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Euyaplotieg

'Eyw 8¢t o€ ToAég epyaoieg va avagépouv otny apyl) xdnolo and@ieyud, XAmoag onuavTixig
TEOCWTIXOTNTUS.

“Contrariwise, if it was so, it might be; and if it were so, it would be; but as it wsn’t, it
ain’t. That’s logic.” -Tweedledee

Enedy) uepixol pmopel va unv avayvwpilouv tov Tweedledee wg auvdevtio, moapodétew éva
evolhaxTixd andgieyua.

“Listen, once you figure out what a joke everything is, being the comedian ’s the only thing
that makes sense.” -The Comedian

Ou Hlela va euyoptotiow TpdhTa Tov Xphoto Karolvton, yia tny exiBiedn, tov ypdvo tou
xou Tov %610 Ttou, xat Tov IIdvo Povtoyidvvn yio 1o e€anpetind pdinuo oty onuactoloyio
YAOCOWY TEOYPUUUATIONO) xat TNV ateielwTn utopovy) Tou. Eriong Véhe va euyaplothon xat
Toug xuploug Evotdhio Zdyo xou Nixdhoo [lanaonbpou yio TNV CURPETOY T TOUC GTNY TEIWERN
emitpony) xat OAoug toug xadnyntég Tou MITAA, ewdixd, tov Kwvtaviivo Anuntpaxdénovio
TOU TORd TO YPUUPELOXQAUTING EUTOBLA, XATHPERE VO XPATAOEL TO PETATTUYIAXS AEITOUEYIXO.
Enilong suyoptot® toug xadnynTtés mou Ye VETVELGAY Vo a0y OAND® TEQUITERL UE Ta doT-
poTixd, xou €idd Tov Andéotoho Owud. Nowwde v unoypéwon va avapépw Tic UTUAAAAOUG
e yeoppateiag touv MITAA, yio tny eCanpetind] eCunmpétn (ota Gpla tng edixic petayeipn-
ong) xou v mpodupia Toug xde popd Tou ypeetalbpouv Ty Borleta Toug, (o ypovoroyixy
oepd) Avva Baothdxn, Xpuoagpiva Xovopou xar Exévn K. Xapetiopoto oe dhoug toug,
Eevitepévoug xat uy), anogoitoug tou MITAA, toug euyopiotw yia Ty mapéa touc. Eidxn
pvela otov Aré€avdpo TTahouddnn Bi6Tt diywe TNy dixh Tou cupPoly|, dev Yo etye TporyuaTo-
rotnlel auty 1 Sinhopatixt, epyacio. Kiewovtag npooiétw nwg o Odvoc Tooudvog dev da
Beel obTe wior AEET Yo TuTixég ypaupotixés o€ auth Ty epyaocia, yio vo udldet xdmoto €6Tw
Ayo Baowd. Avotuywg Yo ypetaoTtel va eYYpagel o€ xdnolo Thfpes pdinua Tepl TV TUTLXGY
YEUUUATIXDV, XETOL GTIY U OTHY oXAdNUOUXT TOU XARLERAL.

H epyooia auth| ebvar agiepwuévn oTic yioyiddes wou, O, Eplpliin xow Mehrnoyévn,.

Ye autd 1o onpeio ogelhw va avapépw g Gha To Addn, Aoyxd, TuToYpaPIXd, wadnUaTIXd,
CUYTOXTIXE XA AOLTWY EIBQOY, Papalvouy anoxAeloTixd xat wovov euéva. A.M.
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Chapter 1

Computability

1.1 Preliminaries

Definition 1.1 (Alphabets, words, and Languages). An alphabet 3 is a finite, nonempty
set of symbols. A word or a string is an n-tuple of symbols of X. Instead of writing
(a1,as2,...,a,) we simply write ajag - --a,. If u = ajas---ay, then we say that n is the
length of u, |u| = n. There is a unique word of length 0 and that is the empty string e. We
denote by X" the set of words over X, that are of length n. ¥* = |, .y X", where * is kleene
star, is the set of all words. If L C ¥* we call it a language over 3. Therefore P (X*) is the
set of all languages over . Finally there is a binary operation over 3* called concatenation.
Given u; = a1as - -a,, and ug = by1by - - - by, we define uy - us = ajas - - - apbiba - - - by,. From
now on we will write ujus meant as the concatenation of u; and us. This operation can
be expanded to be used on sets of strings. Let A and B be sets of strings. We define
A-B=AB={w|3z € A,y € B:w = xy}.

Languages represent problems. Every language L represents the question of deciding
whether a given string w is a member of a L. Does w € L? Can this question be answered
algorithmically? If so, then there is a machine for that language, a machine that solves
that problem. A machine that, given string w, can answer yes or no.

There are many types of machines. The most complex machine is the Turing machine,
which, according to the Church-Turning thesis, can compute anything that is computable,
but our interest will be focused in much simpler models of computation. Models that can
solve only some computable problems. One such model is the one-way deterministic finite
automaton (1DFA).

1.2 One-way finite automata
1.2.1 One-way deterministic finite automaton
Definition 1.2. A one-way deterministic finite automaton (1DFA) is a five-tuple,
D=(Q.% q,F,9),
where
e () is a finite set of states {q1,q2,...,qr}
e Y is a finite input alphabet

e ¢ € @ is the start state
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e [ C (Q is the set of final states
e §:(Q) x X — (Q is the transition function.

The input is written on a tape of cells. In each cell there is one symbol written. The
machine has a head reading one cell, starting from the leftmost cell and moving one cell
at a time. The automaton switches between states, depending on the current state and
the current symbol being read, according to the transition function. The machine halts
when the head reaches the end of the input, or the automaton reaches a state from which
it cannot move to any other. Obviously the machine can make at most |w| moves before
halting. We say that D accepts w iff when the head of D reads the last symbol of the
input, it moves to a final state. The set of all strings accepted by the automaton D is
called the language of D.

We can also extend § to @ x ¥*. &' : Q x ¥* — @Q and define it the following way:

(g, a) = d(q,a)
(g, aw) = &'(3(q, a), w),

where a € ¥, w € ¥* and ¢ € Q. So now we can say that D accepts w if 6'(¢1,w) € F.
Example 1. Let ¥ = {0,1} be the binary alphabet. For reasons of convenience we will
be using this alphabet for most examples. In case we need to use another one, it will be
stated clearly. We will define a 1DFA for the language

L = {w|w € ¥* such that the last two symbols of the string are 01 in that order }.

D =(Q,%,q11,{q01},0), where Q@ = {qo0,q11, q10, 901} and ¢ transitions are according to
the table below.

) 0 1
qoo | oo 4o1
qgo1 | 910 4q11
q10 | 900 4o1
qi1 | 910 411

Another way to describe it is the following: This 1DFA we defined recognises language
L by reading every string and keeping in its memory (according to the state it is in) the
last 2 symbols. Those 2 last symbols are the indices of the states.

1.2.2 One-way nondeterministic finite automaton

Another model of computation, similar to 1DFA, is the one-way non-deterministic finite
automaton (INFA). The concept of nondeterminism is essential to understand the differ-
ence between 1DFAs and 1NFAs. In a 1DFA the computation can be described as a path
in the state diagram of the machine, since for every state and input there is only one
state the machine can move to. This is a result of ¢ being a function, so for every given
(g,a) € Q x X there is a unique state §(q,a) € Q. Nondeterminism works differently in
that aspect, since there may be more than one path, and at least one of those paths need
to lead to a final state for the whole computation to accept. Intuitively, the machine has
the ability to “guess” the correct path, or rather, run all the paths at once.
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q10

Figure 1.1: State diagram of the 1IDFA D.

Definition 1.3. A one-way nondeterministic finite automaton (INFA) is a five-tuple,
N = (Q725q17F76)7

where @, %, q1, F are as in the definition on the 1DFA and § : Q@ x ¥ — P(Q) is the
transition function.

Similarly to 1DFAs, for the machine to accept string w, there needs to be a path
from the starting configuration (state ¢; and the head at the first symbol of w) to a final
configuration (some ¢ € F' and the head at the last symbol of w). The main difference
this time is that for any pair (q,a), where ¢ € @, a € 3, the automaton may transition
to more than one state (while definitely moving the head to the next symbol). §(g,a) is a
set of states, the set of all states the automaton may transition to. So, if ¢; € d(¢q,a) and
g2 € 6(q,a) then the automaton may move to any of these two states. In order for the
automaton to accept w, there needs to be at least one path (among all possible paths) to an
accepting state. A note on non determinism: it doesnt matter which state, the automaton,
decides to transition to. What is essential to the computation is the possibility of having
a successful computation. In that sense we may say that the automaton, in every step,
splits into many incarnations and, if one accepts, then the automaton accepts. Or we may
suppose the automaton guesses a successful path, if one exists, and follows it.

Function é has been changed, in order to be kept a function. We could also define ¢
as a relation 6 C Q) x ¥ x ).Continuing in the same fashion as before, we can define an

extension of 4, &' : P(Q) x ¥ — P(Q)
¢'({g},a) = (g, a)
§'(S,a) = | J 8(q, ),

q€eS
where a € ¥, € Q and S C Q. We can then expand §' in §” : P(Q) x X* — P(Q) as
such:
§"(S,a) = &'(S,a)
§"(S,aw) = §"(8' (S, a),w),
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where a € ;g € Q,w € ¥*, and S C Q.

So now we can say that N accepts w if ¢”(¢1,w) N F # (). From now on, we will be
referring to ¢’ and ¢” as 0. That means N accepts w if there exists a state g € F' such
that ¢; € (¢q1,w). And that means that, given w, there is a computation path from go to

af.
Example 2. We will construct a INFA that recognises the language

L = {w|w € ¥*such that the fourth symbol from the end of w is the symbol 1}.

N =(Q,%,q0,{qs},0), where Q = {qo,q1, 92, 43,94} and ¢ is described in the table below.

) 0 1

q0 {QO} {QO, Q1}
@ | {2} {2}
q2 {CI3} {q3}
a3 | {aa}  {aa}

qga| 0 0
0,1
m 1 0.1 0.1 0.1
—=() \_/ \_/ \_/ ©
qo q1 q2 q3 q4

Figure 1.2: The state diagram of the INFA .

Figure 1.2 repserents the states and transitions of the INFA. As we can see, while
reading the input string, the machine stays on the starting state. At any point, where
it reads the symbol 1, it may move to state ¢;, and then it will count 3 more symbols
before halting. If there are exactly 3 more symbols, the INFA accepts. We may say that
N guesses the 1 that is fourth from the end. If the string has that property then there is
a computation path through which N halts at the accepting state.

1.2.3 Configuration

Before we continue with the definition of another type of automaton, we introduce a
concept that will help us understand computation even further.

Definition 1.4. A configuration is a string of elements from > and @ that can define
clearly and fully any snapshot of the machine during its computation. A simple way to de-
scribe a configuration would be, given machine M and input w, (¢,7) € @ x {1,2,...,|w|},
which means the machine is in state ¢ over the i-th symbol of w. An other way to define
configurations is with a string ¢ = uqaw, where u,w € ¥*, ¢ € Q and a € X, and this
means that the automaton, given the input string vaw, is at state gand the head is cur-
rently reading symbol a between strings v and w. From now on we will be using this way
to describe configurations. Keep in mind that there are many possible configurations for
a given input, namely |@Q| x (length of input + 1), but not all of these configurations are
reachable from the starting configuration, meaning some of these configurations might be
impossible for the machine to be in.
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From the definition of the automata, for input w € X* the starting configuration is
co = qqw. Let w = vau, ¢ = vgau and ¢ = vapu where a € ¥ and v,u € X*. Then

if p € §(q,a), we write ¢ M , and say that configuration c¢ yields configuration ¢ in
one step. A configuration that does not yield any other configuration in one step is a
halting configuration. A halting configuration can be either an accepting configuration or
a rejecting configuration. An accepting configuration has to be in this form: ¢ = wq where
g € F. The set of all configurations of machine M on input w, is denoted as Cjy,,. This
set can be seen as a graph, where the elements of Cys,, are the nodes and the possible

transitions between them ,c M , are the edges. We call it the graph of configurations.
The number of possible configurations is (|w|+1)|Q)|, where |w|+1 is the possible positions
of the head and |Q| is the possible states the machince could be in. It is obvious that in
order for string w to be accepted by the machine, there has to be a path from the starting
configuration ¢y to an accepting configuration, in the graph of configurations.

Finally we define the set of functions (Cys,., — B), where B = {0, 1} is the set of boolean
values true and false, represented as 1 and 0 respectively. A function f € (Cprp — B)
assigns a boolean values to every configuration in set Cjr,. But what does 1 and 0
mean assigned to the configurations of Cs,,. The idea behind this to trace the property
of a configuration being on an accepting path in a reverse way. We start on the final
configurations ¢; = wq., and we assign 1 to the accepting ones (those where g., € F') and 0
to the non accepting ones. Any other configuration is assigned the value 1 if it can inherit
the property from its yeilding configurations, or the value 0 if it inherits the negation of
the property. This means that the starting configuration will be assigned a boolean value
as well. If the starting configuration is assigned the boolean value 1 then that means that
the starting configuration meets the accepting conditions. So in that case M accepts w.
Otherwise, if it is assigned the value 0 and M does not accept w.

This type of functions will help us define acceptance for the following automaton.

1.2.4 One-way alternating finite automaton

The next generalization of non determinism is alternation.

Definition 1.5. A one-way alternating finite automaton (1AFA) is a six-tuple,
A= (szvQDFvUvé)a

where Q, X, q1, F,d are as in the definition of INFA and U C @ is the set of universal
states.

The key difference between this definition and the one of the 1NFA is the set of universal
states. We have two types of states, the existential ones and the universal ones. Every
state must be of the one or the other type. Existential states, are states similar to the
states of the 1INFAs. They can transition to more than one state, given the same symbol
of the alphabet, and they are on an accepting path, if at least one of their transitions
is. Universal states need all their transitions to be on an accepting path. Whatever
we say about the states, can be interpreted equivalently for the configurations and the
assignment of truth values to them. Configurations on existential states may yield more
than one configuration, but need only one yelding configuration to be true, in order for
them to be true. Universal configurations need all their yeilding configurations to be true,
in order for them to be true. So in order for the machine to accept there needs to be a
tree of configurations, where the leaves are accepting configurations.
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Acccoding to the above, we can recursively define Py, : C4,, — B.

1 if ¢ is accepting
0 if ¢ is rejecting

V{Paw(d)|c A d} if ¢. ¢ U and c is not halting
N Paw(d)|c A d} if ¢. € U and c is not halting

Py y(c) =

where max is the arithmetic equivalent of the logical operator OR, and min is the eqivalent
of AND. We say that D accepts w if P4, (co) = 1, where ¢ is the starting computation.
Alternatively we can say that, for D to accept w, there has to be a tree with root the
starting configuration, and all leafs accepting configurations, where each existential node
has one child (at most), and each universal node has all possible yielding configurations
as children.

