

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMUNICATIONS

GRADUATE STUDIES PROGRAM

COMPUTER SYSTEMS TECHNOLOGY

MASTER THESIS

Elastic Infrastructure for Joining Stream Data

Nikolaos Petros Maravitsas

Supervisor: Alex Delis, NKUA Professor

ATHENS

July 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΑ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χρήση Ελαστικής Υποδομής για Σύζευξή Δεδομένων Ροών

Νικόλαος Πέτρου Μαραβίτσας

Επιβλέπων: Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

Ιούλιος 2016

MASTER THESIS

Elastic Infrastructure for Joining Stream Data

Nikos P. Maravitsas

R.N.: Μ1284

SUPERVISOR: Alex Delis, NKUA Professor

EXAMINATION COMMITEE: Mema Roussopoulos, NKUA Associate Professor

July 2016

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χρήση Ελαστικής Υποδομής για Σύζευξή Δεδομένων Ροών

Νίκος Π. Μαραβίτσας

Α.Μ.: Μ1284

ΕΠΙΒΛΕΠΩΝ: Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Μέμα Ρουσσοπούλου, Αναπληρωτής Καθηγητής

Ιούλιος 2016

ABSTRACT

In this work we aim to improve the performance of business intelligence applications, an
important part of which is the Extraction-Transformation-Loading (ETL) processes. The
vast majority of ETL processes involve very expensive joins between 'fresh' stream data
flows and disk-stored relational data. We based our solution on an existing algorithm
called Semi-Streamed Index Join algorithm (SSIJ), which successfully handles ETL
transactions on a single computer node with very promising performance results. But
we live in the era of information explosion. Large corporations have the ability to collect
and store TBs of data every day. It is therefore necessary to move to a solution that
uses multiple computing nodes. We developed an elastic distributed architecture that its
main concern is the fair distribution of the computational load of SSIJ to multiple nodes.
We have developed algorithms that efficiently direct the flow of the stream into clusters
nodes in order to make caching as effective as possible. We also have the ability to add
or remove compute nodes dynamically depending on the volume and speed of the
stream traffic in order to maintain system performance stable and simultaneously avoid
wasting valuable resources. In the implementation of this work we used containerized
computing nodes which can operate in a cluster of virtual machines. We were based in
Docker technology for containerizing our computing nodes. Our experiments were
conducted in Google Cloud Platform. For the organization and scheduling of the Docker
containers used the Kubernetes platform.

SUBJECT AREA: Stream Processing

KEYWORDS: stream processing, databases, big data, stream analytics, data

warehousing.

ΠΕΡΙΛΗΨΗ

Σε αυτή την εργασία στοχεύουμε στη βελτίωση της απόδοσης των εργασιών
επιχειρηματικής ευφυΐας σημαντικό κομμάτι των οποίων είναι οι εργασίες Εξόρυξη-
Μετασχηματισμού-Φόρτωσης (ETL). Στην συντριπτική πλειοψηφία οι διαδικασίες ETL
περιλαμβάνουν πολύ ακριβά joins μεταξύ δεδομένων ροών και σχεσιακών δεδομένων.
Παρουσιάζουμε μια αρχιτεκτονική για την ελαστική προσαρμογή του αλγορίθμου Semi-
Streamed Index Join (SSIJ) που με επιτυχία αντιμετωπίζει εργασίες τύπου-ETL σε
ένανα υπολογιστικό κόμβο. Όμως ζούμε στην εποχή της έκρηξης των πληροφοριών. Οι
μεγάλες εταιρίες έχουν τη δυνατότητα να συλλέγουν και να αποθηκεύουν TBs
δεδομένων κάθε μέρα. Κατά συνέπεια είναι απαραίτητο να προχωρήσουμε σε μια λύση
που χρησιμοποιεί πολλαπλούς υπολογιστικούς κόμβους. Αναπτύξαμε μια ελαστική
κατανεμημένη αρχιτεκτονική που το βασικό της μέλημα είναι η δίκαιη διανομή του
υπολογιστικού φόρτου του SSIJ σε πολλαπλούς κόμβους. Έχουμε αναπτύξει
αλγόριθμους που κατευθύνουν αποδοτικά την ροή των δεδομένων μέσα συστάδες
κόμβων, προκειμένου να κάνουμε αποτελεσματικό caching. Έχουμε επίσης τη
δυνατότητα να προσθέσουμε ή να αφαιρέσουμε δυναμικά υπολογιστικούς κόμβους
ανάλογα με τον όγκο και την ταχύτητα της κυκλοφορίας προκειμένου να διατηρηθεί η
απόδοση του συστήματος σε σταθερά επίπεδα και ταυτόχρονα να μην σπαταλώνται
πολύτιμοι πόροι. Στην υλοποίηση της εργασίας χρησιμοποιήσαμε containerized
υπολογιστικούς κόμβους οι οποίοι μπορούν να λειτουργήσουν σε μια συστάδα απο
virtual machines. Βασιστίκαμε στην τεχνολογία Docker για τους υπολογιστικούς μας
κόμβους. Τα πειράματα πραγμοτοποιήθηκαν στην πλατφόρμα Google Cloud. Για την
οργάνωση και την λειτουργία των Docker containers χρησιμοποιήσαμε την πλατφόρμα
Kubernetes.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Ροών Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: επεξεργασία ροών δεδομένων, βάσεις δεδομένων, αποθήκες

δεδομένων

Αφιερώνω αυτή την εργασία στους γονείς μου, Πέτρο και Βάσω, για την ακούραστη,

αδιάκοπη και έμπρακτη υποστήριξή τους αλλά και για την εμπιστοσύνη που δείχνουν

κάθε μέρα.

ΕΥΧΑΡΙΣΤΙΕΣ

Αρχικά θα ήθελα να ευχαριστήσω τον κ.Αλέξη Δελή που μου έδωσε την ευκαιρία να
ασχοληθώ με αυτό το πολύ ενδιαφέρον θέμα. Επίσης τον ευχαριστώ για όλη την
υποστήριξη καθ'όλη την διάρκεια της εργασίας αυτής αλλά και των σπουδών μου
γενικότερα. Επιπλέον θα ήθελα να ευχαριστήσω τον συνάδελφο και φίλο μου Βαγγέλη
Νομικό για την υποστήριξή του σε διάφορα τεχνικά θέματα της εργασίας. Τέλος, θα
ήθελα να ευχαριστήσω θερμά τους κ.Σπύρο Σακελλαρίου και κ.Νίκο Λαουτάρη που
χρηματοδότησαν την πρόσβάση μου στην πλατφόρμα Google Cloud όπου και είχα την
ευκαιρία να πραγματοποιήσω τις απαραίτητες μετρήσεις και τα πειράματα για την
ολοκλήρωση της εργασίας αυτής.

TABLE OF CONTENTS

FOREWORD ... 12

1. INTRODUCTION .. 13

1.1 Business Intelligence ... 13

1.2 Active Data Warehousing .. 13

1.3 Goals of the project ... 14

2. THE SSIJ FRAMEWORK ... 16

2.1 SSIJ Introduction ... 16

2.2 SSIJ Purpose .. 16

2.3 SSIJ Basics ... 16

2.3.1 Index .. 16

2.3.2 SSIJ Infrastructure Components ... 17

2.4 SSIJ Stream processing Algorithm and Computational phases ... 19

2.4.1 Overview .. 19

2.4.2 The Online Phase ... 19

2.4.3 The Join Phase .. 20

2.4.4 Cache Replacement policy ... 21

3. DISTRIBUTED ELASTIC SSIJ ARCHITECTURE ... 23

3.1 Motivation .. 23

3.2 Assumptions and requirements .. 23

3.3 Initial thoughts .. 24

3.4 Serial sub-functions of SSIJ .. 24

3.5 A pipeline execution pattern ... 25

3.5.1 The Index stage .. 25

3.5.2 The Join Stage .. 25

3.5.3 Task distribution .. 26

3.5.4 Multi-node architecture ... 28

3.6 A fully fledged elastic multi-node architecture .. 30

3.7 The Index Router ... 31

3.7.1 Distribute the B+ tree search - Hot space distribution .. 32

3.7.2 Adding and removing Indexer nodes ... 34

3.8 The Join Router ... 35

3.8.1 Adding and removing Joiner nodes .. 38

3.9 Control Communication Channel .. 38

4. IMPLEMENTATION .. 40

4.1 General information ... 40

4.2 Relation file format and Index Choice ... 40

4.3 Worker node granularity ... 40

4.3.1 Platform as a Service .. 41

4.3.2 Thread Workers ... 41

4.3.3 JVM/Process workers - Socket Channel Communication ... 42

4.3.4 Container workers.. 43

4.3.5 Docker .. 44

4.3.6 Kubernetes Framework .. 45

4.3.7 Google Cloud Container Engine ... 46

5. DEPLOYMENT, EXPERIMENTS AND RESULTS .. 48

5.1 Google Cloud Deployment and Setup .. 48

5.2 Scalability measurements ... 49

5.3 Elasticity and Flexibility ... 52

6. CONCLUSION .. 55

REFERENCES ... 56

TABLE OF FIGURES

Figure 1: SSIJ Components and execution flow .. 18

Figure 2: Inverted index ... 26

Figure 3: A theoretical first approach ... 27

Figure 4: First multi-node approach ... 29

Figure 5: B+ tree div .. 30

Figure 6: Distributed elastic SSIJ Architecture ... 31

Figure 7: B+ tree search distribution .. 34

Figure 8: Joiner Scalability... 50

Figure 9: Joiner Scalability... 51

Figure 10: Indexer Scalability .. 51

Figure 11:Indexer Scalability ... 52

FOREWORD

This project is the Final Thesis, with which my Master's Degree program in the National
and Kapodistrian University of Athens is concluded.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 13

1. INTRODUCTION

1.1 Business Intelligence

We are living in the area of information explosion. Large corporations have the potential
of gathering and storing TBs of data every day. Consequently, along with data, there is
an ever growing need for business automation that empowers organizations to better
understand their data and make well informed strategic decisions and optimize the
performance of operations.

Business intelligence technologies provide historical, current and predictive views of
business operations. Common functions of business intelligence technologies are
reporting, online analytical processing, analytics, data mining, process mining, complex
event processing, business performance management, benchmarking, text mining,
predictive analytics and prescriptive analytics.

Real time data analytics are among the most immensely growing paradigms when it
comes to business intelligence these days. More and more corporations invest on active
data warehouses, trying to cope with the information explosion.

1.2 Active Data Warehousing

As the ways of producing data are aggressively expanding, the sources of data are
becoming more diverse. Data might be coming from within the organization, as the
output of several business operations. There are always huge amounts of valuable
historical data from legacy systems. Additionally, data is coming from other partner
organizations, and finally from end users or customers. In a such a great variety of data
sources, raw data need considerable cleansing, proactive transformations and filtering
before actually getting stored in the warehouse and take part in the business analytics
processes.

Extraction-Transformation-Loading (ETL) is still the most crucial part of these processes
that perform this task traditionally during the refresh, off-line periods [1]. The
refresh/offline periods include time periods during the day where the data warehouse is
mostly inactive. The vast majority of ETL processes include very expensive joins
between the fresh arrived records and some warehouse data or metadata tables. For
example, record keys are often replaced with surrogates keys for compactness and
consistency. This process, also known as conforming [1], necessitates the join of the
refresh tuples from each source with a metadata table that relates keys and surrogate
keys. Duplicate elimination or identification of newly inserted tuples provide more
examples where similar join expressions are encountered [1].

The past few years there has been a considerable amount of work targeting ways to
avoid the huge amounts of work that ETL had to perform with the normal workload of
the warehouse. However, in emerging applications, such as network monitoring, supply-
chain monitoring and sensory data analysis, as well as Internet of Things
infrastructures, the latency introduced from the time that the data is entering the
warehouse to the time it is ready for analysis may be unacceptably large. Even for
traditional business intelligent tasks, finding the right piece of information at the right
(i.e., shortest) time is a necessity for survival in today’s competitive marketplace. Active
data warehousing has emerged as a new BI paradigm where updates from the
operational stores are propagated in (near) real-time to the repository.

This aforementioned shift of practices significantly affects the ETL process as the type
of joins we described are now between an infinite stream of incoming records and some

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 14

stored data warehouse table. The output of this operation is a stream which typically
participates in additional online operations.

As business analytics become more instrumental in strategic decision making, the
Active Data Warehousing technology is maturing. This technology is engaged in
integrating advanced decision support with day-to-day, even minute-to-minute decision
making that increases quality.

Active data warehousing is an ever growing warehousing paradigm that supports real-
time or near-real-time decision making. It is featured by event-driven actions triggered
by a continuous stream of queries (generated by people or applications) against a broad
set of relational disc-stored enterprise data. An active data warehouse presents an
extension of the enterprise data warehousing capabilities. The analytical capabilities
offered by this infrastructure are leveraged by responding to near-real-time business
events as they occur, completing complex analyses upon demand, and alerting people
or systems to take action.

