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NEPIAHWH

Tnv TeAeutaia OEKAETIO N €QAPUOY TNG QACUOTOMETPIAG palwv uywnAng OIaKPITIKAG
IKavOTNTAG ouleuypévn Pe uypoxpwpuatoypagia (LC-HRMS) £xel avatrTuxBei paydaia Adyw
TNG IKAVOTNTOG TNG TEXVIKAG AUTNG VA AVIXVEUEl KAl VA TAUTOTTOIEI TNIBAVEG ) UTTOTITEG KOl
AYVWOTEG evWOoelG oTa TTEPIBAANAovTIKA OciyuaTta. lNpokeiyévou va emTeuxbei  autog o
OKOTTOG, TTPETTEl VA aTTOKTNOOUV oI TTANpogopieg TNG akpIBoug PAlag Kal ToU ICOTOTTIKOU
TTPO@IA Tou Weudopopiakou 16VToG, va Trpayuatotroin®ei aloAdynon Twv QACPATWY
MS/MS kai 0 Xxpdvog KATAKPATNONG va gival eUAOYyoQaVvnG £T01, WOTE VA ETTITEUXOEI n
emBePaiwon TNG TAUTOTNTOG MIAG €vwong. 2TO TIAQICIO QUTO, QVATITUXBNKE MIa
utToAOYIOTIKA pEBOSOAOyia Kal Ta avTioToixa JovréAa TTPORAEWNS yia TNV Katavénon Tng
OUMTTEPIPOPAG TOU XPOVOU avAOXEDONG VOGS PMEYAAOU apiBuoU avaAuTwy TTOU aviiKouv oTnv
KATnyopia Twv avadudpevwy puTTwy. MNa To oKOTTO auTd XPNOIKOTTOINONKE PIA EKTETAPEVN
Baon dedouévwyv TToU TTEPIEXEI TNV TTANPOQOpia Tou Xpdvou avaoxeong yia 528 kar 303
avoAUTEG O€ BETIKO KAl apvnTIKO IOVTIONO, AVTIOTOIXA, £TOI WOTE VA ETITEUXOEI N avaTITuén
MOVTEAWV TTPOBAEWNG XPOVOU avAOXEONG ME Tn MEYIOTN duvaTth TTEPIOXH EQAPHOYAS
(applicability domain). H Baon dedouévwyv dlaxwpioTnke o€ opada ektraideuong (training
set) Kol opada eAéyxou (test set) pye TNV TEXVIKA TNG oUOTABOTTOINONG TWV K-KOVTIVOTEPWYV
YEITOVWY €701, WOTE va OounBouv Kal va eTMKupwBouv Ta PoviéAa O0co agopd Tnv
TTPORAETITIKA TOUG IKaVOTNTA. TO KAAUTEPO UTTOOUVOAO HOPIOKWY TTEPIYpa@éwy (molecular
descriptors) emAEXONKE PE TN XPAON YEVETIKWV OAYOpIBuwY (genetic algorithms), o1 otroiol
cival Baoiopévol o€ UTTOAOYIOTIKA €EEAIKTIKG POVTEAQ KAl PTTOPOUV va ETTIAEEOUV TOUG TTIO
AVTITTPOCWTTEUTIKOUG HOPIAKOUG TTEPIYPAPEIC VIO OAEC TIG EVWOEIC OE OXEON ME TO UTTO
dovteAotroinon  mPOBANua. Tla Tn  povreAotroinon, xpnoigotroindnkav o1 €ENG
XNUEIOPETPIKEG TEXVIKEG: TTOANQTTAN ypauuik TTaAivépounon (MLR), veupwvikd OikTua
(ANNs) kal n Texviki Support Vector Machines (SVM) woTe va OUCXETIOTOUV TOUG,
ETTIAEYMEVOUG HOPIAKOUG TTEPIYPOYPEIG ME TOV TTEIPAMOTIKA TTPOCBIOPICOUEVO XPOVO
avaoxeong. XpnoipoTroinenkav TTOAAEG TEXVIKEG ETTIKUPWONG, CUUTTEPIAQUBAVONEVWV TWV
akoAoubwv: Ta kpitApia Golbraikh-Tropsha, 10 TEdio e€@apuoyns Paciouévo oTnv
EUKAEIOEIO OTTOOTACN, O OUVTEAEOTAG I’M, KAl O OUVTEAEDTHAC OCUPQPWVIKAGOUOXETIONG
(concordance correlation coefficient). Ta KOAUTEPA YPAUMIKA KOl W YPOAMMIKA HOVTEAQ yia

KABe Bdon dedopévwv TTOU TTPOEKUYAV XpNoluoTroidnkav otnv TTPORAEwn Tou Xpovou
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avaoxeong TTBavwV/UTTOTITWVY EVWOEWYV £T01, WOTE va €mMTEUXOEi e€wTepIKn agloAdynon
Twv PovTéAwv. Tlevikd, n TpoTeivOpevn Tropeia  €ival ypriyopn, agiommoTn, €AAxIoTa
dartravnpr Kal PYTTOPEi va EQAPPOOTE yIa TN PEIWON TwV WYeUdWG BETIKWV EUPNUATWY KOTA
TNV €Qappoyn PEBOdWYV odpwong pe LC-HRMS kai Tnv €TTITUXN AviXVEUON KAl TAUTOTTOINON

AYVWOTWYV EVWOEWV O¢€ TTEPIBAANOVTIKG deiyuaTa.

Mepioxn épeuvag: AvaAuTikr) Xnueia, XnuUeloueTpia

A€geig KA£1®1d: XpOVOG avdoxeong, OApwon YIo UTTOTITEG EVWOEIG, UN OTOXEUMEVN
avaAuorn, QAaouaTOPETpIa padwyv uwnAng OIOKPITIKAG IKAVOTNTAG, HOPIAKOI TTEPIYPOAYEIG,

TEXVIKA SVM



ABSTRACT

Over the last decade, the application of liquid chromatography - high resolution mass
spectroscopy (LC-HRMS) has been growing extensively due its ability to identify a wide
range of suspect and unknown compounds in environmental samples. However, certain
information such as mass accuracy and isotopic pattern of the precursor ion, MS/MS
spectra evaluation and retention time plausibility are needed to confirm its identity. In this
context, a comprehensive workflow based on computational tools was developed to
understand the retention time behavior of a large number of compounds belonging to
emerging contaminants. An extensive dataset was provided, containing information for the
retention time of 528 and 303 compounds for positive and negative electrospray ionization
mode, respectively, to expand the applicability domain of the developed models. Then, the
dataset was split into training and test employing k-nearest neighborhood clustering, so as
to build and validate the models’ internal and external prediction ability. The best subset of
molecular descriptors was selected using genetic algorithms which is based on the
evolutionary computations, and could result in representative selection of descriptors.
Multiple Linear Regression, Artificial Neural Networks and Support Vector Machines were
used to correlate the selected descriptors with the experimental retention times. Several
validation techniques were used, including Golbraikh-Tropsha acceptable model criteria's,
Euclidean based applicability domain, r?m, concordance correlation coefficient values to
measure the accuracy and precision of the models. The best linear and non-linear models
for each dataset were derived and used to predict the retention time of suspect compounds
in a wide-scope survey as the evaluation data set. Overall, the proposed workflow was fast,
reliable, cost-effective and can be employed as an effective filtering tool for decreasing

false positives of wide-scope HRMS screening of environmental samples.

SUBJECT AREA: Analytical Chemistry, Chemometrics
KEY WORDS: Retention Time, Suspect Screening, Non-target Screening, High Resolution

Mass Spectrometry, Molecular Descriptors, Support Vector Machines.
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CHAPTER 1
QSRR AS SCREENING TOOLS

1.1 Target, suspect and non-target screening in reversed phase liquid

chromatography-high resolution mass spectroscopy (RP-LC-HRMS)

Over the last decades, thousands of substances with potential risks for human and aquatic
life are disposed in the environment. Their rapid and accurate identification is emerged as
an important field in both analytical and environmental science. The evolution of high
resolution mass spectroscopy coupled with liquid chromatography has opened up a new
opportunity for the identification of polar compounds in complex environmental samples.
With this technique, many compounds with a great variety of of functional groups and
polarities, which are not well identified via gas chromatography (GC), can be detected
effectively. ldentification procedures in LC-HRMS were detailed into three categories
including target analysis (with reference standards), suspect screening (with suspected
substances based on prior information but no reference standards) and finally non-target

screening (no prior information, no reference standards)[1].
1.1.1 Target Analysis

For a successful and full target analysis, a reference standard is required to determine the
concentration of target in sample, and also comparing and matching the observed retention
time (tr) and tandem mass spectrum (MS/MS). Target analysis is relied on purchase of
reference standard for quantification and confirmation. The use of an isotopic labeled
internal standard facilitates the analysis but it is not always available. Target analysis can

be performed by following the procedure explained in figure 1.

1.1.2 Suspect screening

Suspect screening with LC-HRMS relies on accurate mass and isotope information for the
precursor ion. Compounds that are expected to exist in the samples (suspects or
suspected compounds), can be screened using the exact mass of their expected ions in
negative ([M-H]") or positive ([M+H]*) electrospray ionization mode (ESI). Exact mass

screening methods are computationally rapid and many masses can be screened in a

15



given sample, but the risk of false positive results is high. Additional information is needed
to reach a tentative identification, apart from the mass accuracy and isotopic fit, such as
evaluation of the MS/MS spectra and retention time plaucibility. However, gathering of
evidence and conformation of the detected masses is still a time consuming task.
Calculating the retention time for the suspects list and comparing it to the observed
retention time for the observed peaks could be an efficient filtering tool over the
confirmation or rejection of the suspected substances. The general procedure for
performing suspect screening in LC-HRMS is shown in figure 1.

1.1.3 Non-target screening

Non-target screening involves m/z ratios (ions, usually called “features”) that are detected
in the sample, and there is not any a priori information available for the observed peaks. It
is often difficult to fully identify the unknown peaks with no guarantee of a successful
outcome. The procedure for the non-target screening is shown in figure 1. First, automated
peak detection is used by exact mass filtering from the chromatographic run. Next,
elemental formula can be assigned to the exact mass of interest and finally searching the
database for hits. Through the validated computational models based on quantitative
structure retention time relationship (QSRR), their retention times can be calculated and
those matched can be investigated further with MS/MS fragmentation to give the most
possible substances.
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Figure 1. Procedures for target analysis, suspect and non-target screening[1]

1.2 Quantitative structure-retention time relationship (QSRR)

In 1977, the first three publications were published with the aim of finding correlation
between chemical structures and their chromatographic behavior which is now called
QSRR. Since then, a large number of efforts were made to derive robust mathematical

models that not only predict the retention time of compounds, but also explain the chemical
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features affecting retention time values. Several good models previously were reported for
gas-chromatographic (GC) retention based on chemical features derived from molecular
graphs and quantum chemical energy-related[2-4]. Generally, QSRR results for liquid
chromatographic (LC) retention data present lower statistical quality than those reported for
GC and this is due to the effect of chromatographic conditions such as stationary phase,
column type, separation conditions and elution mechanism at different molecular level over
retention behavior of compounds[5].Beside the lack of ability for inclusion of these effects to
QSRR based models, a certain workflow that enriches the applicability domain of models
for application of different type of compounds was not proposed[6]. Use of a data set
consisted of large chemical diversity (i.e. increasing the chromatographic effects over
retention time values) would also unable the models to find the rational chemical features
and thus insufficient interpretations[6]. By growth of chemometics and introduction of new
type of molecular features for 3D structure of molecules, capabilities of models were
increased to handle dataset with abnormal retention time. Recent advances in both
chromatographic science and chemometics caused a revolutionary enhancement of
identification and interpretation of results however modeling of retention time in LC-HRMS
is still a challenging work due to complexity of chromatographic and instrumental system[7,
8]. It is a need of computational tools such as QSRR to help the identification of unknown
substances in the environment[1, 9]. Three major steps should be followed after the
preparation of the initial dataset, for a correct modeling:

e Geometry optimization of chemical structures and calculating molecular

descriptors[10]
e Molecular descriptors selection and their modeling[11, 12]
e Defining the applicability domain with certain method of outlier detection
techniques[13]

These steps are explained further in more details in following sections.

1.2.1 Chemical structures and their geometries
A true knowledge of geometry of molecular structure can provide better interpretation of its
stability, interactions with its environment, and several molecular properties such polar

surface area, ionization, isomeric states and conformation of compounds can be derived
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accurately. Since the development of 3D-based molecular descriptors, it is now so

important to optimize a chemical structure before deriving the molecular descriptors so as

to distinguish between similar compounds. Optimization of chemical structures can be done

with four major methods including:

Molecular mechanics: Molecular mechanics force field (MM+) is an extension of
MM2 force field developed by Allinger and co-workers [14, 15]. This method is
designed for small organic molecules and also can be carried out for geometry
optimization of peptides. Molecular mechanical force field uses the equations of
classical mechanics to describe the potential energy surfaces and physical
properties of molecules. One component of a force field is the energy that is
originated from compression and stretching a bond. Unlike quantum mechanics,
molecular mechanics does not treat electrons explicitly and thus it cannot explain
bond formation and bond breaking. This method is also lack of accuracy for a
system by which electronic delocalization or molecular orbital interactions plays a
major role in determining geometry or properties.

Semi-empirical methods (AM1): They use a certain number of experimental data
throughout the calculation. For example, bond lengths of a specific type will have a
fixed value independently of the system (C=C bond will always be taken as 134 pm,
for example). This dramatically speeds up computational time, but in general is not
very accurate. Usually, semi-empirical methods are used for very big systems, since
they can handle large amount of calculations.

Hartee-Fock (HF): Quantum mechanics calculations use either of two forms of the
wave function: Restricted Hartree-Fock (RHF) or Unrestricted Hartree-Fock (UHF).
The RHF wave function can be used for singlet electronic states, such as the ground
states of stable organic molecules. The UHF wave function is most often used for
multiplicities greater than singlets. Hartee-Fock can be performed based on various
biases set (Configuration Interaction (Cl), Mgller-Plesset (MP) perturbation theory) to
provide the UV spectra, energy of excited states, breaking of bonds and change of
spin coupling. The electronic state of molecules and energy of ground and excited

state can be obtained with high accuracy for large organic compounds with many
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orbitals in a small energy range. However the major drawback of HF method is the
exclusion of electron correlation.

¢ Density functional theory (DFT): DFT methods are becoming more and more popular
because the results obtained are comparable to the ones obtained using Hartree-
Fock method, however CPU time is drastically reduced. DFT differs from methods
based on HF calculations in the way that it is the electron density that is used to
calculate the energy instead of a wave function. DFT can optimize the geometry of
large groups of compounds such as nanotubes, semiconductors, and complexes
with high accuracy depending on the biases set (B3LYP, PW91, VWN, etc.) that is
being used. The application of above methods for different optimization purposes is
listed in Table 1.

Table 1: The general techniques for optimization of chemical structures

Task Molecular Semi- Hartee- Density
mechanics empirical Fock functional theory
Geometry (organic) C G G G

Geometry (metals) -
Transition-state geometry -

conformation G

T U O ®

P G
G G
G G
C G

Thermochemistry -

G: Good; C: good with cautious application; P: Poor

Polar surface area and energy of equilibrium geometry for a compound () based on above
methods were calculated and shown in figure 2 to show how molecular geometry effects

the properties of molecule.
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Opt. by molecular mechanics Opt. by semi-empirical  Opt. by Hartree-Fock Opt. by DFT
Energy = 22.67 KJ/mol Energy =-687.77KJ/mol  Energy = -1027.2194au  g0000 —1039.400 au
DA 4% 05y K2 PSA = 48.527 A* PSA = 44.626 A7 P T A

Figure 2: Polar surface area and energy of equilibrium geometry based on different
geometry optimization techniques.
As it can be seen, use of quantum mechanics methods (HF, DFT) for obtaining the correct
geometry of chemical structures would provide the lowest energy level and thus a stable
form of compound rather than that of derived based on molecular mechanics. However, HF
and DFT methods are very time consuming and should be used when there is a need for

electronic state of molecules.