Example 3. This time we will use a different alphabet ¥ = P({1,2,3,4}). The language
we will be using is
L = {abla,b € ¥ such that a C b }.

We define A = (Qv %, qo, {Qf}v {QO}’ 5)5 where Q = {(IO, 9e, 41,42, 43, 44, Qf} and ¢ is defined
by the transitions below.

5(%’ a) = {Qf}

 {ge} ifa=10
20, ) = { {glical ifar0

{qr} ifieca

5(%(1):{@]0 ifi¢a
where i € {1,2,3,4}.

There are no other transitions than the ones described above. The only universal state
is the starting one. How this machine works: On the first symbol it reads, the machine
makes a universal move to the states that represent the elements of that first symbol (the
symbol is a set in P({1,2,3,4}). Then the machine varifies for each element that it is
contained in the second symbol. If an element of the first set is in the second set, then
the machine moves to the accepting state. If all elements of the first set are included in
the second, then all paths lead to the accepting state, and the machine accepts. In the
special case where the first symbol is the empty set, the machine just verifies that the
input consists of two symbols. The state diagram is in Figure 1.3, where q; is any set such
that i € a; and accordingly, b; is any set that contains . b is any set. Formally {i} C a;, b;.

A note on P and §: these functions work in a reverse way to each other (even thought
the first one is over configurations and the second one over states and symbols). P assigns
the truth to the halting configurations and spreads backwards towards the starting con-
figuration while § is applied from the starting configuration (meaning starting state and
first symbol), and finds its way through an accepting configuration (meaning a final state,
while the head has run through the whole word w).

1.2.5 The grid of configurations

Let’s take a moment now to consider a different view on the set of configurations Chy .
As mentioned above, the set C4,, has |Q| x (Jw| 4 1) distinct elements. We can describe
each configuration as an element of @ x {1,2,..., |w|+ 1}. Figure 1.3 represents a way we
can describe this set.
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O

Qe

Figure 1.3: The state diagram of the 1AFA A.

We can clearly identify the starting configuration on the top left corner and the halting
configurations (the rightmost column) some of them accepting, some of them rejecting.
As long as we are looking into one-way machines, we know that each node on the grid can
only relate to the elements of the next row. This is essential to understand the accepting
process for our next machine, the one-way boolean finite automaton.

1.2.6 One-way boolean finite automaton

A boolean automaton is a generalization of all previous models.

Definition 1.6. A one-way boolean finite automaton is a five-tuple,

B:(szvqlaFag)a

where Q, ¥, 1, F are as usual and g : (Q x ¥) — (B¥ — B) is a function. B = {0, 1} is the
set of boolean values true and false.

Function g assigns a boolean function g(-,-) : B¥ — B, to every combination of state
and symbol (@ x ). As mentioned earlier, every node on the grid of configurations, is a
configuration, having a state and a symbol that is being read. Those two define, through
g, a boolean function. So we can assign on every element of the grid a boolean function
over BF.

For any given configuration ¢ = ugav we define recursively Pg ., : Cp., — B as follows:

0 if ¢ is rejecting
Ppy(c)=4¢ 1 if ¢ is accepting
9(g,a)(Pw(di), Ppw(d2), ..., Pw(dy)) if cis not halting
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al GQ a3 CL4 a,,n €
©n ® ® o=@ PY
) .\:/. @ e °
g @ ) ® Y
% @ ® ) @ ® °

ay a9 as ay c. QA €

q1

q2

q3

% ® ® @ | @ | ° °

Figure 1.5: The viariables of the boolean function g(go,a3) : B¥ — B.

where d; = wag;v, meaning all k configurations of B, on input w, that are on the
column to the right of ¢, in the configuration grid. In other words, the function assigns a
boolean value to each node on the configuration grid, accordring to the values it assigned
on the next column.

B accepts w if Pp ,(co) = 1, where ¢y the starting configuration.

1.2.7 Computability equivalence

Theorem 1 (computability equivalence of one-way finite automata [9]). For every k-state
1BFA there is a 22" -state 1DFA that recognises the same language.

Proof. Let M = (Q, %, q1, F, g) be a 1BFA. We will create a IDFA D = (Qp, %, q0, Fp,0p),
that accepts the language of M. Let |Q| = k and u denote a k-tuple of boolean values
u = (ug,us,...,u;) € B¥. Let m; be the i-th projection, m;(u) = u;. Let f denote the
characteristic vector of F,

- 1 ,if g e F
”‘(f)_{ 0 ifq¢F.

Now we can define D:
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e Qp = (B¥ — B), the set of all functions from B to B.
e go = m is the starting state.

Fp = {h|h € (B¥ — B) : h(f) = 1}, meaning that of all functions-states in (B* — B),
final are considered the ones that give the boolean value 1 to vector f.

Finally the transition function is 6p : Qp x ¥ — Qp. For every h € Qp = BF — B
and a € ¥, we have:

5D(h7a) =ho (Q(Q17a)7g(q27a)7 o 7g(qk7a))7 VCL S 2.

Let t, : B¥ — B*, such that t, = (g(q1,a), 9(qe,a),...,9(qk a)), for a € ¥. Figure 1.6
explains the moves of the transition function. The grid can be seen as a sequence of
functions of vectors (of functions). The only important configuration from the first column
is that of the starting state, so for input w = ay - - - a,, there is a function g(q1, a1) : B¥ — B
that relates the value of that node to the values of the nodes of next column. From there
on the values of each column, are assigned by applying function t, : B¥ — BF, on the
values of the nodes of the next column. But D does not have to keep in its memory this
function because it can compose it with the current state-function. The composition of
h:BF - B with t, : B¥ - B* is hot, : B — B.

aq a9 as a4 e A €

o o o
o o o

,,,,,,,,,,,,,,,, L L
— —
~—_ F

ta,,

Figure 1.6: The functions of the vectors on the grid.

op(mi,a1) = g(q, a1),

dp(m,a1a2) = g(q1,a1) © tay,

dp(m1,arazas) = g(q1,a1) o te, oty and so forth.

When the machine reaches the final state-function, it uses vector f to decide if M
accepts of rejects (that is the way we have defined set Fp). O

Corollary 1. All one-way finite automata we defined so far are equivalent.

Proof. Tt is immediate from Theorem 1, since 1BFA is a generalization of all the one-way
finite automata we defined. O
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1.3 Two-way automata

The main difference between two-way automata and one-way automata is the movement of
the head that reads the input. In this case, the head can move left or move right or remain
stationary. This translates into three types of transitions in the transition function. The
computation may continue by moving the head to the left or to the right, or by remaining
at the current cell, reading the same symbol. This creates two types of problems that need
to be dealt with. The first one is quite typical. There is the possibility of the head being
driven out of the input tape. From now on we will be using two new symbols,- and -,
that cannot be part of our alphabet. The input w will be given in the form F w H. This
will help the automata, whenever they read an end-marker, to never move any further
than that. The second problem we encounter is the possibility of the automaton entering
an infinite loop, never completing its computation. This means that the automaton may
be unable to answer for some inputs. We will consider a string w to be accepted, only if
the computation on w halts and returns a positive answer.

1.3.1 Two-way deterministic finite automaton

Definition 1.7. A two-way deterministic finite automaton (2DFA) is a five-tuple,
D= (Qaza(th’(S)a

where Q, %, q1, F are as usual and § : Q x (XU {F,4}) — Q x {L, S, R} is the transition
function.

Before we define acceptance there are a few things that need to be stated about 6.
The transition function works pretty much the same way in every automaton, whether
it is one-way or two-way. The differences are the following: A value in {L, S, R} defines
whether the head of the machine will move to the left, stay at the same position, or move
to the right, respectively. There is also the restriction that whenever d(q,) = (p, ),
x can only be R or S, while whenever §(¢,-) = (p,R), p = ¢ and ¢ can only be final.
The automaton D, given input w, accepts if it reaches configuration a final configuration
cy =k w gy, where gy € F. So this means that the computation starts from the starting
configuration and ends in an accepting configuration. There are two basic differences
with the one-way model. The first one is that the head is not always moving torwards
the halting configurations. Actually, a configuration could be yeilding, in one step, any
configuration on the same column, or on the two adjacent columns to its left and to its
right. The second difference is the possibility of the computation entering an infinite
loop. We can see that the set of configurations is finite. This means that in order for the
computation to never end, the path needs to repeat a set of configurations. This can be
detected if the computation path grows longer than the number of possible configurations
(by the pigeonhole principle).

The partial function Pp 4, : Cp., — B is defined as follows:

1 if ¢ is accepting
Pp,(c)=< 0 if ¢ is rejecting
Pp(d) if ¢ is not halting and ¢ 2
Some configurations may stay undefined (all the configurations that have no path to halting

configurations, to be exact), so this function is partial, since it can assign boolean values
only to some elements of Cp . D accepts w if Pp ., is defined on ¢y and Pp 4, (co) = 1.
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Figure 1.7: The possible transitions out of configuration - aiqas - - - a,, - are in the frame.
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Figure 1.8: An example of a non ending computation (loop), on the configuration grid.

Example 4. We will define a 2DFA that recognises the language of example 3. We define

the 2DFA D = (Q,P({1,2,3,4}),q1,{qr},0), where Q = {q1,4}, 42,45, 43, 45, 94, 44, G5, 4 }
and ¢ is defined as follows:

"' R) ifica
Fori € {1,2,3}, (g, a) = 4 (% o
{ b 0(gira) { (¢i+1,95) ifi¢a
. ’ . (qi+1, L) ifi€a
For i € {1,2,3}, 6(g;, a) = { unde fined ifida
[ (¢4, R) ifiea
s ={ (7 g
/ B (Q5, S ) ifica
oar,a) = { undefined  ifié¢a

6(gs,a) = (g7, R)

There are no transitions other than the ones described. This concludes the description
of the machine. The machine moves back and forth checking one by one each element. If
an element is included in the first set, then the head moves to the right and verifies that
same element is included in the second set. Then it continues to the next elment. When
it checks the last one, returns to the first symbol and counts two symbols, before moving
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to the accepting state. The automaton is also described in Figure 1.9, where a; stands for
any set that ¢; € a; and o stands for any set that ¢; ¢ a,. Same goes for b;, while b stands
for any set.

;Jb LRST

ay, S b L
q2 C ap, 1 qlg
ay, S by, L
5 0,
as, S bs, L
a (SO
ay, R by, S
o T@Qf
4, R

Figure 1.9: The state diagram of D.

1.3.2 Two-way nondeterministic finite automaton

Definition 1.8. A two-way nondeterministic finite automaton (2NFA) is a five-tuple,
N = (Qazathu(s)?

where @, X, g1, F are as usual and 0 : @ x (XU{F,}) = P(Q x{L, S, R}) is the transition
function.

Function § has the same behavior conserning - and -, as the function of a 2DFA: if
(p,x) € 6(q,t) then = € {S, R} and if (p, R) € 6(q,) then p = ¢ € F. Similarly to the
1INFA, we are looking for a path among all possible computation paths, which will lead
us to an accepting configuration. This time, if there exists a path between the starting
configuration and an accepting configuration then there is an equivalent path (same start
and same end) with length no greater than the total number of configurations. This means
that, similarly to 2DFAs, if there is no path of at most that length, then there is no path
at all.

Similarly to 2DFAs, a partial function Py, : Cn . — B is defined as follows:
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if ¢ is accepting
if ¢ is rejecting

Pyw(c) = if ¢ is not halting and Py, (d) = 1 for some d such that c N

if ¢ is not halting and Py ,(d) = 0 for all d such that ¢ Xd

S = O =

As in the 2DFA model, a path from the starting configuration ¢, to an accepting
configuration exists iff Py, is defined on ¢y and P, (co) = 1.

1.3.3 Partially ordered sets

As we saw on the two previous models, there is something special about our P functions,
they are partial funtions. To tackle this problem we will extend set B. We now define
set BY = BU{L}. The L element is called bottom element and is assigned to all the
configurations whose values are undefined. Let (BT, C) be a partial order over BT, such
that L — 1, L C 0, and 0 and 1 are not comparable. In the same way, we define the

1 0

L
Figure 1.10: The partial order sqsubseteq on B*.

partially ordered set ((B*)¥, C) where for all a,b in (B)¥, we have a C b <= (Vi)(a; C
b;), where a; and b; are the i-th coodrinates of a and b, respectively. This partial order
considers the defined value greater than the undefined value. So, if a vector a is greater
than a vector b, then a is “more defined” than b i.e. has as many or fewer L elements in
the same coordinates as b. The addition of an extra symbol to the set of boolean values
creates a problem in the way we handled values so far. We need to extend the boolean
functions f’ : (BT)* — B¥ so that they agree with their restrictions over B¥, and at the
same time they do not assign arbitrary values. The rule is simple: For x € (B*)* \ B*, if
all y € B¥ such that = C y agree on f(y), then f'(z) = f(y), otherwise f’(x) = L. This
simple rule can be justified as follows: If all y € B* such that = C y share the same f(y)
value, then the undefined coordinates of x do not affect the value of f(x) (they could be
set to either true or false, and the result would stay the same), otherwise, the undefined
coordinates do affect the resulting value, so f(x) cannot be defined either.

This partial order can help us create another partial order on (C — BY). Let P, P, €
(C — BT). We say that P, C, P if Pi(x) E Py(z), for all x € C. This relation can
be described as: P, is more defined than P;. There is a bottom element in this poset,
L., which is the function not defined anywhere: L,(x) = L, for all x € C. By definition
1, C P, forall Pe(C— BY).

1.3.4 Two-way alternating finite automaton

Definition 1.9. A two-way alternating finite automaton (2AFA) is a six-tuple,

A:(Q727qlaF7U75)7
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where Q,%,q1, F,U are the same as in the one-way model and ¢ : @ x (X U {F,-}) —
P(Q x {L,S,R}) is the transition function.

The same restrictions for & over the end-markers apply and the set of states U plays
the same role as in the one-way model. We define Py, : Ca 4, — B as follows:

1 if ¢ is accepting
0 if ¢ is rejecting

V{Paw(d)|c A d} if c is not halting and ¢. ¢ U
N Paw(d)|c A d} if ¢ is not halting and ¢. € U

Py y(c) =

We may now extend Py (c) to Py, : Caw — BT. This function helps up define functional
7:(Caw — BY) = (Caw — BY) the following way:

1 if ¢ is accepting
0 if ¢ is rejecting
T(P)(e) = V{P(d)|c A d} if ¢ is not halting and ¢. ¢ U

N P(d)|c A d} if ¢ is not halting and ¢. € U and ¢

for all P € (Ca — BY). By Ly, the bottom element of (C4,, — BT), where all configu-
rations are valued undefined, and this functional, we create a non-decreasing sequence of
functions in (Ca,4 — BT).

PA,w,O =1,
Pawi=T1(Pawi-1)

The set (Ca — BT) is finite (due to C4, and BT being finite), therefore this non-
decreasing sequence (in the sence of more or equally defined) has a least fixed point. We
denote this least fixed point P4, -, and by definition 7(Pa ) = Pawr, which means
that this function contains the minimum amount of information that can be derived from
the rules of Py . Therefore we say that A accepts w when P4, -(co) = 1, where ¢ is the
starting configuration.

