
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM

MASTER THESIS

Detecting drive-by-download attacks on the web

Stefania Varvara I. Martziou

Supervisor: Alexis Delis, Professor NKUA

ATHENS

JULY 2012

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανίχνευση μη-εξουσιοδοτημένης αυτόματης
εγκατάστασης κακόβουλου λογισμικού μέσω

Διαδικτύου

Στεφανία Βαρβάρα Ι. Μάρτζιου

Επιβλέπων: Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2012

MASTER THESIS

Detecting drive-by-download attacks on the web

Stefania Varvara I. Martziou
S.N.: Μ1092

SUPERVISOR: Alexis Delis, Professor NKUA

EXAMINATION COMMITTEE:
Alexis Delis, Professor NKUA
Aggelos Kiayias Professor NKUA

July 2012

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανίχνευση μη-εξουσιοδοτημένης αυτόματης εγκατάστασης κακόβουλου λογισμικού μέσω
Διαδικτύου

Στεφανία Βαρβάρα Ι. Μάρτζιου
Α.Μ.: Μ1092

ΕΠΙΒΛΕΠΩΝ: Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:
Αλέξης Δελής, Καθηγητής ΕΚΠΑ
Άγγελος Κιαγιάς Καθηγητής ΕΚΠΑ

Ιούλιος 2012

ABSTRACT

In this thesis we define the problem of the unauthorised installation of malware to
a users' system during her visit to a web page that has been infected with malware.
This problem is very important because the percentage of web pages that can harm the
user is increasing while the users' traditional defences, like for example a firewall, are
proving unable to cope with this kind of attacks. A number of approaches have been
suggested to detect those attacks but even the most technically advanced ones have
scaling issues, which is prohibitive when designing systems for the internet. This has
created the need for a filter that will be able to quickly reject bening web pages and forward
to the more advanced systems those that may contain malevolent code. We present the
implementation of such a filter, the rational behind its design and its evaluation.

SUBJECT AREA: System design

KEYWORDS: drive-by-download attack, malware, classification, filter, web, security.

ΠΕΡΙΛΗΨΗ

Στην εργασία αυτή ορίζουμε το πρόβλημα της μη εξουσιοδοτημένης εγκατάστασης
κακόβουλου λογισμικού στο σύστημα ενός χρήστη κατά την επίσκεψή του σε μια ιστο-
σελίδα η οποία έχει μολυνθεί με κακόβουλο κώδικα. Το πρόβλημα αυτό είναι αρκετά
σημαντικό καθώς το ποσοστό των ιστοσελίδων που μπορούν να βλάψουν έναν χρήστη
ολοένα και αυξάνεται και επίσης οι παραδοσιακές άμυνες του χρήστη, όπως π.χ. το
τείχος προστασίας, δεν μπορούν να σταματήσουν τέτοιου είδους επιθέσεις. Πολλές προ-
σεγγίσεις έχουν προταθεί για την ανίχνευση αυτών των επιθέσεων αλλά ακόμα και οι
πιο τεχνολογικά εξελιγμένες από αυτές παρουσιάζουν προβλήματα κλιμάκωσης, πράγμα
το οποίο είναι απαγορευτικό όταν μιλάμε για συστήματα που αφορούν στο Διαδίκτυο.
Αυτό δημιούργησε την ανάγκη για ένα φίλτρο το οποίο θα μπορεί γρήγορα να απορρίπτει
ιστοσελίδες οι οποίες δεν βάζουν σε κίνδυνο τον χρήστη και να προωθεί στα πιο εξε-
λιγμένα συστήματα μόνο τις σελίδες αυτές που είναι πιθανόν να περιέχουν κακόβουλο
κώδικα. Παρουσιάζουμε λοιπόν την υλοποίηση ενός τέτοιου φίλτρου, τα κίνητρα πίσω
από τις επιλογές σχεδιασμού του και την αξιολόγησή του.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάπτυξη συστημάτων και εφαρμογών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κακόβουλο λογισμικό, φίλτρο, ταξινόμηση, παγκόσμιος ιστός, ασφάλεια.

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω τον καθηγητή κ. Αλέξη Δελή, ο οποίος μου έδειξε πόσο ποι-
οτική σχέση μπορούν να έχουν οι καθηγητές με τους φοιτητές τους. Χωρίς την πολύτιμη
συμβολή και ενθάρρυνσή του δε θα ήταν δυνατή η διεκπαιρέωση της διπλωματικής αυτής
εργασίας.

Θα ήθελα επίσης να ευχαριστήσω τον διδάκτορα Θοδωρή Γιαννακόπουλο για τις συμβου-
λές του και τη βοήθειά του στον τομέα της ταξινόμησης και της εκτίμησης των αποτελεσμάτων.

Contents

1 Introduction 11
1.1 Drive-by-download attack . 11
1.2 Infection mechanisms . 13
1.3 Related work . 14

2 Objectives - Methodology 17

3 HTML features 18
3.1 Side effects of malicious code injection . 19
3.2 Excessive presence of code . 19
3.3 Suspicious code . 19

4 JavaScript features 21
4.1 Injection of malicious code . 21
4.2 Attempts to execute code . 22
4.3 Suspicious code . 22
4.4 Obfuscation . 23
4.5 Deobfuscation . 24

5 URL features 26
5.1 Syntactical . 26
5.2 DNS based . 27
5.3 WHOIS based . 29
5.4 GeoIP based . 29

6 Decision making 30
6.1 Training . 31
6.2 Classification . 31

7 Implementation 33
7.1 Evaluation . 33

Random Forests classifier . 34
J48 classifier . 34
Conclusion . 34

7.2 Implementation . 35
7.3 Future work . 35

Bibliography 36

List of Figures

1.1 1.3% of all searches contain one or more malevolent web pages in their results [1] 12
1.2 Drive-by-download steps [1] . 13

4.1 A fragment of obfuscated JavaScript code [2] . 24
4.2 Deobfuscation of figure reffig:js-obs reveals an attempt to indirectly load JavaScript

code [2] . 25

6.1 Classifier training using the classifiers with the best performance 31
6.2 Classification using the classifiers with the best performance 32

List of Tables

7.1 A sample confusion matrix . 33
7.2 Random Forests confusion matrix . 34
7.3 J48 confusion matrix . 34

Detecting drive-by-download-attacks on the web

1. Introduction

In the early years of the world wide web, when the user base was small and the technology
still in its infancy, there where virtually no commercial services or any other way to profit from
an online presence. However, in the last years internet usage has proliferated among the
computer users. This has led to the advancement of web technologies and the creation of
a rapidly growing online economy (such as e-commerce, paid services, etc). Nowadays, it's
almost necessary for a company to maintain a web site, offer their services online but also
use the internet for their every day operation (email services e.t.c.).

