= q′, qf and l1 < l2, then T hasn’t reached the
point where it prints on the cell from which M is demanding to read. We set:

δD((q, p, l1, l2), a) = (π1(δT (q, a)), p, l∗1, l2)

where

l∗1 =

{
l1 if π4(δT (q, a)) = S
l1 + 1 if π4(δT (q, a)) = R.
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This is simulating one movement of T . We don’t need π3(δT (q, a)) ∈ (Σ2 ∪ { }),
because we don’t care what T prints on other cells than cell l2 which is the one M
is reading at the moment.

• If D is in a state (q, p, l1, l2) where q 6= q′, qf and l1 = l2 ≥ 1, then T is about to
print a symbol on the cell from which M is reading. M checks if x v π3(δT (q, a)).

– If x v π3(δT (q, a)), then δD((q, p, l1, l2), a) = (q′, π1(δM (p, x,+)), 0, l∗2), L).

– If x 6v π3(δT (q, a)) then δD((q, p, l1, l2), a) = (π1(δT (q, a), p, l∗1, l2), π2(δT (q, a))).

Where

l∗2 =


l2 − 1 if π2(δM (p, x,+)) = L
l2 if π2(δM (p, x,+)) = S
l2 + 1 if π2(δM (p, x,+)) = R

and l∗1 is as in above. The first case is for when M reads x in the symbol
being printed; then M makes a move and D restarts the simulation of T . The
second case is when M doesn’t read x in the symbol; then D continues with
the simulation of T .

• If D is in a state (q, p, l1, l2) where q 6= q′, qf , l1 = l2 + 1 and l2 ≥ 1, then the
simulation of T has printed everything it could have on cell l2 and the simulation
moved on. We can now make the δM (p, x,−) move of M and restart the simulation
of T .

δD((q, p, l1, l2), a) = (q′, π1(δM (p, x,−)), 0, l∗2), L), where l∗2 is defined as above.

• If D is in a state (q, p, l1, l2) where q 6= q′, qf and l2 = 0, then this is the case where,
during the simulation of M , its head is supposed to read the left end-marker. Then
D doesn’t need to simulate T , because the movement of M over ` is independent of
the input.

δD((q, p, 1, 0), a) = ((q, π1(δM (p,`,+)), 1, l∗2), S), where

l∗2 =

{
0 if π2(δM (p,`,+)) = S
1 if π2(δM (p,`,+)) = R

Note that the simulation of T has not started, and it will not start unless l2 increases
to 1.

There are no valid transitions that are not described in the cases above. This concludes
the description of D. D simulates M and, every time M needs to check whether a prime
element is in a cell, D starts simulating T to produce all the symbols that would be printed
on that cell. Notice, however, that D cannot know the result of the overprinting in that
cell, since it cannot remember a symbol of a potentially exponentially large alphabet. This
is why we need (Σ2,v) to be a semilattice. Because then x is v of the final result of the
overprinting, iff it is v of one of the (partial) prints, by definition of the prime element.
After that, M finally makes its move. Then D resets the computation of T to the initial
configuration, while moving the reading head to the start of the input, and repeats the
process. The simulation of the transitions of M on the end-markers has been clarified,
and so has the halting of the machine.

Corollary 6. If L ≤2D-OP L
′ via a 2DFT-OP with output cells structured by a semilattice

v and L′ ∈2D/poly via a 2DFAv with polynomially many states and input cells structured
by the same v, then L ∈2D.
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Proof. If every Lh reduces to L′e(h) via an r(h)-state 2DFT-OP, where e(h) and r(h) are

polynomials, and every L′h is solved by an s(h)-state 2DFAv and has instances of length
≤ l(h), where s(h) and l(h) are also polynomials, then every Lh is solved by a 2DFA of
size O(r(h)s(e(h))l(e(h))2), which is polynomial in h.

An immediate consequence of Corollaries 5 and 6 is the following:

Corollary 7. If CTWL∈ 2D via a 2DFA⊆ whose input cells are structured by the standard
⊆, then 2N/poly⊆2D.

3.4 Generalization of the 2DFT-OP

We further investigate the case where the tape may have an arbitrary operation rather
than the join of two elements of the alphabet.

Definition 3.9. A two-way determistic finite transducer with an operating output tape
is a tuple

T = (Q,Σ1,Σ2, q0, qf , δ, Ot)

where Q,Σ1,Σ2, q0, qf are as in Definition 3.7, δ : Q × (Σ1 ∪ {`,a}) → Q × {L, S,R} ×
(Σ2∪{ })×{S,R} is the transition function, and Ot : (Σ2∪{ })× (Σ2∪{ })→ (Σ2∪{ })
is the operation of the output tape.

When the head is over a cell, containing a symbol x and prints on that cell a symbol
y, then the result of the overprinting is O(x, y). When the symbol is being printed, the
cell remains unchanged. Formally O(x, ) = x, for all x. Note that O is not necessarily
commutative.