1.3 Goals of the project

It is proven in practice that the most crucial components of such a system are:

a) a flexible/elastic infrastructure that supports the above, taking into account
optimal resource acquisition depending on several performance and cost criteria.

b) dynamic deployment of resources and their orchestration

These are the basic goals of this project. We want to create a multi-node cluster with
flexible and elastic characteristics where, depending on the stream traffic, it will add or
remove nodes depending on the performance criteria that are set by the operator. This
infrastructure will sit on an active data warehouse pipeline and will provide real-time
information to the operators.

For this project we are going to take the basic ideas and key features of Antonios
Deligiannakis et.al, in their paper "Semi-Streamed Index Join for Near-Real Time
Execution of ETL Transformations". In this paper Deligannakis's team introduce a very
high performance solution for joining stream data with a disc resident relation using a
B+ tree as an indexing mechanism on the relation's key.

The main purpose of the SSIJ framework is to gracefully increase the performance of
ETL processes. These processes mainly include joining a live stream of data with a
relation stored in a hard drive. It incorporates indexes, an efficient dynamic memory
allocation algorithm bases on the pattern of the stream as well as a innovative optimal
read plan for reading the blocks of the relation on the disk. Using the above principals
SSIJ managed to impressively outperform other semi-stream joining solution like
MESHJOIN.

Although SSIJ has shown promising performance potential, its initial conception was to
improve the performance of joining a stream with a relation near-real-time, on a single
computing node. Its tested configuration was using a relation no bigger that 10GBs. And
the various experiments that were conducted were alternating memory recourse
allocation between 1% and 10% of the relation size, which translates for up to just 1GB
of memory. And although this is relatively reasonable for a small data center will low
volume needs and relatively low stream traffic, it just cannot cope in today's data
explosion reality. SSIJ views semi-stream join operations from within the "single node"
perspective.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 15

The observations we have stated so far lead us to the following considerations. The
most cost-efficient and performance effective way to tackle the above problem of hot-
cold period alternations, is to have a system that elastically allocates and de-allocates
its resources, according to specific dynamic criteria. Such criteria could include stream
traffic volume, stored data volume, latency requirements and budget limitations.

To move to the directions of adaptive resource allocation, it is essential to abandon the
"single node" point of view of SSIJ, and move to the multi-node point of view. In that
sense the computational load of SSIJ should be distributed among many computing
units. At the same time the computation needs to be distributed equally among the
computational nodes, so as to make resource allocation much more efficient.

We developed a set of algorithms that let us achieve our goals. We created a multi-
node flexible and elastic infrastructure that operate in the same way as [1] but in a
distributed environment. We then deployed our implementation on Google Cloud
Platform to perform experiments and see the results of our work.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 16

2. THE SSIJ FRAMEWORK

2.1 SSIJ Introduction

In this chapter we are going to talk about the basic ideas and the key design features of
the SSIJ Framework [1]. We are going to describe it's theoretical execution model as
well as some of the insights behind its core algorithms. It is extremely important to get a
good comprehension about this model, as our elastic framework is using it as its
foundation, taking its basic ideas and incorporating aspects of modern distributed
processing

2.2 SSIJ Purpose

The main purpose of the SSIJ framework is to increase the performance of ETL
processes. These processes mainly include joining a live stream of data with a relation
stored in a hard drive. It incorporates indexes, an efficient dynamic memory allocation
algorithm bases on the pattern of the stream as well as a innovative optimal read plan
for reading the blocks of the relation on the disk. Using the above principals SSIJ
managed to impressively outperform other semi-stream joining solution like MESHJOIN.

2.3 SSIJ Basics

We start our SSIJ description by talking about its basic components. We are going to
talk about its indexing infrastructure and its execution phases, the online phase and the
joining phase. These two basic SSIJ characteristics are very important for our own
execution model as we kept most of the ideas and basic thinking behind them intact.
Some differences in those two components (the indexing and the two basic execution
phases) will be mentioned in the next chapter.

Those two basic components are build on top of an efficient dynamic memory allocation
strategy for buffering streaming data along with index blocks and relation blocks. Apart
from the above, SSIJ's innovative idea relies on the incorporation of an optimal read
plan for reading the relation blocks from the disk. Using the above principles, SSIJ
managed to impressively outperform other semi-stream joining solution like MESHJOIN.

2.3.1 Index

The execution model of SSIJ makes use of an index on the joining attribute of the
relation. It's basic requirement is to be able to retrieve a number of block ids where
joining tuples of the relation reside on the disk. Many indexing solutions can be
considered for such a task, but the choice was a Β+ tree on the joining attribute, which
is an adequate choice as most relational database management systems that are
already optimized for joining operations, popularly create B+ indexes on the joining
attribute.

In the SSIJ implementation the B+ tree index in use stores the relation tuples in the leaf
of the tree. This is widely accepted model and has a the benefit of avoiding extra disk
reads to actually read the relation block, as well as eliminate extra memory allocations
and operations to find the correct tuple or tuples in the relation block. It and also
decreases the indexing overhead as it reduces the index levels by one. Additionally
they sate that for their execution process, they pin the upper levels of their B+ tree into
the memory, but, potentially in a more resource conservative environment these index

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 17

blocks can be replaced with the usual cache replacement policy as with the pages
containing the tuples of the relation. It is worth noting that an extra advantage of the B+
tree index is that normally the size of the non-leaf portion of the index is completely
realistic and expected by most production environments willing to host relational
database management systems. For instance the specific B+ tree index that was used
for evaluating the performance of SSIJ was measured to have 13MB of inner node size
for a 10GB relation [1].

2.3.2 SSIJ Infrastructure Components

In this section we are going to describe the basic structures that compose the SSIJ
framework. The available memory for the systems is partitioned in five compartments.
The size of these compartments is not fixed but dynamically allocated according to the
needs of the system. These five compartments consists of the blocks of the
aforementioned upper index levels, the cached blocks of the relation, two buffers
regarding stream tuples and an inverted index. Here we are going to give some more
detailed about each compartment and its usage.

1) The index blocks: This portion of the memory keeps pinned down the blocks of
the upper lever of the B+ tree so as to be always available in memory. Using this
memory buffer, no extra read operations are need for the indexing procedure and
thus reduces the cost of index lookups, degrading it form disk to memory
operations.

2) Cached relation blocks: This portion of the memory holds the blocks of the
relation that have been read from the disk to in order to be joined with the
stream. An important detail of this component is also a utility counter that is kept
for each block to be used by the cache replacing policy.

3) Input buffer: This portion of the memory hold the stream tuples that arrive in the
system and are waiting to be indexed and joined. This can be considered as the
entry point of the system.

4) Stream buffer: For every stream tuple that is entering the systems, the first step
is to index it, thus retrieve the ids of the relation blocks that need to be fetched in
order to join the matching relation tuples with the stream tuple in question. There
are two cases for those blocks. Either they are present in the cached relation
blocks, or they require a disc read. All those stream tuples that require retrieving
one or more blocks of the relation from the disc, we keep them in this special
buffer called stream buffer. The required relation blocks will be later read with the
aforementioned optimal read plan.

5) Inverted Index: For each relation block that needs to be read from disk (because
some stream tuple in the stream buffers required its presence in memory), we
maintain a list with the location of all matching stream tuples in SB for it. Multiple
uses of the inverted index exist. Besides improving the performance of the join
phase, the index is also important for efficiently guaranteeing the correctness of
the overall process of SSIJ. The efficiency and effectiveness of cache
replacements policy is also heavily based on this inverted index.

The next two images illustrate the various SSIJ components along with a table of their
abbreviations. They are both taken from [1]. In the first image there is also a quick
description of each components utilization. In the same image you can see in the red

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 18

numbers (from 1 to 6) the flow of the stream processing execution mechanism that
SSIJ adopted.

 Figure 1: SSIJ Components and execution flow [1]

Table 1: SSIJ main symbols used [1]

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 19

2.4 SSIJ Stream processing Algorithm and Computational phases

In this section we are going to describe the basic ideas of the stream processing
algorithm that SSIJ uses. We will talk about its three main phases of execution. During
that process the utility and the very purpose of each of the components we described
above will become clear. The next few sections are very vital for our own distributed
execution model as we followed most of the principles described here.

2.4.1 Overview

Here follows a basic overview of the streaming algorithm. The execution flow is spited in
three phases.

The first phase is called the Pending Phase. During that phase the algorithms is
waiting for the input buffer to accumulate a substantial amount of stream tuples before
its main execution phase. There are lot of benefits to be extracted out of this
techniques. First of all, it batches the execution of the next two phases. If the stream
tuples where processed one by one the next phases of the algorithm would have to take
place millions of times in a real system. Secondly, and most important, batching the
stream tupes together allows SSIJ to take advantage of common access patters to the
relation blocks that reside on the hard disc. It is vital for the performance of the
algorithm to take advantage of those patterns in order to optimize the disc access when
trying to fetch the relation pages to the main memory. Batching also makes memory
management more efficient and effective as it gives a more clear and informed view of
the relation blocks that are going to be needed in the online and join phase.

So after a solid amount of stream tuples has arrived in the input buffer, the execution
enters the second phase which is called the Online Phase. In the Online Phase every
stream record from the Input buffer first goes through the indexing process. In the
indexing process the joining attribute of the stream tuple is looked up in the index. At the
end of this process, a list of relation block ids is returned that contain matching relation
tuples. Immediately after the indexing process, the stream tuple is joined with every
block from the previous list that is present in the cache. Of course some of the blocks
from that list may not be cached, so we will need to retrieve the corresponding block
from the hard disc. Every tuple that will trigger disc read is put in the stream buffer.
When the stream buffer is full the Join Phase begins. In short, during the join phase, an
efficient plan for reading the required blocks is calculated, the blocks are fetched from
the disc to the main memory in the cached relation section and the join of the tuples is
completed. In the next two sub-sections we are going to give some more details about
the two major phases of the execution model, the Online Phase and the Join Phase

2.4.2 The Online Phase

When the online phase starts, the tuples that have arrived in the input buffer are sorted
based on the characteristics of the index and the joining attribute. The sorted stream
tuples will allow the indexing process that comes up to share scans of the index and of
the cached relation blocks. That makes sense because a lot more that one tuple will
follow the exact same path in the upper levels of the index as well as a lot of them will
be joined with the same leaf nodes (in this case also relation blocks). So if we group
together tuples in very close ranges with one another we will make a much more

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 20

efficient use of the cached relation and index blocks in memory, taking advange of
locality. Next every tuple in the sorted sequence goes through the indexing process.

In the indexing process the joining attribute of the stream tuple is looked up in the index.
At the end of this process, a list of relation block ids is returned. Each block in that list
contains matching relation tuples. For all matching relation blocks that are in the cache,
the join result is output immediately. The utility counter of any page in the cached
relation memory portion is increased by one for every stream tuple is joined with. For
each stream tuple s, if all the matching relation blocks for s are in the cache, then the
join for s is complete, and s can be discarded.

If some matching relation blocks for s are not in the cache, the join with these blocks is
not performed immediately. It it were to join the tuple with the non-cached blocks it
would mean that the algorithm would pause until these blocks are fetched from disk.
This is against the streaming nature of our processing model. Instead, the SSIJ
algorithm will process the join of s with the disk resident matching blocks of the relation
at a later point, during the join phase, in order to better cater for the cost of required
read operations among several stream tuples. Since, at this step, we have identified the
matching disk blocks for s, from the indexing process, we record this information by
updating the inverted index, in order to speed up the join computation when these disk
blocks are later retrieved from disk. Τhe usefulness of the inverted index will become
more evident in the description of the joining phase. Next , s is stored in the stream
buffer SB . After the batch of stream tuples in the input buffer has been processed, the
algorithm may move to the join phase.

2.4.3 The Join Phase

In the beginning of the join phase, we need to join all stream tuples accumulated in the

stream buffer SB with their non-cached matching relation blocks. One of the most

fundamental parts of this procedure for SSIJ is the calculation of a plan for reading the

requested matching disk blocks. In more detail, we need to determine whether the

required disk blocks will be read individually using random I/Os, or in larger sequences

using sequential I/Os. This plan generation process requires that the disk blocks ids be

sorted based on their physical layout; in the simplest case, this corresponds to sorting

the offsets of the relation blocks on disk. This is performed in the first stage of the

algorithm. It is important to note that the read plan may cause some disk pages to be

loaded in spite of the fact that they are not requested by the stream, as part of a

sequentially loaded disk segment that amortizes the I/O cost. Such “unwanted” disk

blocks that are read because of sequential I/Os are evicted from cache immediately,

since they have zero utility for the join.

During the join phase, the algorithm continuously reads sequences of disk blocks

(based on the generated read plan). Each sequence of read relation blocks, as directed

by the generated read plan, is fetched from disk and is inserted into the cache,

replacing those cache pages with the lowest utility counters. The read disk blocks are

then used to generate output join tuples by joining with the appropriate stream tuples,

using the inverted index. After the join of the sequences is complete, the corresponding

entries in the inverted index can be safely removed.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 21

2.4.4 Cache Replacement policy

We are not going to expand on the Cache Replacement policies of SSJ as we did not

incorporate them in our architecture. We decided to go for the classic LRU scheme at

this version of our software. The reason for this is that there would be little performance

gain in the context of the multi-node architecture where the true gains come from the

increased memory resources.

