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Les études géométriques m'ont incité, entre 1896 et 1871, d traiter les groupes finis et continus. Certes, je
me suis d'abord limité d transformer certains groupes continus importants par des transformations
analytiques convenables (transformations de contact algébriques ou transendantes) en d'autres
groupes connus ; sous ce rapport, les travaux qui s’y rapportaient avaient un caractére speciall...].
Commencées également en 1869, les études sur les équations différentielles admettant un groupe
continu étaient de nature plus générale. J'ai remarqué que la plupart des équations différentielles, dont
lintégration ne réussit pas par les anciennes méthodes d'intégration, restent invariantes par certaines
transformations, et que ces méthodes d’intégration consistent dans l'application de cette propriété d
une équation différentielle appropriée [...]. Ayant ainsi représenté du point du vue général plusieurs
anciennes méthodes d’intégration, je me suis posé un probléme naturel: développer la th'eorie
d’intégration générale pour toutes les équations différentielles ordinaires admettant des
transformations finies ou infinitésimales.

Sophus Lie

ITheorie der Transformationsgruppen, unter Mitwirkung von Friedrich Engel, 3 vol., Leipzig, B.G. Teubner, 1888-1893, t.
1, p. iv-v.
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Meplthndrf]

To 1983, o Alan Weinstein dnpocicuoe uia tpwtomoploxy| epyaota, 1 onola édeoe tor Yeuéar Tng
oLUyypeovng avtwetnong e [ewuetplog Poisson. Ytny ev Aoy epyacia, undpyouy Teelc onuoavtixég
10éeq.

o To Oewpnua Splitting, To onolo divel TNV TomXr Bour| Ylag ToAAamAoTrTac Poisson. Xtny npary-
potixdTnTa, To Splitting amotehel war med TN LUTGBEEY OTL oL ToAamhoTHTES Poisson eivon ouot-
0 TS PUANMOELS DOUES UE CUUTAEXTIXG PUAA TTOL CUY VA TapouaLdlouy Wiouoppiee. Eniong,
T0 (B0 Yedpnuo amotehel v amapy’ tne Tomoloylag Poisson, evog mediou mou aw&dvetal ue
Taryelc puduolc oTic Yépeg pacC.

» Méow tou Splitting, xatohofBaiver xavelc 6TL ot TorhamAdTnTE Poisson elvon apxetd mepimhoxeg
dopéc. MTnv mpoomdieia Yoo amhonoinon, xa otnewlduevog oTic Wéec tou Sophus Lie, o A.
Weinstein dltinwoe 10 TEOBANUa TG oLUUTAEXTIXAS LAoToinong wag dourc Poisson, (P II).
Anhady), vhomoinon aUTAC WS TNAIXO UAC CUUTAEXTIXAC TOAAATAGTNTAC (S, W) UE (L0l OTELXOVION)
S — P, n onolo etvon emtl xou Poisson.

Egboov €youpe uio Tétola GUUTAEXTIXT UAOTOINOY, UTopoUUe var avTiueTwriloupe To Bidpopa
TpofAfuata mou €youpe oto eninedo g (BII) w¢ mpofAfuata oTo eminedo tng (S,w), 6Tou 1
AVTHIETOTON Toug elvon onpoavTixd amholotepr. Eyovtag tnv anewdvion S — P, 1 ehnida elvou
6Tt oL Aoelg oTo eninedo tne S, Yo PeTapépoviar’ TEog Ta xdTw ot AOoEC 6To eninedo tng P.
Emniéov, yvowpiloupe OTL, Tomxd, UTdEYOLY TAVTA TETOWOU EIBOUC CUUTAEXTIXES UNOTIOLAOELS.

o Wdyvovtag yio ohixéc ouunmiextixéc vhomoinoelg, o A.Weinstein e€etdlel cav mopddetypo TNV
TeplnTwon Twy doudy Lie-Poisson. 'Edeile 611 wa tétola uhomnoinon eivaw TG, n omolo, dAke-
OTE, YEQPEL PE QUOIXO TEOTO, Uit doun) opadoeldolg Lie.

Me dhha AoyLa, yior var Bpolue piot oAxr) cUUTAEXTIXT| UAoToinoT, Yo meémel vor (hdyvouue yia
€va XaTdAAN O opadoeldéc Lie.