1.2.2 Molecular descriptors for chromatographic retention

Chemical structures and their properties can be used to get the retention time with
acceptable accuracy. Effect of chromatographic conditions such as content of stationary
phase and mobile phase over retention time of a compound could help in calculation of
molecular descriptors more precisely. In normal phase silica as stationary phase, polar
compounds will bond to the stationary phase and thus they will appear at higher retention
time and thus in this case, polarizability of compounds should be calculated. Since pH
affects the charge of the stationary phase and of the compounds in the first place, a
molecular feature that incorporates the pH effects on logD should be considered. Figure 3
shows the chemical structure of silica based stationary phase. For the reversed phase
chromatography, since the stationary phase is neutral, charge type descriptors have less
effect on interpretation of retention time; The major contribution of charge descriptors are
over the ionization pattern of compounds and correspondingly the functional groups. They

21



are also affecting the LogD values indirectly as pka and pH are varying. However
hydrophobicity has significant influence for retention time behavior of compounds.
Considering these prior information about modeling of retention time, more chemical
properties are required to perform successful retention time prediction. Therefore, Various
molecular descriptors should be calculated, includingconstitutional descriptors, topological
descriptors, walk and path counts, connectivity indices, information indices, 2D
autocorrelation, edge adjacency indices, Burden eigenvalues, topological charge indices,
eigenvalue-based indices, Randic molecular profiles, geometrical descriptors, Radial
Distribution Function (RDF) descriptors, 3D-MoRSE (3D Molecular Representation of
Structure based on Electron diffraction) descriptors, WHIM (Weighted Holistic Invariant
Molecular) descriptors, GETAWAY (geometry, topology and atoms-weighted Assembly)
descriptors, functional group counts, atom-centred fragments, charge descriptors,
molecular properties, 2D binary fingerprints and 2D frequency fingerprints [16-19]. Among
the above descriptors, the constitutional descriptors are referring to atomic or molecular
properties and are independent of the overall molecular connectivity. These types of
descriptors encode the size of molecules and chemical properties. Geometrical descriptors
are presenting features of the molecular geometry e.g. distances between particular points
on the molecular surface and distances between given chemical groups. Topological

descriptors reflect the type and the connection of atoms in the 2D space [20].
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Figure 3: The stationary phases in normal and reversed phase chromatography
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1.2.2.1 2D-Molecular descriptors

Several groups of molecular descriptors can be calculated based on 2D chemical

structures which are independent to conformation of chemical structure. Some of the

important descriptors belonged to the 2D-molecular descriptors are as follows:

Topological charge indices: topological charge indices were proposed to evaluate
the charge transfer between pairs of atoms, and therefore the global charge transfer
in the molecule [21].

Connectivity indices: connectivity indices are among the most popular topological
indices and are calculated from the vertex degree d of the atoms in the H-depleted
molecular graph. The Randic connectivity index was the first connectivity index
proposed[22]; it is also called connectivity index or branching index which can
describe the bond order, intermolecular accessibility[23] and molecular branching
[24].

Molecular properties: these descriptors are representing the properties of chemical
structures such as hydrophobicity, molar refractivity, polar surface area, unsaturation
index and octanol-water partition coefficient (logP).

Edge adjacency indices: These descriptors are derived from molecular graph and
denoting the bond connectivity and matrix with their representative weighted
properties in between graph edges[22].

Walk and path counts: Atomic path/walk indices are described for each atom as the
ratio between atomic path count and atomic walk count for the same length. The
number of paths in a molecule is bounded and determined by the molecule
diameter, whereas the number of walks is unbounded. However, being interested
only in quotients, the walk count is terminated when it exceeds the maximum
allowed length of the corresponding path. Molecular path/walk indices are explained
as the average sum of atomic path/walk indices of equal length [25]. As the
path/walk count ratio is independent of molecular size, these descriptors can be

considered as shape descriptors.

1.2.2.1 3D-Molecular descriptors
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In contrast to 2D-molecular descriptors, a method of optimization affects the results of 3D-

molecular descriptors significantly. Therefore, in case of high similarity and also isomers for

group of compounds, it is important to derive the 3D-molecular descriptors for quantitative

analysis purposes. Four major groups of descriptors that are largely being used are

reported below:

WHIM descriptors: these are geometrical descriptors based on statistical indices
calculated on the projections of the atoms along principal axes [22]. WHIM
descriptors are built in such a way as to capture relevant molecular 3D information
regarding molecular size, shape, symmetry, and atom distribution with respect to
invariant reference frames. The algorithm consists in performing a Principal
Components Analysis (PCA) on the centered Cartesian coordinates of a molecule by
using a weighted covariance matrix obtained from different weighting schemes for

the atoms:

A — —
Sjk _ 21_1 i (ql] ; q])(qlk Qk) (Eq. 1)

where sik is the weighted covariance between the ji and ki atomic coordinates, A is
the number of atoms, wi the weight of the ith atom, gj and gik represent the jth and
kth coordinate of the ith atom respectively, andg the corresponding average value.
RDF descriptors: Radial distribution function in this form meets all the requirements
for the 3D structure descriptors. It is independent of the atom number (i.e. the size of
a molecule), and is unique regarding the three-dimensional arrangement of the
atoms and is also invariant against the translation and rotation of the entire
molecule. Additionally, the RDF descriptors can be restricted to specific atom types
or distance ranges to represent specific information in a certain three-dimensional
structure space (e.g. to describe the steric hindrance or the structure / activity
properties of a molecule).

GETAWAY descriptors: these descriptors have recently been proposed as chemical
structure descriptors derived from a new representation of molecular structure, the
Molecular Influence Matrix (MIM), denoted by H and defined as follows:
H=M-(M"-M)"*-MT (Eq.2)
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where M is the molecular matrix consisting of the centered Cartesian coordinates of
atoms of a compound in optimized geometry. T is refereeing to transposed matrix.
For different types of GETAWAY, H values can be coupled with molecular properties
as weight factor to show the effect of molecular properties in specific topological and
geometrical region of molecular graph [26].

e 3D-MoRSE descriptors: 3D-MoRSE (Molecular Representation of Structures based
on Electronic diffraction) descriptors were introduced in 1996 by Schuur, Selzer and
Gasteiger with the motivation for encoding 3D structure of a molecule by a fixed
number of variables [27, 28]. Indeed, the most obvious way to present 3D structure
IS its representation within cartesian or internal coordinates. Simplifying the

equations used in electron diffraction studies, the function was calculated as:

N i=1 .
SlnSTij
I(S) = A A — (Eq.3)
e - ij
=2 j=1

where s is the scattering parameter, rjj is the Euclidean distance between ith and jth
atoms, N is the total number of atoms and Ai and A are different atomic properties
used as weights. Each term of this function depends on distance and thus may be
viewed as a radial basis function itself. Assigning to s integer values in the range of

0-31 A1, 32 values of function 1 can be calculated[29].

1.2.3 Dataset division

1.2.3.1 Principle Components Analysis (PCA)

Supposing x is set of compounds in raw and p is molecular descriptors; the aim of PCA is
to derive the variances of the p or correlations between the variables of p. Unless p is
small, or the structure is very simple, it will often not be very helpful to simply look at the p
variances correlations or covariances. An alternative approach is to look for a few (<<p)
derived variables which preserve most of the information given by these variances and
correlations or covariances. The main idea about principle component analysis (PCA)[30]is
to reduce the dimensionality of a data set in which there are a large number of interrelated
variables, while retaining as much as possible of the variation present in the data set. The
reduction task could be achieved by transforming to a new set of variables termed principal

components in which are uncorrelated, and ordered in a way that the first few retain most of
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the variation present in all of the original variables. The distribution results of data points
can be plotted to see how similar and scattered the chemical structures (score plot) and
how the molecular descriptors distributed relative to the molecules (loading plot).

1.2.3.2 K-nearest neighborhood (kNN)

k-nearest neighborhood is a hierarchal clustering technique that separates data by putting
them into clusters. In this method, the analysis begins with each case in its own separated
cluster and then identical clusters combine each other, this continues until just one cluster
left [31, 32]. In order to combine the cluster accurately in each time a measure of similarity
between cases is required and this can be achieved by using an appropriate metric [33].

The most used similarity metrics is Euclidean distance[34] which is calculating as follows:

m
dij = ||X; = X|| = Z(xik — %) (Eq.4)
k=1

dij is distance score between two different compounds (xi and xj). The results of hierarchical
clustering are presented as a dendrogram which can be used to do data mining so

accurately.

1.2.4 Molecular descriptors selection
Since there is less information about the parameters that would affect retention time
behavior of compounds, there is a need to use variable selection tools for deriving these

molecular features.

1.2.4.1 Stepwise variable selection (SW)

Stepwise selection technique was a well-known and simplest method for identifying the
right number of variables in data matrix that the procedure includes a regression models for
its selection base [35, 36]. The stepwise variable selection technique is performing by
forward selection (figure 4) and back elimination rule, where the variable possessed the
highest correlation value with response (experimental data) is being selected, and based
on the regression model, its regression coefficient is being calculated. Each selected
variable (here the molecular descriptor) is then tested using F-test [36-39] to see its

significance and contribution to the model, where if it improves the model it is included in
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the model. This procedure is called forward selection. However, if the selected variable
does not contribute in improvement of the model is excluded from the set of significant
variables and is eliminated from the model. This step is called backward elimination step
[35, 38]. The two steps were continuing until no further improvement is observed by
excluding or including the variables. The only disadvantage of this technique is over-fitting
since the selection is based on data fitting. To prevent this problem, cross-validation should

be employed to evaluate the predictive ability of the proposed model [37-39].
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Figure 4: The procedure of forward and backward variable selection for stepwise

technique

1.2.4.2 Genetic Algorithms (GASs)
Apart from the stepwise variable selection algorithm, one of the most accomplished
techniques for this purpose is genetic algorithms (GAs) [40, 41] which are inspired from
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natural evolution concepts by which the fittest species have high chance of survival. The
GA technique starts with binary coding of molecular descriptors values for each compound
to permit the mathematical treatment of “chromosomes”. “Chromosomes” are randomly
selected group of molecular descriptors that the descriptors inside these “chromosomes”
are called “genes”. The total number of “chromosomes” is indicating the population
(generally lies between 50 and 500) which is depending on the dimension of the problems.
These “chromosomes” are evaluated based on the fitness function (here is the correlation
coefficient-leave one out cross validation (QZ,,)), so that if chromosomes couldn’t meet the
cut off criteria, they are being stopped from spreading for the next generations. Next, the
survived “chromosomes” are reproducing new number of population, and the probability
level of each “chromosome” is calculated based on its outcomes associated with the taken
responses. The best number of “chromosomes” would be selected finally by their higher
probability that results in better response. The cross-over technique is then being applied to
these “chromosomes” to pair them in a new generation for deriving the most effective
‘genes” in “chromosomes”. Finally, mutation which causes to impose values that are not
tried for each descriptor is being applied to newly derived generation [40]. The reproduction
and mutation of “chromosomes” continue until the best number of descriptors in a
‘chromosome” is selected within the GAs iteration of generation. This process is shown in
Figure 5.
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Figure 5: Procedure of Genetic algorithms as variable selection tool

1.2.5 Modeling techniques
1.2.5.1 Multiple Linear Regressions (MLR)

Multiple linear regressions (MLR) method is one of the most used linear models in
QSRR. To derive a MLR model, the number of molecules in data set should be five times
higher than the number of selected descriptors (the descriptors should be orthogonal). A
low number of descriptors is of interest in order to minimize the information overlap in

descriptors. In this work, to obtain the best linear model, the statistical parameters (R? and
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Q? values) were considered. The MLR model provided a linear equation which is linking the
structural features to the retention times of the compound:
Rt = ay + byxq + -+ byxy, (Eq.5)

where a, is the intercept and the b; is regression coefficients of the selected descriptors x;

1.2.5.2 Artificial Neural Networks (ANN)

Artificial neural networks are computational models inspired by the biological nervous
system. The feed forward artificial neural network with back-propagation of error algorithm
is the most known method to derive an ANN nonlinear model [42, 43]. The input for the
model generation is the selected variables (descriptors) based on genetic algorithm’s
selection. The initial weights were randomly chosen between 0 and 1 [44]. Optimization of
the weights and biases is performed based on the resilient back-propagation algorithm[45].
The complex step in performing the ANN model is identifying the correct hidden layers to
generate the QSRR model [44]. Generally, a three-layer network with a sigmoidal transfer
function can be designed for simple modeling purposes[46]. To obtain the correct nodes in
the hidden layers, RMSE values should be considered for both test and training sets, and
the nodes with the lower RMSE can be selected as final output[44]. The high number of
iterations (20000) would also decrease the error of models. However, in most cases,
increasing the iterations would cause to increase the value of standard error of prediction
set started and therefore, over-fitting occurs[3]. The increased numbers of iterations have
several advantages: the architecture of the generated ANN is correctly designed, and the
descriptors that appeared in the model have been effectively selected. In a sample usage,
a data set should be divided into three groups using principle component analysis or
clustering techniques, separately. In our particular problem, a training set, a validation set
and a prediction set for negative and positive ESI with the proportional of 60%:20%:20%,
respectively, should be produced. The training and validation sets are for building the
predictive model and the prediction set is for evaluating the external prediction accuracy of
the generated model [3]. For obtaining the best model, despite the control of RMSE, R? and
mean percentage deviation (MPD) values for the results of each node analysis, some

external statistical analyses should be considered so as to select the number of nodes
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correctly. The neural networks can be implemented using Neural Network Toolbox for
MATLAB 6.5.

1.2.5.3 Support Vector Machines (SVM)

Support vector machines (SVM) [47] are non-linearly correlating the selected molecular
descriptors with the observed retention time values. In SVM, the dataset consists of the
molecular features are transferred to high dimensional space using Kernel function leading
to handle the non-linear problem by using linear regressions in derived feature space [48].
The general advantages of SVM over conventional neural networks are its capability of
avoiding the local minima and automatically derivation of network topology structure. The
linear regression in feature space is given below:

f)=w-dp(x)+b (Eq.6)
where w and b are the slope and the offset for the regression line, respectively. x is the
input dataset and ¢ is the mapping function (kernel) that can map the input dataset in
higher dimension. To obtain regressions function (to calculate w and b), the risk function (e-
insensitive loss function) should be minimized so that the function could be as flat as
possible:

n
1 1
Jsw(©) =5l + €5 L(di, ) (Eq.7)
i

ld—yl—¢ |d—yl=>¢

subjectstoL.(d,y) = { 0 otherwise (Eq.8)

where C%Z? L.(d;,y;) is the empirical error and it is calculated from Eq.7, %llwll2 is termed

regularized parameter and ¢ is the tube (or vector) size. Here, C is a regularization constant
which is determining the trade-off between regularization parameter and empirical error.

