
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

FPGA Implementation of encoders for CCSDS Low-Density
Parity-Check (LDPC) codes.

Δημήτριος Κ. Θεοδωρόπουλος

Επιβλέπων: Αντώνιος Πασχάλης, Καθηγητής

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2015

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

FPGA Implementation of encoders for CCSDS Low-Density Parity-Check (LDPC) codes

Δημήτριος Κ. Θεοδωρόπουλος

Α.Μ.: M1321

ΕΠΙΒΛΕΠΩΝ: Αντώνιος Πασχάλης, Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Α. Αραπογιάννη , Δ. Γκιζόπουλος, Καθηγητές

Σεπτέμβριος 2015

ΠΕΡΙΛΗΨΗ
Η παρούσα διπλωματική εργασία παρουσιάζει την υλοποίηση με τεχνολογία FPGA
αλγορίθμων κωδικοποίησης καναλιού που έχουν προτυποποιηθεί από τον οργανισμό
CCSDS για χρήση σε διαστημικές επικοινωνίες.

Ο CCSDS προτείνει δύο κατηγορίες κωδίκων για εφαρμογές τηλεμετρίας: μία για
επικοινωνίες στο εγγύς (near-earth) διάστημα (π.χ. δορυφορικές επικοινωνίες) και άλλη
μια για επικοινωνίες βαθέος διαστήματος (deep-space), με χαρακτηριστικά η κάθε μία
βελτιστοποιημένα ως προς το πεδίο εφαρμογής τους. Και στις δύο περιπτώσεις, οι
κώδικες είναι γραμμικοί μπλοκ κώδικες με μεγάλο μέγεθος μπλοκ και πίνακα ισοτιμίας
με χαμηλή πυκνότητα (LDPC).

Στην περίπτωση των κωδίκων near-erth, η προδιαγραφή αφορά σε ένα κώδικα LDPC
(8160,7136) με ρυθμό 7/8, βασισμένο σε ευκλείδεια γεωμετρία, ενώ για τους κώδικες
deep-space προδιαγράφονται 9 κώδικες που προκύπτουν από 3 συνδυασμούς
μεγέθους μπλοκ (1024,4096, 16384 bits) με 3 ρυθμούς (½, 2/3, 4/5). Οι κώδικες αυτοί
μοιράζονται κοινή μαθηματική περιγραφή, γεγονός που καθιστά εφικτή την περιγραφή
με τη γλώσσα VHDL ενός κοινού κωδικοποιητή για όλους.

Στην παρούσα εργασία, γίνεται εκμετάλλευση της δομής των πινάκων-γεννητόρων των
κωδίκων deep-space προκειμένου να μεγιστοποιηθεί η απόδοση. Προκύπτουν δύο
ειδών παραλληλίες στη δομή των εν λόγω πινάκων, η ταυτόχρονη αξιοποίηση των
οποίων οδηγεί σε βελτίωση των επιδόσεων με ελαχιστοποίηση των καταναλισκόμενων
πόρων. Το τίμημα βέβαια της βελτιστοποίησης αυτής είναι κάποια αύξηση στην
απόκριση (latency) ανάλογα με τις επιλογές παραλληλίας,που ωστόσο αντιμετωπίζεται
με την λειτουργία του διαύλου της διεπαφής εξόδου με διοχέτευση (pipelining) Η
περιγραφή στη γλώσσα VHDL είναι γενική και επιτρέπει την εύκολη παραμετροποίηση
των βασικών χαρακτηριστικών του κώδικα (μέγεθος μπλοκ, ρυθμός), των βαθμών
παραλληλίας για κάθε μια από τις δύο κατηγορίες και του εύρους των διαύλων εισόδου-
εξόδου.

Αντίστοιχα στην περίπτωση του κώδικα near-earth, περιγράφεται μια αποδοτική
μέθοδος στη σχεδίαση των επί μέρους οντοτήτων του κυκλώματος που βελτιστοποιεί
την αξιοποίηση των πόρων, σε σχέση με γνωστές λύσεις. Ο κωδικοποιητής σε αυτή την
περίπτωση είναι σχεδιασμένος για διαύλους εισόδου-εξόδου μεγέθους 16 bit.

Και στις δύο περιπτώσεις η είσοδος και έξοδος δεδομένων γίνεται από δύο αντίστοιχες
διεπαφές συμβατές με το πρωτόκολλο AMBA AXI4-Stream, γεγονός που επιτρέπει την
εύκολη διασύνδεσή τους σε μια σχεδίαση SoC ή μια διεπαφή FIFO. Η λειτουργία των
κωδικοποιητών είναι βέλτιστη από την άποψη ότι παράγουν μια (σχεδόν) αδιάκοπη ροή
δεδομένων στη διεπαφή εξόδου-χωρίς να είναι απαραίτητοι αδρανείς κύκλοι.

Η περιγραφή των κωδικοποιητών σε VHDL επαληθεύεται ως προς την ορθή της
σχεδίαση με προσομοιώσεις για όλες τις υποστηριζόμενες περιπτώσεις, όπου
απαιτείται η μέγιστη κάλυψη κώδικα (code coverage). Τέλος, το σχέδιο επαλήθευσης
περιλαμβάνει την επίδειξη λειτουργίας σε ένα ενσωματωμένο σύστημα υλοποιημένο
στην κάρτα XUPV505-LX110T, όπου καταγράφονται και οι πραγματικές επιδόσεις του
συστήματος, όπου βρίσκονται στην περιοχή των μερικών Gbps. Η παρούσα υλοποίηση
προκύπτει ότι είναι η ταχύτερη για την συγκεκριμένη οικογένεια LDPC κωδικών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ψηφιακή Σχεδίαση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: LDPC, CCSDS, FPGA, near-earth, deep-space

ABSTRACT

The FPGA implementation of LDPC encoders for channel codes standardized by
CCSDS for space communication applications is described in this work.

CCSDS suggests two classes of channel codes for telemetry applications: one for near-
earth and another for deep-space communications, each one optimized for the
demands of the specific field. In both cases, the specification concerns linear block
codes with large block size and sparse generator matrices.

Regarding near-earth codes, the specification describes a Euclidean geometry based
(8160,7136) LDPC code at rate 7/8, while in the deep-space case, 9 codes are defined
which are the combination of thee block lengths (1024,4096,16384 bits) with three rates
(½, 2/3, 4/5), sharing a common mathematical description. This fact enables the VHDL
description of a common encoder for all of them.

The generator matrices of these codes possess considerable structure which facilitates
implementation. Concerning deep-space codes generator matrices, parallelism extends
over two dimensions, which can be exploited concurrently to optimize timing
performance and at the same time minimize resource utilization. The price to be paid
however is increased latency, which can be mitigated by the pipelined operation of the
output interface. VHDL description of the encoder is generic, allowing the easy
modification of the code parameters (block size, rate), the amount of parallelism in each
dimension and the input-output bus width, leading to different performance-latency
balances.

Also in the case of the near-earth code, an efficient design of the encoder's sub-entities
is described, leading to resources utilization optimizations, compared to existing
implementations. The encoder in this case is designed for 16-bit input-output bus.

All described encoders input-output is performed on AMBA AXI-4 Stream compliant
interfaces, facilitating their integration in an embedded system's design and
communication with standard FIFO interfaces. The encoders' operation is optimal in that
an uninterrupted flow of data is provided on the output interface, without idle cycles. The
only exception is the near-earth encoder for which just one idle cycle every 513 is
inserted.

The correctness of the VHDL description's is validated by functional simulation for all
supported cases, where 100% code coverage is demanded. The verification plan
includes also the demonstration of real-time operation of the encoders in an integrated
system implemented on a XUPV505-LX110T development board, where the actual
performance of the encoders is recorded and lies in the multi-Gbps range. Finally, the
proposed encoders are shown to be the fastest stream-oriented implementations for the
specified family of LDPC codes, with minimal resource utilization.

SUBJECT AREA: Digital Design

KEYWORDS: LDPC, CCSDS, FPGA, near-earth, deep-space

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervising professor, Dr. A. Paschalis for the

advice and patience exerted and also to his associates, A. Tsigkanos, N. Kranitis and

G. Theodorou for their invaluable advice and assistance.

ΠΕΡΙΕΧΟΜΕΝΑ

1. INTRODUCTION TO LDPC CODES...12

1.1 Noisy Channel Coding Introduction.. 12

1.2 Low Density Parity Check codes... 14

1.2.1 Linear Block Codes..14

1.2.2 LDPC description..14

 1.2.3 LDPC features...15

 1.2.4 LDPC performance...16

 1.3 Encoder architectures for Quasi-Cyclic codes...17

 1.3.1 Straightforward implementation...18

 1.3.2 RCE implementation...18

 1.3.3 RU encoder...19

 1.3.4 Iterative encoder..22

2. CCSDS STANDARDS... 24

2.1 AR4JA LDPC code family.. 25

2.2 C2 code for near-earth applications... 28

2.3 Frame Synchronization and CADU structure...28

2.4 Randomization.. 29

3. ENCODER DESIGN.. 30

3.1 Encoder Architecture selection.. 31

3.1.1 RCE encoder resources...31

3.1.2 Iterative encoder resources...31

3.1.3 Parallel RCE implementation..33

3.2 Components Description... 35

3.2.1 RANDOMIZER unit..38

3.2.2 Control and Buffer Unit: the general case...38

3.2.3 Control and Buffer Unit: La=1...40

3.2.4 Control and Buffer Unit: High latency case..41

3.2.5 Control and Buffer Unit: Very small Latency..43

3.2.6 Control and Buffer Unit: no HALT state...43

3.2.7 Control and Buffer Unit: C2 code...44

3.2.8 Function generators..46

4. IMPLEMENTATION.. 47

4.1 Code design and parametrization.. 47

4.2 Core synthesis.. 48

4.3 Performance.. 48

5. VERIFICATION AND VALIDATION..50

5.1 General... 50

5.2 Functional simulation.. 50

5.2.1 Testbench description..51

5.2.2 Simulation results...52

5.3 Implementation validation.. 52

5.3.1 Embedded system description: UART input..53

5.3.2 Results with UART input...55

5.3.3 Embedded system description: LFSR input..55

5.3.4 Results with LFSR input..56

6. RESULTS... 57

6.1 Comparison to other implementations: commercial products..57

6.2 Comparison to other implementations: literature...58

7. CONCLUSIONS... 61

 ACRONYMS-ABBREVIATED TERMS... 62

 REFERENCES... 63

FIGURES INDEX

Figure 1: A simplified binary noisy communication system...12

Figure 2: Capacity limits for the AWGN channel over a selection of data rates.............13

Figure 3: Tanner graph for the (7,4) Hamming code. Bold lines mark a cycle...............15

Figure 4: BER performance for the rate 4/5 k=1024 CCSDS LDPC code......................16

Figure 5: General form of the BER curve for most LDPC code......................................16

Figure 6: Generator matrix of AR4JA LDPC code with k=1024, rate 4/517

Figure 7: A straightforward encoder implementation for a QC LDPC code....................18

Figure 8: RCE encoder..19

Figure 9: The parity check matrix transformed into lower triangular form.......................19

Figure 10: From top to bottom: The parity check matrix of rate ½ k=1024 CCSDS LDPC

code, the same matrix transformed in lower triangular form and the inverse matrix......20

Figure 11: Multiplication of a sparse matrix with a vector and the corresponding

hardware..21

Figure 12: H2-1 matrices for various LDPC codes..22

Figure 13: Submatrices W of generator matrices for codes of k=1024...........................27

Figure 14: Scatter chart of the parity-check matrix of C2 LDPC code............................28

Figure 15: A possible implementation of a CCSDS pseudo-random sequence

generator..29

Figure 16: Encoder's top level diagram...30

Figure 17: Timing of data on encoder's interfaces..30

Figure 18: Iterative calculation of parity bits..32

Figure 19: A RCE module for parallel processing of Lm=4 bits of mxm circulants.........34

Figure 20: Simplified view of a parallel RCE with both sources of parallelism: La and

Lm..34

Figure 21: Encoder Block Diagram..36

Figure 22: A solution to the non-registered output TREADY_SL....................................37

Figure 23: Timing example of the proposed solution..37

Figure 24: Implementation of a parallel CCSDS pseudo-random sequence generator..38

Figure 25: Timing of data on encoder's interfaces for the general and high latency

cases..39

Figure 26: Control and Buffer Unit...39

Figure 27: Simplified state transition diagram of the FSM of the Control and Buffer

Unit...40

Figure 28: Simplified state transition diagram of the FSM of the Control and Buffer Unit

for La=1..41

Figure 29: Simplified state transition diagram of the FSM of the Control and Buffer Unit

for high latency case..42

Figure 30: Timing diagram of the FSM states for high latency case...............................42

Figure 31: Timing diagram of the FSM states for very low latency case........................43

Figure 32: Timing diagram of the FSM states for the case of no HALT state.................44

Figure 33: Timing diagram of the FSM states for C2 code...45

Figure 34: Block diagram of the embedded system for the test with UART input..........53

Figure 35: Sample terminal output..54

Figure 36: Block diagram of the embedded system for the test with LFSR generated

data..56

TABLES INDEX

Table 1: Codeword lengths for supported AR4JA codes..25

Table 2: Submatrix size and K parameter for supported codes......................................26

Table 3: Summary of the most important parameters for AR4JA family.........................26

Table 4: Bill of materials for RCE-based encoding..31

Table 5: Bill of materials for iterative encoding..33

Table 6: Resouces and speed...49

Table 7: Implementation test results with UART input data..55

Table 8: Implementation test results with LFSR generated input data...........................56

Table 9: Summary of demonstrated performance characteristics of the fastest

implementations...57

Table 10: Comparison of Implementations for C2 code..58

Table 11: Comparison of various LDPC Encoder Implementations................................60

PREFACE

The work presented in this thesis was done in partial fulfillment of the requirements for
the post-graduate program of Department of Informatics and Telecommunications of the
National and Kapodistrian University of Athens and was supported by the Digital
Systems & Computer Architecture Laboratory (DSCAL). Apart form its other areas of
activity and research, DSCAL exhibits interest in the development of applications for
space systems, including its active involvement is ESA's PROBA-3 space mission.

