
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

DIPLOMA THESIS

Decentralized Business Process Execution in
Peer­to­Peer Systems

Ioannis E. Pogkas

Supervisor: Aphrodite Tsalgatidou, Associate Professor NKUA

Technical Support: Michael Pantazoglou, PhD Research Associate NKUA

ATHENS

November 2011

DIPLOMA THESIS

Decentralized Business Process Execution in Peer­to­Peer Systems

Ioannis E. Pogkas

R.N.: M948

SUPERVISOR:

Aphrodite Tsalgatidou, Associate Professor NKUA

TECHNICAL SUPPORT:

Michael Pantazoglou, PhD Research Associate NKUA

Abstract

Business Process Execution Language (BPEL) has become a standard for describing

the interactions between business processes. Until recently, only centralized BPEL en­

gines were used to orchestrate the process interactions, while scalability and robustness

were addressed via engine replication. To address these issues we propose a fully de­

centralized solution: by employing a content­based publish/subscribe mechanism on

top of a distributed hash table network of peers, we specify a distributed orchestration

engine. Furthermore, we extend a previously proposed model that maps BPEL activities

into a subscription language, thereby decentralizing business process execution. The

publish/subscribe mechanism provides efficient and flexible means for information pro­

ducers and consumers to exchange data, while the underlying peer­to­peer topology

offers scalable query and message propagation. An implementation of the proposed ap­

proach is provided and tested over the PeerSim simulator. We evaluated our system in

terms of efficiency and effectiveness, i.e., scalability, robustness, and overhead.

SUBJECT AREA: Peer­to­Peer Systems, Distributed Systems, Business Processes

Keywords: BPEL, Orchestration Engines, Business Process Execution, Publish/Sub­

scribe systems, Peer nodes, PeerSim

Περίληψη

Η Business Process Execution Language (BPEL) είναι µια πρότυπη γλώσσα για την

περιγραφή της αλληλεπίδρασης των επιχειρησιακών διαδικασιών. Μέχρι πρόσφατα, για την

ενορχήστρωση των αλληλεπιδράσεων µεταξύ των διαδικασιών χρησιµοποιούνταν µόνο κεν-

τρικοποιηµένες BPEL µηχανές, ενώ η ανάγκη για µεγαλύτερη κλιµάκωση και ευρωστία αν-

τιµετωπίζονταν µε τη χρήση πολλαπλών παρόµοιων µηχανών. Για τη διευθέτηση των παρα-

πάνω απαιτήσεων προτείνουµε µια πλήρως κατανεµηµένη λύση: τη χρήση ενός µηχανισ-

µού δηµοσιεύσεων/συνδροµών πάνω από ένα δοµηµένο δίκτυο οµότιµων κόµβων, το οποίο

να ϐασίζεται στη χρήση πινάκων κατακερµατισµού, για την κατασκευή µιας κατανεµηµένης

µηχανής ενορχήστρωσης διαδικασιών.

Επιπλέον, επεκτείνουµε ένα µοντέλο που είχε προταθεί παλαιότερα για την κατανεµη-

µένη εκτέλεση επιχειρησιακών διαδικασιών και τα οποίο αντιστοιχούσε δραστηριότητες της

BPEL σε µια γλώσσα δηµοσιεύσεων/συνδροµών. Ο µηχανισµός δηµοσιεύσεων/συνδροµών

προσφέρει στους παραγωγούς και τους καταναλωτές της παραγόµενης πληροφορίας έναν

ευέλικτο και αποδοτικό µηχανισµό για την ανταλλαγή δεδοµένων, ενώ η τοπολογία οµό-

τιµων κόµβων προσφέρει τη δυνατότητα επερωτήσεων και δροµολόγησης µηνυµάτων ακόµα

και σε δίκτυα µε υψηλή κλιµάκωση. Παρουσιάζουµε µια υλοποίηση της προτεινόµενης

προσέγγισης και την αξιολογούµε µε την χρήση του προσοµοιωτή PeerSim.

Αξιολογούµε το σύστηµα ως προς την αποδοτικότητα και την αποτελεσµατικότητα του,

εξετάζοντας την κλιµάκωση, την ευρωστία, και το κόστος µε ϐάση το πλήθος των παραγό-

µενων µηνυµάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήµατα οµότιµου προς οµότιµου, Κατανεµηµένα συστήµατα,

Επιχειρησιακές διαδικασίες

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : BPEL, Μηχανές ενορχήστρωσης, Εκτέλεση επιχειρησιακών διαδικασιών,

Συστήµατα δηµοσίευσης/συνδροµής, Οµότιµοι κόµβοι, PeerSim

Dedicated

To my parents Evangelo and Mairy

for their love, constant support, and

for bringing out what is best in me.

To Basil, my best friend and beloved cousin

Der Anfang und das Ende ist eine

Erfindung des Menschen.

Acknowledgements

First and foremost, I would like to thank my supervisor, Mrs Afrodite Tsalgatidou,

for giving me the opportunity to work with her and for her patience, trust, and kindness.

Her advices and comments on this thesis helped me to improve myself and to push this

work one step forward.

Second, I would like to thank Mrs Mema Roussopoulos, Assistant Professor of the

department of Informatics and Telecommunications, for being the examiner of this thesis

and for proving useful comments during the presentation of this work.

Third, I would like to thank Mr Alex Delis, Professor of the department of Informatics

and Telecommunications, for being an excellent tutor during my postgraduate studies,

by helping me to become better as a person, scientist, and professional.

Then, I would like to thank all my dear colleagues and co­workers in the s3lab.

Michael Pantazoglou for his patience to fully review this thesis and for providing in­

sightful comments and corrections. Pigi Kouki, for having the kindness to help me with

her thoroughly review and critical comments, especially in the early stages of this work,

and George Athanasopoulos for helping me with useful suggestions and for proposing

interesting future directions.

Last, but not least I thank all my co­workers and fellow programmers at the sinastri­

a/syntech, Manolis2, Spyros, Daniel, Alexandros2, Dimitris, and Lakis, for guiding me

through my first steps as a professional programmer and for all the great time that we

had together.

Contents

List of Figures 17

List of Tables 21

Preface 23

1 Introduction 25

1.1 Problem Statement . 26

1.2 Proposed Solution . 27

1.3 Contributions . 29

1.4 Thesis Outline . 30

2 Background 33

2.1 Workflow Management . 33

2.2 Web Services . 37

2.3 Business Process Management . 39

2.4 Publish/Subscribe Paradigm . 43

2.5 Peer­to­Peer Systems . 45

2.5.1 Unstructured Networks . 46

2.5.2 Structured Networks . 47

2.5.3 DHT implementations . 51

2.6 Conclusions . 54

3 Related Work 55

3.1 Content­based Publish/Subscribe over Structured P2P Overlays 55

3.2 Decentralized Service Orchestration . 65

3.3 Conclusions . 73

4 Design and Architecture 79

4.1 System Overview . 79

4.1.1 Deployer Architecture . 84

4.1.2 Worker Architecture . 87

4.2 Publish/Subscribe over DHT . 91

4.2.1 Publish/Subscribe Model . 92

4.2.2 Subscription Algorithms . 98

4.2.3 Publication Algorithms . 103

4.2.4 Event Delivery Algorithms . 104

4.2.5 Filter Covering/Merging Algorithms 106

4.3 Mapping BPEL to Publish/Subscribe Messages 110

4.4 System Operation . 111

4.4.1 Startup Phase . 111

4.4.2 Deployment Phase . 117

4.4.3 Execution Phase . 124

4.4.4 Redeployment Phase . 130

4.4.5 Undeployment Phase . 132

4.5 Conclusions . 133

5 Evaluation 135

5.1 Simulation . 135

5.2 ADORE Publish/Subscribe Evaluation . 137

5.2.1 Metrics . 138

5.2.2 Setup . 138

5.2.3 Experimental Results . 139

5.2.3.1 Performance under Standard Configuration 140

5.2.3.2 Effect of Subscribers Range 141

5.2.3.3 Effect of Network Size . 143

5.3 ADORE Engine Evaluation . 144

5.3.1 Metrics . 145

5.3.2 Setup . 145

5.3.3 Experimental Results . 148

5.3.3.1 Performance with varied Request Rate 148

5.3.3.2 Performance with varied Web Service Delay 149

5.3.3.3 Performance with varied Latency 152

5.3.3.4 Per­process vs Per­instance Deployment 153

5.4 Conclusions . 155

6 Conclusions and Future Work 157

6.1 Conclusions . 157

6.2 Future Work . 158

Appendices 159

A Mapping BPEL to the Publish/Subscribe Language 159

A.1 Mapping Basic Activities . 159

A.1.1 <receive> activity . 159

A.1.2 <reply> activity . 161

A.1.3 <invoke> activity . 162

A.1.4 <assign> activity . 164

A.1.5 <exit> activity . 166

A.1.6 <empty> activity . 167

A.1.7 <end> activity . 168

A.1.8 <wait> activity . 168

A.2 Mapping Structured Activities . 170

A.2.1 <sequence> activity . 170

A.2.2 <if> activity . 173

A.2.3 <while> activity . 176

A.2.4 <pick> activity . 179

A.2.5 <flow> activity . 184

Acronyms 189

Bibliography 191

List of Figures

1.1 Publish/Subscribe system . 28

2.1 Example of an insurance claim business process 35

2.2 Example of a medical workflow . 36

2.3 Workflow system characteristics . 37

2.4 Web services model . 38

2.5 Orchestration versus Choreography . 43

2.6 DHT key assignment. 49

2.7 Pastry DHT. 50

2.8 Chord circular identifier. 52

2.9 CAN 2d coordinate space. 53

3.1 Tapestra et al. subscription and publication. 58

3.2 Subscription id construction in Triantafillou pub/sub. 59

3.3 Reach event propagation. 62

3.4 HOMED event dissemination. 63

3.5 Meghdoot 2d identifier space, subscription and event propagation. 64

3.6 Nanda Workflow Transformation. 68

3.7 Nanda centralized architecture. 69

3.8 Nanda decentralized architecture. 70

3.9 ZenFlow architecture. 71

3.10PADRES broker. 72

3.11NIÑOS architecture. 73

4.1 Distributed orchestration engine’s architecture. 81

4.2 Deployer architecture. 85

4.3 E/R model of the deployer node’s database. 86

4.4 Data structures after parsing. 87

4.5 Deployer data structures. 88

4.6 Composite subscription list. Each node contains a matching tree. 88

4.7 Worker node architecture. 89

4.8 E/R model of the worker node’s database. 90

4.9 Publication message class diagram. 93

4.10Subscription message class diagram. 94

4.11Data and GUID class diagram. 95

4.12DataType and Time class diagram. 96

4.13Random Predicate Subscription Algorithm (RP­SA). 99

4.14Proximity Predicate Subscription Algorithm (PP­SA). 101

4.15Multi­Predicate Subscription Algorithm (MP­SA). 102

4.16Publication delivery algorithms. 105

4.17Subscription matching tree. 105

4.18Filter Merging. 110

4.19Simple BPEL activities mapping to pubsub language. 112

4.20Structured BPEL activities mapping to pubsub language. 113

4.21Utilization phase sequence diagram. 114

4.22Deployment phase sequence diagram. 118

4.23Deployment process activity diagram. 120

4.24Deployment process subactivities diagram. 121

4.25Execution reply success. 126

4.26Execution exit success. 127

4.27Execution exit failure. 128

4.28Sequence redeployment phase diagram. 131

4.29Sequence redeployment phase diagram. 131

4.30Sequence undeployment phase diagram. 133

5.1 PeerSim simulator . 136

5.2 Average number of subscribers per event. 140

5.3 Distribution of events for standard configuration. 142

5.4 Subscription distribution in PP­SA, MP­SA, and RP­SA mechanisms 142

5.5 Subscriber range effects for PP­SA. 143

5.6 Network size effects for PP­SA. 144

5.7 BPEL process used for the engine’s evaluation. 146

5.8 ADORE performance vs request rate. 148

5.9 ADORE performance vs Web service delay (50 req/min). 149

5.10ADOREperformance vs Web service delay (500 req/min). 150

5.11ADORE performance vs Web service delay (1000 req/min). 150

5.12ADORE average execution time vs single server execution time. 151

5.13ADORE performance vs network latency (50 req/min). 152

5.14ADORE performance vs network latency (500 req/min). 153

5.15ADORE performance vs network latency (1000 req/min). 153

5.16ADORE performance using per­process vs per­instance deployment. 154

5.17Activity distribution in per­process and per­instance deployment. 154

A.1 Receive activity subscription and publication messages. 160

A.2 Publish/Subscribe messages for the <reply> activity. 162

A.3 Invoke activity subscription and publication messages. 164

A.4 Publish/Subscribe messages for the <assign> activity. 166

A.5 Publish/Subscribe messages for the <exit> activity. 167

A.6 Publish/Subscribe messages for the <empty> activity. 168

A.7 Publish/Subscribe messages for the <end> activity. 169

A.8 Publish/Subscribe messages for the <wait> activity. 170

A.9 Publish/Subscribe messages for the <sequence> activity. 172

A.10Publish/Subscribe messages for the <if> activity. 175

A.11Publish/Subscribe messages for the <while> activity. 178

A.12Publish/Subscribe messages for the <pick> activity. 182

A.13Publish/Subscribe messages for the <flow> activity. 188

List of Tables

2.1 BPEL supported workflow patterns . 41

2.2 BPEL basic and structured activities . 42

2.3 Basic DHT operations and specific Pastry DHT operations 49

3.1 Schema table in Tam pub/sub. 57

3.2 Schema table in Triantafillou pub/sub. 59

3.3 subscription example 1 in Triantafillou pub/sub. 60

3.4 subscription example 2 in Triantafillou pub/sub. 60

3.5 Content­based pub/sub systems comparison. 76

3.6 Distributed orchestration engines comparison. 77

4.1 ADORE basic and structured activities. 91

4.2 Startup Phase: Deployer node subscription messages. 116

4.3 Startup Phase: Worker node subscription and publication messages. . . . 117

4.4 Deployment Phase: Deployer node subscription and publication messages. 124

4.5 Deployment Phase: Worker node subscription messages. 125

4.6 Execution Phase: Deployer node publication messages. 129

4.7 Execution Phase: Worker node subscription and publication messages. . 130

4.8 Redeployment Phase: Worker node publication messages. 132

4.9 Undeployment Phase: Worker node publication messages. 133

5.1 Performance of RP­SA, MP­SA, and PP­SA algorithms. 140

Preface

This thesis has been written during my postgraduate studies in the Department of

Informatics & Telecommunications, in the program of Computer Systems Technology,

2009–2010. The main supervisor of this thesis was Mrs Afrodite Tsalgatidou Associate

Professor of the department of Informatics and Telecommunications, while technical

support was offered by the postdoctoral research associate of the s3lab1, Mr Michael

Pantazoglou. Mrs Mema Roussopoulos, Assistant Professor of the department of Infor­

matics and Telecommunications, was the examiner of this thesis.

This thesis presents a distributed architecture for executing business processes com­

posed of Web services. We evaluate the design and implementation of a distributed

engine based on the Peer­to­Peer (P2P) architecture, that leverages a publish/subscribe

(pub/sub) messaging pattern in order to coordinate the service execution. This architec­

ture differentiates our solution from the current ones as it requires no administration

and can offer efficient business process deployment and execution based on locality

metrics.

During that period, I was also involved in the EU funded project ENVISION2 (ENVIron­

mental Services Infrastructure with ONtologies) and my association with that project

provided useful insights about the directions which I had to follow in my work.

1http://s3lab.di.uoa.gr/
2http://www.envision­project.eu/

Decentralized Business Process Execution in Peer­to­Peer Systems

Chapter 1

Introduction

Service oriented architecture (SOA) is a software architecture for building enterprise

applications. SOA implements business processes or services (i.e. logical encapsulations

of business functions) using a set of loosely coupled black­box components coordinated

to deliver a well­defined level of service.

The SOA approach allows businesses to leverage existing assets and to easily evolve

by supporting new operations. This happens in such a way that an agile business

can quickly adapt its processes to an ever changing landscape of opportunities, prior­

ities, partners, and competitors. Foremost, SOA provides separation of concerns (i.e.

the separation of business logic from computer logic), therefore enabling an organiza­

tion to make business decisions supported by technology, instead of making business

decisions determined by or constrained by technology. Additionally, SOA enables busi­

nesses to leverage existing investments by allowing them to reuse existing applications,

and promises interoperability between heterogeneous applications and technologies. Fi­

nally, SOA requires the use of acceptable industry standards to link the existing software

assets together, like Web Services [BHM+04], thus providing a level of flexibility that

wasn’t possible before.

The role of Web Services into SOA is of most importance as they provide the real­

ization of SOA. Web Services are pieces of software that use standard web interfaces to

communicate with other software through Web interfaces. In short, Web services are

software systems designed to support interoperable machine to machine interaction over

a network. Today, the proliferation of Web Services standards reflects the demand for

distributed enterprise applications that communicate with software services provided by

vendors and clients.

For example, an online retailer company (e.g. Amazon1) may use the services of a

partner shipping company (e.g. DHL2) such as a service that allows customers to track

the delivery status of the ordered products. For this purpose, the shipping company

would expose a component that allows its partners to retrieve delivery status informa­

1http://www.amazon.com
2http://www.dhl.com

Ioannis E. Pogkas 25

http://www.amazon.com
http://www.dhl.com

Decentralized Business Process Execution in Peer­to­Peer Systems

tion. Other external services the retailer may use include a payment service (such as

PayPal3), a service that provides products description, and a component that accepts

customers reviews. In addition, the retailer may use services developed internally, such

as a user interface engine (to render graphical interfaces for various devices such as

smartphones or tablet computers) and an authentication service. As these components

are developed to be loosely coupled it becomes easier to design, develop, modify, and

maintain the overall application.

Modern globalized industries have business processes that consist of complex inter­

actions among a large set of geographically distributed services. These services are com­

monly developed and maintained by various organizations. They can be very large, long

running, can manipulate vast quantities of data, and may require thousands or millions

of process instances. These business processes may be distributed, e.g. department­

level processes, utilizing dozen of activities, or there may be global processes composed

from the department­level ones while being geographically distributed. The industries

may require thousands of instances of these processes to be executed concurrently at

any time. In a SOA­based architecture, the coordination and execution of such large

processes, involving dozen of loosely­coupled collaborating parties, is the natural fit for

a distributed execution engine.

1.1 Problem Statement

The Web Services Business Process Execution Language (WS-BPEL or simply BPEL)

[AAA+07] specification defines how Web services can be composed to orchestrate long

running business processes. It is an OASIS4 standard and was originally created by

BEA5, IBM6, and Microsoft7. BPEL enables developers to specify how information flows

between Web services during long­lasting business processes by including support for

loops, conditional cases, synchronous and asynchronous communication, concurrent

activities, error handling, and recovery. A business process description in BPEL is in­

terpreted by a BPEL orchestration engine. The latter is responsible for carrying out the

processes execution and maintaining the state associated with the process instances.

Typically, a single centralized engine is deployed to manage an application and scalabil­

ity is addressed by replicating the engine.

Existing BPEL orchestration engines [ODE11, Act11, Ser11, jBo11, IBM11] support

clustering in order to optimize and ensure efficient throughput on highly available sys­

tems. When a business process needs to be scaled to meet heavier processing needs,

the clustering algorithm automatically distributes processing across multiple engines.

Nevertheless, the centralized and clustered approaches have several drawbacks, as they:

3https://www.paypal.com
4http://www.oasis-open.org
5http://www.oracle.com/us/corporate/Acquisitions/bea /index.html
6http://www.ibm.com
7https://www.microsoft.com

Ioannis E. Pogkas 26

https://www.paypal.com
http://www.oasis-open.org
http://www.oracle.com/us/corporate/Acquisitions/bea/index.html
http://www.ibm.com
https://www.microsoft.com

Decentralized Business Process Execution in Peer­to­Peer Systems� Exhibit low scalability. The centralized orchestration engine becomes a scalability

bottleneck as it fails to support large­scale business processes.� Lack proximity mechanisms. In case of data intensive processes the network must

transfer an excessive amount of data among geographically dispersed endpoints.� Provide coarse­grained mapping. They provide only coarse­grained mapping of

processes instances on computational resources.

The distributed orchestration architectures that have recently emerged [LMJ10,

NCS04, BMM05] offer a different approach. Their runtime orchestrates business pro­

cesses by distributing process execution across several light­weight agents. The dis­

tributed architecture is congruent with an inherently distributed enterprise where busi­

ness processes are geographically dispersed and coordinating partners have to com­

municate across administrative domains. Furthermore, this solution provides several

advantages: a) it removes the scalability bottleneck of a centralized orchestration en­

gine; b) it offers additional efficiencies by allowing portions of processes to be executed

close to the data they operate on (thereby conserving data and control traffic), and c) it

supports flexible mappings onto heterogeneous platforms and resources, permitting the

system to shape itself from a centralized to a fully distributed configuration.

Nevertheless, the existing distributed solutions fail to fully solve many aspects of the

above problems, as they:� Require specialized agents. They require the use of special­purpose agents that will

act as broker nodes or will execute specific process activities. This approach in­

creases the heterogeneity of the available resources and makes their management

more challenging.� Require network administration. They require custom network configuration by a

network administrator to allow portions of processes to be executed close to the

data they operate on. Thus this approach is static, human intensive, and clearly

not optimal in terms of time, machine, and human resources utilization.� Provide only static mapping. Most of them provide a static assignment of the

BPEL processes portions to the network agents. Thus, they fail to facilitate dynamic

mapping based on the network condition and the agents utilization state.

1.2 Proposed Solution

Content­based pub/sub systems are verified to be an ideal solution for distributed

workflow management since they provide a loosely coupled messaging infrastructure

[LMJ10]. As shown in Figure 1.1, they consist of three major components: publishers,

subscribers, and brokers. Publishers send data to the system as publications, while

subscribers express their interest in specific information by issuing subscriptions, and

Ioannis E. Pogkas 27

Decentralized Business Process Execution in Peer­to­Peer Systems

publication publication

subscription

Publish/Subscribe
Broker Nodes

Publisher
Node

Subscriber
Node

Figure 1.1: Publish/Subscribe system

brokers match and route relevant publications to interested subscribers. The messages

in a content­based pub/sub system are routed based on their content. Therefore, publish­

ers and subscribers are loosely coupled and require no knowledge about each other in

order to communicate. This feature is essential to distributed BPEL orchestration engines,

which coordinate the execution of loosely coupled services. Moreover, business workflow

tasks or jobs can be executed by job execution agents, which are typical pub/sub clients

connected to brokers. The job execution agents are lightweight components as they

have no specific logic for workflow management. After the task or job information has

been deployed (using appropriate subscriptions) to job execution agents, they only need

to receive publications that triggers their execution, so as to process the corresponding

tasks or jobs, and send the produced publications.

Based on the above idea we propose a distributed BPEL orchestration engine imple­

mented over a content­based pub/sub system. On the top level, our engine must support

the execution of business processes specified in BPEL
8. The BPEL processes consist of ac­

tivities divided into two categories: basic and structured. The supported basic activities

define synchronous and asynchronous communication with outside Web services (re­

ceive, reply, invoke), control execution of business processes (exit, wait, empty), and

update data values of variables (assign). The supported structured activities are used to

express typical and complicated workflow patterns: sequence (by sequence), exclusive

choice (pick), multiple­choice (if/else), parallel split (flow), and repetition (while).

In order to support the distributed orchestration of the aforementioned BPEL activities,

our distributed execution engine provides four basic operations:

1. BPEL process description parsing and decomposition. The BPEL process is parsed

into basic and structured activities and all the activities are transformed into pub/-

sub messages. Thus, this step provides the mapping from BPEL to pub/sub semantics.

8We provide support for only a subset of the original BPEL activities.

Ioannis E. Pogkas 28

Decentralized Business Process Execution in Peer­to­Peer Systems

2. Activity deployment. The pub/sub messages produced by the previous operation are

sent to specific agents of the distributed infrastructure using network proximity

and node utilization metrics.

3. Activity execution. The agents execute the deployed activities and publish new

pub/sub messages.

4. Activity undeployment. The engine removes the deployed activities from the agents.

The above operations are implemented using an underlying pub/sub infrastructure.

This is facilitated by a structured P2P network overlay based on MSPastry [CCR04],

where the job execution agents are assigned to network nodes. MSPastry offers infras­

tructureless scalability (thus requires no specialized administration needs9), provides

message propagation based on network proximity, has fault­tolerance properties (as

every node has equal role and there are no single points of failure), but offers only ex­

act name lookups. Thus, we extend this infrastructure by implementing content­based

pub/sub semantics on top of the Distributed Hash Table (DHT) interface using efficient

algorithms for storing, matching, and delivering pub/sub messages. With our scheme

we express the dependencies among the business processes and the agents using pub/-

sub messages. By exploiting all these properties our distributed engine has the ability to:

a) support scalable deployment and execution of BPEL processes, b) dynamically adapt

the processes deployment and execution based on the network status without any hu­

man intervention, and c) provide good fault tolerance even in a network with high churn

rate.

1.3 Contributions

The main contributions of this thesis are:� An infrastructureless network based on multiple­purpose agents. We propose a

distributed BPEL orchestration engine architecture based on a content­based pub-

/sub system that is implemented on top of a DHT network. Our engine is inspired

by NIÑOS [LMJ10], but uses a DHT network that consists of multiple­purpose agent

nodes and requires no human intervention to shape itself efficiently.� Two dynamic activity mapping mechanisms based on the network utilization. Our

engine support flexible mapping of the BPEL activities to the engine’s nodes, thus

9 On the contrary, the traditional distributed pub/sub systems require an application­level overlay

network, where its configuration is typically performed manually by a network deployer and plays an

important role in its performance. This task becomes more difficult as the number of brokers in the

network scales up. Furthermore, the topology is often static and does not adapt to changing usage

patterns. In addition, the commonly organization of the broker network as a tree results in every node

being a single point of failure or a bottleneck. Therefore, many existing distributed pub/sub systems have

good scalability properties but require the purchase of specialized infrastructure and administration.

Ioannis E. Pogkas 29

Decentralized Business Process Execution in Peer­to­Peer Systems

permitting the system to shape itself based on the network utilization state. To

this end, we propose and evaluate two deployment mechanisms with different

characteristics.� A pub/sub dissemination algorithm with proximity awareness. We extend and modify

the pub/sub algorithms that where original proposed in Ferry [ZH05]. We use pub/-

sub matching techniques that reduce the size of the nodes’ routing tables. Further­

more, by exploiting the DHT layer proximity properties we provide proximity­aware

subscription installation and event propagation, yielding good message delivery

performance.� A quantitative performance evaluation of the proposed engine. An experimental

evaluation is carried out. The evaluation shows that the pub/sub mechanism scales

well and produces low network overhead. Furthermore, our engine’s performance

is evaluated versus centralized clustered solutions, based on the exhibited average

execution time, throughput, and overhead.

1.4 Thesis Outline

The rest of the thesis is organized as follows:� Chapter 2 presents an overview of the related theory and technologies. Readers

not relevant with the discussed areas are recommended to read this chapter, while

others can freely skip the presented material.

It starts by presenting basic concepts like: business process, workflow, workflow

management systems, and Web services. Next, it presents the notion of busi­

ness process management and makes a short introduction of the BPEL language

constructs and execution environment. It continues with the pub/sub model and

emphasizes in the distributed content­based pub/sub. Last, it presents the most

popular structured P2P architectures based on distributed hash tables such as

MSPastry, the overlay used in our work.� Chapter 3 discusses related work in the field of pub/sub systems and the distributed

orchestration engines. It starts with content­based pub/sub systems that use differ­

ent overlay and models, while it focus on systems based on the DHT infrastructure,

like Ferry. Then, it presents related decentralized orchestration engines like NIÑOS,

with special focus on their execution mechanism.� Chapter 4 discusses the approach taken by this thesis to the problem of decentral­

ized business process execution and provides details about our implementation.

It starts by providing an overview of the architecture and its constituting elements

and presents the pub/sub model that is employed by our solution. Then, it presents

the proposed mapping between pub/sub and the BPEL language constructs. Finally, it

Ioannis E. Pogkas 30

Decentralized Business Process Execution in Peer­to­Peer Systems

concludes with a detailed description of the engine’s operation during the process

deployment, execution, redeployment, and the undeployment phase.� Chapter 5 discusses the evaluation methodology followed in this thesis, and pro­

vides comments on its results. It starts with the PeerSim simulation engine [MJ09]

that was used to implement our proposed architecture and presents both its ben­

efits and drawbacks. Next, it presents an evaluation of the used pub/sub mech­

anisms. We demonstrate that our pub/sub algorithms scale well and have good

load balancing features. In the following, it presents an evaluation of the en­

gine’s performance in terms of process execution time, throughput, and overhead.

Also, presents a performance comparison between our solution and a clustered

centralized engine. Finally, concludes with the comparison of the two proposed

deployment mechanisms (i.e per­process and per­instance deployment).� Chapter 6 concludes the thesis, summarizes, and identifies various directions and

open problems for future work.� Finally, Appendix A presents the detailed mapping of the BPEL activities to the used

pub/sub language.

Ioannis E. Pogkas 31

Decentralized Business Process Execution in Peer­to­Peer Systems

Chapter 2

Background

This chapter starts with Section 2.1 which introduce the reader into the basic con­

cepts of business process, workflow, and workflow management systems. Then, in

Section 2.2, we explain the notion of Web services as they are central to our work.

Section 2.3 presents the notion of business process management and makes a short

introduction of the BPEL language constructs and execution environment. BPEL is the

language that our work is based upon and has a main role into the orchestration of Web

services.

Second, Section 2.4 presents the pub/sub model and its categorization on different

types based on the used architecture and filtering method. We emphasize particularly

in the distributed content­based pub/sub as it is used in our work.

Last, Section 2.5 makes a short introduction to the ideas that drove the evolution

of the peer­to­peer systems and the benefits that this approach offers to the distributed

computing. We use a common categorization and divide our presentation into unstruc­

tured and structured peer­to­peer networks. The latter are related to our work, so we

present the most popular structured architectures based on distributed hash tables.

We analyze the operation of five prominent DHT systems and discuss their benefits and

drawbacks. We conclude this section with the presentation of MSPastry, the overlay

used in our work.

2.1 Workflow Management

A process (or procedure) is a collection of related tasks that need to be carried out in

an order determined by a set of conditions. Its main goal is to produce a specific service

or product for a particular customer or customers.

A task is a logical unit of work that is carried out as a single whole by one resource

and needs to be accomplished within a defined period of time. A resource is the generic

name for a person, machine, or group of persons/machines that can perform specific

tasks. The resource does not always carry the task independently, but it is always

responsible for it. A business process is a process specialized in the domain of business

Ioannis E. Pogkas 33

Decentralized Business Process Execution in Peer­to­Peer Systems

organisational structure and policy. Its purpose is to achieve business objectives.

Figure 2.1 presents an example of a business process, where an insurance company

deals with a claim. At first it receives the client’s request and establishes its type (e.g. a

flood request). Notice that these activities are executed in sequence. Then the process

checks in parallel the client’s profile and his policy to confirm that she/he is a valid

customer and has insurance coverage for the particular claim. Based on the output of

the previous activities, the rejection activity makes a selection and either produces a

rejection letter or calculates the size of the payment that is offered to the client. The

client may reject the offer; in this case an iterative assessment of an objection can take

place, until a client agrees with the payment size and a settlement is made. Finally, the

client is paid with the offered amount.

A workflow is the computerised facilitation or automation of a business process,

in whole or part, during which documents, information, or tasks are passed from one

participant to another for action, according to a set of procedural rules [Coa99].

Workflows have been applied with success in telecommunications, software engineer­

ing, banking and financial industry, manufacturing and shipping, health and sanitary,

office automation and scientific research fields such as bioinformatics, cheminformat­

ics, ecoinformatics, geoinformatics, and physics. For example, Figure 2.2 is an example

of a radiology workflow containing patient registration, appointment scheduling, exam­

ination performing, medical reporting, and data/image archiving. Moreover, significant

effort has been put into defining workflow patterns that can be used to compare and

contrast different workflow engines, even across different domains. This process re­

sulted into the definition of the workflow patterns summarized in work of Van Der Aalst

et al. [AHKB03]. The authors provided independence from specific workflow languages

and addressed business requirements in an imperative workflow style expression. In

essence, these patterns allowed a potential mapping to be positioned closely to different

languages and implementation solutions.

A workflow management system (WfMS) is a system that defines, creates, and man­

ages the execution of workflows through the use of software, running on one or more

workflow engines, which is able to interpret the process definition, interact with workflow

participants and, where required, invoke the use of IT tools and applications [Coa99].

A workflow management system can be compared with an operating system: it con­

trols the workflows between the various resources, people, or applications. It is confined

to the logistics of case handling. In other words, a change to the content of case data is

implemented only by people or application programs. A workflow management system

has a number of functions that can be used to define and graphically track workflows,

thus making both the progress of a case through a workflow and the structure of the

flow itself easy to revise. Figure 2.3 illustrates the basic characteristics of a WfMS its

basic functions [Hol95]. These belong to three types: a) build­time functions, concerned

with defining the workflow process and its activities, b) run­time control functions, con­

cerned with managing the workflow processes, and c) run­time interaction functions,

concerned with human users and IT­tools.

Ioannis E. Pogkas 34

Decentralized Business Process Execution in Peer­to­Peer Systems

receive
client

request

establish
request

type

[rejected]

check client
policy

check client
profile

verify request

[not rejected]

calculate size
of payment

send
settlement

letter

receive
client

response

evaluate
response

[non aggreement]

send
rejection

letter

[aggreement]

Figure 2.1: Example of an insurance claim business process

Ioannis E. Pogkas 35

Decentralized Business Process Execution in Peer­to­Peer Systems

schedule an
appointment

[cancel] [re-schedule]

register
patient

check patient
response

[ok]

review
patient’s

medical data

modify
appointment

[do not proceed]

[proceed]

perform
examination

archive patients
new data

create medical
report

remove
appointment

unregister
patient

Figure 2.2: Example of a medical workflow

Ioannis E. Pogkas 36

Decentralized Business Process Execution in Peer­to­Peer Systems

Business Process Analysis
Modeling and Definition Tools

Process
Definition

Workflow Enactment Service

Applications
and IT toolsUser

Process Design
and Definition

Build Time

Run Time

Process changes

Process Instantiation
and Control

Interaction with Users
and Application Tools

Figure 2.3: Workflow system characteristics

2.2 Web Services

Web services provide interoperability among applications using different software

platforms, operating systems, and programming languages. A web service is a dis­

tributed application whose components can be deployed and executed on distinct de­

vices. For instance, a stock­picking web service might consist of several code compo­

nents, each hosted on a separate business­grade server, and the web service might be

consumed on PCs, handhelds, and other devices.

Web services are based on the following standards: a) eXtensible Markup Language

(XML) [BPSM+06] as a common definition language, b) Web Service Description Language

(WSDL) [CCMW01] as a common format for defining interfaces, c) Universal Description,

Discovery and Integration (UDDI) [CHvRR04] to define how to publish and discover ser­

vices, d) Simple Object Access Protocol (SOAP) [BEK+00] as a common format for the

messages sent between software components, and e) Hyper Text Transport Protocol

(HTTP) [FGM+97] as the delivery mechanism. The proliferation of these standards re­

flects the demand for distributed enterprise applications to communicate with software

services provided by vendors and clients.

As shown in Figure 2.4, the Web Services’ Model consists of basic operations such as

describe, publish, discover, bind, invoke, update, and unpublish. The Service Provider

is an individual (organization) that provides services. The Service Provider’s job is to

create, publish, maintain, and unpublish services. From a business point of view, the

Service Provider is the owner of the service, whereas from an architectural view, it is a

platform which holds the implementation of the service. The Service Broker provides a

Ioannis E. Pogkas 37

Decentralized Business Process Execution in Peer­to­Peer Systems

Service
Broker

Service
Provider

Service
Requester

WSDL SOAP

WSDL

UDDI

Publish
Unpublish
Update Invoke/Bind

Discover

Figure 2.4: Web services model

repository of service descriptions (WSDL). These descriptions are published by the service

provider. Service Requesters will search the repository to identify the needed services,

and obtain the binding information for these services. A service broker can either be

public, where the services are universally accessible, or private, where only specified

sets of Service Requesters are able to access the service. The Service Requester is a

party that looks for a service to fulfill its requirements. A requester can either be a

human accessing the service, or an application program (the program could also be

another service). From a business view, the Service Requester is a business that wants

to consume a particular service, whereas from an architectural view, it is an application

that looks for and invokes a service.

Web services can be divided roughly into two groups: SOAP­based and REST­style. In

SOAP­based web services, the SOAP is the underlying infrastructure where the service’s

requests and the corresponding responses are exchanged via XML based messages. Both

SMTP and HTTP are valid application layer protocols used to transport SOAP messages.

Nevertheless, HTTP has gained wider acceptance as it works well with today’s Internet

infrastructure.

REST stands for REpresentational State Transfer and was proposed in Roy’s Fielding

Ph.D. dissertation [Fie00], to describe an architectural style in the design of Web services.

While SOAP has standards [BEK+00], toolkits, and bountiful software libraries, REST has

no standards, few toolkits, and meager software libraries. The REST style is often seen

as an antidote to the creeping complexity of SOAP­based Web services. REST was initially

described in the context of HTTP, but is not limited to that protocol.

REST­style architectures consist of clients and servers. Clients initiate requests to

servers; servers process requests and return appropriate responses. Requests and re­

sponses are built around the transfer of representations of resources. A resource can be

essentially any coherent and meaningful concept that may be addressed. A representa­

tion of a resource is typically a document that captures the current or intended state of a

Ioannis E. Pogkas 38

Decentralized Business Process Execution in Peer­to­Peer Systems

resource. At any particular time, a client can either be in transition between application

states or ‘‘at rest’’. A client in a rest state is able to interact with its user, but creates no

load and consumes no per­client storage on the servers or on the network. The client

begins sending requests when it is ready to make the transition to a new state. While

one or more requests are outstanding, the client is considered to be in transition. The

representation of each application state contains links that may be used next time the

client chooses to initiate a new state transition.

In short, the Web services have the following pros:� Exhibit loose coupling, while the operations exchange data and not state.� Their operations are based on XML based input, output, and fault messages. The

combination of the messages defines the type of the operation (one­way, request­

response, solicit­response, or notification).� Provide asynchronous and synchronous interactions.� They are stateless.� Use common protocols such as HTTP, SMTP, FTP, and MIME.

On the other hand, the Web services have the following cons:� Non­RESTful Web services are often considered too complex.� They exhibit lesser performance than the binary protocols, due to the use of XML as

a message format and SOAP/HTTP in enveloping and transport.� There is no inherent provision of Quality of Service (QoS), security, or transaction

processing.

2.3 Business Process Management

SOA provides a powerful structure for business process management by comprising

loosely coupled and highly interoperable application services. Furthermore, with the

development and maturity of Web services, people have found a suitable technical foun­

dation for making business processes accessible within the same enterprise and across

different enterprise domains. This way Web services provide access to operations of

certain applications and information systems.

Business processes are designed top­down with starting points and ending points,

they may be repeatable, and they use Web services. Furthermore, each business process

is exposed as a Web service. In this regard, the role of Web Services Business Process

Execution Language (WS-BPEL or BPEL) [AAA+07] is extremely significant. BPEL is a lan­

guage for defining and executing business processes using Web services and supports

numerous workflow patterns that are presented in Table 2.1. BPEL has attained broader

Ioannis E. Pogkas 39

Decentralized Business Process Execution in Peer­to­Peer Systems

acceptance in the industry since its first version was developed in 2003 [ACD+03] and

enables the realization of SOA through the composition, orchestration, and coordination

of Web services. With BPEL, enterprises standardize the way to define their business

processes. In turn, this leads to business process optimization, re­engineering, and the

selection of the most appropriate processes, thus further optimizing the organization.