All this progress has attracted a number of people that are trying to illegally profit from this
online economy. The main way the attackers are trying to profit is by creating a botnet, i.e. a
network of thousands of compromised computers that belong to unsuspecting users and is
under control of the attacker. Using a botnet a malicious user can earn thousands of dollars
per day. The most common way to create a botnet is to deliver web malware (executable
code that is allowing the attacker to control the computer the code runs on) to the users.

There are two main ways that web malware is delivered to the user. The first way of
delivering malware is through traditional social engineering techniques, in which the user is
tricked to download and execute the malware on his own. This may happen by enticing the
user to download free content (like software or pirated content) which contains the malware.
The malware is installed and executed by the user.

The second andmore devious way to deliver malware is by targeting one or more browser
vulnerabilities. When the user visits an infected web page, the malware is automatically
downloaded, installed and executed without the user's consent or any other action. This
category of techniques is called drive-by-download attacks and is the focus of this thesis [1].

1.1 Drive-by-download attack

As a drive-by-download attack we define every download that is performed without the
knowledge and consent of the user (usually a malware or a computer virus). The main reason
why these attacks occur is to allow the attacker to infect and take over a network of computers
in order to create a botnet, which is usually later used to launch a DDoS attack.

There are twomain reasons whywe chose to deal with this kind of attacks. The first reason
is that traditional methods of protection (firewalls, NATs or proxies) do no work for this kind
of attacks because the attacker does not directly target the user. Instead, the infection is
masked as a legitimate user request for content, which happens to be malware. None of
these methods of protection can distinguish between a "normal" user request and an action
by a vulnerable, compromised browser. The second reason became apparent from a study
by Google researchers: at least 1.3% of all searches contain one or more malevolent web
pages in their results (figure 1.1). Furthermore, out of the top 1 million URLs that appear as
search results, more than 6 thousand are malicious web pages. It is apparent that driver-by-
download attacks are an important issue and deserves the attention.

S. Martziou 11

Detecting drive-by-download-attacks on the web

Figure 1.1: 1.3% of all searches contain one or more malevolent web pages in their results
[1]

A successful drive-by-download attack requires two prerequisites to have been met: the
user's browser must contain at least one vulnerability and the user must visit a malicious web
page. Unfortunately, both of the requirements are easy to meet: modern browsers contain
millions of lines of code and it is almost certain that a security vulnerability will exist while the
number of malicious web pages is very large and surprisingly easy to visit, even accidentally.
The main phases of a drive-by-download attack are the following:

• A user visits an infected web site.

• The browser download the initial exploit script.

• The exploit targets a browser vulnerability.

• The exploit code is automatically executed.

• Drive-by-download attack begins.

• The downloaded executable is installed and ran.

• The system is now infected.

In figure 1.2 we can see the steps that are performed during a drive-by-download attack.
In this figure as "landing site" we refer to the server containing the infected web page and as
"malware distribution site" we refer to the server that is delivering the malware. Also, we note
that between the initial visit of the user to the infected web page and the actual download

S. Martziou 12

Detecting drive-by-download-attacks on the web

Figure 1.2: Drive-by-download steps [1]

of the malware there may be an arbitrary number of redirects from server to server. This
makes the detection and shut down of the malware distribution servers more difficult and
time consuming, giving more time to the attacker to spread the malware [1].

1.2 Infection mechanisms

In the previous section we explained how a drive-by-download attack starts, i.e. by a
user visiting an infected web site. The existence of legitimate but - somehow - infected web
pages is crucial to this kind of attacks because normally users do not tend to visit obscure
and unknown pages set up by an attacker. A web site with a lot of traffic (e.g www.cnn.com)
that has been compromised will launch many more attacks than a web site that has been
created by an attacker just for this purpose, no matter how much effort he puts into it. For
this reason, the attackers focus on infecting existing, legitimate web sites and this happens
with four different ways [3].

Compromised web server A web site may be written and configured to be as secure as
possible and without any vulnerabilities. However, none of these precautions used by the
web site creators matter if the web server that is hosting the site is not secure. An attacker
may manage to take advantage of a security vulnerability in the server's software (this may
happen for any application that runs in the server, like a database server, the http server or
even the operating system itself) and thus gain the required privileges to insert the exploit

S. Martziou 13

Detecting drive-by-download-attacks on the web

code in the hosted web sites. From that point onwards the web sites will start delivering the
exploit code.

Advertising In most cases, advertisements in a web site are not hosted by the same web
site. On the contrary, the web site administrators are renting advertisement space in their
web pages and (usually using a JavaScript snippet) the advertisements are downloaded
directly from the advertisers' servers. Usually, this does not pose a threat since the advertisers
rely on the web masters for their work and they are very careful not to deliver malicious
code. However, there are many cases where the customer of the advertisement space is not
the supplier of the advertisement code. Instead, this space is sold to third party advertisers
which have no contact with the web masters. A notable example of this practise is Ads1, a
service by Google that is buying advertisement space from the web masters and sells it to
the advertisers.

An attacker may take advantage of such services by buying advertisement space and
injecting exploit code to unsuspecting web pages. This leads to the conclusion that the trust
between the web masters and the advertisers should not be transitive, i.e. the web masters
should not trust blindly the content they are displaying in their web pages even when dealing
with a reputable buyer of their advertisement space.

Third party widgets A third party widget is a small piece of code (usually JavaScript) that is
hosted in a web site and provides services to other web sites that choose to include it in their
pages. Widgets usually enhance the web pages by providing small pieces of information, like
the weather, a traffic counter, etc. If the widget is not hosted in a reputable web server, it may
deliver malicious code to the visitors of the web site that is including it.

User submitted content The last prevalent mechanism that can be used to infect a legit-
imate web page is the content that is submitted by end users. This content may come from
comments to articles, from posts to user forums, blog entries, etc, and usually is stored in a
database or even as a piece of HTML code. If the web pages do not sufficiently control and
sanitise the user input, an attacker may be able to inject the exploit code in the web page.

1.3 Related work

Over the years a large number of systems have been created that attempt to locate and
identify infected legitimate web pages or pages that have been specifically designed to launch
drive-by-download attacks. The methodologies applied by those systems can be broadly
classified to four main categories.

Traditional antivirus tools The first approach is based on existing antivirus tools [4]. These
tools are using static signatures and try to identify patterns usually present in malicious code.

1http://www.google.com/ads/

S. Martziou 14

Detecting drive-by-download-attacks on the web

The main advantage of this method is its speed but it becomes obsolete through the use of
advanced obfuscation of the malicious code. Another disadvantage of this approach is that
the list of patterns must be regularly updated to include the signatures of newly discovered
malicious code and as a result such systems are slow to respond to new threats.

Low interaction honeypots Honeypots are systems that pose as a client and interact with
the server to examine whether an attack has occurred. Low interaction honeypots are emu-
lating a web browser and try to locate patterns of malicious responses from the web server
(for example, a call to an ActiveX component which contains a buffer overflow vulnerability
with a very long argument is a suspicious server behaviour). The problem with this kind of
honeypots is that they are preconfigured with the list of suspicious patterns and as a result
are unable to identify malicious code for which there are no patterns.

