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ABSTRACT 

In this work we aim to improve the performance of business intelligence applications, an 
important part of which is the Extraction-Transformation-Loading (ETL) processes. The 
vast majority of ETL processes involve very expensive joins between 'fresh' stream data 
flows and disk-stored relational data. We based our solution on an existing algorithm 
called Semi-Streamed Index Join algorithm (SSIJ), which successfully handles ETL 
transactions on a single computer node with very promising performance results. But 
we live in the era of information explosion. Large corporations have the ability to collect 
and store TBs of data every day. It is therefore necessary to move to a solution that 
uses multiple computing nodes. We developed an elastic distributed architecture that its 
main concern is the fair distribution of the computational load of SSIJ to multiple nodes. 
We have developed algorithms that efficiently direct the flow of the stream into clusters 
nodes in order to make caching as effective as possible. We also have the ability to add 
or remove compute nodes dynamically depending on the volume and speed of the 
stream traffic in order to maintain system performance stable and simultaneously avoid 
wasting valuable resources. In the implementation of this work we used containerized 
computing nodes which can operate in a cluster of virtual machines. We were based in 
Docker technology for containerizing our computing nodes. Our experiments were 
conducted in Google Cloud Platform. For the organization and scheduling of the Docker 
containers used the Kubernetes platform. 
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ΠΕΡΙΛΗΨΗ 
 

Σε αυτή την εργασία στοχεύουμε στη βελτίωση της απόδοσης των εργασιών  
επιχειρηματικής ευφυΐας σημαντικό κομμάτι των οποίων είναι οι εργασίες Εξόρυξη-
Μετασχηματισμού-Φόρτωσης (ETL). Στην συντριπτική πλειοψηφία οι διαδικασίες  ETL  
περιλαμβάνουν πολύ ακριβά joins μεταξύ δεδομένων ροών και σχεσιακών δεδομένων. 
Παρουσιάζουμε μια αρχιτεκτονική για την ελαστική προσαρμογή του αλγορίθμου Semi-
Streamed Index Join (SSIJ) που με επιτυχία αντιμετωπίζει εργασίες τύπου-ETL σε 
ένανα υπολογιστικό κόμβο. Όμως ζούμε στην εποχή της έκρηξης των πληροφοριών. Οι 
μεγάλες εταιρίες έχουν τη δυνατότητα να συλλέγουν και να αποθηκεύουν TBs 
δεδομένων κάθε μέρα. Κατά συνέπεια είναι απαραίτητο να προχωρήσουμε σε μια λύση 
που χρησιμοποιεί πολλαπλούς υπολογιστικούς κόμβους.  Αναπτύξαμε μια ελαστική 
κατανεμημένη αρχιτεκτονική που το βασικό της μέλημα είναι η δίκαιη διανομή του 
υπολογιστικού φόρτου του SSIJ σε πολλαπλούς κόμβους. Έχουμε αναπτύξει 
αλγόριθμους που κατευθύνουν αποδοτικά την ροή των δεδομένων μέσα  συστάδες 
κόμβων, προκειμένου να κάνουμε αποτελεσματικό caching. Έχουμε επίσης τη 
δυνατότητα να προσθέσουμε ή να αφαιρέσουμε δυναμικά υπολογιστικούς κόμβους 
ανάλογα με τον όγκο και την ταχύτητα της κυκλοφορίας προκειμένου να διατηρηθεί η 
απόδοση του συστήματος σε σταθερά επίπεδα και ταυτόχρονα να μην σπαταλώνται 
πολύτιμοι πόροι. Στην υλοποίηση της εργασίας χρησιμοποιήσαμε containerized 
υπολογιστικούς κόμβους οι οποίοι μπορούν να λειτουργήσουν σε μια συστάδα απο 
virtual machines. Βασιστίκαμε στην τεχνολογία Docker για τους υπολογιστικούς μας 
κόμβους. Τα πειράματα πραγμοτοποιήθηκαν στην πλατφόρμα Google Cloud. Για την 
οργάνωση και την λειτουργία των Docker containers χρησιμοποιήσαμε  την πλατφόρμα 
Kubernetes. 
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1. INTRODUCTION 

1.1 Business Intelligence 

We are living in the area of information explosion. Large corporations have the potential 
of gathering and storing TBs of data every day. Consequently, along with data, there is 
an ever growing need for business automation that empowers organizations to better 
understand their data  and make well informed strategic decisions and optimize the 
performance of operations. 

Business intelligence technologies provide historical, current and predictive views of 
business operations. Common functions of business intelligence technologies are 
reporting, online analytical processing, analytics, data mining, process mining, complex 
event processing, business performance management, benchmarking, text mining, 
predictive analytics and prescriptive analytics.  

Real time data analytics are among the most immensely growing paradigms when it 
comes to business intelligence these days. More and more corporations invest on active 
data warehouses, trying to cope with the information explosion. 

 

1.2 Active Data Warehousing 

As the ways of producing data are aggressively expanding, the sources of data are 
becoming more diverse. Data might be coming from within the organization, as the 
output of several business operations. There are always huge amounts of valuable 
historical data from legacy systems. Additionally, data is coming from other partner 
organizations, and finally from end users or customers. In a such a great variety of data 
sources, raw data need considerable cleansing, proactive transformations and filtering 
before actually getting stored in the warehouse and take part in the business analytics 
processes.   

Extraction-Transformation-Loading (ETL) is still the most crucial part of these processes 
that perform this task traditionally during the refresh, off-line periods [1]. The 
refresh/offline periods include time periods during the day where the data warehouse is 
mostly inactive. The vast majority of ETL processes include very expensive joins 
between the fresh arrived records and some warehouse data or metadata tables. For 
example, record keys are often replaced with surrogates keys for compactness and 
consistency. This process, also known as conforming [1], necessitates the join of the 
refresh tuples from each source with a metadata table that relates keys and surrogate 
keys. Duplicate elimination or identification of newly inserted tuples provide more 
examples where similar join expressions are encountered [1]. 

The past few years there has been a considerable amount of work targeting ways to 
avoid the huge amounts of work that ETL had to perform with the normal workload of 
the warehouse. However, in emerging applications, such as network monitoring, supply-
chain monitoring and sensory data analysis, as well as Internet of Things 
infrastructures, the latency introduced from the time that the data is entering the 
warehouse to the time it is ready for analysis may be unacceptably large. Even for 
traditional business intelligent tasks, finding the right piece of information at the right 
(i.e., shortest) time is a necessity for survival in today’s competitive marketplace. Active 
data warehousing has emerged as a new BI paradigm where updates from the 
operational stores are propagated in (near) real-time to the repository.  

This aforementioned shift of practices significantly affects the ETL process as the type 
of joins we described are now between an infinite stream of incoming records and some 
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stored data warehouse table. The output of this operation is a stream which typically 
participates in additional online operations.  

As business analytics become more instrumental in strategic decision making, the 
Active Data Warehousing technology is maturing. This technology is engaged in 
integrating advanced decision support with day-to-day, even minute-to-minute decision 
making that increases quality.  

Active data warehousing is an ever growing warehousing paradigm that supports real-
time or near-real-time decision making. It is featured by event-driven actions triggered 
by a continuous stream of queries (generated by people or applications) against a broad 
set of relational disc-stored enterprise data. An active data warehouse presents an 
extension of the enterprise data warehousing capabilities. The analytical capabilities 
offered by this infrastructure are leveraged by responding to near-real-time business 
events as they occur, completing complex analyses upon demand, and alerting people 
or systems to take action.  

 

1.3 Goals of the project 

It is proven in practice that the most crucial components of such a system are: 

a) a flexible/elastic infrastructure that supports the above, taking into account 
optimal resource acquisition depending on several performance and cost criteria. 

b) dynamic deployment of resources and their orchestration  

These are the basic goals of this project. We want to create a multi-node cluster with 
flexible and elastic characteristics where, depending on the stream traffic, it will add or 
remove nodes depending on the performance criteria that are set by the operator. This 
infrastructure will sit on an active data warehouse pipeline and will provide real-time 
information to the operators. 

For this project we are going to take the basic ideas and key features of Antonios 
Deligiannakis et.al, in their paper "Semi-Streamed Index Join for Near-Real Time 
Execution of ETL Transformations". In this paper Deligannakis's team introduce a very 
high performance solution for joining stream data with a disc resident relation using a 
B+ tree as an indexing mechanism on the relation's key.  

The main purpose of the SSIJ framework is to gracefully increase the performance of 
ETL processes. These processes mainly include joining a live stream of data with a 
relation stored in a hard drive. It incorporates indexes, an efficient dynamic memory 
allocation algorithm bases on the pattern of the stream as well as a innovative optimal 
read plan for reading the blocks of the relation on the disk. Using the above principals 
SSIJ managed to impressively outperform other semi-stream joining solution like 
MESHJOIN. 

Although SSIJ has shown promising performance potential, its initial conception was to 
improve the performance of joining a stream with a relation near-real-time, on a single 
computing node. Its tested configuration was using a relation no bigger that 10GBs. And 
the various experiments that were conducted were alternating memory recourse 
allocation between 1% and 10% of the relation size, which translates for up to just 1GB 
of memory. And although this is relatively reasonable for a small data center will low 
volume needs and relatively low stream traffic, it just cannot cope in today's data 
explosion reality. SSIJ views semi-stream join operations from within the "single node" 
perspective.  
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The observations we have stated so far lead us to the following considerations. The 
most cost-efficient and performance effective way to tackle the above problem of hot-
cold period alternations, is to have a system that elastically allocates and de-allocates 
its resources, according to specific dynamic criteria. Such criteria could include stream 
traffic volume, stored data volume, latency requirements and budget limitations.  

To move to the directions of adaptive resource allocation, it is essential to abandon the 
"single node" point of view of SSIJ, and move to the multi-node point of view. In that 
sense the computational load of SSIJ should be distributed among many computing 
units. At the same time the computation needs to be distributed equally among the 
computational nodes, so as to make resource allocation much more efficient. 

We developed a set of algorithms that let us achieve our goals. We created a multi-
node flexible and elastic infrastructure that operate in the same way as [1] but in a 
distributed environment. We then deployed our implementation on Google Cloud 
Platform to perform experiments and see the results of our work. 
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2. THE SSIJ FRAMEWORK 

2.1 SSIJ Introduction 

In this chapter we are going to talk about the basic ideas and the key design features of 
the SSIJ Framework [1]. We are going to describe it's theoretical execution model as 
well as some of the insights behind its core algorithms. It is extremely important to get a 
good comprehension about this model, as our elastic framework is using it as its 
foundation, taking its basic ideas and incorporating aspects of modern distributed 
processing 

 

2.2 SSIJ Purpose 

The main purpose of the SSIJ framework is to increase the performance of ETL 
processes. These processes mainly include joining a live stream of data with a relation 
stored in a hard drive. It incorporates indexes, an efficient dynamic memory allocation 
algorithm bases on the pattern of the stream as well as a innovative optimal read plan 
for reading the blocks of the relation on the disk. Using the above principals SSIJ 
managed to impressively outperform other semi-stream joining solution like MESHJOIN.    

 

2.3 SSIJ Basics 

We start our SSIJ description by talking about its basic components. We are going to 
talk about its indexing infrastructure and its execution phases, the online phase and the 
joining phase. These two basic SSIJ characteristics are very important for our own 
execution model as we kept most of the ideas and basic thinking behind them intact. 
Some differences in those two components (the indexing and the two basic execution 
phases) will be mentioned in the next chapter. 

Those two basic components are build on top of an efficient dynamic memory allocation 
strategy for buffering streaming data along with index blocks and relation blocks. Apart 
from the above, SSIJ's innovative idea relies on the incorporation of an optimal read 
plan for reading the relation blocks from the disk. Using the above principles, SSIJ 
managed to impressively outperform other semi-stream joining solution like MESHJOIN. 

 

2.3.1 Index 

The execution model of SSIJ makes use of an index on the joining attribute of the 
relation. It's basic requirement is to be able to retrieve a number of block ids where 
joining tuples of the relation reside on the disk. Many indexing solutions can be 
considered for such a task, but the choice was a Β+ tree on the joining attribute, which 
is an adequate choice as most relational database management systems that are 
already optimized for joining operations, popularly create B+ indexes on the joining 
attribute.  