Based on this advantage, more and more vendors have developed a complete BPEL engine

as a necessary core part in their flagship SOA products, including Oracle1, IBM2, and

Microsoft3.

BPEL provides enough features to let the user define complex business processes in

an algorithmic manner. The user can declare variables, express conditional behaviors,

construct loops, define fault and compensation handlers, parallelize multiple operations,

and so on. The fundamental units in a BPEL business process are the activities, which

are classified into two types: basic activities and structured activities. Basic activities

represent primitive constructs and are used for common tasks such as invoking Web

services, while structured activities define the control flow. Table 2.2 lists the most im­

portant basic and structured activities as defined in BPEL. With the combination of basic

and structured activities the designer of a BPEL process can form complex algorithms that

specify exactly the steps of business processes.

In traditional BPEL engines, Web services can be combined in two different ways: or­

chestration or choreography. In orchestration (as depicted in Figure 2.5(a)), there is a

centralized coordinator that controls the involved Web services. The explicit definitions

of operations and the order of invocation of Web services are given to the central coor­

dinator. The involved Web services do not need to know each other if they are involved

in a composition process and are part of a higher business process. For this reason,

orchestration is mainly used in private business processes. Contrary, as illustrated

by Figure 2.5(b), choreography does not rely on a central coordinator. Every Web ser­

vice knows exactly when to execute its operation and with whom to interact with. All

participants need to be aware of the business process, the interactive partners, the mes­

sages to exchange, and the time of executing operations. Thus, the choreography is a

collaborative effort focused on the exchange of messages in public business processes.

Both orchestration and choreography are supported in BPEL through describing busi­

ness processes in two different ways: executable processes and abstract business pro­

cesses. Executable processes specify the details of business processes and can be ex­

ecuted by an orchestration engine, while abstract business processes do not include

the internal details of processes and are not executable. To conclude, orchestration is

a more flexible paradigm, although the line between orchestration and choreography is

vanishing. In essence, orchestration has the following advantages:� There is exactly one entity responsible for the execution of the whole business

process.

1http://www.oracle.com/technetwork/middleware/weblog ic/
2http://www.ibm.com/software/websphere/
3http://www.microsoft.com/biztalk/

Ioannis E. Pogkas 40

http://www.oracle.com/technetwork/middleware/weblogic/
http://www.ibm.com/software/websphere/
http://www.microsoft.com/biztalk/

Decentralized Business Process Execution in Peer­to­Peer Systems

Class Pattern Name Pattern Description

Basic

Control

Sequence Execute activities in sequence

Parallel Split Execute activities in parallel

Synchronization
Synchronize two parallel execu­

tions

Exclusive Choice Choose only one execution path

Simple Merge
Merge two alternative execution

paths

Advanced

Branching

Multiple Choice Choose several execution paths

Synchronizing Merge Merge many execution paths

Structural Implicit Termination
Terminate if there is nothing to

be done

Patterns

Involving

Multiple

Instances

MI without synchroniza­

tion

Generate many instances of one

activity without synchronizing

them later

MI with a priori known de­

sign time knowledge

Generate many instances of one

activity when the number of in­

stance is known at the design

time

State­based
Deferred Choice Execute one of the two threads

Interleaved Parallel Rout­

ing

Execute two activities in random

order, but not in parallel

Cancellation
Cancel Activity Disable an enabled activity

Cancel Case Cancel the process

Table 2.1: BPEL supported workflow patterns

Ioannis E. Pogkas 41

Decentralized Business Process Execution in Peer­to­Peer Systems

Basic Activities

Activity Description

receive Blocking wait for a message to arrive

reply Respond to a synchronous operation

assign Manipulate state variables

invoke Synchronous or asynchronous Web service call

wait Delay execution for a duration or deadline

throw Indicate a fault or exception

compensate Handle a fault or exception

exit Terminate a process instance

Structured Activities

Activity Description

sequence Sequential execution of a set of activities

scope Partitions process into logically organized sections

compensate Undones a previously­completed unit of work

if Conditional execution based on instance state

while Looping construct

repeatUntil Looping construct

forEach Looping construct

pick Conditional execution based on events

flow Concurrent execution

Table 2.2: BPEL basic and structured activities

Ioannis E. Pogkas 42

Decentralized Business Process Execution in Peer­to­Peer Systems

Web service
4

Web service
1

Web service
3

Web service
2

1: Receive

Orchestrator
(co-ordinator)

5: Reply

4: Invoke

3: Invoke

2: Invoke

(a) Web services orchestration

Web service
4

Web service
1

Web service
4

Web service
2

5: Invoke 1: Invoke

3: Reply

2: Invoke4: Invoke

(b) Web services choreography

Figure 2.5: In the orchestration there is a centralized coordinator that controls the

involved Web services, as shown in Figure 2.5(a). Contrary, in the choreography every

Web service knows when to execute its operation, as shown in Figure 2.5(b).� Web services can be incorporated, even when they are not aware that are a part of

a business process.� When faults occur alternative scenarios can be provided.

2.4 Publish/Subscribe Paradigm

Three entities are involved in the publish/subscribe (pub/sub) paradigm: producers,

consumers, and brokers. Information producers submit data (using publications) to

the system and information consumers indicate their interests by submitting subscrip­

tions. Subscriptions have a notification set, which is the set of potential publications

that would match the subscription. On receiving a publication, a broker determines

which subscriptions match the publication and forwards notifications to the appro­

priate subscribers. The pub/sub paradigm has recently become quite popular in both

research [CRW01, CDNF01, M0̈1, OAA+00, PB02] and commercial communities, find­

ing widespread use in applications ranging from selective information dissemination to

network and distributed system management.

The first criterion for the categorization of the pub/sub systems is based on their

architecture: centralized or distributed. pub/sub was first implemented in centralized

client­server systems, such as Elvin [SA97]. Elvin uses a central server that stores all

the subscriptions, evaluates the subscriptions upon events, and delivers events to the

matched subscribers. Centralized solutions, while simple, have an inherent scalability

problem as the number of events and subscriptions in the system increases. For this

reason, current research focuses mainly on distributed pub/sub, which provides natural

decoupling of publishers and subscribers. Since publishers are unconcerned with the

potential consumers of their data and subscribers are unconcerned with the locations

Ioannis E. Pogkas 43

Decentralized Business Process Execution in Peer­to­Peer Systems

of the potential producers of interesting data, the client interfaces of a pub/sub system

are simple and intuitive.

Distributed pub/sub systems [BCM+99, CRW01, TE04, CW03, CRW04, CS05, BCM+99]

typically contain a network of interconnected brokers, each providing client binding in­

terfaces for publishers and subscribers. Publishers and subscribers are considered

clients of the distributed pub/sub system. The brokers act as network servers, providing

pub/sub messaging services to the clients. Typically, in this case a Peer­to­Peer (P2P) net­

work is used, where the brokers are organized as super­or ultra­peers and the clients

(publishers and subscribers) are organized as leaf­peers4.

In the pub/sub model, subscribers typically receive only a subset of the total messages

published. The process of selecting messages for reception and processing is called

filtering. Based on the used filtering method, the pub/sub systems can be categorized into

four different classes: a) subject­based, b) topic­based, c) type­based, and d) content­

based systems.

In subject­based pub/sub systems systems, such as the Information Bus [OPSS93],

Bay­eux [ZZJ+01], and Scribe [RKCD01], the producers publish notifications with re­

spect to a certain subject. For example, in a subject­based system for stock trading, a

participant could select one or two stocks and subscribe based on stock name, if that

were one of valid subscription fields. A drawback of this filtering method is that the

user receives all events that are associated with that subject (stock name). Thus, if a

participant was interested only for the P/E­ratio5 (price­to­earnings ratio) of a stock,

she/he would likely receive much more information than needed.

Topic­based pub/sub systems extended the subject­based model by allowing a hier­

archy of topics. Each publisher and subscriber joins the groups containing the topics

in which they are interested and events that belong to a topic are broadcast to all sub­

scribers of the corresponding group [Bir93, OPSS93].

Type­based pub/sub systems are a variation on topic­based systems in which publica­

tions have a type [EGD01]. The type concept is similar to C++ classes, in that it signifies

the structure or contents of the publication data. The types are also potentially hierar­

chically organized, as with super­ and sub­classes. Subscriptions indicate the desired

type of publications.

Content­based pub/sub systems are preferable as they allow subscribers to specify

their interests in a fine­grained way, as they can specify constraints on the actual data

within the publication. There is typically no hierarchy of content­based messages. The

content­based pub/sub scheme is defined as S = {A1, A2, . . . , An}, where each Ai corre­

sponds to an attribute. Each attribute has a unique name, type, and domain and can be

specified by a quadruple [name, type, min, max]. The type could be integer, float, string,

etc. The min and max define the range of domain values taken by the given attribute.

An event is a set of equalities over the attributes ∈ S and it can be represented as

4For the definition of these terms please refer to Section 2.5
5P/E ratio is a measure of the price paid for a share, relative to the annual net income (or profit) earned

by the firm per share.

Ioannis E. Pogkas 44

Decentralized Business Process Execution in Peer­to­Peer Systems

e = {A1 = c1, A2 = c2, . . . , An = cn}. In general, events may specify values for a subset

of the attributes, for example ei = {A1 = v1, A3 = v3}.
A predicate is used to specify a constant value (=) or range (<,≤, >,≥) for an at­

tribute, and is specified by a quadruple [name, type, operator, value]. A subscription

is a conjunction of predicates over one or more attributes. If a subscription needs to

specify multiple predicates over the same attribute, it can be modeled as a combination

of multiple subscriptions, each of which specifies one value or continuous range over

the attribute. For simplicity, in our presentation we assume that each subscription

specifies a value or continuous range over attributes. An example of subscription is

si = (A1 = v1) ∧ (v2 ≤ A3 ≤ v3). An event e matches a subscription s if each predicate

of s is satisfied by the value of the corresponding attribute contained in e.
The increase in expressiveness allows the delivery of uninteresting notifications to

be reduced or even to be avoided. Moreover, only content­based selection provides full

decoupling of producers and consumers, facilitating extensibility and continual change.

Clearly, content­based filtering is the most interesting notification filtering mechanism,

but on the other hand, scalable implementations are the most complex to realize, too.

Indeed, the expressiveness of the selection predicates that can be applied has a large

impact on the scalability of any content­based notification service. In the literature,

several systems relying on content­based selection are described. Representative exam­

ples are: Gryphon [BCM+99], siena [CRW01], Narada [FPR02], Le Subscribe [PFL+00],

JEDI [CDNF01], CEA [BHM+01], Hermes [PB02], and Rebeca [M0̈1].

2.5 Peer­to­Peer Systems

Peer­to­Peer (P2P) networks were designed to overcome some of the limitations im­

posed by the client/server model. The nodes in a P2P network provide both server and

client services and contribute resources, which may include sharable content, band­

width, storage space, and computing power to the overall system operation. For this

reason, the term peer is used to define a network node that acts both as client and

server. The peers create virtual or logical links with their neighbor peers thus creating

an overlay network, which is built on top of the physical network. This overlay forms an

application level network topology that does not necessarily correspond to the physical

network topology (i.e. each virtual link may correspond to a path, perhaps through

many physical links, in the underlying network).

As more peers join in the P2P network, there is an increase on the demand but also

on the overall capacity of the system; as the peers are characterized by sharing their

computer resources by direct exchange, more resources are available to benefit all users.

This property of the P2P networks is commonly referred as organic scaling [HHL+03]: the

aggregate resources in the network grows naturally with the application utilization. In

contrast, in a typical client­server architecture, clients share only their demands with

the system, but not their resources. In this case, as more clients join the system, less

resources are available to serve each client. The distributed nature of P2P networks

Ioannis E. Pogkas 45

Decentralized Business Process Execution in Peer­to­Peer Systems

also increases robustness, especially if they exhibit built­in fault­tolerance, replication,

and load balancing features. By enabling peers to find the data without relying on

any form of centralized index servers (in pure P2P systems6) and due to geographically

dispersed content replication, there is no single point of failure in the system. Moreover,

in P2P architectures the nodes are autonomous and self­organized; while in client/server

model the servers are under some administrative authority, in a P2P architecture the

peers are under no administrative control.

P2P networks are dynamic and peers can be extremely transient [GDS+03], entering

and leaving the network frequently, while in the client/server model the servers usu­

ally enjoy long uptimes. For this reason P2P networks are designed to treat instability

and variable connectivity as the norm, automatically adapting to failures in both net­

work connections and computers, as well to a transient population of nodes. On the

other hand, the nodes in a P2P network exhibit increased heterogeneity as they usually

have widely varying capabilities. These include wide differences in network bandwidth,

processing power, memory, and storage, that complicate the efforts for achieving load­

balancing and fault­tolerance.

We must state that the P2P architecture is not an attempt to replace the client/server

model. There are many applications for which each model is more appropriate. For

example, the client/server model is probably more appropriate for applications that

require some administrative control, or those that do not require very large scalability.

P2P networks can be loosely classified as unstructured and structured [ATS04]. The

following sections will discuss these classes in more detail.

2.5.1 Unstructured Networks

Unstructured P2P networks have an overlay topology built in an ad­hoc fashion,

with randomly established links. Such networks are created when new nodes join into

random network positions, copy the neighbor links of already connected nodes, and

afterwards create their own connections. In this type of network, when a node searches

for a particular type of information, a hop­limited flood query is imposed, in order to find

as many nodes that share and provide the requested content. The basic disadvantage

of this type of network is that the query is not always satisfied, because there exist

no guarantee that a limited flood search will find a peer with the requested content.

Furthermore, this search mechanism exhibits high overhead, thus causing low search

efficiency. Examples of unstructured networks are Napster [Nap] and Gnutella [Gnu].

These networks have been used by large scale file sharing applications and differ mainly

on the employed searching mechanism.

Napster uses a centralized index server which holds a metadata list about the files

shared by the users. In order to share a file, a user must upload the file’s description

on the central server. The latter binds the file’s metadata with the user’s network

6totally distributed systems, in which all nodes are completely equivalent in terms of functionality and

the tasks they perform.

Ioannis E. Pogkas 46

Decentralized Business Process Execution in Peer­to­Peer Systems

address. After the completion of this process any user can query the server for the

specific file. The server matches the query with all the metadata lists and replies with

the network addresses of the peers that host the matching files. This way, requesters can

download these files directly from the sharers. Napster is characterized by a centralized

(client/server) search, but P2P file transfer7. The advantage of a centralized search server

is that query matching can be ensured. Nevertheless, the centralized index is a single

point of failure and can become a scalability bottleneck.

In Gnutella, every peer has an equal role and the searching mechanism is completely

decentralized. The network topology is created ad­hoc with no imposed structure. In

order to search for a file, a requester must flood its neighbors with a query. Then they

repeat the process and also flood their neighbors. As the query message has a a time­

to­live (TTL) field that is reduced in each propagation, the network is protected from

excessive messages by dropping all messages with TTL=0. At some point, a couple of

peers which host the requested file are reached. These peers reply to the requester and

the latter downloads the file directly from one of these providers. The distributed search

does not suffer from a single point of failure, but can no longer ensure that all matching

files will be found. Also, the searching mechanism is not scalable as a single query can

result in many messages, congesting the network with unnecessary traffic.

2.5.2 Structured Networks

The P2P networks based on distributed hash tables (DHTs) are called structured

P2P networks. A DHT is a distributed version of a hash table. It stores a (key, value)

pair at a network node that is deterministically computed using the key. Hence, any

node can retrieve the stored value based solely on the key. Responsibility for main­

taining the mapping from keys to values is distributed among the nodes, namely, each

peer in the network stores a subset of the (key, value) pairs in the system. This way,

a change in the set of participants causes a minimal amount of disruption. This, in

turn, allows a DHT to scale to extremely large numbers of nodes and to handle continual

node arrivals, departures, and failures in a self­organizing manner. Furthermore, DHTs

provide theoretical performance guarantees for: a) the balanced key distribution among

the peers, b) the expected routing state size that a peer is responsible to maintain, and

c) the required number of hops to lookup a key in the DHT.

Early DHTs were designed to provide distributed file storage. In these implemen­

tations the filename is used as key, and the file contents are used for the value.

Nevertheless, both the key and and the value may be an arbitrary string of bytes.

These early implementations were followed by a surprising number of diverse dis­

tributed applications built on top of the DHT interface, including data streaming [CDK+03,

BB05, HFC+08], co­operative messaging [MPR+03, SMK08], storage systems [RD01a,

DKK+01], name servers [RS04], file sharing [NWD03], databases [HHL+03], and Inter­

7Napster is commonly categorized as a hybrid application, because it combines a P2P network with a

centralized index.

Ioannis E. Pogkas 47

Decentralized Business Process Execution in Peer­to­Peer Systems

net telephony [SS05].

A DHT implementation is an application layer (OSI layer 7) protocol that provides an

Application Programming Interface (API) for other applications. The most interesting

DHT implementations are categorized into three mechanisms for routing messages and

locating data:

Chord is a system whose nodes are mapped in an identifier table and maintain a dis­

tributed routing table in a form of an associated finger table.

CAN is a system which uses a n­dimensional Cartesian coordinate space to implement

the distributed location and routing table, while each node is responsible for a

zone in the coordinate space.

Pastry (also Tapestry and MSPastry) is a system based on the plaxton mesh data struc­

ture [PRR97], which maintains pointers to nodes in the network whose IDs match

the elements of a tree­like structure of ID prefixes up to a digit position.

To illustrate the DHT operation, we will use the Pastry [RD01b] DHT implementation.

Other DHTs have similar interface with Pastry, but differ in the implementations and

performance. Nevertheless, the core operation of every DHT protocol is to map a key to a

node and efficiently route messages to this node. Thus the DHT interface consists of the

insert() and lookup() functions (in Pastry they are called route() and deliver() respectively)

as presented in Table 2.3. In the discussion below, we assume a DHT network of N nodes

and K keys.

Identifier circle

Each peer in the DHT network is assigned a 128­bit node identifier (nodeId). Further­

more, in every (key, value) pair stored in the DHT, the key is a 128­bit number, while the

value is a sequence of bytes. The nodeIds and the keys are a sequence of digits with base

2b (where b is a parameter that is typically equal to 4) and belong to a circular 128­bit

identifier space, which ranges from 0 to 2128 − 1. The nodeIds and the keys are gener­

ated by the SHA­1 [EJ01] cryptographic hash function to ensure that they are uniformly

distributed in the 128­bit identifier space. As a result of this random assignment, there

is high probability that nearby nodes in the identifier circle have distant placement in

the network topology and in their geographical locations.

Key assignment

As stated before, the cryptographic hash function distributes keys and nodeIds evenly

around the identifier circle. Thus no node stores a disproportionate share of the (key,

value) pairs in the system. With high probability, in a network with N nodes and K
keys, each node stores K/N pairs. The method used by Pastry to map keys into the

identifier circle places the keys to the node with the numerically closest nodeId, as show

by the example in Figure 2.6.

Ioannis E. Pogkas 48

Decentralized Business Process Execution in Peer­to­Peer Systems

Basic DHT operations

Operation Result

insert(key, value)
Stores (key,value) into the node

responsible for the key.

lookup(key)

Retrieves the value associated

with the key from the appropri­

ate node.

Pastry DHT operations

Operation Result

route(key, msg)

Route the given message to the

node with nodeId numerically

closest to the key.

deliver(msg)

Called when a message is re­

ceived and the local node’s

nodeId is numerically closest to

key, among all live nodes.

Table 2.3: Basic DHT operations and specific Pastry DHT operations

N60

N8

N17

N32

N40

N48

Key 1

Key 7

Key 20

Key 28

Key 32

Key 38

Key 44

Figure 2.6: Node and key assignment in an identifier space with range [0,63]

Ioannis E. Pogkas 49

Decentralized Business Process Execution in Peer­to­Peer Systems

Routing algorithm

Pastry routes each message to the node whose nodeId is numerically closest to the

given key. Pastry uses a prefix routing algorithm where at each hop the message is sent

to a node that matches the destination nodeId by at least one more digit (each digit is

b bits). A hop refers to a message sent from one node to another using a DHT overlay

link that may correspond to multiple physical network links. If no such node is found,

then the message is forwarded to a node that is numerically closer to the destination

nodeId than the current node’s nodeId. Figure 2.7(a) shows an example of message

routing. Pastry’s routing algorithm is able to route a message to the destination in less

than ⌈log2bN⌉ hops under normal operation, while similar performance guarantees are

typical in all DHT implementations.

dac3

da81

da8b

df31 1a34

da8a

Lookup(da8a)

(a) Pastry prefix routing (b) Pastry node state

Figure 2.7: Pastry prefix routing mechanism is shown in Figure 2.7(a). Each node stores

state about its leaf set, routing table, and neighborhood set as shown in Figure 2.7(b).

Node state

Each Pastry node maintains a routing table (R), a neighbourhood set (M), and a leaf

set (L), as shown if Figure 2.7(b). The routing table, R, stores various nodeIds in a table

with ⌈log2bN⌉ rows and 2b − 1 columns. The entry in the ith row and jth column has

the first i digits in common with the current node’s nodeId, while the jth digit has the

value j. Each entry in R also contains the IP address of one of the potentially many

nodes whose nodeId has the appropriate prefix. As several nodeIds meet the constraints

of an entry in R, Pastry chooses the nodeId according to a proximity meter. Typically,

the number of physical hops is used to determine the proximity between nodes. The

value of b can be used to trade off routing table size (about ⌈log2bN⌉ ∗ (2
b − 1) entries)

and routing hops (⌈log2bN⌉).
The neighbourhood set, M , stores the nodeIds and IP addresses of the |M | closest

nodes (according to the proximity metric) to the current node. |M | is typically 2 × (2b)

Ioannis E. Pogkas 50

Decentralized Business Process Execution in Peer­to­Peer Systems

(e.g. 32 or 64). While the neighbourhood set is not required for correct routing, it is used

to maintain locality properties in order to optimize routing.

The leaf set, L, stores the nodeIds and IP address of the |L|/2 numerically closest

nodes with a nodeId larger than the current node in the identifier circle, and the |L|/2
nodes with nodeId smaller than the current node. |L| is typically 2b (e.g. 16 or 32).

During routing, if the destination nodeId falls within the leaf set, the message is sent

directly to the appropriate leaf node bypassing prefix routing, as described above.

Self­organization and adaptation

Pastry nodes automatically update their state, as nodes arrive and depart. A node

entering the network must know the IP address of an existing node in the overlay net­

work; the state of this node is used to bootstrap the entering node. In Pastry, to maintain

good performance, it is desirable for the known node to be close (according to a prox­

imity metric) to the entering node. This is necessary to ensure that a node’s routing

state is initialized with nearby nodes. An entering node requires O(log2bN) messages to

populate its state. Node departures or failures can cause entries in the routing table to

become unreachable. In this case, a node finds a replacement entry by querying other

nodes in its routing table.

Fault­tolerance

Pastry guarantees eventual delivery of a message, unless ⌊|L|/2⌋ nodes with adja­

cent nodeIds fail concurrently. Note that the routing guarantee of O(logN) hops is not

guaranteed when failures occur.

2.5.3 DHT implementations

Chord [SMLN+03] in a similar vein uses a circular identifier circle, while the nodes

are identified by keys. The keys are assigned both to files and nodes by means of a

deterministic function [KLL+97]. A minor difference is that Chord stores a key at the

first successor node in the identifier circle (i.e. the first node whose identifier is equal

to, or follows k, in the identifier space), as illustrated in Figure 2.8. Each Chord node

n maintains a finger table of m entries, where m is the number of digits in a node

identifier. In this table, each entry i points to the successor of node n+2i. Thus, node n
to performs a lookup for key k using the most distant finger that does not overshoot the

destination. As a results, successive routing hops reduce the distance to the destination

by at least half the identifier circle. Furthermore, the finger table allows only one node

in the network to meet the criteria for each finger, unlike the routing table entries in

Pastry. Therefore, the Chord protocol cannot favour nearby nodes (according to some

proximity metric). Chord makes a probabilistic guarantee requiring O(logN) hops for

resolving lookups and using O(logN) node routing state. The node join protocol requires

O(log(2N)) messages.

Ioannis E. Pogkas 51

Decentralized Business Process Execution in Peer­to­Peer Systems

Id = 0

Id = 1

Id = 2

Id = 3

Id = 4

Id = 5

Id = 6

Id = 7

Key 6

Key 1

Key 2

Successor(6) = 0
Successor(1) = 1

Successor(2) = 3

Figure 2.8: Chord circular identifier. Each key is stored in the first successor node in

the identifier circle.

Unlike Chord and Pastry, Content Addressable Network (CAN) [RFH+01] organizes

nodes into a d­dimensional Cartesian coordinate space on a d­torus. Essentially, this is

a d­dimensional space with the range of each dimension wrapping around (like Chord’s

and Pastry’s identifier circle). Each individual node of the CAN network stores only a part

(referred as a zone) of the information space, as well as information about a small number

of adjacent zones. Each key maps to a point in the space that belongs to a zone and

then this key is stored to the node responsible for this zone. The messages are greedily

routed towards the neighbour zone that gets the message closer to the destination. The

average routing path length is O((d/4)(N1/d)). Furthermore, the routing table size in

each node is O(2d). Compared to Chord’s and Pastry’s O(logN) bound for both these

metrics, CAN exhibits a better table size, but worse routing path. The constant routing

table size is a unique feature of CAN.

Tapestry [ZHS+04] is similar to Pastry in the use of an identifier circle and prefix

routing; it also guarantees the same O(logN) routing hops and node state overhead. It

adds some additional interfaces to allow storage of duplicate (key, value) pairs across

the network for caching purposes. Queries for a key will automatically find the closest

copy.

As already described, Pastry nodes are organized in a circular identifier space as in

Chord, but use prefix routing, in which the prefix of each hop’s identifier matches the

destination by at least one extra digit. This allows a choice of nodes for each hop. Also,

Pastry considers a locality measure based on the physical network distance between the

nodes. This measure is used when deciding the best node for each hop. In a network of

Ioannis E. Pogkas 52

Decentralized Business Process Execution in Peer­to­Peer Systems

1.0

0.75

0.5

0
0 0.5 1.0

A

E

D

C

B
P

1.0

0.75

0.5

0
0 0.5 1.0

A

E

D

C

B
P

F

E’s neighbor set : {B,D} E’s neighbor set : {B,D,F}
F’s neighbor set : {D, E}

Figure 2.9: CAN 2d coordinate space. Each node stores a rectangle in this information

space. Each key maps to a point in the space and is stored to the node responsible for

this point.

N overlay nodes, Pastry can theoretically route a message to a destination in O(log2bN)
hops, while each node must handle O(2b× log2bN) routing state. Clearly, b can be used

to trade off between routing hops and state.

MSPastry [CCR04] is a Pastry implementation that includes techniques to achieve

high dependability and good performance in a realistic network environment character­

ized by high node churn rate. It provides dependable routing that makes the routing

mechanism both consistent and reliable. Obviously, ensuring route dependability intro­

duces additional overhead, but the techniques proposed for MSPastry are self­tunable,

adjusting their overhead according to the stability of the network. That is, when the

system is fairly stable (i.e. exhibits low churn rates), the proposed mechanism reduces

its operation and hence the imposed additional overhead.

A key is mapped to the node whose identifier is closest to the key in the identifier

space. This node is called the key’s root. The routing is consistent if no overlay node

ever delivers a lookup message when it is not the current root node for the message’s

destination key. Consistent routing is important because inconsistencies can lead to

degraded application performance and user experience. MSPastry ensures consistent

routing by keeping the leaf sets consistent. The key aspects of keeping the leaf set

consistent is to: (a) mark a node active (when joining) only after ensuring all the nodes

in its leaf set are active by probing them; and (b) maintaining its leaf set by periodic

heartbeats. Nevertheless, in order to reduce the overhead of the heartbeat messages,

MSPastry nodes send heartbeat messages to its immediate left neighbors. When a node

does not receive heartbeat message from its right neighbor for a particular amount of

time, it triggers a ‘‘suspect’’ routine to determine whether the right neighbor is still in

the leaf set or not.

Consistency only, is not sufficient for dependable routing, as messages may be lost

Ioannis E. Pogkas 53

Decentralized Business Process Execution in Peer­to­Peer Systems

when they are routed through the overlay. So it is important for MSPastry to provide

reliable routing. This is achieved by using active probing and per­hop ACK messages.

Under active probing, a node periodically probes each entry in its routing table to ensure

they are still alive. When a route in on the way, the nodes expect to receive an ACK

message from the node to which the route is forwarded. If they did not receive ACK, the

node will re­route the message using another node from the routing table. The active

probing period in MSPastry is self­tunable, depending on the observed node failure rates

in the network.

2.6 Conclusions

This chapter provided a presentation of the knowledge that is essential in order to

understand our work. We presented basic notions on workflow systems, Web services,

the publish/subscribe paradigm, and the Peer­to­Peer systems. We discussed different

solutions and made arguments about the benefits and the drawbacks of each approach.

Ioannis E. Pogkas 54

Decentralized Business Process Execution in Peer­to­Peer Systems

Chapter 3

Related Work

This chapter discusses previous proposals that followed similar methodology, mech­

anisms, and architecture with our solution. First, Section 3.1 presents the related work

in content­based publish subscribe systems implemented upon structured P2P over­

lays. We present diverge solutions that propose different approaches in the used overlay

and the subscription and publication model. We especially focus on systems that use

the DHT infrastructure. The reason is that our solution extends the systems Ferry and

eFerry which use the DHT infrastructure.

Second, Section 3.2 presents the current status in the area of decentralized orches­

tration systems. We point out the benefits gained from the decentralized orchestration

and then we give a short presentation of related decentralized orchestration engines,

with special focus on their execution mechanism. Our system is closely related to a

previously proposed system called NIÑOS that also used a pub/sub mechanism and for

this reason NIÑOS is presented in more detail.

3.1 Content­based Publish/Subscribe over Structured P2P

Overlays

Many attempts have been made in designing content­based pub/sub systems over un­

structured P2P overlays. Most of these approaches rely on a small number of trusted bro­

kers that are inter­connected using a high­bandwidth network [TKLB07, WG08, GMS06].

In some scenarios, such configurations may or may not offer adequate scalability. Nev­

ertheless, they do not provide a satisfactory level of fault tolerance since crashing of a

single broker may result in a large number of state transfer operations during recov­

ery. On the other hand, structured P2P networks have emerged as an infrastructure

for building efficient, scalable, and self­organizing distributed systems. In this section

we examine related work on modern distributed content­based pub/sub systems build

using the hypercube or DHT architecture.

Ioannis E. Pogkas 55

Decentralized Business Process Execution in Peer­to­Peer Systems

Tam et al.

Tam et al. [TAaJ03] proposed a content­based pub/sub system implemented by extend­

ing the topic­based1 pub/sub system Scribe [RKCD01]. Similar to Scribe, their proposal

uses Pastry as the underlying DHT layer. For each subscription the system builds a

set of topics for submission to the topic­based system. This process requires that the

pub/sub messages provided by the user application (as it is application specific) follow

certain rules and constraints according to a predefined schema. Every user application

facilitates a different schema, that must be broadcast to all the participating nodes. Note

that the system is able to handle simultaneously multiple schemas.

A schema consists of several tables (e.g. Table 3.1 presents a schema that describes

computers). A schema table maintains information about a set of attributes, including

their type, name, and constraints over a range of possible values. Furthermore, each

schema table has a set of indices that are used by the network lookup mechanism. An

index is an ordered collection of strategically selected attributes by the schema designer.

The selection of proper attributes is critical for the performance of this mechanism; the

selection of commonly used attributes may result in the production of increased network

traffic due to false positives. For example, if an index uses only an attribute that has

two possible values (true or false with 50% chance) then every published publication will

have 50% chance to be matched with a subscription, but may latter rejected when the

complete match is done.

When a subscription or publication is submitted to the system the following steps

take place: a) the pub/sub message is inspected and matched with the available schema

tables, b) an associated schema table is found, and c) a number of index digests are

produced according to the predefined indices in the schema table. An index digest is a

string of characters formed by concatenating the type, name, and value, for each index

attribute. For example, if we use the schema presented in Table 3.1 and the first index,

we can produce the index digest [Euros:Price:500 : String:CPU:i3 : GHz:Clock:2].

A given subscription can be submitted to the system only if it specifies all the values

for at least one of the indices in the corresponding schema table. Afterwards, the

composed index digest is translated into a DHT hash key and propagated to the associated

node. When a publication with attribute values that match the subscription is submitted

to the system the same hash key is generated. Therefore, the publication is propagated

to the same network node which makes the match.

Notice that this method provides partial matching, as only a subset of the subscrip­

tion predicates can be matched this way. Therefore, the original subscriber node is re­

sponsible for completing the matching process. Other limitations of this pub/sub method

is the missing support for range attribute values and the introduction of a schema

designer.

1topic­based pub/sub systems are presented in section 2.4

Ioannis E. Pogkas 56

Decentralized Business Process Execution in Peer­to­Peer Systems

Order Type Name Values Index 1 Index 2

1 Euros Price 500. . . 2000 ! !
2 String CPU i3, i5, i7 ! !
3 GHz Clock 2. . . 3.6 !
4 MB RAM 512. . . 4096 !
5 GB HDD 256. . . 1000

6 Inch Monitor 17. . . 22 !
7 String Graphics Adequate, Average, Good !
8 String Quality New, Used, Demo !

Table 3.1: An example for a schema table for computers with two indices. The first

index is useful to enterprise customers, which are subscribers concerned with price and

computational power. The second index is useful to home users, which are subscribers

concerned with price, quality, and multimedia performance.

Terpstra et al.

Terpstra et al. [TBF+03] proposed a content­based pub/sub system built on top of

Chord [SMLN+03]. Their approach extends content­based filtering strategies that were

originally proposed by Rebeca [M0̈1]. The notification service in Rebeca relies on a set

of network brokers that forward the notifications using filter­based routing tables. The

brokers exploit two methods to significantly decrease the routing table size:

covering, where the broker tests whether a filter F1 accepts a superset of notifications

of a second filter F2 and replaces all occurrences of F2 in the same routing table

link by F1, therefore transmitting only F1 to the neighbor brokers.

merging, where if no cover can be found in a given set of filters, a new one is created that

covers the existing ones and only the merged filter is forwarded to the neighbor

brokers.

In Rebeca, the network used for data dissemination is comparable to a single spanning

tree, therefore exhibits limited fault tolerance as each node is a single point of failure.

Additionally, the central nodes are likely to carry most part of the network traffic.

Terpstra et al. proposed the use of a different dissemination tree in every broker. This

way each broker acts as the root of its own tree for delivering a matching notification. On

the other hand, the use of multiple trees implies that a subscription must simultaneously

propagate up to all possible publication trees. Furthermore, if v ∼ u is the route taken

by a tree routed at v to publish a notification to u, then the subscription tree rooted at

u must follow the path in reverse. For example, if the publication algorithm followed the

path (v, u1, u2, . . . , un, u) to reach the subscriber u from v, the goal of the subscription

algorithm is to reach every node in the path u1, u2, . . . , un in reverse (in Chord that

Ioannis E. Pogkas 57

Decentralized Business Process Execution in Peer­to­Peer Systems

is counterclockwise). The publication and subscription propagation is illustrated in

Figure 3.1.

As each edge in the path has a filter f(u→ v), the protocol requires filter invariants to

ensure that published notifications follow a path on which the filters are always subsets.

We say that a filter accepts an event notification e ∈ E if e ∈ f(u → v). Otherwise, the

notification is rejected. A filter f covers another filter g if f ⊇ g. Merging two filters

is creating an h such that h ⊇ f and h ⊇ g. The covering and merging are used to

ensure the filter invariants. In this manner, as notifications follow a path on which the

filters are always subsets, no early filter will reject a notification which may have been

accepted later. On the other hand, as the system tries maintain the filter invariants,

excessive traffic may produced by filter update messages in the case of frequent node

joins and departures.

(a) Terpstra et al. publication

propagation.

(b) Terpstra et al. subscription

propagation.

Figure 3.1: The publication messages 3.1(a) are delivered clockwise on the Chord ring,

while the subscription messages 3.1(b) are delivered counterclockwise.

Triantafillou et al.

Triantafillou et al. [TA04] also built their content­based pub/sub system on top of

Chord. As shown in Table 3.2, the proposed publication schema consists of a set of

attributes, where each attribute consists of a type, a name, and a value. In the case

where the attribute value belongs in a range, a minimum and a maximum value are

defined along with a precision value.

The subscription schema consists of a set of attributes with name, operation (less,

equal, etc.), and value. An example is shown in Table 3.3. Additionally, each subscrip­

tion has an identifier that consists of three concatenated parts: a) the unique node id

of the original subscriber, b) the id of the subscription itself, and c) the number of at­

tributes in the subscription where constraints are defined. Figure 3.2 shows an example

of a subscription identifier with a 3­bit identifier space.

Ioannis E. Pogkas 58

Decentralized Business Process Execution in Peer­to­Peer Systems

Publication

Type Min Max Precision Name Value

string ­ ­ ­ exchange NYSE

string ­ ­ ­ symbol aapl

float 0.0 20.0 0.01 price 8.40

float 0.0 20.0 0.01 high 8.80

float 0.0 20.0 0.01 low 8.22

Table 3.2: An example for a publication about the Apple Inc. stock value in NYSE stock

market.

1 0 0 0 1 1 1 0 1

c1 = 4 c2 = 3 c3 = 5

Figure 3.2: Subscription id in a 3­bit identifier address space. Each node can support 8

outstanding subscriptions with an attribute schema including 7 attributes. This exam­

ple identifies subscription 3 (c2=3), belonging to node 4 (c1=4), comprised of constraints

on 5 attributes (c3=5).

Two methods are used for storing a subscription, that depend on the used attribute

operation:� If the subscription attribute has an equality operator (=, 6=), then a key is produced

by hashing the value of the attribute.� If the subscription attribute has a range operator (<,≤, >,≥), then keys are pro­

duced by hashing each of the attribute possible value within the defined range.

The above methods are applied for all subscription’s attributes. The subscription is

later stored using all the produced keys to a number of broker nodes. Notice that in

the case of a range operator, the number of the produced keys depends on the preset

precision. Thus, the subscription installation and update can be expensive due to the

large number of nodes and messages that are potentially involved. This happens when

the range is significant and the precision is fine­grained.

After the subscription installation is over the users can submit their publications.

To match the publications with the stored subscriptions, the matching algorithm starts

by processing every publication’s attribute separately. Then for each matched attribute,

creates a list and stores matched subscription id as shown below. At the end of this

process, all the the subscription ids are stored into a set of subscription­id lists. For

example, lets assume that we have the publication shown in Table 3.2. After the pub­

lication is send to the system two subscriptions are matched; these are subscription1

Ioannis E. Pogkas 59

Decentralized Business Process Execution in Peer­to­Peer Systems

(presented in the Tables 3.3) and subscription2 (presented in Table 3.4). Thus, the

following subscription­id lists are produced:

Lexchange → subId1

Lsymbol → subId1 : subId2

Lprice → subId1

Llow → subId2

As shown, subscription1 was found in three lists, while subscription2 was found in

two lists. By processing the attribute names of subscription1 and subscription2 we find

that both have constraints over three attributes. So only subscription1 is matched and

using the first field stored into the subscription1 we can get the node id of the subscriber

node and inform it about the matching event. A major drawback of this protocol is

the small domain problem; if the number of nodes in the network is much greater

than the domain of attribute values then the network may have a number of useless

nodes between two consecutive values (ring positions) of the attribute’s range. Also, the

number of produced pub/sub messages depends on the precision of the predefined range.

Subscription1

Name Operation Value

exchange equals NYSE

symbol equals aapl

price less 8.70

price greater 8.30

Table 3.3: An example of a subscrip­

tion about the Apple Inc. stock in NYSE

stock market, requesting current prices

between 8.30 and 8.70.