Two notable examples of low interaction honeypots are:

PhoneyC [5] mimics legitimate web browsers and can understand dynamic content by de-
obfuscating malicious content for detection. Furthermore, PhoneyC emulates specific
vulnerabilities to pinpoint the attack vector. PhoneyC is a modular framework that en-
ables the study of malicious HTTP pages and understands modern vulnerabilities and
attacker techniques.

Monkey-Spider [6] a crawler based client honeypot initially utilising anti-virus solutions to
detect malware. It is claimed to be fast and expandable with other detection mecha-
nisms.

High interaction honeypots High interaction honeypots are fully functional browsers that
run in a controlled environment (usually a virtual machine). Instead of trying to detect a
suspicious pattern of code from the web server, they execute the code and try to identify
the changes to the state of the system that indicate the execution of malicious code. Such
changes may be the creation or alteration of files outside of allowed folders, the modification
of the system's registry, the creation of new processes, etc.

The main advantage of these systems is that they are very effective in identifying the
results of an attack but they have their share of (serious) disadvantages. First, their perfor-
mance is quite low since they need to thoroughly inspect the system. Another disadvantage
is that they require a successful attack in order to identify a malicious web page. However,
many attacks rely on a specific combination of the software of the client (browser, compo-
nents and even operating system) and as a result, unless the honeypot contains a large
number of combinations of client software, the malicious web page may be missed. A final
disadvantage is that the attacker may be able to avoid detection by the honeypot either by
identifying that the execution environment is a virtual machine and stopping the attack or by
delaying the execution of the attack for a period of time (this way the honeypot will detect no
attacks right after loading and executing the code of the infected web page but a real system
would suffer from the attack a little while later).

S. Martziou 15

Detecting drive-by-download-attacks on the web

A few notable examples of high interaction honeypots are the following:

HoneyMonkey [7] is state based and detects attacks on clients by monitoring files, registry,
and processes. A unique characteristic of HoneyMonkey is its layered approach to
interacting with servers in order to identify zero-day exploits. HoneyMonkey initially
crawls the web with a vulnerable configuration. Once an attack has been identified, the
server is reexamined with a fully patched configuration. If the attack is still detected,
one can conclude that the attack utilizes an exploit for which no patch has been publicly
released yet and therefore is quite dangerous.

Capture-HPC [8] differs from existing client honeypots in various ways. First, it is designed
to be fast. State changes are being detected using an event-based model allowing
to react to state changes as they occur. Second, Capture is designed to be scalable.
A central Capture server is able to control numerous clients across a network. Third,
Capture is supposed to be a framework that allows to utilize different clients. The initial
version of Capture supports Internet Explorer, but the current version supports all major
browsers (Internet Explorer, Firefox, Opera, Safari) as well as other HTTP aware client
applications, such as office applications and media players.

HoneyClient [9] was the first open source client honeypot and is a mix of Perl, C++, and
Ruby. HoneyClient is state-based and detects attacks onWindows clients bymonitoring
files, process events, and registry entries. It has integrated the Capture-HPC real-time
integrity checker to perform this detection. HoneyClient also contains a crawler, so it
can be seeded with a list of initial URLs from which to start and can then continue to
traverse web sites in search of client-side malware.

JSAND (JavaScript Anomaly-based aNalysis and Detection) [10] is a novell system with
a very good success rate of discovering malicious web pages. JSAND is emulating a web
browser and instead of monitoring the changes in the state of the system, it is recording
the events that occur during the interpretation of the HTML elements and the execution of
the JavaScript code. For each event, it extracts a number of features and evaluates the
web page using anomaly detection techniques. This allows the system to identify malicious
content even in the presence of previously unseen attacks. JSAND is available in Wepawet2,
an online service where users can submit URLs and files that are automatically analysed,
delivering detailed reports about the type of observed attacks and the targeted vulnerabilities.

2http://wepawet.cs.ucsb.edu

S. Martziou 16

Detecting drive-by-download-attacks on the web

2. Objectives - Methodology

The objective of this thesis is to create a fast and lightweight filter that is able to distinguish
with a very good accuracy a malicious from a benign web page. The web pages that are
assumed to be malicious will be analysed by the more powerful and accurate but slow tools
that were described in the previous chapter. For this reason it is very crucial for this filter to
produce very few false negatives (web pages that are malicious but are labeled as benign),
since those will be considered safe for the user and will not be further analysed. However,
the production of a false positive (a benign web page that is labeled as malicious) may be
undesirable but not as harmful as a false negative: the web page will be further analysed
with the slow tools before being declared safe for the user.

The methodology for the creation of the filter is quite simple in principle: define and extract
a set of characteristics for the web pages and then based on these characteristics decide
whether the web page is malicious or not. However, while simple in principle, this method
requires the identification of the correct set of characteristics (or features) and also the use
of the correct labeling process.

The set of features that were selected are based on three main components of a web
page: the structure of the HTML code of the web page, the structure and content of the
JavaScript code of the web page and the URLs (both the URL of the web page and those
contained in it). The selected features are described in chapters 3, 4, and 5. The labeling
process used comes from the text mining world and is called classification. In short, we
use a set of web pages, whose label ("malevolent" or "benign") we know a-priori, to train a
classifier and then use the classifier to label unknown web pages. We thoroughly discuss it
in chapter 6.

The ideas and methodology of this thesis is based on the work described in [11]

S. Martziou 17

Detecting drive-by-download-attacks on the web

3. HTML features

HTML (short for HyperText Markup Language) is the markup language that is used in the
vast majority of web pages. The term "markup" denotes that using this language the author
of the web pages is "marking" or annotating the content of the page with information on how
it will be presented. This marking is accomplished by the use of "tags" or "elements", which
are enclosed in "<" and ">". An example of an element is bold, which means that the
word "bold" should be displayed using a bold font. A very basic example of an HTML page
follows.

<html>
<head>

<title>Hello world!</title>
</head>
<body>

<h1>Hello world</h1>
</body>

</html>

There is a very large number of elements in use by HTML but only a few of them are
important for our analysis:

html This is the root element of an HTML page.

head Inside this element the author is adding all the metadata of this web page.

body This element contains the actual content of the web page, along with all the elements
that describe its format and presentation by the browser.

script A script element contains (or point to) an executable client side script. Most of the
times, this script is written in JavaScript.

iframe An iframe is a container in an HTML page whose content is coming form another
web page.

object An object element is an extension point in HTML which allows for the inclusion of
arbitrary objects in the page.

The features that are extracted from the HTML code are based on the statistics of the raw
content of the page but also on information that is based on the structure of the HTML code.