A naive approach that maintains a sorted list of the page ids in the cache based on their

utility counters, and on demand flushes the pages with the lowest utility counters, incurs

a high cost. In particular, the repeated insertions in the list can introduce a large

overhead when the amount of memory devoted to SSIJ is large. Moreover, during the

online phase, the utility counters of the cached blocks are intensively updated, which

requires continuous reorganization of the sorted list. Maintaining the cache blocks in a

priority queue exhibits similar problems. The SSIJ implementation is based on the key

observation that we do not need to actually read a page from the disc in order to

calculate its utility counter, as we have all the necessary information in the inverted

index of each page. Each entry in the II associates the id of a page that needs to be

read from disk with the list of pointers to matching stream tuples in SB. Thus, the utility

of a page in II is equal to the number of elements in the list it is associated with.

So, at the start of the join phase we know the utility counter of

1) all pages currently in the cache, and

2) all pages that will be read in the join phase.

At this point we have enough information in order to start making eviction decisions.

More specifically, we sort the ids of the blocks in CR and the ids of matching disk pages

(that need to be read) based on their utility. Considering the available memory (i.e.,

memory after subtracting the space needed for the input buffer, the stream tuples and

the index structures), we determine the sorted subset, denoted ToKeep, of pages from

pages that need to be read that should be in cache at the end of the join phase, given

their utility. We also determine the sorted subset, denoted ToRemove, of block ids that

are already in the CR and are going to be replaced by blocks in ToKeep with higher

utility. If, during the join phase, the size of the cache is reduced due to the arrival of

stream tuples, we can correspondingly increase the size of ToRemove or reduce the

size of ToKeep according to the utility of pages in these lists. At this point we can

simply evict any of the pages in ToRemove: these pages are not needed for the rest of

the join phase and, given their utility, will not be in cache at the end of the join phase.

 During the join phase, the algorithm continuously reads sequences of disk blocks

(based on the generated read plan). Each sequence of read relation blocks, as directed

by the generated read plan, is fetched from disk and is inserted into the cache,

replacing those cache pages with the lowest utility counters. The read disk blocks are

then used to generate output join tuples by joining with the appropriate stream tuples,

using the inverted index. After the join of the sequences is complete, the corresponding

entries in the inverted index can be safely removed.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 22

We can potentially incorporate the above strategy in our system, because it is proven

that it keeps the most useful blocks in the memory for a longer period of time.

Additionally it evicts a number of blocks at once, leaving up more free space in a single

operation.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 23

3. DISTRIBUTED ELASTIC SSIJ ARCHITECTURE

3.1 Motivation

Although SSIJ has shown promising performance potential, its initial conception was to
improve the performance of joining a stream with a relation near-real-time, on a single
computing node. Its tested configuration was using a relation no bigger that 10GBs. And
the various experiments that were conducted were alternating memory recourse
allocation between 1% and 10% of the relation size, which translates for up to just 1GB
of memory. And although this is relatively reasonable for a small data center will low
volume needs and relatively low stream traffic, it just cannot cope in today's data
explosion reality. SSIJ views semi-stream join operations from within the "single node"
perspective.

Today's corporations accumulate terabytes of data every day. In this frantic pace,
companies are constantly trying to provide more and more real-time applications on its
customers and more business automation on its other departments. In such hectic
environments ETL operations are becoming just a small part of a huge real time
pipeline. So the latency requirements of such systems are constantly more strict.

Using the same analogies as SSIJ used for its experiments, what would be our memory
needs when our relations is 100GBs, or 10TBs? As you can see it would be up to 1TB
of memory. Despite the fact that multi-core single node enterprise machines with more
1TB of memory do really exist, the cost of such and investment is beyond the reach of
most organizations that are trying to find their way in the Big Data era. And even if one
company is big enough to have enough capital reserves and at the same time
substantial volume of data as well as noticeable stream traffic that would justify this
investments, the cost would be great in low traffic periods. Not many datacenters have
constant traffic flow throughout the day, the week or the year. For a medium company
which invested on that type of machine, low traffic periods lead to monetary loss.

Having said that, when we have high traffic periods. During these periods, the stream
traffic reaches its peak and it requires more and more resources to be allocated in order
to keep a constant or even increasing performance levels. The streaming nature and
the low latency requirements of the problem, forbid the old manual resource allocation
and de-allocation metrologies.

3.2 Assumptions and requirements

Seeing all the above one comes to certain conclusions. The most cost-efficient and
performance effective way to tackle the above problem of hot-cold period alternations, is
to have a system that elastically allocates and de-allocates its resources, according to
specific dynamic criteria. Such criteria could include stream traffic volume, stored data
volume, latency requirements and budget limitations.

To move to the directions of more resource allocation, it is essential to abandon the
"single node" point of view of SSIJ, and move to the multi-node point of view. In that
sense the computational load of SSIJ should be distributed among many computing
units. At the same time the computation needs to be distributed equally among the
computational nodes, so as to make resource allocation much more efficient.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 24

3.3 Initial thoughts

In this section we are going to present the initial thinking behind the processes of
transplanting all the SSIJ essential functionality into a distributed computational model.
During the next paragraphs it will become vividly evident how SSIJ computational and
execution model consists of all the important building blocks of a distributed system.

Don't forget that the purpose of the systems is the same as SSIJ's purpose. To join
stream tuples with disc resident relation tuples. In that sense all the computing nodes of
the system will have to be occupied during the whole process. While one computational
node does one job, another node should does another job in order to fulfill the purpose
of the system.

By a pleasant coincident, SSIJ seems to be almost destined for such a system. It
already splits its computational workload into two main phases. The Online Phase and
the Join phase. Additionally the several sub operations that are conducted during each
phase are very distinct and most importantly, there are not confusingly depended to one
another. The output of one operation, is the input of the next operation. The output of
one phase is the input for the next phase.

3.4 Serial sub-functions of SSIJ

To be more specific, the purpose of the pending phase is to accumulate a substantial
amount of stream tuples, so that the Online phase and the Join phase can be
conducted in batches. So the output of the Online phase, which is an array of stream
tupes, is the input to the online phase.

The online phase itself consists of one major and one minor sub operation. These two
operations are conducted serially. Meaning that one of them takes the input of the
online phase, does a computation, then passes an intermediate result to the next sub
operation which finally does its own computation and produces the final result of the
online phase.

The major operation of the online phase, which is also the first in order, is the indexing
operation. We have described the indexing operation of SSIJ in great detail in section
2.4.2. All stream tuples have to go through the indexing process. For every stream
tuple, the indexing process will produce a list of block ids of the disc resident relation,
that have matching tuples that need to be joined. So after that computation, we can say
each stream tuple is accompanied with the list of matching block ids.

That is exactly the input of the next sub operation of the online phase. The next sub
operation of the online phase takes every tuple with its list of matching block ids and
checks whether some of the blocks on that list are present in the cached portion of the
relation. All the in memory blocks are immediately joined with the corresponding
matching stream tuple and the result is flushed out. Every stream tuple that needs to be
joined with a non cached relation block is passed to the next phase of the algorithm.

The next phase of the algorithm is the join phase. The join phase takes as input the list
of tuples from the previous phase. Each tuple is accompanied by the list of blocks that
were not cached at that moment. When enough of these tuples are accumulated, the
join phase is responsible to fetch all the required blocks from the disc into the memory
and join all stream records with the matching relation records and flush the result. This
phase is responsible of computing a sensible plan to read the blocks from the disc. At
the same times it need to take advantage all the knowledge it has about each block's
utilization, so as to make informed decisions when cache replacement needs to take

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 25

place. A well-constructed cache replacement strategy is crucial for the performance of
the system.

3.5 A pipeline execution pattern

The first task to do when trying to transform SSIJ from a single node algorithm to a fully
fledged distributed system is think about how to distribute the computational effort
among different computing nodes. As we saw in the previous section SSIJ's model fits
perfectly to a distributed paradigm. That's because its individual sub-operations are
quite distinct and are executed in a streaming/serial manner. In that sense, the output of
one operation is the input of the next operation. That is very essential for our
architecture.

This working framework perfectly suits a form of a pipeline execution pattern. The
pipeline will consist of two major stages that correspond almost perfectly to SSIJ's
execution phases. We are going to name the first stage the Index Stage and the
second stage the Join Stage.

3.5.1 The Index stage

One can easily correlate the Online Phase of SSIJ with the Index Stage of our system.
This first stage of our pipeline also includes the pending phase of SSIJ, where stream
records are accumulated in the stream buffer. So our Indexing stage also acts as the
system's input where stream records are accumulated so that they can be processed in
batches by the next stages of our pipeline.

Every tuple that enters our system, needs to pass through the indexing process. Just as
on the first step of the SSIJ's online phase, our Index stage is charged with the task of
indexing every single stream tuple, and for every such tuple return a list of relation block
ids that contain matching relation tuples that need to be joined. Recall that SSIJ's online
phase also includes an actual join procedure. It joins the stream tuples with the portion
of the matching relation locks that are already in the memory. We decided not to do that
in the Index stage.

We dedicate this stage just for indexing. And that is an important decision because it
completely decouples the two stages of our pipeline. It is crucial to achieve that
because it leads to a more clean distribution of responsibilities for the participating
nodes in the system. The indexing process itself is fairly simple and it also depends on
the indexing structure that each system choose. We decided to follow SSIJ's decision to
go with B+ trees. The index stage attaches to every stream tuple a list of matching
relation blocks. This stream tuple accompanied by the list of matching relation block ids
is the flushed to the next stage of our pipeline. The Join Stage.

3.5.2 The Join Stage

The Join Stage takes as input the result of the indexing stage. This is a list of stream
tuples accompanied by the list of matching relation block ids. Every one of the relation
block ids that is present in the cache, it is joined immediately with the corresponding
tuple (in the same fashion as SSIJ's second sub operation of online phase). Every
stream tuple that matches with a relation block that is not cached, and thus needed to
be fetched from the disk to the memory, is pushed to a stream buffer cache. When the

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 26

stream buffer cache is full, the Join Stage has to fetch the required blocks from the disk
to the memory and do the necessary join operations.

In this stage, we also utilize the inverted index, in a similar way as SSIJ. Its structures is
of this form: We simply map every non cached relation block id to a list of matching
stream stream tuples. You can see that structure in Figure 2.

Figure 2: Inverted index

When number of the stream tuples in the above lists have reached a certain threshold,
the Joiner stage moves to an operation similar to SSIJ's join phase. We read every
relation block in the block id array and we join it with the corresponding list of stream
tuples on the right. If there isn't sufficient space in the cache for that particular block, we
need to replace one. We simply went for the fastest and well proven solution for that, a
simple LRU implementation. That means that we simply remove the least recently used
cached block.

Every block that is fetched from the disc, is pinned in memory until it is joined with all
the tuples from its corresponding list on the right. Using this, we conform to the initial
idea of a batched processing method for the stream, and at the same time, we make
sure that each block is only read once from the disc during that phase. We don't risk
removing a needed block that was just read.

It is important to note that the block ids in the array on the left (Figure 2) is kept sorted.
This is done for an effort to read disc blocks in a serial manner as much as possible. We
don't go as far as SSIJ goes to read blocks only with big serial reads (even if that
means that it read unneeded blocks).

3.5.3 Task distribution

So far we have explained the pipeline patter that our distributed system would have. We
have also decided that it is essential to distribute the tasks to multiple computing nodes.
So the first natural approach would be to distribute the two pipeline stages among two
computing nodes. The first node would perform the operations of the Index Stage we
described above, and the second node would perform the operations needed for the
Join Stage. These two nodes would be completely independent from one another and

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 27

would only communicate with each other via a network connection. This simplistic
approach is illustrated in Figure 3.

Figure 3: A possible first approach

As you can see, each node has its own input buffer. Of course, each node has its own
memory resources. It is essential for the indexer node to have access to the hard drive
where the B+ index resides. In the same manner, it is essential for the Joiner node to
have access to the hard drive where the relation resides. It is important to mention that
the two aforementioned drives could potentially be the same physical drive. But that is
not at all necessary. The important aspect is that all the above units should be in very
close proximity preferably in the same local network, so that network communication
overhead is amortized by the increased computational resources and it is not actually a
bottleneck for the whole system

As it is already evident from Figure 3, the first node constantly receives the stream from
the external sources. After buffering a certain amount of them it starts the indexing
procedure for every single one of them. When the result of the indexing for each stream
tuple is produced, it is immediately flushed to the next node. The next node (that
performs the join phase) can either choose to buffer the intermediate result and the
enter its main process or it can actually start immediately even when a single indexed
stream tuple has arrived. It is important for the next sections to also introduce a new
notion here, that is the notion of an indexed stream tuple. An indexed stream tuple is the
stream tuple itself along with the list of its matching relation blocks that have been
computed from the index stage. We for our actual implementation we actually decided
not to buffer again the indexed tuples, and start immediately the join stage upon
indexed stream tuple arrival. This also conforms to the fact that we do not want to
impose any delays for the joining of the stream tuples with an already cached relation
block.