Subscription2

Name Operation Value

symbol equals NYSE

price equals 8.20

low less 8.05

Table 3.4: An example of a subscrip­

tion about stocks in NYSE stock mar­

ket, with current price 8.20 and low

price less than 8.05.

Ferry and eFerry

Zhu et al. proposed a system called Ferry [ZH05], which is based on Chord as well.

Ferry is essentially a rendezvous network built on top of Chord to support content­based

pub/sub services. Each node can have two roles: a) it can act as a rendezvous point

(RP) and provide matching and storage for pub/sub messages, and b) it can act as an

intermediate node as part of a delivery path and simply propagate further the received

message.

Given a pub/sub scheme S = {A1, A2, . . . , An}, the RP nodes are chosen as the most

immediate successors of ki = h(Ai), where ki is derived from the attribute Ai using

Ioannis E. Pogkas 60

Decentralized Business Process Execution in Peer­to­Peer Systems

the Chord’s consistent hash function h(). A subscription s = {A1, A2, . . . , An} can be

installed using two schemes: a) by randomly choosing an attribute (e.g. A2) from s
and using k2 = h(A2) to install it to the appropriate RP node, or b) by choosing an

attribute, Ai with value k(Ai) closer to the ids of the neighbors’ nodes and then install

the subscription to the appropriate RP node.

For the publication of an event e = {A1, A2, . . . , An}, the publisher node must pro­

duce the hash key h(Ai) for each attribute. Then using these keys the publisher sends

the event to every RP node that is the immediate successor of this value. To reduce

network traffic, the protocol aggregates into a single message all the events which share

common ancestor nodes in the underlying DHT tree, thereby minimizing the number of

messages. The main disadvantages of Ferry is the use of |e|messages for each publication

and the limited number of used rendezvous point (RP) nodes (only |S|). This causes the

system to exhibit poor scalability when a large number of subscriptions is combined

with a limited number of attributes.

To overcome this problem, an extension to Ferry was proposed, called eFerry [YZH07b].

In this system, instead of hashing each attribute, a vector of attributes is hashed. For

example, given the above schema with subscription s = {A1, A2, . . . , An}, only a single

key is produced with k = h(A1, A2, . . . , An). Since the attributes vector is hashed there,

can be 2n − 1 RP nodes. This way, the overhead for storing, matching, and delivering

subscriptions per RP node is significantly reduced. Furthermore, since only one RP

node stores subscriptions with the same attribute set, the subscription management

becomes more convenient, as local optimizations and indexing mechanisms can be used

to enhance event matching.

Nevertheless, when the pub/sub schema has only a few attributes, the above solution

cannot improve the scalability. Moreover, the RP nodes of hot attribute vectors tend to

be unduly loaded. For this reason, the authors present more elaborate load balancing

mechanisms to address the above problems. The publication overhead is still a problem

because it has to investigate each subset of the whole attribute set. Thus, for a event

e = {A1, A2, . . . , An}, each possible subset of (A1, A2, . . . , An) is taken, and the event is

sent using the produced hash value to the immediate successor. This compromises the

event matching performance, as the number of the possible subsets in |S| is exponential,

i.e. O(2n).

Reach

Reach [PWR04] is based on a Hypercube overlay. As it is implied by the pub/-

sub scheme, it is characterized by n enumerated attributes. Each subscription and

publication bears a n­bit identifier, where a 1 in the ith bit indicates interest/associ­

ation with the ith attribute. The matching is done if for every bit in the subscription,

the according bit in the publication is also set. Moreover, the encoding scheme defines

an identifier hierarchy, i.e. id1 is parent of id2 if and only if id1 is superset of id2. This

means that a parent identifier contains at least all the attributes of a child identifier, as

shown in Figure 3.3(a).

Ioannis E. Pogkas 61

Decentralized Business Process Execution in Peer­to­Peer Systems

0011

0010 0001

Parent Identifier

Child Identifiers

(a) Reach Parent/child

identifier space relation­

ships.

1011

1111 0111

0110

0101

0011

0001

0100

0010

event
1100111

Subscriber
for 1000111

Subscriber
for 1100110

Subscriber
for 0000001

Publisher

Routing to
Rendezvous

Subset
Routing

S

S

S
P

(b) Reach event dissemination.

Figure 3.3: Figure 3.3(a) shows the parent/child relationships into the Reach identifier

space, while Figure 3.3(b) shows the dissemination of event 1100111 in a network of

size 24 (m=4, n=8).

The network usually consists of 2m nodes, where m ≤ n, and each node is identified

by a m­bit identifier. A subscription with identifier sid is mapped to a node with identifier

nid, if their lower order m bits coincide. For example, in a network of four nodes with

a 4­bit attribute space, the node 01 would host the identifiers 0001, 0101, 1001, and

1101.

Reach uses a Hamming­distance routing scheme, where each node maintains a rout­

ing table that contains the addresses of all the nodes whose identifiers are one Hamming

distance from its own. These tables are used to incrementally forward a message by

sending it at each hop one Hamming distance closer to the destination, thus requiring

on average O(m) hops. The matching process is illustrated into Figure 3.3(b). At first,

the publication is propagated to its associated node (e.g. for a message with identi­

fier 1100111 this will be node 0111). Then, the publication is progressively forwarded

to nodes that host subsets of the event identifier (e.g. nodes 0110, 0011, and 0101).

This process is continued until it reaches all subset subscriptions and at each step the

publication is matched with the stored subscriptions. The main disadvantages of this

proposal are: a) the statically defined attribute set, b) the coarse­grained use of the bit

vector to express the user’s interests, c) the limited fault­tolerance due to intermedi­

ate node failures, and d) the lack of load balancing methods that can handle unevenly

distributed workloads.

Ioannis E. Pogkas 62

Decentralized Business Process Execution in Peer­to­Peer Systems

HOMED

In a similar vein, HOMED [YCP04] maintains a Hypercube overlay where each node

has a d­bit identifier derived from its subscriptions using an id generating function. This

way, a set of predicates is transformed into a d bit id, with the unique requirement that

if a predicate α is covered by another predicate β, then the generated idβ must subsume

all 1s of idα. HOMED facilitates a semantic structure where the nodes with similar

interests are neighbors and only interested neighbor nodes participate in disseminating

an event.

Every node has an id cover table with d entries and each of them corresponds to a

neighbor node id with hamming distance 1. Each publication has an event id generated

by the same id function which represents the space that the event should be delivered.

So, the routing scheme consists of matching the publication’s id space with the ids of

the neighbor’s nodes. When a new node enters the network, it contacts a well­known

node which acts as an entry point and finds the one that covers its id. After it is joined,

the new node determines the id space covered by it and updates the cover tables of its

neighbor nodes.

Figure 3.4 shows an example of event dissemination in the 3­dimensional HOMED.

An event with id eid = (1 ∗ ∗) occurs at the node 000. The event is routed to the first

matching node 100 and then it is multicast. The id spaces on arrows show that the eid
is split as the event moves toward the leafs of the multicast tree. In this example, the

node 101 is assigned the responsibility for delivering the event to 111, since the node

101 has a better cost metric than 110.

110 111

100 101

000

010

011

011

000

100

110 101

111

1**

1*1
110

111

Routing

Multicast
Delivery

Figure 3.4: An example of event dissemination in a 3­dimension HOMED network.

HOMED has the following limitations: first, it assumes a globally static attribute

space. Second, it presents poor load balancing, since non uniformly distributed sub­

scriptions would cause unevenly distributed nodes on the overlay. Finally, similar to

Reach, it is difficult to derive node ids from their subscriptions, while preserving the

high expressiveness of subscriptions.

Ioannis E. Pogkas 63

Decentralized Business Process Execution in Peer­to­Peer Systems

Meghdoot

Meghdoot [GSAA04] is based on CAN [RFH+01]. Meghdoot maps a schema S =
{A1, A2, . . . , An} with n attributes into a cartesian space with 2n dimensions. Each

attribute Ai with domain range [Li, Hi] corresponds to dimensions of 2i − 1 and 2i of

the cartesian space. The predicates of a subscription specify ranges of interest over

the attributes, while the ranges are represented by areas in the logical space. This

logical space is partitioned among the peers present in the system and each peer is

responsible for one of the partitions. The partitions are referred as zones and when a

peer is responsible for a partition it owns the zone. For example, if the schema has only

one attribute with [L1, H1] bounds then we can have the partition shown in figure 3.5(a).

In this case, each rectangle is a zone owned by a peer.

L1

L1

H1

H1

1

2

3

4

5

6

7

(a) Meghdoot schema with only

one attribute.

L1

L1

H1

H1

s=(l1, h1)

(b) Meghdoot region of events

affecting a subscription s =<

l1, h1 >.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

L1

L1

H1

H1

(c11,H1)

S

e=(c11, c12)
(L1,c12)

Pt

Po

(c) Meghdoot region of subscrip­

tions affected by an event e =<

c11, c12 >.

Figure 3.5: Figure 3.5(a) shows the logical cartesian space for the case where the schema

has only one attribute. The rectangular regions form a partitioning of the space. Fig­

ures 3.5(b) and 3.5(c) show subscription and event propagation in 2d cartesian space

for a single attribute schema.

A subscription S can be expressed in the following format: s = {(l1 ≤ A1 ≤ h1), (l2 ≤
A2 ≤ h2), . . . , (ln ≤ An ≤ hn)}, with li ≤ Li and hi ≤ Hi. The subscription s is mapped

to a subscription point in the 2n­dimensional space < l1, h1, l2, h2, . . . , ln, hn >. Also

notice that all subscriptions are stored in the upper left side of the diagonal hyperplane

as ∀i ∈ {1, 2, . . . , n}, li ≤ h1. Thus, the user submits the subscription to an origin

peer (Po) that maps the subscription to the corresponding subscription point. The peer

whose zone contains the point is referred as the target peer (Pt). In order to route the

subscription from Po, each time we propagate the subscription to the neighbor node

with the closest Euclidean distance to the subscription point. When Pt receives the

subscription, it stores the subscription along with an identifier (e.g. IP address, user

name, e­mail, etc.).

Similarly, an event e = {A1 = c1, A2 = c2, . . . , An = cn} is mapped to an event point

Ioannis E. Pogkas 64

Decentralized Business Process Execution in Peer­to­Peer Systems

< c11, c12, c21, c22, . . . , cn1, cn2 >. When an event is introduced to the system, the origin

peer Po maps the event to the corresponding event point and routes the event to the

corresponding peer Pt, which owns the event point. Then, the event is checked for

matching with a subscription. A subscription s is affected by the event e if the following

property holds: ∀i ∈ {1, 2, . . . , n}, li ≤ ci1 ∧ ci2 ≤ hi. Afterwards, the event is propagated

from Pt to all peers which own a region affected by the event.

For example, the shaded area in Figure 3.5(b) shows the region of event points in

a 2d cartesian space corresponding to a single attribute schema. That can affect a

subscription s =< l1, h1 >, because all the event points in the shaded region will satisfy

the above property. The shaded region in Figure 3.5(c) shows the region of affected

subscriptions in the 2d space by an event e =< c11, c12 >.

Considering the skewed distributions of both subscriptions and events in a real

application, Meghdoot addresses the load balancing issue by zone splitting and zone

replication. The major limitation of Meghdoot is that the overlay structure is determined

by the pub/sub scheme and the overlay dimensionality is proportional to the number of

event attributes. More importantly, Meghdoot is not able to support multiple schemas

with different dimensions. It also uses the lower part of the hyperplane only for routing

purposes.

HyperSub

HyperSub [YZH07a] leverages a multi­dimensional locality preserving hashing mech­

anism. This way Hypersub can partition a multi­dimensional content space into layered

content zones which are mapped into system nodes. This mechanism maps nearby data

points in the content space to one node or nodes close together in the overlay network.

This makes subscription and publication more efficient, but sacrifices DHT’s load balance

nature. The content space is transformed into a β­ary (β is the base of the key/node

identifiers) tree with maximum height m+ 1 (m is the number of digits in the key/node

identifiers), where each node represents a content zone. A subscription s is mapped

to the smallest content zone which can completely cover the range specified in s, while

a publication p is mapped to an m­level content zone which holds the corresponding

point. In this system, the number of nodes in which a subscription is installed to, could

be of an exponential magnitude. Nevertheless, as Meghdoot, it provides no flexibility to

schema changes, such as adding or deleting attributes.

3.2 Decentralized Service Orchestration

Typically, a composite Web service specification is executed by a single coordination

node. It receives the clients’ requests, makes data transformations, and invokes the

component Web services according to the provided specification. This model of central­

ized orchestration has several limitations, as the coordination node commonly becomes

a performance bottleneck.

Ioannis E. Pogkas 65

Decentralized Business Process Execution in Peer­to­Peer Systems

On the other hand, in a decentralized orchestration, there are multiple engines.

Each one of them executes a portion of the original composite Web service specification

in a distributed fashion. These engines communicate directly with each other while

they transfer data and define the control flow in a loosely coupled manner. This model

brings several benefits as: a) there is no centralized coordinator to become a potential

bottleneck, b) data distribution reduces network traffic and improves transfer time, c)

control distribution improves concurrency, and d) asynchronous messaging between the

engines improves the throughput.

The first step for distributed orchestration is the automatic parallelization of the

BPEL process. There are many proposals [CCMN04, YG07, BMM05] that promise to

solve this problem. Most of them focus on the use of program dependence graphs

(PDGs) [OO84] for partitioning the BPEL process into concurrent composite Web service

applications. This problem has some unique features compared to other partitioning

problems, such as the presence of fixed tasks and portable tasks. The step followed

after the partitioning is the dissemination of the tasks into network nodes and their

synchronized execution, according to the defined data and control dependencies.

As the partitioning problem is not the primary focus of our thesis, in this section we

present previous work that focus more on the execution mechanisms of the distributed

orchestrations engines starting with earlier work on distributed workflow management.

Buhler et al.

Buhler et al. [BV04] described a distributed, agent­based workflow enactment mech­

anism utilizing BPEL as the specification of the multi­agent system. They exploit a hybrid

coordination model, which combines a separate data­centered and control­centered co­

ordination mechanism. The data­centered mechanism leverages a network addressable

XML repository that stores XML documents in logical groups and provides data coming

from the evaluation of XPath queries. The controlled­centered coordination mechanism

provides workflow control based on colored Petri nets [Jen87]. It treats BPEL as a descrip­

tion of the order of a collection of agents, where the agents act as proactive proxies for

the underlying Web services. Nevertheless, their work does not support the BPEL struc­

tured activities switch and pick and they do not provide a quantitative evaluation of

the system. Furthermore, their main focus is the integration of Web services with the

workflow management system and not the decentralized orchestration of Web services.

Guo et al.

Guo et al. [GRCB05] introduced a lightweight protocol for agent oriented Web services

coordination. The proposed protocol is based on an imperative language for representing

the dependencies among distributed agents called Lightweight Coordination Calculus

(LCC). In this language we can define the initial roles of the agents, the roles that get after

receiving or sending a message, and the constraints under which a message is allowed

to be send or received by an agent. Nevertheless, the task of performing the language

Ioannis E. Pogkas 66

Decentralized Business Process Execution in Peer­to­Peer Systems

mapping from BPEL to LCC is actually the task of translating a imperative program to a

declarative program, which is not possible in all circumstances. As a result, the authors

propose a limited version of the LCC protocol which acts mainly as a BPEL interpreter.

This way, the BPEL specification can be interpreted by the LCC protocol and then both

are passed into the multi­agent system. Using this protocol, the BPEL activities can be

interpreted and executed on the distributed multi­agent platform, while all the needed

messages are packed and passed together among the agents. In this approach, each

agent acts as a Web service proxy and the messages are passed directly between agents

to control flow. Although their approach is a possible solution for distributed workflow

management, they are still working on how to execute the full version of the protocol

and how to invoke the Web services. Furthermore, the translation of BPEL specifications

to LLC protocol is not verified and there exist no evaluation of their work.

RainMan and Arjuna

RainMan [PPC97] is a service model which separates the responsibility of workflow

coordination from activity execution, by creating two classes of entities called Sources

and Performers. In effect, while the coordination of each process remains localized within

a Source object, the actual execution of activities is decentralized across a network of

Performers over which Sources have very limited control. This model is essentially a cen­

tralized orchestration of Web services, because Web services act as the Performers and

the workflow interactions are performed by the Source. In the Arjuna project [RSW97],

the proposed execution model is designed and implemented as a CORBA­based ser­

vice [Vin97]. It decentralizes the coordination of a process by installing task controller

objects in different domains that coordinate with each other to deliver workflow routing

functionality. This execution model eliminates a central point of failure, but it imposes

computational burdens on participant domains. This fact degrades rapidly the perfor­

mance, as the number of participants increases.

Nanda et al.

Nanda et al. [NCS04] proposed a decentralized orchestration of composite Web ser­

vices, with the use of multiple engines. Each one of them executes a composite Web

service specification that is a portion of the original composite Web service. The goal

of the system is to minimize communication costs and maximize the throughput of the

multiple concurrent instances of a given composite Web service. Contrary to earlier

approaches that tried to minimize the completion time of a single instance program

running in isolation, they focus on running multiple instances.

Initially, a code partitioning algorithm identifies the number of final partitions based

on the number of component Web services in the composite Web service. To do so the

algorithm requires:

1. automatic parallelization and code partitioning using data flow analysis to deter­

Ioannis E. Pogkas 67

Decentralized Business Process Execution in Peer­to­Peer Systems

mine the most cost­efficient partition (as shown in Figure 3.6 the BPEL control flow

graph is transformed into a program dependence graph).

2. synchronization analysis to determine the best synchronization protocols

3. code generator.

read(x)

flow

sequence sequence

y=f(x) z=g(x)

end-sequence end-sequence

end-flow

a=y+z

(a) Nanda Control Flow

Graph.

entry

read(x) z=g(x) y=f(x) z=y+z

(b) Nanda Program Dependence Graph.

Figure 3.6: Figure 3.6(a) shows the Control Flow Graph (CFG). This is transformed by

Nanda into a Program Dependence Graph (PDG) as shown in Figure 3.8(b). The latter is

used to partitioned the BPEL process code.

These partitions are assigned to multiple communicating engines and require that

every participating node has a BPEL engine, while the communication appears as Web

service invocation in each partition. For example, Figure 3.7 presents a centralized or­

chestration engine and the BPEL process that will be executed, while the decentralized

Nanda architecture is shown Figure 3.8. As presented in Nanda, each node is responsi­

ble for executing a portion of the the original BPEL process, while every agent is extended

with BPEL orchestration abilities.

The requirement for a BPEL engine on each node happens for two reasons. First,

the ability of executing BPEL has become standard software infrastructure in application

servers. Second, the application that the server exports as a web service may itself be im­

plemented as a BPEL program behind the scenes, requiring a BPEL execution environment.

The authors propose two execution models based on a HTTP or JMS application server.

Ioannis E. Pogkas 68

Decentralized Business Process Execution in Peer­to­Peer Systems

Client C0

A1

A2

A3

Ai

C0
BPEWS4J Engine
(HTTP/EJB) server

Web service component
(HTTP) server

Synchronous messages

(a) Nanda centralized architecture.

receive(client, …)
flow

sequence
invoke(A1, …)

end-sequence
sequence

invoke(A2, ...)
end-sequence

end-flow
invoke(A3, …)
reply(client, ...)

C0

(b) Nanda centralized

code.

Figure 3.7: Figure 3.7(a) shows the centralized Nanda architecture, while Figure 3.7(b)

shows the BPEL code.

These two solutions are tested and display significant increase in throughput in contrast

to centralized approaches, with 30% increase under normal system loads and by a factor

of two under high system loads. Nevertheless, the process decomposition appears to be

very crucial for the overall engine performance, while the requirement for each node to

run its own instance of a BPEL engine, clearly make the nodes’ administration and fault

tolerance mechanisms more complex.

ZenFlow

Ricardo Jimenez­Peris et al. [JPPnMMJ08] proposed ZenFlow, a reflective BPEL web

service orchestration engine. Its reflective capabilities enable to implement all non­

functional aspects in a separated manner, thus reducing the complexity and increasing

the maintainability and modularity of the BPEL engine, as shown in Figure 3.9(a).

The system is structured into two layers: a) the base­level that executes the ap­

plication components, and b) the meta­level that runs the components related to the

implementation of non­functional requirements, such as decentralized execution, secu­

rity, fault­tolerance, etc. The base­level provides an image, called meta­model, of the

structural and behavioral features to the meta­level. Change in one of the levels leads

to change to the other level. In ZenFlow three types of metaobjects are used: a) metaob­

jects associated to all the activities of a business process, b) metaobjects associated to

a certain type of activity of a business process and invoked when that type of activity

is interpreted, and c) metaobjects associated with a single activity and invoked when

the selected activity is interpreted. The distributed interaction of the metaobjects across

the BPEL servers is enabled through Remote Method Invocation (RMI) calls using a set of

meta­interfaces.

Ioannis E. Pogkas 69

Decentralized Business Process Execution in Peer­to­Peer Systems

Client D0

D3 A3

D2 A2

D1 A1

Ai

Ci
BPEWS4J Engine
(HTTP/EJB) server

Web service component
(HTTP) server

Synchronous messages

Asynchronous messages

(a) Nanda decentralized architecture.

receive(client, …)
flow

send(D1, ...)
send(D2, ...)

end-flow
receive(D3, …)
reply(client, ...)

D0

flow
receive(D1, …)
receive(D2, …)

end-flow(A3, ...)
invoke(A3, …)
send(D0, …)

D3

receive(D0, …)
invoke(A2, …)
send(A3, ...)

D2

receive(D0, …)
invoke(A1, …)
send(D3, ...)

D1

(b) Nanda decentralized code.

Figure 3.8: Figure 3.8(a) shows the decentralized Nanda architecture, while Figure 3.8(b)

shows the partitioned BPEL code.

Figure 3.9(b) presents a more detailed view of the execution steps in the ZenFlow

architecture. The client requests the execution of a BPEL process (step 1) and if the

process is configured to executed at a different site, the execution is delegated to a server

that must support both the interpretation of the business process and the decentralized

execution. Using the reflective approach, the metaobjects responsible for delegating the

execution to a remote site intercept this event (step 2). At the metalevel, the metaobject

extracts the state of the business process, and sends it to the delegated server through

the remote RMI meta­interface (step 3). In this case, the delegated server receives the

state of the business process and recreates the process locally. Then, the server resumes

the execution of the recreated process. When the execution finishes, the delegated

server extracts once again the process state which is returned to the metaobject. The

metaobject in turn installs the new state into the server to reflect the result of the remote

execution (step 4).

The cost of reflection is only paid when metaobjects are associated to activities, so

that the overhead is minimal. The exceptions by the receive, reply, invoke, and link

activities are handled by the associated metaobject. On the other hand, as the cost

of the reflection depends on the produced events during the process execution, the

engine’s performance can be greatly degraded in special occasions. Furthermore, the

single ZenFlow engine instance still remains a scalability bottleneck and a fault­point.

Ioannis E. Pogkas 70

Decentralized Business Process Execution in Peer­to­Peer Systems

Meta-Interpreter

BPEL engine

MetaObject1 MetaObject1 MetaObject1...

(a) ZenFlow high level architecture.

ZenFlow
server

Client MetaObject

While

Invoke

Receive

Invoke

Assign

Invoke

Web
service

Web
service

Web
service

1
2

4

3

Delegate Server 1

Delegate Server 2

Delegate Server n

...

(b) ZenFlow detailed architecture.

Figure 3.9: Figure 3.9(a) shows a high level view of the ZenFlow architecture, while

Figure 3.9(b) presents a more detailed view with the steps during a deployment and

execution of a business process.

NIÑOS

A more recent proposal is NIÑOS [LMJ10]. NIÑOS is a distributed agent­based or­

chestration engine in which several lightweight agents execute a portion of the original

business process and collaborate in order to execute the complete process. NIÑOS exploits

the capabilities offered by the PADRES [LJ05] distributed content­based pub/sub routing

infrastructure. All communications occur as pub/sub interactions including: data trans­

fer, control, monitoring, and coordination among the agents. As the agents need only

to be aware of other nodes’ content­based addresses, they become location­independent

and their reconfiguration and administration becomes much easier.

As shown in Figure 3.11(b), NIÑOS system architecture consists of four components:

1. a network of broker nodes,

2. a number of activity agents; that are nodes capable of executing BPEL activities,

3. Web service agents; that are nodes capable of communicating with external Web

services, and

4. a business process manager

The network overlay consists of PADRES brokers (their internal architecture is shown

in Figure 3.10), where clients connect using Java RMI or Java Messaging Service (JMS).

Ioannis E. Pogkas 71

Decentralized Business Process Execution in Peer­to­Peer Systems

Furthermore, each broker has a rule based engine that performs the matching of the in­

coming publications with the stored subscriptions and decides the next­hop destination

of the messages. On the other hand, each activity agent corresponds to a BPEL activity

and act as a light­weight pub/sub client. An activity agent waits for its predecessor activ­

ities to complete by subscribing to events and then executes its own activity. When the

execution completes, it triggers the successor activities. Each Web service agent acts as

a proxy by translating between Web service protocols and the pub/sub message formats.

This way, Web service agents allow activity agents to invoke and be invoked by external

Web services. Finally, the business process manager is a pub/sub client that transforms

the business process described in BPEL into pub/sub messages, deploys the process to the

available activity agents, triggers the process instances, and monitors the execution.

Evaluations of the proposed architecture showed an improvement of 70% in process

execution time and 120% in throughput versus the centralized approach. Nevertheless,

the single BPEL manager can become a scalability bottleneck, as it limits the engine and

fails to deploy in parallel multiple processes. Furthermore, each agent is specialized

to execute a single activity that can be limited for the resource utilization. Finally, the

PADRES network is unstructured and exhibits limited fault tolerance, while it fails to

handle high node churn rates.

Broker input
bindings

(RMI, WS, Grid,
etc)

Broker output
bindings

(RMI, WS, Grid,
etc)

Broker core

Broker monitor

Matching engine
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Routing
data

Network

��
��
��
��
��
��
��
��
��
��
��
��
��
��

Matching
data

Client bindings
(RMI, WS, Grid, etc)

Controller

Broker lifecycle manager

Component manager

Overlay network manager

...

Client1

Clientn

Figure 3.10: The architecture of a PADRES broker. The matching engine maintains

various data structures where subscriptions are mapped to rules and publications are

mapped to facts. The rule engine performs the matching and decides the next hop

destination of the message.

Ioannis E. Pogkas 72

Decentralized Business Process Execution in Peer­to­Peer Systems

Receive

Assign

Flow

Invoke Invoke

ReceiveReceive

Switch

Assign Assign

Reply

(a) NIÑOS BPEL pro­

cess.

Reply
agent Switch

agent

Flow agent

Assign
agentReceive

agent
Invoke
agent

Web Service
agent

Web Service
agent

Web Service
agent

Business Process
manager/client

Web
service

Client

Web
service

HTTP/SOAP

PADRES broker
network

(b) NIÑOS architecture.

Figure 3.11: Figure 3.11(a) shows a BPEL process and its execution by the NIÑOS ar­

chitecture presented in Figure 3.11(b). The PADRES broker network carry out content­

based routing and in­network processing of composite subscriptions. The agents provide

event­driver activity execution and cross­enterprise interaction with external business

processes, and transform the presented BPEL process into a set of pub/sub messages.

3.3 Conclusions

There are still a number of research papers on various issues in distributed workflow

management. Nevertheless, to the best of our knowledge, no prior work on Web ser­

vice composition and distributed workflow management has exploited the content­based

pub/sub paradigm based on structured DHT networks to achieve decentralized BPEL orches­

tration. The focus of our work is on mapping BPEL into a pub/sub subscription language

and to describe the decentralized execution of the business processes. Our conclusions

on the available content­based structured pub/sub systems are presented in Table 3.5.

The main reasons that we decided to follow a similar approach with Ferry are:

Ioannis E. Pogkas 73

Decentralized Business Process Execution in Peer­to­Peer Systems

1. Ferry does not place restrictions on subscriptions, thus it does not sacrifices the

expressiveness of the subscriptions.

2. The subscription installation and management algorithms aggregate the event de­

livery messages, thus minimizing the number of messages across the system.

3. The event delivery algorithm makes use of the embedded trees in the underlying

DHT network, thus it is virtually maintenance free.

4. Ferry exploits the fault­tolerance and self­organizing nature of the DHT links and is

resilient to node failures.

We extended the Ferry mechanisms and make a couple of contributions that differen­

tiate our approach:� Our pub/sub algorithm extends with locality meters the event delivery mechanisms

in order to minimize required hops from the matching done in the broker nodes to

the delivery of the message to the subscriber nodes.� We extend the matching process with filter merging and covering techniques, thus

we reduce the size of the routing tables.� We implement our solution on top of MSPastry, as it ensures consistent routing

and it is more efficient in handling node departures under high churn rates.

Furthermore, in Table 3.6 we present an overview of the studied distributed service

orchestration engines. From all the proposed solutions we decided to follow the approach

taken by NIÑOS as:

1. Its distributed architecture is congruent with an inherently distributed enterprise

where business processes are geographically dispersed and coordinating partners

have to communicate across administrative domains.

2. It removes the scalability bottleneck of a centralized orchestration engine and al­

lows portions of the process to be executed close to the data they operate on,

thereby conserving data and control traffic.

3. It supports flexible mappings of the orchestration agents onto heterogeneous plat­

forms and resources and can be adapted from a centralized to a fully distributed

system.

4. The agents only need to be aware of one another’s content­based addresses. This

simplifies the agent reconfiguration and movement, thus easing the administration

burden.

5. The processes are transformed such that certain computations are carried out in

the pub/sub layer. This simplifies the orchestration agents control and data flow

interactions.

Ioannis E. Pogkas 74

Decentralized Business Process Execution in Peer­to­Peer Systems

Nevertheless, many problems are not handled by NIÑOS, including fault­tolerance, the

required network administration, the centralized BPEL process deployer, and the network

transient nature. Our solution differs because:� We propose a fully distributed architecture that removes the scalability bottlenecks

of a centralized deployer agent. Our engine can use multiple deployer/manager

nodes that can deploy and trigger business processes concurrently.� The agents are general­purpose and can execute multiple activities.� Our engine allows portions of processes to be executed close to the data they

operated on, using network proximity metrics. It also stores the pub/sub mes­

sages closer to the original subscribers. This is achieved dynamically using an

infrastructureless approach and requires no human intervention. Additionally, it

exploits the DHT layer proximity properties in order to provide proximity­aware sub­

scription installation and event propagation, thus yielding good message delivery

performance.� It facilitates dynamic mapping of process activities to agents, based on the network

conditions and the agents utilization state.� Our infrastructureless approach requires no custom network configuration by a

network administrator. It is designed to operate providing high fault tolerance and

can cope with high node churn rates.

Ioannis E. Pogkas 75

Decentralized Business Process Execution in Peer­to­Peer Systems

Structured Content­based Pub/Sub Systems

System Architecture Pub/Sub Routing Limitations

Tam et al.

[TAaJ03]

Pastry Based on the index

digest values.

a) no support for range at­

tributes, b) requires schema de­

signer, and c) may produce ex­

cessive traffic due to false posi­

tive messages.

Terpstra et al.

[TBF+03]

Chord Based on filter rout­

ing tables using mul­

tiple trees.

a) need to maintain filter invari­

ants and b) overhead in high

churn rate.

Triantafillou et

al. [TA04]

Chord Based on

the matched

subscription­id­lists.

a) small domain problem, b) de­

pends on the attributes preci­

sion, and c) subscription instal­

lation and updates may require

large number of messages.

Ferry[ZH05] and

eFerry[YZH07b]

Chord routing leverages the

underlying DHT trees.

a) poor load­balancing and b)

scalability problems with a large

number of subscriptions.

Reach [PWR04] Hypercube Based on the ham­

ming distance be­

tween the pub/sub id

and the ids of the

neighbor nodes.

a) the statically defined attribute

set, b) the coarse grained expres­

siveness, c) the limited fault tol­

erance, and d) the lack of load

balancing methods.

HOMED

[YCP04]

Hypercube Based on the pub/-

sub id covering by the

ids of the neighbor

nodes.

a) requires a globally static at­

tribute space, b) presents poor

load balancing, and c) subscrip­

tions are unevenly distributed

among overlay nodes.

Meghdoot

[GSAA04]

CAN Based on the pub/-

sub attribute values

coordination.

a) overlay structure is deter­

mined by the pub/sub scheme,

b) overlay dimensionality is pro­

portional to the number of event

attributes, and c) can not sup­

port multiple schemas with dif­

ferent dimensions.

HyperSub

[YZH07a]

CAN Based on the pub/-

sub attribute zone cov­

ering.

a) provides no flexibility to

schema changes.

Table 3.5: Content­based pub/sub systems comparison.

Ioannis E. Pogkas 76

Decentralized Business Process Execution in Peer­to­Peer Systems

Distributed Service Orchestration Engines

System Architecture Limitations

Buhler et al.

[BV04]

Distributed agent engine with

control flow coordination based

on Petri nets.

a) does not support all BPEL ac­

tivities and b) the mechanism is

described only in theory/no im­

plementation.

Guo et al.

[GRCB05]

Distributed agent engine based

on coordination using the LCC

language. The control flow is

defined by the exchanged mes­

sages.

a) described only in theory/no

implementation and b) a real im­

plementation will be limited by

the LCC language.

RainMan

[PPC97]

Provides centralized orchestra­

tion and flow control using

source objects. Provides dis­

tributed service execution using

perfomers.

a) the centralized module re­

sponsible for the orchestration

becomes scalability bottleneck.

Arjuna project

[RSW97]

Distributes execution in differ­

ent domains that coordinate exe­

cution. Each service is executed

by a task controller

a) exhibits low scalability.

Nanda et al.

[NCS04]

Uses multiple engines to del­

egate portions of the process,

while tries to minimize the com­

munication cost among them.

Requires that every agent partic­

ipating in the distributed engine

must have a BPEL engine.

a) the process decomposition is

crucial for the performance of

the engine and b) each node re­

quires a running BPEL engine.

ZenFlow

[JPPnMMJ08]

Reflective engine that is respon­

sible for the non­functional as­

pects of the execution. Uses del­

egate servers for the activities ex­

ecution.

a) the cost of the reflection de­

pends on the events during the

process execution and b) the

ZenFlow engine still remains a

scalability bottleneck.

NIÑOS[LMJ10] Distributed architecture based

on an overlay of PADRES bro­

kers that are responsible for a

number of task agents. Each

task agents executes a BPEL ac­

tivity.

a) single BPEL manager that may

become a scalability bottleneck,

b) each agent is specialized to

execute a single activity, and c)

the PADRES network is unstruc­

tured with limited fault tolerance

and fails to handle high churn

rates.

Table 3.6: Distributed orchestration engines comparison.

Ioannis E. Pogkas 77

Decentralized Business Process Execution in Peer­to­Peer Systems

Chapter 4

Design and Architecture

This chapter presents the design and architecture of the proposed orchestration en­

gine. First, in section 4.1 we give an overview of the architecture and its constituting

elements. This section provides enough information for the reader to understand the

basic components of our system, how they operate, and how they interact with each

other. Second, in section 4.2 we introduce the pub/sub model that is employed by our

solution and we discuss the proposed subscription and publication algorithms. Third,

in section 4.3 we give a short presentation of the proposed mapping between the BPEL lan­

guage constructs and the facilitated pub/sub model. Finally, in section 4.4 we conclude

with a detailed description of the engine’s operation during the process deployment, the

process instance execution, the process redeployment, and the process undeployment

phase.

4.1 System Overview

We propose ADORE (Adaptive Distributed Orchestration over infRastructureless nEt­

works), a distributed business process execution architecture. Our system leverages

an underlying content­based pub/sub infrastructure, by transforming BPEL business pro­

cesses into a set of fine­grained pub/sub messages, that determine the data and control

flow of the business processes. Utilizing these pub/sub messages, the collaborating over­

lay nodes realize the original processes by taking advantage of some of the in­network

processing capabilities. We pursue to achieve maximum scalability and parallelization

and for this reason we decided to include multiple nodes with the ability to deploy and

to execute BPEL processes. Nevertheless, as the process management is critical, our ar­

chitecture can also provide process deployment and monitor in a centralized manner,

again exploiting some of the decoupling properties of the pub/sub system.

The ADORE architecture, as presented in Figure 4.1, consists of three major compo­

nents:� An underlying content­based pub/sub system. The latter is build over a DHT network

overlay. We selected the MSPastry DHT overlay, thus the network nodes form a ring.

Ioannis E. Pogkas 79

Decentralized Business Process Execution in Peer­to­Peer Systems� A number of deployer nodes. These are DHT nodes capable of sending and receiving

pub/sub messages and of deploying BPEL processes. Based on the system configu­

ration, we can have a single or multiple deployer nodes. Hereinafter, we assume

that we have a single deployer node, unless we clearly state the opposite.� A number of worker nodes. These are DHT nodes capable of sending and receiving

pub/sub messages and of executing BPEL activities.

Additionally, we present three types of external actors that interact with our archi­

tecture. These are:� Web service providers. They are invoked by the worker nodes and provide service

operations.� Web service requesters. They invoke worker nodes and request service operations.� External clients. They interact with the deployer nodes and may request the de­

ployment of a BPEL process, or provide initial input to the BPEL process instance.

Furthermore, they may request the produced output after the process instance

termination.

In the following sections we give a short overview of the system’s basic components

and then we proceed by describing the details of their internal architecture.

Content­based Pub/Sub ­ DHT Overlay

The DHT network overlay acts as the backbone for the pub/sub message routing. We

must note here that our architecture is independent of the deployed DHT network and

thus, it can rely on any of the available DHT implementations1. Nevertheless, among the

available solutions, we decided to use the MSPastry overlay [CCR04]. MSPastry is based

on Pastry DHT [RD01b], but extends it in order to provide better performance in high

node failure and churn rates. Our choice of MSPastry was also driven by its advantages:

1. Guaranteed lookup. It provides a guarantee that a search request will need no more

than logN hops, where N is the number of nodes in the network. No message

flooding is required and the messages reach their destination at a guaranteed

number of hops. This way, we do not need to implement complex search algorithms

or use advertisement messages.

2. Efficient routing table restoration. It provides the best performance (in terms of

message overhead) for fixing the broken DHT routing tables during periods with

high node churn rates. It facilitates low overhead for failure detection using three

methods: a) by exploiting the overlay structure, b) by using self­tuning probing

periods, and c) by using any messages exchanged between two nodes in place of

failure detection messages.

1As those presented in Section 2.5.3

Ioannis E. Pogkas 80

Decentralized Business Process Execution in Peer­to­Peer Systems

Dboot

Id = 0

Id = 1

Id = 2

Id = 3

Id = 4

Id = 5

Id = 6

Id = 7
W

W

W
D

W

W

W pub

pub

sub

sub

D: Deployer Node

W: Worker Node

Id: Node identifier in
the DHT network

sub: Subscription
message

pub: Publication
message

Client1 Client2 Clientn

...

HTTP/SOAP
Web service

requester

HTTP/SOAP
Web service

provider

Client1 Client2 Clientn

...

Dboot : Bootstrap
deployer Node

Figure 4.1: Architecture of the distributed orchestration engine. All nodes have unique

id’s and participate in a DHT network, where they exchange pub/sub messages. There

are two kinds of nodes: workers and deployers. The deployers receive requests from

external clients and deploy, undeploy, and trigger the execution of BPEL processes. The

worker nodes execute assigned BPEL activities and publish pub/sub messages to trigger the

execution of the following activities. Moreover, they communicate with external clients

when they execute a <receive>, <invoke>, or <reply> activity.

Ioannis E. Pogkas 81

Decentralized Business Process Execution in Peer­to­Peer Systems

3. Proximity propagation. It facilitates locality meters for minimizing the average hops

that a message needs to reach its destination.

4. Good scalability. The search/routing algorithm scales well even with a very high

number of nodes, in contrast with unstructured P2P networks.

5. Generic interface. There are numerous open and mature implementations of the

Pastry DHT (e.g. freePastry) that can be extended to support the MSPastry protocol.

