NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM

MSC THESIS

Implicitization, Interpolation, and Syzygies

Konstantinos D. Gavriil

Supervisors: loannis Emiris, Professor U. Athens
Vassilis Zissimopoulos, Professor U. Athens

ATHENS
SEPTEMBER 2016



EONIKO KAI KAMOAIZTPIAKO MNMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA MNMAHPO®OPIKHZ KAl THAEMIKOINQNIQN

NMPOrPAMMA METAMNTYXIAKQN ZMOYAQN

AINAQMATIKH EPTAZIA

AAyeBpikotroinon Em@aveiwy, MapeuBoAr kol AAyeBpPIKEG
2uluyigg

KwvoTtavrivog A. MaBpinA

EmiBAérovreg: lwdvvng Epipng, Kabnyntic E.K.IT.A.
BaoiAgiog Znoipoémroulrog, Kabnyntig E.K.I.A.

AOHNA
2ENTEMBPIOZ 2016



MSC THESIS

Implicitization, Interpolation, and Syzygies

Konstantinos D. Gauvriil
S.N.: M1366

SUPERVISORS: loannis Emiris, Professor U. Athens
Vassilis Zissimopoulos, Professor U. Athens



AINAQMATIKH EPTAZIA

AAyeBpikotroinon Em@aveiwy, MapeuBoAn kar AAveBpIKES Zuluyieg

KwvoTtavrivog A. MapinA
A.M.: M1366

EMNIBAENMONTEZ: Ilwavvng Epipng, Kabnyntig E.K.IT.A.
BaoiAgiog Znoipomoulog, Kabnyntig E.K.IT.A.



ABSTRACT

Implicitization is a fundamental change of representation of geometric objects from a
parametric or point cloud representation to an implicit form, namely as the zero set of one
(or more) polynomial equation. This thesis examines three questions related to expressing
the implicit equation of a curve or a surface.

First, we consider a sparse interpolation method for implicitization: When the basis of
the kernel of the interpolation matrix is in reduced row echelon form, the implicit equation
can be readily obtained, without demanding computations such as multivariate polynomial
GCD or factoring. As a second contribution, a numeric method that computes a multiple
of the implicit equation based on the power method is tested and evaluated.

The third contribution of this thesis is to provide a method for computing a matrix represen-
tation of a rational planar or space curve, or a rational surface, when we are only given a
sufficiently large sample of points (point cloud) on the object in such a way that the value of
the parameter is known per point. Our method extends the approach of algebraic syzygies
for implicitization to the case where the parameterization is not given but only assumed.

SUBJECT AREA: Algebraic Geometry

KEYWORDS: geometric representation, implicitization, linear algebra, syzygies,
matrix representation



NEPIAHWYH

H aAyeBpIKoTToinon KAPTTUAWY Kal ETTIQAVEIWY gival hia BepeAIudNG JETATPOTTA OTNV ava-
TTOPACTACH YEWMETPIKWY AVTIKEIUEVWY OTTO TTAPAUETPIKA Jop@r A avatTapdoTaon VEQOUG
onueiwyv o€ pia alyeBpiki avatrapdoTaon, Kail EI0IKOTEPA WG TO UNOEVOOUVOAO €VOG (1 TTE-
PICOOTEPWYV) TTOAUWVUUIKWY €E1I0WoewV. AUTA N OITTAWUATIKN £pyacia epeuva Tpia epw-
TAMOTA OXETIKA PE TNV €KPPaAcn aUuTAG TNG AAYEBPIKAG avaTTapdoTaong KAPTTUANG 1 £TTI-
Qaveiag.

ApxIKd, Bewpoupe TN nEBOSO TNG apaing TTapeUPOAAG yia Tnv aAyeppikotroinon: Otav n
BAon Tou TTUPrva Tou TTivaka TTAPEUPBOANG gival o€ avolyhévn KAIWOKWTH Hop@r], N ava-
AUTIKN €€iowon PtTopEi va An@Bei Aueoa, Xwpig va atraItoupe UTToAoyIopoug 0TTwg MKA
TTOAUWVUHWYV TTOAAWV PETABANTWY 1] TTapayovTotroinon. Q¢ deuTtepn cuvelIoPopd, eEETA-
Coupe Kal agloAoyoupe pia apiBunTikn PEBodo TTou uttoAoyilel Eva TTOAAATTAGCIO TG ava-
AUTIKAG €€iowong, n otroia BacifeTal oTn HEBOOO TwV dUVANEWV.

H tpitTn ouveilo@opd auTrg TG SITTAWMATIKAG £pyaCiag gival va TTPOCPEPOUNE Hia nEB0dO
yla TOV UTTOAOYIOUO Hiag avatrapdoTaong INTPWOU piag pntig d10d1daTatng f 1piodia-
OTATNG KAUTTUANG, A piag TpIiodiaoTatng emM@AveIag, OTav hag diveTal HOVo Eva ETTAPKEG
OUVOAO onueiwv (VEQOG OnUEiwV) TTAVW OTO AVTIKEIMEVO PE TETOIOV TPOTTO WWOTE N TIMNA TNG
TTOPANETPOU Va gival yvwoTr avd onueio. H péBodd¢g pag eTTEKTEIVEI TNV TTPOCEYYION TWV
aAYEBPIKWY oUCUYIWYV YIa TO TTPORBANKA TNG OAYERPIKOTTOINONG ETTIPAVEIWY KOl KAUTTUAWV
OTNnV TTEPITITWON TTOU N TTAPAPETPOTTOINON OeV diveTal AAAG UTTOTIOETAL.

OEMATIKH MEPIOXH: AlyeRpikA MewpeTpia

AEZEIZ KAEIAIA:  yewpeTpikA avatrapdoTtaaon, aAyeBPIKOTTOINCT, YPAUMIKH GAYERPQ,
ouduyieg, avatrapdoTaon PnTpwou
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EYXAPIZTIEZ

Oa nBeAa va euxapioTAow Tov emBAETTOVTA K. lwavvn Epipn yia Tn ouvepyaaoia, TNV EUTTI-
oToouvn Kail TN BonBeia Katd TNV eKTTOVNON aUTAG TNG DITTAWUATIKNAG.