In the SSIJ implementation the B+ tree index in use stores the relation tuples in the leaf 
of the tree. This is widely accepted model and has a the benefit of avoiding extra disk 
reads to actually read the relation block, as well as eliminate extra memory allocations 
and  operations to find the correct tuple or tuples in the relation block. It and also 
decreases the indexing overhead as it reduces the index levels  by one. Additionally 
they sate that for their execution process, they pin the upper levels of their B+ tree into 
the memory, but, potentially in a more resource conservative environment these index 
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blocks can be replaced with the usual cache replacement policy as with the pages 
containing the tuples of the relation. It is worth noting that an extra advantage of the B+ 
tree index is that normally the size of the non-leaf portion of the index is completely 
realistic and expected by most production environments willing to host relational 
database management systems. For instance the specific B+ tree index that was used 
for evaluating the performance of SSIJ was measured to have 13MB of inner node size 
for a 10GB relation [1].  

 

2.3.2 SSIJ Infrastructure Components 

In this section we are going to describe the basic structures that compose the SSIJ 
framework. The available memory for the systems is partitioned in five compartments. 
The size of these compartments is not fixed but dynamically allocated according to the 
needs of the system. These five compartments consists of the blocks of the 
aforementioned upper index levels, the cached blocks of the relation, two buffers 
regarding stream tuples and an inverted index. Here we are going to give some more 
detailed about each compartment and its usage. 

1) The index blocks: This portion of the memory keeps pinned down the blocks of 
the upper lever of the B+ tree so as to be always available in memory. Using this 
memory buffer, no extra read operations are need for the indexing procedure and 
thus reduces the cost of index lookups, degrading it form disk to memory 
operations. 

2) Cached relation blocks: This portion of the memory holds the blocks of the 
relation that have been read from the disk to in order to be joined with the 
stream. An important detail of this component is also a utility counter that is kept 
for each block to be used by the cache replacing policy. 

3) Input buffer: This portion of the memory hold the stream tuples that arrive in the 
system and are waiting to be indexed and joined. This can be considered as the 
entry point of the system. 

4) Stream buffer: For every stream tuple that is entering the systems, the first step 
is to index it, thus retrieve the ids of the relation blocks that need to be fetched in 
order to join the matching relation tuples with the stream tuple in question. There 
are two cases for those blocks. Either they are present in the cached relation 
blocks, or they require a disc read. All those stream tuples that require retrieving 
one or more blocks of the relation from the disc, we keep them in this special 
buffer called stream buffer. The required relation blocks will be later read with the 
aforementioned optimal read plan. 

5) Inverted Index: For each relation block that needs to be read from disk (because 
some stream tuple in the stream buffers required its presence in memory), we 
maintain a list with the location of all matching stream tuples in SB for it. Multiple 
uses of the inverted index exist. Besides improving the performance of the join 
phase, the index is also important for efficiently guaranteeing the correctness of 
the overall process of SSIJ. The efficiency and effectiveness of cache 
replacements policy is also heavily based on this inverted index. 

The next two images illustrate the various SSIJ components along with a table of their 
abbreviations. They are both taken from [1]. In the first image there is also a quick 
description of each components utilization. In the same image you can see in the red 
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numbers (from 1 to 6)  the flow of the stream processing execution mechanism that 
SSIJ adopted.   

 

 Figure 1: SSIJ Components and execution flow [1] 

  

 

Table 1: SSIJ main symbols used [1] 
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2.4 SSIJ Stream processing Algorithm and Computational phases 

In this section we are going to describe the basic ideas of the stream processing 
algorithm that SSIJ uses. We will talk about its three main phases of execution. During 
that process the utility and the very purpose of each of the components we described 
above will become clear. The next few sections are very vital for our own distributed 
execution model as we followed most of the principles described here. 

 

2.4.1 Overview  

Here follows a basic overview of the streaming algorithm. The execution flow is spited in 
three phases.  

The first phase is called the Pending Phase. During that phase the algorithms is 
waiting for the input buffer to accumulate a substantial amount of stream tuples before 
its main execution phase. There are lot of benefits to be extracted out of this 
techniques. First of all, it batches the execution of the next two phases. If the stream 
tuples where processed one by one the next phases of the algorithm would have to take 
place millions of times in a real system. Secondly, and most important, batching the 
stream tupes together allows SSIJ to take advantage of common access patters to the 
relation blocks that reside on the hard disc. It is vital for the performance of the 
algorithm to take advantage of those patterns in order to optimize the disc access when 
trying to fetch the relation pages to the main memory. Batching also makes memory 
management more efficient and effective as it gives a more clear and informed view of 
the relation blocks that are going to be needed in the online and join phase.   

So after a solid amount of stream tuples has arrived in the input buffer, the execution 
enters the second phase which is called the Online Phase. In the Online Phase every 
stream record from the Input buffer first goes through the indexing process. In the 
indexing process the joining attribute of the stream tuple is looked up in the index. At the 
end of this process, a list of relation block ids is returned that contain matching relation 
tuples. Immediately after the indexing process, the stream tuple is joined with every 
block from the previous list that is present in the cache. Of course some of the blocks 
from that list may not be cached, so we will need to retrieve the corresponding block 
from the hard disc. Every tuple that will trigger disc read is put in the stream buffer. 
When the stream buffer is full the Join Phase begins. In short, during the join phase, an 
efficient plan for reading the required blocks is calculated, the blocks are fetched from 
the disc to the main memory in the cached relation section and the join of the tuples is 
completed. In the next two sub-sections we are going to give some more details about 
the two major phases of the execution model, the Online Phase and the Join Phase 

 

2.4.2 The Online Phase 

When the online phase starts, the tuples that have arrived in the input buffer are sorted 
based on the characteristics of the index and the joining attribute. The sorted stream 
tuples will allow the indexing process that comes up to share scans of the index and of 
the cached relation blocks. That makes sense because a lot more that one tuple will 
follow the exact same path in the upper levels of the index as well as a lot of them will 
be joined with the same leaf nodes (in this case also relation blocks). So if we group 
together tuples in very close ranges with one another we will make a much more 
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efficient use of the cached relation and index blocks in memory, taking advange of 
locality. Next every tuple in the sorted sequence goes through the indexing process.  

In the indexing process the joining attribute of the stream tuple is looked up in the index. 
At the end of this process, a list of relation block ids is returned. Each block in that list 
contains matching relation tuples. For all matching relation blocks that are in the cache, 
the join result is output immediately. The utility counter of any page in the cached 
relation memory portion is increased by one for every stream tuple is joined with. For 
each stream tuple s, if all the matching relation blocks for s are in the cache, then the 
join for s is complete, and s can be discarded.  

If some matching relation blocks for s are not in the cache, the join with these blocks is 
not performed immediately. It it were to join the tuple with the non-cached blocks it  
would mean that the algorithm would pause until these blocks are fetched from disk. 
This is against the streaming nature of our processing model. Instead, the SSIJ 
algorithm will process the join of s with the disk resident matching blocks of the relation 
at a later point, during the join phase, in order to better cater for the cost of required 
read operations among several stream tuples. Since, at this step, we have identified the 
matching disk blocks for s, from the indexing process, we record this information by 
updating the inverted index, in order to speed up the join computation when these disk 
blocks are later retrieved from disk. Τhe usefulness of the inverted index will become 
more evident in the description of the joining phase. Next , s is stored in the stream 
buffer SB . After the batch of stream tuples in the input buffer has been processed, the 
algorithm may move to the join phase. 

 

2.4.3 The Join Phase 

In the beginning of the join phase, we need to join all stream tuples accumulated in the 

stream buffer SB with their non-cached matching relation blocks. One of the most 

fundamental parts of this procedure for SSIJ is the calculation of a plan for reading the 

requested matching disk blocks. In more detail, we need to determine whether the 

required disk blocks will be read individually using random I/Os, or in larger sequences 

using sequential I/Os. This plan generation process requires that the disk blocks ids be 

sorted based on their physical layout; in the simplest case, this corresponds to sorting 

the offsets of the relation blocks on disk. This is performed in the first stage of the 

algorithm. It is important to note that the read plan may cause some disk pages to be 

loaded in spite of the fact that they are not requested by the stream, as part of a 

sequentially loaded disk segment that amortizes the I/O cost. Such “unwanted” disk 

blocks that are read because of sequential I/Os are evicted from cache immediately, 

since they have zero utility for the join.  

During the join phase, the algorithm continuously reads sequences of disk blocks 

(based on the generated read plan). Each sequence of read relation blocks, as directed 

by the generated read plan, is fetched from disk and is inserted into the cache, 

replacing those cache pages with the lowest utility counters. The read disk blocks are 

then used to generate output join tuples by joining with the appropriate stream tuples, 

using the inverted index. After the join of the sequences is complete, the corresponding 

entries in the inverted index can be safely removed.  
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2.4.4 Cache Replacement policy 

We are not going to expand on the Cache Replacement policies of SSJ as we did not 

incorporate them in our architecture. We decided to go for the classic LRU scheme at 

this version of our software. The reason for this is that there would be little performance 

gain in the context of the multi-node architecture where the true gains come from the 

increased memory resources.  

A naive approach that maintains a sorted list of the page ids in the cache based on their 

utility counters, and on demand flushes the pages with the lowest utility counters, incurs 

a high cost. In particular, the repeated insertions in the list can introduce a large 

overhead when the amount of memory devoted to SSIJ is large. Moreover, during the 

online phase, the utility counters of the cached blocks are intensively updated, which 

requires continuous reorganization of the sorted list. Maintaining the cache blocks in a 

priority queue exhibits similar problems. The SSIJ implementation is based on the key 

observation that we do not need to actually read a page from the disc in order to 

calculate its utility counter, as we have all the necessary information in the inverted 

index of each page. Each entry in the II associates the id of a page that needs to be 

read from disk with the list of pointers to matching stream tuples in SB. Thus, the utility 

of a page in II is equal to the number of elements in the list it is associated with. 

So, at the start of the join phase we know the utility counter of  

1) all pages currently in the cache, and  

2) all pages that will be read in the join phase.  

At this point we have enough information in order to start making eviction decisions. 

More specifically, we sort the ids of the blocks in CR and the ids of matching disk pages 

(that need to be read) based on their utility. Considering the available memory (i.e., 

memory after subtracting the space needed for the input buffer, the stream tuples and 

the index structures), we determine the sorted subset, denoted ToKeep, of pages from 

pages that need to be read that should be in cache at the end of the join phase, given 

their utility. We also determine the sorted subset, denoted ToRemove, of block ids that 

are already in the CR and are going to be replaced by blocks in ToKeep with higher 

utility. If, during the join phase, the size of the cache is reduced due to the arrival of 

stream tuples, we can correspondingly increase the size of ToRemove or reduce the 

size of ToKeep according to the utility of pages in these lists. At this point we can 

simply evict any of the pages in ToRemove: these pages are not needed for the rest of 

the join phase and, given their utility, will not be in cache at the end of the join phase.  

 During the join phase, the algorithm continuously reads sequences of disk blocks 

(based on the generated read plan). Each sequence of read relation blocks, as directed 

by the generated read plan, is fetched from disk and is inserted into the cache, 

replacing those cache pages with the lowest utility counters. The read disk blocks are 

then used to generate output join tuples by joining with the appropriate stream tuples, 

using the inverted index. After the join of the sequences is complete, the corresponding 

entries in the inverted index can be safely removed. 
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We can potentially incorporate the above strategy in our system, because it is proven 

that it keeps the most useful blocks in the memory for a longer period of time. 

Additionally it evicts a number of blocks at once, leaving up more free space in a single 

operation.  
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3. DISTRIBUTED ELASTIC SSIJ ARCHITECTURE 

3.1 Motivation 

Although SSIJ has shown promising performance potential, its initial conception was to 
improve the performance of joining a stream with a relation near-real-time, on a single 
computing node. Its tested configuration was using a relation no bigger that 10GBs. And 
the various experiments that were conducted were alternating memory recourse 
allocation between 1% and 10% of the relation size, which translates for up to just 1GB 
of memory. And although this is relatively reasonable for a small data center will low 
volume needs and relatively low stream traffic, it just cannot cope in today's data 
explosion reality. SSIJ views semi-stream join operations from within the "single node" 
perspective.  

Today's corporations accumulate terabytes of data every day. In this frantic pace, 
companies are constantly trying to provide more and more real-time applications on its 
customers and more business automation on its other departments. In such hectic 
environments ETL operations are becoming just a small part of a huge real time 
pipeline. So the latency requirements of such systems are constantly more strict. 

Using the same analogies as SSIJ used for its experiments, what would be our memory 
needs when our relations is 100GBs, or 10TBs? As you can see it would be up to 1TB 
of memory. Despite the fact that multi-core single node enterprise machines with more 
1TB of memory do really exist, the cost of such and investment is beyond the reach of 
most organizations that are trying to find their way in the Big Data era. And even if one 
company is big enough to have enough capital reserves and at the same time 
substantial volume of data as well as noticeable stream traffic that would justify this 
investments, the cost would be great in low traffic periods. Not many datacenters have 
constant traffic flow throughout the day, the week or the year. For a medium company 
which invested on that type of machine, low traffic periods lead to monetary loss. 