The positive slack variables (¢ and £*) can be amended to Eq. 9as follows:

1 n
Jom(@,8) = Sl0l? + € ) 6+ &) (Eq.9)

Finally, introduction of Largrange multipliers (a;) and (a;) would result in modification of

Eqg. 9as below:
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f(x,a;) = Z(ai —a)K(,x;)+b (Eq.10)
i=1

here K is the kernel function that consisted of linear, polynomial, radial basis function and
splines. Here, to develop a SVM model, Gaussian radial basis function (Eq.11) was
employed:

K(y?l,g?]) = exp (—y”)?l - 9?]”2) , X, and’x; are independent parameters (Eq.11)

1.2.6 Validation of the models

1.2.6.1 Internal validation criteria
To evaluate the strengths and goodness of the model, the coefficient of multiple
determinations was used. R? value calculates the proportion of the variation in the
response where obtained as follows:

Z£=1()’i - JA’i)z
2 _ 1 _
=S 5i-9 (Eq.12)

where y; is the observed property/activity (here is the experimental retention time), y is the

mean value of the experimental data and y;is the calculated retention time. The R? value
higher than 0.5 and near 1.0 indicates the acceptable predictive ability of the model.
Generally, theR? value can change (either increased or decreased values) by adding extra
variables to the model. Therefore, this problem can be solved considering the adjusted R?

values (RZ )

R2,: = [1 — (I —R? (iﬂ% (Eq.13)
J I-n—-1

In this equation, the number of calibration objects is (I), and the number of the selected
descriptors for model is (n). The statistical significance of the proposed model can also be
given by null hypothesis where this implies that all the descriptors in the model beyond the
constant value are required for modeling. To derive the given null hypothesis, comparison
of the F-value can be used as follows:
_ (k= DI~ )

F =
kY (vi — i)

(Eq.14)
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where n is the number of the compounds in the dataset and k is the number of descriptors.
The higher the F —value becomes, the greater the probability that the equation is
significant. Therefore, procedure results in selection of appropriate and relevant descriptors
if its null hypothesis rejected by having higher F values. Another important statistical
parameter that is used in both linear and non-linear methods to validate the outcome of the
derived models is the root mean square error (RMSE), where the lower RMSE value
indicates the less error generated by built models, and thus, the model can be accepted for
prediction purposes. The RMSE value is calculated as below:

RMSE =j ?=1(y;_yi)2 (Eq.15)
The most important statistical parameter that is showing the validation of models in
multiple linear regression modeling (linear regressions) is the cross-validation correlation
coefficient which is calculated as leave-one-out compound principle. In every calculation
process for obtaining Q2,, value, one of the compounds in the dataset is being excluded
from the model and its activity is calculating from the proposed model. This process is
continued until all available compounds in the data matrix are excluded once, and their
activities are being predicted by the model. Therefore, this technique is a good indicator of
the strength of the derived models. A robust model should implement highQ?,, value. This
value can be calculated as follows:
Yi-1 (i — 9)°
i (i = ¥)?
Further, the external predictive ability of the constructed model can be assessed by

qgoo = 7”czv =1- (Eq.16)

modified r? value (Eq. 17) and the concordance correlation coefficient (Eq. 18) methods
evaluating both accuracy and precise[49]. Concordance correlation coefficient (CCC)

evaluates the degree to which pairs of observations fall on the 45° line through the origin:

rn2 =r? (1 — |w/r2 — 12 ) (Eq.17)

where r2 and 2 are squared correlation coefficients between the observed and predicted

retention time value of the test set compounds with and without intercept, namely.
CCC = pC, (Eq.18)
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wherep is the Pearson correlation coefficient, and measures how far each observation
deviates from the best-fit line. Thus, the p value is a measure of the precision, and C,is the
bias correction factor which calculates how far the best-fit line deviates from the 45° line

through the origin, and therefore, it is a measure of the accuracy.

1.2.6.1 External validation criteria
After the development of the models, it is highly needed to apply methods for evaluating the
external predictive ability of the models. There are several external validation methods
which can be used. However, there is an important work performed by Tropsha who
discussed mainly the importance of the model validation [50]. As discussed, refereeing to
Q?Loo and R? values for presenting the predictive ability of a built model is not enough in all
cases, and the predictive power of a model can be investigated only based on the
prediction results of the test set compounds. Therefore, an accurate and valid model can
be established only based on model validation procedure consisted of compounds which
were not included in the model development. Tropsha suggested that to simulate the use of
QSAR/QSPR models, there should be another set of compounds with known
activities/properties that are not included in either training or test sets. Then, by the
proposed models, the activities of the built models are being predicted. In general, the size
of the external validation set should be about 15%-20% of the entire dataset, and the
remaining part of the dataset is called modeling set. Golbraikh and Tropsha acceptable
model criteria's can also be a sufficient tool [51] to verify the predictive ability of the
developed models. They introduced four conditions for accepting a model, as follows:

. Q?Loo value must be higher than 0.5

o R? value must be higher than 0.6

. R,2 —R,2/R%? < 0.1 and0.85 < K' < 1.15 orR? — R,%/R? < 0.1 0r0.85 < K < 1.15

. R,> —Ry2 < 0.3
where R is the correlation coefficient between the predicted and observed values; Ro? is the
coefficient of determination (correlation of predicted versus observed values with an
intercept of zero), and Ro" is the correlation between observed versus predicted values for
regressions through the origin; K is the slope and K' is the slope of the regression lines

through the origin [51].
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1.2.7 Applicability domain

Outlier detection and defining applicability domain is an important part of the QSRR [52]. It
was suggested that in a case of QSRR, it is better to use manual outlier detection process
by considering the information of both experimental and chemometrics tools [52].
Application of different automated outlier detection tools could also decrease the inaccurate

outlier treatment and cause better data analysis for a large dataset.
1.2.7.1 Williams plot

Williams plot is a robust method, not only to measure the applicability domain of any
proposed model, but also to detect the outliers presented in the model [53]. It is based on
the leverage and standardized residual values. Leverages can be calculated from the

molecular descriptors as follows:
h; = xI (XTX) 'x;whereh* = 3(p + 1)/n (Eq.19)

where X is the molecular descriptors matrix, T is an indicator of the training set, x; is the
descriptor vector for each molecule, n is the number of the compounds in the training set, p
is the number of the molecular descriptors as modeling variables, and h* is the warning
leverage value and it is a cut-off value to show that the chemical structures outside of this
value are outliers due to their high dissimilarity of chemical structures [53]. The commonly
used cut-off value for standardized residual is +3d where it covers 99% of normally
distributed data. Compounds which locate outside of this cut-off value will be considered as
outliers due to the abnormal response observed (here, wrong retention times).However,
compounds outside of the leverage cut-off value but inside the standardized residual limits

are considered as good leverages which can be included in the modeling results.
1.2.7.2 Euclidean based applicability domain

Euclidean distance can be measured for training and test set, and, then, the mean distance
for the test set compounds, normalized on the mean distance of training set versus
observed tr, can be obtained to show how the diversity of chemical structures behaves

toward the tr[54]. Test set compound outside the cut-off value of 1.0 (calculated by
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normalization of mean distance of training set), are considered to be outside of the
applicability domain of the model, and the training set is not representative for this

compound in the used test set.
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CHAPTER 2
LITERATURE REVIEW OF DEVELOPED MODELS FOR LC

There are a few number of articles published to explain the retention time behavior of
molecules in LC-HRMS. Table 2 presents a short review of the published articles on this
topic. Former studies such as No 1 and 10 presented a QSRR model for predicting
retention time of some forbidden and anti-doping substances based on optimized geometry
of chemical structures. However, the studies are suffering from future applications due to
narrow applicability domain as well as lack of outlier detection studies. Several previously
reported studies such as No 2, 3, 4, 14 and 9 are also created based on molecular
descriptors that were not selected by a validated procedure such as genetic algorithm and
thus resulted in the lack of fithess both internally and externally for future applications.
Although, the major issues that have been not discussed extensively so far are a
quantitative approach for detecting outliers and criteria over the acceptance or rejection of
prediction results, there are less number of publications addressing these important issues
[52]. The choice of molecular descriptors is also important case but yet difficult task.
Application of complex molecular descriptors or use of pKa or logKow limits the future of
application of QSRR models for newly detected compounds by which the value of these
descriptors are not clear (Table 2, No 2, 3 and 4). Apart from these specific points, there
has been not any publication with large chemical diversity for prediction of retention time in
polar compounds of concerns. In this study, all of these shortages were addressed for

predicting retention time accurately.
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CHAPTER 3
PURPOSE OF THE STUDY

From the literature review is evident that a wide-scope retention time prediction model is
missing to support suspect and non-target LC-HRMS screening. Therefore, the main effort
of this study was focused on the development of two widely applicable and acceptable
models for negative and positive ionization mode in reversed phase liquid chromatography
(RP-LC),meeting all validation criteria, to support the LC-HRMS suspect and non-target

screening of environmental emerging contaminants.

Fulfilling this task, k-Nearest Neighborhood (k-NN) and Principle Component Analysis
(PCA) were used for dividing the dataset into training and test set to prevent any biases
(i.e. chemical structure diversity and retention time distribution) in selection of data points.
This is also to remove any information lost or presence of individuals in components of
models. The most relevant descriptors, regarding the observed retention times, were

selected; for this purpose stepwise (SW) and genetic algorithm (GA) were used.

Multiple Linear Regression (MLR), Artificial Neural Networks (ANN), and Support Vector
Machine (SVM) were used to correlate the selected molecular descriptors with the
experimental retention times. The final models were evaluated internally and externally and
the presence of possible outliers was studied carefully. Based on the statistical results,
robust models were selected for the prediction of the retention time of suspect compounds
in a LC-QTOFMS screening of a surface water sample (from Danube river as a part of a
collaborative trial of the Joint Danube Survey), as external evaluation set. Extra protocols
for the outlier detection and also the interpretation of the results were provided to result in
accurate retention time prediction. A visualization software was developed (OTrAMS) to
facilitate the detection of outliers and to understand the origin of failure. This was an

important step in filtering of the screening results in order to reject the false positive results.
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CHAPTER 4
LABORATORY EQUIPMENT, INSTRUMENTS AND REAGENTS
4.1. Chemicals

The reference standards of the pesticides were donated to the laboratory by Bruker
Daltonics, at a concentration of 1 mg/L in methanol. The rest of the compounds included in
the study were all purchased from Sigma—Aldrich (Germany) and are presented in Table
S1 in electronic material. Individual stock solutions of these compounds were prepared in
methanol at a concentration of 1 g/L and stored at -20 °C. Then, working solutions were
prepared in methanol at a concentration of 1 mg/L. Methanol, LC-MS grade, was
purchased from Merck (Germany), whereas 2-propanol of LC-MS grade was from Fisher
Scientific (Geel, Belgium). Sodium hydroxide monohydrate (NaOH) for trace analysis
=299.9995%, ammonium acetate, ammonium formate and formic acid, all LC-MS grade,
were purchased from Fluka, Sigma-Aldrich (Germany). Distilled water used for LC-MS
analysis was provided by a Milli-Q purification apparatus (Millipore Direct-Q UV, Bedford,
MA, USA). Regenerated cellulose (RC) syringe filters (15 mm diameter, 0.22 um pore size)
were provided from Phenomenex (Torrance, CA, USA).

4.2. Chromatographic system

An ultrahigh-performance liquid chromatography (UHPLC) system with a LPG-3400 pump
(DionexUltiMate 3000 RSLC, Thermo Fisher Scientific, Germany), interfaced to a QTOF
mass spectrometer (Maxis Impact, Bruker Daltonics, Bremen, Germany) was used for the
screening analysis.

The chromatographic separation was performed on an Acclaim RSLC C18 column (2.1 x
100 mm, 2.2 um) from Thermo Fisher Scientific (Driesch, Germany) preceded by a guard
column, ACQUITY UPLC BEH C18 1.7 ym, VanGuard Pre-Column, Waters (Ireland),
thermostated at 30 "C. Mobile phase composition in positive ionization mode (Pl) is (A)
H20: MeOH (90:10) with 5 mM ammonium formate and 0.01% formic acid and (B) MeOH
with 5 mM ammonium formate and 0.01% formic acid. For the negative ionization mode
(NI), the mobile phase is (A) H20: MeOH (90:10) with 5 mM ammonium acetate and (B)

MeOH with 5 mM ammonium acetate.
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The gradient elution program was the same for the 2 ionization modes and the
chromatogram lasts 15.5 min, with 5 min of re-equilibration of the column for the next
injection. It starts with 1% B with a flow rate of 0.2 mL min- for 1 min. and it increases to 39
% in 2 min (flow rate 0.2 mL min?), and then to 99.9 % (flow rate 0.4 mLmin) in the
following 11 min. Then it keeps constant for 2 min (flow rate 0.48 mL min-1) and then initial
conditions were restored within 0.1 min and the flow rate decreased to 0.2 mL min-t. The
injection volume was set up to 5 L.

The operating parameters of the electrospray ionization interface (ESI) are for Pl mode:
capillary voltage, 2500 V; end plate offset, 500 V; nebulizer, 2 bar; drying gas, 8 L min™;
dry temperature, 200 °C; and for NI mode: capillary voltage, 3500 V; end plate offset, 500
V; nebulizer, 2 bar; drying gas, 8 L mint; dry temperature, 200 °C.

The QTOF MS system operates in broadband collision induced dissociation (bbCID)
acquisition mode and records spectra over the range m/z 50-1000 with a scan rate of 2 Hz.
The Bruker bbCID mode provides MS and MS/MS spectra at the same time, while it works
at two different collision energies. At low collision energy (4 eV), MS spectra were acquired
and at high collision energy (25 eV), fragmentation is taking place at the collision cell
resulting in MS/MS spectra.

A QTOF external calibration was daily performed with a sodium formate solution, and a
segment (0.1-0.25 min) in every chromatogram was used for internal calibration, using a
calibrant injection at the beginning of each run. The sodium formate calibration mixture
consists of 10 mM sodium formate in a mixture of water/isopropanol (1:1). The theoretical
exact masses of calibration ions with formulas Na(NaCOOH)1-14 in the range of 50-1000
Da were used for calibration. The instrument provided a typical resolving power of
36000-40000 during calibration (39274 at m/z 226.1593, 36923 at m/z 430.9137, and
36274 at m/z 702.8636). Mass spectra acquisition and data analysis was processed with

Data Analysis 4.1 and Target Analysis 1.3 (Bruker Daltonics, Bremen, Germany).

4.3. Development of the dataset
A very important step is the selection of the analytes to build the database and then find a
representative subset to provide for the modeling of the retention time prediction. The list

includes pesticides from different classes and modes of actions, like organophosphorous,
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carbamates, neonicotinoids, pyrethroids, ureas and many more, and some other emerging
contaminants, like pharmaceuticals, illicit drugs, sweeteners, anti-corrosion agents, and
perfluorinated compounds. To begin, the selection of the list was based initially on the
diversity of the compounds, in order to cover the whole range of physicochemical
properties of possible emerging contaminants. Moreover, the ionization efficiency of the
compounds was examined; both positively and negatively ionizable compounds were
selected. There is a higher number of compounds in positive ionization mode than in
negative, as that is the case in the screening database, as well. Finally, different functional
groups were selected through the compounds, since they play an important role in the
retention time of a compound.

After the selection of the list of compounds that would be used to build the models,
reference standard solutions of all the compounds at concentration 1 mg/L were injected at
the chromatographic system in triplicate, in both polarities. Retention time of the

compounds was recorded and was further evaluated for the models.

4.4. Sample preparation

The sample analyzed for this study was part of a collaborative trial organized by the
NORMAN Association (www.normannetwork.net), where one of the main purposes was the
comparison and harmonization of non-target screening methods [55].

The sample used in the collaborative trial was collected from location JDS57, downstream
of Ruse/Giurgiu (RO/BG; rkm 488; coordinates N43.890150, E26.017067) on September
18, 2013 as a part of the Third Joint Danube Survey, organized by the International
Commission for the Protection of the Danube River (ICPDR). The sample preparation
included a large-volume solid-phase extraction (LVSPE) of 1000 litres of water. Briefly, the
sampler cartridge was filled with 160 g of Macherey Nagel Chromabond® HR-X (neutral
resin) and 100 g each of Chromabond® HR-XAW (anionic) and HR-XCW (cationic
exchange resin). The retained compounds were extracted from the sorbents with 500 mL
each of ethyl acetate and methanol (HR-X), 500 mL methanol with 2% 7 M ammonia in
methanol (HR-XAW) or 500 mL methanol with 1% formic acid (HR-XCW). The extracts
were then combined, neutralized, filtered (What man GF/F) and reduced to a final volume

of 1 L using rotary evaporation. Aliquots of 1.5 mL, equivalent to 1.5 L of river water, were
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transferred into vials and evaporated to dryness under nitrogen. These were sent to each
participant along with a laboratory blank. The samples were reconstituted in MeOH:H20

(50:50) in 1.5 mL and filtered through RC syringe filters prior to analysis [55].