1.3.5 Two-way boolean finite automaton

Definition 1.10. A two-way boolean finite automaton (2BFA) is a five-tuple,

B=(Q.%,q1,F,9),

where Q, %, q1, F are as in the one-way model and g : (Q x (XU {F,})) — (B* — B) is
a function.

Function g, as in 1BFAs, assigns a boolean function g(-,-) : B** — B, to every com-
bination of state and symbol (@ x ). As mentioned earlier, every node on the grid of
configurations, is a configuration, having a state and a symbol that is being read. Those
two define, through ¢, a boolean function. So we can assign on every element of the grid a
boolean function over BF. Similarly to the above, we define Pp,, : Cp — B as follows:

1 if g(qc, ac) is the constant function 1
Ppw(c) =4 0 if g(qge, ac) is the constant function 0
9(qe, ac) (P w(di), Ppaw(d2), ..., Ppw(dsk))if g(gc, ac) is not a constant function
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We also define functional 7: (Cp. — B*) = (Cp. — BT) as follows:

1 if g(qgc, ac) is the constant function 1
7(P)(c) = ¢ 0 if g(ge, ac) is the constant function 0
9(qe,ac)(P(dy), P(dg), ..., P(dsk)) if g(qgc,ac) is not a constant function

for all P € (Cp, — BY), where g(g,a) is a boolean function dependent on function g
(given in the definition of B), with domain (B*)3*. The first k configurations, dy,ds,. . . ,d,
are the configurations yielded by ¢ when the head moves to the left. The next k con-
figurations dg41,dk4o ... do; are the configurations yielded by ¢ when the head remains
stationary. Finally, dogi1,dogia ... dsk are the last k configurations yielded by ¢ with head
position to the right of the cell of c. All of these are the configurations that ¢ may yield
in one step. If ¢ € F then g(g,4) = 1 the constant function of B®> — B, but there might
be other constant functions g(g,a) as well. Similarly to 1AFAs, we define the following
sequence:

PB,w,O = L

Pgwi=T(PBw,i-1)

We denote this least fixed point Pg -, and by definition 7(Pp  r) = PB w,r, Which means
that this function contains the minimum amount of information that can be derived from
the rules of Pp,,. Acceptance is defined the same way it was defined for the 2AFA: B
accepts w when Pp,, r(co) = 1 where ¢q is the starting configuration.

1.3.6 Computability equivalence

Theorem 2 (computability equivalence [10]). All the two-way finite automata defined in
this chapter are equivalent and they are equivalent with the one-way finite automata as
well.

Proof. 1t is clear from Lemma 1 and Lemma 2 below that for every 2BFA there is an
equivalent 1DFA. All other two-way models are restrictions of the 2BFA, therefore all
two-way models are equivalent to each other and equivalent to 1DFAs. ]

We will introduce a restriction of the 2AFA model, named deterministic-movement
2AFA. This model with serve as an intermediate model, for prooving the equivalence of
2BFAs and 1DFAs.

Definition 1.11. A deterministic-movement two-way alternating finite automaton (DM-
2AFA) is a six-tuple,
A= (sza('haFané)a

where ), X, q1, F, U, 0 are as in the 2AFA model. Beyond the standard restrictions of § over
the two end-markers, whenever the head moves to the left or right, the machine can only
make a deterministic transition to another state. Formally, ¢ is allowed to have only 3 types
of moves: 5(Q7 a) = {(p7 L)}7 5((]7 a) = {(pv R)} and 5(Q7 a) = {(pla S)v (an S)? SRR (prm S)}
Hence every step is repsectively deterministic with head movement to the left or determin-
istic with head movement to the right, or existential or universal with no head movement.
Finally, the DM-2AFA ends all its computations moving right after the right end-marker,
meaning, the machine cannot halt while the head is not positioned over the right end-
marker.
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Lemma 1 (2BFA to DM-2AFA). For every k-state 2BFA there is a 2(3k + 25F)-state
DM-2AFA that recognises the same language.

Proof. Let M = (Q, %, q1, F, g) be a 2BFA. We will construct a DM-2AFA A = (Q4,%, q1,
F4,Uy4, d) such that they accept the same language. We will need to substitute the boolean
functions g(q,a) : B3* — B, with existential and universal moves. Every g(q,a) : B?* — B
can be written in conjunctive normal form. This is essential to the construction of the
DM-2AFA. The description of A is as follows:

e Defining Q4: We define the set Q= = {¢~|¢ € @}, which consists of one negative
state for each original state in Q = Q™.

We also define QF = {qz|q € Q} and Q}, = {qrlq € @}, that are just sets similar to
Q™, only tagged with an L or an R, for left and right. Similarly, we define Q; and

Qp-

Let @, = QT UQT UQp and @, = Q~ UQ7 UQp, and Qi = QT UQ~ UQT U
Q% UQ; UQx. It is immediate that |Qi| = 6k.

In a similar fashion, we call QF the set of all clauses that can be made using the
elements of Q;; as variables. We can easily describe Q} as the powerset of Qy,

QF = P(Quit). That way, every subset of Qy; denotes the clause of the elements of
that subset. We also define Q. = {¢™|¢ € QT }.

We name the set Q@ = QT U QS UQF UQFL, the set of positive states.

Finally, we define the set @, = {¢7|q € QX}, the mirror set of QX, which is identical
but with a tag of the minus symbol on each element, the set of negative states. So

obviously Q4 = Q- UQ, UQ; UQxR.

All preparation is over. We finally define Q4 = @} U Q7. If [QT| = k then we can
see that |Q | = 2(3k + 26F).

e Iy is the set of accepting states. Let T = F and F~ = {¢ |¢ € F™}. Then
FAa=FU(@Q@ \F7).

e Defining Us: Uy = QT UQ. . On a side note, the set of existential states is QT UQ™.
The remaining states Q}f, QE, Q7 , QR are states that move deterministically, so we
may add them to any of the two sets.

e 0:(Qax(XU{F})) = P(Qax{L,R,S}) is the transition function which will be
described in detail below.

According to our restrictions, a state ¢ € Q4 can be either universal, existential, or de-
terministic. So, it is immediate that 6(q,a) = {(¢;,5), (¢},95),...,(gm,S)} in case ¢ is
existential or universal, and 0(q,a) = {(¢;, L)} or d(q,a) = {(gi, R)} in case ¢ is determin-
istic.

Here is how & works:

° Qz, QE, Q7,Qx: The function is defined over these sets as follows.

(g, a) = {(¢; L)}, 0(ar,a) = {(¢; R)}, d(qp,a) = {(¢7, L)}, d(qg,a) = {(¢", R)}

for all ¢ € Q, and these are the only deterministic moves.
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e QF and Q.: Each state in one of these sets represents a clause of a number of
variables among QT,QF,Q%. As described earlier QF = P(Q), so that means

qe € Q7 is in fact q. € P(Quit)-
So for q. € Qja 5((]07(1) = {(‘L S)|q € QC}'
¢ ifqeqQy
And for q; € Q. , d(q. ,a) ={(¢*,95)|q € qc}, where ¢* =< p if g € Q
and g =p~.

e QT and Q: We know that g(g,a) is a boolean function in (B3* — B). Every
such function can be written in conjunctive normal form (CNF). CNF consists of a
number of clauses under conjunction. Let Cy(44) C Q7 be the set of clauses of the
CNF form of g(g,a). We have two sets that represent all clauses, Q1 and Q.

In case ¢ € @ then d(q,a) = {(p, S)|p € Cg(q,a)}'
In case ¢~ € Q™ then 6(¢~,a) = {(p™,5)|p € Cy(g,a)}-

This completes the description of 4. Machine A makes the same computation as machine
M, but has many more states to eliminate existential and universal moves while the head
moves left or right, and to replace boolean functions with CNFs. The elements of the sets
QJLr and QE work as representatives of the states of the initial machine: Qf solves the
problem of non-deterministic, or universal, movement to the left, and QE the problem of
non-deterministic, or universal, movement to the right. So, for example, if at any point the
machine has to move left to state p, it just moves to py, first, without moving its head, and
then p; moves the head deterministicaly to the left, while moving to state p. The other
two methods used, the set of clauses and the duplication of the states (under the “minus”
tag), are just tools for replacing the boolean functions in the computational process. What
was done in one step in M, now takes three steps in A: For the boolean function g(q, a),
we construct the equivalent CNF. So ¢ becomes a universal state, connecting under its
universal branching the states for the appropriate clauses. Then the clause-states find their
literals. If a literal has negation, then the rest of the computation moves to the mirror
states, which have symmetrical transitions. All transitions stay within the mirror states,
until a negative literal is found again. That is why the accepting and rejecting states have
been reversed on the mirror machine. (Another way to interpret the duplication of the
states is to consider it as method for counting modulo 2, the number of negations along
each path.) O

Lemma 2 (DM-2AFA to 1DFA). For every k-state DM-2AFA there is a 2+2° _state 1DFA
that recognises the same language.

Proof. We will construct a 1DFA that recognises the same language as a given DM-2AFA.
The DM-2AFA we will be using has one important characteristic: it starts its computation
from the starting state at the far right of the input, 4. This model is equivalent to the
original DM-2AFA, by the addition of a new starting state that moves the head to the
other end of the input, berofe finally transitioning to the original starting state. Also, the
input of the 1DFA is exactly the same as the input of the restricted 2AFA, including +
and - at the start and end of the input, respectively.
Given a DM-2AFA M = (Q, X, g5, F, U, ), we construct a IDFA D = (Qp, %, s, Fp, dp).

We also define Q = {q|q € Q}.

e The set of states is Qp = P(Q x P(Q)).
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e The starting state is sg = op(F).
o Fip={te®pl3(q1,A) €t: A= F} is the set of accepting states.

e ip:Qp x (XU{F,}) — @Qp is the transition function which will be described in
detail below.

The set of states of an automaton is its memory. In case of D, the set of states consists
of sets of pairs (g, A), where ¢ € Q and A C Q. Let’s suppose that D is in state p € Qp
and the head is over the a; symbol of the input. Consider the grid of configurations in
Figure 1.11. If (¢, A) € p then there is a valid tree of computation of M, that corresponds

v
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Figure 1.11: The first column is that of the roots and the second is that of the tagged
leaves.

to a valid tree of configurations of M with the following charecteristics: The root of tree
is the configuration of state ¢, while head is over symbol a;. The leaves of the tree are
the configurations with states those of set A, while the head reads symbol a;4; Finally,
all nodes, but the leaves, are on first ¢ + 1 columns (since the machine has read only the
first 4 symbols and has considered I as a first symbol without reading it). Keep in mind,
it doesnt matter what a;11 is, at this point. Also p does not know what the actual tree
of configurations is, but knows the fact that a valid tree, with the above characteristics,
exists. So every pair in p represents a valid tree of configuration, with root configuration
in the first marked column, and leaves on the second marked column, in Figure 1.11. Let’s
name every pair a limb and p € Qp, a set of limbs.

So 0p(p,ai+1) = p', where p’ is the set of limbs of D, while its head is over symbol
a;+1. The question that arises is the following: Knowing the limbs of D, while its head is
over symbol a; (this is p), and knowing the next symbol, a;;1, can we deduce the limbs of
D, while its head is over symbol a; 1 (this is p’). We will show how to calculate dp(q, a).

For this we will need to define the set Q% = P(Q x P(Q U Q)), a superset of Qp.
Every element in z € Q}, is a set of pairs just like the elements of )p. The difference
is that for (¢, A) € z, A has tagged and untagged elements. So (¢, A) € z means that
there is a tree of configurations just as above, with the difference that the leaves of the
tree may be the states of configurations over symbol a; as well. The states of these
configurations are the untagged elements of A. We need the untaggeed elements to produce
0p(p,a). Let’s define the process that determines dp(p,a). We will define six functionals:
B,i: P(QxPQUQ)) = PQxPQUQ)), for 1 <i<6. For X € P(Q x P(QUQ)):
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o Bp1(X) ={(q,{d})lq € Q}
e Bpo(X)={(¢q,0)[(q,A) € X,AC CtU{(¢q,BUC)|(¢, BU{p}),(p,C) € X}.
° Bp73 X) Aq1,92, .. ,qm})|q is universal and 6(q,a) = {(q1,5), (g2, .5),

W |l
/—\ > S Y =

( {
( {
( {

- ( 1
( {
( {
p6(

qm, S)
e Bpa(X) ={(g,{¢'})|q is existential and (¢, S) € d(¢,a)}.
o Bys5(X) ={(¢, {dDId(q,a) = {(d, R)}}-
. X)={(q,4)|0(g,a) = {(¢', L)}, (¢, A) € p, AC Q}.

The basic intuition behind this construction is this: With functionals By, 1, B) 3, By 4 we
add to set X all the limbs of trivial configuration trees of machine M, that can be created
while the head of the machine remains stationary over the symbol a. In more detail: B) 1
adds the trivial limbs of trees that consist of one node, B, 3 adds the limbs of trees that
consist of only a root and the leaves, for every universal state and its transitions on a, and
By, 4 adds the limbs of trees that consist of only a root and a leave for every existential
state and each of its transitions on a. Functional B), s adds to set X all the limbs of trees
of configurations of M that can be created if we combine the roots of the limbs of p with
the nodes-configurations of M while the head is over symbol a. Functional B), > adds to X
all the limbs of trees that can be created by the combination of the already created trees
of By 1, Bp3, Bpa, Bpe and By, 5 it self, by replacing the leaves of limbs with roots of other
limbs. It also adds new limbs with expanded set of leaves. Finally, functional B, 5 is the
one responsible for adding to X the limbs with tagged elements. For every tree in X it
adds a tree with leaves configuration over the next symbol of a, if there is the equivalent
transition on 9.

Now we can define B,(X) : P(Q x P(QUQ)) — P(Q x P(Q UQ)) such that:
By(X) = Bp1(X)UBp2(X)UBp3(X)UBpa(X)UBy5(X)UBye(X)UX

There is a sequence created by this function over sets: (), B;(0), B,(By(0)), ... It is obvious
that for every X € P(Q x P(QU Q)), we have X C B,(X). It is also clear that P(Q x
P(QUQ)) is a finite set. Therefore, the ascending sequence created by this function has
a least fixed point X, such that X, = Bp(Xy,). So, now we can define

5D(p7 a’) = {(Q7A) € Xf:B|A C Q}

In other words, we keep only the elements of the fixpoint that have the tagged leaves.
There are two special cases: d0p(F) = dp(0,F) is the starting case. This is because we
suppose the machine starts with the head over the first symbol of the output, to the right
of . So the first state is all the possble trees of computation the machine can have when
it was read only F. This includes trivial trees of one state. dp(g, ) is the same as any
symbol, with the difference that this time (¢, A) € dp(q, 1) means that the set A is the set
of leaves that go right after I, where the computation halts. As we seen above, if ¢ = ¢
and A = F then the tree of configurations has root the starting configuration and leaves
the accepting configuration. In that case the machine accepts the input. This concludes
the description of dp.