S. Martziou 18

Detecting drive-by-download-attacks on the web

3.1 Side effects of malicious code injection

An attacker that has managed to compromise a web page does not always have full
control on the resulting code. For example, the result of HTML injection most of the times
affect a small portion of the HTML code. This usually leads to malformed HTML structure
with repeating elements (e.g, repeating <head> or <body> elements) or elements not in the
correct place (e.g, <iframe> tags in the <head> section of the HTML code). As a result,
the number of such mistakes is one of the HTML features used. Another feature that might
indicate that the web page is compromised is the total number of characters in the page.

3.2 Excessive presence of code

Another feature of many compromised web pages is the presence of excessive amount
of JavaScript code compared to the actual content. The percentage of the JavaScript code is
one the measured features. Another feature is the number of <script> elements, which also
indicates the presence of malicious code.

3.3 Suspicious code

The last set of HTML features involves the detection of suspicious code. We count all
the potential attempts by an attacker to hide the inclusion of malicious code in a web page.
These features are:

Number of <iframe> elements Iframes can be used to download and execute malicious
code.

Number of hidden elements Most of the elements in a compromised web page containing
malicious code are not visible to the end user (i.e. by using the "hidden" attribute) as
an attempt by the attacker to hide the changes.

Number of elements with small size . Many of the drive-by-download exploits do not use
visibility attributes (e.g, display="none") to hide the malicious elements but instead use
direct size attributes (width, height). Because of that, we count the number of elements
that could contain malicious code (<div>, <iframe> or <object> elements) and have a
total area below a certain threshold.

Number of <object> and <embed> elements Both of those two elements are used to in-
clude and execute an external application and many times are used by attackers to
inject their malicious code. The number of such elements in a web page is another
feature we measure.

Presence of suspicious objects We examine whether the class id of the included <object>
elements belongs to lists of ActiveX components with known vulnerabilities.

S. Martziou 19

Detecting drive-by-download-attacks on the web

Presence of meta refresh tags A common pattern in drive-by-download attacks is the in-
clusion of a meta refresh tag in a compromised web page. A meta refresh tag is an
HTML element which instructs the browser to reload the web page, potentially redi-
recting to an entirely different web page. The existence or not of this tag is one of the
features.

Number of included URLs or Code in external domain Elements whose content is spec-
ified by using a URL instead of containing it directly (e.g, <script>, <iframe>, <embed>
etc) could point to compromised servers. Because of this, the number of included URLs
is one of the selected features and we also count the subset of these URLs that point
to an external server.

Number of malicious patterns Another feature we extract is the number of patterns known
to exist in compromised web page. One example of such patterns is a meta tag redi-
recting to an exploit server.

Number of elements with suspicious code Using a simple heuristic, we are able to de-
cide if the content of an element is considered malicious code or not. The number of
elements whose code is considered to be shell code is yet another feature.

Percentage of whitespace Shell code usually contains amuch smaller percentage of white-
space compared to normal HTML content or benign JavaScript code. For this reason,
the percentage of whitespace in HTML is another feature we extract.

Presence of scripts with wrong extension A common method used by attackers to hide
their attempt to download and execute malicious code is to use the wrong filename
extension in their JavaScript code, hoping that the antivirus programs will ignore this
file. For this reason, the presence of such an attempt is alarming and is considered a
feature.

Percentage of unknown tags The existence of unknown tags in the HTML code may indi-
cate that the attackers target a browser's inability to safely ignore those elements and
their content and thus having an exploitable vulnerability. The percentage of unknown
versus standard tags is another feature we extract.

S. Martziou 20

Detecting drive-by-download-attacks on the web

4. JavaScript features

Javascript is a dynamic programming language commonly used by web browsers that
enables a richer user experience. It allows for much more dynamic content than plain static
HTML pages, since it gives the web programmers the ability to interact with the user, perform
asynchronous communication with the server, control the browser and modify the structure
of the HTML document.

Since JavaScript is a powerful and versatile language and JavaScript code may be down-
loaded from any web site, modern browsers have taken precautions to prohibit as much as
possible the execution of malicious code or, at least, prevent the undesired consequences in
case malicious code is indeed executed. The two main measures browsers take are sand-
boxing and the same origin policy. Sandboxing is the restriction imposed by the browser to
the operations that a script may perform: modifying the contents of the web page or per-
forming asynchonous calls to the server are permitted since they are normal operations but
accessing the hard disk or data from other web pages is not allowed. The code of each web
page is given the least possible rights that it needs in order to perform "normal" and expected
actions. The same origin policy is the restriction that the browser imposes to scripts, that al-
lows to only access the DOM of the pages that originate from the same server but not that of
pages from other servers. Usually, when a security vulnerability is discovered this happens
due to violations of one or both of the above measures [12].

JavaScript code is included in a web page using one of two methods. The first one is
by explicitly using a <script> element, which either contains directly the code or points to
a location in the server. The second way to load code is taking advantage of the dynamic
nature of the language that allows a script to load an arbitrary string, interpret it as code and
execute it at will.

When extracting features from the JavaScript code of a web page we follow two main
kinds of code analysis. The first is the statistical analysis of the code. Using statistical analysis
we examine the contents of the code, e.g. the length of strings, the presence of certain strings,
the number of whitespace characters, etc. The other kind of analysis is the analysis of the
AST (Abstract Syntax Tree) of the code. The AST is a tree representation of the syntactic
structure of the program, with each node representing one construct of the code. An AST
contains limited information about the code under inspection but this information is enough
for our purposes and has the additional advantage that an AST is relatively fast to build.

4.1 Injection of malicious code

The first category of the features extracted from the JavaScript code of a web page in-
volves the identification of the attempts of an attacker to inject the malicious code in the web
page. This usually happens by modifying the structure of the web page and adding new el-
ements that in turn download and execute the malicious code. For this reason, we extract a
number of features:

S. Martziou 21

Detecting drive-by-download-attacks on the web

Number of DOM manipulating functions The number of JavaScript functions that attempt
to insert a new element in the DOM tree of the web page.

Occurrences of the string "iframe" Another feature is the number of occurrences of the
"iframe" string in the JavaScript code. The reason we extract this feature is that the
word "iframe" in the JavaScript code indicates that the script may by attempting to
modify the DOM tree of the web page in order to inject malicious code.

Number of suspicious tag strings Sometimes, instead of trying to inject malicious code by
using iframes, the attackers may choose to use other elements, like "script", "object",
"embed" or "frame". For this reason we also count the number of the occurrences of
these tags.

Number of suspicious object names Just like in section 3.3, we count the number of sus-
picious object names that occur in the JavaScript code.

Number of suspicious strings We count the number of strings like "evil", "shell", "spray"
etc, that are commonly found in malicious, non obfuscated JavaScript code.