Having said that, when we have high traffic periods. During these periods, the stream 
traffic reaches its peak and it requires more and more resources to be allocated in order 
to keep a constant or even increasing performance levels. The streaming nature and 
the low latency requirements of the problem, forbid the old manual resource allocation 
and de-allocation metrologies. 

 

3.2 Assumptions and requirements 

Seeing all the above one comes to certain conclusions. The most cost-efficient and 
performance effective way to tackle the above problem of hot-cold period alternations, is 
to have a system that elastically allocates and de-allocates its resources, according to 
specific dynamic criteria. Such criteria could include stream traffic volume, stored data 
volume, latency requirements and budget limitations.  

To move to the directions of more resource allocation, it is essential to abandon the 
"single node" point of view of SSIJ, and move to the multi-node point of view. In that 
sense the computational load of SSIJ should be distributed among many computing 
units. At the same time the computation needs to be distributed equally among the 
computational nodes, so as to make resource allocation much more efficient. 

 



Elastic Infrastructure for Joining Stream Data  

Ν. Maravitsas   24 

3.3 Initial thoughts 

In this section we are going to present the initial thinking behind the processes of 
transplanting all the SSIJ essential functionality into a distributed computational model. 
During the next paragraphs it will become vividly evident how SSIJ computational and 
execution model consists of all the important building blocks of a distributed system. 

Don't forget that the purpose of the systems is the same as SSIJ's purpose. To join 
stream tuples with disc resident relation tuples. In that sense all the computing nodes of 
the system will have to be occupied during the whole process. While one computational 
node does one job, another node should does another job in order to fulfill the purpose 
of the system. 

By a pleasant coincident, SSIJ seems to be almost destined for such a system. It 
already splits its computational workload into two main phases. The Online Phase and 
the Join phase. Additionally the several sub operations that are conducted during each 
phase are very distinct and most importantly, there are not confusingly depended to one 
another. The output of one operation, is the input of the next operation. The output of 
one phase is the input for the next phase. 

 

3.4 Serial sub-functions of SSIJ 

To be more specific, the purpose of the pending phase is to accumulate a substantial 
amount of stream tuples, so that the Online phase and the Join phase can be 
conducted in batches. So the output of the Online phase, which is an array of stream 
tupes, is the input to the online phase. 

The online phase itself consists of one major and one minor sub operation. These two 
operations are conducted serially. Meaning that one of them takes the input of the 
online phase, does a computation, then passes an intermediate result to the next sub 
operation which finally does its own computation and produces the final result of the 
online phase.  

The major operation of the online phase, which is also the first in order, is the indexing 
operation. We have described the indexing operation of SSIJ in great detail in section 
2.4.2. All stream tuples have to go through the indexing process. For every stream 
tuple, the indexing process will produce a list of block ids of the disc resident relation, 
that have matching tuples that need to be joined. So after that computation, we can say 
each stream tuple is accompanied with the list of matching block ids.  

That is exactly the input of the next sub operation of the online phase. The next sub 
operation of the online phase takes every tuple with its list of matching block ids and 
checks whether some of the blocks on that list are present in the cached portion of the 
relation. All the in memory blocks are immediately joined with the corresponding 
matching stream tuple and the result is flushed out. Every stream tuple that needs to be 
joined with a non cached relation block is passed to the next phase of the algorithm. 

The next phase of the algorithm is the join phase. The join phase takes as input the list 
of tuples from the previous phase. Each tuple is accompanied by the list of blocks that 
were not cached at that moment. When enough of these tuples are accumulated, the 
join phase is responsible to fetch all the required blocks from the disc into the memory 
and join all stream records with the matching relation records and flush the result. This 
phase is responsible of computing a sensible plan to read the blocks from the disc. At 
the same times it need to take advantage all the knowledge it has about each block's 
utilization, so as to make informed decisions when cache replacement needs to take 
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place. A well-constructed cache replacement strategy is crucial for the performance of 
the system. 

 

3.5 A pipeline execution pattern 

The first task to do when trying to transform SSIJ from a single node algorithm to a fully 
fledged distributed system is think about how to distribute the computational effort 
among different computing nodes. As we saw in the previous section SSIJ's model fits 
perfectly to a distributed paradigm. That's because its individual sub-operations are 
quite distinct and are executed in a streaming/serial manner. In that sense, the output of 
one operation is the input of the next operation. That is very essential for our 
architecture. 

This working framework perfectly suits a form of a pipeline execution pattern. The 
pipeline will consist of two major stages that correspond almost perfectly to SSIJ's 
execution phases. We are going to name the first stage the Index Stage and the 
second stage the Join Stage.  

 

3.5.1 The Index stage 

One can easily correlate the Online Phase of SSIJ with the Index Stage of our system. 
This first stage of our pipeline also includes the pending phase of SSIJ, where stream 
records are accumulated in the stream buffer. So our Indexing stage also acts as the 
system's input where stream records are accumulated so that they can be processed in 
batches by the next stages of our pipeline.  

Every tuple that enters our system, needs to pass through the indexing process. Just as 
on the first step of the SSIJ's online phase, our Index stage is charged with the task of 
indexing every single stream tuple, and for every such tuple return a list of relation block 
ids that contain matching relation tuples that need to be joined. Recall that SSIJ's online 
phase also includes an actual join procedure. It joins the stream tuples with the portion 
of the matching relation locks that are already in the memory. We decided not to do that 
in the Index stage.  

We dedicate this stage just for indexing. And that is an important decision because it 
completely decouples the two stages of our pipeline. It is crucial to achieve that 
because it leads to a more clean distribution of responsibilities for the participating 
nodes in the system. The indexing process itself is fairly simple and it also depends on 
the indexing structure that each system choose. We decided to follow SSIJ's decision to 
go with B+ trees. The index stage attaches to every stream tuple a list of matching 
relation blocks. This stream tuple accompanied by the list of matching relation block ids 
is the flushed to the next stage of our pipeline. The Join Stage. 

 

3.5.2 The Join Stage 

The Join Stage takes as input the result of the indexing stage. This is a list of stream 
tuples accompanied by the list of matching relation block ids. Every one of the relation 
block ids that is present in the cache, it is joined immediately with the corresponding 
tuple (in the same fashion as SSIJ's second sub operation of online phase). Every 
stream tuple that matches with a relation block that is not cached, and thus needed to 
be fetched from the disk to the memory, is pushed to a stream buffer cache. When the 
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stream buffer cache is full, the Join Stage has to fetch the required blocks from the disk 
to the memory and do the necessary join operations. 

In this stage, we also utilize the inverted index, in a similar way as SSIJ. Its structures is 
of this form: We simply map every non cached relation block id to a list of matching 
stream stream tuples. You can see that structure in Figure 2. 

 

 

Figure 2: Inverted index 

When number of the stream tuples in the above lists have reached a certain threshold, 
the Joiner stage moves to an operation similar to SSIJ's join phase. We read every 
relation block in the block id array and we join it with the corresponding list of stream 
tuples on the right. If there isn't sufficient space in the cache for that particular block, we 
need to replace one. We simply went for the fastest and well proven solution for that, a 
simple LRU implementation. That means that we simply remove the least recently used 
cached block. 

Every block that is fetched from the disc, is pinned in memory until it is joined with all 
the tuples from its corresponding list on the right. Using this, we conform to the initial 
idea of a batched processing method for the stream, and at the same time, we make 
sure that each block is only read once from the disc during that phase. We don't risk 
removing a needed block that was just read. 

It is important to note that the block ids in the array on the left (Figure 2) is kept sorted. 
This is done for an effort to read disc blocks in a serial manner as much as possible. We 
don't go as far as SSIJ goes to read blocks only with big serial reads (even if that 
means that it read unneeded blocks). 

 

3.5.3 Task distribution 

So far we have explained the pipeline patter that our distributed system would have. We 
have also decided that it is essential to distribute the tasks to multiple computing nodes. 
So the first natural approach would be to distribute the two pipeline stages among two 
computing nodes. The first node would perform the operations of the Index Stage we 
described above, and the second node would perform the operations needed for the 
Join Stage. These two nodes would be completely independent from one another and 
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would only communicate with each other via a network connection. This simplistic 
approach is illustrated in Figure 3. 

 

 

Figure 3: A possible first approach 

As you can see, each node has its own input buffer. Of course, each node has its own 
memory resources. It is essential for the indexer node to have access to the hard drive 
where the B+ index resides. In the same manner, it is essential for the Joiner node to 
have access to the hard drive where the relation resides. It is important to mention that 
the two aforementioned drives could potentially be the same physical drive. But that is 
not at all necessary. The important aspect is that all the above units should be in very 
close proximity preferably in the same local network, so that network communication 
overhead is amortized by the increased computational resources and it is not actually a 
bottleneck for the whole system  

As it is already evident from Figure 3, the first node constantly receives the stream from 
the external sources. After buffering a certain amount of them it starts the indexing 
procedure for every single one of them. When the result of the indexing for each stream 
tuple is produced, it is immediately flushed to the next node. The next node ( that 
performs the join phase ) can either choose to buffer the intermediate result and the 
enter its main process or it can actually start immediately even when a single indexed 
stream tuple has arrived. It is important for the next sections to also introduce a new 
notion here, that is the notion of an indexed stream tuple. An indexed stream tuple is the 
stream tuple itself along with the list of its matching relation blocks that have been 
computed from the index stage. We for our actual implementation we actually decided 
not to buffer again the indexed tuples, and start immediately the join stage upon 
indexed stream tuple arrival. This also conforms to the fact that we do not want to 
impose any delays for the joining of the stream tuples with an already cached relation 
block. 

So the indexer constantly receives a  stream of tuples and produces a stream of 
indexed tuples. The joiner then works on that stream of indexed tuples and it produces 
a stream of joined tuples. As joined tuple is a pair of two tuples. One stream tuple and 
one matching relation tuple. The pipeline nature of our system dictates that while the 
joiner performs joining computation, the indexer on the previous step constantly indexes 
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newly coming stream tuples, constantly feeding the joiner node.  In the same sense, the 
joiner node constantly works on the indexed stream and produces the result of the 
whole system, a joined stream. 

 

3.5.4 Multi-node architecture 

What we have done so far is create a pipeline execution model for the SSIJ. We also 
created a distributed architecture that includes two nodes, each one of them executing 
the two stages of our pipeline. But this model, is very far from our initial goal that we 
have set for our system. Using just two nodes for instead of one is not a real change. 
We need to be able to allocate more resources for each stage of the pipepine. 

A first approach would be to keep those two physical nodes, and just use multiple 
threads in each stage, instead of just one. Although this would increase the 
performance of our system, it is very questionable how good would it scale. Meaning 
that when the stream traffic increases and when the volume of my relation is large, how 
much would the system benefit from adding one more executing thread.  

The answers is very little. And from a certain number of threads and above (a number 
bigger that the processing cores of that node) the performance would definitely drop 
because of costly context stitching and synchronization. But even if we don't take that 
cost into account, and we somehow created a completely lock-free algorithm, using very 
high performance concurrent data structures for the execution of our pipeline stages, 
after a certain point, it will not make any impact on the performance. 

The reason is very simple and obvious. The main bottleneck of all systems that need to 
do extremely intense I/O operations is disc access. It is definitely not cpu performance. 
That makes sense as I/O operations still remain the most expensive computational unit, 
even with today's high performance SSD drives. And the only cure for that is caching. 
An I/O intensive system's performance is judged almost exclusively by its cache 
performance. That is why more and more high-end vendors invest on in-memory data 
grids. in-memory key-value stores, in-memory stream analytics. For example the most 
significant performance improvement over the popular Hadoop framework, was a 
release named Spark that used almost the same model, only used memory resources 
much more efficiently. Also in-memory databases are the latest trend for high 
performance real-time active datacenters.       

We needed to stress out all the above in order to reveal the most valuable resource of 
our system, which should be obvious by now: it's memory. We need to be able to 
allocate more and more memory resources in order to provide linear scalability for our 
system and be able to hold the performance criteria we want independently of  the 
volume of the stream traffic and the size of our relation. 

As such, it becomes obvious that the only way to scale our system upwards allocating 
more memory, is to use multiple Indexer computing nodes and multiple Joiner 
computing nodes. A naive first approach on a multi-node architecture would be to have, 
let's say a number of indexers i and a number of joiners j. For example let's imagine that 
we have 4 indexers and 4 joiner nodes. Each node would have its own memory 
resources, its own cpu resources and so on.  