Hence, D accepts a string w if dp(sg, w ), namely if there is a computation tree
of M, with root the starting state ¢;, on 4 and leaves the accepting states on . This is
exactly the definition of acceptance for M. O
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Chapter 2

Complexity

2.1 Problems

This chapter presents the computational complexity classes related to the computational
models of the previous chapter. But what does complexity mean for a finite automaton?
In a Turing machine, computational complexity measures the resources that the machine
uses in solving a problem, mainly the time, meaning the number of steps the machine
makes before halting, and space, namely the number of cells the machine uses on its tape.
In a finite automaton the main resource of study is its size, namely its number of states.
But in order to relate the number of states of an automaton to a problem, we need to
redefine problems.

Definition 2.1. A problem is an infinite sequence of languages (Lp)n>1 = (L1, Lo, L3, .. .).

Example 5. In the problem RETROCOUNT = (RETROCOUNT},);>1, we are given a
binary string of arbitrary length and we are asked to check that the h-th rightmost digit
is 1. Formally, for every h > 1 the input alphabet is ¥ = {0,1} and

RETROCOUNT}, = {w € ¥*| the h-th symbol from the end of w is the symbol 1}.

Example 6. In the problem INCLUSION = (INCLUSION},);,>1, we are given two subsets
of {1,2,...,h} and we are asked to check that the first one is included in the second.
Formally, for every h > 1 the input alphabet is ¥, = P({1,2,...,h}) and

INCLUSION;, = {w € £} |w = ab where a,b € ¥}, and a C b}.

Example 7. In the problem LENGTH = (LENGTHj)p>1, we are given a unary string
and we are asked to check that its length is h. Formally, for every A > 1 the input alphabet
is ¥ = {0} and

LENGTH,, = {0"}.

Example 8. In the problem LONGLENGTH = (LONGLENGTH})p>1, we are given a
unary string and we are asked to check that its length is 2". Formally, for every h > 1 the
input alphabet is ¥ = {0} and

LONGLENGTH, = {02"}.

27
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2.2 One-way machines

Definition 2.2. We call 1D the class of problems that can be solved by sequences of
1DFAs with polynomialy many states. In other words,

1D = {(Lp)n>1|3 polynomial p and sequence of 1DFAs (Mp)p>1
such that L(Mj) = Ly, and |Qu, | < p(h), for all h}.

In a similar fashion, we define 1N and 1A as the classes of problems that can be solved by
sequences of INFAs and 1AFAs, respectively, of polynomial size.

Definition 2.3. We call 2'P the class of problems that can be solved by sequences of
1DFAs with exponentially many states. In other words,

20 — {(Ly)n>1|3 polynomial p and sequence of 1DFAs (Mp,)n>1
such that L(My,) = Ly, and |Qay, | < 2P, for all h}.
Proposition 1. LENGTH €1D.

Proof. A 1DFA can count a word of length h with h 4+ 1 states. Specifically, D, =
({90,q1,---,an},{0}, 90, {aqn},9), and 6(¢;,0) = ¢;41 for alli = 0,1,..., h—1. This machine
counts the h first Os in the input word, then it halts. If the input has length more or less
than h then the machine does not accept. Hence, Dy, solves LENGTH,, with h + 1 states,
for all h. O

Proposition 2. LONGLENGTH e 2'P.

Proof. A 1DFA can count a word of length 2" with 2" 41 states. Similarly to Proposition
17 Dh = ({q07 q1s-- -, QO}a {0}7 qo0, {Q2h}7 5)7 and 5(q27 O) = qi+1 for all i = Oa 17 s 72h -1
This machine counts the 2" first Os in the input word, then it halts. If the input has length
more or less than 2" then the machine does not accept. Hence, Dy, solves LONGLENGTH;,
with 2" 4 1 states, for all h. ]

Proposition 3. RETROCOUNT ¢1D.

Proof. By contradiction. This problem RETROCOUNT},, cannot be solved by a 1DFA
with poly(h) many states. Intuitively, in order to know what the h-th rightmost symbol
is, the machine needs to remember each one of the last h digits at all times. In order to
remember those digits, it needs 2" states. Formally, we use the pigeonhole principle: If
the machine has fewer than 2" states, then there are two different strings u1, ug, of length
h, that work as the part of the input that has already been read, and they both lead to
the same state q. These two string are different on at least one position. The rightmost
position they differ is of interest to us. We call it the i-th position. We append to u1, us
an arbitrary string u of lenth h — 4, creating strings w; = wju and wy = usu. When
the machine reads the two new strings, the h-th rightmost symbols are the i-th rightmost
symbols of u1,us concatenated with u. The h — 1 rightmost symbols are the same in both
strings w1, wo and reading the A-th rightmost symbol the machine moves to the same state
q for both strings. So, on both strings the 1DFA has the same computation after the h-th
rightmost symbol, and finishes in the same state. But this state is either accepting or not.
Either way, one of the strings has to be accepted and the other has to be rejected, so the
same state is acceping and rejecting at the same time. That is clearly false. O
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Proposition 4. RETROCOUNT €1N.

Proof. In Example 2, we constructed a 1INFA that recognises RETROCOUNT,. If we
generalize that construction, we can see that every RETROCOUNT}, can be recognised
by a (h + 1)-state 1INFA. O

Proposition 5. INCLUSION ¢1N.

Proof. By contradiction. Suppose there is a INFA N that recognises INCLUSION,, with
poly(h) states. Let ai,as,...,aqsn be a list of all symbols in P({1,2,...,h}). Then N
accepts all inputs of the form a;a;. So every such input has an accepting path of length 2,
of the form gy — ¢; — gy, where qg the starting state and ¢y an accepting state. When the
machine moves to state g; it has already read the first symbol, and the head is over the
second symbol of the input. We do know that there are 2" symbols a;, but only poly(h)
states ¢;. By the pigeonhole principle, this means, that for large enough h there are two
first symbols a; and a;, where a; # a;, that produce the same middle state ¢; = q. = g;.
This means that g. € §(qo,a;) and g, € d(qo, a;j) and also 6(ge, a;) N F # 0 # 6(ge, aj) N F.
From these two facts it is obvious that a;a;, aja; € INCLUSION, but this is not possible
since the two sets are not equal. O

Proposition 6. INCLUSION €1A.

Proof. In Example 3, we constructed a 1AFA that recognises INCLUSION,. If we gen-
eralize that construction, we can see that every INCLUSION, can be recognised by a
(h 4 3)-state 1AFA. O

We have shown the computability equivalence of the one-way models, but not the
detailed INFA-1DFA equivalence. The subset construction is a typical way to construct
a 1DFA that recognises the same language as a given 1NFA.

Theorem 3. For every k-state INFA there is an equivalent 25-state 1DFA.

Proof. Let N = (Q,%,q1, F,0) be a INFA. There is a 1DFA D = (Qp,%,{q1}, Fp,dp)
such that L(D) = L(N), where

e (Jp is the powerset of Q).
e Fp consists of all X € P(Q) such that FFNX # (.

e Jp is the transition function, such that ép(S,a) = §(S, a) according to the extension
of 4, as defined in Subsection 1.2.1.

It can easily be proven by induction (on the length of w) that, for all w € ¥*: 6(q1,w) =
dp({q1},w). This means that §(¢1,w)NF # 0 < op({q:1},w) € Fp,sow € L(N) <
w € L(D). O

We need to note that the set of states Qp is the powerset of () and thus D has
exponentially more states. Many of these states might not be reachable, so they may be
ignored, but this is the general way to construct an equivalent 1DFA. The above proof is
about the computablity equivalence of the two models, but also provides an algorithm to
create a 1DFA that is equivalent to the given 1NFA.

Corollary 2. 1NC 21P
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The natural question that follows is: What is the relation between 1N and 1D?
Theorem 4. 1IDCIN

Proof. We need to show two things. First that 1IDC1IN and second that 1N\1D# ().
1DCIN: It is immediate from the definition of the INFA and the 1DFA that the former is
a generalization of the later. A family of 1DFAs with polynomialy many states is in fact
a family of INFAs with polynomialy many states. So 1IDC1N.
RETROCOUNT ¢1D. This has been proven in Proposition 3. This means that there
can be no 1DFA with polynomialy many states (with respect to h) that recognises the
mentioned problem
RETROCOUNT €1N. As we have seen in Proposition 4, this problem is in 1N.

As a result the exponential blow up of the subset construction is an inescapable barrier.
And so, there is a computational gap between 1D and 1N. O

2.3 Two-way machines

Classes analogous to the ones defined above for one-way machines can be defined for
two-way machines, as well.

Definition 2.4. We call 2D the class of problems that can be solved by sequences of
2DFAs with polynomially many states. In other words,

2D = {(Ln)p>1|3 polynomial p and sequence of 2DFAs (Mp)n>1
such that L(My) = Ly, and |Qu, | < p(h), for all A }.

In a similar fashion, we call 2N and 2A the classes of problems that can be solved by
polynomial-size sequences of 2NFAs and 2AFAs, respectively.

Proposition 7. INCLUSION €2D.

Proof. We have proven in Example 4 that INCLUSION4 can be solved by a 2DFA. That
construction can be generalized to prove that INCLUSION}, can be recognised by a (2h+3)-
state 2DFA, for every h > 1. The description is as follows: D = (Q,P({1,2,...,h}),¢1

{ar},0), where Q = {qn41, qnr2, 45} U U1gi§h{%qz/‘} and 4 is defined as follows:

. 'R ifica
For 1< i< h, d(aia) :{ EZZH )S) itida
ifie€a

. qi 7L
For 1 <i < h, 0(g;a) = { Em:iréﬁnid ifi¢a

6(qnt1,a) = (qny2, R)

6(qnr2,a) = (g7, R)

(qr, ) = (g1, R)

The are no transitions other than the ones described. O

Proposition 8. LONGLENGTH ¢2N.

Proof. By contradiction. Suppose there is a poly(h)-state 2NFA N that recognises

LONGLENGTHjy,. This means that the machine accepts only the word 02". So, on input
02h, there is at least one configuration path from the starting configuration to an accepting
configuration. For the following proof we take one of these paths into consideration. We
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may suppose that there are no cycles in this path (meaning that no configuration appears
more than once) since, in case there are cycle, we may remove them and the remaining
path will still be accepting.

There are three possible symbols the head may be reading: F, 0 and -. Suppose N has
k = poly(h) states. Let’s also suppose N starts its computation from the right end-marker.
In the mentioned computation path, the machine may visit the left end-marker at most
k times. (If it visits it more than k times, then the computation path visits the same
configuration more than once. We already eliminated this possibility.) This means that
the machine traverses the whole input at most k+1 times (moving from one end-marker to
the other). Each time, the machine traverses the 2 0s, while having only poly(h) states.
By the pigeonhope principle, and for large enough h, there has to be a state that appears
more than once in the same traversal. In that case the machine, while moving either
towards the left or the right, is at state ¢ and is reading symbol 0, more than once. The
interval of Os between the two earliest such occurrences, is now called a segment. Suppose
the length of the segment in the first traversal is [;. So, this 04 segment may be repeated
any number of times, and the machine will not notice the difference. For each traversal,
we have at least one segment. So, we have at most k + 1 segments, if we choose one from
each traversal. Suppose we have m < k + 1 segments. Then we define the product of the
lengths of all those segments p = l1ly - - - l,,,. Machine N accepts 02"+P. This is because D
is I; - p; for some p;, a multiple of each segments length, so it can be added to the word
and the machine will not notice in any of its traversals. So N accepts a word that is not
02". We have reached a contradiction. O

Unfortunately, the separating lines between the classes 2D and 2N are not as clear
as for the corresponding classes of one-way automata. We do not know whether 2D and
2N are equal or not. This is a difficult question to answer. Its structure resembles the
structure of the P versus NP question, so a similar approach is through complete problems.

2.4 Reductions

A reduction of a problem A to a problem B is a systematic way of transforming the
instances of A so that they can be solved as instances of B. In that case, problem A is
at most as hard as B, since a machine that solves B can solve A as well, with a small
transformation. The machine that transforms the instances of A into instances of B is
called a transducer. But in order for a transducer to show that a problem is at most
as hard as another, the transformation taking place has to be “easy”. The transducer
shouldnt be strong enough to solve A on its own. It has to be of limited size and/or head
movement. The first transducer that we will define is the one-way deterministic finite
transducer, or 1DFT. Like all transducers, 1DFTs are machines with two tapes, one for
reading the input and one for printing the output. The machine does not have the ability
to write on the first tape or read the second one.

2.4.1 One-way deterministic finite transducer

Definition 2.5. A one-way deterministic finite transducer (1DFT) is a five-tuple,
T=(Q,%a,%5,q1,4,9)

where

e () is the set of states,
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>4 is a finite input alphabet,

Y.p is a finite output alphabet,

q1 € Q is the starting state,

qr € Q is the final state, and
e §:(QxXy)—(Q x X}) is the transition function.

The second coordinate of (-, -) dictates what will be printed on the second tape. The
two alphabets may have no relation to each other.

Definition 2.6. Let L = (Lp)p>1 and L' = (L})p>1 be problems We write L <;p L'
and say that L reduces to L' in one-way polynomial size, if there is a sequence of 1DFT's
(Th)n>1 and two polynomials e and s such that every T} has < s(h) states and maps
instances of Lj, to instances of L’e () SO that for all z:

x €Ly =Ty(z) € Léz(h) and z € Ly = Tj(z) € (L/e(h))c'

A special case of a one-way polynomial size reduction called homomorphic reduction,
occurs when the 1IDFTs have only one state, namely when s(h) = 1, for all h.

Two major properties essential to reductions are transitivity and closure.

Transitivity is a property that seems natural when we think of what a reduction means
in an abstract way. If L is at most as hard as L/, and L’ is at most as hard as L”, then
surely L should be at most as hard as L”.

Theorem 5. L <ip L' and L' <,p L”" = L <ip L”, for any three problems L, L', L".

Proof. For afixed h > 1, by L <ip L', there is a IDFT T with s(h) states, that transforms
the instances of Ly, to instdances of L (1) for some polynomials s, e. Similarly L' <;p L”
implies that there is a IDFT T" with s'(e(h)) states, that transforms the instances of L )
to instances of LZ’(e(h))'

Let T = (Q,%X4,XB,q1,9f,0) and T" = (Q’,EB,EC,qi,q},é’). We define a 1DFT
T. = (Q X Q,%4, 3¢, (q1,4}), (qf,q}),éc), which simulates both T and 7. We define 4,
depending on 4 and 4"

0:((¢,4"),a) = ((p,p'), w), where 6(q,a) = (p,w) and &'(¢', w) = (p', w').