‘Oha tar mopamdvey yag odnyody otny perétn tne Iewyuetpiog Poisson ota mhaiola tng Yewplag
TV ohYeBROoeldwy xou opadoetdwy Lie. Ilpdyuatt, anodevictoun 6tL wiar Sour| Poisson P efvar to (B0
ue po dour| ahyeBpoedoicLie ot cuvegontopévn déoun T P.

AnodevieTton, MooV, OTL Yol OMXT] CUUTAEXTIXT] LVAOTIOINGCT, avTIoTOlyEl OE Lol OAOXAPWOT)
Tou ahyelpoeboiclie T*P. 'Etol, otnv mpaypatixotnta, T0 TeOlBANUa TNG OMXNAC CUUTAEXTIXAG
ulormolnong etvar ouCLACTIXG €Vl TEOBANUN OAOXANEWOLOTNTOG.

Yxomog g mapolcos YETomTUYloxAC epyaociog, efvar va xdvel Wi ypriyopn eloaywyy o1
I'ewyetpio Poisson xat vo topouctdoet to pdho twv alyePpoeidny Lie xaddoe, eniong, xou tne Ocswplag
v PuAA®OEC Aouéc oTny ev Aoy VYemplo, EAETOVTOC To TEOXUVAPERVEVTO ATOTEAEGUATAL.

2 Abstract in Greek language
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1 Introduction

Historical overview. Galileo Galilei’s principle of relativity and Newton’s differential equation consti-
tute the foundations of Classical mechanics.

Sir Isaac Newton, in his attempt to explain the laws of Kepler in celestial mechanics, introduced
what is, nowadays, known as Newtonian mechanics.

Newtonian mechanics studies the motion of a system of a point masses in three-dimensional
euclidean space.

Some years later, Joseph-Louis Lagrange described motion in a mechanical system by means of
the configuration space. Since the configuration space has the structure of a differentiable manifold,
a Lagrangian mechanical system is given by a manifold (configuration space) together with a function
on the tangent bundle. Here, the newtonian potential system is a particular case of a lagrangian system
(Hamilton’s principle of least action).

The Legendre transformation of the lagrangian function gives the hamiltonian function. There-
fore, Hamiltonian mechanics arises naturally, since it is geometry in the cotangent bundle of the con-
figuration space. The basis of this concept is the Legendre transformation, mentioned previously, be-
tween the tangent and the cotangent bundles.

A Hamiltonian mechanical system is given by a symplectic manifold (phase space) and a func-
tion on it (Hamiltonian function H). In this way, Lagrangian mechanics is contained in Hamiltonian
mechanics as a special case, and Lagrange’s equation of motion are, now, translated into Hamilton’s
equations:

. _O0H

=%
and

. OH

P=%q

where (gq(1), p(t)) are the configuration coordinates of the mechanical system.

The description of motion in Mechanics is the origin for Poisson geometry. Simeon Denis Pois-
son, in 1809, introduced the notion of the Poisson bracket between any two smooth functions f and
g, by setting

n
a= ) (22 - 2L %)
i=1'0pidq' 0q' Op;
Once a Hamiltonian function is fixed, Hamilton’s equations can be written with the help of the Poisson
bracket:
p=1{H,p}

and,
qg=1H,q}

Many properties of Hamilton’s equations can be rephrased via the Poisson bracket. Carl Jacobi, around
1842, showed that the Poisson bracket satisfies the famous Jacobi identity. Moreover, a Poisson bracket
satisfies the following properties: skew-symmetry, R-bilinearity and Leibniz rule. The axiomatization

11



of these properties leads to the abstract definition of Poisson bracket, and, consequently, in Poisson
geometry.

The history of Poisson manifolds is complicated by the fact that the notion was rediscovered
many times under different names; they occur in the works of Lie (1890) [40], Dirac (1930 [25], 1964
126]), Pauli (1953) [51], Martin (1959) [46], Jost (1964) [33], Arens (1970) [6], Hermann (1973) [31], Su-
darshan and Mukunda (1974) [58], Vinogradov and Krasilshchik (1975) [62], and Lichnerowicz (1975)
[42]. The name Poisson manifold was coined by Lichnerowicz.