So the indexer constantly receives a stream of tuples and produces a stream of
indexed tuples. The joiner then works on that stream of indexed tuples and it produces
a stream of joined tuples. As joined tuple is a pair of two tuples. One stream tuple and
one matching relation tuple. The pipeline nature of our system dictates that while the
joiner performs joining computation, the indexer on the previous step constantly indexes

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 28

newly coming stream tuples, constantly feeding the joiner node. In the same sense, the
joiner node constantly works on the indexed stream and produces the result of the
whole system, a joined stream.

3.5.4 Multi-node architecture

What we have done so far is create a pipeline execution model for the SSIJ. We also
created a distributed architecture that includes two nodes, each one of them executing
the two stages of our pipeline. But this model, is very far from our initial goal that we
have set for our system. Using just two nodes for instead of one is not a real change.
We need to be able to allocate more resources for each stage of the pipepine.

A first approach would be to keep those two physical nodes, and just use multiple
threads in each stage, instead of just one. Although this would increase the
performance of our system, it is very questionable how good would it scale. Meaning
that when the stream traffic increases and when the volume of my relation is large, how
much would the system benefit from adding one more executing thread.

The answers is very little. And from a certain number of threads and above (a number
bigger that the processing cores of that node) the performance would definitely drop
because of costly context stitching and synchronization. But even if we don't take that
cost into account, and we somehow created a completely lock-free algorithm, using very
high performance concurrent data structures for the execution of our pipeline stages,
after a certain point, it will not make any impact on the performance.

The reason is very simple and obvious. The main bottleneck of all systems that need to
do extremely intense I/O operations is disc access. It is definitely not cpu performance.
That makes sense as I/O operations still remain the most expensive computational unit,
even with today's high performance SSD drives. And the only cure for that is caching.
An I/O intensive system's performance is judged almost exclusively by its cache
performance. That is why more and more high-end vendors invest on in-memory data
grids. in-memory key-value stores, in-memory stream analytics. For example the most
significant performance improvement over the popular Hadoop framework, was a
release named Spark that used almost the same model, only used memory resources
much more efficiently. Also in-memory databases are the latest trend for high
performance real-time active datacenters.

We needed to stress out all the above in order to reveal the most valuable resource of
our system, which should be obvious by now: it's memory. We need to be able to
allocate more and more memory resources in order to provide linear scalability for our
system and be able to hold the performance criteria we want independently of the
volume of the stream traffic and the size of our relation.

As such, it becomes obvious that the only way to scale our system upwards allocating
more memory, is to use multiple Indexer computing nodes and multiple Joiner
computing nodes. A naive first approach on a multi-node architecture would be to have,
let's say a number of indexers i and a number of joiners j. For example let's imagine that
we have 4 indexers and 4 joiner nodes. Each node would have its own memory
resources, its own cpu resources and so on.

The indexer nodes would all read from a common input buffer. Of course each indexer
node would read different stream tuples. All indexer nodes would have access to the
same volume that holds the B+ index. After indexing the stream tuples they are
consuming, they would produce an indexed stream. All indexer nodes would output their

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 29

indexed stream to a common output buffer. This buffer would act as an input buffer for
the next pipeline stage.

In the same manner, the Joiner nodes would all read from a common input buffer. Each
node would read different indexed tuples. All joiner nodes would have access to the
same volume that holds the relation. After joining the indexed tuples they are
consuming, the would produce the output joined stream.

Such an architecture can be illustrated in Figure 4. As you can see indexers do not
communicate with each other. Nor do the joiners communicate with each other.
Similarly no indexer node communicates with joiner nodes and vise versa. This would
also minimize the communication cost, which is a major concern when designing
distributed systems. In a system like this the only communication cost is the input/output
of the stream tuples for the indexers, and the indexed tuples for the joiners.

Figure 4: First multi-node approach

It is undeniable that if we allocate more computing machines this way, we will see a
performance improvement. But when allocation more machines and investing in more
resources one has to answer a number of very serious questions. How efficiently we are
using those resources? Does our system scales linearly when allocating more? Are we
using the available memory the best way possible? Is there any other configuration that
would produce the same results with less resources? When designing a very high-
performance, low-latency, massively scalable distributed systems, one has to be very
considerate about the above questions.

For the architecture described by Figure 4, it is not hard to imagine that most of the
above questions would fail. When indexers read randomly any stream tuple that comes
in, in such non-orchestrated and unsupervised way, it is not guaranteed that we are
using efficiently all the available memory on the indexers. And recall that, it is all about
optimizing memory usage.

Let us consider a simple example. Imagine that we have 4 indexers, indexer0 to
indexer3. We have a record tuple with an id x. In order to index that tuple we need to

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 30

read nodes A,B and C from the disc that contains the B+ tree, and cache those tree
nodes into the memory. You can see that in Figure 5.

A

B

C

Figure 5: B+ tree div

Now imagine that this tuple is read by indexer0. So indexer0 will cache blocks A,B and
C. Now the next stream tuple is y. This tuple also follows the same path as tuple x,
meaning that we will need to read tree nodes A,B and C again. If we leave the input of
the indexerS nodes non-orchestrated, probably an indexer other that indexer0 will read
tuple y. But why should any other node other indexer0 be obligated to index typle y?
indexer0 already has the required index blocks in its memory. If indexer1 has to index
tuple y then he will need to also read blocks A,B and C from the disc. There is no point
in doing that as indexer0 already has read and has cached those blocks.

The same principle also stands for the joiner nodes. For example if indexed tuples x and
y require relation block R to be joined with, then the best plan is for those two tuples to
be joined by the same joiner. If two different joiner cache the same relation block in their
memory, then there is no point in allocation more computing nodes. We might as well
allocate more threads for the computation, it is the same thing more or less, as we don't
optimize the memory usage.

Thus the conclusion of the above discussion is that we need some units that will
orchestrate the stream traffic through the indexer nodes and the indexed stream
through the joiner nodes. These routing units will be responsible for two main tasks. The
first and most important task is to route the stream traffic to specific computing nodes,
so that we use all the available memory resources in the most efficient way possible.

The second task for these units is to scale the system up or down according to the
performance requirement that the operator gives. For example when the stream traffic
increases, or when it changes characteristics, we might need more memory to sustain a
constant latency figure. On the other hand when the stream traffic is low we are
probably wasting resources if we are way above the performance requirements. So we
might need to remove resources from our cluster.

To achieve that we will add two more computing units that will be charged with the
above two tasks. We will describe the new computing units in the next chapter, where
we present the final architecture of our system.

3.6 A fully fledged elastic multi-node architecture

These two units that we are going to add, which will be responsible for shaping the
stream traffic that each node will receive, have been called routers. The router
responsible for distributing the input stream has been called Index Router, as it is the
supervisor of the indexer nodes. The router responsible for the indexed stream has
been called Join Router, as it is the supervisor of the joiner nodes.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 31

The new flow of execution is illustrated in Figure 6. Now the input stream first passes
through the Index Router. The Index Router keeps a catalog with all necessary
information about indexer nodes. It then uses an algorithm to decide as quickly as
possible to which indexer node each stream tuples should be forwarded to. Indexer
nodes do not do anything different than before. The indexer nodes now produce the
indexed stream that is directed to the Join Router.

The Join Router takes as input the indexed stream from the previous stage. The Join
Router keeps a catalog with all necessary information about joiner nodes. It also uses
an algorithm to decide as quickly as possible to which joiner node each indexed tuple
should be forwarded to. The joiner nodes themselves do not do anything different than
before. We have described in great detail the Indexer and Joiner node operations.

As you can see from Figure 6, all the communication in the cluster is one direction, it is
forward only. There is no interleaved communication between computing nodes. That
approach is necessary for scaling the computing nodes linearly.

Figure 6: Distributed elastic SSIJ Architecture

The most interesting aspects of our systems is everything that happens inside the Index
Router and the Join Router. This two nodes are responsible for the performance of the
system.

3.7 The Index Router

In this section we are going to describe the basic operations of the Index Router node.
The index router is responsible for taking the input raw stream of tuples and distribute
every single tuple to one of the indexer nodes. There are several criteria to consider in
order for index router to be fair amongst the indexer nodes.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 32

1) First of all he has to distribute equal portions of stream tuples to every indexer
over a certain amount of time. For example let's say that we have four indexer
nodes and our index router has routed 10 million tuples after one minute, then
each indexer should have to index 2.5 million tuples over that minute,
approximately of course. It is natural that one indexer or the other would take
more or less traffic but over a larger period of normalized traffic these skew
should be amortized. So he should be, first of all, fair in the number of stream
records he sends to each indexer node.

2) Remember that in our implementation, where we targeting huge relations, the B+
tree index is supposedly vast as well. So it is resident in a disc volume. Thus
indexer node will have to do very heavy I/O. For every stream tuple they receive,
they have to read as many nodes as is the depth of the tree. So the index router
would have also to be fair in terms of the amount of I/O the makes every indexer
to perform.

3) Another aspect that the index router should take into account is to use the
memory resources of the indexers as efficiently as possible. This means that it
should make the best effort to avoid duplicate entries in the indexer caches. To
elaborate more on that image that if an indexer has cached B+ nodes A,B and C
the index router should route to him the stream records that need A,B and C
blocks to be indexed. An also it should avoid letting another node also cache A,B
and C B+ nodes, because those blocks are already in the first indexer's cache.
As we will see in the next few paragraphs, we cannot always achieve that non
duplicate cache entries across the memory of all indexers.

3.7.1 Distribute the B+ tree search - Hot space distribution

In this section we are going to talk about the way that the indexer nodes distributes the
B+ index search among the indexer nodes, in a way that it achieves as close as
possible the three preconditions we talked about in the previous section.

The way the index router shapes the traffic of the incoming stream depends on three
aspects:

1) The range of the index key.

2) The patter of the incoming traffic, meaning the range of the records keys that
have arrived over a period of time.

3) The number of the available indexer nodes.

From the above, it is evident that we need to analyze the incoming stream tuples and
perform analytic operations over their key values. In order to do that we are need to
work over a substantial amount of tuples to come into safe conclusions over the
characteristics of the stream.

To make the explanation of the whole process as easy as possible we are going to
assume that the values of the tuple keys are arithmetic and the the distribution of the
key values of the stream tuples is a normal distribution. The stream indexer works its
analytics on the stream in a window manner. This window can be arbitrary big, but let's
suppose it is 20,000 stream tuples. So over that 20,000 stream tuples, the index router
calculates the maximum value, the minimum value and the mean value of the tuples
keys. Let a be the min value, b be the max value and m be the mean value. We
introduce the term Hot Space to characterize the space where the grand majority of key
values falls into. In the example above the hot space is a sub space of [a,b]. It is not at

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 33

all necessary that in those 20,000 tuples the values are normally distributed. As the
stream flows by the distribution will eventually normalize, but in a random 20,000 batch
it is not always so.

In an effort to calculate a hot space as normally distributed as possible we do this. We
calculate the distance m-a and b-m. We take the smallest result. If m-a is the smallest
result it means that the majority of values falls in the space [a,m+(m-a)]. If b-m is the
smallest result them the majority of values falls in the space [m-(b-m),b]. So one of
these two spaces becomes the new hot space. Because it is possible that the
boundaries of this host space, might be slightly different in every window, changing the
hot space every 20,000 records might lead to great disturbances of the balance of the
system. We need to maintain a constant hot space as long as possible. That's we why
we are lazy in the hot space update. We update the hot space boundaries only if both of
the current corresponding boundaries have shifted more than 10,000 units on either
direction. To make thing more clear let's imagine that the current hot space is [a,b] and
the hot space of the current 20,000 tuple window is [c,d]. If | a - c | and | b - d | are both
bigger than 10,000 then the new hot space of the stream is [c,d]. We could potentially
update each boundary individually but it was proven that this caused disturbances in the
system.

Now that we have our hot space we need to distribute it across the indexers. Because
the values in a hot space are normally distributed, we divide the hot space to subspaces
equal to the number of indexer nodes. For instance, if we have 4 indexer nodes we are
going to separate the hot space [a,b] into 4 equal subspaces: [a,a1), [a1,b2), [b2, b1)
and [b1,b]. So now every tuple with key value that falls into the first sub space [a,a1) will
be routed to indexer0, every tuple with key value that falls into the second subspace
[a,b2]) will be routed to indexer1 and so on.

1) So these 4 indexer nodes are assigned 4 disjoint key spaces. This leads to a
desirable result that covers our three preconditions

2) All indexers are going to be "fed" by the almost the same amount of tuples, as
the tuples are normally distributed within the hot space.

3) Because each indexer node is assigned disjoint and equal spaces of keys, they
will require more or less the same I/O operations to fetch B+ tree nodes from disc
to memory space.