This machine transforms an instance of L in to an instance of L”. We can verify
this by monitoring the movement of the second coordinate state. The second coordinate
state moves the way 7" moves, producing the same output, only slower, since for every
movement it makes in the second coordinate, it has already made several steps in the
first coordinate which simulates the process of 7. So the basic idea is that we have two
different coordinates to simulate the two different 1DFTs we are combining. The resulting
machine T, has s(h) - s’(e(h)) states, and the output is an instance of L’e’,(e(h)). O

Closure is a similar to transitivity, in abstract way. If a problem is at most as hard as
another problem in a complexity class, then the first problem should be in that complexity
class as well.

Theorem 6. L <;p L' and L' € 1D = L € 1D, for any two problems L, L.
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Proof. For a fixed h > 1, L <ip L' means that there is a 1IDFT T with s(h) states, that
transforms the instances of Lj to instdances of L’e (h) for e, s polynomials. L' €1D means
that there is a 1IDFA M and s’ a polynomial, such that the number of states of M is
bounded by s’(h). The proof is the same in technical terms as the one for transitivity. We
create a IDFA M, = (Q x @', 34, (q1,4¢}), Fe, 0¢), combining T = (Q, X4, Y5, ¢1, ¢f, 0) and
M = (Q',XB,q}, F,¢) the same way we combined T and 7" previously. The only thing
to be defined is the set of accepting states and d.:

Fo={(qs.p)lp € F}

and
/

0:((¢,¢'),a) = (p,p'), where 6(q,a) = (p,w) and &'(¢',w) = p'.

Example 9. In the problem COMPOSITION = (COMPOSITION}),>1 we are given
two partial functions f,g : {1,2,...,h} — {1,2,...,h} and we are asked to check that
f(g(1)) = 1. Formally, for every h > 1 the input alphabet is ¥, = ({1,2,...,h} —
{1,2,...,h}) and

COMPOSITIONy, = {fg|f,g € 5 and f(g(1)) =1 }.
Proposition 9. COMPOSITION <;p RETROCOUNT.
Proof. The 1DFT reads the first symbol f, and prints the symbols h(f(1)),h(f(2)),...,

h(f(h)) where
1 ife=1
h(m):{o itz # 1.

Then it moves to the right and reads the second symbol g and prints g(1) — 1 times the
symbol 0.

This transormation creates positive instances of RETROCOUNT), out of positive in-
stances of COMPOSITION};, and negative instances of RETROCOUNT}, out of negative
instances of COMPOSITIONy: The question we need to ask is which is the A-th rightmost
symbol. The output sequence by the machine is h(f(1)), h(f(2)),...,h(f(h)),0,0,

...,0. The number of 0s is g(1) — 1. So the total length of the sequence is h + g(1) — 1.
If we want to find the A-th rightmost symbol we have to substract A — 1. Therefore the
symbol we are looking for is the g(1)-th from left. That is A(f(g(1))). So f(g(1)) =1 iff
the h-th rightmost symbol is 1. This transducer produces a one-way polynomial reduction:
The transducer needs only to print a sequence for a symbol and then a sequence of Os for
the second symbol of the input. So only two states are needed. O

Example 10. In the problem ROLLCALL = (ROLLCALL})s>1 we are given a list of
numbers from {1,2,...,h} and we are asked to check that every number from that set
appears at least once. Formally, for every h > 1 the input alphabet is ¥, = {1,2,...,h},
and

ROLLCALLj, = {w € ¥} | every number in {1,2,...,h} appears at least once in w}.

Proposition 10. INCLUSION <;p ROLLCALL.
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Proof. There is a transducer that transforms the instances of INCLUSION}, to instances
of ROLLCALLy, with the following process. The transducer reads the first symbol a of
the input and then prints all the elements of the set a. = {1,2,...,h} \ a, in ascend-
ing order. Then, the transducer moves the reading head to the right, reads the second
symbol b and prints all the elements of b, in ascending order again.This transormation
creates accepting instances of ROLLCALLj, out of accepting instances of INCLUSIONy,
and negative instances of ROLLCALLj, out of negative instances of INCLUSION,: Since
a,b € {1,2,...,h}, then a C b iff a*Ub = {1,2,...,h}. The elements printed on the
output tape are those of a® and b. If a € b, then there is a x such that z ¢ b and x € a.
So, © ¢ b and = ¢ a°. This means that x was not printed in any of the two strings.
This transduced produces a one-way polynomial reduction: This tranducer reads the first
symbol and prints a string, then moves to the second state, reads the second symbol and
prints another string. This means the transducer needs only two states. O

2.4.2 One-way nondeterministic finite transducer
There are several other types of transducers that define other types of reductions.

Definition 2.7. A one-way nondeterministic finite transducer (INFT) is a six-tuple,

T = (Q72A5237q17qf’5)

where Q,¥ 4, YR, q1, ¢y are the same as for IDFTs and § : (Q x £4) = P(Q x ¥}) is the
transition function.

We say that T' transforms an instance € ¥% into a string 7'(x) € ¥7, if all compu-
tations that end at the accepting state output the same string T'(x). Otherwise T is not
defined on z.

Definition 2.8. Let L = (Ly)p>1 and L' = (L} )p>1 be problems We write L <y L’ and
say that L reduces to L' in nondeterministic one-way polynomial size, if there is a sequence
of INFTs (T},)p>1 and two polynomials e and s such that every T}, has s(h) states and
maps instances of Ly, to instances of L/ () 5© that for all x:

x € Ly = Ty(x) € L'e(h) and x € Lj, = Tp(x) € (L;(h))c or Ty (z) is undefined.

Lemma 3. L <Ny L' and L' <ix L" = L <ix L”, for any three problems L, L', L".

Proof. Nondeterministic one-way polynomial-size reductions are transitive and the proof
of transitivity uses the same construction as the corresponding proof for <ip.

Let T, T' and T, be the same as in the case of transitivity for <;p. The transducer T,
produces the same output for each input and for every possible path that ends in (gy, q})
This is because, since its simulation of 7' has reached ¢y as the final state, then the
simulated output string is same for all possible paths of computation. So the input of the
simulated 7" is the same for all paths, and the simulation of the second machine reaches
q}, the accepting state, then the output of 7" is the same for all accepting computation
paths. This proves that the output of T, is the same for all accepting paths. So T, as
defined in Theorem 5, satisfies the requirements to reduce L to L”.

O

Lemma 4. L <;y L' and L' € IN = L € 1N, for any two problems L, L'.
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Proof. 1N is closed under <y, by the same construction as in the case for <;p. The proof
is similar to that of transitivity. O

2.4.3 Two-way deterministic finite transducer

Definition 2.9. A two-way deterministic finite transducer (2DFT) is a six-tuple,

T=(Q,%4,2B,q1,45,9)

where Q,X4,YB,q1,qs are the same asfor 1IDFTs and § : (Q x (X4 U {F,})) = (@ x
Y5 x {L, S, R}) is the transition function.

Similarly to two-way finite automata we use - and - to mark the start and end of
the input respectively, since the head of the input tape will be moving in both directions.
The head on the output tape works in the same way as all previous transducers worked,
meaning it can move only to the right. For an output to be considered valid, T" has to
finish its computation in the accepting state. As in Chapter 1, we assume that § cannot
move to the left of the left end-marker, or to the right of the right end-marker, unless it
is moving right to a final state.

Definition 2.10. Let L = (Lj)p>1 and L' = (L},)p>1 be problems. We write L <op L'
and say that L reduces to L' in two-way polynomial-size, if there is a sequence of 2DFT's
(Th)n>1 and two polynomials e and s such that every T}, has s(h) states and maps instances
of Lj, to instances of L’6 (h) 5O that for all x:

x € Ly = Tj(x) € Ly, and x € Lj = Ti(z) € (L)) or Th() is undefined.

Two-way polynomial-size reductions may not be transitive. The reason is that when we
try to simulate the two machines by a new one, the intermediate tape needs to be accessible
in a two-way fashion, meaning any cell might be revisited. This creates a problem for the
simulating transducer, since it cannot remember the content of the intermediate tape,
since the alphabet Xp may be exponentially larger than h. As a result, the machine
cannot remember the spot of the intermediate tape, since the intermediate string is of
arbitrary length. We will define a restriction of the above reduction, one that will have
the property of transitivity.

Definition 2.11. We call a sequence of 2DFTs T' = (T}, )p>1 laconic if every T}, performs
< p(h) printing steps on each input, where p is polynomial.

Definition 2.12. Let L = (Ly)p>1 and L' = (L} )s>1 be problems. We write L <15 I/
and say that L reduces to L' in two-way polynomial-size/print, if there is a laconic sequence
of 2DFTs (1},)n>1 and two polynomials e and s such that every 7}, has s(h) states and
maps instances of Ly, to instances of L/ () 5© that for all x:

x € L = Ty(z) € L'E(h) and x ¢ L, = Th(x) ¢ (L/e(h))‘
Lemma 5. L < I/ and L' <8 L" = L < L", for any three problems L, L', L".

Proof. For a fixed h > 1, by L <13 [/ there is a laconic 2DFT T with s(h) states, that
transforms the instances of Ly, to instdances of L ) and has printing steps bounded by

p(h), for some polynomials s, e, p. Similarly L’ SI;‘]S L” implies that there is a laconic 2DFT
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T with s'(e(h)) states, that transforms the instances of L/e(h) to instances of Lé’/(e(h)) and
has printing steps bounded by p’(h), for some polynomials s, ¢’, p'.

The proof is similar to the initial proof of transitivity, with the addition of two counters
of size p(h). The counters keeps in the “memory” of the machine the position of the output
head of the first 2DFT and the position of the reading head of the second 2DFT that is
being simulated. Every time the second machine is moving its “hypothetical” head to the
left, the composing new machine changes the counter, and simulates the first machine from
the start. At some point the simulation of the first machine “prints” the cell the second
machine is expecting (when the two counters have the same value), and then the second
2DFT being simulated, reads the symbol it was waiting for, and continues its deterministic
computation. The number of states needed stays polynomial, since the counter needs only
be polynomially large.

Let T = (Q,%X4,XB,q1,9f,0) and T" = (Q’,ZB,EC,qi,q},é’). We define a 1DFT

= ((QU{q}) x Q,X4,2c, (q1,4}), (qf,q}),éc), which simulates both 7" and T'. We
define . depending on ¢ and ¢’

66(((]’ q/7l17l2)?a) = ((p7plallal2)7w X)7 where 5((]’ (l) = (pawaX) and 5,((]/,10) = (p,,’UJ/).
((q Q717l2)a€C’L) lfq:(ZO anda#l_
((QI7Qa17l2)aEC7R) 1fq:CZO and a =+
56((Q7qlvllul2)’a) = ((p q ll7l2)7GC7X) if ll < l2 and q 7é q0
((p, 0, 17,13),w", X)) if Iy = I3 and q # qo
((QO7QJ17l2)7EC7X) lf ll >12 andQ#QO
where 6(g,a) = (p,w, X) and ¢’ (¢, w) = (p/,w',Y), I§ = l; + |w| and
lp—1 fY=1L
=1 1 ity =9
lb+1 ifY =R.
Thus the number of states needed is O(p(h)%s(h)s’(e(h))). O

Lemma 6. L < I/ and L' € 2N = L € 2N, for any two problems L, L'.

Proof. Closure can be proven the same way, using the fact that the printing steps of the
transducer is bounded by a polynomial. In the same way we can combine a 2DFT with
bounded printing steps, with a 2DFA (Same proof as above, cartesian product of states,
the second coordinate makes a move whenever the first simulated machine “prints” the
cell that was on demand etc).

We create a 2DFA M. = ((QU{qo})xQ’", X4, (q1,4}), Fe, ), combining T = (Q, X4, X5,
q1,95,9) and M = (Q', 2B, q}, F,¢’) the same way we combined T and T” previously. The
only thing to be defined is the set of accepting states and &.:

F.={(qr,p)lp € F'}

and
((q0,¢',1,12), L) if ¢ = qo and a #F
((q1,¢,1,12), R) if g=qo and a =+
50((Q7 qlvllvl2)7a) = ((p7 qlalT712)7X) if ll < 12 and q 7’é q0
((p, 0, 17,55),X) iflhi=land ¢# q
((QO7q/a 1,12),X) if [y > Iy and ¢q # qq
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where §(q,a) = (p,w, X) and ¢'(¢/,w) = (p/,Y), IT =11 + |w| and

lb—1 Y=L
=4 1l ifY =9
lb+1 ifY =R

This means that 2D is closed under §1Qa]§. O

2.5 Completeness

First we need to define a problem.

Example 11. In the problem One-Way Liveness, OWL = (OWLy,);,>1, the alphabet is
the set of all A-tall, two-column, directed graphs, with arrows from the left column to the
right column. A string w is seen as an h-tall, (Jw|+1)-column, directed graph, with arrows
from the nodes of each column to the ones of its adjacent one to the right. We are asked
to check that there is a path from the leftmost column to the rightmost column. That
path is called live. When a graph has a live path, we say it is live. Formally, for every
h > 1 the input alphabet is ¥} = P({1,2,...,h}?) and

OWL;, = {w € ¥j| w has a live path}.

—

==

I

A

Figure 2.1: A string w of Xj.

Proposition 11. OWL €1N.

Proof. We will construct an (h + 1)-state INFA N that recognises OWLy,. Let INFA
N = (Q7 27 ds, F> 5)7 where

e Q=1{qs,q1,q2,--.,qn} is the set of states: Every state ¢; corresponds the i-th node
of every column.

e > is the alphabet defined above.
e ['=(: All states are final.

We now describe § and the reason why it works.

For ¢s: 9(gs,a) = {q;| there is an arrow (i — j) € a}. These are the transitions of the
starting state. The intention here is that a is the first symbol of the input. If a node, on
the right column of a is reachable, then there is a transition to the state representing that
node. In a sense, this first transition ignores the first column. There just has to be an
such that i — j € a.

For g; : §(gi,a) = {q;| there is an arrow (i — j) € a}. These are the transitions of the
general case. At state g;, reading symbol a, if (¢ — j) € a then the machine may transition
to state g;.
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It is straightforward to see that an accepting computation represents a path from a
node in the first column to a node in the last column, which means that a node in the last
colum is reachable from a node in the first column. O

The next problem is a generelization of OWL since each graph is also allowed to have
arrows from right to left and within the same column.

Example 12. In the problem Two-Way Liveness, TWL = (TWLy,),>1, the alphabet is
the set of all h-tall, two-column, directed graphs. A string w is seen as an h-tall, (Jw|+ 1)-
column, directed graph, with arrows between the nodes of the same column or of adjacent
ones. Again, we are asked to check that there is a path from the leftmost column to the
rightmost column. Formally, for every h > 1 the input alphabet is Ty, = P({1,2,...,2h}?)
and

TWLj, = {w € T'}| w has a live path}.

*r—0 | 6—>0

== -

Figure 2.2: A string w of I'y.
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Proposition 12. TWL €2N.

Proof. We will construct a (2h + 1)-state 2NFA N that recognises TWLj,. We let INFA
N = (Q7 Lh,qs, F, 5)7 where

e Q=1{4s,91,92, - qh, Qh+1, Qh+2 - - - , Q2n } 1s the set of states: g5 is the starting state,
used only in the first move, ¢1,qo, ..., qn are the states that correspond to the left
column of each symbol a and gp+1,qr+2,-- ., o, are the states that correspond to
the right column.

o FF={qi,q2,...,qn}: all the left-column states are final states.