The geometry of Poisson structures, which began as an outgrowth of symplectic geometry, has
seen rapid growth in the last decades, and has now become a very large theory with interactions with
many other domains of mathematics, including Hamiltonian dynamics, integrable systems, represen-
tation theory, quantum groups, quantization, noncommutative geometry, singularity theory and so
on.

Nowadays, a Poisson structure on a manifold P is a bivector field I such that the Poisson bracket
is defined by:
{f,gt=<dfndgIl>

This notion of Poisson manifolds generalizes both symplectic manifolds and Lie algebras. For instance,
every symplectic manifold has a natural Poisson bracket and every Poisson bracket determines a fo-
liation of the manifold by symplectic submanifolds. On the other hand, every finite-dimensional Lie
algebra gives rise to a linear Poisson tensor on its dual space and vice versa.

Scope of this dissertation. In 1983, Alan Weinstein published a groundbreaking paper [64], which set
the foundations of the modern treatment of the theory. In that paper, there are three important ideas.

« Splitting theorem, which gives the local structure of Poisson manifolds. Actually, the Splitting
theorem is the first instance of the fact that Poisson manifolds are foliations with symplectic
leaves, often presenting singularities. Also, the Splitting theorem is the beginning of Poisson
Topology, a field which is growing rapidly these days.

o The Splitting theorem shows that the Poisson manifolds are quite complicated structures. In the
effort to simplify them, and based in the ideas by Shopus Lie, A.Weinstein postulated the prob-
lem of symplectic realizations of Poisson manifolds. That is realize a Poisson manifold (B II), as a
quotient of a symplectic manifold (S, w) under a surjective submersion S — P, which is a Poisson
map.

Once we have a symplectic realization as such, we may be able to lift problems from (B 1I) to
(S,w), which is considerably simpler. Since the submersion S — P is a Poisson map, the hope
is that the solutions at that level of S, will pushed down to solutions at the level of P. He also
proved that locally, symplectic realizations as such always exist.

» Looking for global symplectic realizations A.Weinstein examined the example of the case of Lie-
Poisson structures. He showed that such a realization is 7* G, which, moreover, carries a natural
Lie groupoid structure. This relates the symplectic realization problem with the external sym-
metries of the structure (see [66]).

12



In other words, to find a global symplectic realization, one should be looking for an appropriate
Lie groupoid.

All the above points put Poisson geometry at the context of Lie algebroids and Lie groupoids. In-
deed, it turns out that a Poisson structure on P is the same as a Lie algebroid structure on the cotangent
bundle TP (see [32] for a detailed history).

It turns out that global symplectic realizations correspond to an integration of the Lie algebroid
T* P. So, in fact, the global symplectic realization problem is really a problem of integrability.

The scope of this dissertation is to present a quick introduction to Poisson geometry and the role
of Lie algebroids and foliations in the theory, and to present the above results.

Structure of this dissertation. This dissertation consists of six chapters and one appendix. Here, is a
brief summary of them, where Chapter 1 is the introduction of the dissertation.

In Chapter 2, we, firstly, recall basic notions and results concerning symplectic structures, such
as Hamiltonian vector fields, local forms, the Liouville form of the cotangent bundle, symplectomor-
phisms and Lagrangian submanifolds. Then we introduce and study classical topics in Poisson geom-
etry, including Hamiltonian vector fields, Poisson brackets, singular foliations. We also express Poisson
structures, in terms of bivector fields and we study the Lie-Poisson structure on the dual of a Lie alge-
bra. We conclude Chapter 2 by showing that attached to each Poisson manifold (PII) there exists a
natural Lie algebroid structure on the cotangent bundle of P.

Chapter 3 is about local structure of Poisson manifolds. Here, we prove A.Weinstein’s Splitting
theorem and we show that coadjoint orbits of a Lie group are symplectic. In fact, these symplectic
manifolds are the symplectic leaves of the Lie-Poisson bracket.

In Chapter 4 we explain the links among S.Lie’s original ideas on function groups, local and global
symplectic realization problem. We then prove the local existence of such realizations.

Chapter 5 is about global symplectic realizations. In particular, we examine the example of the
case of the Lie-Poisson structures.

Chapter 6 is a discussion on the problem of integrability of Lie algebroids, and in particular, Pois-
son structures.