This work attempts to provide an efficient implementation of communication channel
codes already standardized for use in space communications by CCSDS, a multi-
national forum for the development of communications and data systems standards for
spaceflight, based on the expertise of communication experts from its participant
nations. Implementations are already parts of launched space missions (Cibola Flight
Experiment, MSL-MRO proximity link etc) and are expected to culminate in space
communications in future missions, while at the same time gathering attention from
disparate application fields, like mobile terrestrial communications (U.S.A.F. LCOT
program).

For the development of the encoders for this work, a Xilinx XUPV505-LX110T
development board was used, granted by DSCAL. Implementation was performed on
Xilinx ISE design suite using VHDL, although considerable effort was made so that the
code can be ported to other FPGA vendors without any modifications: it has been
verified to be synthesizable also in Altera Quartus software and Microsemi's Libero
suite. Simulations were executed in Mentor Graphics Modelsim .

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

1. INTRODUCTION TO LDPC CODES

The purpose of this chapter is to provide briefly the theoretical background necessary
for understanding the encoder implementation. Relevant information theory topics are
described to the minimum extent required for the adequate description of the application
and by no means intended to explain theoretical topics from a mathematically or
information theory concrete point of view.

1.1 Noisy Channel Coding Introduction

Noise is an inherent element of every communication system. A simplified version of
one such system is displayed in figure 1. Noise in space communications channels (not
accounting for weather effects at least), is modeled in almost perfect approximation by
the Additive White Gaussian Noise (AWGN) model and the channel most commonly
considered is the Binary Symmetric Channel (BSC) for a digital communications
system. In this model, noise can be represented as a binary vector n , added to the
binary sequence t transmitted on the channel, resulting in the received vector t̂ .
The purpose of the encoding process is to receive a binary sequence s and transform
it into another binary sequence t of greater length, which should depict the necessary
features to mitigate the result of the addition of the noise vector n . Considering
AGWN over a BSC, this noise vector n contains a '1' in each bit position
corresponding to a flipped bit of the finally received sequence, and this occurs with a
constant probability value “f”.The result of this encoding process is that a corresponding
decoder at the other end of the communication channel is able to provide an estimate
ŝ of the initially transmitted vector s , which is as close to it as possible. This

maximum probability of correct inference will be refined later in this chapter.

Figure 1: A simplified binary noisy communication system

Always considering AWGN over BSC, the probability of a bit flipping as a result of the
noise vector contribution to the received codeword (i.e. P(ni= 1)= f) is expressed by a
single metric for an individual bit, namely the bit error rate (BER), or equivalently the
error rate for a whole frame (Frame Error Rate, FER). For a sequence of N independent
bits, generally FER= 1− (1− BER)N , although for more interesting codes as our case
the frame contains an error if s i≠ ŝi instead of ti≠ t̂i . The value of this probability for a
single bit (P(ni= 1)= f) is a channel parameter, which for the communication model
described herein is related to the received signal energy per information bit to the (one
sided) spectral density of the white Gaussian noise, commonly referred as Eb/N0 or
Signal to Noise Ratio (SNR).

The encoded sequence t contains redundant information, decreasing thus the rate at
which actual communication occurs. In a trivial encoding example, replication codes
transmit multiple sequences of the same source bits and decoding is performed on a

D. Theodoropulos 12

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

majority basis of the value of the received sequence, at the same time though by
dividing proportionally the actual information data rate. More interesting codes exploit
redundancy more efficiently but generally there seems to be a trade-off between the
(decoded) bit error probability and the communication rate.

Before 1948, it was believed that a vanishingly small BER for given channel
characteristics (i.e. constant Eb /N0 value) requires proportionally decreasing rate. All
this changed by Claude E. Shannon in his Phd thesis [1], in which the fundamental
limits on the performance of all codes (for a given rate) were set.

In particular, Shannon associated with each channel a quantity called capacity C , up
to which reliable communication can occur with arbitrarily small BER. This quantity is a
channel feature and an equivalent interpretation in the AWGN channel is that for a
specific rate, there is a minimum Eb/N0 for which communication can occur error-free.
Figure 2 depicts this relationship for the binary input AWGN channel for a number of
communication rates.

Shannon's calculations assume an asymptotically infinite code-block length. In practical
applications though this is obviously not feasible and the theoretical capacity limit is
lower than that of fig. 2. The effect of block size on code performance is studied further
in [3].

Figure 2: Capacity limits for the AWGN channel over a selection of data rates (image from [2])

The above results only prove the feasibility of such codes. The design of the actual
codes themselves is nevertheless a different issue, out of Shannon's work scope but a
very interesting field of considerable research towards capacity approaching codes. The
channel codes implemented in this thesis belong to one such class.

D. Theodoropulos 13

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

1.2 Low Density Parity Check codes

Channel codes can be divided into two major types depending on the grouping of input
information in constant size packets (block codes) and the encoding of a continuous
stream of data (convolution codes). The codes examined herein belong to the first
class. Block codes are further divided into linear and non-linear ones, the latter having
never been used in practice. Consequently, we are interested in linear block codes.

1.2.1 Linear Block Codes

For a block code, information source bits are grouped into blocks of k bits. The
encoding process transforms these into a n -bit codeword, where n>k , adding thus
n− k bits of redundant information. For the code to be considered linear, the

ensemble of 2k possible codewords should form a k-dimensional subspace in the
vector space F2

n . According to this definition, if s∈ F2
k and t∈ F2

n are row vectors
corresponding to the information block and encoded codeword respectively, there exists
a k∗ n binary matrix, the rows of which are k linearly independent codewords and
t∈ F2

n is a linear combination of them. Consequently, the encoding process can be
described as the operation t∈ F2

n (performed in GF2). The matrix G is known as the
generator matrix and the code itself as a (n,k) linear block code.

The code can be alternatively described by the null space of a different binary matrix H,
such that for every valid codeword t∈ F2

n : t HT= 0 (zero vector). The H matrix
dimensions are (n− k)∗ n , assuming full rank (rank deficient matrices are also
possible as it will be the case for one of the CCSDS codes of interest) and GHT= 0 .
The H matrix is called the parity check matrix and because it is the null space of the
code, it can be perceived as the expression of the constraints an arbitrary binary
sequence should satisfied in order to be considered as a valid codeword.

Codes in which the first k bits of the codewords are the uncoded source information
bits are called systematic. The codes implemented in this thesis are all systematic. This
feature facilitates decoding and other optimizations in the receiver.

1.2.2 LDPC description

LDPC codes where introduced in 1960 by Gallager [4], but generally ignored in the
following years due to the current era's technology limitations, which could not allow
their implementation at a reasonable cost.

These codes are generally characterized by a sparse parity check matrix H, i.e. a matrix
with a very low density of “1s”. An absolute definition of sparsity in not defined in
literature, but densities up to 1% qualify for the characterization [5]. This sparsity of H
matrix coefficients is a key feature for reduced complexity implementation.

One exception to the oblivion in which LDPC codes succumbed after their invention was
the work of Tanner in 1981 [6]. Among other things, he introduced a graphical
representation of these codes in what are currently widely known as Tanner graphs.
The Tanner graph is a bipartite graph in which node fall into two categories: check
nodes and variable nodes, the former expressing the constraints on codewords and the
latter the received encoded bits. A connection between a variable node v i and a
check node c j is drawn if the corresponding element hij in the parity check matrix is

D. Theodoropulos 14

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

1. The representation is valid for all linear block codes and a Tanner graph for the well
known (7,4) Hamming code is displayed in fig. 3. For LDPC codes this representation
facilitates the description of the decoder based on a message passing algorithm
between the nodes of the Tanner graph [7].

Figure 3: Tanner graph for the (7,4) Hamming code. Bold lines mark a cycle.

1.2.3 LDPC features

An LDPC code is described as regular when its parity check matrix has a constant
column weight, say γ and constant row weight ρ. Such a code is said to be (γ,ρ) regular.
In contrast, irregular codes have multiple weights. The CCDS codes are all regular.

The parity check matrices of initial Gallager codes possessed no other structure except
being linear block codes. The problem is that implementation complexity makes their
application prohibitive. A desirable structure to facilitate implementation is that of cyclic
codes: each row of the parity matrix H is a cyclic shift of the previous one. Since each
check equation is related to the previous in a very specific way, encoder complexity is
substantial: it is built by simple elements around a shift register. More interesting codes
though are built using a viable compromise between complexity and performance, using
a quasi-cyclic (QC) structure. The parity check matrix of these codes consists of an
array of juxtaposed cyclic submatrices called circulants. The general form of such a
matrix is the following:

H=[A11 A12 . . . A1N
A21 A22 . . . A2N
.
AM 1 AM 2 . . .AMN

]
Each sub-matrix A ij is a cyclic matrix with a very low density of ones. The
implemented codes in this thesis belong to this class of LDPC codes.

The design of the code for this class of LDPC codes is consequently reduced to the task
of defining the optimum position of 1s in the parity check matrix. Several techniques and
mathematical tools are employed and considerable research is always hot on these
topics. Generally, design techniques are classified in two big categories: a) random or
pseudo-random codes, which use computer-based algorithms or methods and b)
algebraic codes which use mathematical or combinatorial tools such as finite
geometries and combinatorial designs. The codes implemented here belong to both
categories. In particular, AR4JA codes were generated by a pseudo-random algorithm
based on a design entity known as a protograph. This is simply a Tanner graph with a
low number of nodes, which is repeated (consider placing a number of such graphs
side-by side). Connection lines between variable and check nodes of the expanded
super-graph are permuted in a pseudo-random manner. The number of repetitions and

D. Theodoropulos 15

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

the permutations pattern is a result of advanced techniques (density evolution,
progressive edge growth). An introduction to this topic is included in [8].

A common feature shared among the most interesting LDPC codes is the Row-Column
(RC) constraint: no two rows or two columns are allowed to have a '1' in more than one
position at the same time: for example codewords “01001101...” and “11101010..”
belong to a non-conformant code because there is a '1' at positions 2 and 5 (at least).
The presence of this constraint ensures that the minimum distance of a (γ,ρ) irregular
code is at least γ+1. Moreover, it precludes cycles of length 4 in the Tanner graph of the
code. Cycles in a graph are structures in the form of a path in a graph from one node
back to itself. One such path in displayed with bold lines in fig. 4 for the Hamming code.
These structures jeopardize the code performance, as it will be mentioned in next
paragraph.

1.2.4 LDPC performance

LDPC codes are the most promising solution towards capacity approaching
performance. The most obvious performance metric is the BER or FER performance, or
in other words, how close to the Shannon capacity limit these codes can approach. In
fig. 4, simulation results for the AR4JA rate 3/4, block length 1024 bits LDPC code are
presented. Decoding is performed in a software (MATLAB) implementation of the
iterative Sum of Products Algorithm (SPA). For the number of simulation iterations
specified in this test, BER was zero for Eb/N0 grater than roughly 2,5 dB.

Figure 4: BER performance for the rate 4/5 k=1024
CCSDS LDPC code

Figure 5: General form of the BER
curve for most LDPC code

The BER curve of a code is generally partitioned into three regions displayed on fig. 5:
the non-performing region (black), the waterfall region (blue) and the floor region (red).
For extremely low SNR values, there is no point to introduce a channel code since the
errors are so many that the decoder will try to converge most probably towards another
completely different codeword (with smaller distance to the erroneously received). The
code is non-operational in this region. Above a certain limit of Eb/N0 value called the
threshold, the waterfall region begins: this is recognized as an abrupt slope int the
plot and it is the area where the code performs optimally. There is however a point
where this abrupt transition halts or even the curve remains constant. This is known as

D. Theodoropulos 16

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

the error floor and it is the point where the code becomes inefficient. This weakness is
a common feature of all LDPC codes and it is caused mainly by undesirable structures
in the Tanner graph of the code such as trapping sets or stopping sets. For reasons
that remain unknown, there seems to be a trade-off between low threshold and low
error floor [9].

Decoder complexity is another performance parameter for LDPC codes. Generally,
decoding is performed by an iterative belief propagation algorithm in which variable
nodes and check nodes exchange messages conveying likelihood information. The
number of steps required for decoding may limit the actual data rate of the
communication and this is especially important for high data rates.

Generally, the code performance is a still unknown function of a number of code
parameters and structures in the Tanner graph and the LDPC codes exhibit a wide
diversity of characteristics. The area is open for research. An introduction to
performance considerations can be found in [9].

1.3 Encoder architectures for Quasi-Cyclic codes.

Encoding process of a linear block code is in essence nothing more than a matrix
multiplication over GF2 . The encoded vector is t= s∗ G , where G is the generator
matrix and s the input vector.

The circulant structure of the parity check matrix can be exploited to facilitate the
encoding process. With suitable transformations, it is possible to calculate the
Generator matrix in systematic circulant form and limit the encoder's complexity to being
just linear with the block length [10]. The circulants though of the resulting generator
matrix from this process are dense circulant matrices. Figure 6 displays the shape of
such a systematic circulant matrix for one of the codes of interest. A '1' in this image is
represented by a white pixel, whereas a '0' is black.

Figure 6: Generator matrix of AR4JA LDPC code with k=1024, rate 4/5 (punctured bits included)

The systematic output of the encoder with a generator matrix in this form is the direct
output of the input bits. The non-systematic part of the output can be implemented by
simple shift registers, as shown below.