@a nBeAa, €1TiONG, VO €UXAPICTHOW TO QiAo pou Xprioto Kovaér yia TIC CUVEXOUEVES TTO-
AUTIPEG TTAPATNPROEIG TOU O€ TIPOKATAPKTIKEG EKOOCEIG TOU KEIJEVOU.
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Implicitization, Interpolation, and Syzygies

1. INTRODUCTION

This thesis is part of the Master of Science Graduate Program of the Department of
Informatics and Telecommunications of the University of Athens in the Computational
Science specialization.

Implicitization is a fundamental change of representation of geometric objects from a
parametric or point cloud representation to an implicit form, namely as the zero set of one
(or more) polynomial equation. This thesis examines three questions related to expressing
the implicit equation of a curve or a surface.

We will need to establish some concepts of algebraic geometry before continuing to the
algorithms related to the problems. Therefore, Section 2 will introduce the reader to the
necessary background and definitions needed in the following sections. We will define the
implicitization problem and describe two of the methods for the implicitization problem.
The first one is the sparse implicitization by interpolation method using predicted support
and the second is the implicit matrix representation method. We will define what an implicit
matrix representation is and provide the existing method for its computation.

In Section 3, the first contribution of this work, we consider the sparse interpolation method
for implicitization. After constructing the interpolation matrix M of a given curve or surface,
the method demands the computation of a basis of the kernel of M. Each of the basis
elements corresponds to a polynomial and the last step of the method involves the multiva-
riate polynomial GCD computation of these polynomials or factoring computation of one of
the polynomials followed by a polynomial evaluation to acquire the implicit polynomial. We
show that when the basis of the kernel of the interpolation matrix is in reduced row echelon
form, the implicit equation can be readily obtained, without demanding such computations,
namely multivariate polynomial GCD or factoring. This contribution speeds up the final step
of the interpolation method for the implicitization problem and uses basic linear algebra
and matrix computations instead of number theoretic approaches, such as Hensel lifting.

In Section 4, we present a numeric method that computes an approximation of a multiple of
the implicit equation based on the power method. Given a matrix M which has a nontrivial
kernel, we compute a nontrivial element of its kernel by using the power iteration method
on the Gram matrix of M. This approximate kernel vector corresponds to an approximation
of a multiple of the implicit polynomial. The method is tested and evaluated. We show that
our initial approach has some drawbacks that render the method impractical for most
scenarios. Despite its drawbacks, we see this contribution as an initial step towards a
numeric method for computing an approximation of the implicit polynomial when we are
given the interpolation matrix of a curve or surface. We propose several questions for
future work.

Section 5 is the third and final contribution of this thesis. We provide a method for computing
a matrix representation of a rational planar or space curve, or a rational surface, when we

Konstantinos D. Gauvriil 12



Implicitization, Interpolation, and Syzygies

are only given a sufficiently large sample of points on the object in such a way that the
value of the parameter is known per point. Our method extends the approach of algebraic
syzygies for implicitization to the case where the parameterization is not given but only
assumed. Additionally, we show how we can compute the degree of the parameterization
of the curve or surface when the parameterization is not given explicitly.

Konstantinos D. Gauvriil 13
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2. BACKGROUND

We will need to establish some concepts of algebraic geometry before continuing to the
algorithms related to the problems. In this section, we will introduce the reader to the
necessary background and definitions needed in the following sections. We will define
the implicitization problem and examine the previous work for two of the methods for the
implicitization problem.

The first one is the sparse implicitization by interpolation method using predicted support.
We will briefly present the method and focus on the definitions and background needed
for the contribution that we present in Section 3.

The second is the implicit matrix representation method based on syzygies. We will define
what an implicit matrix representation is and provide the existing method for its computation.
A brief focused introduction to the theory of syzygies is provided. The presented method
will be the foundation for the contribution of Section 5.

For an in-depth study of modules and syzygies see [9], while more information about the
sparse interpolation method for the implicitization problem can be found in [15] and [13].

Before defining the implicitization problem formally, we will introduce some needed con-
cepts. Firstly, we define the concept of a rational parameterization of a geometric object
since this will be one of the two forms of input, the other being a point cloud, to the
implicitization algorithms.

2.1 Rational parameterization of curves and surfaces

Let k be a polynomial ring. A rational function f is a function that can be expressed as a
quotient of polynomials of k.

A parameterization of a geometric object is the description of the object by parametric
functions. We will be interested in rational parameterizations in the following sections. Let

k = R[t], where t = (14, ...,t,) A rational parameterization ¢ is of the form
fi(t) fs_1(t) )
)= | =2, 2
00 (Fg i

where fi(t), ... fs(t) € R[t].

When n = 1, ¢ corresponds generically to a (s — 1)—dimensional curve and when n = 2,
it is a (s — 1)—dimensional surface. The values of (n,s) that we will examine and the
corresponding geometric object are:

* (1,3) : planar curve
* (1,4) : space curve

* (2,4) : space surface

Konstantinos D. Gavriil 14
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2.2 Newton polytope of a polynomial

Another important concept for the sparse approach to the implicitization problem is the
Newton polytope of a given polynomial. When studying a polynomial of a certain degree,
we can take into account all the possible monomials that the polynomial can contain. The
Newton polytope of that polynomial allows us to consider only the monomials that appear
(have a nonzero coefficient) in the polynomial.

Given polynomial

flt) =) cat® €R[ty, ... 1)

where t* = t" - - - {2, a € N", ¢4 € R, we define its support as the set of the exponents of
the monomials of f with nonzero coefficient in vector form, i.e.

SUP(f) = {a € N": cq # 0}

We use the notation CH for the convex hull of a given set of points. We define the Newton
polytope of the polynomial f as

N () = CH(SUP(H)
Example 1. Consider polynomial
f<t1,t2) = tf]l + t%t% + t% + 1‘11“21 + 1t + tg S R[h,tg]

Then, its support is the set

SUP(f) = {(4,0),(2,2),(2,0),(1,4),(1,0),(0,3)}

Its Newton polytope is the convex hull of the points in SUP(f).

A

1 2 3 4
Figure 1: Newton polytope of f

Konstantinos D. Gauvriil 15
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Newton polytopes are the basic tool in sparse elimination theory. They are used in the
setting of sparse implicitization to predict the support of the implicit polynomial. The inter-
polation matrix of the curve or surface, has columns indexed by this support. An accurate
support prediction reduces the size of the interpolation matrix compared to one built using
only degree bounds.