Finally, we conclude this dissertation with Appendix A. Here, we give an introduction in the the-
ory of foliations as it evolves through the centuries. Starting from regular foliations and Frobenius
theorem, we extend the theory to the singular case, and study the latter from a different perspective,
presented by I.Androulidakis and G.Skandalis in [4].

13



2 Background on Poisson manifolds

2.1 Symplectic structures

The starting point of the theory of Poisson manifolds is symplectic geometry. Not only do the
symplectic manifolds offer the most basic Poisson bracket, but the geometry of these manifolds, is the
source of ideas on which the new theory, that of Poisson manifolds is based. We follow closely [10],
[14] and [15].

2.1.1 Symplectic structures

In this section we will present basic definitions, properties and results concerning symplectic
structures.

Definition 2.1. On a manifold .# a closed non-degenerate 2-form w is called a symplectic form, that is
an w € Q2 () such that:

a) dw =0 (closedness),

b) on each tangent space T,.#,p € M, if w,(X,Y)=0forall Y € T,,.# then X =0 (nondegeracy).

So a symplectic structure is a pair (/,w), where ./ is a manifold and w is a symplectic form. In
this case, we call .4 a symplectic manifold.

Remark 2.2. Saying that w is non-degenerate means that the bundle map ” : T.# — T* ./ defined,
foreach X € TM, by W’ (X) =i xw or, equivalently, by (@ (X), Y) =w(X,Y), is an isomorphism.

The fact that w is non-degenerate also implies that .4 must be even-dimensional. Indeed, let
d = dim.#, then the bundle map «” is represented by a skew-symmetric 7 x n-matrix, denoted by Q.
Since w is non-degenerate, detQ # 0. However, Q is skew-symmetric, so Q = —QT. This means that
detQ=det(QT) =det(-Q) = (-1)"detQ, which implies d = 2k.

Examples 2.3.  a) A simple example is the 2-sphere with its standard area 2-form w given by the
formula w, (1, v) = (x,u x v) for u, v € T,S? and x € S?, where (,.) is the inner product and x
is the exterior product. This form is closed because it is of top degree, and it is nondegenerate
because (x, u x v) # 0 when u # 0.

b) Let’s generalize this class of examples by considering an oriented surfase M c R3. The Gauss
map N : M — S? associates to every x € M the outward unit normal vector N(x) L T M. Then, as
in the case of S?, the formula w, (i, v) = (N(x), u x v) for u, v € T, M defines a symplectic 2-form
on M.

c) For every positive integer n, the space R?" is a symplectic manifold, by considering on each
tangent space T,,R*>" = R?" the symplectic vector space structure. If

dq',dq?,....dq", dp,dps,...dp,

14



are the basic differential 1-forms on R?", then the symplectic structure is defined by the 2-form

n .
wo = Z dql /\dpi.

i=1

Let us show that wg is a symplectic 2-form. Recall that for coordinates dx,, dx», ..., dx,, we cal-
culate the differential of a 2-form a =}; ; fdx; Adxj, tobe da =% ; jdf Adx; A dxj. Here, the
coefficients of dq*, d p; are constants, so that wy is a closed 2-form is obvious.

It remains to prove the nondegeracy. In order to so, we will show that if X # 0, then w(X,Y) #0
for all Y € TR?". We consider a non zero vector field X € TR?", this means that

X =Y (aidq' +bidp;)

n
i=1

where a; # 0 or b; #0. So
0 0

oo

wo(X,.) =) (b;
i=1

Concluding that
0 &
, ) = —a:
wo (X aq’) ;:1( a;)

and, similarly,
a n
wo(X, =) =) (b))
0 api lzzl i
which completes the proof.

Now let V be a finite-dimensional, real vector space, and V* its dual. The space A\ V* denotes

the exterior product of copies of the space VV* and can be identified with the space of skew-symmetric
bilinear forms w.

Definition 2.4. Let V a finite-dimensional, real vector space equipped with symplectic structure w,
then the pair (V, w) is called symplectic vector space.

The next theorem states that there is a (canonical) basis, by a skew symmetric version of the

Gram-Schmidt process, for which a skew-symmetric bilinear form can be written in the standard form
for skew-symmetric bilinear maps.

Theorem 2.5. (Standard Form for Skew-symmetric Bilinear Maps)

Let (V,w) be a symplectic vector space. Then V admits a basis ey, ..., ep, fi,..., fn satisfying

w(e;, fj) =0;j and
w(e;ej) =0=w(f; fj)=0.