D. Theodoropulos 17

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

1.3.1 Straightforward implementation

A straightforward solution for the multiplication of a row vector with a systematic
circulant matrix is displayed on fig. 7. Codeword length is n, input block size is k and
circulant size is m

Initially the last n-k bits of the Generator matrix are stored in the cyclic shift registers at
the top of the image. These bits correspond to the first rows of the first row of circulants
in the generator matrix. The first information bit to arrive is ANDed with this vector, and
the resulting vector is XORed with the current value of the accumulator at the lower end
of the image. The accumulator stores the result of this XOR operation. Then the shift
registers containing the circulants of the generator matrix are cyclically shifted one
position to construct the second row of the generator matrix; the result is multiplied by
the next message bit and added to the accumulator. This process is repeated m times
to complete the first row of circulants in the generator matrix.

After the AND-XOR operation corresponding to the last row of circulants is completed,
the shift registers do not perform a shift operation but a load instead: the next row is
loaded and the above steps are repeated until all information bits have arrived at the
encoder. During all these steps, arriving input bits form the systematic part of the output.

This straightforward implementation requires 2(n-k) storage elements (flip-flops) and
k(n-k) AND-XOR operations.

Figure 7: A straightforward encoder implementation for a QC LDPC code

1.3.2 RCE implementation

A more efficient approach is given in [11], henceforth mentioned as RCE encoder. The
encoder's architecture is displayed in Figure 8 and it makes use of the ideas applied to
the design of convolutional codes, namely the encoder structure of a Recursive
Convolutional Encoder (RCE).

D. Theodoropulos 18

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

The idea behind this implementation is to keep the circulants values stationary and
cyclically shift the accumulator bits instead. The generator matrix values become
combinational functions of an input message bits counter.

During the information bits input, the (systematic output of the encoder is these input
bits: the selectors in the RCEs are set to perform the cyclic shift and the output selector
is set to the upper position to select the input. Upon completion of the calculation the
selectors positions are switched and the calculated parity bits are simply shifted out of
the RCEs.

Figure 8: RCE encoder

1.3.3 RU encoder

In 2001 Thomas Richardson and Rüdiger Urbanke demonstrated a reduced complexity
encoder for LDPC codes [12]. As a first step, the parity check matrix is rearranged into
in an approximately lower triangular form through reordering of rows and columns. The
resulting matrix has the general shape of fig. 9.

Figure 9: The parity check matrix transformed into lower triangular form

Since the original matrix is sparse, the sub-matrices A, B C, D are also sparse. The
elements of matrix T are all zero above a certain diagonal. Without describing the
mathematical details of the work in [12], we use only their result, keeping the notation
though consistent. For a systematic code, the k=M-N input vector s is encoded as a
systematic codeword t= [s p1 p2] , where parity bits are partitioned in two sub-vectors
p1 p2 . The steps are outlined below.

Firstly, calculate φ= ΕΤ− 1B+D , which is a dense g x g matrix. The first parity bit
vector is p1

T= φ−1(ΕΤ− 1 Α+C)sT and the second is p2
T= T− 1(AsT+B p1

T) . This
calculation involves several sparse matrices and for several interesting codes (including
the CCSDS AR4JA examined here), T is the identity matrix. As a result, the above

D. Theodoropulos 19

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

equations are further simplified into the following: φ= ΕB+D , p1
T= φ−1(ΕΑ+C)sT and

p2
T= AsT+B p1

T . The dense matrix φ can be precomputed in advance, while other
operations on sparse matrices can be calculated using simplified hardware.

As an example, the corresponding matrices for one of the codes implemented in this
thesis are displayed in fig. 10.

Figure 10: From top to bottom: The parity check matrix of rate ½ k=1024 CCSDS LDPC code, the

same matrix transformed in lower triangular form and the inverse matrix φ−1 . Each rectangular

is 512x512 bits. The φ−1 matrix is also 512x512, consisting of 64x64 submatrices.

D. Theodoropulos 20

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

The dense matrix operations are calculated using a usual encoder such as those
described in previous chapters. For sparse matrix operations, a simplified architecture is
displayed in fig. 11.

Figure 11: Multiplication of a sparse matrix with a vector and the corresponding hardware[13]

The sparse matrix is constructed from circulant submatrices of size N. The circuit on the
figure performs a multiplication of a vector of size 4N with a sparse matrix 4Nx8N. As
incoming information bits arrive, the multiplexors below the shift registers select which
bit of the shift register is going to be subject to modification by the XOR gate. This is
easy to understand since from the N bits of the circulant, only one is going to take part
in the parity calculation at each step. A (hopefully) small memory controls the MUX
operations. More XOR gates are needed in case the sparse matrix is not a rotated
identity matrix like those in the given example.

The iterative encoder calculates parity bits directly from the parity-check matrix instead
of the generator. This can lead to high performance parallel encoders, provided that the
corresponding LDPC codes are amenable to the modifications described in Richardson-
Urbanke work (very low value of g). This is the case with LDPC codes employed in
DVB-T and 802.16ac standards for which encoders have been proposed in the multi-
gigabits per second range speed [14] [15].

D. Theodoropulos 21

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

1.3.4 Iterative encoder

In the special case where g=0 (fig. 9), the parity check matrix is simplified into a lower-
triangular form, the structure of which can be exploited in order to create especially
optimized high-throughput encoders. Like in RU method, parity bits can be directly
calculated from the parity-check matrix using back-substitution: Let c = [m p] be a
codeword block, where m and p indicate the information bit sequence and the parity bit
sequence, respectively and H=[H1 H2] the parity-check matrix partitioned into two sub-
matrices H1 and H2 of suitable size to correspond to the multiplication operations
detailed below. From the property that the correct codeword satisfies the parity check
equation, the parity bit sequence p can be derived as follows:

H⋅ cT= H1⋅ m
T+H 2⋅ p

T => pT=H 2
−1H 1⋅m

T

Matrix H1 is sparse in all LDPC codes but this is not always the case for H2
-1 matrix,

which is generally sparse. LDPC codes designed with encoding efficiency as a primary
goal contain significant structure in these codes. Efficient encoders for the applicable
codes can take advantage of these structures to maximize throughput while keeping
resource utilization at a minimum.
Examples of such codes are LDPC codes for IEEE 802.11ac and DVB standards. In the
former case, H2

-1 matrix consists of rotated identity submatrices, while in DVB-S2 it is
an upper triangular matrix (fig. 12). In all cases, the sparse matrix operation H 1⋅p

T

between the sparse matrix H1 and the vector m can be performed in a highly parallel
way, which can even be performed in just one clock cycle. For 802.11ac, the last
multiplication with H2

-1 can be performed in parallel with shift registers and back-forward
accumulation [16] in just a few clock cycles (depending on the rotated identity matrix
size in H2

-1). In a similar way, the structure of H2
-1 in DVB-S2 corresponds to a trivial

forward substitution operation [17]. Encoders have been proposed for such codes in
[16], [17], [18], [19] with performance in the multi-Gbps range.

Figure 12: H2
-1 matrices for various LDPC codes: AR4JA code (left),DVB-S2 (right-top),

IEEE802.11ac (right bottom). Left image identity matrix stressed for emphasis.

D. Theodoropulos 22

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

These highly parallel architectures however are not suitable for the codes considered in
the current work. Considering fig. 12, this is obvious. Indeed, the matrix for AR4JA
codes (rate ½, k=1024 in the case depicted) consists of a 512×512 identity matrix on
the left and a 12×8 array of 128x128 dense circulants. This matrix is apparently more
complicated than the generator matrix of the code and there is absolutely no benefit if
this algorithm is followed. Instead, hardware requirements are expected to be even
larger because of the calculation of the (unnecessary) omitted punctured parity bits.
Similar assumptions hold also for other examples of LDPC codes whose parity-check
matrix exhibits similar structure.

D. Theodoropulos 23

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

2. CCSDS STANDARDS

The Consultative Committee for Space Data Systems was found in 1982 by the major
space agencies of the world and it is a multinational forum for the development of
communication and data systems standards for spaceflights.

CCSDS protocols, collectively known as Space Communication Protocol Specifications
(SCPS) are generally based on well-known Internet protocols, with the necessary
modifications and extensions to cope with the specific space demands. For an
introduction to CCSDS space communication protocols, reference [20] is a starting
point.

CCSDS standards follow a color code according to which, “yellow” publications start as
experimental and are finally standardized as “blue” books, which is the color of the
recommended publications. Books colored “green” are information reports, generally
providing the rationale behind the adoption of each standard or other information of
general interest.

In this work, the focus is on the data link layer, in which four Space Data Link Protocols
(SDLPs) have been developed:

• Telemetry SDLP (TM-SDLP) is used mainly by spacecraft systems for the
emission of sensor data and systems readings.

• Telecommand SDLP (TC-SDLP) for commands from a ground station (or another
spacecraft) to a spacecraft.

• Advanced Orbiting Systems SDLP (AOS-SDLP) is an extension to TM-SDLP for
bidirectional exchange of on-line information like audio and video.

• Proximity-1 Space Link Protocol for short-range bidirectional links between fixed
probes, landers, rovers, orbiting constellations and orbiting relays. Proximity-1 is
an altogether different protocol stack from the previous one (SCPS) but obviously
has a data link layer.

The data link layer's lowest functions are synchronization of upper layer Protocol
Data Units (PDUs), called Transfer Frames (TF), randomization and channel coding.
These functions belong to a sublayer of data link layer called synchronization and
channel coding sublayer. TM and AOS SDLPs share the same synchronization and
channel coding sublayer specification.

The excellent performance characteristics of LDPC codes led CCSDS to adopt them in
synchronization and channel coding sublayer of TM-SDLP and recently in Proximity-1
data link layer.

Two classes of LDPC codes were adopted for use in TM-SDLP: one class of codes
optimized for deep-space applications (AR4JA) and another for near-earth (C2).
Interestingly though, one particular code of the AR4JA family (k=1024 rate ½) was
selected for Proximity-1 coding and synchronization sublayer.

In the first case, for deep space communications, good Eb/N0 performance is more
important than high data rates. Communication data rates are lower and the bandwidth
expansion caused by lower channel code rates can be tolerated. Low error floors are an
important parameter defining the SNR performance of the code and for the codes of this
family, they achieve a fair combination of low threshold and low error-floor. The CCSDS
standards define nine LDPC codes for this family, sharing a common mathematical
description. The total number of nine codes is the result of the combination of three
block length sizes of 1024, 4096 and 16384 bits over three code rates: 1/2, 2/3 and 4/5.

D. Theodoropulos 24

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

In the second case, for Near Earth communications, data is transmitted at hundredths of
Mbps in 375Mhz restricted band. Higher data rates are important in this case, together
with fast convergence of the (iterative) decoder. Error floor should be very low (<10 -10

BER) also. For these reasons, CCSDS adopted a (8176,7156) LDPC code for these
communications, henceforth described as C2 after [21].

The selected code rates are 1/2, 2/3, 4/5, and approximately 7/8, which are about
uniformly spaced by 1 dB on the rate-dependent capacity curve for the binary-input
AWGN channel [2]. Near rate 1/2, a one-percent improvement in bandwidth efficiency
costs about 0.02 dB in power efficiency; near rate 7/8, a one-percent improvement in
bandwidth efficiency costs 0.1 dB in power efficiency.

Within the AR4JA family, the selected block lengths (k=1024, 4096 and 16384) are
about uniformly spaced by 0.6 dB on the sphere-packing bound at WER=10 -8. By
choosing to keep k constant among family members, rather than n (codeword length),
the spacecraft’s command and data handling system can generate data frames without
knowledge of the code rate. To simplify implementation, the code rates are exact ratios
of small integers, and the choices of k are powers of two.

Since the LDPC codes implemented in this thesis are already a standard publicly
available in [22], the description that follows is limited to the necessary features for the
better understanding of the implementation section that follows. Further insight on the
performance characteristics of the adopted codes is provided in [2].

Real-life implementations of the proposed standards exist and they are continuously
growing. NASA adopted the AR4JA for the MSL(Curiosity) to MRO link. Proximity-1
LDPC code was also the choice for all links of the Constellation program. Code C2 (rate
7/8) was the choice for LDCM (Landsat 8) and NOAA's geostationary satellite GOES.

2.1 AR4JA LDPC code family

TF (information block) length for each of the 9 codes is given on Table 1.

An important feature of this family is that the codes are punctured, meaning that not all
of the encoded bits are transmitted. Parity check matrices include additional linearly
dependent rows.

Table 1: Codeword lengths for supported AR4JA codes (in bits

Transfer Frame
length (k)

Codeword length (n)

1/2 2/3 4/5

1024 2048 1536 1280

4096 8192 6144 5120

16384 32768 24576 20480

The parity check matrix of this code is a juxtaposition of circulant sparse M×M
submatrices. The value of the parameter M is given on Table 2.

D. Theodoropulos 25

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Table 2: Submatrix size and K parameter for supported codes

Rate 1/2 2/3 4/5

Submatrix size M

Transfer Frame
length (k)

1024 512 256 128

4096 2048 1024 512

16384 8192 4096 2048

K parameter
2 4 8

The positions of 1 in the parity check matrix are provided by the standard as a formula
and they can be easily implemented in MATLAB. One pictorial example of a parity
check matrix was displayed on fig. 10 for the k=1024 rate ½ member.

The generator matrix for each member of the family has the form G= [IMKW] , where
IMK is the MKxMK identity matrix and W is a dense matrix of size MKx3M. Matrix W

is calculated in systematic-circulant form, according to a methodology provided in [23].
The punctured bits can be omitted from the generator matrix during the encoding
process and the matrix W can be simplified to MKx2.

The submatrix W is also an array of juxtaposed circulants. The parameter m describes
the circulant size of the generator submatrix W and its value is for all members m=M/4.
It follows that the submatrix W is consequently a 4Kx8 array of m×m circulants. Note
that parameter K is related only to the code rate and is independent of block length! For
better intuition into the structure of the generator matrix, fig. 13 displays the W
submatrices for all k=1024 codes. Also, the code parameters defined so far are of high
importance for the encoder's design. Table 3 summarizes them briefly. These
parameters and images are important for the description of encoder operation.