The indexer nodes would all read from a common input buffer. Of course each indexer 
node would read different stream tuples. All indexer nodes would have access to the 
same volume that holds the B+ index. After indexing the stream tuples they are 
consuming, they would produce an indexed stream. All indexer nodes would output their 
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indexed stream to a common output buffer. This buffer would act as an input buffer for 
the next pipeline stage. 

In the same manner, the Joiner nodes would all read from a common input buffer. Each 
node would read different indexed tuples. All joiner nodes would have access to the 
same volume that holds the relation. After joining the indexed tuples they are 
consuming, the would produce the output joined stream.  

Such an architecture can be illustrated in Figure 4. As you can see indexers do not 
communicate with each other. Nor do the joiners communicate with each other. 
Similarly no indexer node communicates with joiner nodes and vise versa. This would 
also minimize the communication cost, which is a major concern when designing 
distributed systems. In a system like this the only communication cost is the input/output 
of the stream tuples for the indexers, and the indexed tuples for the joiners. 

 

 

Figure 4: First multi-node approach 

It is undeniable that if we allocate more computing machines this way, we will see a 
performance improvement. But when allocation more machines and investing in more 
resources one has to answer a number of very serious questions. How efficiently we are 
using those resources? Does our system scales linearly when allocating more? Are we 
using the available memory the best way possible? Is there any other configuration that 
would produce the same results with less resources? When designing a very high-
performance, low-latency, massively scalable distributed systems, one has to be very 
considerate about the above questions. 

For the architecture described by Figure 4, it is not hard to imagine that most of the 
above questions would fail. When indexers read randomly any stream tuple that comes 
in, in such non-orchestrated and unsupervised way, it is not guaranteed that we are 
using efficiently all the available memory on the indexers. And recall that, it is all about 
optimizing memory usage. 

Let us consider a simple example. Imagine that we have 4 indexers, indexer0 to 
indexer3. We have a record tuple with an id x. In order to index that tuple we need to 
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read nodes A,B and C from the disc that contains the B+ tree, and cache those tree 
nodes into the memory. You can see that in Figure 5. 

 

A

B

C

 

Figure 5: B+ tree div 

Now imagine that this tuple is read by indexer0. So indexer0 will cache blocks A,B and 
C. Now the next stream tuple is y. This tuple also follows the same path as tuple x, 
meaning that we will need to read tree nodes A,B and C again. If we leave the input of 
the indexerS nodes non-orchestrated, probably an indexer other that indexer0 will read 
tuple y. But why should any other node other indexer0 be obligated to index typle y? 
indexer0 already has the required index blocks in its memory. If indexer1 has to index 
tuple y then he will need to also read blocks A,B and C from the disc. There is no point 
in doing that as indexer0 already has read and has cached those blocks. 

The same principle also stands for the joiner nodes. For example if indexed tuples x and 
y require relation block R to be joined with, then the best plan is for those two tuples to 
be joined by the same joiner. If two different joiner cache the same relation block in their 
memory, then there is no point in allocation more computing nodes. We might as well 
allocate more threads for the computation, it is the same thing more or less, as we don't 
optimize the memory usage. 

Thus the conclusion of the above discussion is that we need some units that will 
orchestrate the stream traffic through the indexer nodes and the indexed stream 
through the joiner nodes. These routing units will be responsible for two main tasks. The 
first and most important task is to route the stream traffic to specific computing nodes, 
so that we use all the available memory resources in the most efficient way possible.  

The second task for these units is to scale the system up or down according to the 
performance requirement that the operator gives. For example when the stream traffic 
increases, or when it changes characteristics, we might need more memory to sustain a 
constant latency figure. On the other hand when the stream traffic is low we are 
probably wasting resources if we are way above the performance requirements. So we 
might need to remove resources from our cluster. 

To achieve that we will add two more computing units that will be charged with the 
above two tasks. We will describe the new computing units in the next chapter, where 
we present the final architecture of our system. 

 

3.6 A fully fledged elastic multi-node architecture 

These two units that we are going to add, which will be responsible for shaping the 
stream traffic that each node will receive, have been called routers. The router 
responsible for distributing the input stream has been called Index Router, as it is the 
supervisor of the indexer nodes. The router responsible for the indexed stream has 
been called Join Router, as it is the supervisor of the joiner nodes.  
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The new flow of execution is illustrated in Figure 6. Now the input stream first passes 
through the Index Router. The Index Router keeps a catalog with all necessary 
information about indexer nodes. It then uses an algorithm to decide as quickly as 
possible to which indexer node each stream tuples should be forwarded to. Indexer 
nodes do not do anything different than before. The indexer nodes now produce the 
indexed stream that is directed to the Join Router. 

The Join Router takes as input the indexed stream from the previous stage. The Join 
Router keeps a catalog with all necessary information about joiner nodes. It also uses 
an algorithm to decide as quickly as possible to which joiner node each indexed tuple 
should be forwarded to. The joiner nodes themselves do not do anything different than 
before. We have described in great  detail the Indexer and Joiner node operations.  

As you can see from Figure 6, all the communication in the cluster is one direction, it is 
forward only. There is no interleaved communication between computing nodes. That 
approach is necessary for scaling the computing nodes linearly. 

 

Figure 6: Distributed elastic SSIJ Architecture 

The most interesting aspects of our systems is everything that happens inside the Index 
Router and the Join Router. This two nodes are responsible for the performance of the 
system. 

 

3.7 The Index Router 

In this section we are going to describe the basic operations of the Index Router node. 
The index router is responsible for taking the input raw stream of tuples and distribute 
every single  tuple to one of the indexer nodes. There are several criteria to consider in 
order for index router to be fair amongst the indexer nodes.  
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1) First of all he has to distribute equal portions of stream tuples to every indexer 
over a certain amount of time. For example let's say that we have four indexer 
nodes and our index router has routed 10 million tuples after one minute, then 
each indexer should have to index 2.5 million tuples over that minute, 
approximately of course. It is natural that one indexer or the other would take 
more or less traffic but over a larger period of normalized traffic these skew 
should be amortized. So he should be, first of all, fair in the number of stream 
records he sends to each indexer node. 

2) Remember that in our implementation, where we targeting huge relations, the B+ 
tree index is supposedly vast as well. So it is resident in a disc volume. Thus 
indexer node will have to do very heavy I/O. For every stream tuple they receive, 
they have to read as many nodes as is the depth of the tree. So the index router 
would have also to be fair in terms of the amount of I/O the makes every indexer 
to perform. 

3) Another aspect that the index router should take into account is to use the 
memory resources of the indexers as efficiently as possible. This means that it 
should make the best effort to avoid duplicate entries in the indexer caches. To 
elaborate more on that image that if an indexer has cached B+ nodes A,B and C 
the index router should route to him the stream records that need A,B and C 
blocks to be indexed. An also it should avoid letting another node also cache A,B 
and C B+ nodes, because those blocks are already in the first indexer's cache. 
As we will see in the next few paragraphs, we cannot always achieve that non 
duplicate cache entries across the memory of all indexers. 

 

3.7.1 Distribute the B+ tree search - Hot space distribution 

In this section we are going to talk about the way that the indexer nodes distributes the 
B+ index search among the indexer nodes, in a way that it achieves as close as 
possible the three preconditions we talked about in the previous section.  

The way the index router shapes the traffic of the incoming stream depends on three 
aspects: 

1) The range of the index key. 

2) The patter of the incoming traffic, meaning the range of the records keys that 
have arrived over a period of time. 

3) The number of the available indexer nodes. 

From the above, it is evident that we need to analyze the incoming stream tuples and 
perform analytic operations over their key values. In order to do that we are need to 
work over a substantial amount of tuples to come into safe conclusions over the 
characteristics of the stream.  

To make the explanation of the whole process as easy as possible we are going to 
assume that the values of the tuple keys are arithmetic and the the distribution of the 
key values of the stream tuples is a normal distribution. The stream indexer works its 
analytics on the stream in a window manner. This window can be arbitrary big, but let's 
suppose it is 20,000 stream tuples. So over that 20,000 stream tuples, the index router 
calculates the maximum value, the minimum value  and the mean value of the tuples 
keys. Let a be the min value, b be the max value and m be the mean value. We 
introduce the term Hot Space to characterize the space where the grand majority of key 
values falls into. In the example above the hot space is a sub space of [a,b]. It is not at 



Elastic Infrastructure for Joining Stream Data  

Ν. Maravitsas   33 

all necessary that in those 20,000 tuples the values are normally distributed. As the 
stream flows by the distribution will eventually normalize, but in a random 20,000 batch 
it is not always so. 

In an effort to calculate a hot space as normally distributed as possible we do this. We 
calculate the distance m-a and b-m. We take the smallest result. If m-a is the smallest 
result it means that the majority of values falls in the space [a,m+(m-a)]. If b-m is the 
smallest result them the majority of values falls in the space [m-(b-m),b]. So one of 
these two spaces becomes the new hot space. Because it is possible that the 
boundaries of this host space, might be slightly different in every window, changing the 
hot space every 20,000 records might lead to great disturbances of the balance of the 
system. We need to maintain a constant hot space as long as possible. That's we why 
we are lazy in the hot space update. We update the hot space boundaries only if both of 
the current corresponding boundaries have shifted more than 10,000 units on either 
direction. To make thing more clear let's imagine that the current hot space is [a,b] and 
the hot space of the current 20,000 tuple window is [c,d]. If | a - c | and | b - d | are both 
bigger than 10,000  then the new hot space of the stream is [c,d]. We could potentially 
update each boundary individually but it was proven that this caused disturbances in the 
system. 

Now that we have our hot space we need to distribute it across the indexers. Because 
the values in a hot space are normally distributed, we divide the hot space to subspaces 
equal to the number of indexer nodes. For instance, if we have 4 indexer nodes we are 
going to separate the hot space [a,b] into 4 equal subspaces: [a,a1), [a1,b2), [b2, b1) 
and [b1,b]. So now every tuple with key value that falls into the first sub space [a,a1) will 
be routed to indexer0, every tuple with key value that falls into the second subspace 
[a,b2])  will be routed to indexer1 and so on.  

1) So these 4 indexer nodes are assigned 4 disjoint key spaces. This leads to a 
desirable result that covers our three preconditions 

2) All indexers are going to be "fed" by the almost the same amount of tuples, as 
the tuples are normally distributed within the hot space. 

3) Because each indexer node is assigned disjoint and equal spaces of keys, they 
will require more or less the same I/O operations to fetch B+ tree nodes from disc 
to memory space. 

Because the subspaces are disjoint, each indexers is automatically assigned to search 
a different portion of the B+ tree. As the space of the stream tuple keys is expanding 
towards the space of the relation tuple  keys, this is becoming even more accurate.  

To provide a very simple explanation of how this algorithm works we are going to use a 
small example. Let's take for instance the B+ tree of Figure 7. An now let's suppose that 
we have 3 indexer nodes at this point. Also let's assume that the hot space at the 
moment is HS = [a,b], where a = <the smallest value of leaf node E> and b = <the 
biggest value of leaf node M>. This means that we have received stream tuples that 
cover the range of the relation keys. In that case, If we split the host space HS in three 
equal subspaces (as we have 3 indexers) the first subspace will include all values from 
leaf nodes E,F and G, the second subspace will include all values of H,I and J, the third 
subspace will include all values of K,L and M. So as you can see, as the index router is 
directing the stream tuples using those three subspaces of each indexer,  the tree 
search is split among the three indexers nodes in a very balanced way. 
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Figure 7: B+ tree search distribution 

All indexers will cache node A, which is very natural as it is the root of the tree. But after 
that the set of blocks the three indexers need to read and cache is completely disjoint. 
Additionally they will need to read exactly the same amount of blocks, thus they will do 
the same I/O operations. But the most important thing is the efficient use of the total 
available memory. Using that technique, all the tree is cached among all indexer nodes, 
all indexer nodes have the same amount of  blocks in their cache and additionally they 
have performed the same amount of I/O operations.  

Of course the hot space is not always so balanced and the tree search is not always so 
perfectly distributed. For example if the host space only covered leaf nodes E to I, then 
the level of cached block replication would increase, meaning that indexers would have 
to cache the same tree nodes. This is not a big disadvantage. It has to do with the 
nature of the stream. If the stream has a very small range of keys, then we will have lot 
of replication for a stable given number if indexers. As the range of stream keys grows 
bigger and bigger, up to the point that it reaches the range of the relation keys, the 
search becomes more and more distributed.  

 

3.7.2 Adding and removing Indexer nodes 

So far we have seen how to distribute the traffic of the input stream towards a certain 
number of indexer nodes. In the introduction of this chapter we analyzed the need of 
being able to add or remove computing resources depending on the traffic the systems 
receives. So in this section we are going to talk about how the index router node adds 
or removes computing nodes depending on the traffic it is fed with, and also on the 
several performance aspect that an operator could give. 