There seems to be a problem with this transducer, in terms of transitivity. A compo-
sition of two such transducers will have the same problem the 2DFT has. It cannot track
down the movement of the two hypothetical heads of the two machines being simulated,
namely the output head of the first machine and the input head of the second machine.
But even if we restrict the print size polynomially, so that the simulator can keep two
counters to track down the simulated heads, another problem still remains. How can a
machine simulate the operation of the simulated intermediate tape without keeping in its
memory at least one tape symbol? It seems it cannot. We futher investigate the weak-
nesses of the reduction defined by such a transducer. We first need to define the following
problem.

Example 17. The problem 1OWL = (1OWLh)h≥1 is a restriction of OWL. The alphabet
is the same as in OWL and the input is of length 1. Formally, for every h ≥ 1 the input
alphabet is Σh = P({1, 2, . . . , h}2) and

1OWLh = {a ∈ Σh| a has at least one arrow}.

This problem is trivial. It can be solved by a 1-state 1DFA. The state checks whether
there is an arrow from the left column to the right (any arrow at all). If there is at least
one, then the head moves to the right. If there is none, then the machine halts. So,
1OWL ∈1D.

Proposition 15. OWL reduces to 1OWL via a 2DFT with an operating output tape.
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Proof. We describe the transducer T = (Q,Σh,Σh, q0, q0, δ, Ot) that reduces OWLh to
1OWLh. We let Q = {q0} and choose δ so that

δ(q0, a) = (q0, R, a, S), for all a ∈ Σh, and
δ(q0,a) = (q0, R, , R).
The computation of T is straightforward. At every step, it reads the next symbol a

and it overprints it on the first cell of the output tape. When the reading head reaches a,
then the output head moves to the right and the computation ends.

More important, is the operation of the output tape. We let O(b, a) = a ◦ b, the
composition of a and b, if seen as relations on {1, 2, . . . , h}.

The final output is a single symbol which is the composition of all symbols of the input.
An arrow from the left column to the right column, in that symbol, is equivalent to a path
from the left column of the first symbol of the input to the right column of the last symbol
of the input. Note that the transducer does not use the ability of the input head to move
backwards.

Proposition 15 shows a reduction of a 1N-complete problem to a problem of 1D, while
we know that 1D(1N. The next example exploits even further the power of the operating
output tape.

Example 18. The problem TRIVIAL = (TRIVIALh)h≥1. Formally, for every h ≥ 1 the
input alphabet is Σh = {1, 2, . . . , 2h + 1} and

TRIVIALh = {2h}.

This problem is (trivially) in 1D since it can be solved by a single state 1DFA that
looks at the one cell input and if it reads 2h then accepts, otherwise declines.

Proposition 16. LONGLENGTH reduces to TRIVIAL via a 2DFT with an operating
tape.

Proof. The following transducer T reduces LONGLENGTHh to TRIVIALh. We let T =
(Q,Σ1,Σ2, q0, q0, δ, Ot), where

• Q = {q0} is the set of states

• Σ1 = {0}

• Σ2 = {1, 2, . . . , 2h + 1}

And δ is such that:
δ(q0, 0) = (q0, R, 1, S), and
δ(q0,a) = (q0, R, , R).

At each step, T reads the next input symbol (it can be either 0 or a), prints 1 onto the
first cell of the output tape, and moves the input head to the right, while the output head
remains stationary. When the machine reads a, it prints nothing, moves each head to the
right and halting.

The operation of the output tape is defined as follows:

O(a, 1) =


1 if a =
a+ 1 if a ≤ 2h

a if a = 2h + 1.
So, the transducer counts in one cell of the output tape the number of 0s in the input
tape. If the number of 0s exceeds 2h, then the counter gets stuck at 2h + 1. The first tape
has 2h 0s iff the second tape has 2h as the final result of the overprinting.
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So, given that LONGLENGTH/∈2N by Proposition 8 and that TRIVIAL∈1D we see
that a very difficult problem reduces to a trivial problem via a 2DFT-OP with an operating
output tape. This reduction proves to be very strong, so strong that is actually of no use
to us.

Corollary 8. The reduction that can be defined by the generalization of 2DFT-OP, with
an operating output tape, is such that none of 1N, 2D or 2N is closed under it.

3.5 Conclusions

In this chapter we defined a new type or reduction, trying to prove CTWL to be 2N/const-
complete. The whole idea was based on compression of information. The essence of the
TWL problem is the same in its restrictions. One column with random arrows between
its nodes is enough to make this problem difficult enough. But there seems to be a gap
between TWL and ShortTWL or CTWL afterall, and it is the distance between having
instances that are countable or not (by a small 2DFA). But the effort to compress the
information that way, created another problem, on the way the machine accesses the
information. As a result, this reduction took the problem to a different direction than the
one that was intended. Finally, the generelization of the reduction is shown to be very
strong to be of any practical use. The operation of the tape can be defined to deal with
the problem, and reduce it to trivial, no matter how difficult the starting problem is.
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