Table 3: Summary of the most important parameters for AR4JA family

Parameter Description

k Transfer Frame block length

n Codeword length

M H matrix circulant size, depends on rate and k

m G matrix circulant size, equals M/4

K Describes G matrix vertical dimension as a function of m, equals k/M

D. Theodoropulos 26

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Figure 13: Submatrices W of generator matrices for codes of k=1024.

It is very important to note that for all members of the family, there are always 8
circulant columns. Also note that the number of circulant rows depends only on the code
rate and not the block length (k). These notes will enable the development of a single
parametric VHDL model for the encoder to cover all the members of the family.

D. Theodoropulos 27

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

2.2 C2 code for near-earth applications

According to the standard, (8160,7136) C2 LDPC code is an expurgated, shortened,
and extended version of a basic (8176,7156) LDPC code, based on Euclidean
geometry. The important features of the code needed for the design of a suitable
encoder are the following:

• A TF of 7136 bits is provided for encoding, to which 18 zero bits are prepended.
The reason for this is to ensure that incoming information block is divided by 8
and 16, which is the word length of many microprocessor buses.

• The 18 prepended zeros take part in the encoding process, but they are not
transmitted as a part of the systematic output of the encoder. To ensure though
that the output is also divided by 8 and 16, two filling zero bits are appended to
the final codeword to produce an 8160 bit output.

• Parity check matrix is quasi-cyclic: is consists of a 2×14 array of 511×511 sparse
circulants (image 13). Generator matrix in systematic circulant form is provided in
the standard. The non-systematic part of it is a 14×2 array of 511×511 dense
circulants.

Figure 14: Scatter chart of the parity-check matrix of C2 LDPC code

2.3 Frame Synchronization and CADU structure

At the receiving end, a method is required for discerning the boundaries of codewords in
the received stream of code symbols, or else decoding process would fail: the decoding
algorithm would be applied to the wrong sequence of received bits.

CCSDS standards require that LDPC codewords shall be synchronized with a specially
designed bit sequence, called Attached Sync Marker (ASM). For AR4JA codes, this
sequence is 64 bit, while for C2, a 32-bit sequence has been adopted. Note that the 64-
bit ASM is the same for TM SDLP and Proximity-1.

D. Theodoropulos 28

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

The ASM patterns in hexadecimal notation are the following:

AR4JA: 034776C7272895B0

C2: 1ACFFC1D

ASM sequence is prepended to the encoded codeword to form a data unit called
Channel Access Data Unit (CADU).

2.4 Randomization

The correct operation of the receiver requires that incoming data should contain
adequate transition density of received symbols. Transitions help receiver maintain
symbol synchronization with the coded symbol boundaries in the received signal. In
addition, short periodic data patterns generate spurious frequencies which impair
receiver's performance. The absence of randomization in the encoded data has been
the source of several unexpected problems with the telemetry links of a number of
projects [20]. Consequently, randomization is highly recommended by CCSDS
standards, although not mandatory.

Randomization is assured through the bit-wise addition of the codeword data with a
pseudo-random sequence generated by the polynomial h(x)= x8+x7+x5+x3+1 . This
polynomial can be implemented an 8-bit Linear Feedback Shift Register (LFSR). A
possible implementation of the LFSR provided in the standard is displayed on fig. 15
with a Fibonacci LFSR. At the beginning of each codeword, the LFSR is initialized to all
1s. The pseudo-random sequence is repeated every 255 bits until the end of the
codeword.

It is important to note that the ASM sequence defined in previous paragraph is already
optimized for transition density and should not be subject to randomization. Also, the
specified randomization sequence remains the same for all protocols.

Figure 15: A possible implementation of a CCSDS pseudo-random sequence generator[22].

D. Theodoropulos 29

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

3. ENCODER DESIGN

Having provided the necessary background for the description of the implementation,
this chapter moves on to the implementation itself. A single encoder top entity is
designed for all members of CCSDS LDPC codes and the corresponding diagram is
displayed on fig. 16.

The encoder receives a continuous stream of data and produces a stream of CADUs.
The receiving (slave) and transmitting (master) interfaces conform to AMBA 4 AXI4-
Stream protocol [24] and are built according to the simplest possible configuration
allowed by the protocol specification.

Figure 16: Encoder's top level diagram

The data buses are Lm×La bits wide. The meaning of the parameters Lm and La is to be
clarified in this chapter. Valid data are framed by TVALID signal and a TREADY signal
signifies the availability of the interface. According to the specification, for a transfer to
occur both the TVALID and TREADY signals must be asserted at a rising clock edge.

No other signaling triggers the encoder to initiate the synthesis of a CADU other than
the presence of valid data on the slave bus and the boundaries between successive
TFs are not marked by any handshake signals but are kept by the encoder's counters
instead. For maximum performance, the master (output) interface should be busy 100%
of the time and this means that idle cycles should be imposed on the receiving (slave)
interface through the AXI-4 Stream handshake signals. The timing of input and output
data is displayed on fig. 17.

Figure 17: Timing of data on encoder's interfaces

D. Theodoropulos 30

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

3.1 Encoder Architecture selection

In §1.3 the general encoder architectures were briefly presented. Among the proposed
architectures, the one that is most suitable for the characteristics of CCSDS codes
needs to be selected for implementation.

The advantages of RCE encoder over the straightforward implementation are self-
evident and have already been amply described in [11] and [13]. Consequently, the
straightforward implementation is not subject to further investigation. Following the
analysis for iterative encoders in §1.3.4, they are also excluded from investigation. The
choice is to be made among the two remaining options, namely the RCE and RU
encoder, based on the combination of resources and the performance each method can
achieve. This analysis is similar to the work in [13], with the difference that a real AR4JA
code is taken as an example here instead of the (small) example code considered in
that paper. In addition, this work focuses on FPGA implementation possibilities.

3.1.1 RCE encoder resources

For all members of the AR4JA family, the generator matrix is composed of eight
circulant columns for which eight RCEs similar to those displayed on fig. 8 can be used.
Each RCE is implemented with m flip-flops (F/F), m 2-input AND operations and m 2-
input XOR operations. The circulants are implemented by m function generators of
ceil(log2(k/m)) inputs. For the interconnection of the RCEs, a negligible amount of
resources are needed. In particular, 8 2-input multiplexors to select the desired input for
the RCE (switches in fig. 8) and a small amount of control logic to activate them, not
taken into consideration. The necessary resources are listed on Table 4.

Table 4: Bill of materials for RCE-based encoding

Resource # needed Example for k=1024 rate 1/2

AND 8xm 1024

XOR 8xm 1024

F/F 8xm 1024

ceil(log2(k/m))
input function

generators
8xm 1024 (3-input)

2-input
multiplexors

8 8

3.1.2 Iterative encoder resources

The calculations based on Richardson-Urbanke work [12] can be executed according to
the flow diagram of fig. 18 for maximum parallelism. The partition of parity-check matrix
into submatrices is repeated from figure 9 for easier understanding.

The encoding process entails one dense matrix multiplication and two sparse. The
partial products are added in the end. For the dense matrix multiplication in the first
stage, RCE encoders shall be employed. The dense matrix J is quasi-cyclic: it is a

D. Theodoropulos 31

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

4×(k/m) array of m×m circulants. Following an analysis similar to the previous
paragraph, the resources for the RCEs corresponding to the column J stage of Table 5
are calculated.

Figure 18: Iterative calculation of parity bits

Sparse matrices multiplications can be efficiently executed by the circuit of figure 11.
For each circulant of size m this configuration needs 1 XOR operation, m F/Fs for
implementation of the shift register, 1 m-input encoder and m OR operations between
the elements of the shift registers to multiplex the input to the F/Fs between the value of
the previous register and the input from the decoder. The last requirement for the shift
registers was not taken into account in [13]. The control logic for x circulant rows can be
implemented by a function generator of ceil(log2(x)).

Matrix A is an 8×4K array of m×m circulants. The first 4 rows are always zero, so the
function generator required for the control logic can be simplified to 2 inputs. Column.

Similarly, matrix B is an 8×4 array of m×m circulants. Resource reuse between stages A
and B cannot be established for pipeline operation, so independent hardware should be
allocated to these two stages. Table 5 summarizes the results.

A comparison between the two matrices justifies the assumption that the iterative
encoder –at least at this form- is not an appealing proposal. The simplification of the
functions generators and the reduced number of AND and XOR functions of the iterative
encoder implementation are balanced by the increased number of flip-flops, the addition
of the OR functions amidst the elements of the shift registers and the large multiplexors
and decoders Another important drawback of the iterative encoder is the higher latency
introduced. B stage operations cannot start before all bits of the TF have been
processed by stages A and J.

As stated in [13], modifications could be made to the standard's code design without
significant impact on the BER performance of the code. This however is an area of
considerable interest and research of information theory and future developments are
heavily anticipated.

In this thesis, the design based on the RCE is selected for the implementation of the
CCSDS LDPC codes. Optimizations of the basic design are presented in next
paragraph

D. Theodoropulos 32

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Table 5: Bill of materials for iterative encoding

Resource # J stage #A stage #B stage
TOTAL (example for

k=1024 rate 1/2)

AND 4xm - - 512

XOR 4xm 4xK 32 512+8+32=552

F/F 4xm 4xKxm 4xm 512+1024+512=2048

1 input
function

generators
4xmxK - - 1024

3 input
function

generator
- - 4 4

2 input
function

generators
4xK - 8

2-input
multiplexors

k/m - - 8

m-input
multiplexor

- 4xK 4 12 (128-input)

m-input
decoder

- 4xK 4 12 (128-input)

OR - 4xKxm 4xm 1024+512=1536

3.1.3 Parallel RCE implementation

The RCE described so far (fig. 8) is capable of serial (one bit at a time) output of the
calculated parity bits. A parallel output of a number of Lm bits can be produced with a
modification of the basic RCE according to fig. 19. In the image, Lm=4 for easier
understanding. Note that shift operations have a step of Lm bits to the right, instead of
one in the shift register of figure 8.

Alternatively, the input at each register can be conceived as a function generator of the
Lm information bits and the log2(k/m) bits of each function generator fi. It follows that
increasing the Lm parallelism leads to larger combinational paths in the design but at the
same time it increases throughput.

Another source of parallelism can arise from the structure of the generator matrix. For
all members of the family, it consists of k/m circulants of size m×m each. Two or more
circulants (generally La) can be processed at the same time, provided that the
corresponding input information bits are available. The partial products of the multiple
circulants are XORed. Figure 20 is a simplified diagram showing this possibility.
Different colors are employed to show the parts of the generator matrix for which each
branch of AND-XOR operations is responsible.

The two sources of parallelism are are thus described by two corresponding degrees:
Lm describes the successive bits parallelism and La multiple circulants parallelism.

D. Theodoropulos 33

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Figure 19: A RCE module for parallel processing of Lm=4 bits of mxm circulants.

Figure 20: Simplified view of a parallel RCE with both sources of parallelism: La and Lm.

D. Theodoropulos 34

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Increasing La parallelism comes with the advantage of simplification of the function
generators (fi, gi, hi, ii in fig. 20) for the values of the generator matrix. In the example
given in this figure, the 3-input functions generators necessary for 8 rows of circulants
of the generator matrix are simplified to just 1-input. Since this simplification affects all
the 8xm functions generator for all the parity bits of the code, considerable amounts of
resources can be saved, leading to more efficient encoders.

On the other hand, the information bits corresponding to a number of La circulants need
to be available for the RCE operation to begin. In cases where the information bits
arrive at the encoder as a stream of data, buffer structures are necessary to save them
until the required amount for processing has arrived. These buffer structures and the
control logic required for their operation place demands on the resources budget of the
design. In fact, the amount of memory required is not just mLa bits, but double this
(2×m×La) for uninterrupted operation. In addition, the commencement of parity
calculations for a given TF has to be delayed for at least (La-1)×(m/Lm)/La clock cycles,
introducing an equal amount of latency.

The product of these two sources of parallelism (Lm×La) can give the total combined
degree of parallelism of the encoder which describes the total number of input bits to
the encoder. Generally, this number should be a power of two, so as to match the width
of computer buses. For optimal performance, calculated parity bits should also be
output in the same number. For La>1 and optimal performance (i.e. LaxLm bits output), it
is not possible to just shift out the calculated parity bits, like the encoder of fig. 8 or
fig.19. The La×Lm output parity bits are selected each time from a multiplexor shown in
fig. 20. The multiplexor and associated control logic are another source of complexity as
a result of an encoder selection with La>1.

For AR4JA codes, the encoders described in this thesis implement every reasonable
combination of La and Lm parallelism for a given amount of total parallelism (La×Lm),
leading to different compromises between latency, speed and resource utilization.
These results are provided in a subsequent chapter. The degrees of parallelism are
design parameters statically defined for each individual implementation. An obvious
limitation in the value of La is that it cannot exceed the number of the circulant rows of
the generator matrix. For example, for all rate ½ AR4JA codes it cannot exceed the
value of 8.

For C2 code, the circulant size is 511 bits. Any value of La parameter other than one
would impose very high latency and at the same time require a large number of memory
for FIFO and PRCE structures, so it avoided and only the case of La=1 is considered for
this code. Lm parallelism is constant at 16 bits for this encoder.

3.2 Components Description

This paragraph describes the implemented encoder a block diagram of which is
displayed on fig. 21. The parallel RCE of fig 20 has been incorporated and can be
recognized in the figure.

The Control and Buffer unit implements the receiving interface and accumulates
incoming data until the necessary amount has arrived for RCE operation to start. For a
given value of the La parameter, the parallel RCE of fig. 20 is not able to operate
(efficiently) until all the La branches of the PRCE tree have data to process. In particular,
(La-1)m+LaLm bits need to have arrived to the Control and Buffer unit for the calculation
of parity bits to begin. The Lm bits of the La circulants concurrently being processed by
the parallel RCE are applied to it through s_feed signal. The shift registers of the
encoder are controlled by two signals issued from the Control Unit: mac_en signal,

D. Theodoropulos 35

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

which is the clock enable of the corresponding registers and reset_prce, which re-
initializes the contents of the registers to all zeros after parity calculation and export of
each CADU.