Let's imagine this scenario. At this point we have three indexer nodes. So the hot space 
is separated in three subspaces. Each indexer is assigned to index tuples that fall into 
one of the subspaces. Let's also assume that the performance characteristic that is the 
criterion of adding or removing computing nodes is cache hits. So let's assume that the 
minimum requirement for our indexer nodes is to achieve a cache hit percentage of 
50%. Now let's say that the hot space is suddenly expanding and expanding. This 
means that a bigger portion of the B+ tree blocks are required for the indexing process. 
In order to keep a steady cache hit percentage, we now need to add more indexer 
nodes in order to increase available memory. 
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The way we do this is as follows: we have a utility counter for each of the subspaces. 
This utility counter measures the activity load of each of the spaces. While the hot 
space is expanding, some of the subspaces is receiving slightly bigger traffic that the 
others. We select the subspace with the higher utilization and split it into two 
subspaces. If more than one subspaces have similar utilization the we choose one 
randomly to split. We create a new indexer node and assign to it one of the new spaces.  

If we still need to add more nodes, we repeat the same procedure. We always split the 
most used subspace. Because the newly create spaces are young, the spaces with the 
highest utilization will be one of the "old" subspaces. So, in practice, we keep splitting 
the "old" subspaces, until all are split. The same process goes on for the "new" 
subspaces when all the "old" spaces are split. Every time we split a subspace we assign 
the newly created space to a new indexer node. 

This procedure will cause minimum disturbance to the system. When a space is split, its 
assigned indexer node will be responsible for less values. This means less B+ nodes to 
read. In turn, this will increase the cache hits immediately for this node. On the other 
hand the fresh indexer will need to fill its cache with new B+ blocks. Some of those 
nodes are surely available in the cache of another indexer, most probably a "neighbor" 
indexer ( "neighbor" indexers are assigned "neighbor" subspaces). Potentially he could 
borrow those blocks from the other indexer or indexers, freeing some memory on his 
side as well. This would increase the complexity of system, so at this stage of the 
system we decided to leave the fresh indexer to read the blocks from the disc and 
"suffer" some more I/Os. We also let the old indexer remove unneeded blocks from its 
cache and replace them more valuable ones as fast as  possible. 

On the opposite direction we do the reverse of the above process when we need to 
remove an indexer. If, for instance in our example, when we added a node the cache 
hits reached 80% this means that we are probably wasting resources are the minimum 
requirement was 50%. So we need to remove an indexer node to cut costs. We do the 
exact reverse process. Now we choose the subspace with the least utilization and we 
merge it with one of its neighbors. If this subspace has more than one neighbors we 
choose the neighbor with the smaller utilization of the two. After removing one of the 
indexers we assign the enlarged subspace to its neighbor. Now this indexer has to cope 
with more values, meaning more b+ nodes, leading to decreased hit rates. We repeat 
the same process every time we want to remove an indexer. It is also important to note 
that during the above processes, any disturbances occurred in the system are only very 
localized around two neighbor indexer nodes. 

 

3.8 The Join Router 

In this section we are going to describe how the join router works. The index router is 
responsible for taking the stream of indexed tuples and distribute every single index  
tuple to one of the joiner nodes. Because there is no index here, the operations of join 
router are much simple that the ones of the index router. 

Despite the fact that the join router process is much less complex, it tries to achieve the 
same basic goals as the index router. Let's briefly enlist them again: 

1) First of all he has to distribute equal portions of indexed tuples to every joiner 
over a certain amount of time. 

2) The join router would have also to be fair in terms of the amount of I/O he makes 
every joiner to perform. 
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3) Use all the available memory resources of the joiner as efficiently as possible. 
Try not to allow duplicate bocks to be cached by different joiners. 

At this point, it is also worth reminding that the join router takes as input a stream of 
indexed tuples, that is, a stream of tuples that each one of them is accompanied by a 
list of matching blocks that it need to be joined with.  

Now let's image the following scenario: we have 4 joiner nodes (joiner0 - joiner3). 
Stream tuple x needs to be joined with relation block i. So the corresponding indexed 
tuple is {x,i}. Now let's say tuple {x,i} is routed to joiner0. So joiner0 will eventually need 
to cache relation block i. Of course join router is aware of that. He knows that after tuple 
{x,i} is joined, then block i is surely in the cache of joiner0. It doesn't mean that block i 
will be in the cache forever, but definitely it will stay there some time, until it gets 
replaced by LRU. The amount of time block i will spend on the cache depends on the 
size of the cache buffer and the indexed records traffic. If we assume that a joiner node 
can hold up 5000 buffered relation blocks, then a newly cached block will definitely stay 
cached, for another 5000 distinct indexed tuples. By the term distinct indexed tuples 
we denote tuples that are joined with different relation blocks. Now after tuple {x,i}, the 
next indexed tuple in line is y that needs also to be joined with block i. Since block i is 
already in the cache of joiner0, it would be naive to redirect tuple {y,i} to an indexer 
other than i. Thus, the join router should direct this tuple also to indexer0, because that 
node already has block i cached.  

It should be apparent what is the main strategy of join router, as it actually very simple. 
It keeps a map, correlating a relation block with the joiner node it was directed to. For 
instance after routing tuple {x,i}  to joiner0, index router puts an entry in the map like so: 
i -> joiner0. Now when tuple {y,i} needs to be routed, the join router will look up its map 
and finds the previous entry. So he will direct {y,i} to joiner0 as well. 

At first, this map is empty. So the choice of the joiner to send the first tuple is random. In 
fact let us assume that we choose in a serial manner. So the first joiner node to choose 
to direct an indexed tuple is joiner0. The join router is of course aware of the available 
memory that each node has. Let's assume that all joiners have 5000 buffer frames 
available, and that each buffer frame can hold a relation block. So each joiner node can 
have 5000 relation blocks cached.  

The way the index router works is that it loads the cache of the joiners in a sequential 
manner. It first load up the memory of joiner0. That means that the first 5000 distinct  
indexed tuples will directed to joiner0. As you can imagine, it is very possible that 
joiner0 might initially receive way more than 5000 indexed tuples, as every tuple that 
comes that needs to be joined with the already cached blocks of joiner0 will be redirect 
to joiner0. When joiner0 has been give 5000 distinct indexed tuples, the join router 
assumes that his cache is full. If he sends another indexed tuple that needs to be joined 
with a relation block other than those 5000 distinct blocks, he knows that joiner0 will 
have to remove one of the blocks that he already has in his cache, will do an I/O to read 
the new block and cache it in the place of the replaced block. 

But we do not need to do that as we have another 3 nodes with available memory. 
Additionally there is no escaping that I/O at this point as the new block is in none's 
cache. So we redirect that new stream tuple to joiner1. We repeat the same thing for 
joiner1 until his cache is full as well. In the mean time don't ignore the fact that every 
tuple that comes that needs to be joined with a block that is cached by joiner0, it is of 
course redirected to joiner0. That means, when eventually joiner1's cache is full, we 
have 10,000 distinct relation blocks in the cache, 5000 of those are in joiner0 and 
another 5000 of those are in joiner1. Up until now, no block has been replaced by 
another in the joiner's cache. We are still in the process of loading the whole available 
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memory. This process goes on until the cache of joiner2 and joiner3 are also full. At this 
point we have cached 20,000 relation blocks, 5000 in each joiner node.  

Now if the next indexed tuple that comes requires to be joined with one of the 20,000 
cached blocks, then it is routed to the joiner that has it. If it requires another relation 
block other than those 20,000, we are out of luck. We cannot escape evicting one of the 
cached blocks right now whichever joiner we choose to route the tuple to. In this case 
we select the victim 'node' serially again. So the first victim node is joiner0. As such, 
joiner0 will receive the tuple, evict the block that LRU dictates, load from the disc to the 
free frame the required block and do the join. In the meantime, the join router has added 
an entry to the map as we've explained before, in the form of w -> joiner0, where w is 
the aforementioned new block. 

Now when index router redirected that tuple to joiner0, he was sure that joiner0 will 
need to replace one of its cached blocks, as he simply cannot hold more that 5000 
distinct blocks. At first glance it seems beneficial for the join router to also know what 
block joiner would evict. Let that block be b, for instance. With that, he could remove the 
"old" entry b->joiner0  from the map as it is no longer valid. Block b was evicted and it is 
no longer in the cache of joiner0. Potentially the join router could know what block will 
be evicted without having to communicate with joiner0. The joiner router knows exactly 
the sequence of block requests that went for joiner0. Since LRU is deterministic, 
meaning that the victim sequence will always be the same for a given block request 
sequence. So the join router could  emulate the LRU algorithm for joiner0 and be sure 
what block would be evicted after his cache is full. But this would impose additional 
computational effort from the join router. An also we are considering the possibility of 
adding multi-thread execution on the joiner nodes. This would mean that each joiner will 
spawn multiple threads to perform his internal operations. At this scenario, it is not 
possible to predict the victim any more as the records are going to be consumed in a 
non deterministic way. 

The important thing to note here is that it doesn't really matter, from a correctness 
perspective to know what the victim block would be. There will be no damage if we 
leave the invalid entry in the map. Imagine that block b gets evicted from joiner0. But 
the entry b->joiner0 remains on the map. Now a tuple comes that needs to be joined 
with block b. Block b is in none's memory at this point. No matter what joiner we use he 
will need to evict another block from its cache and do an I/O for block b. So there is no 
harm routing it again back to joiner0, as the map dictates. Nothing different would 
happen if it was routed to any other joiner. None of the other joiners have it in their 
cache. To make that argument even stronger, since the index router doesn't know at 
this point  what block will be evicted, if there is any possibility of block b being cached 
that it would be in the cache of joiner0. 

So we are not compromising the correctness of the system with the aforementioned 
solution. But, it cannot go unnoticed that the map grows bigger and bigger. So after a 
certain limit, we do need to communicate with all the joiners in order to know the 
accurate state of their cache, meaning the exact list of relation blocks that they have in 
their caches. When the join router has that list in his hand, he can trim invalid map 
entries. But that only happens a few times over a big period of time. It also happens 
when we add or remove joiner node as you will see in the next section. 
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3.8.1 Adding and removing Joiner nodes 

Similar  to the indexer nodes, depending on the nature of the traffic, we might need to 
add more joiner nodes to keep with the performance standards that the operator of the 
system gives. 

The process of adding a joiner node is fairly simple. When the new node is added it is 
treated as if an extra pile of memory was added to the system. Until he is also full, none 
of the already cached blocks should be evicted. We enter the same mode of operation 
as we did on the startup of the system, when we were loading the joiners caches. Thus 
now, every indexed tuple that turns up that is requiring a non - cached block, it is 
immediately routed to the new joiner node. This mode continues up until the new node's 
cache is also full. Afterwards the execution flows normally as we've described.  

There is an important detail to consider about this operation. When the new node is 
added, we need to prevent all eviction from the old node caches. This means that, while 
the new node loads up its memory, we must ask any of the other joiner nodes to read 
blocks other than the ones they have in their cache. This means that have to accurately 
know each joiner's cache contents. If the danger is not yet evident let's consider again 
the previous example. Remember that we have kept and old entry b->joiner0 in the 
map. Let's also suppose that block b is no longer actually in joiner0's cache. Now if we 
accidentally route an indexed tuple that requires block b to joiner0, he will need to evict 
another  page. But we don't really need to do that because we now have available 
memory in the new joiner, thus there is no point evicting any cached block. That's why 
when adding a new node, just before starting routing traffic again, we communicate with 
the joiner nodes and update our map. 

Removing a joiner node is quite simple. We simple remove all the entries from the map 
that contain that node and we stop routing traffic towards him. The operation then 
continues as it normally would if the gone joiner never existed. 

 

3.9 Control Communication Channel 

In Figure 6 we described the distributed architecture of our system and we showed the 
flow of communication between nodes. The bulk of communication between the nodes 
is accurately as depicted in Figure 6. It is one way with no strange interleaved 
interaction between nodes. Joiner nodes don't communicate with each other, joiner 
nodes don't communicate with each other. Despite that there still needs to be a 
backwards communication channel between the routers and the nodes they control. 
This channel will flow information from node to router. It will be called control 
communication channel. 

We have described some of the reasons for node -> router communication in section 
3.8 when we talked about the join router. Except the contents of the cache, the router 
nodes need to know more information about their worker nodes. The reason is that, 
routers will need to keep track of the performance characteristics of the system at any 
given time. That way they can decide whether to add or remove one of their worker 
nodes.  