4.2 Attempts to execute code

After forcing the user's browser to download the malicious code, the next step is to cause
its execution. This is detected by the presence of the following features:

setTimeout(), setInterval() functions . These functions are used to delay the execution of
a function or to schedule a piece of code to be repeatedly executed. Since they can be
used by an attacker to execute code that was injected using the previous techniques,
we count the number of occurrences of each function.

Event attachments Drive-by-download attacks usually wait for the whole web page to be
loaded before starting the code execution. Moreover, attackers try hard to mask the
presence of the malicious code, so they even try to disable the error reporting when the
attack is not successful. For these reasons we count the number of event attachments
but only for the events that are generated when a web page is loaded (onload) or when
an error occurs (onerror).

eval() function . The eval() function is used to interpret an ordinary string as JavaScript code
and then execute it. Since this is the primary means of a drive-by-download attack to
download and then execute the malicious code, we count the number of occurrences
of the eval() function [13] [2].

4.3 Suspicious code

Browser detection Another set of JavaScript functions that are usually used by the attack-
ers are functions that allow them to detect the kind of browser that the user is using. This

S. Martziou 22

Detecting drive-by-download-attacks on the web

allows the attacker to select which browser vulnerability to target and which malicious
code to download and execute. For this reason, we count the number of occurrences
of such functions (e.g, navigator.userAgent()).

Keywords-to-words ratio Usually, malicious JavaScript code contains very few keywords
compared to the number of strings used. Most of the commands involve mostly variable
instantiation, arithmetic operations and function calls.

4.4 Obfuscation

Another major feature of the JavaScript code included in compromised web pages is
the attempt of the attacker to obfuscate the code. Obfuscation is the technique that aims to
transform the human readable source code to a form that is very difficult for a human to read
and understand. In our case this is very important since JavaScript is an interpreted language
and as such, the included JavaScript code is not downloaded in a binary format; instead, the
source code is downloaded and then executed as is by the browser. Therefore, it is crucial for
the attacker to hide the malevolent code. However, the presence of obfuscated code is not
by itself an evidence that the code is malicious. A large number of benign web sites also use
obfuscating techniques on their JavaScript code in order to protect it from copyright violations
[3].

In order to detect the existence of obfuscated code, we extract the following features:

Entropy of strings and of the script as a whole Obfuscated strings with no apparentmean-
ing or expressed in other forms (like ASCII codes or unicode values) tend to contain
repeating characters. Because of this, the entropy of the strings, the script as a whole,
and the maximum entropy of all the script's strings are three of the extracted features
[14].

Length of strings One of the main features of obfuscated JavaScript code is the fact the
the length of the strings tends to be much larger than that of the non obfuscated code.
A string is considered to be a "long string" if its length exceeds a certain threshold. This
threshold is decided during the training phase. The features we extract in this case
are the number of long strings in the JavaScript code and the maximum and average
length of the script's strings. Another feature we extract is the number of long variable
variables or function names [14].

Average script line length Obfuscated JavaScript code tends to contain really long lines
of code, especially compared to "normal", benign code. For this reason, we calculate
the average line length.

Probability of a script to contain shellcode Another feature we extract is the probability
of a script to contain shellcode (shellcode is the code that is executed using a browser

S. Martziou 23

Detecting drive-by-download-attacks on the web

Figure 4.1: A fragment of obfuscated JavaScript code [2]

vulnerability). The probability of a string containing shellcode is calculated by examin-
ing the percentage of non-printable ASCII characters, the percentage of hex charac-
ters, the length of script in characters and also the percentage of repeating patterns
of characters, which also suggest that the string is obfuscated. Another feature is the
percentage of whitespace of the code.

4.5 Deobfuscation

The reverse process of obfuscation is deobfuscation. When the obfuscated JavaScript
code has been successfully downloaded in the user's browser, it has to be reverted to "nor-
mal" code in order to be executed. A standard way to deobfuscate the code consists of
transforming the strings from their obfuscated format to plain text and repeatedly manipulate
them with string manipulation functions in order to end up with human readable and thus
executable code. We extract the following features to detect the presence of deobfuscation
attempts:

Built-in functions commonly used for deobfuscation Wecount the number of JavaScript
built-in functions that are usually used for transformation to plain text: unescape(), from-
CharCode(), etc are some of these functions [7] [2].

Presence of decoding routines We examine whether the JavaScript code contains frag-
ments of code that resemble decoding routines. More precisely, we examine the AST
of the code to detect loops inside which a long string is manipulated. The presence of
such routines is another feature we extract.

String modification functions The last feature of this category is the number of string mod-
ification function used in the script. These functions (replace(), substr(), substring(), etc)
are usually used in the manipulation of the long strings of the previous case [7].

Direct string assignments . We count the occurrences of all possible ways that can be
used in JavaScript to assign a value to a string. Usually, the deobfuscation and decryp-
tion procedures link to a large number of string assignement commands [2].

S. Martziou 24

Detecting drive-by-download-attacks on the web

Figure 4.2: Deobfuscation of figure reffig:js-obs reveals an attempt to indirectly load
JavaScript code [2]

S. Martziou 25

Detecting drive-by-download-attacks on the web

5. URL features

The last broad category of features consists of the characteristics of the URL of the web
page and also the URLs that are included by the web page. The reason why we don't ex-
amine only the URL of the web page (something that happens when trying to detect phising
attempts) is that a compromised web page may have a "safe" URL but the code that has
been injected may point to malevolent URLs.

A URL, short for Uniform Resource Locator, is a reference to a resource, along with
enough information on how to retrieve this resource. The syntax of a URL (even though
some parts may be omitted) is

<scheme>://<domain>:<port>/<path>?<query>#<fragment>.
The parts of a URL are the following:

scheme Describes the protocol used to retrieve the resource. The most common ones used
in the web are http and https, but many others are also available, like ftp, file, mailto,
etc.

domain Describes the hostname of the IP address of the server that is hosting the resource.
A URL may lack a host name and instead use the actual IP address of the hosting
server.

port The port number that is used to connect to the server. It is an optional attribute and, if
omitted, the default value for the protocol is used (e.g. 80 for http, 443 for https, etc).

path The path describes the location of the resource within the hosting server. It may refer
to an actual path in the filesystem or to an arbitrary path, interpreted programmatically
by the server.

query The query string is optional and contains additional information that is passed to the
software running in the server.

fragment The fragment (also an optional attribute) describes a position within the resource,
such as a specific part of a web page.

We perform four types of analysis on the URLs of a web page:

5.1 Syntactical

The first type of analysis deals with the format of the URL and relies purely on the syn-
tactical features of the URL under inspection. Some of the extracted features are the domain
name length, whether the original URL is relative, presence of suspicious domain name,
length of the filename, and presence of port number.

S. Martziou 26

Detecting drive-by-download-attacks on the web

Host based obfuscation The URL of the vast majority of bening web pages do not contain
host obfuscation, while a large number of malicious web pages are host obsfuscated
with an IP address [15].