4.5. QSRR methodology

All the chemical structures of the selected compounds were drawn in Hyperchem 7.03 [21]
and then the initial geometry optimization calculations which employ energy minimization
algorithms to locate the most stable structures were used. Here, all molecules were pre-
optimized by using molecular mechanics force field (MM+), and then, final optimization was
carried out by using semi-empirical (AM1) method with root mean square gradient of 0.01
kcal molt. Dragon program was employed to calculate molecular descriptors for each
optimized molecule [22]. The descriptors were grouped in 22 different types, including:
constitutional descriptors, topological descriptors, walk and path counts, connectivity
indices, information indices, 2D autocorrelation, edge adjacency indices, Burden
eigenvalues, topological charge indices, eigenvalue-based indices, Randic molecular
profiles, geometrical descriptors, Radial Distribution Function (RDF) descriptors, 3D-
MoRSE (3D Molecular Representation of Structure based on Electron diffraction)
descriptors, WHIM (Weighted Holistic Invariant Molecular) descriptors, GETAWAY
(geometry, topology and atoms-weighted Assembly) descriptors, functional group counts,
atom-centred fragments, charge descriptors, molecular properties, 2D binary fingerprints
and 2D frequency fingerprints [23-26]. Among the above descriptors, the constitutional
descriptors are referring to atomic or molecular properties and are independent of the
overall molecular connectivity. These types of descriptors encode the size of molecules and
chemical properties. Geometrical descriptors are presenting features of the molecular
geometry, e.g. distances between particular points on the molecular surface and distances
between given chemical groups. Topological descriptors reflect the type and the connection
of atoms in the 2D space [27]. In addition to the above descriptors, since the compounds
contained ionizable functional groups in relevant pH, Log D, which encodes the lipophilicity
of a molecule in agueous phase with different pH, was calculated for each compound (at
pH=3.6 for positive ionization compounds and pH=6.2 for negative ionization compounds)

by using ChemAxon package [28]. The calculated descriptors for molecules in both

45



ionizations were pre-treated in order to remove the constant and near constant descriptors.
Moreover, the remained variables were checked for existence of collinearity, so as to
decrease the redundancy of the descriptor data matrix [e.g. among the detected collinear
descriptors (r>0.9), the one showing the highest correlation with the activity/property was
retained, and the others were removed from the data matrix]. To build predictive models for
predicting the retention time behavior of suspect compounds, datasets (separately for
positive and negative ionization) were split into training and test set using K-nearest
neighborhood and principle component analysis. To derive the most relevant descriptors
that are correlating to the retention time, and present the less inter-correlation values,
stepwise and genetic algorithms were used. Genetic algorithm and stepwise methods as
selection tools were written in MATLAB 6.5 program [29]. The results of each variable
selection technique were then used as input for several modeling techniques such as
Multiple Linear Regressions (MLR), Support Vector Machines (SVM) and Artificial Neural
Networks (ANN).The derived models were compared and the most reliable models for
identification purposes were finally selected.

4.6. OTrAMS

A novel display was developed to visualize the correlation between the activities, similarity,
and standard residuals to fully understand the origin of residuals between the experimental
and predicted retention time. In this technique the following steps are performed for
obtaining the visualization:
e The dataset consists of three sub groups (train, test, suspect), expressed by their
experimental retention time, standard residuals and normalized mean distances.
¢ In the next step, a3D-plot is produced by 4 boxes for the given data set (training and
test set) in which each box corresponds to the range of standardized residuals. Box
1 is showing the range between +10, box 2 denotes the range between +1d and
120, box 3 indicates the range between +20 and +3d and box 4 indicates beyond
+30. Standardized residuals (8) are raw residuals divided by their estimated
standard deviation. The cut-off value for standardized residuals (x30) is set based
on 99% confidence value of the modeling results.
¢ Next, the percent and number of available molecules in each box are calculated and

saved in output file to show the distribution of data set in each box (the code written
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in MATLAB to derive this plot is available in electronic material (OTrAMS.p)). The
large presence of compounds in box 1 represents the compounds with the less error
made by the model.

e Then, a visualization plot for box 3, which affects the model highly due to striking
residuals, is demonstrated. In this plot, a compound in box 3 can be analyzed based
on its distance from the mean value of the training set to understand the origin of the
residual. The size of a bubble is proportional to leverage values and hence this plot
can provide a quick analysis of outliers and their origins.

This step is crucial for accepting whether the retention times of the suspect compounds are
correct or not. Based on the calculation of step 4 for the suspect list, any outliers located in
box 4 and box 3 can be identified. Therefore, a high similarity distance from the mean value
(training set) indicates that the suspect molecule cannot be studied by the model due to its
dissimilarity and its unique structure. If the similarity distance for a suspect compound is
low but the observed retention time shows higher distance from the mean of the training
set, it indicates that this suspect compound is not correct and the response cannot be
related to the provided structure. This is a major filtering step of reducing the false positive
results of a screening HRMS procedure. The results of all above steps are saved finally for

further analyses purposes.
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CHAPTER 5
RESULTS AND DISCUSSION
5.1. Developed model for negative Electrospray lonization Mode ((-)ESI)
5.1.1 PCA-SW-MLR

The selection of the test set based on PCA method is shown in figure 6. For selection of

test set, the distribution of data points in score plot and also their retention time were

considered.
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Figure 6: PCA analysis for negative ionization compounds (sample test set for SW-
MLR)
After classification of data set by PCA method into training and test set, the stepwise
method was used to select the most respective variables to understand the correlation of
molecular structures with retention time. Based on the stepwise method as explained in
section 1.2.4.1, the most seven relevant descriptors were selected and then the linear
regression model was built. The linear model, based on the selection of test set on the

biases of PCA, has obtained as follows:
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Rt = -0.4879 (+0.6701) - 0.5351(+0.1141) nR06 + 0.9952(+0.2119) ICR + 0.8935(+0.2514)
ATS3p - 0.6955(+0.1018) EEig13d + 0.9912(+0.1543) R3e + 0.5276(x0.0767) ALOGP +
0.7372(x0.06057) Log D(pH at 6.20) (Eq.20)

Ntrain:241, thrain:0.854, RMSEtrain:1.053, Rzadj:0.850, Ftrain:195.523, QZLOO:0.844,
Q2%.60=0.777, Q%B007=0.842, Nrtest=59, R2?est=0.782, RMSEtest=1.367, Ftest=28.30, rm2est
20.724, CCCtest:0.8791, CCCtain=0.9216

Where N is the number of compounds, R? is the squared correlation coefficient, R?aqj is the
adjusted R?, Q%Loo, Q%sooT and Q?Lco are the squared cross-validation coefficients for leave
one out, bootstrapping and leave group out, respectively, RMSE is the root mean square
error and F is the Fisher F statistic. As it can be seen, the obtained model shows the
acceptable statistical parameters with higher square correlation coefficient (R?), Fisher F
statistic (F) and concordance correlation coefficient for both sets with lower RMSE values.
The predicted retention time values for the whole range of the compounds in training and
test sets using equation 20 have been plotted against the observed retention time values in
figure 7, and listed in Table S1(electronic material). The corresponding VIF values and
inter-correlation values of the selected seven descriptors are shown in Table 3.
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Figure 7: The plot of predicted retention time against the observed retention time
values based on PCA-SW-MLR

Table 3: The correlation coefficient of selected descriptors and corresponding VIF

values by PCA-SW-MLR

Variables nRO6 ICR ATS3p EEigldd R3e ALOGP LogD(6.20) VIFa
nROG 1 0 0 0 0 0 0 1.875
ICR 0.488 1 0 0 0 0 0 2.052
ATS3p 061 0673 1 0 0 0 0 2.475
EEig13d 0.408 0.479 0538 1 0 0 0 1.713
R3e -0.051 0.303 0.277 0.381 1 0 0 1.492
ALOGP 0.356 0.45 0488 0315  0.263 1 0 3.287
Log D(6.20) | 0.428 0.46 0.496 0.308  0.118 0.81 1 3.335

aVariation inflation factor

As can be seen from this Table, all variables have VIF values less than 5, indicating that

the obtained model has appropriate selected variables. Also low R? and Q? values were

obtained by Y-randomization test (Table 4).

Table 4: The Q%00 and R?raining values after several Y-randomization tests for PCA-

SW-MLR

Z
o

Q2

RZ

© 00 NO Ol A WDN P
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o

0.0047
0.0002
0.0071
0.0082
0.0004
0.0182
0.0103
0.0444
0.0014
0.0093

0.0218
0.0411
0.0507
0.0209
0.038
0.0163
0.0201
0.0126
0.0251
0.0579
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The robustness of the proposed model and its predictive ability was guaranteed by the high
Q2soot based on bootstrapping repeated 5000 times. Applicability domain was used and
outliers were detected and removed; the final model was generated and showed two
outliers that possessed residuals more than +3d (figure 8). These two compounds are
belonged to the test set, and didn’t include in model development; therefore, their omission
just benefits the outcome of test set (R? from 0.782 to 0.818). Before interpreting the
descriptors based on PCA-SW-MLR, genetic algorithms technique is also used to compare
the two methods and their results.

Standardized residuals

03 04 05 06 07 08 09 1
Leverages

Figure 8: William plot of PCA-SW-MLR model (equation 9): h* warning leverage value
is 0.09985.

5.1.2 PCA-GA-MLR

After classification of the data set by the same procedure done in PCA-SW-MLR, the
genetic algorithm was used to select the most relevant descriptors. For selection of the best
subset of descriptors, genetic algorithms technique was performed for different times and
among the generated results, the best model which could present higher statistical
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parameters where chosen. The results of combinations of different couples of descriptors

selected by GAs were listed in Table 5.

Table 5: Comparison of statistical parameters for different selected descriptors by
PCA-GA-MLR

Linear model equations

Model 1: Rt= 1.087(x1.116) +0.59215(+0.0670) Log D(6.20) -0.369 (+0.0854) BLTA96
+0.262(+0.0632) ALOGP -0.118 (+0.0630) nO +1.14073(+0.4086) BEHmM4 +0.107
(x0.0531) RBN +0.4603(x£0.1773) CIC1

Model 2: Rt= 2.730(£0.526) +0.627 (x0.0616) Log D(6.20) -0.3601 (+0.0813) BLTA96
+0.285(+0.0598) ALOGP -0.158(+0.0983) 0©O-058 +0.1085(+0.0471) RBN -
0.00758(+0.00311) TPSA(Tot) +1.638 (x0.279) R2e

Model 3: Rt= 2.472 (x0.532) +0.575 (x0.0702) Log D(6.20) -0.386(+0.0904) BLTA96 +0.336
(x0.0642) ALOGP -0.0737 (+0.0621) nO +0.804 (+0.493) BELmM3 +0.262(+£0.122) H3m
+0.680 (+0.304) ICR

Model 4 : Rt= 3.561 (+0.395) +0.545 (x0.0727) Log D(6.20) -0.540 (+0.0873) BLTA96 +0.310
(x0.0643) ALOGP -0.00015(x0.00249) TPSA(Tot) -0.258 (+0.2741) Mor23u -0.494
(x0.170) O-057 +1.481 (x0.282) B0O6[C-C]

Model 5: Rt= 1.581 (+1.461) +0.657 (x0.0668) Log D(6.20) -0.378(x0.0951) BLTA96 +0.169
(x0.0691) ALOGP -0.0101 (x0.00365) TPSA(Tot) -0.0934(x0.0506) HGM +1.64
(x0.490) BEHmM4 +0.358(+0.273) GATS1m

Statistical Resuls

r2train - RMSEtrain Fitrain Itest RMSEtest Ftest Q%Loo Q2%Boot I'M?est

Model 1 0.799 1.24 132.81 0.784 1.363 27.05 0.768 0.767 0.742

Model 2 0.821 1.171 153.27 0.766 1.45 25.76 0.798 0.797 0.687

Model 3 0.792 1.263 126.91 0.79 1.353 28.96 0.763 0.761 0.731

Model 4 0.806 1.219 138.76 0.765 1.45 25.59 0.761 0.764 0.688

Model 5 0.789 1.27 125.1 0.788 1.36 27.49 0.755 0.754 0.743

Main

Model 0.812 1.201 143.94 0.786 1.379 28.08 0.789 0.788 0.721

Rt = 1.789(x0.5342) + 0.6561(+0.06779) LogD(pH at 6.20) - 0.5386 (+0.08216) BLTA96 +
0.3083(+0.06447) ALOGP + 0.1038(x0.1205) nROH + 0.5174 (+0.376) HATS6m +
1.591(+0.29003) R2e - 0.2762 (+0.2209) Mor25e (Eq.21)
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Ntrain:242, thrain:0.812, RMSEtrain:1.201, Rzadj=0.806, Ftrain:143.94, Q2L00=0.789,
QZLGO:0.7OO, QZBOOT:0.788, Ntest:59, thest:0.786, RMSEtest:1.379, Ftest:28.08, rmztest
=0.721, CCCtest=0.8775, CCCirain=0.8960

The obtained statistical parameters (high squared correlation coefficient, CCC, Q?goot and
Q?Loo) show that genetic algorithms technique is better than stepwise method for selecting
of descriptors as model variables. To find out that the selected descriptors are statistically

meaningful, the Y-randomization test was used(Table 6).

Table 6: The Q%.0oo and R?raining vValues after several Y-randomization tests for PCA-
GA-MLR

No Q? R?

1 0.0006 0.0248
2 0.0026 0.0417
3 0.0286 0.0131
4 0.0665 0.0034
5 0.0053 0.0166
6 3.30E-06 0.0282
7 0.003 0.0235
8 0.0027 0.0352
9 0.0004 0.0286
10 0.0388 0.0073

In this method, the properties for a group of compounds were shuffled, and then, a new
model was built. The new QSPR models as outcome of this method should present low R?
and Q%.oo values so as to be confident that the models are directly in relation with the
selected variables. The predicted retention time values for all the compounds in training
and test sets, using the equation 21, plotted against the observed retention time values are
shown in figure 9, and listed in Table S1.
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Figure 9: The plot of predicted retention time against the observed retention time
values based on PCA-GA-MLR

The corresponding VIF values and inter-correlation values of the selected seven

descriptors are listed in Table 7.

Table 7: The correlation coefficient of selected descriptors and corresponding VIF
values by PCA-GA-MLR

Variables |Log D(6.20) BLTA96 ALOGP nROH HATS6m R2e Mor25e VIF?
Log D(6.20) 1 0 0 0 0 0 0 3.224
BLTA96 -0.638 1 0 0 0 0 0 2.464
ALOGP 0.712 -0.533 1 0 0 0 0 2.543
nROH -0.243 0.0585 -0.0785 1 0 0 0 1.304
HATS6m 0.0774 -0.157 0.256 0.0136 1 0 0 1.300
R2e 0.228 -0.203 0.089 0.081 0.357 1 0 1.689
Mor25e 0.424 -0.59 0.378 0.2603 0.246 0.552 1 2.472

aVariation inflation factor
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As can be seen from this Table, all variables have VIF values less than 5, indicating that
the obtained model has excellent selected descriptors. Applicability domain was also
obtained for the generated model and showed no outliers that possessed the residuals
more than £30 (figure 10).