Let us now give the formal definition of the implicitization problem.

2.3 Implicitization problem definition

Implicitization is a fundamental operation with applications in computer-aided geometric
design (CAGD) and geometric modelling. It is the process of changing the representation
of a geometric object from parametric to implicit. Various approaches have been studied
for the implicitization problem, including resultants, Grobner bases, syzygies and interpola-
tion techniques. We will restrict ourselves to the last two methods, namely syzygies and
interpolation.

Consider the parameterization ¢ : R” — R™ of a geometric object,

o:t=(t,....th) = (X1 =f{),.... Xm =Tn(t))

where the f, i = 1,...,m are continuous functions, including polynomial, rational, and
trigonometric functions.

The implicitization problem asks for the smallest algebraic variety containing the closure
of the image of the parametric map ¢@. This image is contained in the variety defined by the
ideal of all polynomials p(xi, . . ., xn) such that p(fi(t), ..., fn(t)) = O, for all t in the domain of
¢@. We restrict ourselves to the case when this is a principal ideal, and we wish to compute
its unique defining polynomial

p(X1,...,Xm) =0

As we already mentioned, we restrict ourselves to two methods for the implicitization
problem, namely sparse implicitization using interpolation, and syzygies. In the following
paragraphs, we will make a brief introduction to both these methods before continuing to
the following sections and the main contributions of this work.

2.4 Sparse interpolation method using predicted support

We will not provide a detailed description of the underlying theory and method for the
implicitization problem using support prediction but rather provide an overview of the
method and direct the reader towards [15, 13] for a detailed description. We focus our
attention to the algorithm used in [15, 13] since we will be making a contribution towards
the improvement of its final step.

Konstantinos D. Gavriil 16
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We assume we have knowledge of the implicit polytope, which is defined as the Newton
polytope N (p(x1,...,Xn)) of the implicit polynomial p(x4, ..., X,), or a superset S of its
implicit support, where S is defined as the set of all lattice points in A/(p). This is achieved
by the algorithm provided in [15, 13]. Given the superset S, we construct a uy x |S| matrix
M whose columns are indexed by monomials with exponents in S and whose rows are
indexed by values of t at which the monomials are being evaluated. The number of rows
p must be greater or equal |S|.

Let v4,...,vy € RIS be a basis of the kernel of M and ki,...,ky € R[xq,...,xn] be the
corresponding polynomials, i.e. k; = v!'S, which we call kernel polynomials. Then, we
have the following result

ng(k1,...,kN) Zp(X~|,...,Xm)7

where p € R[xq,..., Xy is the implicit polynomial. Therefore, a GCD computation of the
kernel polynomials is needed to obtain the implicit polynomial p. The first contribution of
this work is to avoid such computations and instead use basic linear algebra computations
to obtain the implicit polynomial. We direct the reader to Section 3 for this improvement.

This concludes the introduction of the first method for the implicitization problem. Below,
we will define the concept of the implicit matrix representation of a curve or surface,
describe the method for constructing such a representation and comment on how this
method will be the basis for the contribution of Section 5.

As before, we will begin by introducing the reader to the basic theory of modules and
syzygies and by defining homogeneous polynomials. A more detailed introduction and
further topics in modules and syzygies can be found in [9]

2.5 Modules

Let k be a commutative ring with identity. Polynomials rings, which are of interest for this
thesis, are examples of such rings. As defined in [9], a k—module is a set M together with
a binary operation, usually denoted as addition, and an operation of k on M, called scalar
multiplication, satisfying the following properties.

1. M is an abelian group under addition.
2. Forallace kandall f,ge M, a(f+ g) = af + ag.
3. Foralla,b e kandall fe M, (a+ b)f= af + bf.
4. Foralla,b € kand all fe M, (ab)f = a(bf).
5. If 1; is the multiplicative identity in k, 1, f= ffor all f € M.
Since rings are a generalization of fields, modules over a ring can be seen as a generalization

of vector spaces over a field.

Konstantinos D. Gauvriil 17
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We provide below some examples of modules before continuing to define the module of
syzygies of a set of polynomials.

Example 2. Let k be polynomial ring. An example of a k—module is k®, s € N, i.e. the set
of s x 1 vectors consisting of elements of k. Addition and scalar multiplication are defined
similar to vector spaces.

Another example of a k—module is the set of k—linear combinations of a finite set of
vectors fq. 15, ... £, € k5.

{aifs + a.fo + ...+ anfm € k°, where a4, ..., a, € k}
Let M be a k—module and N C M. Then, N is called a k—submodule of M if the following
properties are satisfied.
1. Forallf,ge N,f+g < N.
2. Forallaekandfe N, af € N.

In the following section, we will introduce a submodule of interest for this work, namely
syzygies of given polynomials.
2.6 Syzygies

Let k be a polynomial ring and consider polynomials fy, . . . , fs € k. Some of the polynomial
rings that we will be using in the following sections are R[f] and R[t;, f]. An s—tuple
(hy,...,hs) € k® of polynomials hy, ..., hs € k that verifies the k—linear relation

hify + -+ hefs = 0

is called a syzygy on the polynomials fq, ..., fs. The term syzygy comes from the Greek
word ouluyia which is used in astronomy to express an alignment of celestial bodies.
We can think of a polynomial syzygy as an algebraic null alignment of the polynomials
fi,... fs.

The set of all (hy,...,hs) € k® such that
S
> hifi=0,
i=1
is a k—submodule of k*, called the (first) syzygy module of (f, ..., fs), and denoted

Syz(fy,...,fs).
Example 3. Consider the polynomial ring R|x, y| and consider two of its polynomials

Konstantinos D. Gavriil 18
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]‘-1:X2 and fgzy

Then (y, —x?) is a syzygy of polynomials fy, f, since

yf1 + (—Xz)fz =0

This syzygy is also called a trivial syzygy since for any two polynomials f;,f, € R[x,y], it
holds that

fofy + (—f1)f2 =0.

The concepts of homogeneous polynomials and the homogeneous degree will be useful
for our description of the implicit matrix representation method. Let us begin by defining
homogeneous polynomials and the concept of a graded ring that we will use to define the
module of syzygies of a certain homogeneous degree.