Figure 21: Encoder Block Diagram.

At the same time, incoming information bits form the receiving interface form the
systematic part of the CADU. The systematic output, in which the ASM sequence is
included, is multiplexed with the parity bits by the MUX at the upper part of the image, to
select the output vector.

If randomization has been selected, the bits of the CCSDS pseudo-random sequence
generator are XORed with the output of the MUX. The operation of the randomization
circuit is controlled by the rand_en signal.

Output data are valid during either the systematic or during parity output where
sys_valid and par_valid signals are correspondingly asserted. The master interface
validity signal is consequently the result of the OR operation on these signals. Incoming
TREADY_MA signal on the master interface is the clock enable of the output registers
of the encoder and is also routed to the Control Unit to halt the operation of the encoder.
In fact TREADY_MA becomes directly (through a gated combinatorial path) the
TREADY_SL signal of the receiving interface, as indicated by the OR gate in the control
unit in the above diagram. In cases where the encoder is to be used in an embedded
system where this arrangement could significantly jeopardize performance, the circuit of
fig. 22 could be used. In applications considered in this work however, no critical paths
were presented along this path and the this solution was not necessary.

D. Theodoropulos 36

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

When the encoder is ready, TDATA and TVALID signals from the transmitting unit are
selected from the multiplexors. Registers D1, D2 keep the last value of these signals
when the output from D3 is asserted. When TREADY_SL is de-asserted, the values
saved by the delay elements D1, D2 are maintained in the registers. During the first
cycle after TREADY_SL assertion, they are provided to the corresponding encoder's
inputs. The timing diagram of fig. 23 is an effort to clarify this. Only TDATA is displayed
but the timing of TVALID is identical.

Figure 22: A solution to the non-registered output TREADY_SL

Figure 23: Timing example of the proposed solution

Figure 21 also describes the simplifications allowed in the case where La parameter is 1.
In particular, the PARITY MUX can be omitted in that case and Lm parity bits can be
simply shifted out of the shift registers, as described in previous paragraph, to form
parity signal.

Each FUNCTION COLUMN block in the figure describes m function generators for one
branch of the parallel RCE each. For example, regarding Figure 20, all f i functions are
described by one such block.

The description of the building blocks of the encoder continues with the randomizer and
control and buffer units.

D. Theodoropulos 37

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

3.2.1 RANDOMIZER unit

Randomizer unit implements the polynomial mentioned in § 2.4. Since the output of the
encoder is not one bit at a time but La×Lm, a parallel implementation is needed. The
solution adopted for this design is displayed on fig. 24.

Figure 24: Implementation of a parallel CCSDS pseudo-random sequence generator.

In the figure, the LFSR at the bottom implements the polynomial, with the output coming
from the rightmost register (numbered 0). A number of N bits of the pseudo-random
sequence can be obtained if the bit sequence in the LSFR is expanded to an array of N
vectors of 8 bit each according to the following algorithm:

• Considering an array of vectors, lfsr_array, the first element of the array
(lfsr_array(0)) is the LFSR itself.

• Foreach vector from 1 to N, the bit position i takes the value of the bit position
i+1 of the previous vector, except from bit position 0.

• Bit position 0 takes the value of the XOR operation corresponding to the
polynomial over the bits of the previous vector.

It is evident that the for the first eight bits of the produced result no additional XOR
gates are needed.

3.2.2 Control and Buffer Unit: the general case

The general case for considered first is the control unit for an encoder with a
“reasonable” value of La>1. For such an encoder, the latency introduced by the La

parameter is adequately small so that the next TF arrives to the encoder when it (the
encoder) outputs the parity bits of the current TF. This is the case depicted on fig. 17
and the corresponding part of fig. 25. Note the difference between the term Latency in
fig. 17 and Systematic Latency in fig. 25. The former was introduced during a high level
description of the encoder and refers to the latency from receiving unit's perspective,
while the latter is the number of cycles it takes to begin the output of the systematic part
of the CADU. Systematic Latency is caused by the La parameter and it is the time it
takes to accumulate enough data for the operation of all branches of the parallel RCE.

D. Theodoropulos 38

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Obviously this latency does not exist for La=1. Also shown in the figure is the case of
very high latency, such that the next TF arrives to the encoder while the systematic
output of the current TF has not finished. This situation calls for a different FSM of the
control unit examined later.

Figure 25: Timing of data on encoder's interfaces for the general and high latency cases

Figure 26: Control and Buffer Unit

Apart from the generation of all control signals for the encoder's operation, the control
and buffer unit includes also the necessary memory structures to buffer incoming data
on slave interface. The first such structure is a FIFO for the systematic part of the
output. Until enough data have gathered for RCE operations for all branches of the
parallel RCE, incoming data arriving at the encoder at a rate of LaLm bits in every cycle,
are queued in a FIFO for subsequent output. The size of this FIFO is therefore such that
all bits arriving during the latent cycles can be stored. Since the Systematic Latency
period is (La-1)(m/Lm)/La clock cycles, the FIFO should accommodate for this number of
words of LaLm bits.

The second memory structure necessary for the Parallel RCE operation rearranges
incoming “packets” of LaLm bits into pages of m bits each, where each page contains

D. Theodoropulos 39

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

input bits referring to the same circulant of the Generator matrix. Due to L a parallelism,
Lm inputs bits of La circulants are concurrently processed by the PRCE. Considering
uninterrupted operation of the sender, one clock cycle after the La-1 of these pages
have been filled with data, LaLm bits for the last page are received by the encoder. This
condition fulfills the prerequisites for commencement of RCE operations. For fully
pipelined operation however, the double amount of memory is required for the structure
to work as a double buffer. In the actual implementation, resource sharing between
these two memory structures exploits the same resources for both memories.

Control signals generation and routing of data to the described memory structures are
orchestrated by a FSM. The top-level diagram of the unit with a simplified pictorial
representation of its constituent structures is provided on fig. 26, while fig. 27 displays
the transition diagram of the FSM. The diagram of fig. 27 does not intend to provide a
detailed description of the FSM, but to assist in the better understanding of the
functionality of the control unit. All the hardware for the Control and Buffer Unit is
described by a FSMD model at a high level of abstraction and amply documented in-line
with the code.

Figure 27: Simplified state transition diagram of the FSM of the Control and Buffer Unit

3.2.3 Control and Buffer Unit: La=1.

Considerable simplifications can be made to the Control and Buffer unit of the previous
paragraph in the case where La parameter is 1, the most important of them being the
elimination of the two memory structures (FIFO and PRCE memory), but also the FSM
can be considerably simplified.

The FSM in this case becomes that of fig. 28 and as expected, it comprises fewer states
than that of fig. 27. SYST_BUFFERED state is not necessary here. Another important
difference of this simplified FSM has to do with the behavior of the slave interface.

D. Theodoropulos 40

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

During IDLE and ASM_OUT states, the encoder keeps TREADY_SL signal in low state.
A sender unit however should keep the TVALID_SL signal high if it has data to send
and this is in fact the event that triggers IDLE→ASM_OUT transition. This behavior is
compliant with the protocol specification, according to §2.2.1 of [24], which explicitly
allows a slave to wait for TVALID to be asserted before asserting the corresponding
TREADY. Another important difference is that contrary to the previous case, input is
inhibited during ASM output.

At the end of HALT state, when all parity bits have been transmitted through the master
interface, the presence of an asserted TVALID signal on the slave interface initiates a
transition directly to the ASM_OUT state, instead of IDLE. Since the FSM receives
indication that the sender has more data to send (a new TF), one cycle of latency is
saved by this transition. Like before, input from sender is inhibited by a de-asserted
TREADY_SL signal until the FSM reaches SYST state.

Figure 28: Simplified state transition diagram of the FSM of the Control and Buffer Unit for La=1

3.2.4 Control and Buffer Unit: High latency case

The latency caused by high values of La parameter calls for a separate FSM which
should handle the co-existence of two consecutive TFs in the encoder. The memory
structures size (FIFO and PRCE memory) are the same as the general case, but extra
counters are needed to index the boundaries of the two Transfer Frames into these
structures.
The FSM is more complicated and its state transition diagram is provided in fig. 29.
Figure 30 displays the state of the FSM on the timing diagram of successive CADUs.
During ACCUM state in this case, parity data of the previous CADU are transmitted on
the master interface, while the encoder is receiving and buffering the current TF. The
machine exits SYST_BUFFERED state when the number of data in the systematic
FIFO structure indicate that the necessary number of latent cycles have elapsed. If a
new TF has arrived on slave interface, the FSM moves to ACCUM_OLDSYS state in
which the current and previous TF co-exist in the memory structures, while the
systematic bits of the previous CADU continue to be transmitted by master interface.
Special counters record the boundaries between the two TFs in the memory structures.

D. Theodoropulos 41

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

When all the systematic bits of the previous CADU have been transmitted, the machine
switches to ACCUM state in which the calculated parity bits of the previous CADU are
transmitted on the master interface and at the same time the new TF is received. The
ACCUM state is also the state at which the machine moves when no new TF has
arrived after SYST_BUFFERED state and consequently the special counters for
separation of two TFs in the memory structures are not necessary.
The condition that needs to be satisfied so that the high latency FSM is employed is that
latency should be higher than the sum of the number of cycles needed for systematic
output and ASM sequence.

Figure 29: Simplified state transition diagram of the FSM of the Control and Buffer Unit for high
latency case.

Figure 30: Timing diagram of the FSM states for high latency case.

D. Theodoropulos 42

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

3.2.5 Control and Buffer Unit: Very small Latency

A fourth version of the FSM is necessary when the latency is so small that it equals the
number of cycles necessary for the transmission of the ASM sequence. This situation
itself and the corresponding FSM transition diagram bear significant resemblance to the
case of La=1: although FIFO and PRCE memory structures exist in this case. Valid data
on slave channel trigger the INIT→ ASM_OUT transition but contrary to the La=1 case,
TREADY_SL is asserted during ASM output and the incoming data are stored to the
memory structures. Similar behavior to the La=1 FSM is exhibited by the transitions from
the HALT state: if TVALID is asserted at the end of parity output indicating that a new
TF is arriving on slave interface, the machine moves to ASM_OUT state, while in the
opposite case it moves to INIT.

Figure 31: Timing diagram of the FSM states for very low latency case.

3.2.6 Control and Buffer Unit: no HALT state

It is possible for some configurations that the latency has such value that it is not
necessary to have a state such as HALT, in which input is inhibited and output comes
from the calculated parity bits of the PRCEs registers.

Indeed, if latency has such a value that the parity output is complete at the exact cycle
in which the encoder begins to output the ASM sequence for the next TF, the HALT
state would be a source of suboptimal operation by inserting an idle cycle on the output
bus. The FSM therefore of the control and buffer unit can be simplified according to the
simplified diagram of fig.32.

The necessary condition for use of this FSM is that the sum latency plus two cycles (to
account for the input-output buffers of the encoder) is greater than the sum of parity
output cycles plus ASM sequence cycles. This latency value is an intermediate stage
between the general case and the high latency case documented in previous
paragraph.

D. Theodoropulos 43

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Figure 32: Timing diagram of the FSM states for the case of no HALT state

3.2.7 Control and Buffer Unit: C2 code

For C2 code, the circulant size is 511 bits. Any value of La parameter other than one
would impose very high latency and at the same time require a large number of memory
for FIFO and PRCE structures, so it avoided and only the case of La=1 is considered for
this code.

Another complication of this code is that the circulants size is not a power of two.
Despite the manipulation described in §2.2 to make the input and output block lengths
divisible by 8 or 16, the multiplication of the input vector with the generator matrix is
problematic at the boundaries of the circulants. For the encoders of this work, input bus
(slave interface) width is equal to LaLm, or just Lm since La=1 and Lm is a power of two.
To mitigate this, L. Miles and S. Whitaker in [25] propose a method of packing input
data on a 16-bit input bus in groups of 21 bits and then unpacking them to groups of 7
bits. Each multiplication operation is performed against 3 such unpacked groups of data
(21 bits) and an equal number of elements of the generator matrix. For any circulant,
the first 24 3-tuples are multiplied with the corresponding elements of the current
circulant. Since 24×21=504, at the boundaries of the circulants, the first of these 3
groups is multiplied with the last 7 bits of the current circulant and the other with the
corresponding elements of the next circulant.

The disadvantage of this solution is that although multiplication operations are
performed on 21 bits at the same time, data flow into the encoder in a 16-bit bus,
introducing thus a number of idle cycles in the operation of the MAC modules. This is
apparently a waste of resources.

Another source of sub-optimality in the proposed encoder is that the 18 zeros which are
prepended to the Transfer Frame before encoding according to the standard have an a-
priori known result, since the result of multiplication with zero is always zero. An optimal
encoder does not need to waste calculation cycles for these prepended bits but should
directly incorporate the effect they have on the final codeword, knowing that they always
have 18 zeros as the result. The control unit of the C2 encoder proposed in this work is
designed according to this optimizations.

D. Theodoropulos 44

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Figure 33: Timing diagram of the FSM states for C2 code.

The value of parallelism selected in this work is constant at 16 bits. Mismatch at the
boundaries of each circulant occurs at every 32th group of 16 bits of the information
block sequence. To handle this, the encoder of this work utilizes a different technique. A
variable length buffer is used which saves a number of bits from the current input. Let N
be the size in bits of this buffer at a given instance. Instead of sending the 16-bit input
sequence to the PRCE for parity calculation directly, the control unit sends the N bits
saved in the buffer in the previous cycle and the 16-N bits of the current input sequence.
This value increments at the boundary of each circulant to accommodate for the 1 bit by
which each circulant is short of 512, which is the number of bits received after 32 cycles
of input. Especially for the last of these 32 groups of incoming information block bits, the
control unit adds a zero to the sequence as the 16 th bit, before incrementing the value N
of the buffer. The 16-bit input sequence is thus converted to a 15-bit one, making the
total number of bits corresponding to a circulant equal to 31×16+15=511.