@ Training A Test

Standardized residuals

03 04 05 06 07 08 0.9 1
Leverages

Figure 10: William plot of PCA-GA-MLR model (equation 10): h* warning leverage
value is 0.09917

The PCA-GA-MLR model (eq 21) was obtained after the removal of compounds
semduramicin and alitame, and the second built model did not show any outliers for the
training set, so as to rebuild the model. Some other compounds were located outside the
warning leverage value, however they did not show high (more than +30) residuals, and
therefore they did not treated as outliers. To understand the reason of these two outliers,
the molecular descriptors which were selected by GAs can be used as input for Euclidean
based applicability domain (figure 11), so as to explain the diversity of compounds based
on the selected descriptors. As it can be seen, the origin of outliers are not derived from
structural diversity, since they are within the capability of the model to be predicted,

however the observed response did not match to the given structure. Therefore, the PCA-
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GA-MLR model can be accepted as an initial model for predicting purposes. This workflow
can help to understand if the screened unknown and suspect compounds to be studied
further are within the capability of the models or not, before predicting their retention times

values.
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Figure 11: Euclidean based applicability domain of the compounds for PCA-GA-MLR
5.1.3kNN-SW-MLR

The same procedures were used for developing the linear and non-linear models; however
the data set was spilt based on the results of a kNN dendrogram. The test compounds
were marked in Table S1 and were shown in figure S1. Since the all interpretations of the
results were explained above, therefore, here we are just presenting the obtained results

for KNN-SW-MLR; the linear model was calculated as follows:

Rt = -0.5622 (+0.6977) + 0.9148 (+0.2304) ATS3p + 1.657(x0.3289) GATS2m -
1.006(x0.1392) EEigldr +1.601 (+0.2167) R3u +0.4980(x0.07977) ALOGP -
0.7737(0.1948) B02[C-S] +0.7197(+0.0623) LogD(pH at 6.20) (Eq.22)
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Ntrain:241, thrain:0.842, RMSEtrain:1.107, Rzadj=0.837, Ftrain:176.95, Q2L00=0.829,
QZLGO:0.752, QZBOOT:0.827, Ntest:60, thest:0.822, RMSEtestzl.Zog, Ftest:29.41, rmztest
20.770, CCCtest:0.8941, CCCtain=0.9140

The Y-randomization test was also used, and the results indicated that the developed

model is acceptable (Table 8).

Table 8: The Q%.oo and R?raining Values after several Y-randomization tests for KNN-
SW-MLR

No Q? R?

1 0.0076 0.0193
2 0.0059 0.0224
3 0.075 0.0089
4 0.0015 0.0417
5 0.0028 0.0259
6 0.0335 0.0119
7 0.0053 0.0197
8 0.0005 0.0355
9 0.0053 0.0214
10 0.0023 0.0259

William plot was also calculated to detect the possible outliers, however non-outliers were
seen for the training set (figure 12), and only one molecule which belonged to the test set
was detected as outlier, in which its omission will not benefit the model, since it was not
included in the model construction. The predicted retention time values using the equation
22 plotted against the observed retention time values are given in figure 13, and the results

for the whole data set are listed in Table S1.
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Figure 12: William plot of KNN-SW-MLR model (equation 11): h* warning leverage
value is 0.099585
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Figure 13: The plot of predicted retention time against the observed retention time
values based on KNN-SW-MLR

58



5.1.4 KNN-GA-MLR

The obtained results for KNN-GA-MLR, as a general linear model, were calculated as

follows:

Rt = -0.4297(+1.012) + 0.6242(+0.06824) LogD(pH at 6.20) + 0.4649(+0.1027) ALOGP -
0.08647(+0.09383) BLTA96 - 0.6998(x0.1527) EEigldr + 0.7589(x0.1320) CIC1 +
1.551(+0.3386) BEHM4 + 0.7907 (+0.3687) HATS6m (Eq.23)

Ntrain:241, thrain:0.820, RMSEtrain:1.169, Rzadj:0.815, Ftrain=152.01 QZLOO:0.806,
Q2%.60=0.781, Q%B007=0.803, Ntest=60, RZ?est=0.835, RMSEtest=1.228, Ftest=27.74, IM2est
=0.745, CCCitest=0.8935, CCCirain=0.9013

The equation 23 was obtained after removal a compound which was detected as outlier.
The different selected compounds as test set and training set caused better prediction
which was compared with other methods in Table 13. The different combinations of

molecular descriptors based on training and test set selected by kNN were listed in Table 9.

Table 9: Statistical parameters comparison based on different selected descriptors
by kNN-GA-MLR

Linear model equations

Model 1:

Model 2:

Model 3:

Model 4 :

Model 5:

Rt= 2.47 (+0.505) +0.643 (+0.0696) Log D(6.20) +0.418(+0.105) ALOGP -0.223
(+0.0938) BLTA96 -0.582 (+0.257) nPyridines +0.0822(+0.427) HATS6m +1.630
(+0.278) R2e +0.288(+0.1146) CI-089

Rt= 4.27 (+0.449) +0.497(x0.0789) Log D(6.20) +0.451(+0.114) ALOGP -0.269
(+0.106) BLTA96 +0.357 (+0.0890) TI2 -0.473 (+0.176) 0-057 +1.374(+0.560) R3p -
0.0070(+0.0033) TPSA(Tot)

Rt= 3.361 (+0.464) +0.586(x0.0666) Log D(6.20) +0.460(+0.0986) ALOGP -
0.0968(+0.1003) BLTA96 -1.147(x0.257) GATSIm +0.307(:0.148) CIC1
+1.88(0.297) R2e -0.0047(x0.0028) TPSA(Tot)

Rt= 2.341(+0.461) +0.598 (+0.0685) Log D(6.20) +0.398 (+0.106) ALOGP -0.231
(£0.1011) BLTA96  +0.157(x0.0542) FO3[C-C]  +1.140(x0.278) R2e
+0.0792(0.0665) S3K +0.458 (+0.171) CIC1

Rt= 4.28 (+0.320) +0.597 (+0.0788) Log D(6.20) +0.483 (+0.109) ALOGP -0.216
(+0.0984) BLTA96 +0.603(+0.256) FO4[CI-CI] +0.614 (+0.206) CIC1 -0.308(+0.363)
Mor28u +0.0470(+0.148) nROH
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Statistical Resuls

train - RMSEtrain Ftrain Itest RMSEtest Ftest Q%00 Q%Boot I'MZest
Model 1 0.811 1.12 142.74 0.807 1.30 26.22 0.796 0.795 0.751
Model 2 0.796 1.245 130.01 0.790 1.355 25.58 0.775 0.773 0.753
Model 3 0.821 1.167 152.72 0.766 1.420 22.25 0.807 0.805 0.733
Model 4 0.812 1.198 143.30 0.820 1.265 28.61 0.796 0.795 0.761
Model 5 0.792 1.258 126.88 0.824 1.255 28.62 0.774 0.772 0.757
M?CTel 0.82 1.169 152.01 0.835 1.228 27.74 0.806 0.803 0.745

The Y-randomization test was employed again, and the results were indicated that the

developed model is acceptable (Table 10).

Table 10: The Q%.oo and R?raining Values after several Y-randomization tests for KNN-

GA-MLR

No Q2 R2

1 5.12E-05 0.0273
2 0.03087 0.0156
3 0.00635 0.0493
4 0.001 0.0302
5 0.00551 0.021
6 0.00764 0.0203
7 0.13767 0.0026
8 0.01656 0.0188
9 0.01145 0.018
10 0.03597 0.0117

William plot was also calculated to detect the possible outliers for the final model; however

non-outliers were observed (figure 14). The predicted retention time values using the

equation 23 plotted versus the observed retention time values were shown in figure 15, and

the results for the whole data set were listed in Table S1.
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Figure 14: William plot of KNN-GA-MLR model (negative ionization): h* warning
leverage value is 0.09914
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Figure 15: The plot of predicted retention time against the observed retention time
values based on KNN-GA-MLR
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5.1.5PCA-SW-SVM

After successful linear modeling based on both stepwise and genetic algorithms
techniques, support vector machine method was used as non-linear modeling technique on
the same subsets of descriptors used in linear modeling. As explained before, SVM
regression depends on the combination of different factors such as kernel function type,
capacity parameter C, ¢ of e&-insensitive loss function, and its corresponding
parameters[47]. For generating the SVM model, firstly, the Kernel function type should be
declared in which determines the sample distribution in space. As said above, in this work
the radial basis function (RBF) was used due to its good general performance [48].
Considering equation 6, the y parameter can be provided. y is in close relation with SVM
performance (its training time) where controls the generalization ability of SVM. Generally,
to get the optimum value for y, it is being measured from 0.1 to 5 with incremental steps of
0.1. To get better insight about the optimized values, the root mean square errors (RMSE)
of cross-validation were obtained in each step. Figure 16 represents the plot of y versus
RMSE on the leave one out cross-validation. Here the optimal value of 2.7 has been

obtained fory.
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Figurel6: The gamma(y) vs. RMSE for the training set based on PCA-SW-SVM
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Parameter ¢-insensitive prevents the entire training set meeting boundary conditions, and
so allows for the possibility of sparsity in the dual formulation’s solution. The optimal value
for € depends on the type of noise present in the data, which is usually unknown. ¢-
insensitive has an effect over smoothness of the response of SVM, and also influence the
number of support vectors. An increase in e-insensitive value reflects the reduction in
requirements for the desired accuracy approximation. Therefore, if €-insensitive is zero,
there is an over-fitting issue, and if it presents larger values than the range of target values,
the obtained results are not appropriate. The RMSEs of cross-validation for different €
values from 0.01 to 0.1 with incremental steps of 0.01 are shown by figure 17. The optimal

value for g-insensitive is 0.01.
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Figure 17: The epsilon (¢) vs. RMSE for the training set based on PCA-SW-SVM.

The final parameter which should be optimized was C where is a regularization parameter
that controlled the tradeoff between maximizing the margin and minimizing the training
error. The small values for C parameter would increase the number of training errors, and a
large value would cause hard-margin SVM behavior. The capacity parameter C was
checked from 1 to 50 with incremental steps of 1 and is shown in figure 18. The optimal

value for capacity parameter is 50.
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Figure 18: The capacity parameter(C) vs. RMSE for the training set based on PCA-
SW-SVM

The parameters of SVM model were optimized as C=50, €=0.01, y=2.7. The predicted
values for retention time by SVM method were given in Table S1.Also, the predicted versus
experimental retention time values for both the training set and test set based on SVM

model was implemented in figure 19.
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Figure 19: The plot of predicted retention time against the observed retention time
values based on PCA-SW-SVM

The statistical parameters for PCA-SW-SVM model showed RMSE values with 0.486 for
the training set, 1.25 for the test set, and the squared correlation coefficients (R?) of 0.970
and 0.818 for training and test set, namely. Table 8 presents the statistical parameters of
the results obtained from the studied models for the same set of compounds. For obtaining
better results, the above workflow were performed for compounds of the test set and

training set which were selected by K-nearest neighborhood clustering technique.
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5.1.6PCA-GA-SVM

The same procedure employed in PCA-SW-SVM model was performed in this part;
however the non-linear model was built based on the selected descriptors using genetic
algorithms as a selection tool. The test set compounds were marked in Table S1 which
were the same used in generation of PCA-GA-MLR model. The parameters of SVM model
were optimized as C=50, €=0.01, y=1.9. The result of each optimization was shown in
figures 20-22. The predicted values for the retention time by PCA-GA-SVM method were

given in Table S1, and then plotted versus the observed retention time and shown in figure

23. The statistical results of PCA-GA-SVM were listed in Table 13.
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Figure 21: PCA-GA-SVM optimized parameters for the epsilon (g) vs. RMSE
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Figure 22: PCA-GA-SVM optimized parameters for the capacity (C) vs. RMSE
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Figure 23: The plot of predicted retention time against the observed retention time
values based on PCA-GA-SVM

5.1.7 kNN-SW-SVM

The non-linear model was built based on the same selected compounds as training set in

KNN-SW-MLR, and the optimized parameters were calculated as follows (figures 24-26):
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Figure 24: KNN-SW-SVM optimized parameters for the gamma (y) vs. RMSE
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Figure 25: kNN-SW-SVM optimized parameters for the epsilon (g) vs. RMSE
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Figure 26: KNN-SW-SVM optimized parameters for the capacity (C) vs. RMSE
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Figure 27: The plot of predicted retention time against the observed retention time
values based on kNN-SW-SVM
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5.1.8 KNN-GA-SVM

The non-linear model was built based on the same selected compounds as training set in
KNN-GA-MLR, and the optimized parameters were calculated as C=45, €=0.04, y=2.0. The
result of each optimization was shown in figures 28-30. The predicted values for retention
time by kKNN-GA-SVM method were given in Table S1, and then plotted versus the

observed retention time and shown in figure 31.
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Figure 28: kNN-GA-SVM optimized parameters for the gamma (y) vs. RMSE
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Figure 29: KNN-GA-SVM optimized parameters for the epsilon (¢) vs. RMSE
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Figure 30: KNN-GA-SVM optimized parameters for the capacity (C) vs. RMSE
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Figure 31: The plot of predicted retention time against the observed retention time
values based on KNN-GA-SVM

The statistical results of this model were listed in Table 8. The comparison of built models is

suggesting that kNN-GA-SVM is the most appropriate non-linear model for the prediction

purposes, however PCA-GA-SVM can also be employed. From the linear models, both
KNN-GA-MLR and KNN-SW-MLR can be used. The final validations for these models were

carried out using Golbraikh and Tropsha acceptable model criteria's. The results are shown

in Table 11.

Table 11:Golbraikh and Tropsha acceptable model criteria's for MLR and SVM

kKNN-SW-MLR kNN-GA-MLR kKNN-GA-SVM
Condition| | 0.822 0.806 0.833
Condition Il | 0.829 0.835 0.772
K=0.9959 K=0.9966 K=0.9858
N K'= 0.9877 K'= 0.9866 K'= 0.9979
Condition lll [ p2 g 2/R2 200048 R?—R,/RZ =0.0140 R®—R,%/R® =0.0077
Ro> —Ro'?/R?=0.0881 R,%—R,?/R?®=0.1202 R,*—R,"?/R?=0.0927
Condition IV | Ry® — R,'?= 0.06845 Ro% — R,y"?=0.08869 Ry — R,'*=0.07082
Acceptance | Passed Passed Passed
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5.1.9 KNN-GA-ANN

Since the models based on KNN and genetic algorithm showed appropriate internal and
external results, the non-linear model based on ANN was developed based on KNN-genetic
algorithm technique. It is accepted that for the generation of ANN models employing
variable selection is not necessary, but it can be useful to get better results. Therefore, we
used genetic algorithm for descriptors subset selection in ANN. The common problem with
ANN, is to select the right node where in most literature the RMSE values are being
considered for final model construction. Here, we reported and selected the ANN model
based on the modified r? value, CCC value, and RMSE. Therefore, considering the over-
fitting problem in higher nodes, the right nodes can be selected using their CCC values first
that encodes the accuracy and precision, and then provided modified r? value for test set to
select the nodes. Finally, for the couple of nodes with acceptable results for the test set, the
one which shows also less RMSE value for the training set can be selected as the final
node for subsequent analysis. The results of this procedure are shown in Table 12. From
Table 12, it can be seen that the model built based on node=7 shows the highest CCC
value for both the test and the training set, and the modified r? value for test set is the
highest one among the other nodes. Considering the RMSE value between node 5 and 7,
consequently the model based on 7 nodes is being selected. The MPD values for training

set were calculated for the all nodes and given in Table 12 as follows:

MPD =

N o)
100 |}’i - }’i| (Eq.24)
Yi

N -
where y, is the observed retention time, and ¥, the calculated retention time and N denotes
the number of data points. This formula measures the accuracy of the generated models
based on each node and the lower value indicate the good fitted point. The predicted
values based on kNN-GA-ANN are listed in Table S1 and their strength as prediction tool

are compared in Table 13. The correlation plot of observed and predicted retention time is

shown in figure 32.
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Figure 32: The plot of predicted retention time against the observed retention time
values based on kNN-GA-ANN
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5.1.10Interpretation of Molecular descriptors

The descriptors which were selected by the models are so important to be interrelated
since each of them describes the molecular structure properties and its relationship with
retention time. Therefore, by understanding their effect and definitions, the other
compounds and their possible retention time can be provided. Here, since the model based
on genetic algorithm-SVM showed appropriate results, the descriptors selected by genetic
algorithms are being discussed. The relative importance of selected descriptors is shown in

figure 37.