Our implementation is based on a minimum interface provided by the MSPas­

try protocol. So, we need to modify only a small part of our implementation in

order to use an alternative implementation like freePastry.

Going back to the description of the DHT overlay, each node has a unique id and a

routing table with the addresses of a number of neighbor nodes that have local­proximity.

The DHT layer provides only the simple routing operations shown in Figure 2.3. For

example, the method route(key,msg) stores the given message to the network node with

node id numerically closer to the key.

We leverage these routing services by building a higher level routing mechanism

based on the pub/sub content­based model. This scheme provides loosely­coupled in­

teractions without the usage of specific node addresses and supports subscriptions

with high expressiveness. Thus, at the application level we only use publish and sub­

scribe primitives, without providing any network address information. By facilitating

this mechanism, all distributed interactions take place in the following manner: a) at

any time, a subscriber expresses its interest by submitting a subscription for specific

content, b) a number of nodes produce publications that are sent throughout the net­

work, and c) the matching publications are disseminated only towards the subscribers

that have previously expressed their interest in receiving similar content.

To conclude, the DHT network consists of nodes with unique network ids which have

the ability to store, match, and propagate pub/sub messages. These nodes have three

main roles: a) they can act as network brokers storing and matching subscriptions, b)

they can act as router nodes by carrying out content­based routing, and c) they can act

as information producers and consumers by sending pub/sub messages to the network.

Deployer and Worker Nodes

The main role of a network node is to act as an entity that can support the deployment

or the execution of BPEL activities in a distributed manner. A network node is classified

as a deployer or as a worker node. This classification results from the node’s role during

the engine’s operation.

In a nutshell, the deployer node: a) transforms the business process into a set

of pub/sub messages, b) deploys the process activities into the available worker nodes,

c) triggers an instance of the deployed process, and d) monitors the process instance

execution. At first, a request for a BPEL process deployment is received from an external

client. Then, the deployer parses the BPEL process, decomposes it to its constituting

Ioannis E. Pogkas 82

Decentralized Business Process Execution in Peer­to­Peer Systems

activities, and creates an activity list. This list is later used by the deployer to generate a

number of pub/sub messages. Next, the deployer assigns each activity and the associated

pub/sub messages to a set of worker nodes.

The worker nodes can execute all the supported BPEL activities, using the received

pub/sub messages and the deployed activities descriptions. In our orchestration engine

each business process element, such as a BPEL activity, has a corresponding worker

node which is an overlay node with pub/sub capabilities. Generally, a worker waits for its

predecessor activities to complete by subscribing to such an event, then it executes its

deployed activity, and finally it triggers the successor activities by publishing a comple­

tion event. As a result, the process execution is event­driven and naturally distributed.

The deployer and worker nodes handle the interactions with the external clients by

using services that translate between Web service protocols (such as SOAP over HTTP)

and pub/sub formats. This way, the activities in a BPEL process can invoke and be invoked

by external Web services.

Operation Overview

Our orchestration engine has five phases of operation: a) startup phase, b) deploy­

ment phase, c) execution phase, d) redeployment phase, and e) undeployment phase. In

the following, we describe each phase shortly.

During the startup phase, the deployer node acts as an entry point for new nodes

to join into the DHT network. If we have multiple deployers, we select one of them

(called the bootstrap deployer, as shown in Figure 4.1) to play this role, using a leader

selection algorithm [HX07, HH06, GHS83]. The joining nodes are registered as worker or

deployer nodes and send their ids to the bootstrap deployer. Moreover, the worker nodes

periodically send their utilization status to the deployer. If we have multiple deployer

nodes, the above information is replicated among them. In the rest of this section we

assume that we have a single deployer.

In the deployment phase, a BPEL process is deployed into a number of worker nodes.

This is achieved by the deployer node. The latter using the information gathered after

the nodes registration, selects a number of worker nodes with low utilization. Then

using the process activity list it assigns the activities to nodes with low utilization. After

this step finishes, it sends to the selected worker nodes their assigned activity and a

list with associated pub/sub messages. The selected workers complete the deployment

of the BPEL activities by publishing these pub/sub messages. With these messages the

worker nodes build up the inter­worker dependencies and render the BPEL process ready

to execute.

In the execution phase, the deployed business process can be invoked by an external

client that communicates with the deployer node. The latter translates the invocation

request into a publication message that specifies the process identifier and other re­

quired information. When this publication is sent, it triggers the worker node that is

responsible for the first activity (e.g. a <receive> activity). The latter executes its activity,

publishes a new process instance id, and triggers the successor activity with the proper

Ioannis E. Pogkas 83

Decentralized Business Process Execution in Peer­to­Peer Systems

publication messages. The same procedure is followed by all the worker nodes that

participate in the same process instance; they execute and trigger one another using

pub/sub messages in an event­driven manner, until the process instance completes, or a

failure happens.

In the redeployment phase, the deployer node re­assigns the BPEL process activities to

the workers, based on the workers utilization status. For example, if a worker becomes

overloaded or leaves the overlay, the deployer is activated and re­assigns its activities to

a different worker with low utilization.

Finally, in the undeployment phase, the deployer receives a request from an external

client and undeploys the process from all the related worker nodes. Additionally, it

terminates any running process instances.

4.1.1 Deployer Architecture

The architecture of the deployer node, as shown in Figure 4.2, consists of six main

components:

1. the Web Service Gateway that interacts with external clients

2. the parser that transforms the BPEL process to the process activity list

3. the activity deployment engine that assigns activities to worker nodes

4. the subscription matching engine that matches incoming publications with stored

subscriptions

5. the Publish/Subscribe Gateway that sends and receives publications and subscrip­

tions from the DHT overlay.

6. the Deployer cache that stores subscription messages that are used for pub/-

sub matching.

7. the Deployer database, shown in Figure 4.3, that stores information about the

clients, the deployed processes, the running process instances, and the worker

nodes.

The Web Service Gateway service converts pub/sub messages to SOAP/HTTP messages

and vice versa. It provides the functionality for invoking outside Web services and it

gives the ability to an outside client to invoke the business process. The Web Service

Gateway service is implemented on top of a HTTP server and servlet container (such as

Apache Tomcat2). In short, the Web Service Gateway is the component which receives

deployment and undeployment requests from the clients and sends the process output

response back to the clients. Furthermore, each time it receives an incoming request

from an external client, it stores the client’s address into the Clients Table.

2http://tomcat.apache.org/

Ioannis E. Pogkas 84

http://tomcat.apache.org/

Decentralized Business Process Execution in Peer­to­Peer Systems

Client1

Publish/Subscribe Gateway

Activity Deployment Engine
Subscription

Matching Engine

Parser

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Deployer

Client2 Clientn

...

SUB
PUB

Process
Activity

List

Deploy
request

Broker-Subscription
Personal-Subscription

Historic
Correlation

CACHE ���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Deployer
Database

WS request service WS response service

Web Service Gateway

HTTP/SOAP request /response

Publications
Subscriptions

Publications
Subscriptions

Deploy
Undeploy

Update Status
Utilization

Deploy/Undeploy
Process/Activity

Get/Set
Utilization

Get/Set
Client

address

Get/Set
Publication
Subscripton

Execute/
Undeploy
request

Process
response

DHT
network

DB

Figure 4.2: Architecture of the deployer node. The deployer node that receives requests

from external clients and deploys, undeploys, and triggers the execution of BPEL pro­

cesses. It can receive deployment, or process instance requests from external clients

and it can also send reply messages to the original requesters.

Ioannis E. Pogkas 85

Decentralized Business Process Execution in Peer­to­Peer Systems

Process-Instances

Has-
Activities

Executes-In

Has-Child Has-Parent

SubscriptionsPublications

Workers

name id

id

description

id dataid data

mmunetu

last_used

load

diskucpuu

Has-
publication

Has-
subscription

id

child-of

parent

parent-of

child

Activities

Clients

address

Has-invoked

Entity Set

Relationship

key

Referential
integrity

Weak entity
set

Supporting
relationship

Attribute

many-one

Figure 4.3: E/R model of the deployer node’s database.

The parser receives as input a compressed bundle containing the BPEL process and

the associated WSDL files. This component uncompresses the bundle and parses the

contained files, producing a process activity list, as shown in Figure 4.4(a). This list

describes all the process activities and defines the data and control flow dependencies

among them. Each node in the list represents a BPEL activity and has the structure shown

in Figure 4.4(b). As presented it contains the activity’s XML description, its unique id,

the ids of the parent and child activities, a publication list with the messages that this

activity must publish after it is executed, and a list with subscriptions that must be sent

during the deployment phase.

The activity deployment engine creates a process map that associates process activ­

ities with specific worker nodes. This is succeeded by using the information contained

into the Workers Table and the process activity list. The association is based on the

utilization information that the worker nodes send to the deployer. There are two meth­

ods for assigning process activities to worker nodes: a) per­process deployment and b)

per­instance deployment. In per­process deployment, for every process instance the de­

ployer uses the same worker nodes for the same activities. Thus, the deployer creates

a per­process map as shown in Figure 4.5(a), where each activity belongs to a specific

node id. On the other hand, in per­instance deployment, for every process instance the

deployer assigns the process activities to different nodes, based on the current utiliza­

tion status of the worker nodes. Thus, the deployer creates the per­instance map shown

in Figure 4.5(b). As illustrated, each process is associated with a number of process

instances.

Ioannis E. Pogkas 86

Decentralized Business Process Execution in Peer­to­Peer Systems

Activity1 Data Activity2 Data Activity n Data...

parent

child

child

(a) process activity list

Activity i Data

Activity Description (XML)

Publication List

Subscription List

Activity ID

Parent Activity List

Child Activity List

pub1 ...pub2 pub3

sub1 ...sub2 sub3

nodeId1 ...nodeId2 nodeId3

nodeId4 ...nodeId5 nodeId10

(b) activity data

Figure 4.4: Data structures produced after the BPEL process parsing.

The subscription matching engine matches publications with stored subscriptions.

The latter are stored in a tree­like structure in the personal subscription cache (that

stores subscription that belong to the node) and the broker subscription cache (that

stores subscription that belong to other nodes). In the last case, the deployer acts as

a broker node for the pub/sub overlay. The subscription matching engine can also match

subscriptions that are composite or historic. The composite subscriptions are composed

from multiple simple subscriptions and are matched using the correlation trees shown

in Figure 4.6. When all the subscriptions that are represented by nodes in the tree are

matched, the whole tree evaluates to true. This means that the composite subscription

is matched. For the historic subscription (i.e. subscription that are published after their

matching publications have been send), we use the internal trees of the historic­cache.

Finally, the Publish/Subscribe Gateway sends subscription and publication mes­

sages from the activity deployment service to the pub/sub overlay. It also receives pub/-

sub messages from the network and delivers them to the subscription matching engine.

4.1.2 Worker Architecture

The architecture of the worker node, as shown in Figure 4.7, consists of four main

components:

1. the Web Service Gateway that interacts with external clients

Ioannis E. Pogkas 87

Decentralized Business Process Execution in Peer­to­Peer Systems

Process-Activity-Map
...

ProcessName1

ProcessName2

ProcessNamen

..
.

Activity 1 Data

nodeId1

Activity 2 Data

nodeId3

Activity n Data

nodeIdk

(a) Per­process deployment

ProcessName1

ProcessName2

ProcessNamen

..
.

...Activity 1 Data

nodeId1

Activity 2 Data

nodeId2

Activity n Data

nodeIdk

...Activity 1 Data

nodeId3

Activity 2 Data

nodeIdk

Activity n Data

nodeIdk+1..
.

InstanceId1

InstanceId2

Process-Activity-Map

(b) Per­instance deployment

Figure 4.5: Deployer node data structures.

Correlation
Tree 1

...AND

SUBid=1 SUBid=3

SUBid=4

Correlation
Tree 2

OR

AND

SUBid=10 SUBid=15

SUBid=5

AND

Figure 4.6: Composite subscription list. Each node contains a matching tree.

Ioannis E. Pogkas 88

Decentralized Business Process Execution in Peer­to­Peer Systems

Publish/Subscribe Gateway

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Worker
Database

BPEL Activity Execution
Engine

Broker
Subscription

Matching

Personal
Subscription

Matching

Subscription Matching
Engine

WS request service WS response service

Web Service Gateway

Personal-Subscription
Broker-Subscription

Historic
Correlation

HTTP/SOAP
requester

HTTP/SOAP
provider

SUBoutPUBin SUB inPUBout

Worker

CACHE

DB

Publications
Subscriptions

Get /Set
Publication
Subscripton

Get/Set
Client

address

Invoke
Receive

client service

Matching
data

new
publications /
subscriptions

DHT network

Figure 4.7: The worker node executes BPEL activities and publishes pub/sub messages

to transfer data and trigger the execution of the next activity. Furthermore, it can

communicate with external clients when executing a <receive>, <invoke>, or <reply>

activity.

Ioannis E. Pogkas 89

Decentralized Business Process Execution in Peer­to­Peer Systems

Process-Instances

Has-
Activities

Has-Child Has-Parent

SubscriptionsPublications

name id

id

description

id dataid data

Has-
publication

Has-
subscription

child-of

parent

parent-of

child

Activities

Requesters

address

Has-
Invoked

Providers

address

Is-invoked

Entity Set

Relationship

key

Referential
integrity

Weak entity
set

Supporting
relationship

Attribute

many-one

Figure 4.8: E/R model of the worker node’s database.

2. the BPEL activity execution engine that processes BPEL activities

3. the subscription matching engine that matches incoming publications with stored

subscriptions

4. the Publish/Subscribe Gateway that sends and receives publications and subscrip­

tions from the DHT overlay.

5. the Worker cache that stores subscription messages that are used for pub/sub match­

ing.

6. the Worker database, shown in Figure 4.8, that stores information about the de­

ployed activities and the external requesters/providers.

The Publish/Subscribe Gateway and the subscription matching engine provide the

same functionality as those in the deployer node. The BPEL activity execution engine

processes the execution of the supported BPEL activities, as illustrated in Table 4.1.

When the activity executor is triggered and receives the required variable data from the

incoming publication messages, it evaluates any conditions or timers and executes the

appropriate operations/transformations. Finally, it publishes the updated variable data

or any information related to the following activity, using publication messages sent via

the Publish/Subscribe Gateway.

Ioannis E. Pogkas 90

Decentralized Business Process Execution in Peer­to­Peer Systems

Basic Activities

Activity Description

receive Blocking wait for a message to arrive

reply Respond to a synchronous operation

invoke Synchronous or asynchronous Web service call

assign Manipulate state variables

exit Terminate a process instance

empty An empty activity

wait Delay execution for a duration or deadline

Structured Activities

Activity Description

sequence Sequential execution of a set of activities

while Looping constructs

if Conditional execution based on instance state

pick Conditional execution based on events

flow Concurrent execution

Table 4.1: ADORE basic and structured activities.

The Web Service Gateway is the same as the service in the deployer node. It converts

publish/subscribe messages to SOAP/HTTP messages and vice versa. It provides the

functionality of invoking external Web services, and gives the ability to an external client

to invoke the business process. Therefore, it is used by the worker node to implement

the <receive>, <invoke>, and <reply> activities.

4.2 Publish/Subscribe over DHT

In a content­based pub/sub system, a subscription is a conjunction of predicates over

one or more attributes, while each predicate specifies a range of values for the attribute.

A publication is a set of equalities over a set of attributes. In such a system, a subscriber

marks its interests using subscriptions and it is notified with matching publications. To

accomplish this functionality on a DHT network, we need to resolve the following key

problems:

1. How to model the publication and subscription messages to cover our needs?

2. Given a subscription, in which overlay node(s) should we store it?

3. Given a publication, which overlay node(s) must we query to find the matching

subscriptions?

Ioannis E. Pogkas 91

Decentralized Business Process Execution in Peer­to­Peer Systems

4. How can we reduce the pub/sub traffic to provide efficient event dissemination?

5. How can we reduce the subscription storage requirements by applying filter cov­

ering and merging techniques?

In the next sections, we describe how our system addresses the above questions.

4.2.1 Publish/Subscribe Model

Publication Model

Definition 1 An attribute Ai is a tuple [name, type, value]. The name is a string value.

The type can be an integer, real, or string. The value defines the domain value taken by the

given attribute. The domain values belong to a range [min,max] based on the attribute’s

type.

Definition 2 A publication pub is defined as a conjuction of attributes:

pub = [A1 ∧ A2 ∧ . . . ∧ An], where Ai = [namei, typei, valuei] for i ∈ [1, n] is an attribute.

The class diagram of our implementation is shown in Figure 4.9. As illustrated, a

publication message consists of a set of attributes (attributeSet), where each attribute

is defined as a tuple (name, datatype, value). Furthermore, the publication has the

unique node identifier (srcNodeId) of the publisher node, a timestamp that marks the

creation of the publication message (timeStamp), a data member to carry additional data

(bodyData), and a boolean data member (storePub) that is set to true when we want to

store the publication message into the historic cache of the broker node. This way the

(storePub) field is used by our engine to match a current publication with a subscription

that will arrive later in the network.

Moreover, the figure also shows the deploy activity publication (DeployActivityPubli­

cation), that is used during the activities deployment. It contains a list of publications

(publicationsList) that are associated with the activity. During the deployment phase,

the deployer node sends DeployActivityPublication messages to the worker nodes, that

are responsible for executing the process activities.

Subscription Model

Definition 3 A predicate Pi is a tuple [name, type, operation, value]. The name is a string

value. The type can be an integer, real, or string. The operation is one of the supported

operations (such as: =, 6=, <, >, ≤, ≥, any, starts, ends, contains, inner, not inner). The

value is the domain value taken by the given predicate. The domain values belong to a

range [min,max] based on the predicate’s type.

Definition 4 A subscription sub is defined as a conjunction of predicates:

sub = [P1 ∧ P2 ∧ . . . ∧ Pn], where Pi = [namei, typei, operationi, valuei] for i ∈ [1, n] is a

predicate.

Ioannis E. Pogkas 92

Decentralized Business Process Execution in Peer­to­Peer Systems

-name : string
-dataType : DataType
-value : Data

Attribute

1

-attributeSet *

-srcNodeId : GUID
-timeStamp : Time
-bodyData : Data
-storePub : bool

Publication

DeployActivityPublication

1

-publicationList

*
{ordered}

Figure 4.9: Class diagram showing the data members of an attribute, a publication, and

a deploy activity publication message.

Definition 5 A composite subscription compSub is defined as:

compSub = [sub1 ∧ sub2 ∧ . . . ∨ subn], where each subi for i ∈ [1, n] is a subscription.

The class diagram of our implementation is shown in Figure 4.10. A subscription

contains the unique node identifier of the subscriber node (srcNodeId), a timestamp

(timeStamp) that marks the creation of the subscription message, and a unique identifier

(subId) that marks the specific subscription. Furthermore, it has a list of predicates

(predicateSet), where each predicate is a tuple (name, datatype, operation, value). Each

predicate can be matched with a specific attribute using the matchPredicate() method.

A composite subscription (CompositeSubscription) contains a list of subscriptions

(subscriptionList), is tagged with its creation time (timeStamp), and also has the sub­

scriber’s id (srcNodeId). Additionally, the composite subscription has a correlation tree

(CorrelationTree) that defines how the individual subscriptions are related i.e. using AND

or OR operators. Thus, using a composite subscription we can define complex subscrip­

tions like: compSub = suba OR (subb AND subc), with suba = {subId=5, [‘‘name’’,string,

equals, ‘‘Jerry Lee’’]}, subb = {subId=10, [‘‘surname’’, string, equals, ‘‘Lewis’’]}, and subc
= {subId=15, [‘‘date’’, int, equals, 1935]). This composite subscription produces the

Correlation Tree2 shown in Figure 4.6.

Furthermore, Figure 4.10 shows the deploy activity subscription (DeployActivitySub­

scription), that contains of a list of composite subscriptions (compositeList). During the

deployment phase, the deployer node sends DeployActivitySubscription messages to the

worker nodes, that are responsible for executing the process activities.

Also, there are a couple of special data types that are used by the previous classes.

As shown in Figure 4.11(a), Data is a generic type that is used to define the real data

that carries the attribute, the predicate, and the publication message.

The GUID shown in Figure 4.11(b) is a 16­byte (128­bit) number that is represented as

a 32­character hexadecimal string, such as 21EC­2020­3AEA­1069­A2DD­080­02B3­

309D. The GUID, is used for producing unique node and message identifiers. As the

Ioannis E. Pogkas 93

Decentralized Business Process Execution in Peer­to­Peer Systems

+matchPredicate() : bool

Predicate

-name : string
-dataType : DataType
-operation : OperationType
-value : Data

Subscription

-timeStamp : Time
-srcNodeId : GUID
-subId : GUID

CompositeSubscription

-timeStamp : Time
-srcNodeId : GUID

+isMatched() : bool

CorrelationNode

-leftSubIdMatched : bool
-rightSubIdMatched : bool
-leftSubId : GUID
-rightSubId : GUID

ANDCorrelation ORCorrelation

1

-correlationTree

*

1

-subscriptionList *
{ordered}

1

-predicateSet

*

DeployActivitySubcription

1

-compositeSub *
{ordered}

CorrelationTree

1

-correlationNodes*

Figure 4.10: Class diagram showing the data members of a predicate, a subscription, a

composite subscription, and a deploy activity subscription message.

Ioannis E. Pogkas 94

Decentralized Business Process Execution in Peer­to­Peer Systems

-name : string
-value : void

Attribute

-srcNodeId : GUID
-timeStamp : Time
-storePub : bool

Publication

+matchPredicate() : bool

-name : string
-operation : OperationType
-value : void

Predicate

«datatype»
Data

1

-dataType 1

1

-bodyData

1

1

-dataType1

(a) data class diagram

-timeStamp : Time

Subscription
-timeStamp : Time

CompositeSubscription

-leftSubIdMatched : bool
-rightSubIdMatched : bool

CorrelationNode

«datatype»
GUID

1

-srcNodeId1

1

-srcNodeId1

1

-rightSubId 1

1

-leftSubId 1

1

-subId1

(b) GUID class diagram

Figure 4.11: Class diagram showing the data members of the Data and GUID classes.

total number of unique keys is 2128 the probability of the same number being generated

randomly twice is negligible.

The DataType (Figure 4.12(b)) defines the type of data that the attribute or the pred­

icate refers to; this can be integer, real, or string. Furthermore, the DataType defines

the supported operations. If the DataType is string the supported operations are: less,

greater, equal, not equal, any, starts, ends, contains, inner, and not inner. While if the

DataType is real or integer we have the operations: less, greater, equal, not equal, any,

less equal, greater equal.

Finally, Time as illustrated in Figure 4.12(b), is used to provide timing information

and is implemented as a wrapper around the java Date class.

Filter Model

We define as a filter a system subscription that is produced using the predicates of

the original subscriptions. A filter consisting of a single atomic predicate is an attribute

filter or constraint. Filters that are derived from attribute filters by combining them

with boolean operators are compound filters. A compound filter that is a conjunction of

attribute filters is called conjunctive filter. In our model we use only conjunctive filters.

In the following, with the term filter we will refer to a conjunctive filter.

Definition 6 An attribute filter f is defined as a simple contraint with only one predicate:

f = [P], where P = [name, type, operation, value] is a predicate.

Definition 7 An filter F is defined as a conjunction of attribute filters:

F = [f1 ∧ f2 ∧ . . . ∧ fn], where fi = [namei, typei, operationi, valuei] for i ∈ [1, n] is a

predicate.

Ioannis E. Pogkas 95

Decentralized Business Process Execution in Peer­to­Peer Systems

+matchPredicate() : bool

-name : string
-value : Data

Predicate +LESS
+GREATER
+EQUAL
+NOT_EQUAL
+ANY

«enumeration»
OperationType

+STARTS
+ENDS
+CONTAINS
+INNER
+NOT_INNER

«enumeration»
LiteralType

+LESS_EQUAL
+GREATER_EQUAL

«enumeration»
NumericalType

+STRING = 1
+INT = 2
+REAL = 3

«enumeration»
DataType

-name : string
-value : Data

Attribute

1

-operation

1

1

-dataType 1

1

-dataType 1

(a) operation type class diagram

-srcNodeId : GUID
-bodyData : Data
-storePub : bool

Publication

-srcNodeId : GUID
-subId : GUID

Subscription

-srcNodeId : GUID

CompositeSubscription

«datatype»
Time

1

-timeStamp 1

1

-timeStamp1

1

-timeStamp

1

(b) time class diagram

Figure 4.12: Class diagram showing the data members of the DataType and Time classes.

Ioannis E. Pogkas 96

Decentralized Business Process Execution in Peer­to­Peer Systems

A filter F can be also seen as a stateless boolean function that is applied to a publi­

cation, i.e. F (pub) → {true, false}. A publication matches F if F (n) evaluates to true.

Consequently, the set of matching publications P (F) is defined as {pub|F (pub) = true}.
Two filters F1 and F2 are identical written F1 ≡ F2, if and only if P (F1) = P (F2). More­

over, they are overlapping, denoted by F1 ⊓ F2, iff P (F1) ∩ P (F2) 6= ∅.

Subscription­Publication Matching Model

A matching algorithm tests a given publication against all filters and subscriptions

to determine the set of the matched ones. This implies that the same predicate may be

evaluated many times. Algorithm 1 presents a commonly used naive matching algorithm

based on the idea of the predicate counting [YGM94, PFLS00]. We propose a solution

based on a more elaborate approach that is described in section 4.2.4.

Algorithm 1: Naive Matching Algorithm

Require: pub = {srcNodeId, [A1, A2, . . . , An]} //publication message

1: for all Ai ∈ pub do

2: for all filter f in the routing table do

3: if f(pub) = true and f has all the attributes of pub then

4: add f to matchedSet

5: end if

6: end for

7: end for

Covering Model

The goal of covering­based routing is to remove redundant subscriptions from the

network, to force the nodes maintain a compact routing table, and to reduce the network

traffic. The concept of covering includes predicate covering and filter covering. In short,

using this method we do not need to store subscriptions that are already covered by

existing subscriptions (thus will be matched by the same publications).

Definition 8 For predicate Pi = [namei, typei, operationi, valuei] and predicate Pj =
[namej , typej, operationj , valuej], we define that Pi covers Pj, denoted as Pi � Pj , if

and only if namei = namej and all attribute­value pairs matching Pi also match Pj.

Definition 9 A filter Fi covers another filter Fj , denoted Fi � Fj, if the publication set

matching Fj also matches Fi, that is P (Fi) ⊇ P (Fj).

Definition 10 Assuming two filters Fi = [f i
1 ∧ f i

2 ∧ · · · ∧ f i
n] and Fj = [f j

1 ∧ f j
2 ∧ · · · ∧ f j

m]
that are conjunction of attribute filters with n ≤ m, we define that filter Fi covers filter Fj

denoted as Fi ⊒ Fj , if and only if ∀f i
k with k ∈ [1, n], ∃f j

l with l ∈ [1, m] : f i
k � f j

l .

Ioannis E. Pogkas 97

Decentralized Business Process Execution in Peer­to­Peer Systems

Merging Model

The merging technique is used for further minimizing the routing table size and the

network traffic overhead in a content­based network. It is an extension of covering that

replaces a number of subscriptions with a more general subscription. If suba and subb
have no covering relations but largely overlap with each other, they can be merged into

a more general subscription subm.

A new filter FM , which covers the original filters (F1, F2, . . . , Fn), that is P (FM) ⊇
P (F1)∪P (F2)∪ . . .∪P (Fn), is called a merger of Fi(i = 1, . . . , n). There are two types of

mergers:

1. FM is a perfect merger, if P (FM) = P (F1)∪P (F2)∪. . .∪P (Fn), that is the publication

set of the merger is exactly equal to the union of the publication sets of the original

filters.

2. FM is an imperfect merger, if P (FM) ⊃ P (F1) ∪ P (F2) ∪ . . . ∪ P (Fn), that is the

merger is larger than the filters’ union.

A set of conjunctive filters with at most one attribute filter for each attribute can

be perfectly merged into a single conjunctive filter with one condition: if for all except

a single attribute their corresponding attribute filters are identical and if the attribute

filters of the distinguishing attribute can be merged into a single attribute filter [M0̈2].

For example, two filters F1 = {x = 5 ∧ y ∈ {2, 3}} and F2 = {x = 5 ∧ y ∈ {4, 5}} can be

merged to F = {x = 5 ∧ y ∈ {2, 3, 4, 5}}.

4.2.2 Subscription Algorithms

In this section, we examine the methods that are used by our architecture to store

the subscriptions to the overlay broker nodes. We have implemented three algorithms

with different performance on load balancing, overhead, and network traffic. These

algorithms were originally proposed in [ZH05] for Chord DHT. For this reason, we have

adapted the original techniques to fit our model and we have extended these algorithms

by exploiting the MSPastry ’s embedded tree geometry.

The subscription storage algorithms are: a) the Random­Predicate Subscription Al­

gorithm (RP­SA), b) the Proximity­Predicate Subscription Algorithm (PP­SA), and c) the

Multi­Predicate Subscription Algorithm (MP­SA). In all cases we use a similar two step

methodology:

step1 The subscriber chooses an attribute or a number of attributes, extract their names,

and produces a key by hashing these names.

step2 Using the produced key, the subscriber calls the route(key, sub) method of the

DHT layer that sends the subscription sub to the broker node that has identifier

with better proximity to the key.

Ioannis E. Pogkas 98

Decentralized Business Process Execution in Peer­to­Peer Systems

B1
Id = 0

Id = 1

Id = 2

Id = 3

Id = 4Id = 5

Id = 6

S2

S3

B2

S4S5

S1

sub[a,b]

sub[a,b]

B: Broker Node

Si: Subscriber Node

Id: Node identifier in the
DHT network

sub[a,b]

Stores subscriptions
from S2, S3

Stores subscriptions
from S1, S4, S5

sub[a,b]

sub[a,b]

sub[a, b]: Subscription
message with predicate
names a, b; where a is
selected as a key

Figure 4.13: Random­Predicate Subscription Algorithm (RP­SA); the key is produced by a

randomly selected attribute name. This method has good load balancing characteristics

but requires on average a larger number of hops to reach a broker node. The broker B1

has proximity with the key a, while the broker B2 has proximity with the key b. Notice

that if S2 used the attribute name a and S4 used the attribute name b their subscriptions

would be stored into a broker with better proximity.

In this section, we also present the corresponding unsubscription algorithms that are

used by a subscriber to remove its subscriptions from the broker nodes.

Algorithm 2 presents the Random­Predicate Subscription Algorithm (RP­SA). It selects

randomly one attribute from all the available subscription attributes and uses this at­

tribute to produce a key. This method distributes almost randomly the subscriptions

to the broker nodes and thus in a large DHT network provides good load balancing. On

the other hand, the drawback of this method is that the publications are not always

stored to the broker node that is closer to the subscriber. As shown in Figure 4.13 the

subscriptions may require more hops than needed to reach the associated broker node.

Algorithm 3 shows the unsubscription process. This method is not efficient as it

needs to test all the attribute keys for finding the one that will reach the corresponding

broker node. Thus, it requires to send O(n) unsubscription messages, where n is the

number of the predicates, that is clearly not optimal.

Algorithm 4 presents a different approach that tries to minimize the average number

of hops that are required for a subscription to reach a broker node. In the Proximity­

Predicate Subscription Algorithm (PP­SA), all the predicate names are examined and we

select the one that produces a key which has larger DHT proximity with a subscriber

node. For this purpose, we use the proximity() function that finds the neighbor node

which shares the largest common prefix with the given keys (if two or more neighbor

nodes have the same longest length of matching prefix with the given key, the method

chooses the value that is numerically closest to the subscriber’s id).

Ioannis E. Pogkas 99

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 2: Random­Predicate Subscription Algorithm (RP­SA). This method cre­

ates a key to route the subscription based on a randomly selected predicate name.

Require: sub = {srcNodeId, [P1, P2, . . . , Pn]} //subscription message

1: Pi ← choose a random predicate from sub
2: namePi

← extract(Pi) //extract the predicate name

3: key = hash(namePi
) //get the hash value

4: route(key, sub) //route sub to the node that has Id closer to key

Algorithm 3: Random­Predicate Unsubscription Algorithm (RP­UA) unsubscribes a

subscriber that used the RP­SA algorithm.

Require: unSub = {srcNodeId, [P1, P2, . . . , Pn]} //unsubscription message

1: for each attribute Pi ∈ unSub do

2: namePi
← extract(Pi) //extract the predicate name

3: ki = hash(namePi
) //get the hash value

4: route(ki, unSub) //route unSub to the node with Id closer to ki
5: end for

Thus, in this case the keys are selected based on their proximity, while we choose the

one that will be stored closer to the subscriber node. This way, the algorithm requires

on average lower number of hops for the subscription to reach the appropriate broker

node (as shown by Figure 4.14). On the other hand, this method can create unbalanced

network load: if few nodes produce many subscriptions, then a small fraction of broker

nodes may receive a large number of subscriptions.

Nevertheless, the unsubscription method, presented by Algorithm 5, is optimal as it

requires only a single unsubscription message to be sent.

Algorithm 4: Proximity­Predicate Subscription Algorithm (PP­SA). This method cre­

ates a key to route the subscription using the subscription’s predicate name that

has better proximity.

Require: sub = {srcNodeId, [P1, P2, . . . , Pn]} //subscription message

1: for each predicate Pi ∈ sub do

2: namePi
← extract(Pi) //extract the predicate name

3: ki = hash(namePi
) //get the hash value

4: end for

5: key = proximity(k1, k2, . . . , kn) //get the ki with better proximity to the

subscriber’s Id

6: route(nearestkey, sub) //route sub to the node with Id closer

to nearestkey

Finally, Algorithm 6 presents the Multi­Predicate Subscription Algorithm (MP­SA) that

produces a key by hashing all the predicate names of the subscription. The subscription

Ioannis E. Pogkas 100

Decentralized Business Process Execution in Peer­to­Peer Systems

B1Id = 0

Id = 1

Id = 2

Id = 3

Id = 4

S2

S3

B2

S1

sub[a,b]

Stores subscription
from S 3

Stores subscriptions
from S1, S2

sub[a, b]

sub[a, b]

Bi: Broker Node

Si: Subscriber Node

Id: Node identifier in the
DHT network

sub[a, b]: Subscription
message with predicate
names a, b; where a is
selected as a key

Figure 4.14: Proximity­ Predicate Subscription Algorithm (PP­SA); selects the key that

has larger proximity with the subscriber’s node id. The broker B1 has proximity with

the key a, while the broker B2 has proximity with the key b. This method has poor load

balancing characteristics but requires on average less hops for the subscription to reach

a broker node.

Algorithm 5: Proximity­Predicate Unsubscription Algorithm (PP­UA) unsubscribes a

subscriber that used the PP­SA algorithm.

Require: unSub = {srcNodeId, [P1, P2, . . . , Pn]} //unsubscription message

1: for each predicate Pi ∈ unSub do

2: extract the predicate name namePi

3: ki = hash(namePi
) //get the hash value

4: end for

5: key = proximity(k1, k2, . . . , kn) //get the ki with better proximity to the

subscriber’s nodeId

6: route(key, unSub) //route unSub to the node with Id closer to key

Ioannis E. Pogkas 101

Decentralized Business Process Execution in Peer­to­Peer Systems

B1Id = 0
Id = 1

Id = 2

Id = 3

Id = 4

S2

S3

B2

S1

sub[a,b]

Stores subscription
from S3

Stores subscriptions
from S 1, S2

sub[a,b]

sub[b,c]
Bi: Broker Node

Si: Subscriber Node

Id: Node identifier in the
DHT network

sub[a, b]: Subscription
message with predicate
names a, b; where a is
selected as a key

Figure 4.15: Multi­Predicate Subscription Algorithm (MP­SA); selects all the predicate

names to produce a key. The subscription is forwarded to the neighbor node that has

larger proximity with the key. The broker B1 has proximity with the key ab, while the

broker B2 has proximity with the key bc. This method’s load balancing characteristics

depend on the number of subscriptions with the same attribute names.

is stored to the broker node that is numerically closer to the key. The advantage of this

method is that synonymous subscriptions (subscriptions that have the same predicate

names) are stored to the same broker node. This property can lead to more efficient

pub/sub matching when combined with covering and merging techniques, as we will see

in section 4.2.5. On the other hand, this method has problems with load balancing:

if we have many subscriptions with the same attributes names, then a small number

of brokers will store all these subscriptions and will become overloaded (as depicted

by Figure 4.15). Nevertheless, the unsubscription method, presented by Algorithm 7,

requires only a single unsubscription message to be sent to the proper broker node,

which is optimal.

Algorithm 6: Multi­Predicate Subscription Algorithm (MP­SA). This method creates

a key to route the subscription using all predicate names.

Require: sub = {srcNodeId, [P1, P2, . . . , Pn]} //subscription message

1: nameSet← extract(P1, P2, . . . , Pn) //extract all the predicate names

2: sort all predicate names into sortedNameSet
3: key = hash(sortedNameSet) //get the hash value

4: route(key, sub) //route sub to the node with Id closer to key

Ioannis E. Pogkas 102

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 7: Multi­Predicate Unsubscription Algorithm (MP­UA) unsubscribes a sub­

scriber, that used the MP­SA algorithm.

Require: unSub = {srcNodeId, [P1, P2, . . . , Pn]} //unsubscription message

1: extract all the predicate names into nameSet
2: sort all predicate names into sortedNameSet
3: key = hash(sortedNameSet) //get the hash value

4: route(key, unSub) //route unSub to the node with Id numerically closer to key

4.2.3 Publication Algorithms

In this section, we examine the methods that are used by our architecture to query

the overlay nodes for finding matching subscriptions. We have implemented two different

publication algorithms. These are: a) the Single­Attribute Publication Algorithm (SA­PA),

and b) the Multi­Predicate Publication Algorithm (MA­PA). These algorithms are used in

par with the previously presented subscription algorithms.

Algorithm 8 shows the Single­Attribute Publication Algorithm (SA­PA), that is used

when we store subscriptions using the RP­SA (Algorithm 2), or the PP­SA (Algorithm 4).

At first, it examines all the publication’s attributes and produces a key for each attribute.

Then, the publisher sends multiple copies of the publication, each time using one of

the produced keys. This way, the publication can reach all the possible associated

broker nodes. This method is clearly not optimal as it produces a number of publication

messages equal to the number of the publication attributes. Thus, a single publication

message with n attributes must be sent O(n) times.

Algorithm 8: Single­Attribute Publication Algorithm (SA­PA). This method is used to

send publications and is combined with the RP­SA and PP­SA algorithms.

Require: pub = [A1, A2, . . . , An] //publication message

1: for all each attribute Ai ∈ pub do

2: extract the attribute name nameAi

3: ki = hash(nameAi
) //get the hash value

4: route(ki, pub) //route pub to the node with nodeId numerically closer to ki
5: end for

On the other hand, Algorithm 9 presents the Multi­Attribute Publication Algorithm (MA­

PA). This method is used when we store subscriptions using the MP­SA (Algorithm 6).

This time, the publisher has to send only a single publication message, while the message

is propagated to the broker node with better proximity. The key is produced using all

the attributes names. Thus, a single publication message with n attributes must be sent

O(1) times.

Ioannis E. Pogkas 103

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 9: Multi­Attribute Publication Algorithm (MA­PA). This method is used to

send publications and is used in par with the MP­SA algorithm.

Require: pub = [A1, A2, . . . , An] //publication message

1: extract all the attribute names into nameSet
2: sort all attribute names into sortedNameSet
3: key = hash(sortedNameSet) //get the hash value

4: route(key, pub) //route pub to the node with Id closer to key

4.2.4 Event Delivery Algorithms

The overhead produced by the event delivery algorithm (as an event we define a

matched publication), is crucial for the efficiency of our pub/sub overlay. Figure 4.16(a),

presents a naive event delivery algorithm where a publication pub[y] is matched with

a subscription sub[x] in broker node B1. Using the subscription matching engine the

broker creates a set with interested subscribers’ ids and sends the publication one

time to each subscriber. Clearly, this method is not optimal because (as shown in

Figure 4.16(a)), many subscribers may be on the same delivery path. Thus, we propose

the group deliver algorithm (Algorithm 11), which groups subscribers that belong to the

same delivery path into the same group publication message (as shown in Figure 4.16(b)).