We now describe ¢ and the reason why it works. For 4,5 < h and a € I'y:

For qs: 0(gs,a) = {(qn+j,S)| there is an arrow (i — (h + j)) € a}. This is similar to
the one-way case. From the start state we simply move to the right-column states that
are reachable. We have the privilege to ignore the first column. We can completely ignore
any arrows of the form ¢ — j in the first symbol, those thansitions are of no use to us.

For gp+i: 9(qn+ti,a) = {(qu, S)| there is an arrow ((h +i) — u) € a} | J{(qi, R)}, where
1 < u < 2h. Whenever the machine is in a right-column state it has two options. It can
either change state according to the arrows of the current input symbol without moving
the head, or move the head to the right and transition to the corresponding left-column
state.

For ¢;: 6(gi,a) = {(qu,S)| there is an arrow (i — ) € a} | U{(gnsi, L)}, where 1 <u <
2h. This is the symmetrical case of the above. The machine has two options at any time
its head is on a in state ¢;. Either it can follow an arrow from the current symbol a, or it
can move its head to the left.

5(qnri,) = 0. This is the case of the machine moving to the left column of the first
symbol, and then moving the head to the left to . The path ends here, rejecting the
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computation, since there is no information we can further acquire. If there is a live path
going through the current configuration, then there is a live path from the starting state
as well.

d(qi, 1) = {(qi, R)}. This is an accepting situation. Following arrows, the machine has
reached the right column of the last symbol. There, it has the non-deterministic option to
move to the right. Moving to the right, it reads -, deducing that the previous symbol was
the last one and that there is a path reaching the last column Therefore it moves right
and halts in an accepting state.

The above are the only acceptable moves of the machine.

Again, it is straightforward that the machine moves nondeterministically following
every possible arrow. If there is a live path, then there is an accepting computation path
for NV, and vice versa. O

These problems are proven to be complete in 1N and 2N respectively. Here is the proof
of the second case. The first case can be deduced easily from the second one.

Lemma 7. FEvery problem in 2N can be reduced to TWL

Proof. The basic idea is that a 2h-tall, two-way, multi-column graph can simulate the
transitions of a given h-state 2NFA. Note that in the following proof we will be using
2NFAs that may only move their head either left or right at any step of the computation
(the head cannot remain stationary). This is equivalent to the standard 2NFA, since it
can be simulated by doubling the states, so for every state, every time the original 2NFAs
head has to remain stationary, the head moves to the left (or the right), the machine enters
the clone state and returns to the original state and tape cell. We will show how to encode
an input ajas---a, of an h-state 2NFA N = (Q, %, q1, F,0) where Q = {q1,92,---,qn}
into an instance of TWL g(x) = g(F)g(a1)g(a2) - - - g(an)g(H), in such way that N accepts
the input iff there is a live path in the instance of TWL. We need to define g so that N
accepts x iff there is a path from the leftmost to the rightmost column in g(z). Obviously,
g : X U{F, 4} — T'gp, where I'yp, is the set of all 2h-tall, directed, two-column graphs.
The symols of I'y;, that g uses look like this:

The left nodes are named 1, ls,...,l;, L1, Ls, ..., L, and the nodes on the right column
are named Ry, Ro,..., Ry, r1,79,...,75. In order to define g, we describe its behavior over
F, ¥, and .

o g(F) ={l = R} U{ri = R;] for every (g;, R) € 6(qi,)}-

The first set of the union is for the starting state. It states that the only node from
the leftmost column from which there can be a path is the one that corresponds to
the starting state. The second set of the union is for the case where the head moves
to F and then moves back right to state ¢;. This is case (a) of Figure 2.3, where ¢
is the starting state.

e g(a) = {l; = Rjlfor every (¢j, R) € 6(¢q;,a)} U{r; — Rj|for every (¢;, R) € 6(gi,a)}
U{li — Ljlfor every (g, L) € §(gi,a)} U{ri — Lj|for every (g;, L) € 6(qi,a)}.
Whenever (g;, R) € 6(¢;,a), we add two arrows that point to R;: One from [;,
in case the machine’s previous move was from left to right, and one from r;, in
case the machine’s previous move was from right to left. Symmetricaly, whenever
(gj, L) € 6(gi,a) we add two arrows that point to L;: One from [;, in case the
machine’s previous move was from left to right, and one from r;, in case the machines
previous move was from right to left. This is case (b) of Figure 2.3.
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, @——@R, L @ OR, , @—=@R,
L, @ OR, ) OR, ) OR,
l; @ ly .\Rg OFR;
I, @ I, @ OR,
L,® L,® [ T
L,® L,® o,
L, @ L@ o @
L,@® L,@® o, L,® L

(a) (b) ()

Figure 2.3: The three cases for g(z), in an example where h = 4.

e g(d) = {l; = Ljlfor every (q;, L) € 6(q;, 1)} U{li = Rilfor every ¢; € F'}.

Similarly for the right end-marker, the first set of the union is for the case where
the head moves to 4 and to state ¢;, but ¢; is not a final state, so it moves back left
to state g;. The second set is for the final states. In order for a path to reach the
rightmost column it needs to be at an accepting state reading the right end-marker,
so a path can only end on an accepting configuration. This is case (c¢) of Figure 2.3,
where ¢; and g3 are the final states.

So, now we can rephrase: z is accepted by N iff g(z) is live; or, equivalently, there
is a path in IV from state ¢; on F to a final state on dashwv iff there is a path from the
leftmost to the rightmost column in g(z). So, for every possible transition on the graph of
configurations of N (described as Cy,, in Chapter 1), there is an arrow in g( w ), and
every possible computation path of NV corresponds to a path in g(F w ). Also, concerning
the end-markers, the only node that has on arrow from the leftmost column is the one
corresponding to the starting state, so there cannot be a live path from another node
(valid computation paths start from the starting configuration), and the only nodes that
are reachable on the rightmost column are the ones that correspond to final states, so live
paths end only at those nodes (valid computations end at accepting configurations). This
concludes the encoding of the computation of IV as an instance of TWLsyp, so that whenever
N has an accepting computation there is a live path in the graph and conversely. O

Lemma 8. If TWLE2D via a sequence 2DFAs with s(h) states, then any problem in 2N
can be solved by a sequence of 2DFAs with s(h) states.
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Proof. Given a 2DFA G that solves TWL and a 2NFA N with poly(h)-states, we can
construnct a 2DFA D that recognises the same problem as IV, with the same set of states
as G, by simulating the computation of G. We need only to clarify how D works on the
edges, since the input of G has an extra symol on the edges (¢g() and g(-)). In any other
case dp(q,a;) = dc(q,9(a;)).

Right end-marker: when the head of G moves to the right to g(-) then if the head
doesnt leave the two last symbols g(d) and H the movement of G is predetermined since it
is no longer affected by the input and will either, eventually move back to the last symbol
of the input or it will end its computation in some state, while reading g(-) or . In that
sence, if G ends up in an accepting state over 4, D can move right away to - and to a
final state. Similarly for the case G moves to a non final state with no transitions, then D
does the same. In case G eventually moves its head left from g(H), to symbol g(a,) and
in state ¢, then D moves to the right to 4 and then back to symbol a,, and state q.

Left end-marker can be dealt in a similar way to the right end-marker. When G moves
left to g(F) then the machine will, at some point, either move right back to g(a;) and to
state q, or it will not. In the first case D, after moving left to I, moves back to the right,
to g(a1) and ¢, and in the second case the machine moves to the left to F to a non final
state with no transitions for .

Starting state: G starts from symbol g(b), while D starts from aq, So to find the
starting state we monitor the movement of G, until its head reaches g(a;) (again the
movement is predetermined). The head might move between g(+-) and - but eventually it
will move to the right to symbol g(a;) and state ¢’. State ¢’ is set as the starting state of
D. There is the chance the machine does not move to g(a;) and halts. In that case the
machine recognises the empty language. This completes the description of D. O

Theorem 7 (The Sakoda-Sipser completeness theorem). TWL is 2N-complete.

Proof. 2D is closed under the above reduction therefore 2N is closed as well. This means
TWL is 2N-complete.
O

It can be proven in an analogous way that OWL is 1N-complete.

Corollary 3. OWL is 1N-complete.

2.6 Hierarchy

By analogy to P, NP, coNP and the polynomial hierarchy of Turing machine complexity,
there are two hierarchies, one for one-way machines, and another for two-way machines,
which generalize the classes 1N, colN and 2N, co2N, respectively.

Definition 2.13. 1X; and 1II; are the classes of problems that can be solved by one-
way alternating finite automata with polynomially many states, that make at most k& —
1 alternations between existential and universal states, starting with an existential or
universal state, respectively.

Here 111y = 1D = 13, 13; = 1IN and 1II; = colN.

Proposition 13. 1X; = colll.
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Proof. let L be a problem in 11I;. Then there is a sequence of 1AFAs, with polynomially
many states that make at most k£ —1 alternations between existential and universal states,
starting with a universal state, that solves L. We construct another sequence of 1AFAs.
This one has the same states and the same transitions with the previous one, but the
set of universal states and the set of final states has been reversed. The sequence solves
problem L¢ € collly, but the problem is automatically in 13 by Definition 2.13.

In a similar fashion, for every problem L € 13 there is L which can be solved by a
sequence of 1AFAs, according to the above construction. This proves that L € collly. [O

There are results concerning this hierarchy:

Theorem 8. (V. Geffert [11]) There are witnesses for the following proper inclusions, for
allk > 1:

12, D131 1 D 1354
13, D 1l  1II; D 114

Also, 1Xy, and 111 are incomparable, for all k > 1.

This means that this hierarchy is infinite and redundant. In a completely identical
way there is the two-way hierarchy.

Definition 2.14. 2X; and 2II; are the classes of problems that can be solved by two-
way alternating finite automata with polynomially many states, that make at most k& —
1 alternations between existential and universal states, starting with an existential or
universal state respectively.

Here 2H0 =2D = 220 and 221 = 2N.

Theorem 9. (V. Geffert [11]) There are witnesses for the following proper inclusions for
k>2:

2% O 2%, 200, D 2%
2% D 2101 210 D 2114

Also, 2%, and 211, are incomparable, for all k > 2.

Similarly to the one-way hierarchy, this means that this hierarchy is infinite.

The differences with the one-way hierarchy are the following. It is not known whether
co2¥, = II. As described earlier, it is not known whether 2¥y C 237 is a proper inclusion
(2D C 2N), as also 2I1y C 2II;. Finally it is not known whether 2%, = 2N and 2II; are
comparable or not.

In the same theorem, Geffert proves some relations between the two hierarchies. Apart
from the obvious 23, D 13, and 2II; D 1II, he also proves the following.

Theorem 10. (V. Geffert [11]) There are witnesses for the following proper inclusions
for k > 2. (the first group are results from the previous theorems):

2% D 1X,_q 20 D 1X5_4

2%, D 1l 210 D 114
and for the following classes of problems there are witnesses that prove them not to be
empty

185\ 28,1 1Ig \ 2%k

185 \ 21—y 100 \ 215

Finally, 25 and 111 are incomparable and so are 1X; and 211.
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1A 2A
7 % 7 %
A A A A
< --->
122 ~ > 1H2 222 21_[2
121 < -=-=> 1H1 221 2H1
13y = 1D = 111, 2%y = 2D = 2II,

Figure 2.4: The two hierarchies for one-way and two-way machines, respectively.

2.7 Relations to computational complexity of TM

So, the basic problem this chapter revolves around is the 2D versus 2N question. Sakoda
and Sipser conjectured that 2DC2N. The question is hard to answer so, even stronger
conjectures were made. First we define three restrictions of 2N:

Definition 2.15. The restriction of 2N to instances of exponential length is called 2N /exp.
Respectively, 2N/poly is the restriction of 2N to instances of polynomial length, and
2N /const to instances of constant length.

At this point we need to define some restrictions of TWL:

Example 13. The problem LongTWL = (LongTWL,,);,>1 is a restriction of TWL. The
alphabet is the same as in TWL and the input is bounded by an exponential function of
h. Formally, for every h > 1 the input alphabet is ¥, = P({1,2,...,2h}?) and

LongTWL;, = {w € ¥}| |w| < 2" and w has a live path}.

Example 14. The problem ShortTWL = (ShortTWLy,);>1 is a restriction of TWL. The
alphabet is the same as in TWL and the input is bounded by a polynomial function of h.
Formally, for every h > 1 the input alphabet is ¥, = P({1,2,...,2h}?) and

ShortTWLy, = {w € 3| |w| < h and w has a live path}.

Example 15. The problem CTWL = (CTWLy,)p,>1 is a restriction of TWL. The alphabet
is the same as in TWL and the input is of length 2. Formally, for every h > 1 the input
alphabet is ¥; = P({1,2,...,2h}?) and

CTWL), = {w € ¥}| |w| = 2 and w has a live path}.
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Theorem 11. longTWL is complete in 2N /exp.

Proof. According to the Sakoda-Sipser theorem TWL is 2N-complete, therefore any L €2N
can be reduced to TWL. Also longTWL €2N/exp since longTWL is a problem in 2N with
instances of exponential length. So, if L €2N/exp, then it can be reduced to longTWL,
since the g transformation described in Lemma 3 increases the length of all instances by
2. In case the instances of L are of length O(f(h)) > O(2") then we define b’ = p(h) such
that O(2") = O(2P(h)) > O(f(h)). Then Lj, reduces to longTWLy/. In other words, the
reduction described keeps the size of the instances of L in 2N/exp.

O

Theorem 12. ShortTWL is complete in 2N /poly.

Proof. TWL is 2N-complete. Also short TWL €2N/poly since short TWL is in 2N and its
instances are of polynomial length. If L €2N/poly then L reduces to TWL. But L has
instances of polynomial length. Threrefore, through the g transformation, an instance of L
reduces to an instance of TWL of polynomial length as well In case the instances of L are
of length O(p(h)) > O(h) then we can define h’ = p(h). Then Lj, reduces to short TWL,.
Therefore Short TWL is 2N /poly-complete.

O

It is still unknown whether any of these restrictions are in 2D, so we can focus on
the smallest of these subclasses, TWL/const. The difference of this subclass from the
other two, is that the other two have known complete problems, the two mentioned above.
It is not known if 2N/const has a complete problem, and it hasn’t been proven that
CTWLE2N /const is complete. This is an issue that will be considered in the next chap-
ter. Furthermore, it is not known whether INC2D either. As a result, the frontline of
problems that are conjectured not to be in 2D are CTWL, TWL and OWL. So, our basic
question remains, the relation between 2D and 2N is uncertain. Through this chapter the
analogy of P versus NP question becomes more clear, the distance between determinis-
tic polynomial resource and non-deterministic polynomial resource. But is this quenstion
important to complexity? What is the actual relation of the 2D versus 2N question with
Turing machince computational complexity? It turns out that the size complexity of two-
way finite automata is related to the space complexity of Turing machines. The result
connecting two-way automata size complexity with Turing machine space complexity is
the following:

Theorem 13 (C. Kapoutsis [15]).