Thus there is a control channel that sends performance information from worker nodes 
back to their routers. It is worth noting that this communication happens in an frequency 
that depending on the speed of the stream (meaning how many stream tuples are 
received in the input per second). We can for instance assume that this communication 
happens every 20,000 records. If the stream speeds up, this communication will be 
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more frequent. If the stream slows down this communication will become less frequent. 
This skim makes sense as when the traffic is high we need to be up-to-date more 
quickly and on the other hand when the traffic is low we don't need frequent updates. 

That way, the router nodes are well aware of the periods that the performance of the 
system is degrading and thus they need to allocate more resources and on the other 
hand the moments where the performance is way above the requirements so we need  
to remove resources to cut down costs.  
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4. IMPLEMENTATION 

4.1 General information 

In this chapter we are going to discuss several aspects that concern our implementation 
of the above distributed elastic SSIJ infrastructure. This implementation of Distributed 
SSIJ was done in Java. It consists of 12000 lines of code. This code includes the 
databases implementation, including the file manager, and of course the buffer manager 
which was used by all worker nodes (indexers and joiners). It also includes the 
implementation of the B+ tree index. Added to that, several data structure like buffers 
along with socket channels were also implemented in order to support the stream 
communication between nodes. 

 

4.2 Relation file format and Index Choice 

We chose the most generic format possible both for our relation files and our index files. 
Both heap files and data files are organized in blocks. Each block is 4096 bytes. That 
stands for both the relation files and the index files. For the data file each block is 
organized in heap form. Which means that the records don't have specific ordering in it. 
The relation file is organized in a heap format itself. Meaning that there is no specific 
ordering for the blocks themselves. 

Having selected such a structure for our data file, we need to make certain decisions 
about the structure of our B+ tree index. First of all we used a primary index. That 
means that the index is upon the primary key of the relation. Now, the main concern 
was what would be the structure of the leaf nodes. We decided to go with the most 
generic implementation possible where we have the leaf nodes pointing to the 
corresponding data file blocks where each key is resides. And because we wanted to 
make the joining procedure as fast as possible, in the leaf nodes each key is 
accompanied with an number representing the offset of the record having that key in the 
data file block. To be more specific, if there are 240 records in a data block of the file 
relation each key in the leaf file is accompanied with a number from 0 to 240 denoting 
what is the relation record position in the block. 

Thus these design options lead to decide to store the relation and the index in two 
different files. These two files can either reside on the same disc or they can reside on 
different physical volumes. The router nodes do not need to have access to either of 
those volumes. Indexer nodes need to have access to the volume where the index 
resides and joiner nodes need to have access to the volume where the relation resides. 

 

4.3 Worker node granularity 

As it is already evident the whole purpose of this project was to create a system that will 
allocate an de allocate working nodes on demand, in order to increase the memory 
resources of the system. The best possible scenario would be to be able to allocate 
physical dedicated computing nodes. A platform that supports that could be easily 
integrated in our system.  

But today's businesses increasingly rely on Platform as a Service (PasS) Cloud 
frameworks provided by large corporations like, Google with Google Cloud, Microsoft 
with Azure, Amazon with Amazon Elastic Compute Cloud (Amazon EC2), IBM's 
SoftLayer which also provides infrastructure for Bare Metal physical machine allocation, 
RackSpace with its Dedicated Server infrastructures and many other smaller vendors. 
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4.3.1 Platform as a Service 

Platform as a Service, often simply referred to as PaaS, is a category of cloud 
computing that provides a platform and environment to allow developers to build 
applications and services over the internet. PaaS services are hosted in the cloud and 
accessed by users simply via their web browser.  

The infrastructure and applications are managed for customers and support is available. 
Services are constantly updated, with existing features upgraded and additional 
features added. PaaS providers can assist developers from the conception of their 
original ideas to the creation of applications, and through to testing and deployment. 
This is all achieved in a managed mechanism. 

As with most cloud offerings, PaaS services are generally paid for on a subscription 
basis with clients ultimately paying just for what they use. Clients also benefit from the 
economies of scale that arise from the sharing of the underlying physical infrastructure 
between users, and that results in lower costs. 

Using PasS services organizations don't have to invest in physical infrastructure. Being 
able to ‘rent’ virtual infrastructure has both cost benefits and practical benefits. They 
don’t need to purchase hardware themselves or employ the expertise to manage it. This 
leaves them free to focus on the development of applications. What’s more, clients will 
only need to rent the resources they need rather than invest in fixed, unused and 
therefore wasted capacity. 

One of the most desired feature of PasS services is flexibility: customers can have 
control over the tools that are installed within their platforms and can create a platform 
that suits their specific requirements. They can ‘pick and choose’ the features they feel 
are necessary. Another one noteworthy feature is adaptability. Features can be 
changed if circumstances dictate that they should. 

In summary, a PaaS offering supplies an operating environment for developing 
applications. In other words, it provides the architecture as well as the overall 
infrastructure to support application development. This includes networking, storage, 
software support and management services. It is therefore ideal for the development of 
new applications that are intended for the web as well as mobile devices and  PCs. 

Thus we decided to leverage the combination of 'read to go' configuration, flexibility and 
elasticity, along with the development friendly environment and use a PasS service for 
our cluster. So the maximum granularity of a worker node will be a virtual machine in a 
cloud service. We chose Google Cloud services because of some additional resources 
available on that platform what are of vital importance for our system. 

 

4.3.2 Thread Workers 

 In the beginning of our development we decided to implement all the functionality of 
Distributed Elastic SSIJ using thread workers in order to emulate computing nodes. In 
that sense every thread worker was viewed as a computing node. It has its own 
memory resources, its own buffers and so on. Additionally the router nodes themselves 
were also threads. We've created some layers of abstraction in order to hide the node 
granularity. So router nodes are not aware whether their worker nodes are threads. 

Because of the locality of the system, router nodes and worker nodes communicated 
with each other using local shared memory buffers. That was in an attempt to extract as 
much performance as possible by the 'locality factor'. 
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Although performance showed great potential, and the scalability was very close to 
linear (showing promises for the future), it started to degrade as more and more thread 
workers were allocated. This was due to the fact that despite the separation of memory 
areas in the threads, the whole system run on the same JVM. So the JVM memory 
management was becoming a deciding factor about performance. The bigger the 
memory needs, the more memory is allocated and so the bigger is the Garbage 
Collector overhead. Additionally the overhead of context switching between a big 
number of threads (think 100s of threads), was also evident. To make matters worse, 
we needed to use synchronization mechanisms for the access in the common stream 
buffers of the system. So synchronization overhead  was also proving to be a serious 
bottleneck for the performance of the system. 

We are aware that very low latency, extremely high performance, lock-free concurrent 
buffer data structures exists in various Java implementations. There are also well know 
techniques that avoid Garbage Collection altogether. This method have been used in 
the low-latency high-frequency trading markets for quite some time now, so as a result 
various Java libraries for that have come out. Most of these engineering attempts pre 
allocate all the necessary memory need, and use that memory pool the the needs of the 
system. For increased performance they use what is called direct memory. The hugely 
famous Java package sun.misc.Unsafe that provides manual native memory 
management and access is the backbone for most of those products and it is proven to 
have native performance (C/C++ levels of performance). Additionally some high-end 
optimized JVM implementations occur, with unnoticeable Garbage Collection overhead 
using truly concurrent Garbage Collection algorithms exist that provide a great JVM 
platform especially for low latency releases. One of the most famous is Azul's Zing JVM.   

Although it could be really interesting and intriguing to see the performance results 
using a combination of the above technologies we leave of for future releases of the 
software as at this point we decided to focus on the algorithmic and architectural 
patterns of the system, and to provide a basic first implementation of the system. 

 

4.3.3 JVM/Process workers -  Socket Channel Communication 

The next step of our development was to expand the granularity of worker nodes to  
processes. This was a vital step as those process would the actual processes that 
would run on the future where the granularity of the worker nodes would be Virtual 
Machines.  

During this step we implemented also the necessary communication socket channel 
mechanisms. Now all the communication between workers and routers is socket-based. 
This allowed the further decoupling of the worker environment and the router's 
environment. To achieve high performance we used Java's NIO SocketChannel  
implementation. This socket implementation is optimized and widely deployed to 
support real-time streaming systems. We also implemented our own custom stream 
tuple serializers and deserializers that optimally serialize a stream tuple to an array of 
bytes and vise versa. We did that in order to avoid costly Java-native serialization 
methods, even from that first release. 

In our implementations all nodes that receive input open a Server Socket. All nodes that 
want to send data to those nodes need to create a client socket connection with the 
remove server socket. If a node wants to both receive and send data he will do both of 
the aforementioned actions. All the socket streams are none blocking. We use the Java 
provided poll/select mechanisms that provides us with information about what channels 
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are available for reading and writing. It worth noting that this selection mechanism uses 
the native poll/selection mechanism that the underlying operating system provides.  

In our implementation we decided to dedicate a thread on the input and deserialization 
operation. All nodes have their own input memory buffers. The input thread is 
responsible for reading the stream from the socket, deserializing it and then providing it 
to the main thread where all the operations take place. Every processes spawns a 
separate thread to support input operations.   

Now there are no common buffers used and no common memory used between 
computing nodes. So synchronization cost is out of the way (except for the input thread 
and the main thread in each process). Now every node runs on its own JVM so 
Garbage Collection cost is also lower as well. And in fact any Garbage Collection cost 
will now have only node-local performance effects.  

At this point we had also to think about  the implementation of the control channel. We 
could use the same technologies, meaning Socket channels and also create our own 
serializes for the required messages, but for this specific task we decided to use a Java 
provided solution. We used Remote Method Invocation protocol for that matter. We 
created all the necessary objects and interfaces to support it. It is worth noting that RMI 
is also a socket based protocol. The Java Remote Method Invocation (Java RMI) is a 
Java API that performs remote method invocation, the object-oriented equivalent of 
remote procedure calls (RPC), with support for direct transfer of serialized Java classes 
and distributed garbage collection. The original implementation depends on Java Virtual 
Machine (JVM) class representation mechanisms and it thus only supports making calls 
from one JVM to another. The protocol underlying this Java-only implementation is 
known as Java Remote Method Protocol (JRMP). There are also more high-
performance message passing protocol implementation for Java, like ActiveMQ and 
RabbitMQ. At this version of our software we decided to use RMI. 

In short, the way we use RMI is that every worker node opens an RMI socket and 
exposes a certain API to the RMI server that runs on his JVM. Then, the router nodes 
connect to that remote RMI socket and invoke remote methods to find out the worker-
local information they need to know. 

 

4.3.4 Container workers 

In this section we are going to talk about containers and why we wanted to containarize 
our worker nodes. The reason we wanted to containerize our worker nodes is very 
simple. Most PasS platform offer Managed Container Cluster Engines that help you 
containerize your applications and deploy them on a local cluster that also has the 
capability of autoscaling (we will talk more on that later). You can use specific apis to 
add or remove containers on demand. That seems to fit perfectly our model of 
execution so we decided to look more into container-based virtualization. 

Container-based virtualization, also called operating system virtualization, is an 
approach to virtualization in which the virtualization layer runs as an application within 
the operating system (OS). In this approach, the operating system's kernel runs on the 
hardware node with several isolated guest virtual machines (VMs) installed on top of it. 
The isolated guests are called containers.  

With container-based virtualization, there isn't the overhead associated with having 
each guest run a completely installed operating system. This approach can also 
improve performance because there is just one operating system taking care of 
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hardware calls. A disadvantage of container-based virtualization, however, is that each 
guest must use the same operating system the host uses.  

Operating-system-level virtualization is commonly used in virtual hosting environments, 
where it is useful for securely allocating finite hardware resources amongst a large 
number of mutually-distrusting users. System administrators may also use it, to a lesser 
extent, for consolidating server hardware by moving services on separate hosts into 
containers on the one server. 

Other typical scenarios include separating several applications to separate containers 
for improved security, hardware independence, and added resource management 
features. Another strong case to also use containers is that Operating-system-level 
virtualization implementations capable of live migration can also be used for dynamic 
load balancing of containers between nodes in a cluster.  

Additionally, as we've already mentioned Operating-system-level virtualization usually 
imposes little to no overhead, because programs in virtual partitions use the operating 
system's normal system call interface and do not need to be subjected to emulation or 
be run in an intermediate virtual machine, as is the case with whole-system virtualizers 
(such as VMware ESXi, QEMU or Hyper-V) and paravirtualizers (such as Xen or UML). 
This form of virtualization also does not require support in hardware to perform 
efficiently. 

  

4.3.5 Docker 

Docker is undoubtedly the most famous and widely used Linux Container 
implementation. Docker [7] [8] allows you to package an application with all of its 
dependencies into a standardized unit for software development. Docker containers 
wrap up a piece of software in a complete filesystem that contains everything it needs to 
run: code, runtime, system tools, system libraries – anything you can install on a server. 
This guarantees that it will always run the same, regardless of the environment it is 
running in.  