The encoder saves one execution cycle by truncating the 18 prepended zeros to the
code. For the first 16 of these 18 bits, the technique explained in next paragraph is
employed, which does not require special handling from the control unit. For the last 2
of these 18 bits however, it is necessary to initialize the size of the input buffer to 2.

At the last (14th) circulant, the number of the buffer has reached the value 15, meaning
that an extra cycle is needed for the buffer to empty its contents upon the PRCE. Also,
after parity output, the two appended zeros are appended to the CADU.

The simplified state diagram of the FSM for the control unit of this encoder is provided in
fig. 33. Similarly to the previously described FSMs, valid data on slave interface initiate

D. Theodoropulos 45

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

a CADU. Note that for performance reasons, the ASM output is controlled by two states,
the difference between them being the assertion of TREADY_SL signal by the last, so
as to allow the sender transmit the next group of 16 bits in the next cycle (in SYST
state). The SYS_EMPTY_BUF state is introduced in order to provide an extra cycle in
which the bits stored in the buffers used for the alignment to the boundaries of circulants
are all consumed. Otherwise, the FSM is similar to that of La=1 for AR4JA codes.

3.2.8 Function generators

The function generators for AR4JA codes simply provide the first row of the code
circulant based on the value of “row” input which selects the current circulant. These
parameters can be easily calculated following the methodology in [22] using a software
like MATLAB. Note also that if La parameter is equal to the number of circulant rows in
the generator matrix (e.g. 8 for k=1024 and rate ½), these function generators are
simplified to constants.

For C2 codes however the situation is complicated by the fact that the selection of the
row has to serve two more functions described here.

• In the steps described in previous paragraph for the alignment of the 16 bit input
to the boundaries of 511-bits circulants, the last bit of the 16 bits applied to the
PRCE during the 32th multiply operation is forced to zero, in order to describe a
15-bit multiplication, since the result of multiplying with zero is also a zero. The
shift operation however executed by the shift register is always 16-bits. This
discrepancy can be compensated for by a left shift by one position of the parity
register bits. Since however the circulants of C2 code are right circulants, it is
equal to providing to the function generator the last line of the next circulant,
instead of the first, because he last line is the left cyclic shift of the first.

• Following the same reasoning, the effect of the multiplication of the 18
prepended zeros is simply a cyclic shift operation, which is equivalent to the
cyclic rotation of the circulants. Taking into account the last shift operation of the
shift register during parity calculations, which is equivalent to a rotation by 16 of
the circulants, rotation of the circulants by two positions to the left is what it takes
to simulate the multination by zero.

In short, the combined effect of the above factors is that for the first circulant, line 510 is
the value of the function generator, for the second line 509 etc. Shift operations are thus
executed by proper selection of circulants rows, without adding extra complexity to the
encoder.

D. Theodoropulos 46

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

4. IMPLEMENTATION

4.1 Code design and parametrization

The encoder components analyzed in previous chapter are described in VHDL.
Provided code is amply documented and all language structures are justified using
state-of-the-art Doxygen documentation system and in-line comments.

Encoder parameters are globally defined in corresponding package file (DEFS.vhd),
with the purpose of being easily modifiable from a central location. All these parameters
are statically defined for a given implementation of the encoder (i.e. they cannot change
after synthesis with a configuration register for example).

For AR4JA, these parameters are the following:

• Desired rate: selection among R12, R23 and R45

• Transfer Frame length (k). Valid values for CCSDS AR4JA LDPC codes are
1024, 4096 and 16384. All members of the code share the same mathematical
description and consequently the encoder could operate efficiently for all the
specified block lengths. For practical reasons however having to do with software
synthesis, implementation and simulation runtimes, only 1024-bits block length is
used for this implementaion. The only requirement for addition of the other
members of AR4JA family is the addition of the corresponding VHDL files to
describe the function generators (first rows of circulants) of these members. The
MATLAB scripts to produce these matrices are provided, along with the matrices
themselves. For k=16384 however, it was not possible to even execute them due
to high computer memory requirements. A limited simulation of the encoder
operation for k=4096 is however included in the accompanying code.

• Circulants size (m). It is defined in the specification but a small memo is also
provided in-line with the code.

• Parallelism parameters La, Lm. According to previous chapter, they also define
the width of the encoder's interfaces. For the purposes of examining the impact
each parameter has on the encoder's performance features, all combinations
resulting inLa, Lm=16 and 32 where used and extensively simulated.

• Randomization option. Set to true if the highly recommended randomization is
selected.

Based on the selections made on these parameters, the encoder's top-level entity
selects the suitable components for the specific implementation. This is especially
important for the function generator entities, which are different for each member of the
family, as well as for the different versions of the FSMs of the control and buffer unit
detailed in §3.2.

For C2 code, there are no modifiable parameters in the package file, other than the
randomization option. Code parameters are constant and the control unit is designed
specifically for Lm=16.

D. Theodoropulos 47

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

4.2 Core synthesis

The VHDL code was synthesized targeting a Xilinx Virtex 5 XC5VLX110T FPGA on
Xilinx software for each configuration. Synthesis should run without problem, provided
that the selected parameters defined in package files are valid. Block RAM resources
were excluded using suitable synthesis options in order that code could be portable to
different FPGA vendors.

4.3 Performance

The encoders synthesized previously are implemented on the FPGA, using a
constraints file specifying a target clock speed. Performance and resource utilization
and maximum speed are extracted from post place and route reports and listed in table
6 for all the combinations of La and Lm giving 16 as the product. Code rate ½ and
k=1024 is considered and minimum run-time was set as the design strategy.

For AR4JA codes, important results can be deduced concerning the selection of
parameters La and Lm and the impact the have on performance and resources budget of
the encoder, for a constant total parallelism product of La, and Lm. As La parameter
increases, more latency is introduced. Because of the pipelined operation however,
there is no practical impact on the throughput of the encoder. From the results on the
table, it is apparent that the reduced complexity of the function generators for higher
values of La parameter is reflected on the diminishing LUT utilization. On the other hand,
higher latency is introduced and the demand for larger memory structures of the control
and buffer unit places higher demands on slice registers. The reduce complexity of the
function generators also leads to better timing performance, which can considerably
increase throughput.

For La=1 case for both codes (AR4JA and C2), the only source of latency is from the
input and output buffers.

The critical path in almost all cases was through branches of the PRCE tree, starting
either from the memory structures (s_feed signal on fig. 21) or the FSM state logic to
define the value of function generators (row signal on same figure) and towards the
parity registers.

Note that the parameters leading to the employment of the high latency case control
unit appear to result in sub-optimal in terms of resource utilization and speed. It is
possible that the extra logic necessary to handle the co-existence of two TFs at the
same time in the control and buffer unit may significantly burden the design.

The control unit without HALT state described in previous chapter is not used in this
case, since targets other cases (LaLm=32).

D. Theodoropulos 48

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Table 6: Resouces and speed

Parameters Slice

Regs

Slice

LUTs

Occ.

Slices

Avg.

fanout

Max.

Freq.

(MHz)

Systematic

Latency

(cycles)

Control unit

used1

AR4JA

1k

r=1/2

La=1, Lm=16 1120 7844 2252 5,77 155,84 2 CU LA1

La=2, Lm=8 1657 5164 1496 4,98 180,96 10 GENERAL

La=4, Lm=4 2173 3250 849 6,05 191,24 26 GENERAL

La=8, Lm=2 2176 3258 849 4,43 217,16 58 GENERAL

AR4JA

1k

r=2/3

La=1, Lm=16 623 4911 1357 5,61 160,95 2 CU LA1

La=2, Lm=8 884 4785 1753 5,93 180,83 6 GENERAL

La=4, Lm=4 1144 3808 1497 5,57 196,31 14 GENERAL

La=8, Lm=2 1661 3134 870 5,97 241,25 30 GENERAL

La=16, Lm=1 2696 3855 1009 6,51 211,19 62 NEXT IN SYS

AR4JA

1k

r=4/5

La=1, Lm=16 359 2453 780 5,57 196,46 2 CU LA1

La=2, Lm=8 495 3179 930 5,93 211,37 4 LAT.EQ. ASM

La=4, Lm=4 632 2625 728 6,09 251,70 8 GENERAL

La=8, Lm=2 888 2386 644 5,70 271,89 16 GENERAL

La=16, Lm=1 1409 2583 696 6,19 241,96 32 NEXT IN SYS

C2 La=1, Lm=16 1159 9789 2998 5,62 190,91 2 C2

1. Control unit used based on the configuration:

CU LA 1: La=1 case, GENERAL: default unit, NEXT IN SYS: high latency case when next TF arrives during systematic output of

the current, LAT. EQ. ASM.: unit used when latency is equal to the number of cycles necessary for ASM sequence output. C2:

unit for C2 code

D. Theodoropulos 49

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

5. VERIFICATION AND VALIDATION

5.1 General

The first step towards verification of the core is the formulation if the requirements which
the encoder should be able to satisfy.

The requirements therefore for the encoders are the following:

• Produced CADUs should comply with the CCSDS definitions.

• Input and output interfaces should comply with the AMBA AXI-4 Stream protocol
for transmission of an infinite continuous aligned stream.

• The number of idle cycles on output (master) interface should be minimal. As
already described in §3.2, for all cases of AR4JA codes there are no idle cycles
at all. For C2 code however, just one idle clock cycle per CADU is introduced
between the systematic and parity output for reasons detailed in §3.2.6.

The verification plan for this work includes the following two actions:

• Validation through functional simulation of the HDL description compliance to the
previously cited requirements are met. Code coverage metrics are expected to
report 100% coverage in all cases and for all types of coverage. This action is
accomplished by a suitable testbench and a tcl script which automates the entire
procedure.

• Validation of the correct operation of the final implemented netlist. The encoder
will be embedded into a suitable system which is then going to be implemented
in the actual hardware. The purpose of the integrated system is to provide the
necessary stimuli and record the encoder's responses, all these while the
encoder operates at the specified clock frequency. Encoder's responses will be
examined to verify correct operation on the actual hardware.

Details of these two actions are elaborated in following paragraphs. The results provide
strong evidence that the encoder satisfies the requirements.

5.2 Functional simulation

For the functional simulation of the code, stimulus data are needed. Two MATLAB
scripts (one for each code family) generate text files with the hexadecimal
representation of a number of TFs, making use of MATLAB's rnd function. The MATLAB
scripts also generate the expected CADUs which the encoders should produce with the
specified input vectors.

Simulation is executed in Mentor Graphics Modelsim by a calling tcl script, which
performs the following operations:

i. Compiles the necessary sources for the particular configuration selected in
definitions package. For C2 code this is only the inclusion/exclusion of the
randomizer entity but for AR4JA it has to select also a number of other files, like
the suitable control and buffer unit corresponding to the selected La and Lm

parameters or the output multiplexor, excluded for La=1.

ii. Selects and compiles the suitable testbench among a range of options
corresponding to the different control units described in §3.2 and executes it with
coverage option on. Coverage data and simulator's console output are logged in
a suitable file. As explained later in this paragraph, during its execution, the

D. Theodoropulos 50

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

testbench records the encoder's responses to the applied test vectors into
suitable files.

iii. Saves coverage database and generates coverage (text) report.

iv. Compares the files generated by the testbench and contain the encoder's
responses with the expected values calculated in advance with MATLAB. If any
differences are found, an error message is displayed on the console.

For AR4JA codes, the above process needs to be repeated for a number of La-Lm

combinations over different family members. Consequently, the above steps are
included in a tcl macro, which is then called for each parameters combination that
needs to be verified. For C2 code of course, the parameters are static and there is no
need for a macro. The provided tcl scripts are documented extensively. In all cases,
simulation logs are automatically saved in corresponding text files.

Simulation for k=4096 is provided from a separate location, using a different VHDL file
for the encoder and uses a significantly smaller test dataset, not always leading to code
coverage. The reason for this is the prodigious amount of simulation time that would be
required if the two block lengths were simulated with the same number of TFs. This
however does not compromise the validity of the simulation results, since code family
members across different block lengths share exactly the same mathematical
description.

5.2.1 Testbench description

The testbench has to apply the stimuli created in advance to the Unit Under Test (UUT),
while at the same time do this in such way that:

• Interface protocol operation (AXI4-Stream) is verified.

• 100% code coverage is ensured.

• Optimality of the encoder as described in the requirements formulation is verified
as well.

In addition, UUT responses are recorded and written in a file and coverage data are
collected.

Based on the above requirements, the testbench comprises the following parts:

i. Instantiate and initialize UUT.

ii. Full throttle operation validation. The testbench validates that the encoder
exhibits optimal operation, i.e. there are no idle cycles (AR4JA) or one on output
interface. It provides TF data to the encoder at the documented rate, without
waiting for TREADY_SL.

iii. Protocol validation. TREADY_MA and TVALID_SL are de-asserted at random
instances controlled by a pseudo-random VHDL function (uniform). This
simulates the possibly bursty behavior of the transmitting and receiving units. As
the simulation time elapses, the probability that TVALID_SL or TREADY_MA
increases, so that the control unit's FSM traverses all states and transitions.

iv. Any other necessary steps to ensure 100% code coverage by the testbench,
according to specific needs of the utilized control unit (§3.2). One such example
is the correct reinitialization of the FSM following a reset signal from all the FSM
states. Another case is the possibility that the FIFO of the control and buffer unit
empties during the systematic output. This would require a very long simulation

D. Theodoropulos 51

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

runtime if the testbench resorted solely to the method of the previous step, but
can be easily reached using signal spy library to monitor related signals and
insert the necessary TVALID_SL=0 cycles on slave interface.