15



Moreover, ifel,...,e”,fl,...,f” is the dual basis. Then
w=e'Afl4. +e"Af"

Such a basis is then called a symplectic basis of (V, w).

Proof. Letey,...,e, be abasis of V and e', ..., e" be the corresponding dual basis of V*. Ifa;j=wle;,e))
fori < j, then
w=)Y a;e ne
i<j
We assume that w # 0, because if w = 0 then it is trivial. Since w # 0, there are some 1 <i < j < n such
that a;; # 0. We may assume that a1» # 0, changing the numbering if necessary. Thus, we have that

@23 Q2n
W= (el B R —e") A (a12e2 +..+ alne") +w
a2 a2
Let a a
23 2n
il el - 228 2
a2 12

f2 = 0!1262 +..+ alne”

the set fi, f>,€3,...,e" is now a new basis of V*. If w; = 0, we are done. Otherwise, we repeat the above
taking w; in the place of w. So, inductively, we arrive at the conclusion, since V has finite dimension.
[l

Example 2.6. Let the symplectic manifold (., wg) = (R?", X dq' ndp;). By example itis an easy

consequence that the set 5 5 5 5
1Ggr)wr = Gar) o (Gps ) w5 ) )

is a symplectic basis of T,,, .4 .

Inspired by this theorem, we will describe normal neighborhoods of a point with Darboux’s the-
orem and generalize this result to Poisson manifolds.

2.1.2 Hamiltonian vector fields

In remarkwe estabished an isomorphism «’ : T.# — T*./ between the spaces of tangent
vectors and 1-forms. Now, we consider the inverse isomorphism (w”)~! : T* .4 — T.#, and let f
be a smooth function on a symplectic manifold .#. Then the differential d f is a smooth section of
[(T*4) = Q' (M), and via the bundle map (w”)~! : ['(T* 4) = Q' (M) — T[(TH) = X(4) we obtain
the following definition of a vector field ((ub)_1 (df)on /.

Definition 2.7. Let (M, w) be a symplectic manifold. To each f € C*(M) we associate a vector field X,
defined by

Xp=(")7'df)
called the Hamiltonian vector field associated to f. We say that the function f is a Hamiltonian of the
field X.

16



Remarks 2.8.  a) Equivalently, the symplectic form w makes possible the identification of
W T M — T M
X — 0’ (X)
with
0’ (X0 =w(X,Y)
for X,Y € T4 . So we have that
ix,0=0X/)=0"(Xp) =" () df) =df

and we obtain ixfw = d f, where this can be rewritten as (inw)(Y) =w(Xy, Y) = afy)=YvYH.

b) Basically, we observe that the existence of the Hamiltonian vector fields is guaranteed by the
nondegeneracy of the symplectic structure w. Thus, we can define a vector field ¢ to be Hamil-
tonian, if there exists f € C*°(.#) such that

iga) =d f .

We note that this is the definition we find in the literature.

Example 2.9. If ./« = R?" with the symplectic 2-form
n .
w=) dq' ndp;
i=1

in any local coordinate system (%, (¢, ..., 4", p1, ..., pn)) of (4, w), we calculate the Hamiltonian vector
field Xy, of a function f € C*(.#) as follows.

By definition of vector fields we have

& 0 0
Xy = ai— +bj—
1= 2 (i)

where a;, b; are smooth coefficient functions on %, so we compute

n

ix,0= (dq'(Xpdp; - dpi(Xpdq') = Y (aidp: - bidq’).
i=1 i=1

On the other hand, we know that the differential of the function f is

noaf . df
df = -dq' +
! i:z1(fml 9 opi

d pi) .
Consequently, a Hamiltonian vector field is written as

nocof 0 of 0
Xr=3 (3750 * 30 507)
i=1:04" 0p; pioq
and we note that Xr(g) = o(Xy, Xg).

17



Remark 2.10. Since the map «” : TM — T*M is an isomorphism, every f € C*°(M) corresponds to
a Hamiltonian vector field. This provides symplectic manifolds with extremely rich dynamics. Note
that Riemannian structures, albeit they are similar to symplectic, do not have this property. In the next
section we discuss a much deeper, topological property of symplectic manifolds.