In this case, the broker B1 creates a publication group message and sends a single

publication for the subscribers S1 and S2 that belong to the same delivery path using

group delivery. In the example presented in Figure 4.16, the number of the published

messages between the two methods is reduced from 7 to 5. In the rest of this section,

we describe the publication matching and the group delivery mechanism that is used by

our approach.

The first step is the publication matching. Algorithm 10 matches a publication with

stored subscriptions in the broker’s cache using the algorithm that was originally pro­

posed in [ASS+99]. In this approach, each subscription is a conjunction of elementary

predicates and each predicate represents one possible result of an elementary test. An

elementary test is a simple operation on one or more attributes of the publication pub.
For example, we can have sub = [P1], P1=[city, eq, ‘‘New York’’], and test1() may be ‘‘ex­

amine attribute city’’. Thus, we have test1(sub)→‘‘New York’’. Using the above rules, we

construct matching trees as the one shown in Figure 4.17. Each non­leaf node contains

a test, and edges from that node represent results of that test. A leaf node l, contains a

subscription sub instead of a test. Intuitively, sub is the subscription described by walk­

ing the tree from the root to l and taking the conjunction of the elementary predicates.

Then, for every matching subscription we extract it’s subscriber id (srcNodeId) and

find the neighbor node that has closest proximity. This way, the broker creates a map

(routeMap) that associates neighbor nodes with subscriber ids. This map is delivered

to Algorithm 11, which creates and sends to each neighbor in the routeMap a group

publication message. The latter contains the publication and a list with ids of the

interested subscribers.

Ioannis E. Pogkas 104

Decentralized Business Process Execution in Peer­to­Peer Systems

B1

S3

S4

S2

Si: Subscriber Node

Id: Node identifier in
the DHT network

sub: Subscription
message

S5

S1

Subscriber Id Next hop

Routing Table

S1 S1

S1

Subscription

sub[x]
matches

with
pub[y]

PUB: Publication
group message

S2

S3

S4

S5

S3

S4

S4

pub2[y] pub2[y]

pub1[y]

pub3[y]

pub5[y]

pub4[y]

pub5[y]

Bi: Broker Node

Ni: Overlay Node

(a) naive event delivery

B1

S3

S4

S2Bi: Broker Node

Si: Subscriber Node

Id: Node identifier in
the DHT network

sub: Subscription
message

S5

S1

Subscriber Id Next hop

Routing Table

S1 S1

S1

Subscription

SUB[x]
matches

with
PUB[y]

PubGroup{y, [S1, S2]}

PubGroup: Publication
group message

S2

S3

S4

S5

S3

S4

S4

PubGroup{y, [S1]}

PubGroup{y, [S3]}

PubGroup{y, [S5,S4]}

PubGroup{y, [S5]}

Ni: Overlay Node

(b) group publication delivery

Figure 4.16: The naive event delivery algorithm shown in Figure 4.16(a), matches a

publication with a number of subscriptions and sends the publication to each subscriber

without examining the path back to the subscriber. Our publication algorithm, shown

in Figure 4.16(b), groups the subscribers that belong to the same delivery path and

sends one publication for each different delivery path.

test1

test2 test3

sub3 test4

sub4

res1

res2 res3

res4

*

Figure 4.17: Subscription matching tree with a *­edge that represents a don’t care test.

These edges are necessary when some of the subscriptions are independent of the test.

Ioannis E. Pogkas 105

Decentralized Business Process Execution in Peer­to­Peer Systems

Finally, each neighbor node that receives a group publication, handles the message

using Algorithm 12. This algorithm checks the list of the interested subscriber ids with

the nodes own id. If a match is found, the publication is delivered to the application

layer and the group publication message is propagated to the remaining subscribers.

If no match is found, then the group publication is simply propagated to the neighbor

nodes.

Algorithm 10: Publication Matching algorithm provides pub/sub matching.

Require: pub = [A1, A2, . . . , An] //publication message

1: for all matched subscription subi do

2: matchedSet.add(subi) //add subscription in the matched set

3: end for

4: for all subscription subi ∈ matchedSet do

5: extract srcNodeIdi from the subi //extract the subscriber’s id from the

subscription message

6: nbid = proximity(srcNodeIdi) //get the neighbor node id that is closer to the

subscriber’s id

7: routeMap.add(nbid, srcNodeIdi) //add the tuple < nbid, srcNodeIdi > to the route

map

8: groupDeliver(pub, routeMap)

9: end for

Algorithm 11: Group Deliver algorithm sends a publication group message to a set

of interested subscribers.

Require: pub = [A1, A2, . . . , An] publication message

Require: routeMap that associates a neighbor’s id with a list of subscribers’ ids.

1: for all entries nbid of routeMap do

2: pubGroupi ← pub+ routeMap.get(nbid) //create pubGroup message

3: routeMsg(pubGroupi) //send pubGroupi to nbid
4: end for

4.2.5 Filter Covering/Merging Algorithms

A common problem that occurs in all the pub/sub matching algorithms, is that in many

cases a small number of broker nodes are responsible for matching the vast majority of

the submitted subscriptions. In extreme cases, these nodes become overloaded and fail

to handle more publications. In order to solve these problems, we use a filter merging

algorithm that substitutes subscriptions with a cover filter as proposed in [M0̈2, Tar07].

We call this two­step process pub/sub table reduction. In the first step, we discover the

filter covering and merging candidates in the pub/sub tables using covering and merging

tests.

Ioannis E. Pogkas 106

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 12: Group Message Propagation algorithm provides subscription id

matching and propagates group publication message to the remaining subscribers.

Require: pubGroup message

1: subIdList← extractSubscribers(pubGroup)

2: pub← extractPublication(pubGroup)

3: for all srcNodeIdi ∈ subIdList do

4: if srcNodeIdi matches with current node’s id then

5: new publication is received

6: else

7: find the node nbid that is closer to the srcNodeIdi
8: routeMap(nbid, srcNodeIdi) //update routeMap

9: end if

10: end for

11: if routeMap is not empty then

12: groupDeliver(pub, routeMap)

13: end if

For the covering we use two tests: a) we employ Algorithm 15 to determine all the

filters that cover a given subscription and b) we employ Algorithm 16 to determine

all the filters that are covered by a given subscription. For the filter merging we use

Algorithm 17 that determines all the possible merging candidates. These are filters that

are identical to the given filters in all but a single attribute [M0̈2].

In the second step, the real subscription messages are pushed from the original

broker node to its neighbors. For example, in Figure 4.18(a) the broker node B1 must

provide matching for subscriptions sub[x], sub[y], and sub[z]. We notice that the publi­

cations that match with sub[y] and sub[z] have a common propagation path. Thus, we

replace the sub[y] and sub[z] with a filter that covers them and push these subscriptions

to the first node in their path, as shown in Figure 4.18(b). This way, B1 needs only to

do filter matching, which consumes less physical resources and does not depend on the

number of stored subscriptions. One drawback of this method is that we increase the

publication path by one hop for each subscription push.

Algorithm 13 implements the above process by finding subscriptions that have the

same propagation path and replaces them with a covering filter. Furthermore, it pushes

the real subscriptions to the first node in the propagation path. When a publication

is received, we use Algorithm 14. The latter tests for a match with the installed filters

or subscription matching trees. If a match with an installed filter is found, then the

publication is propagated to the next node in the propagation path. Otherwise, the

subscriber ids are inserted into the matchedSet and the same group delivery process is

followed, as in Algorithm 12. Notice, that in the case of the filter match, the broker node

simple re­transmits the received publication message.

Ioannis E. Pogkas 107

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 13: Filter Installation algorithm provides publication routing that re­

duces the overhead caused by publication matching on the broker nodes.

1: find subscriptions e.g. (x, y, z) that have common propagation path

2: replace subscriptions (x, y, z) with filterx,y,z
3: push the subscription x, y, z to the first node on the propagation path

Algorithm 14: Filtered Publication Matching algorithm provides filter and publica­

tion matching.

Require: pub = [A1, A2, . . . , An] publication message

1: for all matched subscription subi or matched filter filteri do

2: if matched filteri then

3: send pub to the next propagation path node

4: else

5: matchedSet.add(subi) //add subscription in the matched set

6: end if

7: end for

8: for all subscription subi ∈ matchedSet do

9: extract srcNodeIdi from the subi
10: nbid = proximity(srcNodeIdi) //based on the routing table get the node nbid that

is closer to the srcNodeIdi
11: routeMap.add(ni, sidi) //add sidi to the route map

12: groupDeliver(pub, routeMap)

13: end for

Algorithm 15: Covering Algorithm. This method checks whether the filters in the

routing table are covering the input subscription. Returns the set of the covering

filters.

Require: sub = {srcNodeId, [P1, P2, . . . , Pn]} //subscription message

Require: set of all filters F
1: set for each filter in F a counter that is initialized to zero

2: for all Pi ∈ sub do

3: for all filter f ∈ F that has a constraint Ai that covers Pi do

4: increment the counter for f
5: end for

6: end for

7: return all filters in F whose counter is equal to their attributes filters.

Ioannis E. Pogkas 108

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 16: Covered Algorithm. This method identifies which filters are covered

by the input subscription and returns the set of the covered filters.

Require: sub = {srcNodeId, [P1, P2, . . . , Pn]} //subscription message

Require: set of all filters F
1: set for each filter in F a counter that is initialized to zero

2: for all Pi ∈ sub do

3: for all filter f ∈ F that has a constraint Aj that is covered by Pi do

4: increment the counter for f
5: end for

6: end for

7: return all filters in F whose counter is equal to number of attribute filters of sub.

Algorithm 17: Merging Algorithm. Returns a set of filters that can be merged

together.

Require: filter f1
Require: set of all filters F
1: set for each filter in F a counter that is initialized to zero

2: for all Ai ∈ f1 do

3: for all filter f ∈ F that has a constraint Aj that is identical to Ai do

4: increment the counter for f
5: end for

6: end for

7: return all filters in F whose counter is one smaller that or equal to the number of

attribute filters.

Ioannis E. Pogkas 109

Decentralized Business Process Execution in Peer­to­Peer Systems

B1

N2

S3

N1

Bi: Broker Node

Si: Subscriber Node

Id: Node identifier in
the DHT network

SUB: Subscription
message

sub[z]

S4

Subscriber Id Next hop

Routing Table

S5

S4

N1

N2S5

sub[y]

sub[x]

Subscription

sub[x]

sub[y]

sub[z] S3 N2

Ni: Overlay Node

(a) Subscription matching without filter

merging

B1

N2

S3

N1
Bi: Broker Node

Si: Subscriber
Node

Id: Node identifier
in the DHT network

SUB: Subscription
message

S4

S5

Subscriber Id Next hop

Routing Table

S5

-

N1

N2

Subscription

sub[x]

Filter[y,z]

Subscriber Id Next hop

Routing Table

S4

S3

S4

S3

Subscription

sub[y]

sub[z]

Push
{sub[y], sub[z]}

pub[y]

PUB: Publication
message

pub[y]

pub[y]

Ni: Overlay Node

(b) Subscription matching with filter merging

Figure 4.18: Subscription matching without support for filter merging tends to overload

the broker nodes 4.18(a). A solution is to support filter merging and to delegate the com­

putationally intensive task of matching pub/sub messages to neighbor nodes, as shown

in Figure 4.18(b).

4.3 Mapping BPEL to Publish/Subscribe Messages

In order to support the decentralized execution of the BPEL activities we must trans­

late the BPEL language constructs into the pub/sub language used by our system. The

translation transforms the deployed BPEL process into a behaviorally equivalent set of

pub/sub messages that can be processed directly by the deployer and the worker nodes

of the DHT overlay. This means that any data and control flow dependencies that exist in

a BPEL process must be described via pub/sub interactions.

An overview of how the supported simple and structured BPEL activities in Table 4.1

are translated into pub/sub messages is shown in Figure 4.19 for the simple activities

and in Figure 4.20 for the structured ones. The reader can find the details about the

structure and the production of those messages in the appendix A. The process of

translating the BPEL process description from XML to the according pub/sub messages is

carried out by the parser module in the deployer node.

The control flow dependencies are transformed into the exchange of messages among

the worker activities. For example, each worker subscribes to a number of publications

from the predecessor activity and waits for the proper publication messages. When the

worker responsible for the previous activity finishes its execution, it sends publication

status messages that trigger the waiting activity. This process continues until the last

activity, whereby its related worker finishes its execution.

The data flow dependencies are handled in a similar manner, as the BPEL variables

are disseminated into the subscription language. When mapping activities to worker

nodes, the involved variables are mapped as part of the deployed subscriptions. After

Ioannis E. Pogkas 110

Decentralized Business Process Execution in Peer­to­Peer Systems

an activity finishes its execution, the corresponding worker node sends publications

that contain the updated variables. Every worker node with an activity that depends

on those variables has already made an according subscription. Thus, it will receive

the publications with the updated values. Using this approach, there is no need for

a centralized entity that will handle all the variables. Therefore, we avoid a possible

scalability bottleneck and failure point.

4.4 System Operation

In the following sections we describe in detail the operation of our orchestration

engine during its five phases: a) startup, b) deployment, c) execution, d) redeployment,

and e) undeployment. Furthermore, we present two unique features of our engine:� Its ability to use multiple deployer nodes for deploying business processes.� Its activity deployment mechanism, that exploits the network condition and the

agents utilization state to map activities to network nodes.

We must note that our engine is designed to operate with multiple deployer nodes.

Nevertheless, to make the presentation easier for the reader, we start by describing the

operation phases using a single deployer (as in most cases the required steps remain the

same) and then we elaborate for the case of multiple deployers by filling out the missing

details.

4.4.1 Startup Phase

During the startup phase, the worker nodes join the DHT network and register to the

deployer node. The deployer node subscribes to the workers’ publications, by registering

its interest on the utilization messages. Table 4.2 presents the deployer messages, while

Table 4.3 presents the worker messages.

On their behalf, the worker nodes subscribe to publications from the deployer node,

that carry information about the deployed activities. Figure 4.21, presents all the inter­

actions that happen during the startup phase.

Single Deployer Node

The deployer’s role is critical for the engine’s correct and efficient operation. For this

reason, this node should remain stable and must always participate into the DHT net­

work4. The deployer serves three main purposes:

4As we cannot tolerate any fault in this node, in a real system implementation with only one deployer

we must use a cluster of machines that facilitate the same replicated information.

Ioannis E. Pogkas 111

Decentralized Business Process Execution in Peer­to­Peer Systems

Deploy Activity

Receive Activity
(createInstance =yes)

Next Activity

SUBrcv_yes
PUBvar

PUBnext

PUBexit

PUBinst

(a) <receive createIn­

stance=yes>

Previous Activity

Receive Activity
(createInstance =no)

Next Activity

SUBrcv_no
PUBvar

PUBnext

PUBexit

(b) <receive createIn­

stance=no>

Previous Activity

Reply Activity

Deploy Activity

SUBrpl

PUBnext

PUBexitSUBvar

(c) <reply>

Previous Activity

Invoke Activity
(asynchronous)

Next Activity

SUBinv

PUBnext

PUBvarSUBvar

PUBexit

(d) <invoke> asynchronous

Previous Activity

Invoke Activity
(synchronous)

Next Activity

SUBinv

PUBnext

PUBexitSUBvar

(e) <invoke> synchronous

Previous Activity

Assign Activity

Next Activity

SUBasgn

PUBnext

PUBvarSUBvar

PUBexit

(f) <assign>

Previous Activity

Exit Activity

SUBext

PUBexit

(g) <exit>

Previous Activity

Empty Activity

Next Activity

SUBemp

PUBnext

(h) <empty>

Previous Activity

Wait Activity

Next Activity

SUBwait

PUBnext

(i) <wait>

Previous
Activity1

End Activity

Next Activity

PUBnext

Previous
Activity2

Previous
Activityn

...

SUBprev_1 SUBprev_2 SUBprev_n

(j) <end> special activity

Figure 4.19: Mapping of the following simple BPEL activities: <receive createIn­

stance=yes>, <receive createInstance=no>, <reply>, asynchronous <invoke>, syn­

chronous <invoke>, <assign>, <exit>, <empty>, <wait>, and <end>3, into pub/sub lan­

guage.

Ioannis E. Pogkas 112

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Sequence
Activity

Inner1 Activity

Inner2 Activity

Innern Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_n

SUBfin

PUB

PUB

PUBnext

PUBinner1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBseqPUBnext

S
E
Q
U
E
N
C
E

B
O
D
Y

...

PUBexit

(a) <sequence>

Previous Activity

Condition Activity

Innera1

Activity

Innerb1

Activity

Innerz1

Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_z1

SUBfin

PUB

PUB

PUBend

PUBinner_a1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBcndPUBnext

I
F

B
O
D
Y

...

Innera2

Activity

Innerb2

Activity

Innerz2

Activity

SUBPUB

SUB

SUB

SUBinner_z2

PUB

PUB

PUBend

PUBinner_a2 SUBprev

...

Inneran

Activity

Innerbn

Activity

Innerzn

Activity

SUBPUB

SUB

SUB

SUBinner_zn

PUB

PUB

PUBinner_an SUBprev

...

E
L
S
E
I
F

B
O
D
Y

E
L
S
E

B
O
D
Y

...

PUBend

PUBexit

SUBvar_1 SUBvar_2 SUBvar_n

...

(b) <if>

Previous Activity

While Activity

Inner1 Activity

Inner2 Activity

Innern Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_n

SUBfin

PUB

PUB

PUBnext

PUBinner1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBwhlPUBnext

W
H
I
L
E

B
O
D
Y

...

PUBexit

(c) <while>

Previous
Activity

Pick Activity

Innera1

Activity

Innerb1

Activity

Innerz1

Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_z1

SUBfin

PUB

PUB

PUBend

PUBonM SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

PUBnext

O
N

M
E
S
S
A
G
E

...

Innera2

Activity

Innerb2

Activity

Innerz2

Activity

SUBPUB

SUB

SUB

SUBinner_z2

PUB

PUB

PUBend

PUBonA SUBprev

O
N

A
L
A
R
M

...

Client

PUBmsg

PUBexit

SUBvar_1 SUBvar_2 SUBvar_n

...SUBmsg_1SUBpick

(d) <pick>

Previous Activity

Flow Activity

Innera1

Activity

Innerb1

Activity

Innerz1

Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_z1

SUBfin

PUB

PUB

PUBend

PUBinner_a1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBflowPUBnext

...

Innera2

Activity

Innerb2

Activity

Innerz2

Activity

SUBPUB

SUB

SUB

SUBinner_z2

PUB

PUB

PUBend

PUBinner_a2 SUBprev

...

SUBlink

PUBlink

PUBexit

(e) <flow>

Figure 4.20: Mapping of the following structured BPEL activities: <sequence>, <if>,

<while>, <pick>, and <flow>, into pub/sub language.

Ioannis E. Pogkas 113

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker worker:Worker

SUBdeployer

SUBregister

SUBunregister

SUButilization

SUBdeploy

PUBdeployer

PUBregister

PUButilization

PUBunregister

PUBdeployer

PUBregister

PUButilization

PUBunregister

Figure 4.21: Interactions among the deployer, the broker, and the worker nodes during

the startup phase.� It acts as an entry point. Thus, any new nodes that join the DHT network and want

to participate by becoming worker nodes, register to the deployer node. This is

possible because the deployer has a universally known IP address that remains

constant during the engine’s operation.� It acts as a proxy between the engine and its external clients. To this end, the

deployer node receives deployment and execution requests from the BPEL process

clients and transforms those requests into appropriate pub/sub messages.� It parses the provided BPEL process description. Furthermore, it transforms the

process description into pub/sub messages. The latter, are sent to the worker agents

during process deployment.

Once the deployer node has started a new DHT network it subscribes using the

SUBdeployer, SUBregister, SUBunregister, and SUButilization messages.

Using the SUBdeployer message, the deployer can receive publications from the worker

nodes. Thus, when the workers want to directly communicate with the deployer node,

they publish a message of the form: PUBdeployer=[class, DEPLOYER],<<Publication Data>>.

Using the SUBregister and SUBunregister messages the deployer can receive worker

requests for registration or unregistration. These requests are sent as nodes join or

leave the DHT network. As the deployer receives the related publication messages, such as

Ioannis E. Pogkas 114

Decentralized Business Process Execution in Peer­to­Peer Systems

PUBregister and PUBunregister, it can update its Workers Table, which contains information

for all the registered workers.

A very important operation of the deployer node is to constantly monitor the worker

nodes utilization. Based on this information the deployer determines which nodes will be

selected as activity workers during a process deployment. For this reason, the deployer

subscribes with the SUButilization. After the workers join­in, they periodically publish

PUButilization messages that carry information about their status and utilization. This

way, the deployer has accurate information about the nodes state and the network load,

and updates the Workers Table with information about all the participating workers.

In the PUButilization messages, the stateInfo attribute contains a normalized meter that

describes the utilization of the CPU (cpuu(t) ∈ [0, 1]), the main memory (mmu(t) ∈ [0, 1]),
the network (netu(t) ∈ [0, 1]), and the disk (disku(t) ∈ [0, 1]) of the publishing worker.

Using this information, the deployer calculates the average load on each worker wi

in the Workers Table using the Algorithm 18. When the average load (loadwi
) is over the

specified threshold (lthreshold), the node wi is considered overloaded.

Algorithm 18: Worker load algorithm

for all worker wi in Workers Table do

get state info (cpuu(t), mmu(t), netu(t), disku(t)) for worker wi

get current loadwi
for worker wi

calculate new loadwi
value using equation 4.1.

if loadwi
≥ lthreshold then

mark wi as overloaded node.

end if

end for

Note that in equation (4.1), w ∈ [0, 1] and λ1 + λ2 + λ3 = 1. A bigger w value

gives more accurate information when the workers use larger intervals to periodically

submit their status information, as it emphasizes on the current utilization value. On

the contrary, when the publication intervals are very short a lower w is preferred, as

it is not influenced by short load bursts. Furthermore, using λ1, we can give far more

importance in computational intensive resources like the CPU and the main memory,

as these are more likely to be affected by unfair load balancing.

loadwi
(t) = (1−w)× loadwi

(t−1)+w×(λ1 · (cpuu(t)+mmu(t))+λ2 ·netu(t)+λ3 ·disku(t))
(4.1)

Multiple Deployer Nodes

The previously described scheme, requires some minor modifications when we have

multiple deployer nodes. First of all, it is required that all deployer nodes enter the

Ioannis E. Pogkas 115

Decentralized Business Process Execution in Peer­to­Peer Systems

network before the worker nodes join­in5. This restriction applies because we want all

the deployer nodes to have the same state by receiving the same publication messages

from the workers. As described above, only one deployer node acts as a bootstrap node,

but this time this node is elected among the deployer nodes using a leader selection

algorithm [HX07, HH06]. This node becomes the entry point for the worker nodes that

join the DHT network. After the deployer and the worker nodes join the DHT network

they use the same subscription and publication messages as before, but this time the

PUBregister and PUBunregister messages are received by all the deployer nodes. The latter

use the received information to construct the same Worker Tables.

At this stage, our engine is ready to receive deployment requests from the external

clients. As it uses multiple deployer nodes our engine can receive and handle multiple

deployment requests and each request can be served by a separate deployer node. Thus,

in this case our engine can provide good load balancing. As each deployer is responsible

for deploying a different process, the deployment mechanism becomes fully distributed

and exploits its parallelization as this time there is no centralized deployer that becomes

a scalability bottleneck.

On the other hand, as the deployer nodes serve separate requests they store data

about their deployed processes, that are different among the deployers. Thus, it becomes

critical that the deployers replicate their cache data in other deployer nodes and in case

of a node failure, a different deployer can take its place or restore the lost state. The

cache replication and state restoration problems are not handled in our work, but there

are many proposed solutions that can be applied to solve them [LCC+02, CS02]. In order

to provide adequate fault tolerance, we decided to represent each deployer by a cluster

of machines that maintain the same replicated information. This way, when a deployer

failure happens a machine from the cluster can take its position.

Startup Phase: Deployer

Subscription Predicates

SUBdeployer [class, eq, DEPLOYER]
SUBregister [class, eq, REGISTER­NODE]
SUBunregister [class, eq, UNREGISTER­NODE]
SUButilization [class, eq, NODE­UTILIZATION]
SUBfailure [class, eq, FAILURE]

Table 4.2: Startup Phase: Deployer node subscription messages.

5This is not a hard requirement by our protocol. We could allow the deployer nodes to join at any time

into the network, but in this case they must synchronize their state using proper techniques.

Ioannis E. Pogkas 116

Decentralized Business Process Execution in Peer­to­Peer Systems

Worker Nodes

Each worker is a DHT node with a unique id that is capable of executing the supported

BPEL activities. The worker nodes have limited resources and may fail or leave from the

DHT network at any time. Every worker node can play a twofold role:� A worker can act as an intermediate pub/sub broker, that stores, matches, and

publishes pub/sub messages from/to other nodes.� A worker can act as an activity executor, that matches received publication with

personal subscriptions, becomes triggered, and executes its deployed activities.

As previously stated, the worker nodes use PUBregister and PUBunregister messages

to register/unregister with their node id to the deployer node. Furthermore, they use

PUButilization messages to periodically send their utilization status. The latter also carries

a timestamp that marks the last time this node executed a process activity. The time

interval for the periodic publication is set globally during the DHT startup phase.

After the worker nodes join into the DHT network, they subscribe to the deployer using

SUBdeploy messages. This way, they can be triggered if the deployer wants to deploy to

them a BPEL activity. Additionally, they subscribe using the SUBundeploy messages. Thus,

when a process or instance is undeployed, the related workers are triggered to release all

the bound resources by this process instances and to remove all the related information

from their cache. Both the SUBdeploy and SUBundeploy messages use the worker’s node

id. The latter is known to the deployer node through the previously sent PUBregister

messages.

Startup Phase: Worker

Subscription Predicates

SUBdeploy [class, eq, DEPLOY­NODE], [nodeID, eq,‘‘nodeId’’]

Publication Attributes

PUBdeployer [class, DEPLOYER], <<nodeInfo>>

PUBregister [class, REGISTER­NODE], <<nodeId>>

PUBunregister [class, UNREGISTER­NODE], <<nodeId>>

PUButilization [class, NODE­UTILIZATION], <<stateInfo, timestamp­last­used>>

Table 4.3: Startup Phase: Worker node subscription and publication messages.

4.4.2 Deployment Phase

In the deployment phase, the deployer is ready to assign BPEL processes to the worker

nodes. During this phase, external clients can send process deployment requests to

the deployer. When the deployer receives such a request, it parses the BPEL process

Ioannis E. Pogkas 117

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker worker:Worker

SUBinstance

SUBredeploy

SUBexit

SUBreply

PUBdeploy

SUBredeploy

SUBinstance

SUBexit

SUBundeploy

client:Client

DeployRequest

DeployResponse

PUBdeploy

Figure 4.22: Interactions among the deployer, the broker, and the worker nodes during

the deployment phase.

and creates a list with the process activities control and data flow dependencies. Then,

the deployer assigns the activities to worker nodes with low utilization. Our engine

implements two deployment methods:� Per­process deployment. In this method, the deployer selects a set of nodes to

deploy the process instances that remain the same for every process instance, i.e.

the same worker nodes will execute the same activities for each instance. This

method has the benefit of providing low overhead in terms of time and messages

during the instance execution, but may create a cluster of overloaded nodes.� Per­instance deployment. In this method, the deployer selects a different set of

nodes for each process instance. This method is complementary to the first, as it

exhibits good load balancing among the worker nodes, but requires more time and

message exchanges to execute a process instance.

Table 4.4 presents the deployer messages, while Table 4.5 presents the worker mes­

sages. Figure 4.22 presents all the messages exchanged during the deployment phase

between the deployer, the broker, and the worker nodes.

Ioannis E. Pogkas 118

Decentralized Business Process Execution in Peer­to­Peer Systems

Deployer Node

All the steps that are executed by the deployer during the deployment of a BPEL process

are shown in Figures 4.23 and 4.24.

The deployer node becomes triggered when it receives a deployment request from an

external client. This request contains a zip bundle with the BPEL file and the associated

WSDL files. The deployer unzips the bundle, checks its integrity, and then validates the

BPEL/WSDL files. If the check fails, the deployment request is rejected and the client

receives a failure reply. Otherwise, the deployment process continues and the deployer

parses the BPEL file and constructs a process activity list as the one shown in Figure 4.4(a),

while it registers the client’s address in the Clients Table.

Then the deployer can use either the per­process deployment or the per­instance

deployment to deploy the BPEL process. This decision is made globally during the engine’s

initialization. In this step the deployer constructs a Process­Activity­Map that associates

a process instance with a list of activityData objects that describe process activities and

a worker that will execute this activity. Each activityData object contains all the needed

information about a single BPEL activity, so the latter can be deployed and executed

successfully by the engine, such as:� the activity id� the activity XML description� the publication and subscriptions messages that must be assigned to the worker

responsible for executing the activity� the activity ids of the parent and child activities.

Then the activityData objects along with other pub/sub messages are sent to the selected

workers. After this phase completes, the selected workers will have all the needed

information for executing the deployed activities. Then using only the deployed pub/-

sub messages they start to execute the process instance activities.

Another important role of the deployer is its ability to re­adjust the BPEL process

activities deployment during the process execution. This is crucial as the worker nodes

can become overloaded or leave at any time. In this case, the failed node activity must

be re­deployed using another worker node. Thus, after the process deployment phase

is finished, for handling these events the deployer is subscribed using the SUBredeploy

message.

Finally, the deployer node is responsible for handling the successful or failed ter­

mination of the process instances. For this reason, the deployer subscribes to these

events using the SUBexit subscription. In the following sections we give a more detailed

description of the two deployment methods.

Ioannis E. Pogkas 119

Decentralized Business Process Execution in Peer­to­Peer Systems

Receive
deploy
request

Deploy bundle

Unzip deploy
bundle

WSDL+BPEL

Parse BPEL
file

Create process
activity list

Register client
Address

Send
validation

failure

Send
deploy
bundle
integrity
failure

[passed] [not passed]

[passed] [not passed]

Check integrity

Check
validation

Deploy
activities to

workers

Figure 4.23: Deployment process steps. The deployer receives from the client a deploy­

ment request that contains a deploy bundle unzips it, and checks its validity. Then,

the deployer parses the BPEL file and creates the activity list that is passed to the se­

lected deployment method. The deployer also registers the client’s IP address for future

interactions.

Ioannis E. Pogkas 120

Decentralized Business Process Execution in Peer­to­Peer Systems

Calculated number of
workers needed to

execute the process
activities (k)

Choose
deployment

method

Per instance
deployment

Per process
deployment

Deploy
activities

to workers

(a) Deployment process selec­

tion: selects per­instance or per­

process deployment

Per process deployment

Select k
workers with

the lower
utilization

Update
process Map

Send publish
subscribe
messages

Update
process Map

Assign
publish

subscribe
messages

Receive
process
instance

(b) Deployment process: per­process deployment

Per instance deployment

Select 1
worker node
for the initial

activity

Update
process Map

Select k-1
worker nodes
with the lowest

utilization

Update
process Map

Send Publish
Subscribe

Messages to
initial node

Send publish
subscribe
messages

Receive
process
instance

(c) Deployment process: per­instance deployment

Figure 4.24: The deployer selects a deployment method (Figure 4.24(a)) and then follows

the required steps. In per­process deployment, we have only one phase were the deployer

assigns the activities to worker nodes. In per­instance deployment we have two phases:

a) an initial phase for only the first activity and b) a finalization phase where the deployer

selects worker nodes for the remaining activities.

Ioannis E. Pogkas 121

Decentralized Business Process Execution in Peer­to­Peer Systems

Per­process deployment As we already described, the deployer uses the Algorithm 18

to create a list of non­overloaded worker nodes. This information is used by the per­

process deployment (Algorithm 19), along with the timestamp information from each

received PUButilization. This algorithm applies the Least Recently Used (LRU) method and

creates a queue of the least recently used, non­overloaded nodes (workers­LRU­Queue).

These nodes are the ones that will be selected for executing the process activities. For

the rest of this section, we assume that the process consists of k activities.

Algorithm 19: Per­Process Deployment

Require: activity­List : list with all process activities

workers­LRU­Queue← sort all non overloaded worker’s ids using LRU

for all activityi ∈ activity­List do

workerid ← pop(workers­LRU­Queue)

assign workerid to activityi
send PUBdeploy

end for

send SUBinstance

The deployer chooses a set of k worker nodes6 from the workers­LRU­Queue. Af­

terwards, the deployer associates each selected worker with an activity in its Process­

Activity­List and updates its Process­Activity­Map. The latter associates each process

with a number of <activityData, nodeId> pairs. Using these pairs and a number of

PUBdeploy publications, the deployer assigns to each selected worker the corresponding

BPEL process activity. The PUBdeploy publications contain the name of the process that will

be deployed, the activity type that must be executed, the subscriptions to the preceding

activities, and publications to succeeding activities of the process.

Using this deployment method, when the starting worker will be triggered in the

execution phase (that is the worker that handles the <receive createInstance=yes> or

<pick createInstance=yes> activity), a new process instance will be created. In this case,

the workers have already all the needed information in order to send their subscription

and publication messages and continue the execution of the process instance. Therefore,

using this method the process instance execution achieves a faster startup. On the other

hand, as the same nodes are selected for every BPEL process instance, when a process

has too many instances these nodes can become overloaded. Thus, the network may

exhibit hot spots with overloaded nodes.

Per­instance deployment Similarly, with the previous method the deployer creates a

queue of the least recently used, non­overloaded nodes. The per­instance deployment is

presented by Algorithm 20. In the description that follows we assume that the process

consists of k activities.

6This is not always true, in most cases we will need greater than k worker nodes, as for the execution

of some structured BPEL activities, we must also use some <end> activities (see appendix A).

Ioannis E. Pogkas 122

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 20: Per­Instance Deployment

Require: activity­List : list with all process activities

workers­LRU­Queue← sort all non overloaded worker’s ids using LRU

init­activity← activity with createInstance=yes from activity­List

workerid ← pop(workers­LRU­Queue)

assign workerid to init­activity

send PUBdeploy for init­activity

send SUBinstance

for all activityi ∈ {activity­List ­ initActivity} do

workerid ← pop(workers­LRU­Queue)

assign workerid to activityi
send PUBdeploy for activityi

end for

The deployer selects only the starting worker (or initial worker) for executing the

initial process activity (the activity with <receive createInstance=yes> or <pick create­

Instance=yes> activity). As soon as it has been selected, a deployment publication

PUBdeploy is sent to the initial worker. This worker remains the same for all the new in­

stances of the deployed BPEL process as long as it is not overloaded. If the initial worker

node becomes overloaded, then a new initial worker node is selected according to the re­

deployment phase that is presented in section 4.4.4. The deployment of the first activity

to the initial worker is equivalent to a per­process deployment of a BPEL process that has

only a single activity (one with createInstance=yes). On its part, the deployer subscribes

to an instance publication PUBinstance.

When the initial worker executes its activity, a new process instance is created. The

process instance id is published by the worker using a PUBinstance message7. In this

case, the deployer is triggered again due to a matching with the personal subscription

SUBinstance. Then the deployer, using the same method as above, selects k − 18 worker

nodes, updates its Process­Activity­List and Process­Activity­Map by assigning activities

to workers, and publishes the deploy information to the selected k − 1 workers using

PUBdeploy messages.

The per­instance deployment is complementary to the previous solution. It has a

slower startup for the instance execution, but provides better load­balancing as the

deployer can choose for every process instance different workers for the same activity.

This happens, because the deployment phase is separated to two steps. In the first

step the deployer selects the staring worker (that is the worker that handles the <receive

createInstance=yes> or <pick createInstance=yes> activity) and assigns to it the proper

subscription and publication messages. When this node is triggered, a new instance

id is created and a publication is sent to the depoyer, triggering the second step of the

7This message will always have the attribute storePub=yes, so it can be stored into the historic cache

and matched by future subscriptions.
8We assume that k is the number of the BPEL process activities.

Ioannis E. Pogkas 123

Decentralized Business Process Execution in Peer­to­Peer Systems

per­instance deployment: the deployer select workers for the rest of the BPEL process

activities, assigns to the workers the proper subscription and publication messages,

and triggers the next activity in the BPEL process. As the deployer has more accurate

node status information during the second step of the per­instance deployment, it can

select worker nodes with less load for executing this process instance.

Deployment Phase: Deployer

Subscription Predicates

SUBinstance [class, eq, INSTANCE], [process, eq, ‘‘processName’’]
SUBredeploy [class, eq, REDEPLOY], [processName, eq, ‘‘processName’’]
SUBexit [class, eq, EXIT], [process, eq, ‘‘processName’’]
SUBreply [class, eq, REPLY], [process, eq, ‘‘processName’’]

Publication Attributes

PUBdeploy
[class, DEPLOY­NODE], [nodeID, ‘‘nodeId’’],
<<processName, activityId, List<Sub>, List<Pub>>>

PUBundeploy
[class, DEPLOY­NODE], [nodeID, ‘‘nodeId’’],
[process, eq, ‘‘processName’’]

Table 4.4: Deployment Phase: Deployer node subscription and publication messages.

Worker Nodes

If a matching PUBdeploy message arrives, the worker becomes responsible for execut­

ing the associated process activity. Based on the used deployment mechanism, this node

will execute the specific activity for every instance of the BPEL process, or will execute this

activity only for the specific process instance.

If the activity is a <receive createInstance=yes> or <pick createInstance=yes>, the

worker can subscribe and wait for the proper invocation. When triggered, it executes

the activity and sends a PUBinstance message. The target(s) of the PUBinstance depend on

the used deployment mechanism. If the engine uses a per­instance deployment, then the

PUBinstance is sent only to the deployer node. On the other hand, if we use per­process

deployment, the PUBinstance is propagated to all the worker nodes of the BPEL process.

4.4.3 Execution Phase

During the execution phase the process instance activities execution takes place.

Table 4.6 presents the deployer messages, while Table 4.7 presents the worker messages.

In the start of this phase the worker responsible for the initial process activity is

triggered by the deployer. This node executes its assigned activity and sends two types

of publication messages: a) publication message to the next activity and b) publication

message to the deployer and worker nodes that carry the process instance id.

Ioannis E. Pogkas 124

Decentralized Business Process Execution in Peer­to­Peer Systems

Deployment Phase: Worker

Subscription Predicates

SUBinstance [class, eq, INSTANCE], [process, eq, ‘‘processName’’]
SUBexit [class, eq, EXIT], [process, eq, ‘‘processName’’]

SUBundeploy
[class, eq, UNDEPLOY­NODE], [nodeID, eq, ‘‘nodeId’’],
[process, eq, ‘‘processName’’]

Table 4.5: Deployment Phase: Worker node subscription messages.

When the worker nodes responsible for the rest of the process activities are in turn

triggered, they execute them and produce new publications. This process ends when

the last process activity is successfully executed and the associated worker produces

a PUBreply (as shown by Figure 4.25) or PUBexit message with a success description

(as shown by Figure 4.26). In case of fault, a publication PUBexit message is sent that

carries an error description (as shown Figure 4.27).

Deployer Node

When an external client invokes a deployed BPEL process9 the deployer is triggered.

Then it translates the client’s request to a PUBmsgi for an initial <pick createInstance=yes>

activity, or to a PUBrcvyes message for an initial <receive createInstance=yes> activity. The

initial BPEL process activity is triggered and executed by its worker node. After the exe­

cution is finished, a new process instance id is published by the worker node, using a

PUBinstance message.