Because the subspaces are disjoint, each indexers is automatically assigned to search
a different portion of the B+ tree. As the space of the stream tuple keys is expanding
towards the space of the relation tuple keys, this is becoming even more accurate.

To provide a very simple explanation of how this algorithm works we are going to use a
small example. Let's take for instance the B+ tree of Figure 7. An now let's suppose that
we have 3 indexer nodes at this point. Also let's assume that the hot space at the
moment is HS = [a,b], where a = <the smallest value of leaf node E> and b = <the
biggest value of leaf node M>. This means that we have received stream tuples that
cover the range of the relation keys. In that case, If we split the host space HS in three
equal subspaces (as we have 3 indexers) the first subspace will include all values from
leaf nodes E,F and G, the second subspace will include all values of H,I and J, the third
subspace will include all values of K,L and M. So as you can see, as the index router is
directing the stream tuples using those three subspaces of each indexer, the tree
search is split among the three indexers nodes in a very balanced way.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 34

Figure 7: B+ tree search distribution

All indexers will cache node A, which is very natural as it is the root of the tree. But after
that the set of blocks the three indexers need to read and cache is completely disjoint.
Additionally they will need to read exactly the same amount of blocks, thus they will do
the same I/O operations. But the most important thing is the efficient use of the total
available memory. Using that technique, all the tree is cached among all indexer nodes,
all indexer nodes have the same amount of blocks in their cache and additionally they
have performed the same amount of I/O operations.

Of course the hot space is not always so balanced and the tree search is not always so
perfectly distributed. For example if the host space only covered leaf nodes E to I, then
the level of cached block replication would increase, meaning that indexers would have
to cache the same tree nodes. This is not a big disadvantage. It has to do with the
nature of the stream. If the stream has a very small range of keys, then we will have lot
of replication for a stable given number if indexers. As the range of stream keys grows
bigger and bigger, up to the point that it reaches the range of the relation keys, the
search becomes more and more distributed.

3.7.2 Adding and removing Indexer nodes

So far we have seen how to distribute the traffic of the input stream towards a certain
number of indexer nodes. In the introduction of this chapter we analyzed the need of
being able to add or remove computing resources depending on the traffic the systems
receives. So in this section we are going to talk about how the index router node adds
or removes computing nodes depending on the traffic it is fed with, and also on the
several performance aspect that an operator could give.

Let's imagine this scenario. At this point we have three indexer nodes. So the hot space
is separated in three subspaces. Each indexer is assigned to index tuples that fall into
one of the subspaces. Let's also assume that the performance characteristic that is the
criterion of adding or removing computing nodes is cache hits. So let's assume that the
minimum requirement for our indexer nodes is to achieve a cache hit percentage of
50%. Now let's say that the hot space is suddenly expanding and expanding. This
means that a bigger portion of the B+ tree blocks are required for the indexing process.
In order to keep a steady cache hit percentage, we now need to add more indexer
nodes in order to increase available memory.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 35

The way we do this is as follows: we have a utility counter for each of the subspaces.
This utility counter measures the activity load of each of the spaces. While the hot
space is expanding, some of the subspaces is receiving slightly bigger traffic that the
others. We select the subspace with the higher utilization and split it into two
subspaces. If more than one subspaces have similar utilization the we choose one
randomly to split. We create a new indexer node and assign to it one of the new spaces.

If we still need to add more nodes, we repeat the same procedure. We always split the
most used subspace. Because the newly create spaces are young, the spaces with the
highest utilization will be one of the "old" subspaces. So, in practice, we keep splitting
the "old" subspaces, until all are split. The same process goes on for the "new"
subspaces when all the "old" spaces are split. Every time we split a subspace we assign
the newly created space to a new indexer node.

This procedure will cause minimum disturbance to the system. When a space is split, its
assigned indexer node will be responsible for less values. This means less B+ nodes to
read. In turn, this will increase the cache hits immediately for this node. On the other
hand the fresh indexer will need to fill its cache with new B+ blocks. Some of those
nodes are surely available in the cache of another indexer, most probably a "neighbor"
indexer ("neighbor" indexers are assigned "neighbor" subspaces). Potentially he could
borrow those blocks from the other indexer or indexers, freeing some memory on his
side as well. This would increase the complexity of system, so at this stage of the
system we decided to leave the fresh indexer to read the blocks from the disc and
"suffer" some more I/Os. We also let the old indexer remove unneeded blocks from its
cache and replace them more valuable ones as fast as possible.

On the opposite direction we do the reverse of the above process when we need to
remove an indexer. If, for instance in our example, when we added a node the cache
hits reached 80% this means that we are probably wasting resources are the minimum
requirement was 50%. So we need to remove an indexer node to cut costs. We do the
exact reverse process. Now we choose the subspace with the least utilization and we
merge it with one of its neighbors. If this subspace has more than one neighbors we
choose the neighbor with the smaller utilization of the two. After removing one of the
indexers we assign the enlarged subspace to its neighbor. Now this indexer has to cope
with more values, meaning more b+ nodes, leading to decreased hit rates. We repeat
the same process every time we want to remove an indexer. It is also important to note
that during the above processes, any disturbances occurred in the system are only very
localized around two neighbor indexer nodes.

3.8 The Join Router

In this section we are going to describe how the join router works. The index router is
responsible for taking the stream of indexed tuples and distribute every single index
tuple to one of the joiner nodes. Because there is no index here, the operations of join
router are much simple that the ones of the index router.

Despite the fact that the join router process is much less complex, it tries to achieve the
same basic goals as the index router. Let's briefly enlist them again:

1) First of all he has to distribute equal portions of indexed tuples to every joiner
over a certain amount of time.

2) The join router would have also to be fair in terms of the amount of I/O he makes
every joiner to perform.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 36

3) Use all the available memory resources of the joiner as efficiently as possible.
Try not to allow duplicate bocks to be cached by different joiners.

At this point, it is also worth reminding that the join router takes as input a stream of
indexed tuples, that is, a stream of tuples that each one of them is accompanied by a
list of matching blocks that it need to be joined with.

Now let's image the following scenario: we have 4 joiner nodes (joiner0 - joiner3).
Stream tuple x needs to be joined with relation block i. So the corresponding indexed
tuple is {x,i}. Now let's say tuple {x,i} is routed to joiner0. So joiner0 will eventually need
to cache relation block i. Of course join router is aware of that. He knows that after tuple
{x,i} is joined, then block i is surely in the cache of joiner0. It doesn't mean that block i
will be in the cache forever, but definitely it will stay there some time, until it gets
replaced by LRU. The amount of time block i will spend on the cache depends on the
size of the cache buffer and the indexed records traffic. If we assume that a joiner node
can hold up 5000 buffered relation blocks, then a newly cached block will definitely stay
cached, for another 5000 distinct indexed tuples. By the term distinct indexed tuples
we denote tuples that are joined with different relation blocks. Now after tuple {x,i}, the
next indexed tuple in line is y that needs also to be joined with block i. Since block i is
already in the cache of joiner0, it would be naive to redirect tuple {y,i} to an indexer
other than i. Thus, the join router should direct this tuple also to indexer0, because that
node already has block i cached.

It should be apparent what is the main strategy of join router, as it actually very simple.
It keeps a map, correlating a relation block with the joiner node it was directed to. For
instance after routing tuple {x,i} to joiner0, index router puts an entry in the map like so:
i -> joiner0. Now when tuple {y,i} needs to be routed, the join router will look up its map
and finds the previous entry. So he will direct {y,i} to joiner0 as well.

At first, this map is empty. So the choice of the joiner to send the first tuple is random. In
fact let us assume that we choose in a serial manner. So the first joiner node to choose
to direct an indexed tuple is joiner0. The join router is of course aware of the available
memory that each node has. Let's assume that all joiners have 5000 buffer frames
available, and that each buffer frame can hold a relation block. So each joiner node can
have 5000 relation blocks cached.

The way the index router works is that it loads the cache of the joiners in a sequential
manner. It first load up the memory of joiner0. That means that the first 5000 distinct
indexed tuples will directed to joiner0. As you can imagine, it is very possible that
joiner0 might initially receive way more than 5000 indexed tuples, as every tuple that
comes that needs to be joined with the already cached blocks of joiner0 will be redirect
to joiner0. When joiner0 has been give 5000 distinct indexed tuples, the join router
assumes that his cache is full. If he sends another indexed tuple that needs to be joined
with a relation block other than those 5000 distinct blocks, he knows that joiner0 will
have to remove one of the blocks that he already has in his cache, will do an I/O to read
the new block and cache it in the place of the replaced block.

But we do not need to do that as we have another 3 nodes with available memory.
Additionally there is no escaping that I/O at this point as the new block is in none's
cache. So we redirect that new stream tuple to joiner1. We repeat the same thing for
joiner1 until his cache is full as well. In the mean time don't ignore the fact that every
tuple that comes that needs to be joined with a block that is cached by joiner0, it is of
course redirected to joiner0. That means, when eventually joiner1's cache is full, we
have 10,000 distinct relation blocks in the cache, 5000 of those are in joiner0 and
another 5000 of those are in joiner1. Up until now, no block has been replaced by
another in the joiner's cache. We are still in the process of loading the whole available

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 37

memory. This process goes on until the cache of joiner2 and joiner3 are also full. At this
point we have cached 20,000 relation blocks, 5000 in each joiner node.

Now if the next indexed tuple that comes requires to be joined with one of the 20,000
cached blocks, then it is routed to the joiner that has it. If it requires another relation
block other than those 20,000, we are out of luck. We cannot escape evicting one of the
cached blocks right now whichever joiner we choose to route the tuple to. In this case
we select the victim 'node' serially again. So the first victim node is joiner0. As such,
joiner0 will receive the tuple, evict the block that LRU dictates, load from the disc to the
free frame the required block and do the join. In the meantime, the join router has added
an entry to the map as we've explained before, in the form of w -> joiner0, where w is
the aforementioned new block.

Now when index router redirected that tuple to joiner0, he was sure that joiner0 will
need to replace one of its cached blocks, as he simply cannot hold more that 5000
distinct blocks. At first glance it seems beneficial for the join router to also know what
block joiner would evict. Let that block be b, for instance. With that, he could remove the
"old" entry b->joiner0 from the map as it is no longer valid. Block b was evicted and it is
no longer in the cache of joiner0. Potentially the join router could know what block will
be evicted without having to communicate with joiner0. The joiner router knows exactly
the sequence of block requests that went for joiner0. Since LRU is deterministic,
meaning that the victim sequence will always be the same for a given block request
sequence. So the join router could emulate the LRU algorithm for joiner0 and be sure
what block would be evicted after his cache is full. But this would impose additional
computational effort from the join router. An also we are considering the possibility of
adding multi-thread execution on the joiner nodes. This would mean that each joiner will
spawn multiple threads to perform his internal operations. At this scenario, it is not
possible to predict the victim any more as the records are going to be consumed in a
non deterministic way.

The important thing to note here is that it doesn't really matter, from a correctness
perspective to know what the victim block would be. There will be no damage if we
leave the invalid entry in the map. Imagine that block b gets evicted from joiner0. But
the entry b->joiner0 remains on the map. Now a tuple comes that needs to be joined
with block b. Block b is in none's memory at this point. No matter what joiner we use he
will need to evict another block from its cache and do an I/O for block b. So there is no
harm routing it again back to joiner0, as the map dictates. Nothing different would
happen if it was routed to any other joiner. None of the other joiners have it in their
cache. To make that argument even stronger, since the index router doesn't know at
this point what block will be evicted, if there is any possibility of block b being cached
that it would be in the cache of joiner0.

So we are not compromising the correctness of the system with the aforementioned
solution. But, it cannot go unnoticed that the map grows bigger and bigger. So after a
certain limit, we do need to communicate with all the joiners in order to know the
accurate state of their cache, meaning the exact list of relation blocks that they have in
their caches. When the join router has that list in his hand, he can trim invalid map
entries. But that only happens a few times over a big period of time. It also happens
when we add or remove joiner node as you will see in the next section.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 38

3.8.1 Adding and removing Joiner nodes

Similar to the indexer nodes, depending on the nature of the traffic, we might need to
add more joiner nodes to keep with the performance standards that the operator of the
system gives.

The process of adding a joiner node is fairly simple. When the new node is added it is
treated as if an extra pile of memory was added to the system. Until he is also full, none
of the already cached blocks should be evicted. We enter the same mode of operation
as we did on the startup of the system, when we were loading the joiners caches. Thus
now, every indexed tuple that turns up that is requiring a non - cached block, it is
immediately routed to the new joiner node. This mode continues up until the new node's
cache is also full. Afterwards the execution flows normally as we've described.

There is an important detail to consider about this operation. When the new node is
added, we need to prevent all eviction from the old node caches. This means that, while
the new node loads up its memory, we must ask any of the other joiner nodes to read
blocks other than the ones they have in their cache. This means that have to accurately
know each joiner's cache contents. If the danger is not yet evident let's consider again
the previous example. Remember that we have kept and old entry b->joiner0 in the
map. Let's also suppose that block b is no longer actually in joiner0's cache. Now if we
accidentally route an indexed tuple that requires block b to joiner0, he will need to evict
another page. But we don't really need to do that because we now have available
memory in the new joiner, thus there is no point evicting any cached block. That's why
when adding a new node, just before starting routing traffic again, we communicate with
the joiner nodes and update our map.