2.1.3 Local structure

We would like to classify symplectic manifolds up to symplectomorphism. A global realization of
this goal is very hard, but the Darboux theorem takes care of this classification locally: the dimension is
the only local invariant of symplectic manifolds up to symplectomorphisms. The main tool is Moser’s
trick, which leads to Moser’s theorems, which are extremely useful for many arguments in symplectic
geometry (see [49]).

Definition 2.11. Let .4 be a manifold and consider amap p : 4 xR — .#. Denote p;(p) := p(p, t). We
say that p is an isotopy if each p;: M4 — 4 is a diffeomorphism, and pg =id_ 4.

Definition 2.12. Let (., w;) and (., w>) be 2n-dimensional symplectic manifolds. We say that

a) (A,wy)and (,w>) are symplectomorphic if there is a diffeomorphism g : 4 — .4 with g*w, =
w1. Such g is called a symplectomorphism.

b) (A ,w1) and (A ,w-) are strongly isotopic if there is an isotopy p; : 4 — . such that pi‘wg =wj.

Remark 2.13. Clearly, the notion of strongly isotopy is more powerful than the notion of symplecto-
morphism. Hence, if the symplectic forms w; and w, are strongly isotopic, then obviously they are
symplectomorphic.

Lemma 2.14. Let ./ be a compact manifold then the isotopies of 4 are in one-to-one correspondence
with the time-dependent vector fields on /4 .

Proof. (sketch, a more detailed approach can be found in [I4]) Given an isotopy p, we obtain a time-
dependent vector field, that is, a family of vector fields X;, t € R which at p € .# satisfy:

X()_i (q)
tp_dspsqsz

t

where ¢ = p;!(p). This means that

dp,
dr =Xiops.
That is, the velocity vector of the curve t — p;(q) at time t, which is a tangent vector to .# at the point

p=p:q).

d
Conversely, given a time-dependent vector field X;, ¢ € R, we consider that X;op; = % and

po = id 4. Since ./ is compact, then by solving the previous ordinary differential equation, there
exists an isotopy p. O
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Definition 2.15. The Lie derivative by a time-dependent vector field X; is
Lx, - QF ) — QF )

defined by
d
Lx,w=—p) w
Xt dt (p1) =
Theorem 2.16. (Moser,1965) Let .4 be a compact manifold and w,,w, two symplectic forms on the
manifold 4. Suppose that w, — w, is exact and that the 2-form w; = (1 — Hw; + tw, is symplectic for
each t € R on 4. Then there exists an isotopy p : M xR — 4 such that p*w; = w1, forall t e R. In

particular, (A ,w,) is strongly isotopic to (M ,w>).

0

Proof. First, we reformulate the problem using time-dependent vector fields instead of isotopies. Sup-
pose that there exists an isotopy p : 4 xR — ./ such that pjw; = w1, t €R. Let

_dpr 4
= (o] t
dt

t

be the time-dependent vector field, for ¢ € R. Then since w; is closed we have

d

=—w —i( *wy)
=1 l_dtpt t

0
=L |+ 4 or |
- dx pxwt) Y=t dy Pzwy) y=t
= py(ZLx wt)| +p*(iw )(
X X x=t t dl, y y=t

i d
:p[(gX,wt'FEwt))

This is true if and only if

Lxwr+—w;=0
X, Wt P

d
since p; is a diffeomorphism. Equivalently, we have by hypothesis that —w; = w2 —w; so we conclude

dt
that
Lx,wr+wr—w1 =0,VieR

Suppose conversely that that we have a time-dependent vector field X, t € R which satisfies the above
equation Lx,w;+w2—w; =0,V € R. Since ./ is compact, we can integrate X; to anisotopy p : 4 xR —
M with

0= a (piws)
so we obtain p;w; = pyw1 = w;.

We have shown that the existence of an isotopy p : 4 xR — .4 such that p*w; = w, forall t e R, is
equivalent to the existence of a time-dependent vector field X; , t € Rwhich satisfies Lx,w; +w2—w1 =
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0,Vt € R. Therefore we end up that it suffices to solve the equation £x,w; + w2 — w; = 0 for X;. The
technique presented is known as the Moser trick.