If the execution of the last BPEL process activity is finished, then the deployer is

triggered by a PUBexit or PUBreply message. If the deployer receives a PUBreply or a

PUBexit <<SUCCESS>> message, the process instance execution completes successfully.

Furthermore, in the first case the data carried by the PUBreply publication are send back

to the external client that originally invoked the BPEL process instance. In case the

message is PUBexit <<FAILURE>>, the deployer stores to a log the process instance

failure details. In any case the deployer removes this process instance from its Process­

Instances Table.

Worker Nodes Execution

At some point, the workers that were subscribed to instance publications for the de­

ployed process will receive a PUBinstance message. Then, they will update their Process­

9The deployer acts as a proxy between the external clients and the pub/sub overlay. When a client

makes a request to execute a process, the deployer translates the request to a publication that is propa­

gated to the worker responsible for the initial activity. There are other alternative solutions to this problem;

we could use a server activity as a proxy that communicates with the external clients and transfers the

invocation requests to the proper worker node, or the client could directly call the worker node.

Ioannis E. Pogkas 125

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker workerA:Worker

PUBrcv_yes | PUBmsg_i

PUBinstance

client:Client

Reply message

workerB:Worker

PUBrcv_yes | PUBmsg_i

PUBinstance

PUBinstance

PUBvar

PUBvar

PUBnext

PUBnext

PUBreply

PUBreply

invoke message

Figure 4.25: Interactions among the deployer, the broker, and the worker nodes during

the execution phase. In this case, we have a successful execution that ends with a reply.

Instances Tables. Afterwards, each worker can use the new instance id to update its

deployed pub/sub messages: it creates instances of the publications and subscriptions in

the List<Pub> and List<Sub> that were received with the PUBdeploy messages. Further­

more, each worker creates correlation matching trees to provide matching for composite

subscriptions10. Finally, the workers send their deployed subscriptions. When publi­

cations from other nodes are matched with these subscriptions on the available broker

nodes, they will be disseminated towards the original subscriber.

When a worker node receives a publication, it checks for a match using its correlation

matching tree. If there is a match, the worker executes the corresponding activity, and

publishes the produced publication messages with the updated variables/results using

PUBvar. The worker also triggers the next activity using PUBnext messages. This process

continues, until the execution is finished or an error happens.

There is one special case concerning the initial worker node that is responsible for the

activity with createInstance=yes. When this worker submits the PUBinstance message, it

may reach the broker node before the workers that belong to the same process instance

send their own subscriptions about it (SUBinstance). This causes a problem, as the

pub/sub matching will fail and the execution of the process will stall. For this reason, the

initial worker sets a flag (storePub=yes) into its PUBinstance message. This causes the

publication to be stored into a historic cache of the broker. Thus, when a subscription

10More information on the used composite subscription is provided in the Appendix A

Ioannis E. Pogkas 126

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker workerA:Worker

PUBrcv_yes | PUBmsg_i

PUBinstance

clientA:Client workerB:Worker

PUBrcv_yes | PUBmsg_i

PUBinstance

PUBinstance

PUBvar

PUBvar

PUBnext

PUBnext

PUBexit<SUCCESS>

PUBexit<SUCCESS>

invoke message

PUBexit<SUCCESS>

clientB:Client

invoke message

Figure 4.26: Interactions among the deployer, the broker, and the worker nodes during

the execution phase. In this case, we have a successful execution that ends with an

exit<<SUCCESS>>.

Ioannis E. Pogkas 127

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker workerA:Worker

PUBrcv_yes | PUBmsg_i

PUBinstance

client:Client

Error message

workerB:Worker

PUBrcv_yes | PUBmsg_i

PUBinstance

PUBinstance

PUBvar

PUBvar

PUBnext

PUBnext

PUBexit<Failure>

PUBexit<Failure>

invoke message

PUBexit<Failure>

Figure 4.27: Interactions among the deployer, the broker, and the worker nodes dur­

ing the execution phase. In this case, we have a failed execution that ends with an

exit<<FAILURE>>.

Ioannis E. Pogkas 128

Decentralized Business Process Execution in Peer­to­Peer Systems

Execution Phase: Deployer

Publication Attributes

PUBrcvyes

[class, ACTIVITY], [process, ‘‘processName’’],
[activityID, ‘‘activityId’’], [variableName, ‘‘BPELVariableName’’],
[partnerLink, ‘‘NCName’’], [portType, ‘‘QName’’]?,

[operation, ‘‘NCName’’]

PUBmsgi

[class, ACTIVITY], [class, ACTIVITY],
[process, ‘‘processName’’], [activityID, ‘‘activityId’’],
[variableName, ‘‘BPELVariableName’’], [partnerLink, ‘‘NCName’’],
[portType, ‘‘QName’’]?, [operation ‘‘NCName’’]

Table 4.6: Execution Phase: Deployer node publication messages.

arrives later to the broker node, the matching is performed into the historic cache using

the previously arrived publications.

Execution instance terminated with success In this scenario, the execution reaches

an <exit> activity or a <reply> activity. In the first case, a PUBexit <<SUCCESS>> pub­

lication is sent, and is propagated to the deployer node as well as to all worker nodes

that participate in the process and to the deployer node. When a worker receives a

PUBexit <<SUCCESS>> it removes all the subscriptions that match the processName

and instance id of the publication from:� the Personal­Subscription Cache� the Broker­Subscription Cache� the Historic Cache� the Process­Instances Table� the Activities Table.

In the second case, the worker that executes a <reply> activity sends a PUBexit

<<SUCCESS>> message (that is handled as described above) and a PUBreply message.

The latter is propagated to the deployer node, which informs the external client with a

response carrying the produced results.

Execution instance terminated with failure In this scenario, a failure publication

is sent via PUBexit <<FAILURE>>. This message is propagated to all worker nodes that

participate in the process and to the deployer node. When a worker receives this pub­

lication, it removes all the subscriptions that match the processName and the instance

id of the publication from:

Ioannis E. Pogkas 129

Decentralized Business Process Execution in Peer­to­Peer Systems� the Personal­Subscription Cache� the Broker­Subscription Cache� the Historic Cache� the Process­Instances Table� the Activities Table.

Execution Phase: Worker

Subscription Predicates

SUBprev subscription to the previous activity

SUBvar

[class, eq, VARIABLE_UPDATE], [process, eq, ‘‘processName’’],
[instanceID, eq, ‘‘instanceId’’], [activityID, eq, ‘‘activityId’’],
[variableName, eq, ‘‘BPELVariableName’’]

Publication Attributes

PUBexit
[class, EXIT], [process, ‘‘processName’’],
<<instanceId, ‘‘SUCCESS | FAILURE ">>

PUBinstance
[class, INSTANCE], [process, ‘‘processName’’],
<<instanceId>>

PUBvar

[class, VARIABLE_UPDATE], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’],
[variableName, ‘‘BPELVariableName’’], <<variableData>>

PUBnext publication to the next activity

PUBreply
[class, REPLY], [process, ‘‘processName’’],
<<instanceId, BPELVariableName, variableData>>

Table 4.7: Execution Phase: Worker node subscription and publication messages.

4.4.4 Redeployment Phase

During the execution phase the deployer node may need to deploy some process

activities to different nodes. This happens because a worker node may become over­

loaded, may leave the network, or fail. Thus, the process instance execution must stop

and continue only after a new node takes the place of the erroneous node during the

redeployment phase. Table 4.8 presents the worker messages.

Worker nodes leaves or becomes overloaded

If a worker node leaves the network (or becomes overloaded), it sends a PUBexit

<<FAILURE>> message to inform all the related worker nodes and the deployer that the

execution will be interrupted. This message is handled as described in the execution

Ioannis E. Pogkas 130

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker workerA:Worker

PUBredeploy PUBunregister

PUBredeploy

PUBunregister

Figure 4.28: Interactions among the deployer, the broker, and the worker nodes during

the redeployment phase. In this case, a node leaves the DHT network.

deployer:Deployer broker:Worker workerA:Worker

PUBredeploy PUBunregister

PUBredeploy

PUBunregister

Figure 4.29: Interactions among the deployer, the broker, and the worker nodes during

the redeployment phase. In this case, a node fails.

Ioannis E. Pogkas 131

Decentralized Business Process Execution in Peer­to­Peer Systems

phase. Afterwards, the node that leaves sends a PUBredeploy message to the deployer

node. Finally, the worker leaves by sending a PUBunregister to the deployer node.

When the deployer receives a PUBredeploy message, it chooses another node to take

the position of the leaving worker node. This is achieved by using the appropriate

deployment algorithm to select another worker with low utilization (the node that sent

the redeploy message is discarded from the selection algorithm). Then, the deployer

updates its Process­Instances Table entries and triggers again the failed activity. Finally,

the deployer triggers again the initial process activity to restart the process instance

execution. The PUBunregister message causes the deployer to remove this node from its

Workers Table.

Worker node failure

When a worker node discovers that a node in its routing table has failed (in this case

the MSPastry layer informs the pub/sub layer for a missing routing table entry), it sends

a PUBfailure to inform the deployer node for a worker failure. The deployer matches

the node id with the associated entry in its Process­Instances and Workers Tables and

sends a PUBexit <<FAILURE>> message. This publication informs all the workers that

were in the same process/instance with the failed node. Then the deployer starts the

redeployment phase and replaces the failed worker with a new one, in all the related

process/instances. Finally, the deployer restores the failed instances by triggering again

the initial activity in each process instance.

Redeployment Phase: Worker

Publication Attributes

PUBredeploy
[class, REDEPLOY], [processName, eq, ‘‘processName’’],
<<nodeId, instanceId>>

PUBunregister [class, UNREGISTER­NODE], <<nodeId>>

PUBfailure [class, FAILURE], <<nodeId>>

Table 4.8: Redeployment Phase: Worker node publication messages.

4.4.5 Undeployment Phase

In the undeployment phase, the deployer receives a request from an external client to

remove a BPEL process and its associated instances. Thus, any related process instance

must stop and the related resources must be released. Table 4.9 presents the worker

messages.

In this case, the deployer removes from its Process­Instances Table the entry with

the particular process name and sends a PUBundeploy message. The latter, is handled by

all worker nodes that participate in any instance of the particular process. Thus, the

Ioannis E. Pogkas 132

Decentralized Business Process Execution in Peer­to­Peer Systems

deployer:Deployer broker:Worker workerA:Worker

PUBexit

client:Client

Undeployment response

Undeployment message

PUBexit

PUBundeploy

PUBundeploy

Figure 4.30: Interactions among the deployer, the broker, and the worker nodes during

the undeployment phase.

workers remove any subscription that is associated with the particular process entry

from their:� Process­Instances Table� Personal­Subscription Cache� Correlation Cache.

Furthermore, the deployer sends a PUBexit <<FAILURE>> message to every instance

of the undeployed process. This way, the worker nodes that acted as brokers by storing

the associated subscriptions will remove them from their Broker­Subscription Cache.

Undeployment Phase: Worker

Publication Attributes

PUBexit
[class, EXIT], [process, ‘‘processName’’],
<<instanceId=ANY, FAILURE>>

PUBundeploy
[class, UNDEPLOY­NODE], [nodeID,‘‘nodeId’’],
[process, ‘‘processName’’]

Table 4.9: Undeployment Phase: Worker node publication messages.

4.5 Conclusions

In this chapter, we presented in full detail the design and architecture of our proposed

orchestration engine, called ADORE. We focused mainly on three central aspects of our

engine:

Ioannis E. Pogkas 133

Decentralized Business Process Execution in Peer­to­Peer Systems

1. We presented the algorithms used by our pub/sub layer and we analyzed their cost

and efficiency. We covered our proposed algorithms for pub/sub matching, that

exploit subscription covering and merging techniques. As we selected an infras­

tructureless approach based on a DHT network and we implemented our engine on

top of a provided pub/sub mechanism, it becomes clear that its efficiency is critical

for the engine’s operation. Our engine uses three algorithms for the subscription

storage namely:

(a) the Random­Predicate Subscription Algorithm (RP­SA)

(b) the Proximity­Predicate Subscription Algorithm (PP­SA)

(c) the Multi­Predicate Subscription Algorithm (MP­SA).

Furthermore, it uses two algorithms for sending publications:

(a) the Single­Attribute Publication Algorithm (SA­PA)

(b) the Multi­Attribute Publication Algorithm (MA­PA).

2. We presented the translation of the BPEL constructs in pub/sub messages that can

be used by the pub/sub layer. We gave information for the translation of simple and

structured BPEL activities.

3. We presented the operation our engine during its five main phases:� startup� deployment� execution� redeployment� undeployment.

We analyzed how the deployer, broker, and the worker nodes operate in each phase.

Furthermore, we gave an overview about the format of the used pub/sub messages

in each phase. Finally, we illustrated all message interactions that happen when

each phase completes successfully or when an error happens.

Ioannis E. Pogkas 134

Decentralized Business Process Execution in Peer­to­Peer Systems

Chapter 5

Evaluation

This chapter discusses the evaluation methodology followed in this thesis and com­

ments on its results. Section 5.1 presents the PeerSim simulation engine that was used

to implement our proposed architecture and articulates on both the benefits and draw­

backs of its use. Furthermore, we rationalize our decision to use PeerSim as a testbed

for evaluating our work. In section 5.2 we present simulation results from the evalu­

ation of the implemented pub/sub mechanisms. The latter are crucial for the engine’s

correct and efficient operation. We demonstrate that our pub/sub algorithms scale well

and exhibit good load balancing features. Then, in section 5.3 we evaluate the engine’s

operation, by deploying and executing multiple process instances under varying condi­

tions. We measure the engine’s performance versus a centralized clustered engine in

terms of the processes average execution time and throughput. Furthermore, we com­

pare the performance of the two proposed deployment mechanisms (i.e per­process or

per­instance deployment). Finally, in section 5.4 we present the concluding remarks.

5.1 Simulation

We decided to implement our architecture on the PeerSim1 simulator for three main

reasons:

1. It can provide realistic (simulating transport layer delays) large­scale simulations.

2. It can be easily extended with new protocols (i.e protocols that modify the nodes

state, change the network nodes churn rate, etc.). This way, we can create sim­

ulations for different conditions, as the user can change a number of simulation

parameters and experiment with the implementation.

3. It allows the user to run experiments using the exact same conditions (i.e network

delays, node links, etc). Therefore, we can be sure that the results from the

1http://peersim.sourceforge.net/

Ioannis E. Pogkas 135

http://peersim.sourceforge.net/

Decentralized Business Process Execution in Peer­to­Peer Systems

Network

SimulatorConfiguration
File Output

Initializer
Controls

Observer
Controls

Protocols

Figure 5.1: PeerSim simulator

experiments are derived from our protocols behavior and not due to some artifact

or a unique network condition. In short, using the simulator we can examine the

correctness of our implementation.

We implemented ADORE on top of PeerSim [MJ09] simulator. PeerSim is a Java

framework designed for experimentation with large scale P2P overlay networks. Peer­

Sim started under EU project BISON2 [MB02, BCD+05]. Then was used by the EU project

DELIS3 [del06] and is now partially supported by the Napa­Wine4 [RB11, CdSLMM11]

EU project.

PeerSim has been developed with extreme scalability in mind and support for network

dynamicity. It is released to the public under the GPL open source licence5 and consists

of two different simulation engines: a cycle­based engine and an event­based engine. The

cycle­based engine allows the pursuit of maximum scalability and uses some simplifying

assumptions, such as ignoring the details of the transport layer in the communication

protocol stack. On the other hand, the event­based engine is less efficient but more

realistic, as it supports transport layer simulations. Thus, using the event­based engine,

the PeerSim can model both random delays and message drops. Furthermore, the event­

based engine uses an internal representation of time6 to provide timing information

about the execution delay. This timing meter is zero at startup and it is advanced by

message delays until the user­defined end time (that marks the end of the simulation).

Thus, the simulation stops when the event queue is empty (nothing left to do), or if all

the events in the queue are scheduled for a time later than the specified end time.

Both cycle and event­based engines are supported by the use of many simple, ex­

tensible, and pluggable components that are matched by a flexible configuration mech­

anism. The PeerSim architecture is presented in Figure 5.1. The PeerSim simulator

2http://www.cs.unibo.it/bison
3http://delis.upb.de/
4http://napa-wine.eu/
5http://www.gnu.org/copyleft
6this is a long value (64 bit integer)

Ioannis E. Pogkas 136

http://www.cs.unibo.it/bison
http://delis.upb.de/
http://napa-wine.eu/
http://www.gnu.org/copyleft

Decentralized Business Process Execution in Peer­to­Peer Systems

was designed to encourage modular programming. Therefore, it is based on extensible

building blocks. Moreover, every block can be easily replaced by an another component

that implements the same interface (i.e. provides the same functionality). In general the

simulation model is used according to the following steps:

1. Choose a network size (number of nodes).

2. Choose one or more Protocol objects to experiment with and initialize them. These

are specialized protocols implemented by the user.

3. Choose one or more Control objects to monitor the properties you are interested

in, or to modify some of the simulation parameters (e.g the size of the network, the

internal state of the nodes, etc).

4. Run the simulator invoking an object of the Simulator class, using a configuration

file that contains the initial simulation parameters.

We implemented our architecture on top of the event­based engine. For that reason,

we proceed with a short description of the event­based engine’s life­cycle operation.

The first step for the simulation’s execution is to read the configuration file, given as

a command­line parameter. The configuration file contains the simulation parameters

concerning all the objects involved in the experiment. Then, the simulator sets up the

network, initializes the network nodes, and instantiates their protocols. Each node

has the same kinds of protocols. Thus, instances of a protocol form an array in the

network with one instance in each node. The instances of the nodes and the protocols

are created by cloning. That is, only one instance is constructed using the constructor

of the object, which serves as prototype, and all the nodes in the network are cloned

from this prototype. At this point, initialization needs to be performed, that sets up the

initial states of each protocol. The initialization phase is carried out by Control objects

(Initializers), that are scheduled to run only at the beginning of each experiment. After

initialization, the event driven engine calls the components (Protocols and Controls) based

on each message arrival time in event queue. This process continues until the queue

is empty, or the end of the simulation is reached. Finally, specialized Control objects

are called that collect data (Observers). The latter format the data and send them to the

standard output. This way, the user can easily redirect the simulation output to a file

and collect it for further work.

5.2 ADORE Publish/Subscribe Evaluation

The main objective of our evaluation was to assess the scalability of the orchestration

engine through the use of a DHT overlay network and an efficient pub/sub mechanism.

Thus, we first evaluated the proposed pub/sub mechanisms7 (RP­SA, PP­SA, MP­SA). In

this context, we pursued four specific goals:

7These methods were originally presented in section 4.2.

Ioannis E. Pogkas 137

Decentralized Business Process Execution in Peer­to­Peer Systems

1. Pub/Sub correctness. The pub/sub mechanisms must match subscription with pub­

lication messages and disseminate the matched publication messages to all the

subscriber nodes.

2. Pub/Sub efficiency. The pub/sub mechanisms must require minimum number of

hops for the publication messages to reach a subscriber node. Furthermore, they

must not overload the broker nodes.

3. Pub/Sub effectiveness. The pub/sub mechanisms must provide publication match­

ing and dissemination, even when the average number of subscribers increases,

by exhibiting similar overload with the typical case.

4. Pub/Sub scalability. Even in large networks, with increased number of publication

and subscription messages, the average number of required hops and the nodes

overhead must not increase significantly.

5.2.1 Metrics

We used a set of metrics to evaluate the performance and cost of our proposed

pub/sub mechanisms:

1. Hops. The average number of overlay hops taken to deliver an event to all of its

subscribers.

2. Latency. The average time taken to deliver an event to all of its subscribers.

3. Overhead. The ratio of the number of intermediate nodes involved during the

delivery of an event to the number of subscribers for this event. The lower the

overhead, the better the performance.

4. Bandwidth Cost. The ratio of the total bandwidth cost incurred by an event delivery

to the number of nodes involved.

5.2.2 Setup

To run our experiments we used a network consisting of 1,024 nodes, with average

connectivity degree k=5, and transmission latencies defined between 100 ms and 500

ms. Each node used a 128­bit identifier and the parameter for MSPastry was b=4. This

means that each node had a routing table R with 3 rows and 15 columns, a neighbor

set M with 32 nodes, and a L leaf set with 16 nodes8.

In our simulation, new nodes were joining into the system until the total number

of nodes was reached (e.g. 1,024 nodes). After the system stabilization, we started the

subscription installation that caused the system to register nodes as subscribers. When

the subscription installation was over, the event publication phase began. The latter

8These numbers are produced using the Pastry equations presented in section 2.5.2.

Ioannis E. Pogkas 138

Decentralized Business Process Execution in Peer­to­Peer Systems

was modeled using the Poison distribution with a mean arrival rate of 50 publications

per minute. We used the pub/sub scheme that was proposed by Meghdoot [GSAA04]:

S = [Date:string, 2/Jan/98, 31/Dec/02],
[Symbol:string, ‘‘aaa’’, ‘‘zzz’’],
[Close:float, 0, 500],
[High:float, 0, 500],
[Low:float, 0, 500],
[Volume:integer, 0, 310,000,000]

Specifically, Symbol is the stock name. Close is the closing price for a stock a given

day. High and Low are the highest and lowest prices for the stock on that day. Volume

is the total amount of trade in the stock on that day.

We generated subscriptions using the five subscription templates suggested in Megh­

doot:

T1 = [(Symbol = P1) ∧ (P2 ≤ Close ≤ P3)] with probability 20 percent,

T2 = [(Symbol = P1) ∧ (Low ≤ P2)] with probability 35 percent,

T3 = [(Symbol = P1) ∧ (High ≥ P2)] with probability 35 percent,

T4 = [(Symbol = P1) ∧ (Volume ≥ P1)] with probability 5 percent, and

T5 = [(Volume ≥ P1)] with probability 5 percent

The logic behind this distribution is that templates with more general interests (e.g.

T4 and T5) are assigned low probabilities. This is based on the fact that in a real

application, the subscribers are usually interested in specific events related to their

narrow interests [GSAA04], rather than in more general information.

We selected the Meghdoot pub/sub scheme and templates for three reasons. The first

one, is that its templates have become a common base for comparing the efficiency of

the proposed pub/sub mechanisms. Second, it offered us the flexibility to evaluate our

implementation with different distributions of subscription and publication messages.

Finally, this scheme is directly related to the subscription templates that are used by

our BPEL engine (as presented in the Appendix A). Templates T4 and T5 are similar to the

deployer subscriptions SUBregister, SUBunregister, SUBdeployer, SUBredeploy, SUButilization,

and SUBfailure. Moreover, the templates T1, T2, and T3 act as worst case scenario for the

worker nodes subscriptions (in most cases only a single worker subscription is matched

with a publication message).

5.2.3 Experimental Results

In this section, we first evaluate the performance of our pub/sub mechanisms under

the standard configuration that was presented above. Then, we examine their perfor­

mance using different ranges of subscribers and network sizes.

Ioannis E. Pogkas 139

Decentralized Business Process Execution in Peer­to­Peer Systems

 0

 20

 40

 60

 80

 100

[0,5)
[5,10)

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

>40

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Range of subscribers

Event distribution vs Subscribers range

MP-SA
PP-SA
RP-SA

Figure 5.2: Average number of subscribers per event.

5.2.3.1 Performance under Standard Configuration

Under standard configuration we performed simulations where we generated ran­

domly 100,000 events. The average number of subscribers per­event, produced by our

subscription storage algorithms (RP­SA, PP­SA, MP­SA) is presented in Figure 5.2. As

illustrated, the number of average subscribers per­event is 17, or approximately about

1.7% percent of the 1,024 nodes.

Table 5.1, presents the performance of the different storage algorithms. The PP­SA

and MP­SA outperform the RP­SA in the required number of hops, latency, bandwidth,

and overhead. For the PP­SA, this happens because the event delivery messages traverse

over shorter paths, as the broker responsible for the storage and matching is closer to the

subscriber node. The MP­SA exploits another mechanism to exhibit better performance:

as most of the subscriptions are stored to a small subset of broker nodes, the group

delivery mechanism can easily group many publications with common delivery path

using only one message. Thus, by exploiting the common delivery paths it reduces the

average number of hops required for the event delivery. This causes the MP­SA algorithm

to exhibit the best bandwidth cost between the three.

Scheme hops latency (ms) bandwidth cost (bytes/node) overhead

RP­SA 3.512 334.506 171.996 2.421

MP­SA 2.793 225.32 147.244 1.738

PP­SA 2.717 202.586 156.904 1.524

Table 5.1: Performance comparison between the RP­SA, MP­SA, and PP­SA subscription

algorithms.

Figure 5.3(a) plots the distribution of events for PP­SA, MP­SA, and RP­SA according

to the range of hops. As it is shown, all events require 2 to 5 hops to reach the subscribed

Ioannis E. Pogkas 140

Decentralized Business Process Execution in Peer­to­Peer Systems

nodes. For PP­SA and MP­SA algorithms, almost 90 percent of the events are delivered

to their subscribers within two to three hops. The average number of delivery hops is

2.717 for the PP­SA and 2.793 for the MP­SA.

Figure 5.3(b) plots the distribution of events for PP­SA, MP­SA, and RP­SA, according

to the range of latency. The majority of the events is delivered between 100 and 350 ms.

The PP­SA in this case is the winner, as its proximity metrics store the subscriptions

to nodes that are closer to the subscribers. Thus, when the events are matched they

need to travel smaller distances to reach the original subscribers. Furthermore, these

links exhibit low latency due to their network proximity. We notice that in the case

of the MP­SA there is a spike of events with delivery latency around 200 and 250 ms.

This is again a product of the group message delivery. The simulation engine does not

create delays based on the message sizes, but randomly according to the links and their

network proximity. Thus, the group delivery mechanism using MP­SA does not pay a

toll for sending larger messages, but takes advantage of the reduced delivery path. The

RP­SA mechanism exhibits larger delivery latencies as it may send a publication to a

broker node that is on the other side of the DHT ring. Thus, the message requires to

travel through additional nodes.

Figure 5.3(c) plots the distribution of events for PP­SA, MP­SA, and RP­SA according

to the range of bandwidth. This time the winner is the MP­SA as it groups the events in

a smaller number of messages, thus requiring less bandwidth per subscriber.

Figure 5.3(d) plots the distribution of events for PP­SA, MP­SA, and RP­SA according

to the range of overhead. Clearly, all algorithms produce good results as the majority of

the events produces low overhead, thus requiring few intermediate nodes.

Figure 5.4 shows subscription distribution over five broker nodes for the PP­SA,

MP­SA, and RP­SA algorithms. Note that RP­SA evenly distributes subscriptions to the

broker nodes, as it chooses randomly a subscription predicate to use as a key. The

performance of the MP­SA mechanism depends on the used scheme. Using the Meghdoot

scheme, the mechanism performs almost as PP­SA, but with a scheme with subscriptions

that use the same predicate names it produces a highly skewed load distribution. This

happens, because MP­SA chooses the same broker node for the subscriptions with the

same predicate names. This shows how important for MP­SA is to use a subscription

push method for producing good load balance. The performance of the PP­SA comes to

the middle as it distributes the subscriptions based on the proximity of the broker with

the original subscriber.

5.2.3.2 Effect of Subscribers Range

The experimental results presented in the rest of this section will focus on the PP­SA

mechanism, as it outperforms the other two algorithms. To explore its performance with

respect to the number of subscribers, we gradually increased the average number of

subscribers per event and we evaluated the pub/sub system performance by delivering

100,000 events. As the number of subscribers increases, the average number of hops

(as shown by Figure 5.5(a)) and the latency (as shown by Figure 5.5(b)) almost keep

Ioannis E. Pogkas 141

Decentralized Business Process Execution in Peer­to­Peer Systems

 0

 20

 40

 60

 80

 100

[0,1) [1,2) [2,3) [3,4) [4,5) [5,6) >6

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Range of hops

Distribution of events vs Hops

MP-SA
PP-SA
RP-SA

(a)

 0

 20

 40

 60

 80

 100

[0,50)

[50,100)

[100,150)

[150,200)

[200,250)

[250,300)

[300,350)

[350,400)

[400,450)

[450,500)

[500,550)

>550

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Range of latency (ms)

Distribution of events vs Latency

MP-SA
PP-SA
RP-SA

(b)

 0

 20

 40

 60

 80

 100

[0,100)

[100,200)

[200,300)

[300,400)

[400,500)

[500,600)

>600

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Range of bandwidth cost (bytes/node)

Distribution of events vs Bandwidth cost

MP-SA
PP-SA
RP-SA

(c)

 0

 20

 40

 60

 80

 100

[0.0,0.5)

[0.5,1.0)

[1.0,1.5)

[1.5,2.0)

[2.0,2.5)

[2.5,3.0)

[3.0,3.5)

[3.5,4.0)

[4.0,4.5)

>4.5

P
er

ce
nt

ag
e

of
 e

ve
nt

s

Range of overhead

Distribution of events vs Overhead

MP-SA
PP-SA
RP-SA

(d)

Figure 5.3: Distribution of events for PP­SA, MP­SA, and RP­SA mechanisms according

to range of hops, latency, bandwidth, and overhead.

 0

 20

 40

 60

 80

 100

B1 B2 B3 B4 B5

P
er

ce
nt

ag
e

of
 s

ub
sc

rip
tio

ns

Broker nodes

Subscription distribution

MP-SA using Meghdoot schema
MP-SA using skewed schema

PP-SA
RP-SA

Figure 5.4: Subscription distribution in PP­SA, MP­SA, and RP­SA mechanisms

Ioannis E. Pogkas 142

Decentralized Business Process Execution in Peer­to­Peer Systems

 2

 2.2

 2.4

 2.6

 2.8

 3

2% 5% 10% 20% 30% 40% 50% 60% 70% 80%

H
op

s

Percentage of subscribers

Hops vs Subscribers range

PP-SA

(a)

 190

 195

 200

 205

 210

 215

 220

 225

 230

2% 5% 10% 20% 30% 40% 50% 60% 70% 80%

La
te

nc
y

(m
s)

Percentage of nodes

Latency vs Subscribers range

PP-SA

(b)

 140

 150

 160

 170

 180

 190

2% 5% 10% 20% 30% 40% 50% 60% 70% 80%

B
an

dw
id

th
 c

os
t (

by
te

s/
no

de
)

Percentage of subscribers

Bandwidth cost vs Subscribers range

PP-SA

(c)

 0

 0.5

 1

 1.5

 2

2% 5% 10% 20% 30% 40% 50% 60% 70% 80%

O
ve

rh
ea

d

Percentage of subscribers

Overhead vs Subscribers range

PP-SA

(d)

Figure 5.5: Distribution of hops, latency, bandwidth cost, and overhead vs the sub­

scribers range for the PP­SA algorithm.

constant at 2.77 and 202.485 ms, respectively. On the other hand, as Figure 5.5(c)

shows, the bandwidth cost increases modestly from 156.904 (bytes/node) to 160.257

(bytes/node). Nevertheless, the overhead drops significantly as shown in Figure 5.5(d).

The above results indicate that the PP­SA algorithm can deliver events to a large number

of subscribers at very low overhead, involving only a small number of intermediate

nodes by the use of group message delivery. Hence, PP­SA proved to be very efficient in

delivering events to a large number of subscribers.

5.2.3.3 Effect of Network Size

Next, we evaluated the scalability of our pub/sub mechanism based on the PP­SA

algorithm. We present its performance under various network sizes that span between

1,024 and 65,536 nodes. For each case, we used the same configuration parameters

as in the standard configuration. The required overlay hops occurred by event delivery

increase modestly, as shown in Figure 5.6(a), from 2.717 hops to 4.123. This results in

an increase of 66% for a 64 times network increase. The bandwidth cost (as shown in

Figure 5.6(c)), and the latency (as shown in Figure 5.6(b)) increase less than double for

Ioannis E. Pogkas 143

Decentralized Business Process Execution in Peer­to­Peer Systems

 2

 2.5

 3

 3.5

 4

 4.5

 5

1024 2048 4096 8192 16384 32768 65536

H
op

s

Network size

Hops vs Network size

PP-SA

(a)

 200

 220

 240

 260

 280

 300

 320

 340

1024 2048 4096 8192 16384 32768 65536

La
te

nc
y

(m
s)

Network size

Latency vs Network size

PP-SA

(b)

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

1024 2048 4096 8192 16384 32768 65536

B
an

dw
id

th
 c

os
t (

by
te

s/
no

de
)

Network size

Bandwidth cost vs Network size

PP-SA

(c)

 0

 0.5

 1

 1.5

 2

1024 2048 4096 8192 16384 32768 65536

O
ve

rh
ea

d

Network size

Overhead vs Network size

PP-SA

(d)

Figure 5.6: Distribution of hops, latency, bandwidth cost, and overhead vs network size

for the PP­SA algorithm.

an 64 times increase of the network size. Furthermore, the overhead drops significantly

from 1.524 to 0.02 as shown by Figure 5.6(d). The above results show that the PP­

SA algorithm scales well with large numbers of nodes, as it requires almost the same

number of intermediate nodes for the event delivery, even for high number of subscribers

and network sizes.

5.3 ADORE Engine Evaluation

In this section, we present a quantitative evaluation of the ADORE distributed or­

chestration engine. In particular, we compared ADORE with centralized multiple­server

architectures, having as main objective the assessment of the performance benefits of

our architecture under high request rates. In this context, we pursued four specific

goals:

1. Performance over request rates. The orchestration engine must effectively cope with

increasing numbers of requests over a specific period of time. As the centralized

Ioannis E. Pogkas 144

Decentralized Business Process Execution in Peer­to­Peer Systems

and clustered architectures become performance bottlenecks with increasing re­

quest rates, a distributed engine must be able to exploit its workers’ pool and to

distribute the workload among them.

2. Performance over Web services delays. The performance of the distributed engine

must degrade gracefully for increasing Web services delays. This feature is very

important when we have processes that transfer a large amount of data between

Web services.

3. Performance over network delay. The performance of the distributed engine must

not degrade substantially when the network latency increase. Therefore, we can

justify its usage over a centralized engine that does not become affected by the

network latency.

4. Performance of the deployment mechanisms. We must evaluate our deployment

mechanisms namely, per­process and per­instance deployment in terms of average

process execution time, throughput, and load balancing.

5.3.1 Metrics

We used four metrics to evaluate the performance and cost of our proposed architec­

ture:

1. Average process execution time: treply − trequest. The process execution time is

defined as the duration from the reception of a request from the client to the

transmission of the corresponding response to the client.

2. System throughput: #completed instances

1 min
. The throughput is defined as the number of

process instances completed per­minute.

3. Process execution time overhead:
Tq

Tscp
. This is defined as the ratio of the average

process execution time (Tq) divided by the process execution time of a process

instance in a single­server centralized system (Tscp).

4. Process activities distribution load:
#activities executed in the node

#total executed activities
. This is defined as the

ratio of the process activities that are executed by a node divided by the total

number of process activities executed by the system.

5.3.2 Setup

We measured the ADORE performance using the aforementioned metrics, while we

varied parameters such as the request rate, the delay of the external Web services, and

the network transport latency. In the standard configuration, the network consisted of

50 or 500 network nodes, with average connectivity degree k=5. The default values that

we used were:

Ioannis E. Pogkas 145

Decentralized Business Process Execution in Peer­to­Peer Systems

Receive id=2

Assign id=3

Flow id=4

Invoke id=6 Invoke id=10

Assign id=7 Assign id=11

*Endid=13

Replyid=14

Sequence id=1

*Endid=15

*End id=8 *Endid=12

Sequence id=5 Sequence id=9

Figure 5.7: BPEL process used for the engine’s evaluation.� the request rate was 50 or 500 requests per minute� the Web service execution time was 2,000 ms (for the invoke activity)� the activities execution time was 50 ms� the transmission latency was defined between 100 ms and 500 ms.

We performed all experiments using the BPEL process9 presented in Figure 5.7.

9In our implementation we used special <end> activities that are not part of the official BPEL specifica­

tion. These activities can be omitted using a different pub/sub translation model. We deployed the <end>

activities to the same nodes that we used for the proceeding activities. This way, we reduced the latency

overhead that was introduced by our translation model.

Ioannis E. Pogkas 146

Decentralized Business Process Execution in Peer­to­Peer Systems

In our simulation, new nodes were joining into the system until the total number of

nodes was reached (i.e. 50 or 500 nodes). After the system stabilization, we deployed

the BPEL process to a number of nodes using per­instance deployment and we simulated

requests from external clients to create process instances. The latter, are modeled using

the Poison distribution. We evaluated our system by comparing its efficiency with four

different centralized multiple­server systems:

1. M/M/1­50. A centralized multiple­server system with exponential service time

distribution (M/M/1). This system consists of 50 servers that use different arrival

queues. This system can handle a maximum request rate of 700 events per­

minute.

2. M/M/1­145. A centralized multiple­server system with exponential service time

distribution (M/M/1). This system consists of 145 servers that use different arrival

queues. This system can handle a maximum request rate of 2,000 events per­

minute.

3. M/D/1­50. A centralized multiple­server system with constant service time dis­

tribution (M/D/1). This system consists of 50 servers that use different arrival

queues. This system can handle a maximum request rate of 700 events per­

minute.

4. M/D/1­145. A centralized multiple­server system with constant service time dis­

tribution (M/D/1). This system consists of 145 servers that use different arrival

queues. This system can handle a maximum request rate of 2,000 events per­

minute.

Additionally, we assumed that the following statements always hold for the above

systems: a) the requests follow a Poison arrival rate, b) the dispatching principle does

not give any preference to items based on service times, c) the formulas for standard

deviation assume first­in, first­out dispatching (FIFO), and d) no items are discarded

from the queue.

Furthermore, in multiple­server systems with λ arrival rate, N number of nodes, and

Ts mean service time for each arrival, their utilization is defined as:

̺ =
λ ∗ Ts

N
(5.1)

For a multiple­server M/M/1 system the average process execution time (Tq) is:

Tq =
Ts

1− ̺
(5.2)

For a multiple­server M/D/1 system the average process execution time (Tq) is:

Tq =
Ts(2− ̺)

2(1− ̺)
(5.3)

Ioannis E. Pogkas 147

Decentralized Business Process Execution in Peer­to­Peer Systems

The theoretical maximum input rate (λmax) for M/M/1 and M/D/1 multiple­server

systems with N nodes is:

λmax =
N

Ts
(5.4)

5.3.3 Experimental Results

In the next sections, our evaluation tries to find the best and worst conditions for

our engine’s operation using varied simulation parameters, in an attempt to identify the

cases for which our architecture is well suited.

5.3.3.1 Performance with varied Request Rate

This experiment varied the process invocation rate, where each invocation generated

a process instance. We measured the average process execution time, the throughput,

and the process execution time overhead.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Request rate (req/min)

Average execution time vs Request rate

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

re
q/

m
in

)

Request rate (req/min)

Throughput vs Request rate

ADORE 50 nodes
ADORE 500 nodes

(M/M/1 or M/D/1) 50 servers
(M/M/1 or M/D/1) 145 servers

(b)

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

T
p/

T
sc

p

Request rate (req/min)

Ratio Tp/Tscp vs Request rate

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(c)

Figure 5.8: ADORE performance with increasing request rate.

As shown in Figure 5.8(a), for lower requests rates, the multiple­server approach

offers better average process execution times (the ADORE requires 1.5 times more aver­

age execution time). This is caused by the communication overhead of traversing the

DHT network using pub/sub messages for control and data flow. In the distributed setup

these costs are not negligible and have an important impact for lower request rates.

Ioannis E. Pogkas 148

Decentralized Business Process Execution in Peer­to­Peer Systems

As the request rate increases, the ADORE engine provides more or less the same per­

formance while for the multiple­server approaches the required average execution time

increases exponentially. Nevertheless, when the request rates are higher than 1000

requests per­minute, the distributed architecture outperformed the centralized ones.

This happens, because the centralized architectures starts to create larger queues for

handling the requests while the ADORE deployment mechanisms takes advantage of the

multiple available nodes and distributes the activities to them.