Absolute/relative length of URL Analysis has shown that legitimate URLs contain a '/' right
after or very close to the organisation name. For example, http://www.di.uoa.gr/
announcements/undergraduate contains a '/' right after uoa.gr. In average, beningURLs
have 0.21 characters between the organisation name and the path separator (with a
maximum of 14 characters) while phising URLs contain an average of 7 characters be-
tween the organisation name and the path separator (with a maximum of 63 characters)
[15].

Top level domain The reason for examining the top level domain of the URL is the alarming
contribution of Chinese-based web sites to the web malware problem: overall, 67% of
the malware distribution servers and 64% of the web sites that link to them are located
in China [1].

Absence of subdomain Many malicious web pages are referring to the content distribution
servers without indicating a subdomain (i.e., the web page refers to "abc.com" instead
of "www.abc.com").

Presence of IP address Moreover, many malicious web pages are not related to a domain
name but are referenced through their IP address. This may happen because the web
page is hosted in a machine of a compromised public network.

Presence of suspicious patterns Many of the malicious URLs has been found to contain a
number of patterns that may indicate that the attackers used some existing exploitation
kits. A list of patterns was compiled based on these kits and is compared against the
URLs under inspection. The presence of any of these patterns in the URL is a feature.

5.2 DNS based

Another set of features is extracted by analysing the DNS entries of the URL under in-
spection. Domain Name Service (DNS) is an internet service whose main responsibility is
to translate domain names to IP addresses. It is a hierarchical service, with each node of
the service being responsible for a subset of the IP address space. The DNS protocol is a
classic client-server protocol. The clients are mainly the user's web browsers that are trying
to locate the servers that contain the web pages and also mail transfer agents that are trying
to forward emails to their recipients.

Each DNS server maintains a list of resource records each of which contains information
associated with domain zones and IP addresses. There is a large number of resource record
types, the most notable of which (and of interest to us) are the following:

S. Martziou 27

Detecting drive-by-download-attacks on the web

A (address) record which contains an IP address and is usually used to map a hostname
to the IP address of the respective host.

NS (name server) record which is used to delegate the DSN query to the authoritative
name server.

MX (mail exchange) record whichmaps a domain name to a list of message transfer agents
for that domain. This record is used when forwarding emails to their recipients.

PTR (pointer record) which maps an IP address to a hostname. This record is normally
used for reverse lookups, i.e. when the user is searching for the hostname that corre-
sponds to a given IP address.

For each URL we are querying for the A, NS and MX records and for each kind of records
we extract the following features.

First IP address Analysis shows that the malware distribution sites are concentrated in a
limited number of / prefixes. About 70% of the malware distribution sites have IP ad-
dresses within 58.* -- 61.* and 209.* -- 221.* network ranges [1].

Number of IP addresses Usually, the A, NS and MX records for bening sites contain more
than one IP addresses. This happens for fault tolerance and load balancing. The records
for malicious web sites usually contain only one IP address.

TTL of IP addresses Usually, a short time to live of an IP entry indicates that the entry is
meant to be short lived, either because themalicious web page will bemoved to another
host or the malicious content distribution server will be shut down.

ASN of IP addresses Research by Google indicates that the IPs of the malware distribution
sites belong to a relatively small subset of ASNs (around 500 in 2011) [1].

Furthermore, besides the examination of each record individually, we also extract two
more features:

Resolved PTR record Bening web pages usually have correct and complete DNS entries.
For a bening page, the PTR lookup for the host name will return the IP address of the
page. On the contrary, malicious web pages usually do not have PTR records in the
DNS entries.

Consistency between PTR and A records Another, more strict, criterion is the request for
a resolved PTR record to be equal to the IP address of the A record of the web page.
This usually holds for benign pages and not for malicious ones.

S. Martziou 28

Detecting drive-by-download-attacks on the web

5.3 WHOIS based

Whois is a widely used Internet record listing that identifies who owns a domain and how
to get in contact with them. The Internet Corporation for Assigned Names and Numbers
(ICANN) regulates domain name registration and ownership. Whois records have proven
to be extremely useful and have developed into an essential resource for maintaining the
integrity of the domain name registration and website ownership process.

A Whois record contains all of the contact information associated with the person, group,
or company that registers a particular domain name. Typically, each Whois record will con-
tain information such as the name and contact information of the Registrant (who owns the
domain), the name and contact information of the Registrar (the organisation or commercial
entity that registered the domain name), the registration dates, the name servers, the most
recent update, and the expiration date. Whois records may also provide the administrative
and technical contact information (which is often, but not always, the registrant).

From all this information we care about the registration, last update and expiration dates
of the web page's domain under inspection. Usually, malicious sites have relatively recent
registration date and/or their expiration date is in the near future. This happens because
attackers often purchase domain names for small periods of time, expecting to be discovered
quickly [16].

5.4 GeoIP based

GeoIP is a service that provides geographic information about a user based on her IP
address, such as the city, state, country, longitude and latitude. This service is provided by a
number of companies, usually for a fee even though usually free versions are also available.

Using the GeoIP databases, we extract the Country code, region, timezone and network
speed of the web page under investigation. Besides the reasons stated above (the vast
majority of malicious sites residing in China), a study by the University of Indiana shows that
many phising domains are not hosted on the country they were registered in [16].

S. Martziou 29

Detecting drive-by-download-attacks on the web

6. Decision making

Each individual feature described in the previous chapters only provides a hint that some-
thing may be suspicious about a web page. However, unless they are all combined together,
they cannot provide enough evidence that the web page is indeed malicious. The problem
is that with such a large number of features, each one with it's own diverse type of metrics,
it is very difficult to evaluate the whole set of features of a web page.

The solution to this problem comes from data mining and, more specifically, classifica-
tion. Classification is the problem of identifying to which of a set of categories a new obser-
vation belongs, on the basis of a training set of data containing observations whose category
membership (class) is already known. The individual observations are analysed into a set of
quantifiable properties, known as features.

An algorithm that implements classification, especially in a concrete implementation, is
known as a classifier. The term "classifier" sometimes also refers to the mathematical func-
tion, implemented by a classification algorithm, that maps input data to a category. In the ter-
minology of machine learning, classification is considered an instance of supervised learning,
i.e. learning where a training set of correctly identified observations is available.

In our case, we defined two classes of web pages: the class of benign and the class of
malevolent web pages. A classifier is configured using a set of pre-classified web pages, the
class of which is known a-priori. The classifier is then used to assign each new, unknown
web page to a class.

One other choice that had to bemade was what kind of classifiers to use. Since wewanted
to test more than one classifiers to make sure that the performance of the filter wasn't affected
by a bad choice of classifier, we chose to train and evaluate 2 classifiers: the Random forest
and J48 classifiers. A brief description of the two classifiers follows.