35
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Figure 33: The relative importance of selected molecular descriptors

The first selected descriptor based on the genetic algorithms is LogD (pH at 6.20). By
definition logP refers to neutral molecules. If a molecule contains basic or acidic groups, it
can become ionized in the mobile phase and its distribution in octanol-water becomes pH-
dependent. The pH-dependent distribution coefficient is defined as logD and it is calculated

from the following equation (equation 25):

logD(pH) = logP —log(1 + 10PH-PKaA) (Eq.25)

Where A;= {1,—1}is for acids and bases, respectively. The distribution coefficient, D, is a
pH dependant measure of the propensity of a molecule to differentially dissolve in two
immiscible phases, taking into account all ionized and unionized forms (microspecies). In

our work, to obtain the logD values for each compound, ChemAxon package was used at
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pH=6.2, so as to enable the model for better predictions by considering the ionized status
of a molecule which contains basic or acidic groups. Both logD and logP are two main
factors for risk assessment, drug design and toxicity of compounds since their values would
help us to understand any properties of molecule in different conditions. As it can be seen
from the linear equation 23, LogD is in direct relationship with retention time, where the
lower value of logD would cause decrease in retention time value, too. To understand its
effect clearly, we can use the definition of LogS (solubility), where at the certain pH, the
compounds with high solubility should indicate the lower LogD. Therefore, based on the
molecular structures, its solubility and LogD, the effect of LogD on retention time can be
easily interpreted. Some compounds were selected from Table S1 (among the compounds
of negative ionization) to investigate this effect (Table 14). LogS values were calculated
using ChemAxon package [56].1t can be seen that compounds with the lower LogD (-6.03)
has the higher solubility (LogS (pH=6.2) =3.99), and hence, it results to the decrease of the
retention time. Therefore, it is expected that compounds with lower retention time, have
more solubility. Some more examples were added to the Table 14. If we consider molecule
M261, it can be seen that the observed value presents the lower LogS, and therefore, it is

being expected to have retention time at higher retention time.

Table 14: Effect of LogD and AlogP on retention time.

Mol. Chemical Structure E(’r;pi'nF;t LogD LogS ALogP BLTA96
H,N
CHy
M92 | 118  -6.03 399 -228  1.72
0 P —OH
OH lol
O
(o]
M64 128 -3.74 174 -0381 -117
OH
(0] OH
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Exp.Rt

Mol. Chemical Structure (min) LogD LogS ALogP BLTA96
OH
M299 N)%N 1.76 1.07 -1.15 0.706 -1.21
)|\ /)\
HO N OH
[¢]]
M261 13.12 7.61 -7.24 6.73 -6.83
HO\Q/
M4 14.74 5.94 -6.68 5.04 -3.43

The second descriptor is ALogP (Ghose-Crippen octanol-water partition coefficient) which
belongs to molecular properties descriptors, it is a measure of the lipophilicity of the
molecule, and it is estimated using the Ghose—Crippen contribution method based on the
hydrophobic atomic constants of atoms in the molecule [20, 57, 58]. Lipophilicity indicates
the affinity of a molecule or a moiety for a lipophilic environment. The hydrophobicity
represents the meaning of the association of non-polar groups or molecules in an aqueous
environment which arises from the tendency of water to exclude non-polar molecules. In
other words, the lipophilic character can affect the retention time significantly: the higher
ALogP is, the higher retention is observed in C18 columns. As it can be seen from Table
14, LogD and ALogP have the same effect on the retention time, but since in ALogP the
ionized effect of compounds is not being considered, the obtained values were less

significant than LogD values. Therefore, compounds with high logP values have low
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hydrophilicity, and since it is in direct relationship with the retention time: the higher AlogP
would present higher retention time, as expected on a C18 column.

The next descriptor is BLTA96 (Verhaar Algae base-line toxicity from MLOGP (mmol/l)) in
which is actually the toxicity index of given compounds against algae[20]. In the
aguatic environment[59], there are at least 19 different models for the determination of
toxicity. The DRAGON software has implemented enumerating indicators: toxicity in fish,
daphnia and algae. In our model, it is a correlation between the retention times of the
indicator of toxicity, expressed relative to the algae according to Verhaar Algae model [60].
In numerous biological studies, it has been proven that algae in the aquatic environment
act as detoxification device (a kind of a “green liver’).The paths of metabolism of
xenobiotics in algae are close to the corresponding metabolic pathways in mammal body
[60]. Apart from this reason, the used compounds (mostly pesticides) have also
demonstrated the dominant toxicity where the selection of BLTA96 descriptor seems to be
rational. This descriptor demonstrated the negative effect in linear equation and indicating
that the increase of BLTA96 of compounds would results in lower retention time. In our
dataset the value of this descriptor is ranged between -8.05 (most toxic compound) and
1.72 (least toxic compound) suggesting that compound with less BLTA96 is more lipophilic
and thus resulting in decrease of polarity and increase of retention time. The BLTA96
values for some compounds were shown in Table 14, and, as it can be seen, M92 has the
lowest retention time among the other compounds, and it presents the higher BLTA96
value.

The next selected descriptor is Eigenvalue 14 from edge adj. matrix weighted by resonance
integrals (EEigl14r) which belongs to the edge adjacency indices and encodes the
connectivity between graph edges [20]. The edge adjacency matrix denoted as ¢A and
shows the whole set of connections between pairs of atoms in which is calculating as

follows:

_(1if(i,)) € E(G)
4]y = { 0 othewise (£q.26)

wherel is showing that the atoms in i and j were bounded, while otherwise is zero.
Resonance effect is a kind of energy stabilizing due to the delocalization of electrons in a

bond network available in a compound. It can cause the mesomeric effect (i.e
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delocalization of 11 electrons in its 1 orbital) and secondary mesomeric effect which is the
repulsion of the 1T electrons by non-bonded electrons on solvent or special substituent. As it
can be seen, this descriptor represented negative effect in the model. This means that
increase of the EEig14r value would reduce retention time.

The fifth descriptor is Complementary Information Content index (neighborhood symmetry
of 1-order (CIC1). The information content index descriptors are calculated based on the
pair wise equivalence atoms in a Hydrogen-filled molecule [20]. A pair of atoms are said to
be equivalent at a particular level-r, if they are of the same element and their neighborhood
Is equivalent up to level-r. For the CICy, the r-th order measures the deviation of IC from its
maximum value. It corresponds to the vertex partition into equivalence classes that are
including one element each. CIC: is calculating based on the equation 27.

CIC, = log oA — IC, (Eq.27)

where A is the atom number. IC: is defined below:

g
Z A Iog2 A ZP .log, Py (Eq.28)

where g runs over the G equivalence classes, Ag is cardinality of the gth equivalence class,
A is the total number of atoms, and pg is the probability of randomly selecting a vertex of
the g th class. It represents a measure of structural complexity per vertex. This descriptor
showed a positive effect on the retention time: the increase of this descriptor (presence of
two or more vertices that topologically equivalent with the same coordinates) would cause
an increase to the retention time.

The sixth selected descriptor is BEHmM4 (highest eigenvalue n.4 of Burden matrix /
weighted by atomic masses). This descriptor is encoding the Burden eigenvalues
descriptor and is calculated based on hydrogen included molecular graph weighted by
atomic masses[61]. The positive sign of this descriptor (see equation 23) suggests that the
retention time values are directly related to this descriptor positively. Increasing the atomic
mass by adding more hydrogen atoms in the molecular structure would result to the
increase of the retention time.

The last selected descriptor is leverage-weighted autocorrelation of lag 6/weighted by mass
(HATS6m) and belongs to the GETAWAY H-indices descriptors family, and explains the
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influence of atomic mass over probability interaction of leverage[62]. The GETAWAY
(Geometry, Topology, and Atom-Weights Assembly) descriptors have been proposed as
chemical structure descriptors derived from a new representation of molecular structure,
the Molecular Influence Matrix (MIM) [62]. Since the sign of this descriptor is positive in
equation 23, the increase in its value by increasing the mass of compound would result in

increase of retention time.

5.1.11 Applicability domain study of KNN-GA-MLR model for suspects

Some compounds (as suspect compounds) were used as evaluation set so as to predict
their retention time based on the developed models. The results of prediction for these
compounds along with their experimental determined retention time were listed in Table 15.
Among the suspect compounds, some significant residuals were observed. The William
plot and Euclidean based applicability domain were used to calculate the standard
residuals and normalized mean distance values as inputs for generating the visualization of
the outliers. This display would help to understand the origin of outliers more easily. Boxes
based on the training and test set (figure 34) are presented, and then for the taken
compounds as suspect list, the analysis was carried out. Results indicates that out of 63 as
suspect compounds, 30 compounds were predicted very well and 33 compounds are
belonged to box3 and box4. The results of the analyses were listed in Table 16.
Considering these results and the visualization plot (figure 35), it can be concluded that out
of 20 compounds in box4, six compounds (Oxadiazon, Carbuterol, Pivenfrine, Amoxecaine,
Hexamidine, 4-Aminosalicylic acid) are within the applicability domain of models, but the
suggested retention times are not matched with the structure and therefore, we can be sure
that the suggested compound as suspect molecule cannot be correct. The compounds

located in box 4 were shown in red color in figure 34.

Table 15: Retention time predicted values of of suspect compounds in negative
ionization as evaluation set by KNN-GA-SVM

suspectlist Exp. KNN-GA-SVM
Rt Predicted Rt
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The suggested
structure can be

The suggested
structure is

accepted rejected
N1 metominostrobin 9.51 9.23
N2 Carbofuran-3-hydroxy 6.22 7.38
N3  Oxadiazon 1.38 13.08
N4  Carbaryl 7.21 9.05
N5  Ancymidol 7.8 6.94
N6 Citronellalhydrate 10.9 7.76
N7 Linalylacetate 9.7 9.73
N8  Crotethamide 4.8 9.1
N9 Diisopropyladipate 7.5 10.56
N10 Ethofumesate 5.4 8.83
N11 Carbuterol 12.6 4.67
N12 Etoxazene 5.3 9.72
N13 Furmecyclox 12.8 9.58
N14 Pivenfrine 12.8 6.25
N15 lIrone 13.3 11.15
N16 Loxanast 13.2 12.46
N17 Phenylacetylsalicylate 10.2 10.23
N18 Menthylisovalerate 13.7 12.99
N19 Mazindol 1.4 11.2
N20 Embelin 9.7 10.93
N21 Amoxecaine 14.4 7.46
N22 lpriflavone 135 10.72
N23 Phenprocoumon 135 10.58
N24 Dibenzylsuccinate 8.3 10.19
N25 Metochalcone 8.3 10.44
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KNN-GA-SVM

: Exp. Predicted Rt
suspectlist Rt The suggested The suggested
structure can be structure is
accepted rejected

N26 vy-Linolenicacid 14 13.73

N27 Hexyldodecanoate 14.9 14.08

N28 Stearicacid 14.9 13.95

N29 Dodecylgallate 14.2 13.35

N30 Piperonylbutoxide 14.2 10.07
N31 Hexamidine 13.4 7.21
N32 Neraminol 13.4 7.84
N33 Dehydroabieticacid 13.9 12.9

N34 Isotretinoin 13.9 12.98

N35 Metandienone 13.9 10.76
N36 Nordinone 13.9 10.48
N37 Norgesterone 13.9 9.96
N38 Norvinisterone 13.9 10.26
N39 Tretinoin 13.9 7.72
N40 Algestone 11.2 7.72
N41 Corticosterone 11.2 7.5
N42 Cortodoxone 11.2 7.88
N43 Doxaprost 15.5 11.31
N44 Canrenone 14.8 9.32
N45 Hydroxymethyleneprogesterone 14.8 8.88
N46 Norethindroneacetate 14.8 10.47
N47 Cloprostenol 14.1 8.34
N48 Etretinate 135 13.47

N49 Melengestrol 135 9.38
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KNN-GA-SVM

: Exp. Predicted Rt
suspectlist Rt The suggested The suggested
structure can be structure is
accepted rejected
N50 Medrogestone 14.8 11.09
N51 Desmethylmoramide 5.8 9.85
N52 Doxapram 5.8 9.5
N53 Fenoctimine 151 13.1
N54 Hydrocortamate 14.6 8.94
N55 Dotarizine 13.5 11.92
N56 Picricacid 6.7 7.14
N57 DNOC_ 2 4-Dinitro-o-kresol 6.4 7.7
N58 4-Aminosalicylic acid 8.3 3.51
N59 Caprylicacid/ Octanoicacid 8 8.29
N60 Benzylformate 6.1 6.75
N61 8-Hydroxychinolin 6.8 6.59
N62 Caffeicacid 4.9 4.69
N63 4-Hydroxyphenyl-pyruvic acid 4.9 3.71
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Figure 35: Origin of outliers for suspect compounds in negative ionization

Table 16: The analysis of visualization of outliers for linear model (kNN-GA-MLR)

Boxes Origin of outliers compounds
The origin of residuals is mostly Clt_ronellal hydrate, Diisopropyl adlpaye, Furmecyclox,
) . Ipriflavone, Phenprocoumon, Metandienone,
due to structural diversity. The . .
. . Nordinone, Norgesterone, Norvinisterone,
model cannot predict their Rt :
Box 3 Corticosterone, Melengestrol
The origin of residuals is mostly
due to Response. The suspect Piperonyl butoxide, Medrogestone
compounds are rejected.
Crotethamide, Ethofumesate, Etoxazene, Mazindol ,
The origin of residuals is mostly  Neraminol , Tretinoin, Doxaprost, Canrenone,
due to structural diversity. The Hydroxymethyleneprogesterone, Norethindrone
Box 4 model cannot predict their Rt acetate, Cloprostenol, Desmethylmoramide,

Doxapram ,Hydrocortamate

The origin of residuals is mostly
due to Response. The suspect
compounds are rejected.

Oxadiazon, Carbuterol , Pivenfrine, Amoxecaine,
Hexamidine, 4-Aminosalicylic acid
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5.2. Developed model for positive Electrospray lonization Mode ((+)ESI)

5.2.1 PCA-SW-MLR
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Figure 36: PCA analysis for the positive ionization compounds

Since the workflow was the same as that employed in negative ionization, here the results
of each step were discussed in less details. The linear models based on stepwise variable
selection tool and selected test set compounds by PCA and kNN are calculated initially
before performing the genetic algorithms technique. The selected test set compounds
based on each splitting techniques were shown in Table S1 (positive ionization). The model
based on the PCA-SW-MLR is as follows:

Rt= 2.021 (+1.351) + 1.899(+1.897) Mv + 0.1021(+0.0291) RBN + 0.8486(+0.1384) CIC1 -
0.3978(+0.05838) C-025 + 0.0513(+0.01264) MLOGP2 + 1.685(+0.2639) BOB[C-C] +
1.097(+0.05665) LogD (3.6) (Eq.29)

Ntrain=422, RZrain=0.846, RMSEwain=1.061, R?Z2a3j=0.843, Fwain=324.49 Q3?00=0.840,
QZLGO:0.478, QZBOOT:O.838, Ntest=105, thest:0.843, RMSEtest=1.127, Ftest=78.49, rmztest
=0.765, CCCitest=0.9127, CCCtrain=0.9165
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The Y-randomization test was calculated, and the results were indicated that developed

model is acceptable (Table 17).

Table 17:The Q%00 and R?raining Values after several Y-randomization tests for PCA-
SW-MLR.

No Q? R?

1 0.0031 0.0286
2 0.0059 0.033
3 0.0153 0.0082
4 0.0104 0.0076
5 7.10E-06 0.0183
6 0.0083 0.0115
7 8.79E-05 0.0162
8 0.0027 0.0119
9 0.0047 0.0113
10 0.0304 0.0052

William plot detected 3 outliers (1 for training and 2 for test set) in model, and after removal

of the detected outlier from the training set, the final predictive model obtained (figure 37).
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Figure 37: William plot of PCA-SW-MLR model (equation 29): h* warning leverage
value is 0.056872.