The throughput is presented in Figure 5.8(b). The distributed architecture exhibits

almost optimal throughput. It outperforms the multiple­server engines with 50 nodes

and as the request rate increases it has the same performance with the 500 nodes

multiple­server approach (that was designed for handling requests rates of 2000 re­

quests per­minute). Note that, for request rates lower that 700 requests per­minute, the

throughput of all approaches is almost the same as the request rate because none of the

approaches has reached its maximum throughput.

Figure 5.8(c) presents the ratio of the average process execution time in all configu­

rations via a process instance execution time in a single centralized engine (Tscp = 4300
ms). This diagram shows that our engine requires twice the time accomplished by the

singe­server instance case, without being affected by the request rate. This proves that

the throughput performance that is gained does not inflict a significant increase of the

average process execution time. This overhead is constant and is unaffected by the

request rate increase.

5.3.3.2 Performance with varied Web Service Delay

To better understand the effect of invoking external Web services on both the process

execution time and the throughput, we performed a number of experiments using three

different requests rates (50 req/min, 500 req/min, and 1000 req/min), while varying

the Web service delay from 200 ms to 8000 ms.

 0

 5000

 10000

 15000

 20000

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Web service execution time (ms)

Execution time vs Web service execution time

request rate = 50 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
hr

ou
gh

pu
t (

re
q/

m
in

)

Web service execution time (ms)

Throughput vs Web service execution time

request rate = 50 req/min

ADORE 50 nodes
ADORE 500 nodes

50 servers µmax
145 servers µmax

(b)

Figure 5.9: ADORE performance vs Web service delay (50 req/min).

With low request rates (50 req/min), the results in Figure 5.9(a) show that a longer

Web service delay increases the average execution time for all three deployment scenar­

Ioannis E. Pogkas 149

Decentralized Business Process Execution in Peer­to­Peer Systems

ios. When the delay is small the multiple­server approaches perform best, by avoiding

the communication overhead that is present in ADORE. On the other hand, when the Web

service delays increase, the distributed approach performs best, requiring 24% less time

per­process instance. The throughput in low requests rates increases slightly for the

ADORE, while for the multiple­server approaches the theoretical maximum throughput

drops significantly and converges with the ADORE for larger Web service delays.

 0

 5000

 10000

 15000

 20000

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Web service execution time (ms)

Execution time vs Web service execution time

request rate = 500 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000 8000
T

hr
ou

gh
pu

t (
re

q/
m

in
)

Web service execution time (ms)

Throughput vs Web service execution time

request rate = 500 req/min

ADORE 50 nodes
ADORE 500 nodes

50 servers µmax
145 servers µmax

(b)

Figure 5.10: ADORE performance vs Web service delay (500 req/min).

 0

 5000

 10000

 15000

 20000

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Web service execution time (ms)

Execution time vs Web service execution time

request rate = 1000 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
hr

ou
gh

pu
t (

re
q/

m
in

)

Web service execution time (ms)

Throughput vs Web service execution time

request rate = 1000 req/min

ADORE 50 nodes
ADORE 500 nodes

50 servers µmax
145 servers µmax

(b)

Figure 5.11: ADORE performance vs Web service delay (1000 req/min).

With medium request rates (500 req/min), the results in Figure 5.9(a) show that,

a longer Web service delay increases the average execution time for all three deploy­

ment scenarios. Nevertheless, this time ADORE scales better than the multiple­server

architectures. Note that, a 40 times increase in the Web service delay corresponds to

a linear increase for ADORE (it requires only 2.3 times more average process execution

time). On the contrary, it corresponds to an exponential increase for the multiple­server

approaches. As shown in Figure 5.11(a), the same trend continues for even larger re­

quest rates (1000 req/min), where ADORE outperforms the multiple­server approaches.

The throughput in both cases (Figure 5.10(b) and Figure 5.11(b)) remains constant for

ADORE as the Web service delay increases, while for the multiple­server approaches the

maximum theoretical throughput drops quickly and converges with that of ADORE.

Ioannis E. Pogkas 150

Decentralized Business Process Execution in Peer­to­Peer Systems

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
p/

T
sc

p

Web service execution time (ms)

Ratio Tp/Tscp vs Web service execution time

request rate = 50 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a) 50 req/min)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
p/

T
sc

p

Web service execution time (ms)

Ratio Tp/Tscp vs Web service execution time

request rate = 500 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(b) 500 req/min

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
p/

T
sc

p

Web service execution time (ms)

Ratio Tp/Tscp vs Web service execution time

request rate = 1000 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(c) 1000 req/min

Figure 5.12: ADORE performance average execution time vs single server execution time

with increasing Web service delay.

Ioannis E. Pogkas 151

Decentralized Business Process Execution in Peer­to­Peer Systems

Finally, Figure 5.12 presents the process execution time overhead in all cases. We see

that ADORE has greater overhead due to network delays. Nevertheless, as the Web service

delay increases, it provides the best performance, since it requires almost the same

average process execution time with the single centralized approach. On the other hand,

the performance of the centralized multiple­server approach degrades significantly, as

the average process execution time increases exponentially with the Web service delay.

5.3.3.3 Performance with varied Latency

It is crucial for the performance of the ADORE engine to degrade gracefully as the

network latency increases. For this reason, we performed a set of experiments and

measured the average process execution time and throughput while we were increasing

the network latency from 100 ms to 1000 ms. This overhead was applied to any trans­

mission that took place in the DHT network and thus it affected all messages. We made

measurements using three different request rates (100 req/min, 500 req/min, and 1000

req/min).

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Latency (ms)

Average execution time vs network latency

request rate = 50 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

re
q/

m
in

)

Latency (ms)

Throughput vs network latency

request rate = 50 req/min

ADORE 50 nodes
ADORE 500 nodes

(M/M/1 or M/D/1) 50 servers
(M/M/1 or M/D/1) 145 servers

(b)

Figure 5.13: ADORE performance vs network latency (50 req/min).

Figure 5.13 presents the performance of ADORE for low request rates and increasing

latency. For latency lower than 200 ms, ADORE achieves the same average process

execution time as the multiple­server approaches. As the network latency increases the

average process execution time of ADORE increases linearly (Figure 5.13(a)). Furthermore,

Figure 5.13(b) shows that at 50 req/min, the throughput of ADORE performance remains

unaffected by the increasing latencies and equals to the optimal.

For medium request rates (Figure 5.14), the average process execution time of ADORE in­

creases linearly with increasing latency. As shown by Figure 5.14(a), for network la­

tency lower than 600 ms ADORE exhibits better average process execution time than the

multiple­server approaches. Furthermore, Figure 5.13(b) shows that at 500 req/min, the

throughput of ADORE performance degrades by 44% while the network latency increases

tenfold.

Finally, for high request rates (see Figure 5.15) the average process execution time

of ADORE again increases linearly with increasing latency. As shown in Figure 5.15(a),

Ioannis E. Pogkas 152

Decentralized Business Process Execution in Peer­to­Peer Systems

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Latency (ms)

Average execution time vs network latency

request rate = 500 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

re
q/

m
in

)

Latency (ms)

Throughput vs network latency

request rate = 500 req/min

ADORE 50 nodes
ADORE 500 nodes

(M/M/1 or M/D/1) 50 servers
(M/M/1 or M/D/1) 145 servers

(b)

Figure 5.14: ADORE performance vs network latency (500 req/min).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 200 400 600 800 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Latency (ms)

Average execution time vs network latency

request rate = 1000 req/min

ADORE 50 nodes
ADORE 500 nodes

M/M/1 50 servers
M/M/1 145 servers

M/D/1 50 servers
M/D/1 145 servers

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

re
q/

m
in

)

Latency (ms)

Throughput vs network latency

request rate = 1000 req/min

ADORE 50 nodes
ADORE 500 nodes

(M/M/1 or M/D/1) 50 servers
(M/M/1 or M/D/1) 145 servers

(b)

Figure 5.15: ADORE performance vs network latency (1000 req/min).

ADORE outperforms the 50 multiple­server approaches but looses by the 140 multiple­

server approach. As far as the throughput is concerned, at these rates the throughput

of ADORE performance again degrades by 44% while the network latency increases ten

times (as shown in Figure 5.15(b)).

5.3.3.4 Per­process vs Per­instance Deployment

We compared the performance of the two deployment mechanisms: per­process and

per­instance deployment, in terms of average process execution time and node load.

Figure 5.16(a), shows a comparison of the average process execution time required by

the two mechanisms over increasing request rates. The two mechanisms exhibit the

same performance, while the per­instance deployment requires on average 8% more

time. This behavior continued as we studied their behavior by increasing the network

latency. As shown in Figure 5.16(b), the per­instance deployment mechanism, produces

slightly bigger overhead and only for high network latency.

On the other hand, the per­instance deployment has better load balancing behavior.

In extreme cases, as Figure 5.17 shows, as we created instances of the same BPEL process

the per­process deployment used only a small fraction of the worker nodes to execute

Ioannis E. Pogkas 153

Decentralized Business Process Execution in Peer­to­Peer Systems

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Request rate (req/min)

Average execution time vs request rate

ADORE-per-process 50 nodes
ADORE-per-instance 50 nodes

(a)

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Latency (ms)

Average execution time vs network latency

request rate = 500 req/min

ADORE-per-process 50 nodes
ADORE-per-instance 50 nodes

(b)

Figure 5.16: ADORE performance using per­process vs per­instance deployment with

increasing request rate.

 0

 0.05

 0.1

 0.15

 0.2

 0 10
 20

 30
 40

 50

P
er

ce
nt

ag
e

of
 to

ta
l a

ct
iv

iti
es

Worker nodes

Distribution of activities to workers

ADORE-per-instance 50 nodes
ADORE-per-process 50 nodes

Figure 5.17: Activity distribution in per­process and per­instance deployment.

Ioannis E. Pogkas 154

Decentralized Business Process Execution in Peer­to­Peer Systems

activities. As opposed to that, the per­instance deployment used all the workers in a

round­robin fashion. We believe that it is worth paying a small cost in order to have

better load balancing in the DHT network and avoid hot spots that could degrade the

engine’s performance. Our results seem to suggest that, the per­instance deployment is

overall a better solution. Nevertheless, we need to perform more experiments by studying

the engine’s performance in real network conditions and under real use cases scenarios.

This work is left for the future.

5.4 Conclusions

In this chapter, we provided a throughout evaluation of our pub/sub mechanism and

ADORE’s performance. Our experiments have led to the following conclusions:

1. Our proposed pub/sub mechanisms scale well and their effectiveness does not de­

grade over increasing number of subscribers and network sizes. Furthermore,

our mechanisms produce low network overhead and require minimal number of

hops for event dissemination. Moreover, our algorithms yield good load balancing

over the broker nodes. We conclude that the best deployed algorithm is the PP­SA

algorithm.

2. Our orchestration engine can effectively cope with increasing request rates. More­

over, for network latencies between 150 and 500 ms, the engine provides optimal

throughput performance with very good average process execution times. In all the

above cases, it outperforms the centralized multiple­server approaches in terms

of average process execution time, throughput, and overhead. Its performance

decreases gracefully with increasing Web services delays and network latencies.

Finally, the per­instance deployment mechanism provides better load balancing

features with only 8% overhead in the average process execution time compara­

tively with the per­process deployment.

Ioannis E. Pogkas 155

Decentralized Business Process Execution in Peer­to­Peer Systems

Chapter 6

Conclusions and Future Work

This chapter gives a summary of our proposal and presents a number of future

directions for our work.

6.1 Conclusions

In this thesis, we proposed a distributed orchestration engine named ADORE, that is

capable of deploying and executing BPEL processes. We presented in detail the engine’s

design, architecture, and described the operation of its key components.

ADORE, is based on a pub/sub infrastructure and uses a number of loosely coupled

light­weight nodes, arranged over a DHT network, to carry out the business process

execution. In short, ADORE translates the BPEL processes descriptions into a set of

pub/sub messages that are stored, matched, and published over the DHT nodes. The

pub/sub layer is based on the content­based pub/sub model and provides simplified and

efficient interaction among the nodes by exploiting network proximity metrics. We an­

alyzed the proposed pub/sub layer algorithms for subscription and publication storage,

matching, and propagation. Our algorithms are designed to provide good load balance

and produce minimum overhead.

The engine’s DHT nodes belong into three categories: a) deployer nodes that map

BPEL process into pub/sub messages, b) workers that execute BPEL activities by using pub/-

sub messages, and c) brokers that provide pub/sub matching and route the messages over

the DHT network. Using the aforementioned nodes and the characteristics of the pub/-

sub layer our engine is capable of executing efficiently multiple process instances. We

described the engine’s operation during its five key operations: a) startup, b) deployment,

c) execution, d) redeployment, and e) undeployment. During each phase we described

the pub/sub messages that are sent and we gave full details of the nodes interactions and

operation.

Finally, we made an evaluation of the proposed pub/sub mechanisms and the engine’s

operation as a whole by comparing our distributed engine with a number of centralized

multiple­server engines. The evaluation indicates that there are performance benefits

Ioannis E. Pogkas 157

Decentralized Business Process Execution in Peer­to­Peer Systems

from our distributed approach that are more apparent under high process request work­

loads. In short:� Our pub/sub mechanisms produce low network overhead and require minimal num­

ber of hops for event dissemination. Moreover, our algorithms produce good load

balancing over the broker nodes.� Our orchestration engine can effectively cope with increasing request rates (over

500 req/min). Furthermore, for network latencies between 150 and 500 ms our

engine provides optimal throughput performance with very good average process

execution times. In all the above cases, it outperforms the centralized multiple­

server approaches in terms of average process execution time, throughput, and

overhead. Moreover, its performance decreases gracefully with increasing Web

services delays and network latencies.

6.2 Future Work

First, we would like to produce more experiments with larger business processes and

broker topologies, using a real implementation. Furthermore, we want to evaluate our

engine contrast a similar approach, such as NIÑOS [LMJ10].

Second, we want to study the performance consequences of a different deployment

algorithm that will try to deploy the activities to worker nodes that have better proximity

(e.g. have network connections with lower latency) with the external clients and Web

services. This way, we could benefit from the different characteristics of our DHT nodes

and reduce the latency costs and the average process execution time. In this direction,

there are a number of approaches that we could benefit from and use them in our

implementation [SPvS04, SPPvS08, GSG02, VKK07]. As far as we know, none of the

current orchestration engines follows such an approach or tries to do something similar.

Finally, we look forward to apply our solution to domains that require long running

business processes that manipulate large amount of data. This scenario is very common

in the environmental services and there is outgoing research in this area1. Moreover, in

this case the distributed orchestration engine must be able to cope with node failures.

In this case it must provide a mechanism that will use methods for data replication in

order to restore the state of the process in execution, when an failure happens.

1http://www.envision-project.eu/

Ioannis E. Pogkas 158

http://www.envision-project.eu/

Decentralized Business Process Execution in Peer­to­Peer Systems

Appendix A

Mapping BPEL to the

Publish/Subscribe Language

A.1 Mapping Basic Activities

A.1.1 <receive> activity

The <receive> activity provides services to the partners of the BPEL business process.

If the <receive> activity has a createInstance element set to yes, then when a request

is received from a partner, the BPEL engine creates a new business process instance1.

Once a process instance is created, the business process can continue its execution and

perform other basic or structured activities. In this case any other activity in the same

business process instance loses its ability to create new business process instances.

Listing A.1: BPEL syntax for the <receive> activity.

<receive partnerLink ="NCName"
portType ="QName"?
operation ="NCName"
variable ="BPELVariableName"
createInstance ="yes|no" ?
standard-attributes/>

standard-elements
</ receive >

Listing A.2: <receive> example; a client can invoke the Print operation provided by the

BPEL process via the PrintServiceInterface. The PrintRequest variable stores the received

data.

<receive partnerLink ="Client" >
portType= "PrintServiceInterface"
operation= "Print"

1Only <receive> and <pick> activities (see section A.2.4) exhibit this behavior.

Ioannis E. Pogkas 159

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Receive Activity
(createInstance =no)

Next Activity

SUBrcv_no
PUBvar

PUBnext

PUBexit

(a) Receive activity createIn­

stance=NO.

Deploy Activity

Receive Activity
(createInstance =yes)

Next Activity

SUBrcv_yes
PUBvar

PUBnext

PUBexit

PUBinst

(b) Receive activity createIn­

stance=YES.

Figure A.1: Publish and subscribe messages for the receive activity. The Figure A.1(a)

presents the messages when the <createInstance=No> while Figure A.1(b) presents the

messages in a receive activity with <createInstane=yes>

variable= "PrintRequest" />

<receive> activity subscription messages

SUBrcvyes= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[activityID, eq, ‘‘activityId’’], [variableName, eq, ‘‘BPELVariableName’’],
[partnerLink, eq, ‘‘NCName’’], [portType, eq, ‘‘QName’’]?,

[operation,eq, ‘‘NCName’’]

SUBrcvno
= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],

[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[partnerLink, eq, ‘‘NCName’’], [portType, eq, ‘‘QName’’]?,

[operation, eq, ‘‘NCName’’]

<receive> activity publication messages

PUBinstance= [class, INSTANCE], [process, ‘‘processName’’], <<instanceId>>

PUBvar= [class, VARIABLE_UPDATE], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’],
[variableName, ‘‘BPELVariableName’’], <<variableData>>

PUBnext= publication to the next activity

<receive> activity subscription and publication algorithm

If the <receive> activity has the create instance element set to yes then the worker

agent must subscribe to SUBrcvyes. Otherwise the agent must subscribe to SUBrcvno
.

Ioannis E. Pogkas 160

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 21: <receive> activity algorithm

if createInstance == yes then

subscribe to SUBrcvyes

publish {PUBinstance, PUBvar, PUBnext}
else

subscribe to SUBrcvno

publish {PUBvar, PUBnext}
end if

After it is triggered with the appropriate publication the worker agent executes the

receive operation. If the receive is successfully executed, the worker publishes PUBvar,

with the updated variable information, and PUBnext that triggers the next activity. If the

create instance attribute was yes the agent also publishes PUBinstance that informs the

deployer and all the process activity workers about the new process instance id. Finally,

in case the operation fails, a standard error publication is published.

A.1.2 <reply> activity

The <reply> activity sends a response from the BPEL process to a client. This response

is send as a reply to a previous request that was accepted through a <receive> activity.

Thus the <reply> activity is used for implementing synchronous request­response inter­

actions. When the BPEL process requires asynchronous request­response interactions,

these are facilitated using <invoke> activities (see section A.1.3).

Listing A.3: BPEL syntax for the <reply> activity.

<reply partnerLink ="NCName"
portType ="QName"?
operation ="NCName"
variable ="BPELVariableName"
standard-attributes>

standard-elements
</ reply >

Listing A.4: <reply> example; the BPEL process calls the client’s TravelApproval operation

using as input the TravelResponse variable.

<reply partnerLink ="client"
portType ="TravelApprovalPT"
operation ="TravelApproval"
variable ="TravelResponse" />

Ioannis E. Pogkas 161

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Reply Activity

Deploy Activity

SUBrpl

PUBnext

PUBexitSUBvar

Figure A.2: Publish/Subscribe messages for the <reply> activity.

<reply> activity subscription messages

SUBreply= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[partnerLink, eq, ‘‘NCName’’], [portType, eq, ‘‘QName’’]?,

[operation, eq, ‘‘NCName’’]

SUBvar= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[variableName, eq, ‘‘BPELVariableName’’]

<reply> activity publication messages

PUBreply= [class, REPLY], [process, ‘‘processName’’],
<<instanceId, BPELVariableName, variableData>>

<reply> activity subscription and publication algorithm

The agent responsible for the <reply> activity must subscribe to SUBreply∧ SUBvar.

If the operation is successfully executed, the worker publishes PUBreply that carries the

response data. This publication targets the deployer node that handles the interaction

with the client. If the operation fails, a standard error publication is published.

A.1.3 <invoke> activity

The <invoke> activity is used by the BPEL process to invoke (synchronous or asyn­

chronous) its partners’ web service operations. Furthermore, it is used to implement the

asynchronous request­response pattern, as the BPEL process can use <invoke> to return

the results to its caller.

Listing A.5: BPEL syntax for the <invoke> activity.

Ioannis E. Pogkas 162

Decentralized Business Process Execution in Peer­to­Peer Systems

<invoke partnerLink ="NCName"
portType ="QName"?
operation ="NCName"
inputVariable ="BPELVariableName" ?
outputVariable ="BPELVariableName" ?
standard-attributes>

standard-elements
</ invoke >

Listing A.6: An example using an asynchronous <invoke>; the BPEL process request

information about a flight availability from a web service.

<invoke name ="FlightAvailabilityAyncInv"
partnerLink ="FlightAvailabilityPL"
portType ="FlightAvailabilityPT"
operation ="FlightAvailability"
inputVariable ="FlightDetails"

/>

Listing A.7: An example using a synchronous <invoke>; the BPEL process makes a syn­

chronous request­response call about the flight status.

<invoke name ="FlightStatusSyncInv"
partnerLink ="FlightStatusPL"
portType ="FlightStatusPT"
operation ="FlightStatus"
inputVariable ="FlightStatusRequest"
outputVariable ="FlightStatusResponse"

/>

<invoke> activity subscription messages

SUBinv= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[portType, eq, ‘‘QName’’]?, [operation, eq, ‘‘NCName’’]

SUBvar= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[variableName, eq, ‘‘BPELInputVariableName’’]

<invoke> activity publication messages

PUBvar= [class, VARIABLE­UPDATE], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’],
[variableName, ‘‘BPELOutputVariableName’’], <<variableData>>

PUBnext= publication to the next activity

Ioannis E. Pogkas 163

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Invoke Activity
(asynchronous)

Next Activity

SUBinv

PUBnext

PUBvarSUBvar

PUBexit

(a) Invoke activity asynchronous.

Previous Activity

Invoke Activity
(synchronous)

Next Activity

SUBinv

PUBnext

PUBexitSUBvar

(b) Invoke activity asynchronous.

Figure A.3: Publish/Subscribe messages for the invoke activity. Figure A.3(a) presents

an asynchronous invocation while Figure A.3(b) shows the messages involved in a syn­

chronous invocation.

<invoke> activity subscription and publication algorithm

Algorithm 22: <invoke> activity algorithm

if ∃ inputVariable then

subscribe to SUBinv ∧ SUBvar

else

subscribe to SUBinv

end if

if ∃ outputVariable then

wait for successful execution

publish {PUBvar, PUBnext}
else

publish PUBnext

end if

If the <invoke> activity requires an input variable, then the worker agent must sub­

scribe to SUBinv ∧ SUBvar. Otherwise the worker agent subscribes only to SUBinv. After

the worker is triggered by the proper publications, it invokes the associated web service

operation. If the invocation is synchronous the agents waits for the operation to execute

successfully and then publishes PUBvar and PUBnext. If the invocation is asynchronous,

the agent only to publishes PUBnext to trigger the following activity. If the operation fails,

the worker publishes a standard error publication.

A.1.4 <assign> activity

The <assign> activity is used: a) to copy data from one variable to another and b) to

construct and insert new data using expressions and literal values.

Ioannis E. Pogkas 164

Decentralized Business Process Execution in Peer­to­Peer Systems

Listing A.8: BPEL syntax for the <assign> activity.

<assign standard-attributes>
standard-elements
<copy >+

from-spec
to-spec

</ copy >
</ assign >

<! --examples of from -spec -- >
<from variable ="name" part ="cname" ?/>
<from variable ="name" part ="cname" ? query= "queryString" ?/>
<from variable ="name" property ="qname" />
<from expression ="general-expr" />
<from > literal value </ from >

<! -- examples of to -spec -- >
<to variable ="name" part ="cname" >
<to variable ="name" part ="cname" ? query= "queryString" ?/>
<to variable ="cname" property ="qname" />

Listing A.9: An <assign> example were the BPEL process assigns the surname from an

undergraduate student to a postgraduate student.

<assign name ="myAssign" >
<copy >

<from variable ="undergradStudent" part ="surname" />
<to variable ="postgradStudent" part ="surname" />

</ copy >
</ assign >

<assign> activity subscription messages

SUBasgn= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBvar= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[variableName, eq, ‘‘BPELVariableName’’]

<assign> activity publication messages

PUBvar= [class, VARIABLE­UPDATE], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’],
[variableName, ‘‘BPELVariableName’’], <<variableData>>

PUBnext= publication to the next activity

Ioannis E. Pogkas 165

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Assign Activity

Next Activity

SUBasgn

PUBnext

PUBvarSUBvar

PUBexit

Figure A.4: Publish/Subscribe messages for the <assign> activity.

<assign> activity subscription and publication algorithm

If the from­spec is a constant expression like a: string, integer, boolean, literal, or

partnerLink attribute, the constant expression will be directly injected to the <assign>

activity. This way the worker needs to subscribe only to SUBasgn. Otherwise, if the

from­spec is a variable or expression involving a variable part or variable property, the

worker agent responsible for the <assign> has to subscribe to the content of from­spec.

Thus the worker does a composite subscription SUBasgn∧ SUBvar. When the operation is

successfully executed, the worker publishes the PUBvar that carries the updated variable

value and triggers the next activity via PUBnext. If the operation fails, then a standard

error publication is published.

A.1.5 <exit> activity

The <exit> activity terminates a business process instance.

Listing A.10: BPEL syntax for the <exit> activity.

<exit standard-attributes>
standard-elements

</ exit >

Listing A.11: <exit> example; the process terminates its execution.

<exit />

<exit> activity subscription messages

SUBexit= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

Ioannis E. Pogkas 166

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Exit Activity

SUBext

PUBexit

Figure A.5: Publish/Subscribe messages for the <exit> activity.

<exit> activity publication messages

PUBexit= [class, EXIT], [process, ‘‘processName’’],
<<instanceID, ‘‘SUCCESS|FAILURE">>

<exit> activity subscription and publication algorithm

The <exit> worker agent subscribes to SUBexit. If the worker is triggered by the

appropriate publication message it publishes PUBexit, carrying the process instance id

and a ‘‘SUCCESS’’ message. If the operation fails, then a standard error publication is

published.

A.1.6 <empty> activity

The <empty> activity does nothing.

Listing A.12: BPEL syntax for the <exit> activity.

<empty standard-attributes>
standard-elements

</ empty >

Listing A.13: <empty> activity example; the process does nothing.

<empty />

<empty> activity subscription messages

SUBemp= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

<empty> activity publication messages

PUBnext= publication to the next activity

Ioannis E. Pogkas 167

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Empty Activity

Next Activity

SUBemp

PUBnext

Figure A.6: Publish/Subscribe messages for the <empty> activity.

<empty> activity subscription and publication algorithm

The <empty> worker agent subscribes to SUBemp. If the agent is triggered by the

proper publication, it publishes PUBnext. If the operation fails, then a standard error

publication is published.

A.1.7 <end> activity

The <end> activity is a special version of the empty activity and is used by our

protocol in some structured activities. It is used to transfer control to the first worker of

a structured activity.

<end> activity subscription messages

SUBprevi= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

<end> activity publication messages

PUBnext= publication to the next activity

<end> activity subscription and publication algorithm

The <end> worker agent subscribes to the publications of the proper previous activi­

ties using SUBprevi. If the agent is triggered by all the associated parent publications, it

publishes PUBnext. If the operation fails, then a standard error publication is published.

A.1.8 <wait> activity

The <wait> activity is used to delay the BPEL process execuction for a certain period

of time, or to stall the process until a certain deadline is reached.

Ioannis E. Pogkas 168

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous
Activity1

End Activity

Next Activity

PUBnext

Previous
Activity2

Previous
Activityn

...

SUBprev_1 SUBprev_2 SUBprev_n

Figure A.7: Publish/Subscribe messages for the <end> activity.

Algorithm 23: <end> activity algorithm

for all previous activities previ ∈ [1, n] do

subscribe to SUBprevi

end for

if [SUBprev1∧ SUBprev2 ∧ . . .∧ SUBprevn] are triggered then

publish PUBnext

end if

Listing A.14: BPEL syntax for the <wait> activity.

<wait (for= "duration-expr" | until= "deadline-expr") standard-attributes>
standard-elements

<wait />

Listing A.15: In the first example the <wait> activity stalls the execution until eight

o’clock in GMT+2 timezone; in the second example the <wait> activity stalls the execution

for thirty seconds.

<wait until= "2011-06-1T8:00:00+2:00" />
<wait for= "P30S" >

<wait> activity subscription messages

SUBwait= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

<wait> activity publication messages

PUBnext= publication to the next activity

Ioannis E. Pogkas 169

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Wait Activity

Next Activity

SUBwait

PUBnext

Figure A.8: Publish/Subscribe messages for the <wait> activity.

<wait> activity subscription and publication algorithm

The worker agent subscribes to SUBwait. If the agent receives the proper publication

message, it stalls the execution for a specific time interval or until a certain deadline.

Afterwards, the worker publishes PUBnext. If the operation fails, then a standard error

publication is published.

A.2 Mapping Structured Activities

A.2.1 <sequence> activity

The <sequence> activity is used to define a group of activities that will be executed

in a sequential order.

Listing A.16: BPEL syntax for the <sequence> activity.

<sequence standard-attributes>
standard-elements
activity+

</ sequence >

Listing A.17: <sequence> example; first is executed the <receive> activity then the <ass­

ing> activity and last the <invoke> activity.

<sequence standard-attributes>
<receive .../>
<assign .../>
<invoke .../>

</ sequence >

Ioannis E. Pogkas 170

Decentralized Business Process Execution in Peer­to­Peer Systems

<sequence activity subscription messages

SUBseq= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBfin= [class, eq, END­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘EndActivityId’’]

<sequence> activity publication messages

PUBinner1= publication to first inner activity

PUBnext= publication to next activity

<end> activity subscription messages

SUBend= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘LastInnerActivityId’’]

<end> activity publication messages

PUBfin= [class, END­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘EndActivityId’’],

<sequence> activity subscription and publication algorithm

Algorithm 24: <sequence> activity algorithm

subscribe to SUBseq ∨ SUBfin

if SUBseq was triggered then

publish PUBinner1

else if SUBfin was triggered then

publish PUBnext

end if

The worker responsible for the <sequence> activity must subscribe to the activity that

preceded the <sequence> and to the activity <end>. The latter represents the end of the

<sequence> body execution. Each activity in the body of the <sequence> subscribes to

the previous inner activity and publishes to the next inner activity, with two exceptions:

a) the first inner activity subscribes to the <sequence> activity, and b) the last inner

activity publishes to the <end> activity.

Thus the <sequence> worker subscribes to SUBseq and waits for a proper trigger

publication. After it is triggered, the worker sends a publication to the first inner activity

in the body of the <sequence>. We must also notice that the <sequence> agent also

subscribes to the <end> activity (SUBfin). This way it can be triggered after the last

Ioannis E. Pogkas 171

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Sequence
Activity

Inner1 Activity

Inner2 Activity

Innern Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_n

SUBfin

PUB

PUB

PUBnext

PUBinner1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBseqPUBnext

S
E
Q
U
E
N
C
E

B
O
D
Y

...

PUBexit

Figure A.9: Publish/Subscribe messages for the <sequence> activity.

Ioannis E. Pogkas 172

Decentralized Business Process Execution in Peer­to­Peer Systems

inner activity finishes its execution. In this case the <sequence> agent receives a PUBfin

publication that represents the end of the body execution and publishes PUBnext that

triggers the next activity in the BPEL process. If the operation fails, then a standard error

publication is published.

A.2.2 <if> activity

The <if> activity implements the if statement in the BPEL language. Where if the

expression condition is true the control passes to the corresponding execution path.

This way the BPEL process can select exactly one activity for execution from a set of

alternatives.

Listing A.18: BPEL syntax for the <if> activity.

<if standard-attributes>
standard-elements

<condition= "bool-expr" >
activity

<elseif >*
<condition= "bool-expr" >
activity

</ elseif >
<else >?

activity
</ else >

</ if >

Listing A.19: Based on the student id the <if> activity assigns a student’s surname to a

student type.

<if condition= "getVariableData('StudentId') & gt 100" >
<assign >

<copy >
<from variable ="StudentData" part ="surname" />
<to variable ="pdhStudent" part ="surname" />

</ copy >
</ assign >

<elseif condition= "getVariableData('StudentId') > 50" >
<assign >

<copy >
<from variable ="StudentData" part ="surname" />
<to variable ="postgradStudent" part ="surname" />

</ copy >
</ assign >

</ elseif >
<else >

<assign >
<copy >

<from variable ="StudentData" part ="surname" />
<to variable ="undergradStudent" part ="surname" />

Ioannis E. Pogkas 173

Decentralized Business Process Execution in Peer­to­Peer Systems

</ copy >
</ assign >

</ else >
</ if >

<condition> activity subscription messages

SUBcnd= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBfin= [class, eq, END­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘EndActivityId’’]

<condition> activity publication messages

PUBacti= publication to activityi that is the first activity in the body of the if, elseif, or

else clauses

PUBnext= publication to next activity

<end> activity subscription messages

SUBend= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘LastInnerActivityId’’]

<end> activity publication messages

PUBfin= [class, END­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘EndActivityId’’]

<if> activity subscription and publication algorithm

The worker responsible for the <condition> activity must subscribe to the activity

that preceded the condition and to the activity <end>. The latter represents the final

activity that is executed after one of the if, elseif, or else bodies finishes its execution.

The first inner activity in the selected if, elseif, or else bodies subscribes to the condition

activity. After the <condition> activity execution a publication is made to the next inner

activity. The last activity in the if, elseif, or else bodies submit a publication that triggers

the <end> activity.

Thus, the <condition> worker subscribes to SUBcnd and waits for a proper trigger

publication. After it is triggered, the worker evaluates the condition expression in each

if, else, or elseif and for the first true condition sends a publication to the proper body

activity. We must also notice that the <condition> agent also subscribes to the <end>

(SUBfin) and its triggered after the last inner activity finishes its execution. In this case

Ioannis E. Pogkas 174

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Condition Activity

Innera1

Activity

Innerb1

Activity

Innerz1

Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_z1

SUBfin

PUB

PUB

PUBend

PUBinner_a1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBcndPUBnext

I
F

B
O
D
Y

...

Innera2

Activity

Innerb2

Activity

Innerz2

Activity

SUBPUB

SUB

SUB

SUBinner_z2

PUB

PUB

PUBend

PUBinner_a2 SUBprev

...

Inneran

Activity

Innerbn

Activity

Innerzn

Activity

SUBPUB

SUB

SUB

SUBinner_zn

PUB

PUB

PUBinner_an SUBprev

...

E
L
S
E
I
F

B
O
D
Y

E
L
S
E

B
O
D
Y

...

PUBend

PUBexit

SUBvar_1 SUBvar_2 SUBvar_n

...
Figure A.10: Publish/Subscribe messages for the <if> activity.

Ioannis E. Pogkas 175

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 25: <if> activity algorithm

subscribe to SUBcnd ∨ SUBfin

if SUBcnd was triggered then

if <if> condition is true then

publish PUBinner1

else if <elseif1> condition is true then

publish PUBinner2

else if <elseif2> condition is true then

. . .

else if <else> condition is true then

publish PUBinnern

end if

else if SUBfin was triggered then

publish PUBnext

end if

the <condition> agent receives a PUBfin publication that represents the end of the body

execution and publishes PUBnext, the latter triggers the next activity in the BPEL process.

If the operation fails, then a standard error publication is published.

A.2.3 <while> activity

The <while> activity is used to define an iterative activity. The iterative activity is

performed until the specified boolean condition no longer holds true.

Listing A.20: BPEL syntax for the <while> activity.

<while condition= "bool-expr" standard-attributes>
standard-elements
activity+

</ while >

Listing A.21: The example below presents a while loop; while the variableA is less than

variable B a client web service operation is invoked.

<while condition= " getVariableData('variableA') < getVariableData('
variableB')" >
<sequence >
<invoke partnerLink ="AmericanAirlines" >

portType= "FlightAvailabilityPT"
operation= "FlightAvailability"
inputVariable= "variableC" />

<assign name ="assign1" >
<copy >

<from expression ="getVariableData('variableA')+1" />
<to variable ="variableA" />

Ioannis E. Pogkas 176

Decentralized Business Process Execution in Peer­to­Peer Systems

</ copy >
</ assign >
</ assign >
</ sequence >

</ while >

<while> activity subscription messages

SUBwhl= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBvari= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘innerActivityId’’],
[variableName, eq, ‘‘BPELVariableName’’i]

SUBfin= [class, eq, END­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘EndActivityId’’]

<while> activity publication messages

PUBinner1= publication to the first inner activity of the while loop

PUBnext= publication to next activity

<end> activity subscription messages

SUBend= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘LastInnerActivityId’’]

<end> activity publication messages

PUBfin= [class, END­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘EndActivityId’’]

<while> activity subscription and publication algorithm

The worker responsible for the <while> activity must subscribe: a) to all the vari­

ables used into the while condition, b) to the activity that preceded the <while> activity,

and c) to the activity <end>. The latter represents the final activity in the body of the

<while>. Each activity in the body of the <while> subscribes to the previous inner activ­

ity and publish to the next inner activity, with two exceptions: a) the first inner activity

subscribes to the <while> activity, and b) the last inner activity publishes to the <end>

activity.

Thus, the <while> worker subscribes to SUBwhl and waits for a proper trigger publi­

cation. After it is triggered evaluates the while condition and either sends a publication

Ioannis E. Pogkas 177

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

While Activity

Inner1 Activity

Inner2 Activity

Innern Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_n

SUBfin

PUB

PUB

PUBnext

PUBinner1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBwhlPUBnext

W
H
I
L
E

B
O
D
Y

...

PUBexit

Figure A.11: Publish/Subscribe messages for the <while> activity.

Ioannis E. Pogkas 178

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 26: <while> activity algorithm

subscribe to SUBseq ∨ SUBfin

subscribe to all variables used by the while condition SUBvari

if SUBseq∨ SUBfin was triggered then

if while condition is true then

publish PUBinner1

else

publish PUBnext

end if

end if

to the first inner activity in the body of the while or sends a publication to the next

activity. The body of the while is executed and the <end> activity is triggered after the

last inner activity finishes its execution. In this case the <while> agent receives a PUBend

publication that represents the end of one iteration and causes the while condition to

be evaluated again. If the condition is evaluated to false then the <while> agents pub­

lishes PUBnext that triggers the next activity in the BPEL process. If the operation fails, a

standard error publication is published.

A.2.4 <pick> activity

The <pick> activity is used to wait for the occurrence of one of a set of events and

then performs an activity associated with a message event or alarm event.

Listing A.22: BPEL syntax for the <pick> activity.

<pick createInstance ="yes|no" ? standard-attributes>
standard-elements

<onMessage partnerLink ="NCName"
portType ="QName"?
operation ="NCName"
variable ="BPELVariableName" ?
messageExchange= "NCName"?>+

<correlations>?
<correlation set= "NCName" initiate= "yes|join|no" ? />+

</correlations>
activity

</ onMessage >
<onAlarm >
(for= "duration-expr" | until= "deadline-expr")>

activity
</ onAlarm >*

</ pick >

Ioannis E. Pogkas 179

Decentralized Business Process Execution in Peer­to­Peer Systems

Listing A.23: <pick> example; if a client calls the operation ShutdownAlarm then the

BPEL process stops the alarm. While if the timer expires after 20 minutes the alarm goes

on.