As the simulation progresses, a special process in the testbench records UUT's
responces in a suitable file, which is going to be examined by the calling tcl script after
the end of the simulation.

All testbenches are fully documented and the details of their operation not covered at
this paragraph can be easily tracked with the help of in-line comments.

5.2.2 Simulation results

For AR4JA codes, a number of 5000 TFs were used as stimulation data for k=1024.
Simulation was successful for all valid combinations of La and Lm parameters for data
bus width equal to 16 and 32 and corresponding coverage reports indicated that 100%
coverage was accomplished for all types of coverage. The only exception is the case of
La=32, Lm=1, where the latency is so high that the it covers entirely the number of cycles
for the input of the next TF and extends over the second subsequent TF, making this
choice impractical.

Due to the longer simulation runtime by reason of the very high block length, C2 code
simulation is performed with a significantly smaller test data set (1000 TFs instead of
5000). Results are coverage are equally successful.

5.3 Implementation validation

The implemented design is integrated in an embedded system to verify the encoder's
operation in real time and on the actual hardware. All hardware tests described in this
paragraph were performed on a XUPV5-LX110T development system.

The embedded system used for the test should provide for the following:

• Necessary hardware for generation or external input of test vectors.

• Necessary hardware for recording the UUT responses.

• Necessary hardware for display of results

• Control and time-scheduling over the test process.

The tests performed at this stage use two sources of test vectors:

• Input TFs are inserted by the board's UART.

• Pseudo-random TFs are generated by a LFSR.

UUT's responses are compacted by a Multiple-Input Shift-Register (MISR). The MISR
employed is based on a 64-bit Fibonacci LFSR using the primitive polynomial:
h(x)= x4+x3+ x+1 .

Compacted output (i.e. the MISR signature) needs to be provided in human readable
form. On completion of the test, specially designed hardware converts the MISR binary
value into its ASCII representation in hexadecimal form and returns it to the operator of
the test through the board's serial port. Another output to the operator's console is the
number of clock cycles needed to encode the provided TFs as well as the number of
these Tfs.

D. Theodoropulos 52

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

The above procedure is controlled by a specialized entity's FSM. This control unit
defines the initiation of the test, based on operator's input, detects the end of the test
and reports results back to the operator.

The two versions of the implementation test for the two types of TF input are
subsequently described. In both cases, the embedded systems were designed around a
data bus for the encoder which is equal to 16-bits, meaning that for AR4JA encoders,
only those with LaLm=16 can be tested by this design.

5.3.1 Embedded system description: UART input

For the first of the two tests, the input to the encoder comes from the operator's console
through the development board's UART. Following their input, the TFs are temporarily
stored in a FIFO, large enough to accommodate the desired number of them. The
increased size of this FIFO dictates that it should be implemented in Block RAM
resources on the FPGA. When the slow process of uploading test vectors to the FIFO
completes, the encoding process is automatically initiated. Detection of the completion
of uploading procedure is done by the integrated circuit's control unit which counts
incoming TF data, up to the point where they reached a standard fixed number. The
encoder core responses are routed to the MISR for signature compaction and display.
When the control unit detects that the encoder has finished encoding all the TFs, it
initiates the results display procedure.

Figure 34: Block diagram of the embedded system for the test with UART input.

The block diagram of the circuit created for the test is displayed in fig.34. An operator's
terminal is assumed to be connected to the corresponding serial_in and serial_out
ports. After initialization, a RDY message is provided on it to indicate that the system is
ready to start receiving data from the console. Data are received as binary with the help
of a UART generated with the corresponding macro used for Picoblaze applications. A
packer unit packs concatenates two incoming input bytes into a 16-bit word which is

D. Theodoropulos 53

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

stored in the FIFO. FIFO includes a counter to keep track of the amount of incoming
data (fifo_datain_count). When this number reaches a fixed number (960 TFs here),
hardwired into the control unit's design as a constant, the control unit asserts
TREADY_MA signal and the encoder begins the processing of data in the input FIFO.
Generated responses are written to the output FIFO, which is in turn connected to the
MISR. The control unit keeps track of the clock cycles elapsing from the moment when
encoding begins in a special counter.

When both input and output FIFOs are empty, the control unit asserts a signal
(encode_fin) which triggers the display of result data on the connected operator
terminal. The display data include the number of cycles necessary for the encoding and
the hexadecimal representation of the MISR value. The control unit's cycles counter
value is converted to Binary Coded Decimal (BCD) and analyzed to decimal divisions
(units, tenths, hundredths etc). A specialized display control unit has the role of
organizing the information into a user-friendly human readable form. A sample of the
generated output is displayed on fig. 35.

The desired frequency of operation for the entire system is generated by a DCM unit.
LOCKED_OUT output of the DCM triggers the control unit to transit to a state where
RDY message is displayed and the test execution can begin. The DCM frequency can
be set to the maximum achievable value and this is going to be the claimed operation
frequency of the encoder.

Figure 35: Sample terminal output

The number of cycles depends on the LDPC code and the latency introduced by input-
output FIFOs and the system's control unit logic. The calculation of the expected value
of the MISR can be performed using a provided (with accompanying code data)
testbench, in which the UUT is the MISR and the expected CADUs (calculated in
MATLAB) are applied to it. The final claimed encoder performance takes FIFO delays
into account, so that the reported performance is the actual being experienced when the
encoders of this work have been incorporated in a real embedded system.

In all cases for all encoders, the integrated system was simulated before
implementation in hardware. Corresponding simulation testbenches and input sources
are provided in accompanying code files.

The entities displayed on fig. 34 contain a significant number of details. This is
especially true for the two control units (main and display). These details include a lot of
information pertaining the operation of the FSMs of the components their constituent
entities etc, the thorough description of which would distract the current document from
its main subject. Their VHDL code however is documented.

D. Theodoropulos 54

RDY
CYCLES TO ENCODE 960 FRAMES : 126748
SIGNATURE IS:BF568B63664371CB

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

5.3.2 Results with UART input

For AR4JA codes, the configurations selected for the test where those with the best
timing performance for each family member (see Table 6).

Tests were performed with 960 input TFs provided with the accompanying
documentation and they were all successful. The maximum operation frequency of the
encoder achieved in each case is displayed on table 7, where the MISR signature value
is that which corresponds to the input data provided with the accompanying code.

Test results are listed on table 7 below. Implementation options were tuned to optimize
timing and the maximum frequency was reached through successive implementations in
ISE design suite.

Due to the significantly higher TF length for C2 codes, the test was run over 127 of them
and was also successful.

Table 7: Implementation test results with UART input data (AR4JA:960, C2:127 TFs)

Parameters MISR value No. of cycles DCM frequency (MHz)

AR4JA

r=1/2
La=8, Lm=2 BF568B63664371CB 126780 230

AR4JA

r=2/3
La=8, Lm=2 8C51CA585AF9203D 96032 240

AR4JA

r=4/5
La=8, Lm=2 6C13FC1220D91C53 080658 250

C2 La=1, Lm=16 37EFE1DBCB5F86B2 65157 200

5.3.3 Embedded system description: LFSR input

The second of the two implementation tests generates test vectors from a LFSR,
instead of receiving them from an external source. The advantage of this method is the
significantly higher number of TFs that the test can use, since it is not limited to the
amount of FPGA Block RAM resources. The block diagram of the embedded system is
displayed on fig. 36.

The input UART and the packer unit have been replaced by the LFSR, which fills up the
input FIFO with TFs after initialization of the FPGA. The operator receives a RDY
message on the connected terminal and initiates the test by pressing a properly
debounced push-button on the development board. The next steps are similar to the
previous case with externally provided TF data.

The LFSR operation is simulated in software to calculate the correct value of the MISR
signature at the end of the test. A suitable testbench records LFSR output sequence in
corresponding files and the recorded data are applied to the MISR using the testbench
of the previous paragraph.

D. Theodoropulos 55

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Figure 36: Block diagram of the embedded system for the test with LFSR generated data.

5.3.4 Results with LFSR input

Comparable results were received to the previous case with UART input of test data,
albeit maximum operation frequencies were smaller than those achieved with serial
input of TFs, mainly because of the debouncing circuit for test initiation.
Correspondingly to Table 7, the results are displayed on Table 8.A number of 5000 TFs
was used for AR4JA codes and 1000 for C2.

Table 8: Implementation test results with LFSR generated input data (5000 TFs)

Parameters MISR value No. of cycles DCM frequency (MHz)

AR4JA

r=1/2
La=8, Lm=2 5152CC221167879B 660059 220

AR4JA

r=2/3
La=8, Lm=2 F38F5B29AFF499A2 500031 240

AR4JA

r=4/5
La=16, Lm=1 10A15E1FD603048D 420032 240

C2 La=1, Lm=16 D32DFF71836DB4F6 525317 180

D. Theodoropulos 56

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

6. RESULTS

Implementation results for the fastest configurations are summarized in Table 9, in
which the claimed encoding speed is the speed demonstrated by the implementation
test, taking into account the latency introduced by input and output FIFO and is the
actual speed expected to be experienced from channel coding in real applications. The
formula of calculation of the speed is:
SPEED = Number of CADUs x CADU size / Encode cylces * Clock speed

Results on this table should be interpreted in conjunction with Table 6 for a concrete
viewpoint on the performance characteristics of the encoders in the current work.
Performance for other members of AR4JA family is expected to exhibit similar behavior,
in regard to the effect of increasing La parallelism.

Table 9: Summary of demonstrated performance characteristics of the fastest implementations

Parameters Register

utilization

LUT

utilization

Slice

utilization

Claimed encoding

speed (Gbps)

Latency

(ns)

AR4JA r=1/2 La=8, Lm=2 3,148% 4,714% 4,913% 3,678 252,17

AR4JA r=2/3 La=8, Lm=2 2,4% 4,53% 870 3,839 125,01

AR4JA r=4/5 La=8, Lm=2 1,28% 3,4% 644 3,999 64

C2
La=1,

Lm=16
1,67% 14,16% 3165 3,056 10

6.1 Comparison to other implementations: commercial products.

The implemented encoders' performance is compared to existing solutions in this
paragraph, according to available parameters in corresponding published product briefs.
Such solutions are currently available only for C2 code.

CREONIC GmbH has made available an encoder core for the (8160,7154) C2 code
[26]. According to the information provided in the product brief, coding throughput at
200MHz operation is 1,6Gbps, while encoding latency for the same clock speed is 40ns.
Compared to the C2 encoder of the present work, throughput at the specified clock
speed is almost the half (3,193 vs 1,6 Gbps). ASM output and randomization are not
implemented.

Small World Communications has created a core also for CCSDS C2 code (LCE01C).
Product specification sheet [27] states that encoding rate can reach up to 1,75 Gbps at
a clock speed up to 250MHz on a XC6VLX75T–3 FPGA. Data buses are 8-bit and it
consumed 9.2 K Virtex-5 LUTs. Encoding is initiated by a start pulse and it employes
double function generators for the coefficients of the generator matrix: one for normal
operation and one at the boundaries of the 511-bit wide circulants. ASM sequence is

D. Theodoropulos 57

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

not generated in this case and extra logic is necessary for the interface of the core with
a RAM unit and randomization possibility.

Iprium also sells an encoder/decoder IP core for C2 code [28]. The core is designed for
serial input/output of one bit at a time. For encoding to start, a special signal needs to
be asserted at the beginning of each TF.

In addition, the patented design in [25] has already been reviewed in §3.2.7 and proven
to be susceptible to criticism for inefficient use of the 21-bit MAC module during idle
cycles. Although F/F count is lower than current encoder, logic resources required,
expressed in gate count since the encoder was implemented in ASIC, are significant.

Above results are summarized in table 10. While encoding performance is inferior in all
cases, none of the alternative encoders provides a standardized interface for input of
TFs and output of CADUs, nor randomization is an option. If the absence of ASM
sequence output is added, the presented encoder of this work is the only complete core
for generation of CADUs according to the standard.

Table 10: Comparison of Implementations for C2 code

Bus

width
Resources

Max. clock freq.