VIF values for each selected descriptor along with correlation values between pair
descriptors are listed in Table 18. The predicted retention time values using the equation 29

plotted versus the observed retention time values are shown in figure 38.
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Figure 38: The plot of predicted retention time against the observed retention time
values based on PCA-SW-MLR

Table 18: The correlation coefficient of selected descriptors and corresponding VIF
values by PCA-SW-MLR

Variables | Mv  RBN CIC1 C-025 MLOGP2 BO06[C-C] LogD (3.6) VIF2
Mv 1 0 0 0 0 0 0 3.137
RBN -0.35 1 0 0 0 0 0 1.775
CiC1 -0.57 0.536 1 0 0 0 0 2.547
C-025 0.223 -0.03 0.051 1 0 0 0 1.242
MLOGP2 | 0.363 0.151 0.168 0.417 1 0 0 2.22
BO6[C-C] | 0.013 0.236 0.214 0.138 0.197 1 0 1.204
LogD (3.6) | 0.399 0.36 0.222 0.38 0.71 0.376 1 3.361

aVariation inflation factor

5.2.2 PCA-GA-MLR

The linear model based on genetic algorithms was also developed to compare the results.
The model based on the PCA-GA-MLR is as follows:

Rt= 3.559(+0.3267) +0.9348(x0.06201) LogD(pH=3.6) -0.2956 (+0.0704) BLTA96 +0.1394
(+0.02849) RBN +0.00408(+0.00926) ALOGP2 -0.2621(+0.0686) nHDon +0.5871
(+0.1086) CIC1 +1.282(+0.2610) BO6[C-C] (Eq.30)

Ntrain:421, thrain:0.849, RMSEtrain:1.048, Rzadj:0.846, Ftrain=331.19 QZLOO:0.842,
QZLGO:0.731, QZBOOT:O.841, Ntest=104, thest:0.816, RMSEtest=1.154, Ftest=59.00, rmztest
=0.814, CCCiest=0.8966, CCCirain=0.9182

The Y-randomization test and VIF values were given in Table 19 and 20, respectively.

Table 19: The Q%Loo and R?raining Values after several Y-randomization tests for PCA-
GA-MLR

No Q2 R2
1 0.0069 0.0341
2 0.0002 0.021
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No Q? R?

3 6.79E-05 0.0179
4 0.0121 0.0085
5 0.0053 0.0123
6 0.0002 0.0155
7 0.0008 0.0147
8 0.0003 0.022
9 0.0027 0.0113
10 0.0027 0.0244

Table 20: The correlation coefficient of selected descriptors and corresponding VIF
values by PCA-GA-MLR

Variables LogD (3.6) BLTA96 RBN  ALOGP2 nHDon CIC1 BO6[C-C] VIF2

LogD (3.6) | 1 0 0 0 0 0 0 4.499
BLTA9 | -0.773 1 0 0 0 0 0 3.013
RBN 0.36 0131 1 0 0 0 0 1.762
ALOGP2 | 0.808 -0.722 0.307 1 0 0 0 3.470
nHDon -0.37 0.297 -0.365 -0.222 1 0 0 1.276
cic1 0.224 0201 0549 0221  -0.327 1 0 1.480
BO6[C-C] | 0.36 -0.343 0.230 0.204  -0.292 0.228 1 1.270

aVariation inflation factor

William plot detected 2 outliers (1 for training and 1 for test set) in model, and after removal
of the detected outlier from the training set, the final predictive model obtained (figure 39).
The predicted retention time values versus the observed retention time values for PCA-GA-

MLR model are presented in figure 40.
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Figure 39: William plot of PCA-GA-MLR model (equation 30): h* warning leverage
value is 0.057007.
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Figure 40: The plot of predicted retention time against the observed retention time
values based on PCA-GA-MLR

%94



5.2.3 KNN-SW-MLR

The same procedures were done for the data set split by kNN technique. The dendrogram
for positive ionization can be found in the electronic supplementary material (figure S2).The
results for KNN-SW-MLR were derived as follows:

Rt= 2.159(+1.367) +2.126(+1.9101) Mv +0.1228 (+0.0277) RBN +0.7832(+0.1381) CIC1 -
0.409 (x£0.0575) C-025 +0.0500(+0.0128) MLOGP2 +1.501(+0.23142) B0O6[C-C] +1.0854
(x0.0551) LogD(pH=3.6) (Eq.31)

Ntrain:422, thrain:0.847, RMSEtrain:1.051, Rzadj:0.844, Ftrain=327.20 QZLOO:0.841,
QZLGOZO.744, QZBOOT=O.84O, Ntest=105, thest:0.826, RMSEtest=1.162, Ftest=67.03, rmztest
=0.809, CCCtest=0.9050, CCCtain=0.9171

VIF values for each selected descriptor along with correlation values between pair
descriptors are listed in Table 21. William plot detected two outliers for final KNN-SW-MLR
model (2 compounds for test set) (figure 41). The predicted retention time versus the

observed retention time values based on KNN-GA-MLR were shown in figure 42.

Table 21: The correlation coefficient of selected descriptors and corresponding VIF
values by kNN-SW-MLR

Variables Mv RBN CIC1 C-025 MLOGP2 BO06[C-C] LogD (3.6) VIF?
Mv 1 0 0 0 0 0 0 3.137
RBN -0.364 1 0 0 0 0 0 1.775
Cici -0.602 0.53 1 0 0 0 0 2.547
C-025 0.164 0.027 0.049 1 0 0 0 1.242
MLOGP2 | 0.366 0.142 0.144 0.425 1 0 0 2.220
BO6[C-C] | 0.007 0.244 0.175 0.169 0.225 1 0 1.204
LogD (3.6) | 0.368 0.36 0.212 0.369 0.72 0.376 1 3.361

aVariation inflation factor
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Figure 41: William plot of kNN-SW-MLR model: h* warning leverage value is 0.05687,

namely.
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Figure 42: The plot of predicted retention time against the observed retention time
values based on kNN-SW-MLR model
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5.2.4 kNN-GA-MLR
The results for kNN-GA-MLR were obtained as below:

Rt=  3.442(£0.925) +0.8593(+0.0643) LogD(pH=3.6) -0.2826(+0.0715) BLTA96
+1.448(+0.248) BO6[C-C] +0.3711 (£0.295) BEHp2 +0.0104(+0.0099) ALOGP2 +0.260
(£0.0250) RBN -0.0145(+0.00222) TPSA(NO) (Eq.32)
Ntrain=422, R?%rain=0.840, RMSEtain=1.069, R?a3j=0.838, Ftain=310.17 Q?.00=0.834,
Q2%.60=0.798, Q?B00T1=0.832, Ntest=105, R2?est=0.846, RMSEtest=1.093, Ftest=72.96, rm2est
=0.838, CCCitest=0.9146, CCCtrain=0.9133

For the linear generated model, it can be seen that, the external ability of the model is
better than other linear models, and therefore, it can be employed as the best linear model
to predict the retention time. Variation Inflation Factor (VIF) values of each chosen

descriptor with its correlation values with other selected descriptors were listed in Table 22.

Table 22: The correlation coefficient of selected descriptors and corresponding VIF
values by kNN-GA-MLR

Variables [LogD (3.6) BLTA96 B0O6[C-C] BEHp2 ALOGP2 RBN TPSA(NO) VIF2
LogD (3.6) 1 0 0 0 0 0 0 4.291
BLTA96 | -0.771 1 0 0 0 0 0 3.054
BO6[C-C] = 0.377  -0.341 1 0 0 0 0 1.344
BEHp2 | 0551  -0.453  0.419 1 0 0 0 1.803
ALOGP2 = 0816  -0.73 0229 0.452 1 0 0 3.315

RBN 0363  -0.13 0244 038  0.319 1 0 1.348
TPSA(NO)  -0.165 0.222 0.061 0.138 -0.13 0.192 1 1.211

aVariation inflation factor

The Y-randomization test was calculated for kKNN-GA-MLR model and the results indicated

that the developed model is acceptable (Table 23).

Table 23: The Q%00 and RZraining Values after several Y-randomization tests for kNN-
SW-MLR and kNN-GA-MLR
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KNN-SW-MLR kKNN-GA-MLR

No QZ R2 QZ R2

1 0.0121 0.0432 0.0008 0.0269
2 0.0026 0.0132 0.0006 0.0241
3 0.0895 0.0022 0.0034 0.0135
4 1.50E-05 0.0192 0.0005 0.0159
5 0.0003 0.0164 0.0057 0.0105
6 0.0014 0.0154 0.0013 0.0136
7 0.0051 0.0313 0.0392 0.0042
8 0.0362 0.0057 0.0038 0.0313
9 0.0056 0.0099 1.17E-06 0.0200
10 0.0002 0.0184 0.0047 0.0104

Williams plot detected non-outliers for the final kKNN-GA-MLR (figure 43). The predicted
retention time versus the observed retention time values based on kNN-GA-MLR were

shown in figure 44.

Standardized residuals

03 04 05 06 07 08 0.9 1
Leverages

Figure 43: William plot of KNN-GA-MLR model (positive ionization): h* warning
leverage value is 0.05714
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Figure 44: The plot of predicted retention time against the observed retention time
values based on kNN-GA-MLR model

5.2.5 PCA-SW-SVM

The used methodology for developing support vector machine discussed in negative

ionization was employed here. The results of the optimization of parameters for each SVM

model based on stepwise and genetic algorithms with different splitting technique were
listed in Table 24 and PCA-SW-SVM results were shown in figures 45-47.

Table 24: Optimized parameters values for SVM models

Models Epsilon (g) Gamma (y) Capacity (C)
PCA-SW-SVM 0.1 5 22
PCA-GA-SVM 0.03 5 29
kKNN-SW-SVM 0.1 5 31
kNN-GA-SVM 0.1 3.5 50

99



11.2
10.5 ¢ Optimal Gamma value=5.0
9.8 1
9.1 -
8.4 -
7.7

6.3 -
5.6 -
4.9 A
4.2
3.5 -
2.8 - .
2.1 - ’..
1.4 ]
0.7 -
0 ‘ ‘ ‘ ‘
0 1 2 3 4 5
Gammay

.oooo.u....-...o.'

RMSE on cross validation
ceso @

Q..“..“..“...“..“..m..“..“..“...“.0

Figure 45: PCA-SW-SVM optimized parameters for the gamma (y) vs. RMSE
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Figure 46: PCA-SW-SVM optimized parameters for the epsilon (&) vs. RMSE
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Figure 47: PCA-SW-SVM optimized parameters for the capacity (C) vs. RMSE

For each non-linear model, the data set was shown in Table S1 (positive ionization), and
the results of each models were compared to the linear models and presented in Table 27.
As it can be seen from Table 27, the best non-linear model was obtained based on the
KNN-GA-SVM. The plot of predicted retention time against the observed retention time
values based on PCA-SW-SVM method was shown in figures 48.

101



16

@ Training
14 {4 ATest

R2=0.8972 e ©

12

10

Predicted Rt
oo

0 T T T
0 5 10 15

Experimental Rt

Figure 48: The plot of predicted retention time against the observed retention time
values based on PCA-SW-SVM

5.2.6 PCA-GA-SVM

The optimum parameters of SVM for PCA-GA were derived as described above and shown
in figures 49, 50 and 51.The plot of predicted retention time against the observed retention

time values based on PCA-GA-SVM method was shown in figure52.
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Figure 49: PCA-GA-SVM optimized parameters for the gamma (y) vs. RMSE
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Figure 50: PCA-GA-SVM optimized parameters for the epsilon (¢) vs. RMSE
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Figure 51: PCA-GA-SVM optimized parameters for the capacity (C) vs. RMSE
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Figure 52: The plot of predicted retention time against the observed retention time
values based on PCA-GA-SVM

5.2.7 kNN-SW-SVM
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The optimum parameters of SVM for PCA-GA were derived as described above and shown

in figures 53, 54 and 55.The plot of predicted retention time against the observed retention
time values based on kKNN-SW-SVM method was shown in figure56.
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Figure 53: KNN-SW-SVM optimized parameters for the gamma (y) vs. RMSE
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Figure 54: KNN-SW-SVM optimized parameters for the epsilon (g€) vs. RMSE
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Figure 55: kNN-SW-SVM optimized parameters for the capacity (C) vs. RMSE
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Figure 56: The plot of predicted retention time against the observed retention time
values based on KNN-SW-SVM
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5.2.8 kNN-GA-SVM

The selected KNN-GA-SVM non-linear model was built based on the same selected
compounds as training set in KNN-GA-MLR, and the optimized parameters were calculated
as C=50, €=0.1, y=3.5. The result of each optimization was shown in Figures 57-59. The
predicted values for retention time by KNN-GA-SVM method for positive ionization
compounds were given in Table S1, and plotted versus the observed retention time and
shown in figure 60. The comparison of the built models (Table 27) suggests that kNN-GA-
SVM is the most appropriate non-linear model for prediction purpose; however PCA-GA-
SVM can also be employed. From the linear models, kKNN-GA-MLR can be used due to the
satisfactory external results. The final validations for these two selected models were
carried out using Golbraikh and Tropsha acceptable model criteria's. The results are shown
in Table 25.

Table 25: Golbraikh and Tropsha acceptable model criteria's for MLR and SVM

kNN-GA-MLR kNN-GA-SVM
Condition | 0.834 0.501
Condition II 0.846 0.887
K=1.00824 K=1.00898
N K'= 0.98166 K'= 0.98359
Condition Il p> R 2/R2 = 0.00009 RZ —R,2/R? =0.00092
Ro% — Ry'*/R? = 0.03518 Ro% — Ry'?/R? = 0.02507
Condition IV Ro% — Ry'*=0.02968 Ro% — Ry'%=0.02142
Acceptance Passed Passed
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Figure 57: KNN-GA-SVM optimized parameters for the gamma (y) vs. RMSE
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Figure 58: KNN-GA-SVM optimized parameters for the epsilon (¢) vs. RMSE
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Figure 59: KNN-GA-SVM optimized parameters for the capacity (C) vs. RMSE
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Figure 60: The plot of predicted retention time against the observed retention time
values based on kNN-GA-SVM

5.2.9 kNN-GA-ANN
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Since the models based on KNN and genetic algorithm showed appropriate internal and
external results, for the generation of non-linear model based on ANN, KNN-GA-ANN
technique was developed. The selected compounds as valid and test set were marked in
Table S1 (positive ionization). The same newly introduced technique for choosing the
nodes in negative ionization compounds were used here to develop accurate models
without the over-fitting problem. The results of this methodology are shown in Table 26.
From Table 26, it can be seen that the model built based on node=6 shows the highest
CCC value for both the test and the training set. Moreover, the calculated modified r? value
for test set is the highest one among the other nodes. Considering the RMSE value for
node 3 and 6, consequently the model based on 6 nodes is being selected. The MPD
values for training set with the different nodes were calculated using equation 13 and are
given in Table 26. The obtained MPD value for node 3 and 6 indicates that the model
based on 6 nodes represents an appropriate fitting. The predicted values based on KNN-
GA-ANN are listed in Table S1 and its strength as prediction tool is compared in Table 27.
The predicted values for the retention time by kNN-GA-ANN method for the positive

lonization compounds versus the observed retention time are shown in figure 61.
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Figure 61: The plot of predicted retention time against the observed retention time
values based on kNN-GA-ANN
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5.2.10 Interpretation of Molecular descriptors

The descriptors which were selected based on the genetic algorithms showed to have
striking effects and appropriate correlations with observed retention time. In the derived
prediction analyses for positive ionization, some descriptors were presented as they were
chosen in negative ionization, and therefore, it reflects that these three descriptors (LogD(at
certain pH), ALOGP, and BLTA96 are more responsible for the chemical behavior in
regards of the retention time. For the compounds in positive ionization, these three
descriptors have the same impact on the retention time (equation 32), as in negative
ionization compounds, since the sign of the correlation coefficients for LogD and ALOGP2

is positive and the sign for BLTA96 is negative (equation 23). The relative importance of the

selected descriptors is shown in figure 62.
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Figure 62: The relative importance of selected descriptors in positive ESI.