2.7 Homogeneous polynomials

A polynomial is homogeneous of total degree d if every term appearing in it has total
degree d. Consider a non-homogeneous polynomial f € R]ty,...,t,] of degree d. The
homogenization of f with respect to a homogenizing variable t,,, 1 is the introduction of £, 4
to fsuch that

t t,
ﬂ](t17 .- '7tn7tn+1) = tg+1f<_1

90 ey P
tn+1 tn+1

).

We can dehomogenize a homogenized polynomial by setting the homogenizing variable

tn+1 — 1

Example 4. Consider the polynomial

fx,y) = 3%y + xy — 2y° € R[x, y].

The homogenization of f with respect to the variable z gives us

f(x,y,2) = 3x°yz* + xyz> + 2y° € R[x, y, Z].

Homogeneous polynomials provide a grading to a polynomial ring. A graded ring is a ring
k that is expressible as &0k, where k, are additive subgroups such that kpk, C kpyin.
We call k, the n" graded piece and the elements of k, homogeneous of degree n.

Konstantinos D. Gavriil 19
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Similarly, we can speak of a graded module, namely a k—module M is expressible as
@m>oMn and k,M,, C My, for all m,n > 0. Additionally, N is a graded submodule of M if
N is a graded module, N is a submodule of M and N,,, = N M,, for all m > 0.

The set of syzygies of the homogeneous polynomials f;, . . ., fs, which is of interest for this
work, is a graded submodule. Thus, we can speak of its graded piece Syz(f,...,f),,
namely the set of syzygies of polynomials f4, . . ., fs of homogeneous degree v > 0. As we
will mention again in the following sections, Syz(fi,...,fs), is an R—vector space, which
means that knowledge of its basis is adequate for its expression.

Now, we are ready to describe the second method for the implicitization problem which is
of interest to this work. The implicit matrix representation method via syzygies does not
compute the implicit polynomial of the curve or surface but rather construct a matrix which
has a property that can define the curve. The basic method is well known and sketched
below, for details see [3, 5].

2.8 Matrix representations of planar curves

We first describe the general method for computing a matrix representation of a rational
planar curve via syzygy computations. Consider the parameterization ¢ : P' — P? :

t=(t1,t) — (fi(t), (1), f5(t))

where f; € R[t, t;] are homogeneous polynomials of the same degree d and for simplicity
we assume gcd(fy, fr,f3) = 1, i.e. ¢ has no base points. In our setting, a point t € P! is
called a base point if f(t) = 0 for all i = 1,2, 3. Extensions for addressing base points are
well-established [3].

The dehomogenization of ¢ gives the rational planar curve C parameterized by

fi(ty) f(t) 2
(fs(ﬁ)’fs(ﬁ)) - R M

where fi(t) is short for fi(t;,1). A syzygy on the polynomials f; is a triple (hq, h, hs) of
homogeneous polynomials h; € R[t, t;] that verify the linear relation 2?11 hifi = 0. We
write

(h1,ho, h3) € Syz(fy, 1, 13).

By homogenization, the hq, ho, h; have the same degree, which is the degree of their
syzygy. As mentioned before, the set of syzygies Syz(fy, f,, f3) is a graded module; it can be
partitioned according to the degree of the syzygies. We fix a degree v > 0 and consider the
set of syzygies of degree v, namely Syz(fy, f,, f3),, which is known to be an R-vector space.
LetLq,...,Ly, be an R-basis of Syz(fy,f,, f3),, where N, denotes the basis cardinality.

Konstantinos D. Gauvriil 20
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Assuming (x4, X2, x3) are the homogeneous coordinates of P?, an equation of the form
S°2 , hix; is called a moving line. We associate each L; = (hﬂj), hg), hg)) to its moving line
and we develop it in terms of the {; as follows:

v+1

3
Z hx, = Z Nij(X1, X2, x3) 6 51

k=1 i=1

where A;j(x1, X2, X3) is a linear polynomial in R[x1, X2, X3]. Now, we can define M, (¢) as a
(v + 1) x N,-matrix whose entry (i, j) is the linear polynomial A;;(x1, X2, X3).

After describing the construction method of matrix M, (¢), we describe the needed property
for the matrix to be an implicit matrix representation, i.e. having the property to define the
given curve of parameterization ¢.

Basic property: For v > d— 1, the matrix M, (¢) is an implicit matrix representation of the
curve C, since it holds the following property: for any point p = (x1, X2, X3) € IP? the rank of
M, (¢) evaluated at p drops if and only if p belongs to the algebraic closure of Im(¢) [5].

We dehomogenize by setting x3 = 1 and have the equivalent property for the non-homoge-
neous setting, that a point (X, Y) € R? belongs to C if and only if the rank of M, (X, Y) drops;
the latter denotes the matrix in the non-homogeneous setting.

Thus, we have described the general method of constructing an implicit matrix represen-
tation (a matrix having the above property) of a planar curve. The above method can be
slightly adapted to compute implicit matrix representations of space curves and space
surfaces. [3] provides an in-depth analysis of the method for these additional cases.

We will use this method as our foundation to construct an implicit matrix representation of
a curve or surface when the parameterization ¢ is unknown. Instead, we are given a set
of parametric points which will be used to interpolate a basis for the set of syzygies of a
certain degree. We direct the reader to Section 5 for the continuation of this contribution.

Konstantinos D. Gavriil 21
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3. AN IMPROVEMENT TO THE SPARSE INTERPOLATION METHOD

Continuing from the introduction of the implicitization problem and the sparse interpolation
method given in Section 2, we focus our attention to the algorithm used in [15, 13] and
provide an improvement to its final step, obtaining the implicit polynomial from the kernel
polynomials.

3.1 Avoiding GCD computation of kernel polynomials

Our contribution in this section is the avoidance of calculating the GCD of the kernel
polynomials; a costly action in the case of multivariate polynomials. Instead, we prove
that when the basis of the kernel of M is in reduced row echelon form (RREF), then one
of the kernel polynomials is the implicit polynomial, and it can be found in linear time on
the cardinality of the kernel. This improvement takes advantage of the already built-in
functionality of many computer algebra packages of producing the basis of the kernel of a
matrix in RREF. Additionally, it avoids multivariate GCD computations and instead relies
on standard matrix calculations.