Docker containers spin up and down in seconds making it easy to scale an application 
service at any time to satisfy peak customer demand, then just as easily spin down 
those containers to only use the resources you need when you need it. 

A Docker image is made up of filesystems layered over each other. At the base is a 
boot filesystem, bootfs, which resembles the typical Linux/Unix boot filesystem. A 
Docker user will probably never interact with the boot filesystem. Indeed, when a 
container has booted, it is moved into memory, and the boot filesystem is unmounted to 
free up the RAM used by the initrd disk image. So far this looks pretty much like a 
typical Linux virtualization stack. Indeed, Docker next layers a root filesystem, rootfs, on 
top of the boot filesystem. This rootfs can be one or more operating systems (e.g., a 
Debian or Ubuntu filesystem).  

In a more traditional Linux boot, the root filesystem is mounted read-only and then 
switched to read-write after boot and an integrity check is conducted. In the Docker 
world, however, the root filesystem stays in read-only mode, and Docker takes 
advantage of a union mount to add more read-only filesystems onto the root filesystem. 
A union mount is a mount that allows several filesystems to be mounted at one time but 
appear to be one filesystem. The union mount overlays the filesystems on top of one 
another so that the resulting filesystem may contain files and subdirectories from any or 
all of the underlying filesystems. Docker calls each of these filesystems images. Images 



Elastic Infrastructure for Joining Stream Data  

Ν. Maravitsas   45 

can be layered on top of one another. The image below is called the parent image and 
you can traverse each layer until you reach the bottom of the image stack where the 
final image is called the base image.  

Finally, when a container is launched from an image, Docker mounts a read-write 
filesystem on top of any layers below. This is where whatever processes we want our 
Docker container to run will execute.  

In our container cluster we are going to use two different Docker Images. One Docker 
for the Indexer nodes and one Docker image for the Joiner nodes. We decided that the 
router nodes will run on dedicated VMs in the underlying VM cluster. Those two docker 
images will be used to create two different kinds of containers. Indexer Containers and 
Joiner Containers. Each one the Joiner containers will run the Joiner JVM/process and 
each one of the Indexer Containers will run the Indexer JVM/process. So basically each 
container will just run a JVM with the corresponding process.  

 

4.3.6 Kubernetes Framework 

The Kubernetes [9] project was started by Google in 2014. The name Kubernetes 
originates from Greek, meaning “helmsman” or “pilot”, and is the root of “governor” and 
“cybernetic”. K8s is an abbreviation derived by replacing the 8 letters “ubernete” with 8. 

 Kubernetes is an open-source platform for automating deployment, scaling, and 
operations of application containers across clusters of hosts, providing container-centric 
infrastructure. With Kubernetes, we are able to quickly and efficiently respond to user 
demand. We can deploy our applications quickly and predictably. Kubernetes allows us 
to scale our applications on the fly. We can optimize the use of our hardware by using 
only the resources we need. Kubernetes goal is to foster an ecosystem of components 
and tools that relieve the burden of running applications in public and private clouds. 
Kubernetes is portable: public, private, hybrid, multi-cloud extensible: modular, 
pluggable, hookable, composable self-healing: auto-placement, auto-restart, auto-
replication, auto-scaling. 

The Old Way to deploy applications was to install the applications on a host using the 
operating system package manager. This had the disadvantage of entangling the 
applications’ executables, configuration, libraries, and lifecycles with each other and 
with the host OS. One could build immutable virtual-machine images in order to achieve 
predictable rollouts and rollbacks, but VMs are heavyweight and non-portable. 

The New Way is to deploy containers based on operating-system-level virtualization 
rather than hardware virtualization. These containers are isolated from each other and 
from the host: they have their own filesystems, they can’t see each others’ processes, 
and their computational resource usage can be bounded. They are easier to build than 
VMs, and because they are decoupled from the underlying infrastructure and from the 
host filesystem, they are portable across clouds and OS distributions. 

Because containers are small and fast, one application can be packed in each container 
image. This one-to-one application-to-image relationship unlocks the full benefits of 
containers. With containers, immutable container images can be created at 
build/release time rather than deployment time, since each application doesn’t need to 
be composed with the rest of the application stack, nor married to the production 
infrastructure environment. Generating container images at build/release time enables a 
consistent environment to be carried from development into production. Similarly, 
containers are vastly more transparent than VMs, which facilitates monitoring and 
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management. This is especially true when the containers’ process lifecycles are 
managed by the infrastructure rather than hidden by a process supervisor inside the 
container. Finally, with a single application per container, managing the containers 
becomes tantamount to managing deployment of the application. 

At a minimum, Kubernetes can schedule and run application containers on clusters of 
physical or virtual machines. However, Kubernetes also allows developers to ‘cut the 
cord’ to physical and virtual machines, moving from a host-centric infrastructure to a 
container-centric infrastructure, which provides the full advantages and benefits inherent 
to containers. Kubernetes provides the infrastructure to build a truly container-centric 
development environment.  

Kubernetes satisfies a number of common needs of applications running in production, 
such as:  

 co-locating helper processes,  

 facilitating composite applications and preserving the one-application-per-
container model, 

 mounting storage systems, 

 distributing secrets, 

 application health checking, 

 replicating application instances, 

 horizontal auto-scaling, 

 naming and discovery, 

 load balancing, 

 rolling updates, 

 resource monitoring, 

 log access and ingestion, 

 support for introspection and debugging, and 

 identity and authorization. 

This provides the simplicity of Platform as a Service (PaaS) with the flexibility of 
Infrastructure as a Service (IaaS), and facilitates portability across infrastructure 
providers.  

This was the next step in our implementation. As you might remember the final goal of 
the system was to deploy the worker nodes in a Virtual Machine cluster. We also 
wanted the ability to add more virtual machines when the performance of our system 
degrades and remove virtual machines when the performance of our system overcomes 
the required standards and we want to save costs.  

 

4.3.7 Google Cloud Container Engine 

Google Container Engine [10] is a powerful cluster manager and orchestration system 
for running our Docker containers. Container Engine schedules our containers into the 
cluster and manages them automatically based on requirements the operator defines 
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(such as CPU and memory). It's built on the open source Kubernetes system, giving us 
the flexibility to take advantage of on-premises, hybrid, or public cloud infrastructure. 

One can set up a managed container cluster of virtual machines, ready for deployment 
in just minutes. The cluster is equipped with capabilities, such as logging and container 
health checking, to make application management easier. 

You can also declare your containers' requirements, such as the amount of 
CPU/memory to reserve, number of replicas, and keepalive policy, in a simple JSON 
config file. Container Engine will schedule our containers as declared, and actively 
manage your application to ensure requirements are met. 

With Red Hat, Microsoft, IBM, Mirantis OpenStack, and VMware (and the list keeps 
growing) working to integrate Kubernetes into their platforms, we will be able to move 
workloads, or take advantage of multiple cloud providers, more easily. 

Google cluster infrastructure offers a very flexible auto scaling feature that helps 
optimize resource efficiency. When you want to deploy your application on the cluster 
you have to set an initial cluster size. If that cluster size is let's say 5, then 5 VMs are 
going to be created and they are going to be dedicated for your container cluster. You 
can then specify several performance standards that you want your cluster to meet. For 
example you can set a CPU threshold. If the CPU usage of the cluster is more than that 
threshold, then more Virtual Machined are automatically  added to your cluster. On the 
same spirit when the CPU usage greatly overcomes that threshold the engine will 
remove some of the virtual machines  

In our case because in the configuration we wanted our containers to take all the 
available resources at each machine, that auto scaling feature worked well, because 
more machines where dynamically added on the cluster when there was need. Now 
using this feature we can eventually meet out initial goal. If we set up our containers to 
use all available VM resources and at the same time set the performance thresholds of 
the cluster relatively high then each container will be run on a different VM which is the 
initial design.  

But this is not always necessary. For example when our traffic is low and the 
performance is quite sufficient at that point, there is no need to have all containers run 
on different VMs. They could run on the same VM if the performance standards are met. 
It is up to VM and container cluster management platform to decide whether to add 
more VMs in the system. We have benefited greatly from this because Google Cloud 
platform already takes into account our cost conservative perspective and only scales 
up the VMs when it is necessary, helping the user save costs. 
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5. DEPLOYMENT, EXPERIMENTS AND RESULTS 

5.1 Google Cloud Deployment and Setup 

In order to conduct our experiments we create a master Virtual Machine in the Google 
Cloud Compute Engine service. This was a machine with 64bit 4Core 2.6GHz with 
14GB or RAM and 50 GB HDD. We decided to use this machine as the resident 
computing node for our two router nodes. The worker nodes will run on separate 
containers. In order to achieve our initial goal "one container per vm" we created an 
initial cluster of 20 VMs. Each of these machines has a 2Core 2.6 GHz CPU with 6GB 
of RAM. 

Now in order to deploy our containers into the VMs we used Kubernetes as our "cluster 
master". For each one computing node we create a new Kubernetes Pod. A pod is a 
group of containers that are scheduled onto the same host. Pods serve as units of 
scheduling, deployment, and horizontal scaling/replication. Pods share fate, and share 
some resources, such as storage volumes and IP addresses. Now in our case we will 
use single container pods. A single container pod has only on container running it. We 
did that because we wanted to be able to run each container on a separate VM.  

One major problem with the current version of Kubernetes is that no more than one 
pods can be attached to the same external volume. This meant that we had to have a 
local copy of the index file in every indexer and a local copy of the relation file in every 
joiner. This is a major complaint for the Kubernetes platform, and as a very large portion 
of the community has been disappointed by such a decision, Kubernetes Development 
team is planning to add that feature in the next Kubernetes release. Granted, 
Kubernetes is an extremely young project, considering its granularity and its very 
ambitious goals. 

Kubernetes offers a GUI manager interface that helps you very quickly create pods and 
deploy applications. But most importantly it offers a fully fledged REST API that enables 
programmatic access to its full functionality. We've found a newly created Java library 
that wraps around that REST api and enables client code to fully leverage the power of 
Kubernetes. That library is called Kubernetes-Client and it is created by the Fabric8 
development team. Fabric8 is an orchestration framework  that sits above Kubernetes 
and Docket, and it supervises the creation of pods and deployment of applications. 

Using that API we are able to create pods and thus containers on demand. There is 
also another important Kubernetes primitive that enables you to create resilient pods. It 
is called Replication controller. In the replication controller you can specify the number 
of replicas you want to create for a pod. If you specify that you need 4 replicas for 
example, Kubernetes makes sure that 4 replicas of your pod are always running . This 
is a very useful feature that helps you create resilient multinode systems.  

But we wanted to create an destroy our containers on demand. We assume that the 
operator of our own system will put in several performance criteria that we need to meet 
and accordingly our system should add or remove containers. We decided to use one 
performance criterion that has to do with the most valuable asset of our cluster, 
memory. So we decide that to be cache hit ratio. Cache hit ratio is a vital and deciding 
factor about the whole systems performance. So we give the two routers a specific hit 
ratio that should be the target total hit ratio for their corresponding worker nodes.  

The two routers would have to create or remove computing nodes in order to conform to 
that specified number. The velocity with which the routers add or remove computing 
nodes have to do with what is the current and the target hit ratio. If there is a lot of 
distance between the current hit ratio and the target hit ratio the routers aggressively 
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add more nodes in order to catch the desired hit ratio as quick as possible. On the same 
spirit, if the current hit ratio is way above the desired target ration then we remove 
computing nodes to get as close as possible to the target. In order not to get trapped 
between continuously adding and removing computing nodes we give a margin of +-0.1 
to the target hit ratio. This means that if we are 0.1 away from the target, either over or 
under, we don't add or delete any nodes. 

For our experiments we create a relation with 300,000 blocks containing 153,299,999 
records with a size of approximately 2GB. Our system is indented to be used with much 
larger volumes of data, but in this first prototype version we settled for a smaller 
database to mainly focus on testing the efficiency of resource allocation, e.g scalability 
and elasticity. The records have an integer key. Keys are all multiples of 5 ranging from 
0 to 766,499,995. The B+ index tree has 3 levels and a total of 453,986 blocks. That is 
an extra 153,986 blocks of internal nodes added to the leaf level of 300,00 blocks.  

In order to create our worker pods we have created two different Docker images. One 
Docker image that runs the joiner process and a second Docker image that runs the 
indexer process. Those two Docker images were uploaded  in the Google Container 
Registry. This is a Docker Image Registry that is resident on the Google Cloud. Then 
you can easily create your pods just specifying the name of the image you want your 
container to start (along with other configuration parameters of course).  