<pick >
<onMessage partnerLink ="AmericanAirlines"

portType ="FlightCallbackPT"
operation ="FlightCallback"
variable ="FlightResponse" >

<! -- perform an activity -- >
</ onMessage >

<onAlarm for= " 'PT20M' " >
<! -- perform an activity -- >

</ onAlarm >

</ pick >

<pick> activity subscription messages

SUBpick= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBmsgi= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[partnerLink, eq, ‘‘NCName’’], [portType, eq, ‘‘QName’’]?,

[operation, eq, ‘‘NCName’’]

SUBvari= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[variableName, eq, ‘‘BPELVariableName’’i]

SUBfin= [class, eq, END­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘EndActivityId’’]

<pick> activity publication messages

PUBnext= publication to next activity

PUBonM= [class, MSG­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘pickActivityId’’]
[targetActivityID, ‘‘targetActivityId’’]

PUBonA= [class, ALARM­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘pickActivityId’’]
[targetActivityID, ‘‘targetActivityId’’]

Ioannis E. Pogkas 180

Decentralized Business Process Execution in Peer­to­Peer Systems

<OnMessage> activity subscription messages

SUBonM= [class, eq, MSG­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘pickActivityId’’]
[targetActivityID, eq, ‘‘activityId’’]

SUBvar= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[variableName, eq, ‘‘BPELVariableName’’]

<OnMessage> activity publication messages

PUBinner= publication to next inner activity

<OnAlarm> activity subscription messages

SUBonA= [class, eq, ALARM­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘pickActivityId’’]
[targetActivityID, eq, ‘‘activityId’’]

<OnMessage> activity publication messages

PUBinner= publication to next inner activity

<end> activity subscription messages

SUBendi= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘LastInnerActivityId’’i]

<end> activity publication messages

PUBfin= [class, END­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘EndActivityId’’]

<pick> activity subscription and publication algorithm

The worker responsible for the <pick> activity must subscribe to the activity that

preceded the <pick> (SUBpick), to the activity <end> (SUBfin), and to all messages that the

activation of on message activities depends on (SUBmsgi). The <end> activity represents

the final activity in the body of the <pick>. There are two kind of activities in the body

of the <pick>: a) OnAlarm activities and b) OnMessage activities. For each one there

is a separate worker for its subscription evaluation and execution. Each activity in

the body of the OnAlarm and OnMessage activities subscribes to the previous inner

activity and publish to the next inner activity, with two exceptions: a) the first inner

Ioannis E. Pogkas 181

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous
Activity

Pick Activity

Innera1

Activity

Innerb1

Activity

Innerz1

Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_z1

SUBfin

PUB

PUB

PUBend

PUBonM SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

PUBnext

O
N

M
E
S
S
A
G
E

...

Innera2

Activity

Innerb2

Activity

Innerz2

Activity

SUBPUB

SUB

SUB

SUBinner_z2

PUB

PUB

PUBend

PUBonA SUBprev

O
N

A
L
A
R
M

...

Client

PUBmsg

PUBexit

SUBvar_1 SUBvar_2 SUBvar_n

...SUBmsg_1SUBpick

Figure A.12: Publish/Subscribe messages for the <pick> activity.

Ioannis E. Pogkas 182

Decentralized Business Process Execution in Peer­to­Peer Systems

Algorithm 27: <pick> activity algorithm

subscribe to SUBpick ∨ SUBfin

if SUBpick was triggered then

while has not received any message or any alarm has expired do

if SUBmsgi triggered by message then

publish PUBonM

end if

if an alarm was triggered then

publish PUBonA

end if

end while

else if SUBfin was triggered then

publish PUBnext

end if

activity subscribes to the OnAlarm or OnMessage activity, and b) the last inner activity

publishes to the <end> activity.

As already said the <pick> worker waits for a proper trigger publication. After it is

triggered sets on its alarm timers and subscribes to the proper on message messages. If

more than one event occurs, then the selection of the activity to be performed depends

on which event occurred first and the agent sends the according publications to invoke

the proper <OnMessage> or <OnAlarm> agent. When the <pick> agent receives a PUBfin

publication, the agent finishes its execution and sends a publication to the next activity.

If the operation fails, a standard error publication is published.

We must note that the <pick> activity supports a special form to create an instance

of a business process. In this case, no alarms are permitted and each onMessage is

equivalent to a <receive> basic activity with the attribute ‘‘createInstance=yes’’.

<pick createInstance=yes> activity

This is a special form of <pick> than can be used to create an instance of the business

process. In this case, no alarms are permitted and each onMessage is equivalent to a

<receive> activity with the attribute createInstance=yes.

<pick createInstance=yes> activity subscription messages

SUBmsgi= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[activityID, eq, ‘‘activityId’’], [variableName, eq, ‘‘BPELVariableName’’],
[partnerLink, eq, ‘‘NCName’’], [portType, eq, ‘‘QName’’]?,

[operation,eq, ‘‘NCName’’]

SUBvari= [class, eq, VARIABLE­UPDATE], [process, eq, ‘‘processName’’],

Ioannis E. Pogkas 183

Decentralized Business Process Execution in Peer­to­Peer Systems

[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’],
[variableName, eq, ‘‘BPELVariableName’’i]

<pick createInstance=yes> activity publication messages

PUBinst= [class, INSTANCE], [process, ‘‘processName’’], <<instanceId>>

PUBvar= [class, VARIABLE_UPDATE], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’],
[variableName, ‘‘BPELVariableName’’], <<variableData>>

PUBnext= publication to the next activity

<pick createInstance=yes> activity subscription and publication algorithm

Algorithm 28: <pick createInstance=yes> activity algorithm

if createInstance == yes then

subscribe to all SUBmsgi and SUBvari

if SUBmsgk was triggered then

publish {PUBinst, PUBvar, PUBnext}
end if

end if

If the <pick createInstance=yes> activity has the create instance element set to yes

then the worker agent must subscribe to all SUBmsgi and SUBvari . After it is triggered

with the appropriate publications the worker agent executes the associated receive op­

eration. If the <pick createInstance=yes> is successfully executed, the worker publishes

PUBvar, PUBnext, and PUBinst. Finally, when the operation fails, a standard error publi­

cation is published.

A.2.5 <flow> activity

The <flow> activity implements the concurrent execution of enclosed activities and

provides links that can synchronize their execution.

Listing A.24: BPEL syntax for the <flow> activity.

<flow standard-attributes>
standard-elements
<links>?

<link name="NCName">+
</links>
activity+

</ flow >

Ioannis E. Pogkas 184

Decentralized Business Process Execution in Peer­to­Peer Systems

Listing A.25: <flow> example; parallel execution of two <sequence> activities. The first

one contains an <invoke> and a <receive> activity. The second contains an <invoke>

and a <pick> activity.

<flow name ="FlowExample" >
<sequence >

<invoke name ="A1" .../>
<receive name ="B1" .../>

</ sequence >
<sequence >

<invoke name ="A2" .../>
<pick name ="B2" .../>

</ sequence >
</ flow >

<flow> activity subscription messages

SUBflow= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBfin= [class, eq, END­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘EndactivityId’’]

<flow> activity publication messages

PUBinneri= [class, FLOW­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘flowActivityId’’]

PUBnext= publication to the next activity

CASE 1: First activity in the flow and not target of any link (in example activities

A1, A2)

activity subscription messages

SUBprev= [class, eq, FLOW­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘flowActivityId’’]

activity publication messages

PUBnext= [class, FLOW­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’]

Ioannis E. Pogkas 185

Decentralized Business Process Execution in Peer­to­Peer Systems

CASE 2: activity is not target to any link, is not the the first activity in the flow,

and there is no any target of link in its order supplier activity (activities B2, C2)

activity subscription messages

SUBprev= [class, eq, FLOW­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

activity publication messages

PUBnext= [class, FLOW­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’]

CASE 3: activity is target of links (activities B1)

When a activity that acts as a source of a link completes, its corresponding agent

determines the status its outgoing links. To determine the status for each link, the

transitionCondition is evaluated. If the evaluation is true, then the status is positive,

otherwise the status is negative. Thus activity agent publishes the PUBlink, after the

evaluation of the transitionCondition.

activity publication messages

PUBlink= [class, LINK­STATUS], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘activityId’’],
<<status , ‘‘POSITIVE|NEGATIVE">>

For each activity that has a synchronization dependency on the source activity, its

corresponding agent subscribes to the execution status of its order supplier activities

and the status of all incoming links. For example the agent for activity B1 subscribes to

the execution status of A1 and the incoming link status of A2.

activity subscription messages

SUBprev= [class, eq, FLOW­ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

SUBlink= [class, eq, LINK­STATUS], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘linkActivityId’’]

CASE 4: activity which is not target of a link but there is some target of link as

its order supplier activity such as activity C1

activity subscription messages

SUBprev= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘prevActivityId’’]

Ioannis E. Pogkas 186

Decentralized Business Process Execution in Peer­to­Peer Systems

<end> activity subscription messages

SUBendi= [class, eq, ACTIVITY], [process, eq, ‘‘processName’’],
[instanceID, isPresent, ‘‘instanceId’’], [activityID, eq, ‘‘LastInnerActivityId’’i]

<end> activity publication messages

PUBend= [class, END­ACTIVITY], [process, ‘‘processName’’],
[instanceID, ‘‘instanceId’’], [activityID, ‘‘EndActivityId’’]

<flow> activity subscription and publication algorithm

Algorithm 29: <flow> activity algorithm

subscribe to SUBflow ∨ SUBfin

if SUBflow was triggered then

publish PUBinner

else if SUBfin was triggered then

publish PUBnext

end if

The worker responsible for the <flow> activity must subscribe to the activity that

preceded the <flow> and to the activity <end>. The latter represents the final activity in

the body of the parallel branch that is executed. There are four kind of activities in the

body of the flow: a) initial activities that are not targets of any links (like the activities A1,

A2), b) activities that are not target to any link, are not initial activities, and they have no

target of any link in their order supplier activities (like activities B2, C2), c) activities that

are target of links (like activity B1), and d) activities which are not target of any link by

themselves but exists an activity that is target of a link in their order supplier activities

(such as activity C1).

For each <flow> inner activity there is a separate worker responsible for its sub­

scription evaluation and execution. Based on the category that belongs the worker may

subscribe to the execution or link status of its previous activities.

The <end> activity subscribes to the last inner activity of each parallel flow and waits

for all parallel execution paths to finish. Otherwise an error is published after a period of

time. In this case the <flow> agent receives a PUBend publication, finishes its execution

and sends a publication to the next activity. If any activity operation fails, a standard

error publication is published.

Ioannis E. Pogkas 187

Decentralized Business Process Execution in Peer­to­Peer Systems

Previous Activity

Flow Activity

Innera1

Activity

Innerb1

Activity

Innerz1

Activity

End Activity

SUBPUB

SUB

SUB

SUBinner_z1

SUBfin

PUB

PUB

PUBend

PUBinner_a1 SUBprev

PUBfin

Next Activity

SUBnext

PUBnext

SUBflowPUBnext

...

Innera2

Activity

Innerb2

Activity

Innerz2

Activity

SUBPUB

SUB

SUB

SUBinner_z2

PUB

PUB

PUBend

PUBinner_a2 SUBprev

...

SUBlink

PUBlink

PUBexit

Figure A.13: Publish/Subscribe messages for the <flow> activity.

Ioannis E. Pogkas 188

Decentralized Business Process Execution in Peer­to­Peer Systems

Acronyms

API Application Programming Interface

BISON Biology Inspired techniques for Self Organization in dynamic Networks

BPEL Business Process Execution Language

CAN Content Addressable Network

CFG Control Flow Graph

CORBA Common Object Request Broker Architecture

DELIS Dynamically Evolving Large­scale Information Systems

DHT Distributed Hash Table

EU European Union

FTP File Transfer Protocol

GPL GNU General Public License

HTTP Hypertext Transfer Protocol

IT Information Technology

JMS Java Message Service

LCC Lightweight Coordination Calculus

MIME Multipurpose Internet Mail Extensions

OASIS Organization for the Advancement of Structured Information Stan­

dards

OSI Open Systems Interconnection

P2P Peer­to­Peer

PC Personal Computer

PDG Program Dependence Graph

Pub/Sub Publish/Subscribe

Qos Quality of Service

REST Representational State Transfer

RMI Remote Method Invocation

RP Rendezvous Point

SHA Secure Hash Algorithm

SMTP Simple Mail Transfer Protocol

SOA Service­Oriented Architecture

Ioannis E. Pogkas 189

Decentralized Business Process Execution in Peer­to­Peer Systems

SOAP Simple Object Access Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TTL Time To Live

UDDI Universal Description, Discovery and Integration

WfMS Workflow Management System

WS Web Service

WS­BPEL Web Services Business Process Execution Language

WSDL Web Services Description Language

XML Extensible Markup Language

XPath XML Path Language

Ioannis E. Pogkas 190

Decentralized Business Process Execution in Peer­to­Peer Systems

Bibliography

[AAA+07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,

M. Ford, Y. Goland, A. Guizar, N. Kartha, C. K. Liu, R. Kha­

laf, D. König, M. Marin, V. Mehta, S. Thatte, D. van der Rĳn,

P. Yendluri, and A. Yiu. Web services business process execu­

tion language version 2.0. Technical report, OASIS Standard, 2007.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2. 0-OS.html .

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley­

mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and

S. Weerawarana. Business process execution language for web

services specification, version 1.1. Technical report, Specifi­

cation BEA Systems, International Business Machines Corpo­

ration, Microsoft Corporation, SAP AG, Siebel Systems, 2003.

http://public.dhe.ibm.com/software/dw/specs/ws-bpel /ws-bpel1.pdf .

[Act11] ActiveVOS. Activevos product overview.

http://www.activevos.com/products/activevos/overvie w, May 2011.

[AHKB03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P.

Barros. Workflow patterns. Distrib. Parallel Databases, 14:5–51, July

2003.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,

and Tushar D. Chandra. Matching events in a content­based subscrip­

tion system. In Proceedings of the eighteenth annual ACM symposium on

Principles of distributed computing, PODC ’99, pages 53–61, New York,

NY, USA, 1999. ACM.

[ATS04] Stephanos Androutsellis­Theotokis and Diomidis Spinellis. A survey

of peer­to­peer content distribution technologies. ACM Comput. Surv.,

36:335–371, December 2004.

[BB05] Stefan Birrer and Fabian E. Bustamante. The feasibility of dht­based

streaming multicast. In Proceedings of the 13th IEEE International Sym­

posium on Modeling, Analysis, and Simulation of Computer and Telecom­

Ioannis E. Pogkas 191

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://public.dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel1.pdf
http://www.activevos.com/products/activevos/overview

Decentralized Business Process Execution in Peer­to­Peer Systems

munication Systems, pages 288–298, Washington, DC, USA, 2005. IEEE

Computer Society.

[BCD+05] Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni Di Caro,

Frederick Ducatelle, Luca Gambardella, Niloy Ganguly, Márk Jelasity,

Roberto Montemanni, and Alberto Montresor. Design patterns from biol­

ogy for distributed computing. In Proceedings of the European Conference

on Complex Systems, November 2005.

[BCM+99] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and

D.C. Sturman. An efficient multicast protocol for content­based publish­

subscribe systems. In Distributed Computing Systems, 1999. Proceedings.

19th IEEE International Conference on, pages 262 –272, 1999.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendel­

sohn, H. F. Nielsen, S. Thatte, and D. Winer. Simple object

access protocol (soap) 1.1. Technical report, W3C Note, 2000.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ .

[BHM+01] Jean Bacon, Alexis Hombrecher, Chaoying Ma, Ken Moody, and Walt Yao.

Event storage and federation using odmg. In Revised Papers from the 9th

International Workshop on Persistent Object Systems, POS­9, pages 265–

281, London, UK, 2001. Springer­Verlag.

[BHM+04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and

D. Orchard. Web services architecture. Technical report, W3C Working

Group Note, 2004. http://www.w3.org/TR/ws-arch/ .

[Bir93] Kenneth P. Birman. The process group approach to reliable distributed

computing. Commun. ACM, 36:37–53, December 1993.

[BMM05] Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Workflow par­

titioning in mobile information systems. In Elaine Lawrence, Barbara

Pernici, and John Krogstie, editors, Mobile Information Systems, volume

158 of IFIP International Federation for Information Processing, pages 93–

106. Springer Boston, 2005. 10.1007/0­387­22874­8_7.

[BPSM+06] T. Bray, J. Paol, C. M. Sperberg­McQueen, E. Maler,

F. Yergeau, and J. Cowan. Extensible markup language

(xml) 1.1. Technical report, W3C Recommendation, 2006.

http://www.w3.org/TR/2006/REC-xml11-20060816/ .

[BV04] Paul Buhler and José M. Vidal. Enacting BPEL4WS specified workflows

with multiagent systems. In Proceedings of the Workshop on Web Services

and Agent­Based Engineering, 2004.

Ioannis E. Pogkas 192

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2006/REC-xml11-20060816/

Decentralized Business Process Execution in Peer­to­Peer Systems

[CCMN04] Girish B. Chafle, Sunil Chandra, Vĳay Mann, and Mangala Gowri Nanda.

Decentralized orchestration of composite web services. In Proceedings

of the 13th international World Wide Web conference on Alternate track

papers & posters, WWW Alt. ’04, pages 134–143, New York, NY, USA,

2004. ACM.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web

services description language (wsdl) 1.1. Technical report, W3C Note,

2001. http://www.w3.org/TR/wsdl .

[CCR04] Miguel Castro, Manuel Costa, and Antony Rowstron. Performance and

dependability of structured peer­to­peer overlays. In Proceedings of the

2004 International Conference on Dependable Systems and Networks,

pages 9–, Washington, DC, USA, 2004. IEEE Computer Society.

[CDK+03] Miguel Castro, Peter Druschel, Anne­Marie Kermarrec, Animesh Nandi,

Antony Rowstron, and Atul Singh. Splitstream: high­bandwidth multi­

cast in cooperative environments. In Proceedings of the nineteenth ACM

symposium on Operating systems principles, SOSP ’03, pages 298–313,

New York, NY, USA, 2003. ACM.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi

event­based infrastructure and its application to the development of the

opss wfms. IEEE Trans. Softw. Eng., 27:827–850, September 2001.

[CdSLMM11] A.P. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo. Chunk distribu­

tion in mesh­based large­scale p2p streaming systems: A fluid approach.

Parallel and Distributed Systems, IEEE Transactions on, 22(3):451 –463,

march 2011.

[CHvRR04] L. Clement, A. Hately, C. von Riegen, and T. Rogers. Uddi version

3.0.2. Technical report, UDDI Spec Technical Committee Draft, 2004.

http://uddi.org/pubs/uddi_v3.htm .

[Coa99] Workflow Management Coalition. The workflow manage­

ment coalition specification: Terminology and glossary.

Technical report, Workflow Management Coalition, 1999.

http://www.wfmc.org/standards/docs/TC-1011_term_glo ssary_v3.pdf .

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design

and evaluation of a wide­area event notification service. ACM Trans.

Comput. Syst., 19:332–383, August 2001.

[CRW04] A. Carzaniga, M.J. Rutherford, and A.L. Wolf. A routing scheme for

content­based networking. In INFOCOM 2004. Twenty­third AnnualJoint

Ioannis E. Pogkas 193

http://www.w3.org/TR/wsdl
http://uddi.org/pubs/uddi_v3.htm
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Decentralized Business Process Execution in Peer­to­Peer Systems

Conference of the IEEE Computer and Communications Societies, vol­

ume 2, pages 918 – 928 vol.2, March 2004.

[CS02] Edith Cohen and Scott Shenker. Replication strategies in unstructured

peer­to­peer networks. In Proceedings of the 2002 conference on Applica­

tions, technologies, architectures, and protocols for computer communica­

tions, SIGCOMM ’02, pages 177–190, New York, NY, USA, 2002. ACM.

[CS05] F. Cao and J.P. Singh. Medym: match­early and dynamic multicast for

content­based publish­subscribe service networks. In Distributed Com­

puting Systems Workshops, 2005. 25th IEEE International Conference on,

pages 370 – 376, June 2005.

[CW03] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content­based

network. In Proceedings of the 2003 conference on Applications, technolo­

gies, architectures, and protocols for computer communications, SIGCOMM

’03, pages 163–174, New York, NY, USA, 2003. ACM.

[del06] delis. DELIS: Dynamically Evolving, Large­scale Information Systems.

http://delis.upb.de, 2006.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion

Stoica. Wide­area cooperative storage with cfs. In Proceedings of the

eighteenth ACM symposium on Operating systems principles, SOSP ’01,

pages 202–215, New York, NY, USA, 2001. ACM.

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm. On

objects and events. In Proceedings of the 16th ACM SIGPLAN conference

on Object­oriented programming, systems, languages, and applications,

OOPSLA ’01, pages 254–269, New York, NY, USA, 2001. ACM.

[EJ01] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC

3174 (Informational), September 2001. Updated by RFC 4634.

[FGM+97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners­Lee. Hypertext

Transfer Protocol – HTTP/1.1. RFC 2068 (Proposed Standard), January

1997. Obsoleted by RFC 2616.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network­

based software architectures. PhD thesis, 2000. AAI9980887.

[FPR02] Geoffrey Fox, Shrideep Pallickara, and Xi Rao. A scaleable event infras­

tructure for peer to peer grids. In Proceedings of the 2002 joint ACM­

ISCOPE conference on Java Grande, JGI ’02, pages 66–75, New York, NY,

USA, 2002. ACM.

Ioannis E. Pogkas 194

Decentralized Business Process Execution in Peer­to­Peer Systems

[GDS+03] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Grib­

ble, Henry M. Levy, and John Zahorjan. Measurement, modeling, and

analysis of a peer­to­peer file­sharing workload. In Proceedings of the

nineteenth ACM symposium on Operating systems principles, SOSP ’03,

pages 314–329, New York, NY, USA, 2003. ACM.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm

for minimum­weight spanning trees. ACM Trans. Program. Lang. Syst.,

5:66–77, January 1983.

[GMS06] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in

peer­to­peer networks: Algorithms and evaluation. Performance Evalua­

tion, 63(3):241 – 263, 2006. P2P Computing Systems.

[Gnu] Gnutella. The gnutella protocol specification v0.4.

http://www.stanford.edu/class/cs244b/gnutella_proto col_0.4.pdf .

[GRCB05] Li Guo, David Robertson, and Yun­Heh Chen­Burger. A novel approach

for enacting the distributed business workflows using bpel4ws on the

multi­agent platform. In Proceedings of the IEEE International Conference

on e­Business Engineering, pages 657–664, Washington, DC, USA, 2005.

IEEE Computer Society.

[GSAA04] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Ab­

badi. Meghdoot: content­based publish/subscribe over p2p networks.

In Proceedings of the 5th ACM/IFIP/USENIX international conference on

Middleware, Middleware ’04, pages 254–273, New York, NY, USA, 2004.

Springer­Verlag New York, Inc.

[GSG02] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: es­

timating latency between arbitrary internet end hosts. In Proceedings

of the 2nd ACM SIGCOMM Workshop on Internet measurment, IMW ’02,

pages 5–18, New York, NY, USA, 2002. ACM.

[HFC+08] Yan Huang, Tom Z.J. Fu, Dah­Ming Chiu, John C.S. Lui, and Cheng

Huang. Challenges, design and analysis of a large­scale p2p­vod system.

In Proceedings of the ACM SIGCOMM 2008 conference on Data communi­

cation, SIGCOMM ’08, pages 375–388, New York, NY, USA, 2008. ACM.

[HH06] Dominic Heutelbeck and Matthias Hemmje. Distributed leader election

in p2p systems for dynamic sets. Mobile Data Management, IEEE Inter­

national Conference on, 0:29, 2006.

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo,

Scott Shenker, and Ion Stoica. Querying the internet with pier. In Pro­

ceedings of the 29th international conference on Very large data bases ­

Volume 29, VLDB ’2003, pages 321–332. VLDB Endowment, 2003.

Ioannis E. Pogkas 195

http://www.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf

Decentralized Business Process Execution in Peer­to­Peer Systems

[Hol95] D. Hollingsworthd. The workflow management coalition specification:

The workflow reference model. Technical report, Workflow Management

Coalition, 1995. http://www.wfmc.org/Articles-White-Papers/ .

[HX07] Seung Chul Han and Ye Xia. Optimal leader election scheme for peer­to­

peer applications. International Conference on Networking, 0:29, 2007.

[IBM11] IBM. Websphere. http://www-01.ibm.com/software/websphere/ , May

2011.

[jBo11] jBoss. jbpm5. http://www.jboss.org/jbpm , May 2011.

[Jen87] Kurt Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozen­

berg, editors, Petri Nets: Central Models and Their Properties, volume 254

of Lecture Notes in Computer Science, pages 248–299. Springer Berlin /

Heidelberg, 1987. 10.1007/BFb0046842.

[JPPnMMJ08] Ricardo Jiménez­Peris, Marta Patiño Martı́nez, and Ernestina Martel­

Jordán. Decentralized web service orchestration: a reflective approach.

In Proceedings of the 2008 ACM symposium on Applied computing, SAC

’08, pages 494–498, New York, NY, USA, 2008. ACM.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew

Levine, and Daniel Lewin. Consistent hashing and random trees: dis­

tributed caching protocols for relieving hot spots on the world wide web.

In Proceedings of the twenty­ninth annual ACM symposium on Theory of

computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.

[LCC+02] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and

replication in unstructured peer­to­peer networks. In Proceedings of the

16th international conference on Supercomputing, ICS ’02, pages 84–95,

New York, NY, USA, 2002. ACM.

[LJ05] Guoli Li and Hans­Arno Jacobsen. Composite subscriptions in content­

based publish/subscribe systems. In Proceedings of the ACM/I­

FIP/USENIX 2005 International Conference on Middleware, Middleware

’05, pages 249–269, New York, NY, USA, 2005. Springer­Verlag New York,

Inc.

[LMJ10] Guoli Li, Vinod Muthusamy, and Hans­Arno Jacobsen. A distributed

service­oriented architecture for business process execution. ACM Trans.

Web, 4:2:1–2:33, January 2010.

[M0̈1] Gero Mühl. Generic constraints for content­based publish/subscribe. In

Proceedings of the 9th International Conference on Cooperative Information

Systems, CooplS ’01, pages 211–225, London, UK, 2001. Springer­Verlag.

Ioannis E. Pogkas 196

http://www.wfmc.org/Articles-White-Papers/
http://www-01.ibm.com/software/websphere/
http://www.jboss.org/jbpm

Decentralized Business Process Execution in Peer­to­Peer Systems

[M0̈2] Gero Mühl. Large­Scale Content­Based Publish/Subscribe Systems. PhD

thesis, University of Darmstad, 2002.

[MB02] Alberto Montresor and Ozalp Babaoglu. The BISON project. IEEE Com­

putational Intelligence Bulletin, 1(1):6–9, December 2002.

[MJ09] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator.

In Proc. of the 9th Int. Conference on Peer­to­Peer (P2P’09), pages 99–100,

Seattle, WA, 2009.

[MPR+03] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel,

Dan S. Wallach, Xavier Bonnaire, Pierre Sens, Jean­Michel Busca, and

Luciana Arantes­Bezerra. Post: a secure, resilient, cooperative messag­

ing system. In Proceedings of the 9th conference on Hot Topics in Operating

Systems ­ Volume 9, pages 11–11, Berkeley, CA, USA, 2003. USENIX As­

sociation.

[Nap] LLC Napster. www.napster.com/ .

[NCS04] Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing

execution of composite web services. In Proceedings of the 19th annual

ACM SIGPLAN conference on Object­oriented programming, systems, lan­

guages, and applications, OOPSLA ’04, pages 170–187, New York, NY,

USA, 2004. ACM.

[NWD03] Tsuen­Wan Ngan, Dan Wallach, and Peter Druschel. Enforcing fair shar­

ing of peer­to­peer resources. In Peer­to­Peer Systems II, volume 2735

of Lecture Notes in Computer Science, pages 149–159. Springer Berlin /

Heidelberg, 2003. 10.1007/978­3­540­45172­3_14.

[OAA+00] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar,

Robert Strom, and Daniel Sturman. Exploiting ip multicast in content­

based publish­subscribe systems. In IFIP/ACM International Conference

on Distributed systems platforms, Middleware ’00, pages 185–207, Secau­

cus, NJ, USA, 2000. Springer­Verlag New York, Inc.

[ODE11] Apache ODE. Apache ode (orchestration director engine).

http://ode.apache.org/ , May 2011.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence

graph in a software development environment. SIGPLAN Not., 19:177–

184, April 1984.

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The information

bus: an architecture for extensible distributed systems. In Proceedings

of the fourteenth ACM symposium on Operating systems principles, SOSP

’93, pages 58–68, New York, NY, USA, 1993. ACM.

Ioannis E. Pogkas 197

www.napster.com/
http://ode.apache.org/

Decentralized Business Process Execution in Peer­to­Peer Systems

[PB02] P.R. Pietzuch and J.M. Bacon. Hermes: a distributed event­based middle­

ware architecture. In Distributed Computing Systems Workshops, 2002.

Proceedings. 22nd International Conference on, pages 611 – 618, 2002.

[PFL+00] João Pereira, Françoise Fabret, François Llirbat, Radu Preotiuc­Pietro,

Kenneth A. Ross, and Dennis Shasha. Publish/subscribe on the web

at extreme speed. In Proceedings of the 26th International Conference on

Very Large Data Bases, VLDB ’00, pages 627–630, San Francisco, CA,

USA, 2000. Morgan Kaufmann Publishers Inc.

[PFLS00] João Pereira, Françoise Fabret, François Llirbat, and Dennis Shasha. Ef­

ficient matching for web­based publish/subscribe systems. In Proceed­

ings of the 7th International Conference on Cooperative Information Sys­

tems, CooplS ’02, pages 162–173, London, UK, 2000. Springer­Verlag.

[PPC97] Santanu Paul, Edwin Park, and Jarir Chaar. Rainman: a workflow sys­

tem for the internet. In Proceedings of the USENIX Symposium on Internet

Technologies and Systems on USENIX Symposium on Internet Technologies

and Systems, pages 15–15, Berkeley, CA, USA, 1997. USENIX Associa­

tion.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing

nearby copies of replicated objects in a distributed environment. In Pro­

ceedings of the ninth annual ACM symposium on Parallel algorithms and

architectures, SPAA ’97, pages 311–320, New York, NY, USA, 1997. ACM.

[PWR04] Ginger Perng, Chenxi Wang, and Michael K. Reiter. Providing content­

based services in a peer­to­peer environment. In in Proceedings of the

third International Workshop on Distributed Event­Based Systems (DEBS,

pages 74–79, 2004.

[RB11] Marco Mellia Arpad Bakay Tivadar Szemethy Fabien Mathieu Luca Mus­

cariello Saverio Niccolini Jan Seedorf Giuseppe Tropea Robert Birke,

Emilio Leonardi. Architecture of a network­aware p2p­tv application:

the napa­wine approach. IEEE Communication Magazine, 2011.

[RD01a] Antony Rowstron and Peter Druschel. Storage management and caching

in past, a large­scale, persistent peer­to­peer storage utility. In Proceed­

ings of the eighteenth ACM symposium on Operating systems principles,

SOSP ’01, pages 188–201, New York, NY, USA, 2001. ACM.

[RD01b] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral­

ized object location, and routing for large­scale peer­to­peer systems. In

Proceedings of the IFIP/ACM International Conference on Distributed Sys­

tems Platforms Heidelberg, Middleware ’01, pages 329–350, London, UK,

2001. Springer­Verlag.

Ioannis E. Pogkas 198

Decentralized Business Process Execution in Peer­to­Peer Systems

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content­addressable network. In Proceedings of the

2001 conference on Applications, technologies, architectures, and protocols

for computer communications, SIGCOMM ’01, pages 161–172, New York,

NY, USA, 2001. ACM.

[RKCD01] Antony I. T. Rowstron, Anne­Marie Kermarrec, Miguel Castro, and Peter

Druschel. Scribe: The design of a large­scale event notification infras­

tructure. In Proceedings of the Third International COST264 Workshop on

Networked Group Communication, NGC ’01, pages 30–43, London, UK,

2001. Springer­Verlag.

[RS04] Venugopalan Ramasubramanian and Emin Gün Sirer. The design and

implementation of a next generation name service for the internet. In

Proceedings of the 2004 conference on Applications, technologies, architec­

tures, and protocols for computer communications, SIGCOMM ’04, pages

331–342, New York, NY, USA, 2004. ACM.

[RSW97] F. Ranno, S. K. Shrivastava, and S. M. Wheater. A system for speci­

fying and coordinating the execution of reliable distributed aplications.

Technical report, University of Bologna, 1997.

[SA97] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe

notification service with quenching. In Proceddings AUUG Technical Con­

ference, September 1997.

[Ser11] BizTalk Server. Biztalk server 2010.

http://www.microsoft.com/biztalk/en/us/default.aspx , May 2011.

[SMK08] Emil Sit, Robert Morris, and M. Frans Kaashoek. Usenetdht: a low­

overhead design for usenet. In Proceedings of the 5th USENIX Symposium

on Networked Systems Design and Implementation, NSDI’08, pages 133–

146, Berkeley, CA, USA, 2008. USENIX Association.

[SMLN+03] Ion Stoica, Robert Morris, David Liben­Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable

peer­to­peer lookup protocol for internet applications. IEEE/ACM Trans.

Netw., 11:17–32, February 2003.

[SPPvS08] Michal Szymaniak, David Presotto, Guillaume Pierre, and Maarten van

Steen. Practical large­scale latency estimation. Comput. Netw., 52:1343–

1364, May 2008.

[SPvS04] M. Szymaniak, G. Pierre, and M. van Steen. Scalable cooperative latency

estimation. In Parallel and Distributed Systems, 2004. ICPADS 2004.

Ioannis E. Pogkas 199

http://www.microsoft.com/biztalk/en/us/default.aspx

Decentralized Business Process Execution in Peer­to­Peer Systems

Proceedings. Tenth International Conference on, pages 367 – 376, july

2004.

[SS05] Kundan Singh and Henning Schulzrinne. Peer­to­peer internet telephony

using sip. In Proceedings of the international workshop on Network and op­

erating systems support for digital audio and video, NOSSDAV ’05, pages

63–68. ACM, 2005.

[TA04] Peter Triantafillou and Ioannis Aekaterinidis. Content­based publish/­

subscribe over structured p2p networks. In Proc. third Int. Workshop

Distributed Event­based Systems (DEBS’04), 16 of 16 R. BALDONI et al,

pages 24–25, 2004.

[TAaJ03] David Tam, Reza Azimi, and Hans arno Jacobsen. Building content­

based publish/subscribe systems with distributed hash tables. In Pro­

ceedings of the 1st International Workshop on Databases, Information Sys­

tems and Peer­to­Peer Computing, pages 138–152, 2003.

[Tar07] Sasu Tarkoma. Dynamic filter merging for publish/subscribe. In World

of Wireless, Mobile and Multimedia Networks, 2007. WoWMoM 2007. IEEE

International Symposium on a, pages 1 –9, june 2007.

[TBF+03] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and

Alejandro P. Buchmann. A peer­to­peer approach to content­based pub­

lish/subscribe. In Proceedings of the 2nd international workshop on Dis­

tributed event­based systems, DEBS ’03, pages 1–8, New York, NY, USA,

2003. ACM.

[TE04] P. Triantafillou and A. Economides. Subscription summarization: a new

paradigm for efficient publish/subscribe systems. In Distributed Comput­

ing Systems, 2004. Proceedings. 24th International Conference on, pages

562 – 571, 2004.

[TKLB07] Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P.

Buchmann. Bubblestorm: resilient, probabilistic, and exhaustive peer­

to­peer search. In Proceedings of the 2007 conference on Applications,

technologies, architectures, and protocols for computer communications,

SIGCOMM ’07, pages 49–60, New York, NY, USA, 2007. ACM.

[Vin97] S. Vinoski. Corba: integrating diverse applications within distributed

heterogeneous environments. Communications Magazine, IEEE, 35(2):46

–55, feb 1997.

[VKK07] R. Vĳayprasanth, R. Kavithaa, and Rajkumar Kettimuthu. Legs: A wsrf

service to estimate latency between arbitrary hosts on the internet. In

Ioannis E. Pogkas 200

Decentralized Business Process Execution in Peer­to­Peer Systems

Parallel and Distributed Processing Techniques and Applications, pages

360–364, 2007.

[WG08] Bernard Wong and Saikat Guha. Quasar: a probabilistic publish­

subscribe system for social networks. In Proceedings of the 7th interna­

tional conference on Peer­to­peer systems, IPTPS’08, pages 2–2, Berkeley,

CA, USA, 2008. USENIX Association.

[YCP04] K. Park Y. Choi and D. Park. Homed: A peer­to­peer overlay architec­

ture for large­scale content­based publish/subscribe systems. In in Pro­

ceedings of the third International Workshop on Distributed Event­Based

Systems (DEBS, pages 20–25, 2004.

[YG07] Ustun Yildiz and Claude Godart. Towards decentralized service orches­

trations. In Proceedings of the 2007 ACM symposium on Applied comput­

ing, SAC ’07, pages 1662–1666, New York, NY, USA, 2007. ACM.

[YGM94] Tak W. Yan and Héctor Garcı́a­Molina. Index structures for selective

dissemination of information under the boolean model. ACM Trans.

Database Syst., 19:332–364, June 1994.

[YZH07a] Xiaoyu Yang, Yingwu Zhu, and Yiming Hu. A large­scale and decentral­

ized infrastructure for content­based publish/subscribe services. Parallel

Processing, International Conference on, 0:61, 2007.

[YZH07b] Xiaoyu Yang, Yingwu Zhu, and Yiming Hu. Scalable content­based pub­

lish/subscribe services over structured peer­to­peer networks. In Pro­

ceedings of the 15th Euromicro International Conference on Parallel, Dis­

tributed and Network­Based Processing, PDP ’07, pages 171–178, Wash­

ington, DC, USA, 2007. IEEE Computer Society.

[ZH05] Y. Zhu and Y. Hu. Ferry: an architecture for content­based publish/sub­

scribe services on p2p networks. In Parallel Processing, 2005. ICPP 2005.

International Conference on, pages 427 – 434, June 2005.

[ZHS+04] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.

Kubiatowicz. Tapestry: a resilient global­scale overlay for service deploy­

ment. Selected Areas in Communications, IEEE Journal on, 22(1):41 – 53,

January 2004.

[ZZJ+01] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and

John D. Kubiatowicz. Bayeux: an architecture for scalable and fault­

tolerant wide­area data dissemination. In Proceedings of the 11th inter­

national workshop on Network and operating systems support for digital

audio and video, NOSSDAV ’01, pages 11–20, New York, NY, USA, 2001.

ACM.

Ioannis E. Pogkas 201

	List of Figures
	List of Tables
	Preface
	Introduction
	Problem Statement
	Proposed Solution
	Contributions
	Thesis Outline

	Background
	Workflow Management
	Web Services
	Business Process Management
	Publish/Subscribe Paradigm
	Peer-to-Peer Systems
	Unstructured Networks
	Structured Networks
	DHT implementations

	Conclusions

	Related Work
	Content-based Publish/Subscribe over Structured P2P Overlays
	Decentralized Service Orchestration
	Conclusions

	Design and Architecture
	System Overview
	Deployer Architecture
	Worker Architecture

	Publish/Subscribe over DHT
	Publish/Subscribe Model
	Subscription Algorithms
	Publication Algorithms
	Event Delivery Algorithms
	Filter Covering/Merging Algorithms

	Mapping BPEL to Publish/Subscribe Messages
	System Operation
	Startup Phase
	Deployment Phase
	Execution Phase
	Redeployment Phase
	Undeployment Phase

	Conclusions

	Evaluation
	Simulation
	ADORE Publish/Subscribe Evaluation
	Metrics
	Setup
	Experimental Results
	Performance under Standard Configuration
	Effect of Subscribers Range
	Effect of Network Size

	ADORE Engine Evaluation
	Metrics
	Setup
	Experimental Results
	Performance with varied Request Rate
	Performance with varied Web Service Delay
	Performance with varied Latency
	Per-process vs Per-instance Deployment

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Mapping BPEL to the Publish/Subscribe Language
	Mapping Basic Activities
	<receive> activity
	<reply> activity
	<invoke> activity
	<assign> activity
	<exit> activity
	<empty> activity
	<end> activity
	<wait> activity

	Mapping Structured Activities
	<sequence> activity
	<if> activity
	<while> activity
	<pick> activity
	<flow> activity

	Acronyms
	Bibliography