Input: Kernel polynomials of Min RREF k;, i=1,... N
Output: Implicit polynomial p € R[xo, . .., Xy]

/I divide by common factor

fori=1to Ndo
/ find in k; the minimum degree for each variable
o, - - -, An < MiNgesypky{Ao}, - - -, MiNacsupk){An};
k,' — k,'/Xgo .. Xg",

end

/I find implicit polynomial

best < Kq;

fori=2to Ndo
if 7€ {0,...,n} : MaXaesurk){1aj} < MaXacsur(vesyia;} then

| best < k;;

end
return best;

end

Alg. 1: Findlmpl

Given the kernel polynomials of M, Algorithm 1 returns the implicit polynomial p. The
correctness of this claim is proven in Lemmas 1 and 2. In Lemma 1 we show that one
of the kernel polynomials is a multiple of the implicit polynomial p by some monomial,
while Lemma 2 shows that Algorithm 1 returns a kernel polynomial of this form.
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Lemma 1 (Existence). Let v4,..., vy be a kernel basis of M in RREF. Then there exists
j€{1,...,N} such that v; corresponds to a polynomial

ki=x"-p, a € N

i.e. a monomial multiple of the implicit polynomial p.

Proof. Assume monomial order ord for the corresponding monomials of the columns of M
and that all kernel polynomials are monic, i.e. their leading coefficient is 1.

Case 1: Assume, initially, that corank(M)=1. We shall show that the unique kernel poly-
nomial is k = x®* - p. We use the notation x* to denote a monomial and p is the implicit
polynomial.

Assume, towards contradiction, that k = q - p for some q € R[x| with |SUP(q)| > 1 and
SU'P(C]) = {q17 - Aisup(g) ’ a4 >ord -+ - Zord a|$u79(q)\}-

Then, we construct a new polynomial kK = q - p — x% - p and show that it corresponds to
kernel vector of M

NX"-p) CN(qg-p) CCH(S) = SUPX™ -p) C S

where S is a superset of the support of the implicit polynomial. Here, the second inclusion
is derived from the fact the construction of the interpolation matrix, whose kernel vector
corresponds to q - p. Then,

SUP(q-p),SUP(X™ -p) C S = SUP(q-p—x""-p)C S

Thatis, K = q-p—x% -p # 0 is a polynomial with support in S and therefore, corresponds
to a kernel vector of M (it is a multiple of p). Additionally, since LT (K') <o LT (k), K
corresponds to a kernel vector of M not spanned by the kernel vector corresponding
to k. Therefore, corank(M) > 1 which is a contradiction. Therefore, the unique kernel
polynomial k is of the form x® - p

Case 2: Now, assume that corank(M) > 1 or, equivalently, we have the kernel polynomials
kq,...,k;, i > 1. Let the corresponding kernel vectors be in RREF following ord. Below, we
will describe a procedure that, assuming we begin by an arbitrary kernel vector, constructs
a polynomial of strictly lower degree that also belongs to the kernel of the interpolation
matrix.

We choose an arbitrary kernel polynomial k. Then, if k = x® - p for some a € R" we
terminate the procedure and consider this a success. Otherwise, if k = g - p for some
q c R[X] with |SUP(Q)‘ > 1 and SUP(Q) = {01, —o Aisup(g) ’ a1 >ord --- ~ord a|8u7>(q)|}
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we construct a polynomial K = g-p —x% - p # 0, such that LT (K') <oy LT (k), in a similar
manner to Case 1. This means that k' corresponds to a vector that belongs to the kernel
of M but has a leading term strictly lower than k, with respect to ord. Thus, this new kernel
vector is not spanned by k. But since it belongs to the kernel of M it must be spanned by
the kernel vectors which are in RREF.

If the new polynomial k' = x* - p for some a’ € R” we again terminate the procedure. If
not, we can repeat the procedure and construct a new polynomial, whose corresponding
vector belongs to the kernel of M, and which has a leading term strictly lower than the
previous polynomial, meaning it is not spanned by any of the previous polynomials.

Notice that this procedure must terminate with a success, meaning we have achieved to
construct a polynomial which belongs to the kernel of M, and is of the form k = x® - p. This
is because, at each step, if the current polynomial is a multiple of the implicit polynomial by
some polynomial (not monomial), we showed that we are able to construct a polynomial
with a leading term of strictly smaller degree. By assuming that we do not get a polynomial
which is of the form k = x® - p at any step, we are able to construct an infinite chain of
descending leading terms for the constructed polynomials. Since the number of terms |S| is
finite and the leading terms belong to S, the previous assumption leads to a contradiction.
[

Lemma 2 (Validity). The Algorithm 1 (FindImpl) returns the implicit polynomial.

Proof. Let kq, . .., ky be the kernel polynomials in RREF. From Lemma 1, we know that at
least one is of the form x° - p.

The first step of Algorithm 1 divides each of the kernel polynomials by its common factor.
After the first step, we have thatVie {1,... N} :ki=porki=q-p.

We observe a useful property; that deg, (p) < deg, (q - p) for some j € {0,...,n}. Thus,
if for some kernel polynomial k it holds that deg, (k) < deg, (k; for all i € {0,...,n} and
je{1,....N},thenk=p. &

3.2 Conclusion

The proposed method for finding the implicit polynomial p when given the kernel polynomials
of matrix M has some advantages when compared to any method of multivariate GCD or
factoring. Firstly, Algorithm 1 has lower time complexity, i.e. O(corank(M) - |S|). Secondly,
it is based on basic linear algebra and matrix operations instead of number theoretic
approaches, like the Chinese remainder theorem and Hensel lifting.
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4. APPROXIMATING A KERNEL VECTOR

As we described in the previous sections, the sparse implicitization by interpolation method
involves the construction of an interpolation matrix M, whose kernel elements correspond
to multiples of the implicit polynomial p by some polynomial ¢ or a monomial x®. The
subsequent steps of the method involved the computation of a kernel basis of M. The
motivation behind this section is to further speed up the method and to be able to obtain
an approximation of just one element of the kernel of the interpolation matrix M without
describing the entire kernel. We will test a method for approximating an element of the
kernel of a matrix based on a variation of the power method (or power iteration). This
kernel element will again correspond to a multiple of the implicit polynomial p by some
polynomial g. Finally, we will examine its drawbacks, some of which are inherent in the
power method.