Removing a joiner node is quite simple. We simple remove all the entries from the map
that contain that node and we stop routing traffic towards him. The operation then
continues as it normally would if the gone joiner never existed.

3.9 Control Communication Channel

In Figure 6 we described the distributed architecture of our system and we showed the
flow of communication between nodes. The bulk of communication between the nodes
is accurately as depicted in Figure 6. It is one way with no strange interleaved
interaction between nodes. Joiner nodes don't communicate with each other, joiner
nodes don't communicate with each other. Despite that there still needs to be a
backwards communication channel between the routers and the nodes they control.
This channel will flow information from node to router. It will be called control
communication channel.

We have described some of the reasons for node -> router communication in section
3.8 when we talked about the join router. Except the contents of the cache, the router
nodes need to know more information about their worker nodes. The reason is that,
routers will need to keep track of the performance characteristics of the system at any
given time. That way they can decide whether to add or remove one of their worker
nodes.

Thus there is a control channel that sends performance information from worker nodes
back to their routers. It is worth noting that this communication happens in an frequency
that depending on the speed of the stream (meaning how many stream tuples are
received in the input per second). We can for instance assume that this communication
happens every 20,000 records. If the stream speeds up, this communication will be

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 39

more frequent. If the stream slows down this communication will become less frequent.
This skim makes sense as when the traffic is high we need to be up-to-date more
quickly and on the other hand when the traffic is low we don't need frequent updates.

That way, the router nodes are well aware of the periods that the performance of the
system is degrading and thus they need to allocate more resources and on the other
hand the moments where the performance is way above the requirements so we need
to remove resources to cut down costs.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 40

4. IMPLEMENTATION

4.1 General information

In this chapter we are going to discuss several aspects that concern our implementation
of the above distributed elastic SSIJ infrastructure. This implementation of Distributed
SSIJ was done in Java. It consists of 12000 lines of code. This code includes the
databases implementation, including the file manager, and of course the buffer manager
which was used by all worker nodes (indexers and joiners). It also includes the
implementation of the B+ tree index. Added to that, several data structure like buffers
along with socket channels were also implemented in order to support the stream
communication between nodes.

4.2 Relation file format and Index Choice

We chose the most generic format possible both for our relation files and our index files.
Both heap files and data files are organized in blocks. Each block is 4096 bytes. That
stands for both the relation files and the index files. For the data file each block is
organized in heap form. Which means that the records don't have specific ordering in it.
The relation file is organized in a heap format itself. Meaning that there is no specific
ordering for the blocks themselves.

Having selected such a structure for our data file, we need to make certain decisions
about the structure of our B+ tree index. First of all we used a primary index. That
means that the index is upon the primary key of the relation. Now, the main concern
was what would be the structure of the leaf nodes. We decided to go with the most
generic implementation possible where we have the leaf nodes pointing to the
corresponding data file blocks where each key is resides. And because we wanted to
make the joining procedure as fast as possible, in the leaf nodes each key is
accompanied with an number representing the offset of the record having that key in the
data file block. To be more specific, if there are 240 records in a data block of the file
relation each key in the leaf file is accompanied with a number from 0 to 240 denoting
what is the relation record position in the block.

Thus these design options lead to decide to store the relation and the index in two
different files. These two files can either reside on the same disc or they can reside on
different physical volumes. The router nodes do not need to have access to either of
those volumes. Indexer nodes need to have access to the volume where the index
resides and joiner nodes need to have access to the volume where the relation resides.

4.3 Worker node granularity

As it is already evident the whole purpose of this project was to create a system that will
allocate an de allocate working nodes on demand, in order to increase the memory
resources of the system. The best possible scenario would be to be able to allocate
physical dedicated computing nodes. A platform that supports that could be easily
integrated in our system.

But today's businesses increasingly rely on Platform as a Service (PasS) Cloud
frameworks provided by large corporations like, Google with Google Cloud, Microsoft
with Azure, Amazon with Amazon Elastic Compute Cloud (Amazon EC2), IBM's
SoftLayer which also provides infrastructure for Bare Metal physical machine allocation,
RackSpace with its Dedicated Server infrastructures and many other smaller vendors.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 41

4.3.1 Platform as a Service

Platform as a Service, often simply referred to as PaaS, is a category of cloud
computing that provides a platform and environment to allow developers to build
applications and services over the internet. PaaS services are hosted in the cloud and
accessed by users simply via their web browser.

The infrastructure and applications are managed for customers and support is available.
Services are constantly updated, with existing features upgraded and additional
features added. PaaS providers can assist developers from the conception of their
original ideas to the creation of applications, and through to testing and deployment.
This is all achieved in a managed mechanism.

As with most cloud offerings, PaaS services are generally paid for on a subscription
basis with clients ultimately paying just for what they use. Clients also benefit from the
economies of scale that arise from the sharing of the underlying physical infrastructure
between users, and that results in lower costs.

Using PasS services organizations don't have to invest in physical infrastructure. Being
able to ‘rent’ virtual infrastructure has both cost benefits and practical benefits. They
don’t need to purchase hardware themselves or employ the expertise to manage it. This
leaves them free to focus on the development of applications. What’s more, clients will
only need to rent the resources they need rather than invest in fixed, unused and
therefore wasted capacity.

One of the most desired feature of PasS services is flexibility: customers can have
control over the tools that are installed within their platforms and can create a platform
that suits their specific requirements. They can ‘pick and choose’ the features they feel
are necessary. Another one noteworthy feature is adaptability. Features can be
changed if circumstances dictate that they should.

In summary, a PaaS offering supplies an operating environment for developing
applications. In other words, it provides the architecture as well as the overall
infrastructure to support application development. This includes networking, storage,
software support and management services. It is therefore ideal for the development of
new applications that are intended for the web as well as mobile devices and PCs.

Thus we decided to leverage the combination of 'read to go' configuration, flexibility and
elasticity, along with the development friendly environment and use a PasS service for
our cluster. So the maximum granularity of a worker node will be a virtual machine in a
cloud service. We chose Google Cloud services because of some additional resources
available on that platform what are of vital importance for our system.

4.3.2 Thread Workers

 In the beginning of our development we decided to implement all the functionality of
Distributed Elastic SSIJ using thread workers in order to emulate computing nodes. In
that sense every thread worker was viewed as a computing node. It has its own
memory resources, its own buffers and so on. Additionally the router nodes themselves
were also threads. We've created some layers of abstraction in order to hide the node
granularity. So router nodes are not aware whether their worker nodes are threads.

Because of the locality of the system, router nodes and worker nodes communicated
with each other using local shared memory buffers. That was in an attempt to extract as
much performance as possible by the 'locality factor'.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 42

Although performance showed great potential, and the scalability was very close to
linear (showing promises for the future), it started to degrade as more and more thread
workers were allocated. This was due to the fact that despite the separation of memory
areas in the threads, the whole system run on the same JVM. So the JVM memory
management was becoming a deciding factor about performance. The bigger the
memory needs, the more memory is allocated and so the bigger is the Garbage
Collector overhead. Additionally the overhead of context switching between a big
number of threads (think 100s of threads), was also evident. To make matters worse,
we needed to use synchronization mechanisms for the access in the common stream
buffers of the system. So synchronization overhead was also proving to be a serious
bottleneck for the performance of the system.

We are aware that very low latency, extremely high performance, lock-free concurrent
buffer data structures exists in various Java implementations. There are also well know
techniques that avoid Garbage Collection altogether. This method have been used in
the low-latency high-frequency trading markets for quite some time now, so as a result
various Java libraries for that have come out. Most of these engineering attempts pre
allocate all the necessary memory need, and use that memory pool the the needs of the
system. For increased performance they use what is called direct memory. The hugely
famous Java package sun.misc.Unsafe that provides manual native memory
management and access is the backbone for most of those products and it is proven to
have native performance (C/C++ levels of performance). Additionally some high-end
optimized JVM implementations occur, with unnoticeable Garbage Collection overhead
using truly concurrent Garbage Collection algorithms exist that provide a great JVM
platform especially for low latency releases. One of the most famous is Azul's Zing JVM.

Although it could be really interesting and intriguing to see the performance results
using a combination of the above technologies we leave of for future releases of the
software as at this point we decided to focus on the algorithmic and architectural
patterns of the system, and to provide a basic first implementation of the system.

4.3.3 JVM/Process workers - Socket Channel Communication

The next step of our development was to expand the granularity of worker nodes to
processes. This was a vital step as those process would the actual processes that
would run on the future where the granularity of the worker nodes would be Virtual
Machines.

During this step we implemented also the necessary communication socket channel
mechanisms. Now all the communication between workers and routers is socket-based.
This allowed the further decoupling of the worker environment and the router's
environment. To achieve high performance we used Java's NIO SocketChannel
implementation. This socket implementation is optimized and widely deployed to
support real-time streaming systems. We also implemented our own custom stream
tuple serializers and deserializers that optimally serialize a stream tuple to an array of
bytes and vise versa. We did that in order to avoid costly Java-native serialization
methods, even from that first release.

In our implementations all nodes that receive input open a Server Socket. All nodes that
want to send data to those nodes need to create a client socket connection with the
remove server socket. If a node wants to both receive and send data he will do both of
the aforementioned actions. All the socket streams are none blocking. We use the Java
provided poll/select mechanisms that provides us with information about what channels

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 43

are available for reading and writing. It worth noting that this selection mechanism uses
the native poll/selection mechanism that the underlying operating system provides.

In our implementation we decided to dedicate a thread on the input and deserialization
operation. All nodes have their own input memory buffers. The input thread is
responsible for reading the stream from the socket, deserializing it and then providing it
to the main thread where all the operations take place. Every processes spawns a
separate thread to support input operations.

Now there are no common buffers used and no common memory used between
computing nodes. So synchronization cost is out of the way (except for the input thread
and the main thread in each process). Now every node runs on its own JVM so
Garbage Collection cost is also lower as well. And in fact any Garbage Collection cost
will now have only node-local performance effects.

At this point we had also to think about the implementation of the control channel. We
could use the same technologies, meaning Socket channels and also create our own
serializes for the required messages, but for this specific task we decided to use a Java
provided solution. We used Remote Method Invocation protocol for that matter. We
created all the necessary objects and interfaces to support it. It is worth noting that RMI
is also a socket based protocol. The Java Remote Method Invocation (Java RMI) is a
Java API that performs remote method invocation, the object-oriented equivalent of
remote procedure calls (RPC), with support for direct transfer of serialized Java classes
and distributed garbage collection. The original implementation depends on Java Virtual
Machine (JVM) class representation mechanisms and it thus only supports making calls
from one JVM to another. The protocol underlying this Java-only implementation is
known as Java Remote Method Protocol (JRMP). There are also more high-
performance message passing protocol implementation for Java, like ActiveMQ and
RabbitMQ. At this version of our software we decided to use RMI.

In short, the way we use RMI is that every worker node opens an RMI socket and
exposes a certain API to the RMI server that runs on his JVM. Then, the router nodes
connect to that remote RMI socket and invoke remote methods to find out the worker-
local information they need to know.

4.3.4 Container workers

In this section we are going to talk about containers and why we wanted to containarize
our worker nodes. The reason we wanted to containerize our worker nodes is very
simple. Most PasS platform offer Managed Container Cluster Engines that help you
containerize your applications and deploy them on a local cluster that also has the
capability of autoscaling (we will talk more on that later). You can use specific apis to
add or remove containers on demand. That seems to fit perfectly our model of
execution so we decided to look more into container-based virtualization.

Container-based virtualization, also called operating system virtualization, is an
approach to virtualization in which the virtualization layer runs as an application within
the operating system (OS). In this approach, the operating system's kernel runs on the
hardware node with several isolated guest virtual machines (VMs) installed on top of it.
The isolated guests are called containers.

With container-based virtualization, there isn't the overhead associated with having
each guest run a completely installed operating system. This approach can also
improve performance because there is just one operating system taking care of

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 44

hardware calls. A disadvantage of container-based virtualization, however, is that each
guest must use the same operating system the host uses.

Operating-system-level virtualization is commonly used in virtual hosting environments,
where it is useful for securely allocating finite hardware resources amongst a large
number of mutually-distrusting users. System administrators may also use it, to a lesser
extent, for consolidating server hardware by moving services on separate hosts into
containers on the one server.

Other typical scenarios include separating several applications to separate containers
for improved security, hardware independence, and added resource management
features. Another strong case to also use containers is that Operating-system-level
virtualization implementations capable of live migration can also be used for dynamic
load balancing of containers between nodes in a cluster.

Additionally, as we've already mentioned Operating-system-level virtualization usually
imposes little to no overhead, because programs in virtual partitions use the operating
system's normal system call interface and do not need to be subjected to emulation or
be run in an intermediate virtual machine, as is the case with whole-system virtualizers
(such as VMware ESXi, QEMU or Hyper-V) and paravirtualizers (such as Xen or UML).
This form of virtualization also does not require support in hardware to perform
efficiently.