J48 classifier is an implementation of the C4.5 algorithm for the Weka framework and it
works by building a decision tree from the training data. C4.5 is the successor to the ID3
algorithm proposed by Ross Quinlan.

A decision tree is a predictive machine-learning model that decides the target value (de-
pendent variable) of a new sample based on various attribute values of the available data.
The internal nodes of a decision tree denote the different attributes, the branches between
the nodes tell us the possible values that these attributes can have in the observed samples,
while the terminal nodes tell us the final value (classification) of the dependent variable.

In each node in the tree the algorithm is choosing the attribute that splits the samples
in subtrees with the smallest possible entropy (or the maximum information gain). In other
words, it tries to split the samples in subsets containing the fewest possible classes. It then
continues recursively in each subset until all the samples in the subset belong to the same
class, the list of features has been depleted or the subset is empty.

S. Martziou 30

Detecting drive-by-download-attacks on the web

Figure 6.1: Classifier training using the classifiers with the best performance

Random Forests are an ensemble learning method (also thought of as a form of near-
est neighbour predictor) for classification and regression that construct a number of decision
trees at training time and outputting the class that is the mode of the classes output by individ-
ual trees (Random Forests is a trademark of Leo Breiman and Adele Cutler for an ensemble
of decision trees).

Random Forests are a combination of tree predictors where each tree depends on the
values of a random vector sampled independently with the same distribution for all trees in
the forest. The basic principle is that a group of "weak learners" can come together to form
a "strong learner". Random Forests are a wonderful tool for making predictions consider-
ing they do not overfit because of the law of large numbers. Introducing the right kind of
randomness makes them accurate classifiers and regressors.

6.1 Training

In order to train a classifier we need a relatively large set of web pages, the class of which
is already known, that belong to both classes. We extract all the features from each web page
and the results are used to create a vector. The vectors from all known are given as training
input to the classifier, along with the class of each vector. The output of this process is a
model that is used in the classification of unknown web pages (see figure 6.1).

6.2 Classification

After the classifier is trained using the set of known web pages, it is ready to be used to
identify unknown web pages either as benign or malevolent. The process of classification
is similar to the one of training: The features of the unknown web page are extracted and
placed in a vector and along with the model that resulted from the training process are given

S. Martziou 31

Detecting drive-by-download-attacks on the web

Figure 6.2: Classification using the classifiers with the best performance

as input to the classifier. The output of the classification is the class that the web page is
assigned to. Hopefully, with the correct set of the training set and the correct classifier, the
class of the web page is the correct one (see figure 6.2).

S. Martziou 32

Detecting drive-by-download-attacks on the web

7. Implementation

7.1 Evaluation

We used a training set of 400 malicious and 1800 benign JavaScript scripts and evaluated
two different classifiers: the Random Forests and J48 classifiers (both of which have been
described in the previous chapter).

When trying to evaluate the performance of a classification system and compare the two
or more classifiers we use a number of metrics. The most frequently used and visually useful
is the confusion matrix, but others exist like the recall precision and overall accuracy. A brief
description of these metrics follows:

Confusion matrix contains information about actual and predicted classifications done by
a classification system. Performance of such systems is commonly evaluated using the data
in the matrix. The following table shows the confusion matrix for a two class classifier.

The entries in the confusion matrix in 7.1 have the following meaning in the context of our
study:

• a is the number of correct predictions that an instance is benign

• b is the number of incorrect predictions that an instance is malicious

• c is the number of incorrect of predictions that an instance is benign

• d is the number of correct predictions that an instance is malicious

Benign Malicious

Benign a b
Malicious c d

Table 7.1: A sample confusion matrix

The rest of the metrics are the following:

Overall accuracy (AC) is the proportion of the total number of predictions that were correct.
It is determined using the equation:

AC = a+d
a+b+c+d

Recall (R) is the proportion of positive cases that were correctly identified, as calculated
using the equation:

R = d
c+d

Precision (P) is the proportion of the predicted positive cases that were correct, as calculated
using the equation:

P = d
b+d

S. Martziou 33

Detecting drive-by-download-attacks on the web

Cross-Validation is a statistical method of evaluating and comparing learning algorithms
by dividing data into two segments: one used to learn or train a model and the other used
to validate the model. In typical cross-validation, the training and validation sets must cross-
over in successive rounds such that each data point has a chance of being validated against.
The basic form of cross-validation is k-fold cross-validation. In k-fold cross-validation the data
is first partitioned into k equally (or nearly equally) sized segments or folds. Subsequently k
iterations of training and validation are performed, such that within each iteration a different
fold of the data is held-out for validation while the remaining k-1 folds are used for learning.
The most usual value of k and also the one that we used is 10.

Random Forests classifier

Benign Malicious

Benign 0.8130 0.0018
Malicious 0.0153 0.1697

Table 7.2: Random Forests confusion matrix

From the confusion matrix in 7.2 we can easily calculate and the rest of the metrics for
the Random Forests classifier: the overall accuracy is 98.28%, the recall is 99.77% for be-
nign and 91.69% malicious scripts and the precision is 98.14% for benign and 98.92% for
malicious scripts.

J48 classifier

Benign Malicious

Benign 0.8037 0.0115
Malicious 0.0180 0.1667

Table 7.3: J48 confusion matrix

From the confusion matrix in 7.3 we can easily calculate and the rest of the metrics for the
J48 classifier: the overall accuracy is 97.04%, the recall is 98.59% for benign and 90.22%
malicious scripts and the precision is 97.80% for benign and 93.54% for malicious scripts.

Conclusion

Comparing the results of the two classifiers, it is obvious that for the JavaScript samples
the Random Forests classifiers outperforms the J48 classifier. The false positives (benign
scripts that were classified asmalicious) are only 0.02% but the percentage of false negatives
(malicious scripts that were not correctly identified) is high, at 8.3%. However, this percentage
will be dramatically reduced when we train and use classifiers for the other two categories of
features (HTML and URL).

S. Martziou 34

Detecting drive-by-download-attacks on the web

7.2 Implementation

The entire code of this thesis was written in Java and a large number or external libraries
was used to implement all the functionality. The most notable of these libraries are:

HTMLParser [17] is a library that parses HTML and tries to produce the DOM tree. However,
it doesn't perform any kind of error correction and reports all errors in the structure of
the HTML code. This library was used to detect anomalies in the structure of the page
and extract the corresponding HTML features.

CyberNeko HTML parser [18] is another library that parses HTML but it tries to overcome
mistakes in the structure of the HTML code and create a DOM tree. It was used to
extract the rest of the HTML features.

Rhino JavaScript [19] engine is a standalone JavaScript execution engine that does not
require the presence of a web browser. It was used to parse the JavaScript code and
extract the corresponding JavaScript features.

dnsjava [20] is a library that was used in order to extract the DNS features.

MaxMind API and database where used to extract the GeoIP and ASN related features [21].