4.1 Analysis of the method

Let M € RISXISI pe the interpolation matrix from the sparse implicitization by interpolation
method, constructed as described in previous sections, where the dimension of the matrix
is given by the cardinality of S, i.e. the superset of the predicted support of the implicit
polynomial p.

Input: Matrix M, iterations r of PowerMethod
Output: Vector v € ker(M)

G« MMT;
A < PowerMethod(G, r);
G «+— -G+ Al
A, w + PowerMethod(G’,r);
Ve Mw,
if v € ker(M) then
| returnv;
else
G+ MM,
A < PowerMethod(G, r);
G «— -G+ AlL
A, w + PowerMethod(G’,r);
return w;
end

Alg. 2: AKV

We will be basing our method on the power method, which is a numerical iterative method
for computing an approximation of the eigenvalue with the largest absolute value, called
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the dominant eigenvalue and its corresponding eigenvector. One of the disadvantages
of the power method is that it fails when the matrix has complex eigenvalues. For this
reason, instead of M, we will be using a variation of its Gram matrix. The Gram matrix of
M is defined as M"M but we will instead use a variation, namely

G=MM"

The matrix G is real symmetric since G = (MM™)" = (M")TM™ = MM™ = G, and positive-
semidefinite since Vz, z'Gz = zZ’TMM"z = (M"2)T(M"z) = ||[M"Z||5 > 0. Thus, it has real
non-negative eigenvalues. By using matrix G instead of M we overcome the possibility of
M having complex eigenvalues.

Using the power method iteration, we can compute an approximation of the dominant
eigenvalue of G, i.e. A = max{|Aj|,i = 1,...,n}, where A; are the eigenvalues of G. Now,
we consider the shifted matrix G = —G + Al. In Lemma 3 below, we shall show that G’
has the same dominant eigenvalue as G. Thus, we can apply the power method iteration
to G’ in order to compute an approximation of the eigenpair (A, w) of G, where A € R
is the dominant eigenvalue of both matrix G and G’, and w € R"*" the corresponding
eigenvector.

Since (A, w) is an (approximate) eigenpair of G', we have that

Gw=Aw= (-G+Al—A)w=0= Gw=0,

meaning vector w is a nontrivial (nonzero) element of the kernel of G. Since G = MM", we
have that

MM™w =0 = M(M"w) = 0,

which means that M"w € ker(M)\{0} or w € ker(M"). We are interested in the first case,
i.e. M"w is an approximation of a kernel element of matrix M.

If that is not the case, and instead we have that w € ker(M'), we repeat the entire
procedure using the Gram matrix G = M'M, instead of the above variation. The real
symmetric and positive-semidefinite properties hold for this case too. Thus, the procedure
remains the same with the difference being that we are interested in vector w instead of
M'w. That is because

Gw=0= M"(Mw) = 0.

The entire procedure is summarized in Algorithm 2 and denoted AKV for approximate
kernel vector.
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Lemma 3. If A is a singular positive-semidefinite matrix with dominant eigenvalue A, then
A is the dominant eigenvalue of matrix —A + Al.

Proof. Since A is singular and positive-semidefinite, all its eigenvalues are non-negative
and one of its eigenvalues is Ay = 0. Let A have k eigenvalues and A be the dominant
eigenvalue, so we have

0:A1<A2<...<Ak_1<A

where A, i = 1,...,k — 1 are the eigenvalues other than A. Let g(A) = —A + Al be
a polynomial of matrix A. We know from the properties of eigenvalues that if A is an
eigenvalue of Athen g(A) is an eigenvalue of g(A). We can easily show that the eigenvalues
of q(A) are arranged as

0=q(A) < q(A-1) < ... <q(A2) <q(h),

meaning that (A1) = q(0) = A is the dominant eigenvalue of g(A) = -A+ AL R

4.2 Drawbacks of AKV

The method described above is a first attempt to approximate a nontrivial element of the
kernel of a given matrix M under the motivation of avoiding any kernel basis computations
and further speeding up the method of sparse implicitization by interpolation. As such,
there are drawbacks that we will present in this section.

The first drawback is the slow convergence rate of the power method iteration when

% ~ 1, where Ay > A, the two eigenvalues with the largest absolute values. In our

experiments, matrices of large dimensions, which is the case when the predicted support
of the implicit polynomial is contained in a large superset, the slow convergence rate led to
computational times that exceeded the time for the exact computation of a kernel basis of

M. Moreover, since the power method is used twice in algorithm AKV, any of the two cases

ﬁ ~ 1 and 283 ~ 1, following the notation of Lemma 3, can lead to slow convergence

rates.

The second drawback is that algorithm AKV computes a multiple of the implicit polynomial
p by another polynomial. Since the computations are numeric and we are working in
the approximate setting, we must use approximate factoring if we wish to extract the
approximate implicit polynomial. This further increases the computational cost of the method.

Another drawback of the proposed method is that it is not evident beforehand whether the
computed vector v = M"w belongs to ker(M) or w € ker(M").
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4.3 Conclusion and future work

We provided an initial attempt to the problem of computing a nontrivial element of the
kernel of a matrix M using power method. The drawbacks of the method, as we described
in the previous section, are far from minor and render the method not practical in most
settings.

In numerical analysis, there exist various methods other than the power method, such as
the Rayleigh quotient method and the QR method etc, to compute eigenvalues (dominant
or not) of a given matrix. Every method is sensitive to the type of the input matrix, and as
such can be tested against the structured Vandermonde-type interpolation matrix M of the
implicitization by interpolation method.

The initial motivation of this method was to compute an approximation of a particular
element of the kernel of matrix M, namely a kernel vector which corresponds to a polynomial
which is a multiple of the implicit polynomial p by some monomial (and not polynomial).
We already showed how one can readily obtain such a vector when a basis of the kernel is
known in RREF. Methods for the computation of the sparsest kernel vector can be tested
to achieve the desired result [17]
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5. SYZYGIES AND INTERPOLATION

In this section, we will provide a method for interpolating the syzygies of a set of parametric
points. After computing a basis for the R—vector space of the syzygies of a certain homoge-
neous degree, we will rely on the method we described in Section 2 for constructing an
implicit matrix representation. We will also provide a method for computing the degree
of the parameterization since we will be using it for the construction of the implicit matrix
representation.