4.3.5 Docker

Docker is undoubtedly the most famous and widely used Linux Container
implementation. Docker [7] [8] allows you to package an application with all of its
dependencies into a standardized unit for software development. Docker containers
wrap up a piece of software in a complete filesystem that contains everything it needs to
run: code, runtime, system tools, system libraries – anything you can install on a server.
This guarantees that it will always run the same, regardless of the environment it is
running in.

Docker containers spin up and down in seconds making it easy to scale an application
service at any time to satisfy peak customer demand, then just as easily spin down
those containers to only use the resources you need when you need it.

A Docker image is made up of filesystems layered over each other. At the base is a
boot filesystem, bootfs, which resembles the typical Linux/Unix boot filesystem. A
Docker user will probably never interact with the boot filesystem. Indeed, when a
container has booted, it is moved into memory, and the boot filesystem is unmounted to
free up the RAM used by the initrd disk image. So far this looks pretty much like a
typical Linux virtualization stack. Indeed, Docker next layers a root filesystem, rootfs, on
top of the boot filesystem. This rootfs can be one or more operating systems (e.g., a
Debian or Ubuntu filesystem).

In a more traditional Linux boot, the root filesystem is mounted read-only and then
switched to read-write after boot and an integrity check is conducted. In the Docker
world, however, the root filesystem stays in read-only mode, and Docker takes
advantage of a union mount to add more read-only filesystems onto the root filesystem.
A union mount is a mount that allows several filesystems to be mounted at one time but
appear to be one filesystem. The union mount overlays the filesystems on top of one
another so that the resulting filesystem may contain files and subdirectories from any or
all of the underlying filesystems. Docker calls each of these filesystems images. Images

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 45

can be layered on top of one another. The image below is called the parent image and
you can traverse each layer until you reach the bottom of the image stack where the
final image is called the base image.

Finally, when a container is launched from an image, Docker mounts a read-write
filesystem on top of any layers below. This is where whatever processes we want our
Docker container to run will execute.

In our container cluster we are going to use two different Docker Images. One Docker
for the Indexer nodes and one Docker image for the Joiner nodes. We decided that the
router nodes will run on dedicated VMs in the underlying VM cluster. Those two docker
images will be used to create two different kinds of containers. Indexer Containers and
Joiner Containers. Each one the Joiner containers will run the Joiner JVM/process and
each one of the Indexer Containers will run the Indexer JVM/process. So basically each
container will just run a JVM with the corresponding process.

4.3.6 Kubernetes Framework

The Kubernetes [9] project was started by Google in 2014. The name Kubernetes
originates from Greek, meaning “helmsman” or “pilot”, and is the root of “governor” and
“cybernetic”. K8s is an abbreviation derived by replacing the 8 letters “ubernete” with 8.

 Kubernetes is an open-source platform for automating deployment, scaling, and
operations of application containers across clusters of hosts, providing container-centric
infrastructure. With Kubernetes, we are able to quickly and efficiently respond to user
demand. We can deploy our applications quickly and predictably. Kubernetes allows us
to scale our applications on the fly. We can optimize the use of our hardware by using
only the resources we need. Kubernetes goal is to foster an ecosystem of components
and tools that relieve the burden of running applications in public and private clouds.
Kubernetes is portable: public, private, hybrid, multi-cloud extensible: modular,
pluggable, hookable, composable self-healing: auto-placement, auto-restart, auto-
replication, auto-scaling.

The Old Way to deploy applications was to install the applications on a host using the
operating system package manager. This had the disadvantage of entangling the
applications’ executables, configuration, libraries, and lifecycles with each other and
with the host OS. One could build immutable virtual-machine images in order to achieve
predictable rollouts and rollbacks, but VMs are heavyweight and non-portable.

The New Way is to deploy containers based on operating-system-level virtualization
rather than hardware virtualization. These containers are isolated from each other and
from the host: they have their own filesystems, they can’t see each others’ processes,
and their computational resource usage can be bounded. They are easier to build than
VMs, and because they are decoupled from the underlying infrastructure and from the
host filesystem, they are portable across clouds and OS distributions.

Because containers are small and fast, one application can be packed in each container
image. This one-to-one application-to-image relationship unlocks the full benefits of
containers. With containers, immutable container images can be created at
build/release time rather than deployment time, since each application doesn’t need to
be composed with the rest of the application stack, nor married to the production
infrastructure environment. Generating container images at build/release time enables a
consistent environment to be carried from development into production. Similarly,
containers are vastly more transparent than VMs, which facilitates monitoring and

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 46

management. This is especially true when the containers’ process lifecycles are
managed by the infrastructure rather than hidden by a process supervisor inside the
container. Finally, with a single application per container, managing the containers
becomes tantamount to managing deployment of the application.

At a minimum, Kubernetes can schedule and run application containers on clusters of
physical or virtual machines. However, Kubernetes also allows developers to ‘cut the
cord’ to physical and virtual machines, moving from a host-centric infrastructure to a
container-centric infrastructure, which provides the full advantages and benefits inherent
to containers. Kubernetes provides the infrastructure to build a truly container-centric
development environment.

Kubernetes satisfies a number of common needs of applications running in production,
such as:

 co-locating helper processes,

 facilitating composite applications and preserving the one-application-per-
container model,

 mounting storage systems,

 distributing secrets,

 application health checking,

 replicating application instances,

 horizontal auto-scaling,

 naming and discovery,

 load balancing,

 rolling updates,

 resource monitoring,

 log access and ingestion,

 support for introspection and debugging, and

 identity and authorization.

This provides the simplicity of Platform as a Service (PaaS) with the flexibility of
Infrastructure as a Service (IaaS), and facilitates portability across infrastructure
providers.

This was the next step in our implementation. As you might remember the final goal of
the system was to deploy the worker nodes in a Virtual Machine cluster. We also
wanted the ability to add more virtual machines when the performance of our system
degrades and remove virtual machines when the performance of our system overcomes
the required standards and we want to save costs.

4.3.7 Google Cloud Container Engine

Google Container Engine [10] is a powerful cluster manager and orchestration system
for running our Docker containers. Container Engine schedules our containers into the
cluster and manages them automatically based on requirements the operator defines

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 47

(such as CPU and memory). It's built on the open source Kubernetes system, giving us
the flexibility to take advantage of on-premises, hybrid, or public cloud infrastructure.

One can set up a managed container cluster of virtual machines, ready for deployment
in just minutes. The cluster is equipped with capabilities, such as logging and container
health checking, to make application management easier.

You can also declare your containers' requirements, such as the amount of
CPU/memory to reserve, number of replicas, and keepalive policy, in a simple JSON
config file. Container Engine will schedule our containers as declared, and actively
manage your application to ensure requirements are met.

With Red Hat, Microsoft, IBM, Mirantis OpenStack, and VMware (and the list keeps
growing) working to integrate Kubernetes into their platforms, we will be able to move
workloads, or take advantage of multiple cloud providers, more easily.

Google cluster infrastructure offers a very flexible auto scaling feature that helps
optimize resource efficiency. When you want to deploy your application on the cluster
you have to set an initial cluster size. If that cluster size is let's say 5, then 5 VMs are
going to be created and they are going to be dedicated for your container cluster. You
can then specify several performance standards that you want your cluster to meet. For
example you can set a CPU threshold. If the CPU usage of the cluster is more than that
threshold, then more Virtual Machined are automatically added to your cluster. On the
same spirit when the CPU usage greatly overcomes that threshold the engine will
remove some of the virtual machines

In our case because in the configuration we wanted our containers to take all the
available resources at each machine, that auto scaling feature worked well, because
more machines where dynamically added on the cluster when there was need. Now
using this feature we can eventually meet out initial goal. If we set up our containers to
use all available VM resources and at the same time set the performance thresholds of
the cluster relatively high then each container will be run on a different VM which is the
initial design.

But this is not always necessary. For example when our traffic is low and the
performance is quite sufficient at that point, there is no need to have all containers run
on different VMs. They could run on the same VM if the performance standards are met.
It is up to VM and container cluster management platform to decide whether to add
more VMs in the system. We have benefited greatly from this because Google Cloud
platform already takes into account our cost conservative perspective and only scales
up the VMs when it is necessary, helping the user save costs.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 48

5. DEPLOYMENT, EXPERIMENTS AND RESULTS

5.1 Google Cloud Deployment and Setup

In order to conduct our experiments we create a master Virtual Machine in the Google
Cloud Compute Engine service. This was a machine with 64bit 4Core 2.6GHz with
14GB or RAM and 50 GB HDD. We decided to use this machine as the resident
computing node for our two router nodes. The worker nodes will run on separate
containers. In order to achieve our initial goal "one container per vm" we created an
initial cluster of 20 VMs. Each of these machines has a 2Core 2.6 GHz CPU with 6GB
of RAM.

Now in order to deploy our containers into the VMs we used Kubernetes as our "cluster
master". For each one computing node we create a new Kubernetes Pod. A pod is a
group of containers that are scheduled onto the same host. Pods serve as units of
scheduling, deployment, and horizontal scaling/replication. Pods share fate, and share
some resources, such as storage volumes and IP addresses. Now in our case we will
use single container pods. A single container pod has only on container running it. We
did that because we wanted to be able to run each container on a separate VM.

One major problem with the current version of Kubernetes is that no more than one
pods can be attached to the same external volume. This meant that we had to have a
local copy of the index file in every indexer and a local copy of the relation file in every
joiner. This is a major complaint for the Kubernetes platform, and as a very large portion
of the community has been disappointed by such a decision, Kubernetes Development
team is planning to add that feature in the next Kubernetes release. Granted,
Kubernetes is an extremely young project, considering its granularity and its very
ambitious goals.

Kubernetes offers a GUI manager interface that helps you very quickly create pods and
deploy applications. But most importantly it offers a fully fledged REST API that enables
programmatic access to its full functionality. We've found a newly created Java library
that wraps around that REST api and enables client code to fully leverage the power of
Kubernetes. That library is called Kubernetes-Client and it is created by the Fabric8
development team. Fabric8 is an orchestration framework that sits above Kubernetes
and Docket, and it supervises the creation of pods and deployment of applications.

Using that API we are able to create pods and thus containers on demand. There is
also another important Kubernetes primitive that enables you to create resilient pods. It
is called Replication controller. In the replication controller you can specify the number
of replicas you want to create for a pod. If you specify that you need 4 replicas for
example, Kubernetes makes sure that 4 replicas of your pod are always running . This
is a very useful feature that helps you create resilient multinode systems.

But we wanted to create an destroy our containers on demand. We assume that the
operator of our own system will put in several performance criteria that we need to meet
and accordingly our system should add or remove containers. We decided to use one
performance criterion that has to do with the most valuable asset of our cluster,
memory. So we decide that to be cache hit ratio. Cache hit ratio is a vital and deciding
factor about the whole systems performance. So we give the two routers a specific hit
ratio that should be the target total hit ratio for their corresponding worker nodes.

The two routers would have to create or remove computing nodes in order to conform to
that specified number. The velocity with which the routers add or remove computing
nodes have to do with what is the current and the target hit ratio. If there is a lot of
distance between the current hit ratio and the target hit ratio the routers aggressively

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 49

add more nodes in order to catch the desired hit ratio as quick as possible. On the same
spirit, if the current hit ratio is way above the desired target ration then we remove
computing nodes to get as close as possible to the target. In order not to get trapped
between continuously adding and removing computing nodes we give a margin of +-0.1
to the target hit ratio. This means that if we are 0.1 away from the target, either over or
under, we don't add or delete any nodes.

For our experiments we create a relation with 300,000 blocks containing 153,299,999
records with a size of approximately 2GB. Our system is indented to be used with much
larger volumes of data, but in this first prototype version we settled for a smaller
database to mainly focus on testing the efficiency of resource allocation, e.g scalability
and elasticity. The records have an integer key. Keys are all multiples of 5 ranging from
0 to 766,499,995. The B+ index tree has 3 levels and a total of 453,986 blocks. That is
an extra 153,986 blocks of internal nodes added to the leaf level of 300,00 blocks.

In order to create our worker pods we have created two different Docker images. One
Docker image that runs the joiner process and a second Docker image that runs the
indexer process. Those two Docker images were uploaded in the Google Container
Registry. This is a Docker Image Registry that is resident on the Google Cloud. Then
you can easily create your pods just specifying the name of the image you want your
container to start (along with other configuration parameters of course).

 For our tests, every indexer has a buffer of 50,000 blocks. Every joiner has 5000 blocks
of buffer capacity. .. .Kubernetes offers a GUI manager interface that helps you very
quickly create pods and deploy applications. But most importantly it offers a fully fledged
REST API that enables programmatic access to its full functionality. We've found a
newly created Java library that wraps around that REST api and enables client code to
fully leverage the power of Kubernetes. That library is called kubernetes-client and it is
created by the Fabric8 development team. Fabric8 is an orchestration framework that
sits above Kubernetes and Docker, and it supervises the creation of pods and
deployment of applications.