2D D 2N/poly <= L/poly O NL
2D D 2N/exp <= LL/polylog O NLL,

L is complexity class of all problems that can be solved by a deterministic Turing
machine in logarithmic space. NL is complexity class of all problems that can be solved
by a nondeterministic Turing machine in logarithmic space. LL is complexity class of all
problems that can be solved by a deterministic Turing machine in loglogn space, where
n is the length of the input. NLL is complexity class of all problems that can be solved
by a nondeterministic Turing machine in loglogn space. L/poly is complexity class of
all problems in L that have instances shorter than a polynomial of n. LL/polylog is
complexity class of all problems in LL that have instances shorter than a polynomial of
log n.
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We also note that the L versus NL qestion is the biggest open problem in Turing
machine space complexity.
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Chapter 3

CTWL and 2N /const

3.1 Introduction

In this last chapter we will describe a small effort to prove CTWL complete in 2N /const.
The other restrictions of TWL can be proven to be complete problems in their according
classes, immediately from the Sakoda-Sipser theorem: longTWL is 2N /exp-complete and
short TWL is 2N /poly-complete. But there is something fundamental about CTWL and
2N /const that does not seem right. There is a gap in all the possible instances of problems
in 2N/const, which are unbounded, and the instances of CTWL, that are of constant length
2. The Sakoda-Sipser theorem proves that an instance of length m of a problem L in 2N
can be transformed into an instance of TWL of length m + 2, and then it is shown how
to construct a 2DFA that solves L out of a 2DFA that solves TWL, with twice as many
states. This is why this proof is valid for proving that longTWL is 2N /exp-complete and
short TWL is 2N /poly-complete. It keeps the length of the input practically the same. But
this is not helpful with the case of CTWL, since this problem has instances of constant
length 2, and we need to prove that we can reduce to it any problem with instances of
constant length no matter what this constant may be. The same question can be expressed
for any other problem-candidate for 2N /const-completeness. It seems that our reductions
are not suitable for this kind of work.

The reductions we have introduced so far are not capable of proving CTWL to be
2N /const-complete, or any problem for that matter. Let’s suppose we want to prove
CTWL to be 2N/const-complete. In order for this to be true, any other problem in
2N /const needs to reduce to it. Let’s define problem 4TWL, the restriction of TWL to
instances of length 4. This means we need to map every instance of length 4 to an instance
of length 2. If all 4 symbols of the input of 4TWL have vital information for determining
inclusion or exclusion in 4TWL, then by the pigeonhole principle, we need to include the
information of 2 cells of the original instance to one cell of the output. Can this be done?
The size of the alphabet of TWL, is 2(2h)2, and surely a polynomial-size transducer can
not keep in its memory even one symbol of this alphabet. If it could, it would be useless
for proving reductions in 2N. Due to the size of the alphabet we could apply the pigeonhole
principle to the number states, compared to the number of possible h-tall, directed, two-
column graphs. The result is the transducer cannot transfer the information intact. The
same argument is valid for any problem in 2N/const. For any problem we want to prove to
be complete, there is another problem with greater length of instances, in an exponential
alphabet. Restrictions of TWL provide such examples.

47
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3.2 Defining a new reduction

So, we need a reduction that can print the information of & cells into fewer cells, without
keeping the information of any cell in its memory. Could there be a reduction, with respect
to which CTWL can be proven to be 2N/const-complete? How would such a reduction
manage to compress the information of the input tape? A natural idea is to be able to
print more than once in every cell of the output. But then, should the machine be able
to read the output tape? That would make it too powerful. That is because keeping in
its memory once one symbol, would equal in memory an exponential number of states
(in case the alphabet is exponential). But can the machine print on a cell that has been
printed on before, without knowing what was printed on it? Let’s suppose it can. Let’s
suppose the cells of the tape have a stucture, that allows the machine to print on top of a
cell that has something printed on, without erasing the already accumulated information,
but combining the existing information and the information that is about to be printed.
This way the machine will be able to accumulate information, and build up to the final
output of the process. But this requires a different kind of tape, one with some kind of
structure, and an alphabet that is related to that structure.

Let’s make it a bit more practical. Let’s take a look at the alphabet of TWL, h-tall,
two-way, two-column graphs. Every symbol of that alphabet can be represented as a set
of arrows. Similar to the way we represent any graph as a set of edges, an h-tall, two-way,
two-column graph can be a subset of the set [2h] x [2h]. So, each cell can be structured so
that it can have a special spot for each element in that set. Every time the machine prints
the set a over the previous “symbol”-set b, it adds the elements of a over the elements of
b that are printed already. So there is a operation applied on the tape, the union of a and
b.

Now let’s take a step back and look at a more general case. Let 3 be the alphabet and
C a partial order on ¥. Before we define the machines we need some basic terms of order
theory.

Definition 3.1. Let (X,C) be a partially ordered set and S C ¥. An element z € ¥ is
an upper bound of S if s C x for all s € S. A lower bound is an x € ¥ such that x C s for
all s € S. The set of all upper bounds of S is S* and the set of all lower bounds is S*. If
S® has a least element z, then x is called a least upper bound. Dually, if S* has a greatest
element x, then x is called the greatest lower bound.

Definition 3.2. We define = VV y to be the least upper bound of {z,y}, and we call it =
join y. Dually, we define z A y to be the greatest lower bound of {z,y}, and we call it =
meet .

Definition 3.3. A partially ordered set (poset) P is a lattice if x V y and z Ay exist for
all x,y € P. A partially ordered set P is a join-semilattice if x V y exists for all z,y € P.

Definition 3.4. Let L be a lattice. An element x € L is join irreducible if x # 1 and
x=aVbimpliesx =a or x =0b for all a,b € L.

Unfortunately, this definition cannot serve us if we need to use the more general struc-
ture of a partially ordered set. For this case we will define a similar property.

Definition 3.5. Let C be a partial order over ¥. We call prime elements of ¥, Primes(C),
the set of all @ € X such that a = b; Vby = a C by or a C bs.

Let’s define now the deterministic automaton that has a tape with the required struc-
ture.
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Definition 3.6. A 2DFA with structured-cell input (2DFArL) is a tuple M = (Q, £, g0, ¢, 6, C
) where

e () is the set of states,

e Y is the input alphabet,

qo is the starting state,

qr the final state,

6 : (Q@x (Primes(T)U{k,4}) x{+,—}) = (@x{L, S, R}) is the transition function,
and

e [ is a partial order on 3.

So (X, C) is a partially ordered set and Primes(C) is the set of prime elements of that
poset. The transition function ¢ is defined over the prime elements. Let z € Primes(C)
and a € ¥. Then {+,—} are the elements that define the two seperate cases, z C a
or ¢ IZ a. In the special case where the head of the machine is over an end-marker,
d(q,F,+) =0(¢q,F,—) and d(q,,+) = (g, 4, —). This model is a restricted 2DFA model,
that can have only transitions based on the prime elements of 3. Whenz C y <— x =y,
the automaton is a standard 2DFA. We continue with the definition of the transducer.

Definition 3.7. A 2DFT with structured-cell input and structured-cell output (2DFT-
OP where OP stands for over printing) is a tuple T' = (Q, X1, X2, qo, ¢f,9,C1, C2) where
Q,X1,%2,qo, qf are as in a standard 2DFT, and:

e [, is a partial order on X,
e [, is a partial order on >,

e §:(Qx (Primes(Cy) U{F,}) x {+,-}) = (@ x {L,S,R} x (82U {.}) x {S, R})

is the transition function.

So (¥1,C1) and (X2, C9) are partially ordered sets and Primes(C;) and Primes(Ca)
are their sets of prime elements, respectively. The output tape head can move only to the
right or remain stationary. The transition function ¢ is defined over the prime elements of
¥, and the end-markers. Let x € Primes(C;) and a € ¥1. Then {+, —} are the elements
that define the two seperate cases, x C; a or « [Z; a. In other words, in every state
the machine has two transitions for a prime element. One transition in case the prime
element is contained in the symbol being read, and one transition for the other case. This
machine behaves in the same way as the 2DFAr, over the end-markers. This model can
only have transitions based on the prime elements of ¥; (and the end-markers), and can
print symbols of ¥y or .. On the output tape the machine can print a symbol on top of
another symbol. To write a € X3 U {_} on a cell that contains b € 39 U {_} means to
replace b with plub(b, a), where

Lub(b, a) = aVb if a V b exists
p ) a if a V b does not exist.

The above definition allows us to define the following reduction.
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Definition 3.8. Let (Ly)p>1 and (L})p>1 be problems. We write L <op.op L' and say
that L reduces to L' in two-way overprint polynomial-size, if there is a sequence of 2DFT-
OPs (Th,)n>1 and two polynomials e and s such that every T}, has s(h) states and maps
instances of Ly, to instances of L/ (h) 5© that for all x:

z € Ly = Th(z) € Ly and @ € Lj, = Th() € (Lep)”

We will show that the reduction we defined can solve the problem we encountered
earlier: This machine can transform an instance of a given length to an instance of smaller
length.

Example 16. The problem 4TWL = (4TWLj,)5>1 is a restriction of TWL. The alphabet
is the same as in TWL and the input is of length 4. Formally, for every h > 1 the input
alphabet is ¥; = P({1,2,...,2h}?) and

ATWL;, = {w € ¥}| |w| = 4 and w has a live path}.
Proposition 14. 4TWL <sp_op CTWL.

Proof. There is a 2DFT-OP T that reduces 4TWL;, to CTWLg3j,. The process is described
below. Suppose that the instance of 4TWL is w = abcd.

On reading a, the output head is over the first cell of the output tape. T prints the
symbol e which is obtained from a as follows. For every arrow ¢ — j € a:

e if i,j < h, theni — j € e;

e ifi <handj>h,theni— (3h+j) € ¢;

e if i > h and j < h, then (3h +1i) — j € e; and
e ifi,j > h, then (3h+1i) - (3h+j) €e.

Note that e and a have the same number of arrows. Also 7 < h means that 7 is on the left
column of ¢ and 7 > h means that i is on the right column of a. Then the machine moves
its input head and its output head to the right.

T reads the second symbol b, and prints the symbol f; that is derived from b as follows.
For every arrow ¢ — j € b:

e ifi,j < h, theni— j € fy;

e if i <handj>h,theni— (h+j)€ fi;

e ifi > h and j < h, then (h+1i) — j € fi; and
e if 4,5 > h, then (h+1i) — (h+j) € f1.

Afterwards the reading head moves to symbol ¢, while the output head stays on the same
cell.

Similarly, on the next move, T reads the third symbol ¢, and prints on the same cell
the symbol fo which is derived from c as follows. For every arrow i — j € c:

e ifi,j <h,then (h+1i) = (h+7) € fa
o if i <h,and j > h then (h+1i) — (2h + j) € fo;

e if i > h, and j < h then (2h +1i) — (h+j) € fo; and
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Figure 3.1: The first step of the transducer.

e ifi,j > h, then (2h + i) — (2h + j) € fa.

Again T moves its input head to the right, and the output head remains stationary.
Finally, T reads the fourth symbol d, and prints on the same cell the symbol f3 which
is derived from d as follows. For every arrow ¢ — j € c:

e if 4,5 < h, then (2h+1i) = (2h + j) € f3;

e if i <hand j > h, then (2h +1i) — (5h + j) € f3;

e if i > h and j < h, then (5h + i) — (2h + j) € f3; and
e if 4,5 > h, then (5h +1i) — (bh + j) € fs.

Then the machine moves both of its heads to the right over the right end-marker and
halts.
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Figure 3.2: The second step of the transducer.

The main idea is that while in b we have two columns with arrows, in f; we move
those two columns and place the first one on top of the second one. In that way, we have
the same arrows and the same problem, in one fewer column, but in the same number of
nodes. The process continues in the same sense and we create a 3h-tall left column with
three h-tall blocks. Each block corresponds to a column of the input abed. Accordingly,
the arrows of ¢ move between the second block of the left column and the third block.
Symbol d connects the third block with the right column. The whole idea is represented
in the figures. In that way, a path that is live in the instance of 4TWLy, is live in in the
instance CTWLgy,, and vice versa. The transducer described above needs only four states,
to count which symbol it is reading, in order to print on the correct block. O

3.3 Owutcome

Theorem 14. If L is solved by a k-state 2NFA and all its instances are of length < [,
then L <op.op CTWL (14 1)2 via an (I + 1)-state 2DFT-OP, where Cy is equality and Co
1s the standard C.

Proof. The main idea is similar to Lemma 3. Let h = (I 4+ 1)2k If a 2k-tall, two-way,
multi-column graph can simulate the transitions of an arbitrary k-state 2NFA N on some
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Figure 3.3: The third step of the transducer.

input x, then an h-tall, two-way, 3-column graph can simulate N on x as well, as long
as there is a bound [ for the length of . Conveniently, the input of CTWL, is a h-tall,
two-way, 3-column graph. Let N = ({q1,...,q}, 2N, q1, Fn,0n) be a k-state 2NFA, with
all instances of length < [. We will define the 2DFT-OP T that transforms the input
string of N, z =F ajas - - as -, into an instance T'(x) of CTWL;, where s < .

T= ({poapl, oo apl—l—l}a EN, E2,pO7pl—i-1, 5T7 ) g)

where Yo is the set of h-tall, two-way, two-column graphs, represented as sets of arrows
i— jfori,je{l1,2,...,2h}. We define o7 in the following way:

e 07(po,F) = (p1, R, g(F,0), R) is the transition of T on the starting configuration,
o dr(pi,a) = (pi+1, R,g(a,i),S) is the transition of 7" in the general case,

e dr(pi, ) = (pi+1, R, g(H,4), R) is the transition of 7' when the head reads the right
end-marker, and the output head prints, moves to the right and the machine ends
its process.

We can sum up the movement of the head by looking at the above transitions: The reading
head moves one step at a time. The printing head starts at the first symbol, prints g(+, 0)
and moves to the next cell. It remains at the second cell, printing g(a,i) over the cell
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Figure 3.4: The fourth step of the transducer.

each time the reading head reads symbol a, while being in state g; and then the machine
moves to state g;+1. When the reading head reads -, the printing head prints g(-,4), and
moves to the right, while the machine moves to the final state. Now we only need to define
g: (SyU{F,—}) x{0,1,...,14+ 1} — 5y to conclude this construction of T'. g takes in to
account the symbol being read and the state machine 7T is in, and returns the symbol of
Y5 that is going to be printed over. Let h; = (i — 1)2k. We define g in relation to dy:

e g-,0)={1=>h+1}U{h+k+m— h+jl(g,R) € In(gm,F)}
This makes dp print an arrow for the starting configuration on the left column to
the middle column. h + j is the j-th node on the second column in each graph of
Y. The second part is about all the computation paths that, when coming from
the symbol a; (first in input) to k-, move to the right of I back to a; and to state g;.
° g(a,i) = {hz +m — h; + 2k —|—j\(qj,R) € 5N(qm,a)}
U{h; + 3k +m — h; + 2k + j|(gj, R) € On(gm,a)}
U{hi +m — hi + k + jl(gj, L) € on(qm, a)}
U{hi + 3k +m — h; + k+ j|(gj, L) € On(gm,a)}.