In particular, we will provide a method for constructing an implicit matrix representation
under the above assumptions for each of the following cases: planar curves, space curves
and space surfaces. Each method has some minor differences that we will describe in
detail below.

We begin with the case of planar curves.

5.1 Matrix representations of planar curves using interpolation

Consider a planar curve C for which there exists a rational parameterization ¢ : R' — R?,

Q:t— <X(t):— Y(t):z—gg), (2)

where @ is not known. Instead, the input is a set of triplets of the form
(T'I;X‘lv Y1)7 (TZ;X27 y2)a cee

such that @(1«) = (Xx, Yx), for a range of k to be defined below. This means that we
have as input a set of points that belong to C along with the value of the parameter ¢ for
each point. We will call this set a parametric set of points and each of these points a
parametric point. These triplets are sampled following the scenarios described in Section
2 , for instance when ¢ is an arc-length parameterization and the triplets are sampled
by a scanner following C. We now provide an algorithm for computing an implicit matrix
representation of the curve C described by this parametric trail of points.

Initially, the algorithm fixes a degree v > 0 for the degree of the syzygies it will compute.
Then, the algorithm shall compute an R-basis for Syz(X, Y, 1),. Since the rational functions
of X(t), Y(t) are not explicitly known, we compute the basis in the following manner.

Consider the moving line h1X + h,Y + h; = 0. The expanded form of each h; is

hi=> hist’ €R[f], i=1,2,3, (3)

6=0

where the h;s are (unknown) coefficients. These are exactly the coefficients we need
to compute in order to gain knowledge of the syzygies that are needed to construct the
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implicit matrix representation of C. This set of coefficients is an R—vector space and we
will immediately show how it corresponds to the set of syzygies. The moving line can be
rewritten as

v v v
> X5+ PYhs+ Y £hys=0.
0=0 6=0 6=0

Such equations are going to be used to determine the 3(v + 1) unknown coefficients h; 5
by interpolation at the known input triplets. For this, we define a 3(v+ 1) x 3(v + 1) matrix
H whose rows are indexed by evaluations t = 14, and each row expresses the above
equation as follows:

[Xk, Tka, RN TXXk, Yk, Tkyk, e Txyk, 1, Tkyooo, TX] .
We compute a basis of the kernel of matrix H and rewrite each kernel basis vector

(W, .., ... hD, ... k)
as (hY hY h?) following equation (3). We can easily show that the triplets (b, hY' h)),
j=1,...,N, form an R-basis of Syz(X, Y, 1),. This way, we have achieved to compute
the needed R-basis of Syz(X, Y, 1), without knowing the polynomials f;, i = 1,2, 3 "behind”
the parametric points. We use this basis to construct the matrix M, (X, Y).

We focus our attention on the basic property of an implicit matrix representation described
in Section 2.8. In order for the matrix M, (X, Y) to be a matrix representation of C, the implicit
curve C, v must verify the inequality v > d — 1. Since the degree d of the parameterization
is unknown in our setting, we establish the following lemma.

Lemma 4. Consider a rational parametric curve C of the form (2). Let d be the homogeneous
degree of the (unknown) f,, i = 1,2,3, v > 0 be the degree chosen by the algorithm and
h = dimker(H) be the cardinality of the kernel basis of H. Then,

1. h<v+1ifandonlyifv <d—1.
2. h=v+1ifandonlyifv=d—1.
3. h>v+1ifandonlyifv >d—1.

Proof Sketch. By construction, the kernel basis of H corresponds to an R-basis of Syz(fy, f,, f3),
and, thus, N, = h. The idea behind the proof is that Ny_y = d [9] and that N, is an
increasing function of v.

As a consequence, in the case h > v + 1, the algorithm yields a valid implicit matrix
representation M, (X, Y) of C. Lemma 4 is a very useful tool for our setting. Furthermore,
Lemma 4 allows us to compute d by constructing matrix H and comparing h with the
selected v.
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Example 5. Consider the folium of Descartes curve affinely parameterized as:

3t 3P )

We will be using equation (4) only to sample random points of C for various values of the
parameter t and using them as triplets (1; Xy, Yx) to construct the matrix H as described
above, so we imply that we have no knowledge of the parametric equation. We try different
values of v.

For vy = 1, the R-basis of Syz(X,Y) is {(—t,1,0)}, that is we are in case 1 of Lemma 4
since N,, < vy + 1. The kernel basis cardinality is not adequate to construct a valid matrix
representation of C.

For v, = 2, the computed basis of Syz(X,Y), is {(—t,t,0),(—t,1,0),(—1/3,—t2/3,1)},
that is case 2 of Lemma 4. That is to be expected since we picked v, = d—1 (notice d = 3

for curve C). Any v > v, is a valid choice to construct the implicit representation matrix
M, (X, Y).

For v, = 2, the matrix is

X 0 -Y/3
MpX,Y)=|Y -X 1 (5)
0 Y -X/3

Let us test the drop-of-rank property at this point. Notice that rank M (3,3) = 3 since
(3,3) ¢ C. By testing a point that belongs to the curve C, for example (3,3), we have that
rankMp(3,3) =2 < 3.

Additionally, we can test point (0,0) which is a point of intersection for curve C, i.e. there
exist more than one parameter values for t that output the same point. In this case,
rank M,(0, 0) = 1. Notice that the drop-of-rank is by a value of 2; the number of corresponding

parameter values for this point. This additional property is explored in [3].

5.2 Matrix representations of space curves using interpolation

The method we have described extends naturally to the case of space curves. In this
case, the degree for computing the matrix representation is 2d — 1, meaning v must be
greater or equal to 2d — 1, where d is similarly defined as the homogeneous degree
of the polynomials fi(t1,t), i = 1,...,4. The same property (“critical” degree) holds for
rational surfaces, where d is defined as the total degree of the polynomials fi(ty, t;, t3),
i=1,...,4. Hence our method reduces the computation of syzygies, and eventually an
implicit matrix representation, to interpolation through a point sample obtained by one of
the aforementioned scenarios.
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Similarly to the previous section, consider a space curve C for which there exists a rational
parameterization ¢ : R' — R3,

Q:t— (X(t) =—Yt)=—.Z(t) = E—Eg), (6)

where @ is unknown. The input in this case are 4-tuples of the form

(11; X4, Y1,24), (T2; X2, Y2, Z2), . ..