ALOGP?2 is squared Ghose-Crippen octanol-water partition coefficient which is belonged to
molecular properties descriptors and is a measure of the lipophilicity of the molecule, the
same as ALOGP. As it was discussed previously, the Ghose-Crippen contribution method
[20, 57, 58] is based on the hydrophobic atomic constants ax that is measuring the lipophilic
contribution of atoms in the molecule as follows:
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LogP = Y ag. Ny (Eq.33)

Where Nk is the occurrence of the k th atom type, and the hydrophobic constant have been

evaluated for hydrogen atoms, carbon atoms and heteroatoms.

In addition to the above descriptors, the linear model based on KNN-GA-MLR showed
another descriptor, BO6[C-C]. This descriptor is a type of 2D binary atom pairs of order 6
descriptors and defines the presence/absence of C - C at topological distance 6. This kind
of descriptor describes the pairs of atoms and bond types connecting them based on the
topological representation of molecules. Two carbon atoms and inter atomic separation is

defined as:
AP = {[ith atom description][separation][jth atom description]} (Eq.34)

Therefore, the separation is the topological distance between these two carbon atoms. As it
can be seen, this descriptor has positive sign in the linear equation, which encodes that the
availability of such binary atom pairs in molecular structure would cause an increase to the

retention time.

The next selected descriptor is BEHp2 (highest eigenvalue n.2 of Burden matrix / weighted
by atomic polarizability). As it was discussed in negative ionization, the Burden eigenvalue
descriptors [63] represent the chemical structural diversity or similarity of a molecule based
on the Burden approach [62]. Another useful benefit is associated with the eigenvectors,
which can be used to determine the attribution of each atom to substructures upon
disconnection of the main structure into distinct fragments. In this context, atomic
polarizibility that is relevant to intermolecular interactions are supported and since its
correlation coefficient has positive sign in equation 32, increasing the atomic polarizability
relevant to intermolecular interactions would increase the retention time. To understand
BEHp2 effects and also its relationship with the polar atoms (O,N S and P), LogD values as
well as charges potential and also BEHp2 values for some compounds were studied and
listed in Table 28. Polar surface area (PSA) and charges potential were calculated based
on DFT study on the basis of B3LYP/6-31*G method.
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Table 28: Relationship between BEHp2, Retention time, LogD and charges potential
Name LogD Charges potential BEHp2 Rt PSA (A2

ml2 -1.07 2.319 1.38 56.095
m489 -2.56 2.633 1.34 97.207
m219 -1.81 2911 2.19 55.698
m7 -0.59 3.134 4.66 56.169
ml1l25 4.38 4.026 13.21 46.676
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m145 3.93 3.994 13.53 31.169

m31 3.45 3.975 11.66 61.812

BEHp2 can be assumed to be measure of polarizibilities in substracture or fragments of a
compound and thus lower value can represent the less number of fragments in molecular
graph as well. For example, from Table 26, m12 (Amitrole) showed the lowest BEHp2 in
contrast to whole data set suggesting that atomic prolazibility in substracture is so low. It is
also a small substance which limits the fragmentation. Reported Rt as well as LogD are
low. It seems that presence of Nitrogen in molecular graph decreases the BEHp2 values in
contrast to presence of Oxygen, Sulfur and Phosphore. Comparing compound m12 with
m219, it can be seen that addition of oxygen group inceased BEHp2 values but decreased
LogD values suggesting that molecule is more polar, however as BEHp2 increasedin
compound m125, the LogD is increased. Therefore, BEHp2 is not representing the atomic
polarizibility of molecule but its fragments. There is also a masking effect of LogD which its
effect is more dominant than BEHp2. Therefore, it can be concluded that if a molecule
represents more fragmentations with less number of Nitrogen, the BEHp2 will be increased
directly leading to increase of Rt while it is not representing the true effect of polarizibility of
compound since its LogD might affect Rt inversely. It is also a good agreement between
retention time and polar surface area calcualted by DFT study (B3LYP/6-31G*).

The next descriptor is RBN (number of rotatable bonds) in which belongs to constitutional
descriptors and encodes the number of bonds that have free rotation around themselves. It

is defined in a single bond type which is not in a ring. In addition, bonds between amide (C-
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N) are excluded from this calculation due to the high rotational energy barrier. To

understand this effect more deeply, some compounds were presented below:

x 0]
C C CH
N b K & SCHs
|

CH,  FsC /

RBN=1 RBN=2

CH,

Apparently, the RBN value is more in alkyl chains than in its ring form. It seems that
compounds with more RBN and in other words alkyl chain have good interaction with
stationary phase alkyl groups and thus postponing the elution. Since this descriptor
indicated positive sign in equation, increasing number of rotatable bond would results in an

increase of the retention time.

The last selected descriptor based on genetic algorithms is the topological polar surface
area using N, O polar contributions (TPSA(NO)). This descriptor represents the influence of
a particular functional group (especially based on the compounds with higher
electronegativity atoms) [60]. Since this descriptor has a negative sign in the equation, the
presence of N, O polar contributions in molecular structure would cause a decrease to the
retention time. Therefore, compounds with higher TPSA(NO) value would show lower
retention time, however in comparison to effects by other selected descriptors, the mean

effect of this descriptor is lower.

5.2.11 Applicability domain study of kNN-GA-MLR model for suspects

Some compounds (as suspect compounds) were used to predict their retention time based
on the developed models so as to figure it out whether the suggested compounds can be
the correct candidates or not. The results of prediction for these compounds along with

their experimental retention time were listed in Table 29.

Table 29: Retention time prediced values of suspect compounds in positive
ionization by KNN-GA-SVM
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KNN-GA-SVM
Predicted Rt

Suspectlist EXp.
Rt The suggested The suggested
structure can be structure is
accepted rejected
P1 (1-Hydroxy-iso-propyl)acetophenone 6.34 10.10
P2  1,3,3-Trimethyl-2-methyleneindoline 13.49 8.19
P3  1.2.3.6-Tetrahydrophthalimide (cis-) 5.71 4.87
P4  17-alpha-Estradiol 12.98 11.22
P5  17-beta-Estradiol 13.16 11.22
2-[2-[4-(1-1-3-3-
tetramethylbutyl)phenoxy]ethoxy]ethanol
/ 4-Octylphenol di-ethoxylate
P6 12.44 12.98
2-2-4-trimethylpentane-1-3-diol
P7  diisobutyrate 13.41 13.21

2-3-Dihydro-1-methyl-1H-indol (1-
Methyl-2-oxindole)
P8 6.53 6.44
2-6-Di-tert-butyl-4-hydroxy-4-methyl-2-5-
cyclohexadien-1-one

P9 11.71 10.28

P10 2-6-Di-tert-butylphenol 12.26 11.97

P11 2-Methyl-1-phenylpropan-2-ol 12.44 9.28

3-5-Di-tert-butyl-4-

P12 hydroxyacetophenone 10.16 11.52

P13 4-acetyl-amino-antipyrine (AAA) 5.29 6.87

P14 4-formyl-amino-antipyrine (FAA) 5.24 6.65

P15 4-iso-Propenylacetophenone 7.34 9.67

P16 4-tert-Butylphenol 12.44 8.36
P17 5 6-di-Me-Benzotriazole 5.69 7.10

P18 Amitraz 8.79 11.28
P19 Ancymidol 7.78 8.26

P20 Atrazine-desethyl 6.86 6.83

P21 Benefin 8.88 12.69
P22 Benzylbutylphthalate 12.78 13.31

P23 Bis-(2-ethylhexyl) phthalate 14.33 15.33

P24 Bisoprolol 11.81 8.94

P25 Butylbenzoate 7.34 11.43
P26 Butylmethoxydibenzoylmethane 14.86 13.04

P27 Camphor 11.88 6.89
P28 Cyclohexylisocyanate 6.13 6.57

P29 Desethylterbuthylazine 8.54 7.07

P30 Diisononylphthalate 12.76 15.18

P31 Di-iso-propylphenol 12.44 8.89

P32 Di-n-butylphthalate 12.84 13.42

P33 Dinex (2-Cyclohexyl-4.6-dinitrophenol) 8.63 9.69
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KNN-GA-SVM
Predicted Rt

Suspectlist EXp.
Rt The suggested The suggested
structure can be structure is
accepted rejected
P34 Dinocap 10.09 14.17
P35 Di-n-octylphthalate 1491 15.09
P36 d-Limonene 12.44 10.63
P37 Estriol 9.41 9.96
P38 Estrone 11.23 11.39
P39 Ethylenebrassylate 10.24 10.44
P40 Ethylhexylmethoxycinnamate 14.63 14.02
P41 g-Methylionone 12.26 11.11
P42 Hexa(methoxymethyl)melamine 8.71 10.24
P43 Hydroxylbuprofen 8.28 9.10
P44 Icaridin 9.46 8.09
P45 JWH-210 8.01 14.75
P46 Melamine 1.34 1.440
P47 Merphos 6.61 14.38
P48 Methylneodecanamide 12.19 1191
Methyl-iso-propylcyclohexenone-
P49 Carvone 12.44 9.74
P50 Methylphenobarbital 7.81 7.29
P51 Mutagen X 1.23 4.9
P52 N-Acetylmorpholine 6.21 3.57
P53 N-Methyl-2-pyrrolidone 3.71 3.51
P54 N-Methylphenacetine 3.84 8.48
p55 N-N'-Diethyl-N-N'-diphenylurea 11.88 11.33
P56 N-nitrosodiethylamine 1.23 5.82
P57 N-Nitrosopyrrolidine 1.23 3.47
P58 N-phenyl-naphthylamine 12.71 12.00
P59 Octocrylene 14.26 15.06
P60 Oxadine A/ 4-4-dimethyloxazolidine 5.18 2.15
P61 Phenytoine 7.26 9.00
P62 Prometon 6.76 9.70
P63 Pyrimidifen 8.39 13.48
P64 Sebuthylazine 10.43 10.39
P65 Secbumeton 6.76 9.79
P66 Spectinomycin 8.19 3.94
P67 Styrene 12.44 7.83
P68 tert-Butylhydroquinone 8.56 8.17
P69 Tributylphosphate (TBP) 12.53 13.13
P70 Tributylacetylcitrate 13.53 12.95
P71 Triethylcitrate 6.59 8.50
P72 Trifluralin 8.88 12.81
P73 Triphenylphosphineoxide 9.96 12.04
P74 Tris(1-chloro-2-propanyl) phosphate 10.53 11.45
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KNN-GA-SVM
Predicted Rt

Suspectlist EXp.
Rt The suggested The suggested
structure can be structure is
accepted rejected
P75 Tris(2-methylpropyl) phosphate 12.66 12.47
P76 Tris(methylphenyl) phosphate 13.34 14.10
P77 Viridine 8.56 9.25

The workflow introduced in section 4.6 was employed to visualize the results and detect the
possible outliers. Based on the training and test sets (figure 63), boxes are presented. For
the compounds in suspect list, the same analysis was carried out, and results illustrated
that out of 77 compounds as suspect compound, 47 compounds are predicted very well
and 30 compounds are belonged to box3 and box4. The results are listed in Table 30.
According to Table 30and visualization plot (figure 64), it can be concluded that out of 21
compounds in box4, twelve compounds ((1-Hydroxy-iso-propyl) acetophenone, 1,3,3-
Trimethyl-2-methyleneindoline, 4-tert-Butylphenol, Benefin, Bis-(2-ethylhexyl) phthalate,
Butyl  benzoate, Camphor, N-Methylphenacetine, N-nitrosodiethylamine, N-
Nitrosopyrrolidine, Pyrimidifen, Trifluralin) are within the applicability domain of models, but
the suggested retention times are not matched with the structure and therefore, we can be
confident that the suggested compounds cannot be correct. The rest of the compounds
showed high residuals due to the chemical structural diversity which is beyond the
applicability domain of the generated models. Molecules belonged to box 4 (outliers) were
shown in red color in figure 64.

Table 30: The analysis of visualization of outliers for linear model (kNN-GA-MLR)

Boxes Origin of outliers compounds
The origin of residuals is
mostly due to structural
diversity. The model cannot
predict their Rt.

17-alpha-Estradiol

Box 3 The origin of residuals is 2-Methyl-1-phenylpropan-2-ol, 4-iso-
mostly due to Response. The Propenylacetophenone, Di-iso-propylphenol,
suspect compounds are. Methyl-iso-propylcyclohexenone- Carvone, N-
rejected Acetylmorpholine, Oxadine A / 4-4-
' dimethyloxazolidine, Triphenylphosphine oxide
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The origin of residuals is
mostly due to structural
diversity. The model cannot
predict their Rt.

Bisoprolol, Diisononyl phthalate, Dinocap, Di-n-
octyl phthalate, JIWH-210, Merphos, Mutagen
X, Spectinomycin, Styrene

Box 4 (1-Hydroxy-iso-propyl)acetophenone, 1,3,3-

The origin of residuals is Trimethyl-2-methyleneindoline, 4-tert-

mostly due to Response. The  Butylphenol, Benefin, Bis-(2-ethylhexyl)
suspect compounds are phthalate, Butyl benzoate, Camphor, N-
rejected. Methylphenacetine, N-nitrosodiethylamine, N-

Nitrosopyrrolidine, Pyrimidifen, Trifluralin

.....
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Figure 63: Visualization of the data distribution for (+) ESI compounds
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Figure 64: Origin of the outliers for the suspect compounds in positive ionization
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CHAPTER 6
CONCLUSIONS

The obtained QSRR models for a large data set measured in two ionization modes by liquid
chromatography—quadrupole — time of flight mass spectroscopy (LC-QTOF MS) supported
the safe identification of suspect compounds. In this work, some novel methodologies were
presented to understand the origin of miscalculation for suspect list compounds where it
enabled the researchers for better understanding of rejection of a compound as suspect
compound. Different models for both datasets in two ionization modes were provided and
compared. The results indicated that the generated models using kNN for the appropriate
division of data set, and employing of genetic algorithms as variable selection technique,
would lead to strong models for the prediction purposes. MLR based on kNN-GA as a
simple linear model for both datasets was validated by employing different validation
techniques, and it proved to be applicable for prediction purposes, however among the
non-linear models, SVM with same selection technique showed the highest statistical
confidence and accuracy for the prediction of the retention time. The newly suggested
remarks for ANN models generation reported in supplementary material file could also lead
to better prediction in comparison to the MLR models, so that it could present better
statistical results with acceptable criteria. However, its results were weak in comparison to
SVM model. The provided large dataset could also make the application of models possible
in different disciplines (environmental chemistry, pharmaceutical analysis, metabolomics,
forensics and doping analysis). Consequently, the derived workflows for model generations
and validations besides the visualization of outliers technique, showed great potential for
the identification of suspect compounds.
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APPENDIX A

OTrAMS(ESI,save,PD)

%%%%%%% %% %% About% % %% %% %% %% %% %% %%

%This code is written by Reza Aalizadeh ©

%Laboratory of Analytical Chemistry,

%Department of Chemistry,

%National and Kapodistrian University of Athens,

%Panepistimiopolis Zographou, 15771 Athens, Greece

%Usage:

%ESI is electrospray ionization mode: 'Negative' or 'Positive’

%save is to export the outlier analysis to excel format: save=1, not save=0

%PD is plotting options: for separated figures and 2D dimension >PD=1, for 3D
%dimension and it’s criteria >PD=2

% For Negative ESI, type the following command in MATLAB: OTrAMS('Negative',1,2)
% For Positive ESI, type the following command in MATLAB: OTrAMS('Positive',1,2)
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