 For our tests, every indexer has a buffer of 50,000 blocks. Every joiner has 5000 blocks 
of buffer capacity. .. .Kubernetes offers a GUI manager interface that helps you very 
quickly create pods and deploy applications. But most importantly it offers a fully fledged 
REST API that enables programmatic access to its full functionality. We've found a 
newly created Java library that wraps around that REST api and enables client code to 
fully leverage the power of Kubernetes. That library is called kubernetes-client and it is 
created by the Fabric8 development team. Fabric8 is an orchestration framework  that 
sits above Kubernetes and Docker, and it supervises the creation of pods and 
deployment of applications. 

The stream we are going to use is going to be created by a generator. The generator 
will run on the same VM as the index router but he is communicating with him via socket 
and not using share memory buffers. The key of the stream tuples is going to be an 
integer. They are going to be distributed in Gaussian form. The range of the keys is 
going to vary from experiment to experiment. We are going to perform experiments 
where the key range is from 0 to 300,000,000, covering 50% of the relation tuple range, 
and from 0 to  766,499,995 covering 100% the range of the relation keys. Most of the 
experiments are going to be run for a period of 4 to 6 minutes. 

 

5.2 Scalability measurements 

There are several aspects to consider when measuring the scalability of such systems. 
And that is the fact that because there are several stages in the pipeline, having a 
bottleneck in one can seriously affect the performance of the other. So for the 
measurements  that follow we are going to have two different kinds of tests. On the first 
test we are going to measure the throughput of the joiners (and that is also the 
throughput of the whole system). but we are going to allocate as much resources as 
possible for the indexer nodes so as not to let the index stage be a bottleneck for the 
system. It is quite obvious that if, for example, the index stage produces no more than 
30.000 indexed tuples per second, then no matter how many joiners we are going to put 
into the system we are not going to get more that 30,000 joined tuples per second.  
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So for the first test we are going to create 10 indexer nodes. Using 10 nodes we are 
going to be able to cache all the B+ tree nodes and distribute the indexing process 
evenly between the nodes.  

We have measured that the maximum throughput of the indexers in that configuration is 
up to 700,000 joinable tuples per second. That is in a range of stream keys up to 
300,000,000.So that would be the maximum througput of the joiner stage. To measure 
the scalability of the system we are going to use 2, 4, 8, 16, 32, joiner nodes. 

 

 

Figure 8: Joiner Scalability 

 

As you can see we can achieve linear scalability up to the number of 16 joiners. That's 
because with this experiment at the point where the joiners where 16 the hit ration of the 
joiners node hit almost 99%. So it is logical that we not going to get much more 
performance even if we add more nodes. Eventually we would reach a maximum 
number higher that 600,000 tuples per second but the scalability will be far from linear 
from that point on. The most performance we are going to extract out of it will be from 
increased cpu resources. 

The next measurements is going to have a stream tuple key range from 0 to  
766,499,995 in order to see if that scalability pattern still holds. 
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Figure 9: Joiner Scalability 

As you can see the perfomance has seriously degraded, but the scalability still holds a 
linear scheme. That is reasonable as up unitl the 32 joiner we had almost 42% hit ratio. 
So adding more nodes to this well be very resonable and we would continue to take 
more linear scalability up until a certain point where we cannot extract much more 
performance out of the memory resources. 

For the next experiments we are going to measure joiner scalability. We are going to rn 
tests with a stream with key range from 0 to 766,499,995 and we are going to test on 2, 
,4, 8, 16, 32 joiner nodes. For that experiment we are going to measure how many 
recods per second the joiners produce without having to send them to the join router.  

 

 

Figure 10: Indexer Scalability 

 

As you can see we get linear scalability in the area from 10 to 16 joiners. From that 
point on the cache hit ration for all the joiner reached 99% percent and so the scalability 
figure drops. There is also an interesting result here. Between 4 and 8 indexers there is 
not much performance improvement. As you can see from Figure 10 they have almost 
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identical results. That has to do probably with the distribution of search in the tree. For 
some reason it was not distributed as equally as possible for these numbers. Also one 
more reason could be that we reached a very high percentage of hit ratio even from 4 
indexers (it was more that 80% already) 

On the next graph we are going to show you the same experiment with a stream with 
key range from 0 to 300,000,000. 

As you can see the performance of the system quickly reaches a peak, and that's only 
natural as even from the 4 joiner we have reached almost 87% cache hits. We have a 
huge performance leap in 8 joiners where we almost reach a 97% hit ratio.  From that 
point on the performance improvement is not as impressive. The reason is simply 
because we  cannot extract more performance out of our memory resources because 
we have cached most of the tree nodes in our memory. 

 

 

Figure 11:Indexer Scalability 

 

5.3 Elasticity and Flexibility 

In this section we are going to talk about how the elasticity of our design performed 
during our experiments and during our development. This is probably a good point to 
remember that the initial plan of our architecture was to add and remove resources on 
the go depending on the nature and the characteristics of the stream traffic. As we 
discussed, we could have several criteria on whether to add or remove computing 
resources.  

We could potentially also include a cost formula for that matter. For example if we have 
a strict budget for that specific system in our pipeline we could potential calculate on the 
fly the cost we are putting down every moment and either decide whether we are able to 
add more resources or not. As a proof of concept we decided to use cache hit ratio as 
the performance criterion on whether to add or remove resources. 

In that case we gave more attention to the Joiner nodes. As you have seen in our 
experiments because we have decided to give more memory resources to each joiner 
node there was no need most of the time to add more nodes. So most of the attention 
on the elasticity was on the joiner nodes.  
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The main issue with adding or resources is that it took a significant amount of time to 
deploy and run the containers. So we decided to use a separate thread to spawn the 
new nodes while the other nodes continue their job. When the new node is up and 
running he can enter the action as well with the algorithms we described in the previous 
sections. 

We conducted the experiments for this as follows: we started with 5 joiner nodes. The 
join route was given a certain amount of cache hit percentage as e minimum 
requirement. We have created and algorithm that adjusts the velocity that we add 
resources depending on how far we are from the target. So for example in the case 
where we have a stream with tuple key range from 0 to  766,499,995 and we give a hit 
percentage target of  50% when we first start the system, the 5 joiners where capable of 
a hit percentage of 8%. That is very far away from the desired target. In that case we 
are more aggressive on adding more nodes. So  at this rate we add almost one node 
every 40,000 records. We need to wait for that period of time in order to see whether we 
are getting close to our target and in order to do that we need to let the system 
normalize its behavior, and also it is possible that the stream traffic changes a bit so we 
wait to see whether we actually need to add more. But since we are so far behind from 
the target we don't want to wait too much either. In the above experiment starting from 5 
indexers and 8% of cache hits, at the point where the system has added 38 nodes we 
were still at 23%. Now because we're getting closer to the target we can slow down a bit 
and add a node every 80,000 thousand tuples. After adding 50 nodes we were at 32%. 
So we slow down some more. After adding 53 nodes we hit 46%. At this point we 
stopped adding resources. We are too close the target. When the traffic normalized the 
52 nodes where capable of reaching 70% cache hit ratio and it kept increasing. That is 
very natural as we were very aggressive on adding resources because we wanted to 
get up to 50% as fast as possible. 

At the point where the system reached a 40-60% hit ratio area we were in a safe space. 
It is not always possible to achieve exactly the required target because every node has 
a specified amount of RAM and this total amount for ram is not always divided integrally 
with the amount of the blocked that need to be cached in order to achieve that 
percentage. So we have that area of +-10% to let the system cool down, normalize and 
see the nature of stream that is passing at the moment. We don't want  to add or 
remove resources in that area as we are going to be trapped in a vicious circle of 
adding and removing constantly resources.. 

But in our case after approximately 10 minutes we have added 52 joiner nodes. And we 
have reached more that 70% of hit ratio. That meant that we are way over the minimum 
requirements and that we should probably start removing some nodes and see again 
where the system stabilizes. Because we are very close to our target ration the velocity 
with which we remove nodes at this point is very small. We give the system some time 
to cool down and reevaluate the passing traffic and the decide whether it is beneficial to 
remove more nodes.  

After removing one node (now we are at 51), the hit ration was still climbing but not buy 
much. After removing 7 more nodes (45) it stopped rising and was now dropping but it 
was still around the 70% area. After removing 3 (42) more nodes it started to fall from 
70%, but still at this point  when the traffic normalized we were still at the 70% area. 
Because when we suddenly remove a node the hit ratio falls immediately. So it needs 
some time to cool down to see the actual hit ratio when using that many nodes. And the 
truth is that we are not at all aggressive at removing nodes, because we don't want to 
drop from the achieved target. But we don't want to be too lazy either because the 
whole point is to save costs.  
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So after approximately 15 minutes we were using 40 joiners the hit percentage was 
starting to stabilize at around 69 % percent. Now the velocity of removing nodes was 
very slow. As it is already evident we don't really want to remove nodes that fast and we 
favor the case where we are over the target ration rather than under. As you can see 
most of the time of the operation the system is over performing. If we are in a very strict 
budget we could alternate that logic and let the system be in favor of the cases of 
under-performance.  

After about 30 minutes of the experiment running the 40 left joiner nodes where 
achieving around 69-68% percent of cache hits and the whole system was stabilized 
around those number. So to sum up this experiment, at the beginning we aggressively 
allocate more nodes in order to reach and overcome our target hit ratio as fast as 
possible. Then as the system cools down, the router realizes that we are over 
performing by a big margin. So he lazily starts to remove some joiners. After removing 
some he becomes more and more lazy on removing nodes. That is because he always 
favors over performance. After a while and after removing 12 joiners in total the system 
stabilizes in an over performing hit percentage. 

During this whole time the auto scaling features of Kubernetes and Google Cloud where 
working well. Because Google Cloud also favors over performance in the peak of this 
experiment 60 VMs where allocated by the cluster management system where almost 
each one of them was hosting a single container. As the number of container was 
dropping so did the number of VMs and so did the total CPU usage. 

At this point it is worth adding a couple of notes about the systems flexibility. We have 
analyzed in great detail the granularity of the working nodes. Router nodes are not 
aware on whether the working nodes are threads, or JVMs/processes or containers or 
whatever. All those details are abstracted away in our implementation. That means that 
the routers could potentially choose a worker node from any one out of these three 
implemented pools. This adds great flexibility to our system. For instance if you cannot 
afford to add another VM in your cluster but you want an extra boost of performance 
you can add some thread workers. If you can see that you don't have the scaling you 
want you then allocate a process worker that will run on its own JVM and will have its 
own heap and his GC pauses will not interfere with the system at all.  

Another advantage of the flexible design is that you can be even more accurate with 
your performance targets. When running your nodes locally with either threads or 
processes you can dynamically adjust the memory buffers that those workers use 
instantly. For example if you need to add another 4550 buffer memory blocks to achieve 
a hit ratio of 52% then using local thread worker or process workers you can achieve 
that by adding worker with exactly that amount of buffers. Adjusting the memory buffers 
on the VMs is not that easy and it would require a certain protocol to achieve that which 
means more communication overhead.  

We consider this flexibility a major advantage of our system. One can use this 
framework to implement very complex cost efficient policies according to his exact 
needs on several performance aspects, but always taking into account the budget 
deposits for the operation of this specific system. 
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6. CONCLUSION 

In this research we combined two programming paradigms. We took the original idea of 
[1], that developed a single node solution for Joining Stream data with disc-stored 
relations near-real time. In order to keep up with the increasing traffic and data volumes 
we decided to transplanted it in a fully fledged elastic distributed system. The goal of 
this system is to provide real time performance for joining stream data with relational 
databases. Additionally this systems is capable of adding and removing computing 
nodes  according to the nature and the volume of the incoming stream traffic as well as 
the size of the stored relation.  

We developed algorithms that : 

1) First of all, distribute equal portions of stream traffic to every worker node over a 
certain amount of time. 

2) Need to be fair in terms of the amount of I/O that makes every worker node to 
perform. 

3) Use all the available memory resources of the worker nodes as efficiently as 
possible. Try not to allow duplicate bocks to be cached by different worker nodes. 

As far as the elasticity and flexibility of the system, at the beginning we aggressively 
allocate more nodes in order to reach and overcome our target performance aspects as 
fast as possible. Then as the system cools down, the router nodes might realize that we 
are over performing by a big margin. So we lazily start to remove some worker nodes. 
After removing some he becomes more and more lazy on removing nodes. That is 
because we always favor over-performance. 

We've seen that with our algorithms and task distribution we achieved liner scalability 
for as long as we can increase the cache hit ration of the worker nodes. Finally the 
system performed well, overcoming by a big margin the performance of the single-node 
SSIJ solution. 
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