WEKA API [22] was used to perform the training, classification and evaluation of the clas-
sification models.

7.3 Future work

The first step in continuing the work of this thesis is to acquire and use samples of benign
and malicious HTML pages and URLs. This will allow us to train and evaluate the classifiers
for these sets of features and draw a final conclusion on their performance.

One important optimisation that would be interesting to investigate is the attempt to min-
imise the number of web pages and JavaScript scripts that we analyse. While the product
of this theses is designed to act (or plans to) as a fast filter for a more thorough and much
more time consuming analysis tool, its performance should be optimised. One of the obvi-
ous ways to achieve this is to avoid repeating the analysis on web pages that have already
been analysed. This can be efficiently accomplished bymaintaining a signature of the DOMof
HTML pages or the AST of JavaScript scripts. The challenge is to identify a suitable signature
method and similarity function. The obvious hashing algorithms (like md5) may seem appeal-
ing because of their simplicity and speed but have one disadvantage: a single modification
(however small) in the web page or script structure result in completely different signatures.
A suitable signature method is a tool that will allow us to optimise the performance of this
filter.

Finally, the ultimate goal is to create a complete back-end analysis system that will be able
to completely filter out the false positives and perform dynamic analysis on the remaining web
pages to correctly identify the malicious ones.

S. Martziou 35

Detecting drive-by-download-attacks on the web

Bibliography

[1] Provos N, Mavrommatis P, Rajab MA, Monrose F. All Your iFRAMEs Point to Us. In: Pro-
ceedings of the 17th Conference on Security Symposium. SS'08. Berkeley, CA, USA:
USENIX Association; 2008. p. 1--15. Available from: http://dl.acm.org/citation.
cfm?id=1496711.1496712.

[2] Feinstein B, Peck D. Caffeine Monkey: Automated Collection, Detection and Analysis
of Malicious JavaScript. In: DEFCON 15; 2007. .

[3] Provos N, McNamee D, Mavrommatis P, Wang K, Modadugu N. The Ghost in the
Browser Analysis of Web-based Malware. In: Proceedings of the First Conference
on First Workshop on Hot Topics in Understanding Botnets. HotBots'07. Berkeley,
CA, USA: USENIX Association; 2007. p. 4--4. Available from: http://dl.acm.org/
citation.cfm?id=1323128.1323132.

[4] ClamAV Team. Clam Antivirus; Jul 2012 (accessed February 3, 2012). Available from:
http://www.clamav.net/.

[5] Nazario J. PhoneyC: A Virtual Client Honeypot. In: Proceedings of the 2Nd USENIX
Conference on Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms,
and More. LEET'09. Berkeley, CA, USA: USENIX Association; 2009. p. 6--6. Available
from: http://dl.acm.org/citation.cfm?id=1855676.1855682.

[6] Ikinci A, Holz T, Freiling F. Monkey-Spider: Detecting Malicious Websites with Low-
Interaction Honeyclients. In: In Proceedings of Sicherheit, Schutz und Zuverlassigkeit;
2008. .

[7] Wang Y, Beck D, Jiang X, Roussev R. Automated Web Patrol with Strider HoneyMon-
keys: Finding Web Sites that Exploit Browser Vulnerabilities. In: NDSS; 2006. .

[8] Seifert C, Steenson R. Capture - Honeypot Client (Capture-HPC). Victoria University of
Wellington, NZ; 2006 (accessed April 21, 2012). Available from: https://projects.
honeynet.org/capture-hpc.

[9] HoneyClient Project Team. HoneyClient; Jul 2012 (accessed April 21, 2012). Available
from: http://www.honeyclient.org/.

[10] Cova M, Kruegel C, Vigna G. Detection and Analysis of Drive-by-download Attacks and
Malicious JavaScript Code. In: Proceedings of the 19th International Conference on
World Wide Web. WWW '10. New York, NY, USA: ACM; 2010. p. 281--290. Available
from: http://doi.acm.org/10.1145/1772690.1772720.

[11] Canali D, Cova M, Vigna G, Kruegel C. Prophiler: A Fast Filter for the Large-scale
Detection of MaliciousWeb Pages. In: Proceedings of the 20th International Conference

S. Martziou 36

Detecting drive-by-download-attacks on the web

on World Wide Web. WWW '11. New York, NY, USA: ACM; 2011. p. 197--206. Available
from: http://doi.acm.org/10.1145/1963405.1963436.

[12] Moshchuk A, Bragin T, Gribble SD, Levy HM. A Crawler-based Study of Spyware on
the Web. In: NDSS; 2006. .

[13] Choi Y, Kim T, Choi S, Lee C. Automatic Detection for JavaScript Obfuscation Attacks
in Web Pages Through String Pattern Analysis. In: Proceedings of the 1st Interna-
tional Conference on Future Generation Information Technology. FGIT '09. Berlin, Hei-
delberg: Springer-Verlag; 2009. p. 160--172. Available from: http://dx.doi.org/10.
1007/978-3-642-10509-8_19.

[14] Byung-Ik K, Chae-Tae I, Hyun-Chul J. Suspicious Malicious Web Site Detection with
Strength Analysis of a JavaScript Obfuscation. International Journal of Advanced
Science and Technology. 2011;26:19--31. Available from: http://www.sersc.org/
journals/IJAST/vol26/2.pdf.

[15] Garera S, Provos N, Chew M, Rubin AD. A Framework for Detection and Measurement
of Phishing Attacks. In: Proceedings of the 2007 ACMWorkshop on Recurring Malcode.
WORM '07. New York, NY, USA: ACM; 2007. p. 1--8. Available from: http://doi.acm.
org/10.1145/1314389.1314391.

[16] Ma J, Saul LK, Savage S, Voelker GM. Beyond Blacklists: Learning to Detect Malicious
Web Sites from Suspicious URLs. In: Proceedings of the 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD '09. New York,
NY, USA: ACM; 2009. p. 1245--1254. Available from: http://doi.acm.org/10.1145/
1557019.1557153.

[17] Oswald D. HTMLParser; Jul 2012 (accessed April 18, 2012). Available from: http:
//htmlparser.sourceforge.net/.

[18] A Clark MG. CyberNeko HTML Parser;. http://nekohtml.sourceforge.net/.

[19] Mozilla Foundation. Rhino Project; Jul 2012 (accessed April 23, 2012). Available from:
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino.

[20] Wellington B. dnsjava; Jul 2012 (accessed April 22, 2012). Available from: http://www.
dnsjava.org.

[21] MaxMind Inc . MaxMind GeoIP Databases; Jul 2012 (accessed April 24, 2012). Avail-
able from: https://www.maxmind.com/en/geoip2-databases/.

[22] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA Data
Mining Software: An Update. SIGKDD Explor Newsl. 2009 Nov;11(1):10--18. Available
from: http://doi.acm.org/10.1145/1656274.1656278.

S. Martziou 37