The stream we are going to use is going to be created by a generator. The generator
will run on the same VM as the index router but he is communicating with him via socket
and not using share memory buffers. The key of the stream tuples is going to be an
integer. They are going to be distributed in Gaussian form. The range of the keys is
going to vary from experiment to experiment. We are going to perform experiments
where the key range is from 0 to 300,000,000, covering 50% of the relation tuple range,
and from 0 to 766,499,995 covering 100% the range of the relation keys. Most of the
experiments are going to be run for a period of 4 to 6 minutes.

5.2 Scalability measurements

There are several aspects to consider when measuring the scalability of such systems.
And that is the fact that because there are several stages in the pipeline, having a
bottleneck in one can seriously affect the performance of the other. So for the
measurements that follow we are going to have two different kinds of tests. On the first
test we are going to measure the throughput of the joiners (and that is also the
throughput of the whole system). but we are going to allocate as much resources as
possible for the indexer nodes so as not to let the index stage be a bottleneck for the
system. It is quite obvious that if, for example, the index stage produces no more than
30.000 indexed tuples per second, then no matter how many joiners we are going to put
into the system we are not going to get more that 30,000 joined tuples per second.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 50

So for the first test we are going to create 10 indexer nodes. Using 10 nodes we are
going to be able to cache all the B+ tree nodes and distribute the indexing process
evenly between the nodes.

We have measured that the maximum throughput of the indexers in that configuration is
up to 700,000 joinable tuples per second. That is in a range of stream keys up to
300,000,000.So that would be the maximum througput of the joiner stage. To measure
the scalability of the system we are going to use 2, 4, 8, 16, 32, joiner nodes.

Figure 8: Joiner Scalability

As you can see we can achieve linear scalability up to the number of 16 joiners. That's
because with this experiment at the point where the joiners where 16 the hit ration of the
joiners node hit almost 99%. So it is logical that we not going to get much more
performance even if we add more nodes. Eventually we would reach a maximum
number higher that 600,000 tuples per second but the scalability will be far from linear
from that point on. The most performance we are going to extract out of it will be from
increased cpu resources.

The next measurements is going to have a stream tuple key range from 0 to
766,499,995 in order to see if that scalability pattern still holds.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 51

Figure 9: Joiner Scalability

As you can see the perfomance has seriously degraded, but the scalability still holds a
linear scheme. That is reasonable as up unitl the 32 joiner we had almost 42% hit ratio.
So adding more nodes to this well be very resonable and we would continue to take
more linear scalability up until a certain point where we cannot extract much more
performance out of the memory resources.

For the next experiments we are going to measure joiner scalability. We are going to rn
tests with a stream with key range from 0 to 766,499,995 and we are going to test on 2,
,4, 8, 16, 32 joiner nodes. For that experiment we are going to measure how many
recods per second the joiners produce without having to send them to the join router.

Figure 10: Indexer Scalability

As you can see we get linear scalability in the area from 10 to 16 joiners. From that
point on the cache hit ration for all the joiner reached 99% percent and so the scalability
figure drops. There is also an interesting result here. Between 4 and 8 indexers there is
not much performance improvement. As you can see from Figure 10 they have almost

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 52

identical results. That has to do probably with the distribution of search in the tree. For
some reason it was not distributed as equally as possible for these numbers. Also one
more reason could be that we reached a very high percentage of hit ratio even from 4
indexers (it was more that 80% already)

On the next graph we are going to show you the same experiment with a stream with
key range from 0 to 300,000,000.

As you can see the performance of the system quickly reaches a peak, and that's only
natural as even from the 4 joiner we have reached almost 87% cache hits. We have a
huge performance leap in 8 joiners where we almost reach a 97% hit ratio. From that
point on the performance improvement is not as impressive. The reason is simply
because we cannot extract more performance out of our memory resources because
we have cached most of the tree nodes in our memory.

Figure 11:Indexer Scalability

5.3 Elasticity and Flexibility

In this section we are going to talk about how the elasticity of our design performed
during our experiments and during our development. This is probably a good point to
remember that the initial plan of our architecture was to add and remove resources on
the go depending on the nature and the characteristics of the stream traffic. As we
discussed, we could have several criteria on whether to add or remove computing
resources.

We could potentially also include a cost formula for that matter. For example if we have
a strict budget for that specific system in our pipeline we could potential calculate on the
fly the cost we are putting down every moment and either decide whether we are able to
add more resources or not. As a proof of concept we decided to use cache hit ratio as
the performance criterion on whether to add or remove resources.

In that case we gave more attention to the Joiner nodes. As you have seen in our
experiments because we have decided to give more memory resources to each joiner
node there was no need most of the time to add more nodes. So most of the attention
on the elasticity was on the joiner nodes.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 53

The main issue with adding or resources is that it took a significant amount of time to
deploy and run the containers. So we decided to use a separate thread to spawn the
new nodes while the other nodes continue their job. When the new node is up and
running he can enter the action as well with the algorithms we described in the previous
sections.

We conducted the experiments for this as follows: we started with 5 joiner nodes. The
join route was given a certain amount of cache hit percentage as e minimum
requirement. We have created and algorithm that adjusts the velocity that we add
resources depending on how far we are from the target. So for example in the case
where we have a stream with tuple key range from 0 to 766,499,995 and we give a hit
percentage target of 50% when we first start the system, the 5 joiners where capable of
a hit percentage of 8%. That is very far away from the desired target. In that case we
are more aggressive on adding more nodes. So at this rate we add almost one node
every 40,000 records. We need to wait for that period of time in order to see whether we
are getting close to our target and in order to do that we need to let the system
normalize its behavior, and also it is possible that the stream traffic changes a bit so we
wait to see whether we actually need to add more. But since we are so far behind from
the target we don't want to wait too much either. In the above experiment starting from 5
indexers and 8% of cache hits, at the point where the system has added 38 nodes we
were still at 23%. Now because we're getting closer to the target we can slow down a bit
and add a node every 80,000 thousand tuples. After adding 50 nodes we were at 32%.
So we slow down some more. After adding 53 nodes we hit 46%. At this point we
stopped adding resources. We are too close the target. When the traffic normalized the
52 nodes where capable of reaching 70% cache hit ratio and it kept increasing. That is
very natural as we were very aggressive on adding resources because we wanted to
get up to 50% as fast as possible.

At the point where the system reached a 40-60% hit ratio area we were in a safe space.
It is not always possible to achieve exactly the required target because every node has
a specified amount of RAM and this total amount for ram is not always divided integrally
with the amount of the blocked that need to be cached in order to achieve that
percentage. So we have that area of +-10% to let the system cool down, normalize and
see the nature of stream that is passing at the moment. We don't want to add or
remove resources in that area as we are going to be trapped in a vicious circle of
adding and removing constantly resources..

But in our case after approximately 10 minutes we have added 52 joiner nodes. And we
have reached more that 70% of hit ratio. That meant that we are way over the minimum
requirements and that we should probably start removing some nodes and see again
where the system stabilizes. Because we are very close to our target ration the velocity
with which we remove nodes at this point is very small. We give the system some time
to cool down and reevaluate the passing traffic and the decide whether it is beneficial to
remove more nodes.

After removing one node (now we are at 51), the hit ration was still climbing but not buy
much. After removing 7 more nodes (45) it stopped rising and was now dropping but it
was still around the 70% area. After removing 3 (42) more nodes it started to fall from
70%, but still at this point when the traffic normalized we were still at the 70% area.
Because when we suddenly remove a node the hit ratio falls immediately. So it needs
some time to cool down to see the actual hit ratio when using that many nodes. And the
truth is that we are not at all aggressive at removing nodes, because we don't want to
drop from the achieved target. But we don't want to be too lazy either because the
whole point is to save costs.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 54

So after approximately 15 minutes we were using 40 joiners the hit percentage was
starting to stabilize at around 69 % percent. Now the velocity of removing nodes was
very slow. As it is already evident we don't really want to remove nodes that fast and we
favor the case where we are over the target ration rather than under. As you can see
most of the time of the operation the system is over performing. If we are in a very strict
budget we could alternate that logic and let the system be in favor of the cases of
under-performance.

After about 30 minutes of the experiment running the 40 left joiner nodes where
achieving around 69-68% percent of cache hits and the whole system was stabilized
around those number. So to sum up this experiment, at the beginning we aggressively
allocate more nodes in order to reach and overcome our target hit ratio as fast as
possible. Then as the system cools down, the router realizes that we are over
performing by a big margin. So he lazily starts to remove some joiners. After removing
some he becomes more and more lazy on removing nodes. That is because he always
favors over performance. After a while and after removing 12 joiners in total the system
stabilizes in an over performing hit percentage.

During this whole time the auto scaling features of Kubernetes and Google Cloud where
working well. Because Google Cloud also favors over performance in the peak of this
experiment 60 VMs where allocated by the cluster management system where almost
each one of them was hosting a single container. As the number of container was
dropping so did the number of VMs and so did the total CPU usage.

At this point it is worth adding a couple of notes about the systems flexibility. We have
analyzed in great detail the granularity of the working nodes. Router nodes are not
aware on whether the working nodes are threads, or JVMs/processes or containers or
whatever. All those details are abstracted away in our implementation. That means that
the routers could potentially choose a worker node from any one out of these three
implemented pools. This adds great flexibility to our system. For instance if you cannot
afford to add another VM in your cluster but you want an extra boost of performance
you can add some thread workers. If you can see that you don't have the scaling you
want you then allocate a process worker that will run on its own JVM and will have its
own heap and his GC pauses will not interfere with the system at all.

Another advantage of the flexible design is that you can be even more accurate with
your performance targets. When running your nodes locally with either threads or
processes you can dynamically adjust the memory buffers that those workers use
instantly. For example if you need to add another 4550 buffer memory blocks to achieve
a hit ratio of 52% then using local thread worker or process workers you can achieve
that by adding worker with exactly that amount of buffers. Adjusting the memory buffers
on the VMs is not that easy and it would require a certain protocol to achieve that which
means more communication overhead.

We consider this flexibility a major advantage of our system. One can use this
framework to implement very complex cost efficient policies according to his exact
needs on several performance aspects, but always taking into account the budget
deposits for the operation of this specific system.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 55

6. CONCLUSION

In this research we combined two programming paradigms. We took the original idea of
[1], that developed a single node solution for Joining Stream data with disc-stored
relations near-real time. In order to keep up with the increasing traffic and data volumes
we decided to transplanted it in a fully fledged elastic distributed system. The goal of
this system is to provide real time performance for joining stream data with relational
databases. Additionally this systems is capable of adding and removing computing
nodes according to the nature and the volume of the incoming stream traffic as well as
the size of the stored relation.

We developed algorithms that :

1) First of all, distribute equal portions of stream traffic to every worker node over a
certain amount of time.

2) Need to be fair in terms of the amount of I/O that makes every worker node to
perform.

3) Use all the available memory resources of the worker nodes as efficiently as
possible. Try not to allow duplicate bocks to be cached by different worker nodes.

As far as the elasticity and flexibility of the system, at the beginning we aggressively
allocate more nodes in order to reach and overcome our target performance aspects as
fast as possible. Then as the system cools down, the router nodes might realize that we
are over performing by a big margin. So we lazily start to remove some worker nodes.
After removing some he becomes more and more lazy on removing nodes. That is
because we always favor over-performance.

We've seen that with our algorithms and task distribution we achieved liner scalability
for as long as we can increase the cache hit ration of the worker nodes. Finally the
system performed well, overcoming by a big margin the performance of the single-node
SSIJ solution.

Elastic Infrastructure for Joining Stream Data

Ν. Maravitsas 56

REFERENCES

[1] Mihaela A. Bornea, Antonios Deligiannakis, Yannis Kotidis,Vasilis Vassalos, Semi-Streamed Index
Join for Near-Real Time Execution of ETL Transformations, Proceeding ICDE '11 Proceedings of the
2011 IEEE 27th International Conference on Data Engineering, 2011, pp.159-170.

[2] A. Chakraborty and A. Singh, “A partition-based approach to support streaming updates over
persistent data in an active data warehouse,” IEEE Intern. Symposium on Parallel and Distributed
Processing, 2009.

[3] D. Burleson, “New Developments in Oracle Data Warehousing,” 2004.
[4] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,Murphy McCauley,

Michael J. Franklin, Scott Shenker, Ion Stoica, Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing, 9th USENIX Symposium on Networked Systems
Design and Implementation, 2012.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad, Distributed data-parallel programs from
sequential building blocks, EuroSys ’07, 2007.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker, and I.
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
Technical Report UCB/EECS-2011-82, EECS Department, UC Berkeley, 2011.

[7] James Turnball, The Docker Book, 2014.
[8] Docker guide, https://www.docker.com/, 2016.
[9] Kubernetes guide, http://kubernetes.io, 2016
[10] Google Cloud Platform, https://cloud.google.com/, 2016

https://www.docker.com/
http://kubernetes.io/
https://cloud.google.com/