Here, we have separated the h-tall, two-column graph in [ + 1 blocks. Each block is
2k-tall. h; is the offset of the i-th block. Every arrow that we describe is between that
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block and the next one. To sum up, for every possible transition N can make while
reading symbol a, there are two arrows in g that represent exactly that transition
(one arrow for the case where the head has arrived in a from the right and one more
for the case where the head has arrived in a from the left).

e g(4,i) ={hi + m — hi + k+ j|(g;, L) € On(gm, )}
U{hi +m — h+h; —i—m]qm S FN}.

Similarly to the first case, we have two possible movements under the rigth end-
marker. The first set corresponds to computation paths that go right to -, read the
symbol, and move left to as to a state g;. The second set corresponds to the final
movement of any accepting configuration path: from being some state on the right
end-marker, the machine moves to the right into an empty cell without changing
state, and halts.

The above transformation is identical to the Sakoda-Sipser transformation, with only
difference that we place the graphs in blocks we have created vertically in the middle
column of the input. If NV accepts z, then, there is a path from the starting configuration,
through the transitions of dy, that ends at an accepting configuration. Equivalently, for
a path in CTWLy(,9), to be live, it has to start from the first column (from the first
column only the starting configuration of N has arrow to the middle column), it must
follow the arrows that correspond to the transitions of dy (for every arrow in g(z) there
is a transition from one configuration to another, and vice versa), and finally it has to
reach the third column (the only configurations reachable in the third column are those
that correspond to the accepting configurations, through valid transitions). So now we
can rephrase: x is accepted by N, <= T'(z) is live. O

The above lemma has two concequences.

Corollary 4. Every problem in 2N /const <op_op-reduces to CTWL.

Proof. Let (Lp)p>1 & problem in 2N/const. This means the instances of Ly, are of length
< | = const(h) and are solved by a 2NFA the number of states k& < p(h), for some
polynomial p. According to Theorem 14 there is a family of 2DFT-OPs that can reduce
(Lh)n>1 to CTWL(41y9. If we replace | and k accordingly we can reduce (Ljp)p>1 to
CTWL (const(h)+1)2p(h)s Where (const(h) + 1)2p(h) is a polynomial of h, via a family of
const(h)-state 2DFT-OPs. O

Corollary 5. Every problem in 2N /poly <op_op-reduces to CTWL.

Proof. Proof is similar to the one above. The instances of Lj; are of length < s(h) and
k < p(h). So, every (Lp)n>1 can reduce to CTWL4p)11)2p(n) Via a family of s(h)-state
2DFT-OPs.

O

Theorem 15. If L reduces to L' via an r-state 2DFT-OP, with output cells structured by
a semilattice and L' can be solved by an s-state 2DFAr that has instances of length < I,
then L is solved by a 2DFA with O(rsl?) states.
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P?”OOf. LetT = (QTa 217 EQa q0,4f, 5T> = E) be the 2DFT-OP and M = (QMa E2ap07pf7 5M
,C) be the 2DFA[ of the statement. We will construct a 2DFA D with O(rsl?) states
that recognises L. We now describe D = (Qp, X1, s0, Fp,dp):

e Qp = (QrU{d}) x Qp x [l +1] x [l + 1] is such that we can keep in track of the
states of T, M and their heads while we simulate their computation,

e s0 = (qo,po,1,1) since in the beginning both machines are in their starting states
and both heads are on the first cell of their tape,

o Fp={(qs,ps,11,12)|0 < ly,lo <141} and
¢ dp:Qp x (X1 U{F}) = Qp x {L,S, R} will be defined below.

In defining dp; we have to keep track of both machines being simulated. We have the
following cases:

e If D is in a state of the form (¢/, ..., 0, ...) then the simulation of T has been restarted.
While D is in any of these states, it moves its head all the way to the first symbol
of the tape, and starts the simulation of T again.

- dp((¢,p,0,12),a) = ((¢,p,0,l2), L), for all a € X3. This movement is while the
head moves to the left.

— dp((¢,p,0,12),F) = ((q0,p,1,12), R). This movement is the last one: after the
head has reached the left end-marker, it moves right to the first symbol of the
input and to the starting state of T'.

e If D isin a state of the form (g, p, ..., ...) and its head is reading - then the simulation
of T has halted. We have two subcases:

—Ifp= P, then (5D((q]v,pf,l1,lg),—|) = (Qf,pf,ll,lg),R). This means that the
simulation of M halts and then D halts, as well.

- pr ?é bf, then 5D((Qf7p) llal2)a _|) = (quﬂ-l((sM(p7_|7+))505l§)aL)5 where

1% { l2 if W?(dM(pa_h—'_)) =S

2= o —1 if 7T2(5M(pa %a +)) =L

Note that m; is used the it was defined in Chapter 1. This is the case when D
simulates the computation of M and the head of M moves to the right end-
marker. What actually happens is that M moves to the right after the last cell,
and D starts simulating 7" to see what will be printed on that cell. But that cell
will not be printed, instead machine 7" moves to - and enters the final state,
so D knows that T will halt. This means that the head of M is over the right
end-marker of its simulated input. So T needs not be simulated any further, D
knows the moves M makes over the right end-marker.

e If D is in a state (q,p,[1,l2) where ¢ # ¢, ¢ and l; < I, then T hasn’t reached the
point where it prints on the cell from which M is demanding to read. We set:

5D((q7p7 l17 l2)7 a) - (Wl((ST(qv a’))’p7 lIv l2)

where

P { 5 if m4(07(q,a))
,

S
L= 1 +1 if 774((5T(q )) R.
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This is simulating one movement of 7. We don’t need m3(dr(q,a)) € (X2 U {_}),
because we don’t care what T' prints on other cells than cell [s which is the one M
is reading at the moment.

e If D is in a state (¢, p,l1,l2) where ¢ # ¢/, qf and I; =l > 1, then T is about to
print a symbol on the cell from which M is reading. M checks if z C m3(dr(q, a)).

- If.%' E 7T3(6T(Q7a))7 then 5D((qap7 llle)aa’) = (q/,ﬂ'l(éM(p,.’L',‘i‘)),O,lS),L).

- Ifx /z 7[-3(5T(q7a)) then 5D((Qap7llal2)7a‘) = (Wl(dT((La)’p: likal2)77r2(5T(Qa CL)))
Where
o —1 ifﬂ'g((sM(p,.%',-i-)) =L
l; = l2 if WQ((SM(]),ﬁ,‘F)) =5
lo+1 ifﬂ'Q((SM(p,.%',—F)) =R

and [} is as in above. The first case is for when M reads z in the symbol
being printed; then M makes a move and D restarts the simulation of T'. The
second case is when M doesn’t read = in the symbol; then D continues with
the simulation of T'.

o If D is in a state (g,p,l1,l2) where ¢ # ¢',qf, 1 = la + 1 and lp > 1, then the
simulation of T" has printed everything it could have on cell [ and the simulation

moved on. We can now make the dp/(p, z, —) move of M and restart the simulation
of T.

dp((¢,;p,l1,12),a) = (¢',m(Onm(p,x,—)),0,15), L), where [ is defined as above.

e If D is in a state (q,p,l1,l2) where ¢ # ¢’, ¢ and lp = 0, then this is the case where,
during the simulation of M, its head is supposed to read the left end-marker. Then
D doesn’t need to simulate 7', because the movement of M over I is independent of
the input.

6D((Q7p> 170)70‘) = ((Q77T1(5M(p7|_>+))7 17l;)75)7 where

2711 ifm(0u(p k) =R

Note that the simulation of 7" has not started, and it will not start unless ls increases
to 1.

There are no valid transitions that are not described in the cases above. This concludes
the description of D. D simulates M and, every time M needs to check whether a prime
element is in a cell, D starts simulating T" to produce all the symbols that would be printed
on that cell. Notice, however, that D cannot know the result of the overprinting in that
cell, since it cannot remember a symbol of a potentially exponentially large alphabet. This
is why we need (X2,C) to be a semilattice. Because then x is C of the final result of the
overprinting, iff it is C of one of the (partial) prints, by definition of the prime element.
After that, M finally makes its move. Then D resets the computation of T" to the initial
configuration, while moving the reading head to the start of the input, and repeats the
process. The simulation of the transitions of M on the end-markers has been clarified,
and so has the halting of the machine. O

Corollary 6. If L <sp.op L' via a 2DFT-OP with output cells structured by a semilattice
C and L' €2D/poly via a 2DFAc with polynomially many states and input cells structured
by the same C, then L €2D.



98 CHAPTER 3. CTWL AND 2N/CONST

Proof. If every Ly reduces to Lé(h) via an r(h)-state 2DFT-OP, where e(h) and r(h) are
polynomials, and every L} is solved by an s(h)-state 2DFAL and has instances of length

< I(h), where s(h) and [(h) are also polynomials, then every Lj, is solved by a 2DFA of
size O(r(h)s(e(h))l(e(h))?), which is polynomial in h. O

An immediate consequence of Corollaries 5 and 6 is the following:

Corollary 7. If CTWLe 2D wia a 2DFAc whose input cells are structured by the standard
C, then 2N /polyC2D.

3.4 Generalization of the 2DFT-OP

We further investigate the case where the tape may have an arbitrary operation rather
than the join of two elements of the alphabet.

Definition 3.9. A two-way determistic finite transducer with an operating output tape
is a tuple

T = (Qa 217 227q0’qf7 57 Ot)

where Q, X1,32, o, qf are as in Definition 3.7, § : Q x (¥, U {F,-}) = Q x {L, S, R} x
(3o U{_}) x {S, R} is the transition function, and Oy : (XoU{_}) X (Z2U{.}) = (Z2U{-})
is the operation of the output tape.

When the head is over a cell, containing a symbol x and prints on that cell a symbol
y, then the result of the overprinting is O(z,y). When the symbol . is being printed, the
cell remains unchanged. Formally O(z,.) = z, for all z. Note that O is not necessarily
commutative.

There seems to be a problem with this transducer, in terms of transitivity. A compo-
sition of two such transducers will have the same problem the 2DFT has. It cannot track
down the movement of the two hypothetical heads of the two machines being simulated,
namely the output head of the first machine and the input head of the second machine.
But even if we restrict the print size polynomially, so that the simulator can keep two
counters to track down the simulated heads, another problem still remains. How can a
machine simulate the operation of the simulated intermediate tape without keeping in its
memory at least one tape symbol? It seems it cannot. We futher investigate the weak-
nesses of the reduction defined by such a transducer. We first need to define the following
problem.

Example 17. The problem 10WL = (10WLj,);>1 is a restriction of OWL. The alphabet
is the same as in OWL and the input is of length 1. Formally, for every h > 1 the input
alphabet is X5 = P({1,2,...,h}?) and

10WL, = {a € ¥}| a has at least one arrow}.

This problem is trivial. It can be solved by a 1-state 1IDFA. The state checks whether
there is an arrow from the left column to the right (any arrow at all). If there is at least

one, then the head moves to the right. If there is none, then the machine halts. So,
10WL €1D.

Proposition 15. OWL reduces to 10WL wia a 2DFT with an operating output tape.
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Proof. We describe the transducer T' = (Q, Xy, Xp, o, G0, 9, Or) that reduces OWLy to
10WLy,. We let Q = {qo} and choose § so that

d(q0,a) = (o, R, a,S), for all a € ¥, and

5(Q07 _|) = (q07 R, ., R)

The computation of T is straightforward. At every step, it reads the next symbol a
and it overprints it on the first cell of the output tape. When the reading head reaches -,
then the output head moves to the right and the computation ends.

More important, is the operation of the output tape. We let O(b,a) = a o b, the
composition of a and b, if seen as relations on {1,2,...,h}.

The final output is a single symbol which is the composition of all symbols of the input.
An arrow from the left column to the right column, in that symbol, is equivalent to a path
from the left column of the first symbol of the input to the right column of the last symbol
of the input. Note that the transducer does not use the ability of the input head to move
backwards. O

Proposition 15 shows a reduction of a 1N-complete problem to a problem of 1D, while
we know that 1IDCIN. The next example exploits even further the power of the operating
output tape.

Example 18. The problem TRIVIAL = (TRIVIAL})p>1. Formally, for every h > 1 the
input alphabet is ¥j, = {1,2,...,2" + 1} and

TRIVIAL;, = {2"}.

This problem is (trivially) in 1D since it can be solved by a single state 1DFA that
looks at the one cell input and if it reads 2" then accepts, otherwise declines.

Proposition 16. LONGLENGTH reduces to TRIVIAL via a 2DFT with an operating
tape.

Proof. The following transducer T reduces LONGLENGTH,, to TRIVIAL;,. We let T' =
(Qa 217 Z?a q0, 40, 5, Ot), where

e Q = {qo} is the set of states
o 1 ={0}
o Yo =1{1,2,....2" + 1}

And § is such that:

3(q0,0) = (qo, R, 1,S), and

6(qo, ) = (qo0, R, -, R).
At each step, T reads the next input symbol (it can be either 0 or ), prints 1 onto the
first cell of the output tape, and moves the input head to the right, while the output head
remains stationary. When the machine reads -, it prints nothing, moves each head to the
right and halting.

The operation of the output tape is defined as follows:

1 ifa=._
O(a,1)=¢ a+1 ifa<?2h
a ifa=2"+1.

So, the transducer counts in one cell of the output tape the number of Os in the input
tape. If the number of Os exceeds 2", then the counter gets stuck at 2" 4+ 1. The first tape
has 2" Os iff the second tape has 2" as the final result of the overprinting. O
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So, given that LONGLENGTH¢#2N by Proposition 8 and that TRIVIALE1D we see
that a very difficult problem reduces to a trivial problem via a 2DFT-OP with an operating
output tape. This reduction proves to be very strong, so strong that is actually of no use
to us.

Corollary 8. The reduction that can be defined by the generalization of 2DFT-OP, with
an operating output tape, is such that none of 1N, 2D or 2N is closed under it.

3.5 Conclusions

In this chapter we defined a new type or reduction, trying to prove CTWL to be 2N /const-
complete. The whole idea was based on compression of information. The essence of the
TWL problem is the same in its restrictions. One column with random arrows between
its nodes is enough to make this problem difficult enough. But there seems to be a gap
between TWL and ShortTWL or CTWL afterall, and it is the distance between having
instances that are countable or not (by a small 2DFA). But the effort to compress the
information that way, created another problem, on the way the machine accesses the
information. As a result, this reduction took the problem to a different direction than the
one that was intended. Finally, the generelization of the reduction is shown to be very
strong to be of any practical use. The operation of the tape can be defined to deal with
the problem, and reduce it to trivial, no matter how difficult the starting problem is.
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