(MHz)

Enc. Speed

(Gbps)

Latency

(cycles)

Randomi

zation
ASM

CREONIC N/A N/A 200 1,6 8 NO NO

LCE01C 8
9,2K LUTs

(Virtex5)

250

(XC6VLX75T–3)
1,75 3 NO NO

IPrium 1
290 Slices

(Virtex 6)
418 0,418 N/A NO NO

[25] 16

1492 F/Fs

30680 gates

 (ASIC)

128 2 9 NO NO

This work 16

9,8K LUTs

7412 F/Fs

3165 Slices

(Virtex5)

200 3,19 2 YES YES

6.2 Comparison to other implementations: literature.

There is significant scientific interest on the development of efficient LDPC encoders. As
already mentioned, interesting results can be found in [14], [15], [16], [17], [18] and
[19]. All of these solutions are targeted to LDPC codes which are characterized for
encoding efficiency, which is not the case for the codes of this work. A comparison

D. Theodoropulos 58

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

however can be made to the extent applicable and all cited implementations are going
to be commented-out and compared to the current.
At first, none of the cited encoders provide CCSDS ASM framing and randomization
functions. Furthermore, none of the encoders cited above includes flow control so that
the core can handle streams of input-output data. Apart from [19] and this work, all other
implementations are iterative encoders and write output parity data in output memory
elements. In most cases, optimizations in the code design described in §1.3.4 make
feasible the calculation of all the parity bits at once.
As already mentioned, [14] and [15] are based on Richardson-Urbanke encoding
algorithm, which is not efficient for CCSDS codes. In both cases the entire information
block needs to be available for the parallel parity calculation process, adding thus an
amount of latent cycles in case of a stream-oriented encoder, which in the case of [14]
is expected to be significant. Especially the impressive performance encoder of [15] is
designed for a particular class of encoding-friendly codes (B-LDPC), adopted for IEEE
802.11 and 802.16 standards and a direct comparison with the present encoders
cannot be made. In addition, [15] only implements the parity bits generation, without
taking care for the concatenation with systematic input bits or the serialized process to
write them into a memory.
The work in [16] is about a 7,7 Gbps encoder for IEEE 802.11ac QC-LDPC codes. It is
suitable for streaming operation, since the entire information block is not necessary for
the encoding process to begin and output of calculated parity data seems to be
serialized from output buffer. The algorithm calculates parity bits directly from the
(sparse) parity-check matrix according to the procedure described in §1.3.4.
Similarly, [17] is another example of high throughput encoder for LDPC codes designed
for encoding efficiency, like those used in DVB-S2 standard, for which the specified
encoder can reach a throughput up to 29Gbps. In this case also, the claimed throughput
refers only to the parity bits generation and does not take into account serialization of
input data and the number of cycles needed to store the input vector into memory. The
proposed encoding algorithm bears significant resemblance to [16] and calculates the
parity bits directly from the (sparse) parity-check matrix. The extremely simple structure
of H2

-1 matrix in this case simplifies the multiplication of that matrix with a the result of
H1mT(following notation of §1.3.4) into a recursive XOR operation.
Reference [18] describes an efficient encoding implementation, also for IEEE 802.16,
which again takes advantage of the special structure of the parity-check matrix of the
code to calculate the parity bits directly from the (sparse) parity-check matrix, using
back-substitution and consequently requiring the parity-check matrix to be in lower-
triangular form. The multi-Gbps claimed performance refers to the internal encoding
core operation when all information block bits are available and is limited to 422 Mbps
when serialization of incoming data needs to be taken into account.
The encoder architecture in [19] follows a different approach in that, like the encoders of
the current work, it calculates parity bits from the generator (G) instead of the parity-
check matrix (P) and consequently can be generalized for the CCSDS LDPC codes.
The entire information block needs however to have already been accumulated in order
that the parity calculations can begin. Moreover, it introduces a very large critical path in
the XOR operations which add the results of the information block sequence to the
corresponding column of the parity-check matrix (for the calculation of one parity bit).
This approach is not expected to scale well for increased block lengths-other than IEEE
802.16 LDPC family block lengths, especially the 16384 of AR4JA or 8160 of C2.
Finally, even for the simple case of the maximum information block of the WiMax LDPC
codes, the memory requirements are prodigious, at the same time reaching a maximum
performance of 360 Mbps.

D. Theodoropulos 59

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

Although the direct comparison of the cited implementations with the current work
cannot be made because of the code characteristics, performance and resource
utilization data are however summarized in Table 11. From the solutions available for
implementation of CCSDS codes, it is evident that proposed encoders

Table 11: Comparison of various LDPC Encoder Implementations

[14] [15] [16] [17] [18] [19]
This

work3

Demonstrated
Application
Field

General 802.11n 802.11ac
DVB-S2

DVB-T2
802.16e 802.16e CCSDS

Codeword
length

2000 1944 1944 64800 1920 2304 2048

Rate 1/2 5/6 1/2 5/6 1/2 1/2 1/2

Resources/

technology

870 Slices

19 Block

RAMs

 Virtex 2

1782 LUTs

2187 F/Fs

Virtex5

96K equiv.

Gates

ASIC 130nm

CMOS

32734 LE

126,6k F/Fs

STRATIX-2

8924 LEs

STRATIX

11430 LEs

3,9M F/Fs

STRATIX

849 Slices

2176 F/Fs

Virtex 5

Algorith1 RU RU BS BS BS Direct Direct

Clock speed 143MHz 290MHz 100MHz 320MHz 149 MHc 60MHz 230MHz

Claimed

throughput
44Mbps2 117,45 Gbps2 7,7 Gbps 29Gbps2

3,32 Gbps2

422 Mbps

(serialized)

119,7 Mbps
3,19 Gbps

(stream)

Applicable to

CCSDS codes

YES

(with different

results)

NO NO NO NO YES YES

Special Notes

1. RU: Richardson-Urbanke, BS: Back-substitution, Direct: multiplication with

Generator matrix

2. Not serialized output

3. Data in parenthesis refer to highest supported code rate (¾)

D. Theodoropulos 60

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

7. CONCLUSIONS

LDPC codes were initially considered impossible to implement. Advances in VLSI
technology however have entirely reverted this image and this work is towards this
direction. The encoders implemented in this thesis occupy only a small percentage of
the area of XCV5-LX110T FPGA, while at the same time reaching mutli-Gbps encoding
performance.
It has been shown that it is possible to improve the timing performance and resource
utilization of the standard RCE-based encoders by processing incoming information bits
corresponding to multiple circulants at the same time. The price however that has to be
paid in this case is increased latency. Due to the pipelined operation of the control unit
however, this latency is not translated into performance degradation, since almost no
idle cycles exist on the output interface. The only exception is the encoder for the C2
code, for which only one idle cycle per CADU is necessary, that is only one cycle in 514
is wasted.
For AR4JA encoders, the provided VHDL code provides a description that is the same
across all members of the AR4JA family and the parameters are centrally defined in one
package file, simplifying the selection of the configuration which meets the performance-
latency target and also being able to adapt to different information block sizes
(parameter k of the code) and bus sizes up to 64 bits.
The encoder for C2 code uses fixed 16-bit buses for input and output and introduces no
additional latency, other than for its input-output buffering. Through a suitable selection
of circulant rows and an advanced control unit design, it manages to align the input data
arriving in packets of 16 bits on input interface to the boundaries of the 511-bit circulants
of the generator matrix, without wasting resources.
All encoders interface to AMBA AXI4-Stream buses, providing thus a solution which can
be readily incorporated in a SoC design and enabling the encoders of this work to be
characterized as complete practical cores.
Compared to the existing solutions in literature and in market, the proposed encoders
reach unprecedented performance for the specified code family, while at the same time
keeping resource utilization at a minimum.

D. Theodoropulos 61

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

ACRONYMS-ABBREVIATED TERMS

AOM Advanced Orbiting Systems

AR4JA Accumulate-Repeat 4-Jagged Accumulate

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BCD Binary Coded Decimal

BSC Binary Symmetric Channel

CADU Channel Access Data Unit

CCSDS Consultative Committee for Space Data Systems

DCM Digital Clock Manager

DVB Digital Video Broadcast

FER Frame Error Rate

F/F Flip Flop

FSM Finite State Machine

Gbps Gigabits per second

LDPC Low-Density Parity-Check

LFSR Linear Feedback Shift Register

PRCE Parallel Recursive Convolutional Encoder

QC Quasi-Cyclic

RCE Recursive Convolutional Encoder

SDLP Space Data-Link Protocol

SNR Signal to Noise Ratio

TF Transfer Frame

TM TeleMetry

UUT Unit Under Test

D. Theodoropulos 62

FPGA implementation of encoders for CCSDS Low Density Parity Check Codes

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Tech. J., vol. 27, pp. 379–
423, 623–656, Jul., Oct. 1948.

[2] TM Synchronization and Channel Coding-Summary of Concepts and Rationale, CCSDS 130.1-G-2
Green book, Nov. 2012.

[3] S. Dolinar, D. Divsalar, and F. Pollara, “Code Performance as a Function of Block Size,” IPN
Progress Report 42-133, JPL, May 1998.

[4] R. G. Gallager, “Low density parity-check codes,” IRE Trans. Information Theory, vol. 8, no. 1,pp.
21–28, Jan. 1962.

[5] W. E. Ryan and S. Lin, “Low-Density Parity-Check Codes” in Channel Codes Classical and Modern,
ed. Bew York, Cambridge University Press, 2009, pp. 202

[6] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 5, pp. 533–547, Sep. 1981.

[7] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product Algorithm,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[8] J. Thrope, “Low-Density Parity-Check (LDPC) Codes Constructed from Protographs,” IPN Progress
Report 42-154, JPL, Aug. 2003.

[9] K. Andrews et. al., “Design of Low-Density Parity-Check (LDPC) Codes for Deep-Space
Applications,” IPN Progress Report 42-159, JPL, Nov. 2004.

[10] Z. Li et.al., “Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes,” IEEE Trans.
Commun., vol.54, no. 1, pp.71-81, Jan. 2006

[11] K. Andrews, S. Dolinar, and J. Thorpe, “Encoders for Block-Circulant LDPC Codes,” in Proceedings
IEEE International Symposium on Information Theory, Adelaide, SA, pp. 2300–2304, Sept. 2005.

[12] T. Richardson and R. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,” IEEE
Trans. Inf. Theory, vol.47, no. 1, pp. 638–656, Feb. 2001

[13] J. Perez, K. Andrews, “Low-Density Parity-Check Code Design Techniques to Simplify Encoding,”
IPN Progress Report 42-171, JPL, Nov. 2007.

[14] D.U. Lee, W. Luk, “A Flexible Hardware Encoder for Low Den-sity Parity Check Codes,” 12th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 101–111, April 2004.

[15] G. Tzimpragos et.al., “A Low-Complexity Implementation of QC-LDPC Encoder in Reconfigurable
Logic” in 23rd. Int. Conf. on Field Programmable Logic and Applications, Porto, 2013, pp. 1-4.

[16] Y. Jung et.al., “7.7 Gbps Encoder Design for IEEE 802.11ac QC-LDPC Codes,” Journal of
Semiconductor Technology and Science, vol.14, no.4, pp.419-426, Aug. 2014.

[17]Al Hariri et.al., “A High Throughput Configurable ParallelEncoder Architecture for Quasi-Cyclic Low-
ensity Parity-Check Codes, In 19th Int. On-Line Testing Symp., Chania, Jul. 2013.

[18] R. Kopparthi and D. Bruenbacher. “Implementation of a Flexible Encoder for Structured Low-Density
Parity-Check Codes”. In IEEE Pacific Rim Conf. Communications, Computers and Signal Processing.

[19] H. Yasotharan, A. Chan Carusone, “A Flexible Hardware Encoder for Systematic Low-Density Parity-
Check Codes,” in IEEE Int.Midwest Symp. Circuits and Systems (MWSCAS’09), 2009.

[20] Overview of Space Communications Protocols, CCSDS 130.0-G-3 Green book, Jul. 2014.
[21] W. Fong, “White Paper for Low Density Parity Check (LDPC) Codes for CCSDS Channel Coding

Blue Book.” CCSDS P1B Channel Coding Meeting, Houston, TX, Oct. 2002;
https://standards.nasa.gov/documents/viewdoc/3315856/3315856. [Accessed 10/8/15].

[22] TM Synchronization and Channel Coding, CCSDS Standard 131.0-B-2 Blue book, Aug. 2011.
[23] Low Density Parity Check Codes for Use in Near-Earth and Deep Space Applications, CCSDS

Experimental Specification 131.1-O-2, Sep. 2011.
[24] AMBA 4 AXI3-Stream Protocol v.1.0, ARM Specification, 2010.
[25] L. Miles and S. Whitaker, “Low-density parity-check (LDPC) encoder,” U.S. Patent 3,754,212 B2,

Jun. 2, 2009.
[26] CCSDS (8160,7136) LDPC Encoder and Decoder Product Brief, CREONIC GmbH Product Brief;

http://www.creonic.com/images/product_briefs/PB_Creonic_CCSDS_LDPC_FEC_IP.pdf [Accessed
3/9/2015].

[27] LCE01C CCSDS (8160,7136) LDPC Encoder, Small World Communications Product Specification,
Mar. 2013; http://www.sworld.com.au/pub/lce01c.pdf [Accessed 3/9/2015].

[28] LDPC NASA Encoder/Decoder IP Core, Iprium Specification, r1091, Sept. 2014.

D. Theodoropulos 63

https://standards.nasa.gov/documents/viewdoc/3315856/3315856
http://www.sworld.com.au/pub/lce01c.pdf
http://www.creonic.com/images/product_briefs/PB_Creonic_CCSDS_LDPC_FEC_IP.pdf

	1. INTRODUCTION TO LDPC CODES
	1.1 Noisy Channel Coding Introduction
	1.2 Low Density Parity Check codes
	1.2.1 Linear Block Codes
	1.2.2 LDPC description
	1.2.3 LDPC features
	1.2.4 LDPC performance

	1.3 Encoder architectures for Quasi-Cyclic codes.
	1.3.1 Straightforward implementation
	1.3.2 RCE implementation
	1.3.3 RU encoder
	1.3.4 Iterative encoder

	2. CCSDS STANDARDS
	2.1 AR4JA LDPC code family
	2.2 C2 code for near-earth applications
	2.3 Frame Synchronization and CADU structure
	2.4 Randomization

	3. ENCODER DESIGN
	3.1 Encoder Architecture selection
	3.1.1 RCE encoder resources
	3.1.2 Iterative encoder resources
	3.1.3 Parallel RCE implementation

	3.2 Components Description
	3.2.1 RANDOMIZER unit
	3.2.2 Control and Buffer Unit: the general case
	3.2.3 Control and Buffer Unit: La=1.
	3.2.4 Control and Buffer Unit: High latency case
	3.2.5 Control and Buffer Unit: Very small Latency
	3.2.6 Control and Buffer Unit: no HALT state
	3.2.7 Control and Buffer Unit: C2 code
	3.2.8 Function generators

	4. IMPLEMENTATION
	4.1 Code design and parametrization
	4.2 Core synthesis
	4.3 Performance

	5. VERIFICATION AND VALIDATION
	5.1 General
	5.2 Functional simulation
	5.2.1 Testbench description
	5.2.2 Simulation results

	5.3 Implementation validation
	5.3.1 Embedded system description: UART input
	5.3.2 Results with UART input
	5.3.3 Embedded system description: LFSR input
	5.3.4 Results with LFSR input

	6. RESULTS
	6.1 Comparison to other implementations: commercial products.
	6.2 Comparison to other implementations: literature.

	7. CONCLUSIONS
	ACRONYMS-ABBREVIATED TERMS
	REFERENCES