Again, we fix the degree v > 0 of the syzygies and consider the moving plane h1 X+ h, Y+
hsZ + hy = 0. Each of the h;, i = 1,...,4 can be written as

hi=> hist €R[f], i=1,2,34, (7)
6=0

where the h; s are (unknown) coefficients. Thus, the moving plane can be rewritten as

> OXhis+ > CYhs+ Y PZhss+ Y hys =0.
6=0 6=0 6=0 6=0

We, again, will use the above equations to determine the 4(v+ 1) unknown coefficients h; s
by interpolation at the known input triplets. We define a 4(v+ 1) x 4(v+ 1) matrix H whose
rows are indexed by evaluations t = 714, and each row expresses the above equation as
follows:

[Xk, Tka, cey TXXk, Yk, Tkyk, ey Txyk, Zk, Tka, RN TXZk, 1, Ti,..., TX] .

We compute a basis of the kernel of matrix H and rewrite each kernel basis vector

(W, D hD hd . kD, iy B,
as (h9 h9 hP hY) following equation (7). The 4-tuples (h¥, h9 hD hD), j = 1,... N,
form an R-basis of Syz(X,Y,Z,1),. We use this basis to construct the matrix M, (X, Y, Z)
in a similar manner.

The basic difference between planar curves and space curves (and space surfaces as
we will later see) is the “critical” degree for the chosen degree v for the degree of the
syzygies. For the case of planar curves, that was d — 1, where d was the degree of the
parameterization. For space curves, that “critical” degree is 2d — 1. We do not give a
detailed analysis for this result and direct the reader to [3] for more information on the
topic.
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5.3 Matrix representations of space surfaces using interpolation

In this section, a similar method for computing an implicit matrix representation will be
given for the case of space surfaces. The input consists of parametric points that belong to
the surface and the method is based on computing the syzygies of a certain homogeneous
degree of the underlying polynomials of the rational surface.

Consider a space surface S for which there exists a rational parameterization ¢ : R? — R3,

0 :t=(tnt) > (X(t) ULV AL T %) , ®)

where @ is unknown and instead the input consists of 5-tuples of the form

(T1; X1, Y1,2Z4), (12; X2, Yo, 2Z5), . ...

where T, € R? is an abbreviation of the k—th 2-dimensional parameter value of (t, t,) that
corresponds to point (X, Yx, Zx) € R3. Again, we fix the degree v > 0 of the syzygies and
consider the moving plane hiX + h,Y + h3Z + h, = 0. Each of the h; € R[t],i=1,...,4
can be written as

hi= Y hst’ €R]t], i=1,234 (9)
5=(64,6,)
6175220
61+62<v
where the h;5 is the unknown coefficient of £ = £'£2. Thus, in the surface case, the

moving plane can be rewritten as

Z t6Xh175 + Z t® Yh275 + Z tEZh375 + Z t6h475 =0.

5=(61,02) 5=(61,02) 8=(61,02) 5=(61,02)

61,02>0 01,02>0 61,02>0 61,02>0

01+06,<v 01+06,<v 01+6,<v 01+6,<v
We will use the above equations to determine the unknown coefficients h; 5 by interpolation
at the known input triplets. The unknown coefficients are 2(v + 1)(v + 2), so we define a
2(v+1)(v+2) x2(v+ 1)(v+ 2) matrix H whose rows are indexed by evaluations t = 1,

and each row contains the coefficients of all h;5 in the above equation.

We compute a basis of the kernel of matrix H and rewrite each kernel basis vector as
(h9 D K9 hY) following equation (9). The 4-tuples (h¥, hP D 1), j=1,... N, form
an R-basis of Syz(X,Y,Z,1),. We use this basis to construct the matrix M, (X, Y, Z).

As with the case of the space curves, the “critical” degree of the syzygies is 2d—1, meaning

that the chosen value of v must be greater or equal to 2d— 1, where d is the homogeneous
degree of the f;, i = 1,2, 3, 4.
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5.4 Conclusion

In this section, we provided a method for interpolating syzygies of polynomials from a
parameterization, from a set of parametric points, when the underlying parameterization
is unknown. We did this for the case of planar and space curves and space surfaces.

Additionally, we provided a method for determining the degree of the parameterization of
the curve or surface from the set of parametric points.

This setting can be further studied for the case of curves or surfaces of higher dimension.
Furthermore, the numerical approach to this method can be studied. Initial attempts to
compute the syzygies from this set of parametric points numerically lead to a kernel of
full rank. This makes the determination of the degree of the parameterization a nontrivial
task. Ideas for future work at this direction include the use of the numerical rank for the
determination of the dimension of the kernel.
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6. GENERAL CONCLUSION AND FUTURE WORK

In this thesis, we based our contributions on two of the existing methods for the impliciti-
zation problem, namely the sparse implicitization by interpolation method and the method
of implicit matrix representations based on the theory of syzygies. In this final section,
we discuss the future work for two of the three contributions of this thesis, namely the
contributions of sections 4 and 5.

As we already mentioned, the motivation for the contribution of Section 4 was to compute
an approximation of a particular element of the kernel of the interpolation matrix M, namely
a kernel vector which corresponds to a polynomial which is a multiple of the implicit
polynomial p by some monomial (and not polynomial). We provided a method based on
the power method and explored its drawbacks, so future work towards this direction would
include experimentation with different numerical methods to compute an approximation of
the desired kernel vector, by taking into account the Vandermonde-type structure of the
interpolation matrix M. Additionally, the desired kernel vector may be closely related to the
sparsest kernel vector, so the method used in [17] can be studied for this scenario.

In section 5, we provided a method for interpolating syzygies of polynomials from a set
of parametric points, when the underlying parameterization is unknown. We did this for
the case of planar and space curves and space surfaces. As we already mentioned in
the same section, this setting can be further studied for the case of curves or surfaces
of higher dimension. Moreover, the numerical approach to this method can be examined,
i.e. the approximation of the required syzygies, which will lead to an approximate matrix
representation of the curve or surface. Future work might include the use of the numerical
rank for the determination of the dimension of the kernel, which is used for the calculation
of the degree of the parameterization. Numerical experiments could show the accepted
threshold of the drop-of-rank property for the approximate implicit matrix representation.
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