Since w, — w is exact, there exists a 1-form 6 such that
wy—wy =do.
Furthermore, we have the Cartan magic formula
Lx,wr=dix,w;+ix,dw;
where dw; = (1 — t)dw; + tdw, = 0. Thus we have
Lx,wr+wr—w1=0
odixw;+di=0

=4 iXt(l)[+0:0

< itht =-0

The existence and uniqueness of such vector field X; is guaranteed by the nondegeneracy of w;, since
it is symplectic by the hypothesis. O

Theorem 2.17. (Moser local theorem) Let .4 be a manifold, N/ < # a submanifold, and wy,w» sym-
plectic forms of M with w1|, = w2l , Vp € N . Then there exists neighborhoods %,,%> of N in M and
a diffeomorphism p : %, — %> such that p| 4 = id and p*wy = 0.

Proof. Since the 2-form w, — w; is closed, i.e. d(w2 —w;) =0 and w2 — w;1| 4 =0, there exists a neigh-
borhood %; of A& in ./ and a 1-form 6 on % such that

GIW:Oandwz—wlsz

The argument involves the Poincaré lemma for compactly-supported forms see [54].

We consider the family
wr=1-Hw;+tw, =wy + tdo

of 2-forms on %, t € R. Obviously, w; is closed because w; is closed. Moreover, we have that w| 4 =
w1|.4 where w; is nondegenerate. So by shrinking %/; we can assume that w, is symplectic V. This is
true, because, that w; is nondegenerate means that there exists an isomorphism

@)y = (@1 +d0) |y : ToU — T

From the Tubular Neighborhood Theorem (see [14]), there exists

Thus, we have that



is an isomorphism. Concluding that
(W)’ : TU — T U
is an isomorphism and w; is symplectic V.

Now applying Moser’s trick and solving the equation
ina)[ =-0
we take a vector field X; on %;. Since w, is nondegenerate and 6|_4 = 0, we notice that X;| 4 = 0.

Thus by shrinking % again, there exists from theorem [2.16) an isotopy ¢ : % x R — %, with
¢iwr=wrand ¢y =id y.
Finally, we set %, = ¢1 (% x R) and p = ¢, to complete the proof. O

Theorem 2.18. (Darboux,1882) Let (/,w) be a 2n-dimensional symplectic manifold, and let yy be
any pointin 4.

There exists a coordinate chart (%, q",...,q", p1, ..., pn) centered at yy such that on U :
w= Z?:l dqi Adpi.
Coordinate charts that have this property are called Darboux’s coordinate charts.

The classical proof of Dardoux’s theorem is by induction on the dimension of the manifold (see a
detailed proofin [7]). Here our proof was first provided by Weinstein in [63] and uses Moser’s theorem
2.16

Proof. Let (/,w) be a 2n-dimensional symplectic manifold and yo € .#. Then wy, is a symplectic
form. More precisely, from the theorem there exists a symplectic basis (e!,...,e", f1,..., f) for
(Ty*oﬂ,wyo), such that w‘yo = ;‘:1 el A fi. Now, we consider coordinates (%,ql,...,q”,pl,...,pn) cen-
tered at ¥y, such that dq* = e’ and dp; = f* so that

n .
wyo = Z dql N dp,"
i=1 Yo

We set wg = w and w1 = wy, =X, dq' ndp;| . So there are two symplectic forms on %, such

Yo

that woly, = w1ly,. By theorem there are neighborhoods % and % of yy, and a diffeomorphism
¢ %y — U such that ¢(y0) = yo and ¢* w1 = wg. Thus, we conclude that

n .
w=wo=¢*(21dq‘Adpi)
i=

1

=Y d(g' o) nd(pio))

1

n .

Y. ¢"dq' A dp;
=1

n

=1

By an abuse of notation we set new coordinates g’ = g’ o and p; = p; o ¢ to complete the proof.
O
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Remark 2.19. Theorem shows that in symplectic geometry there are no local invariants, in con-
trast to Riemannian geometry, where there are highly non-trivial local invariants. In other words, the
study of symplectic manifolds or more generally Poisson manifolds is of global nature.

2.1.4 Cotangent bundle

We will present the symplectic form on the cotangent bundle. First, recall that for a smooth
manifold M its cotangent bundle is T* M, and any point ¢ of T* M may be denoted as an ordered pair
p = (x,¢), with x € M as well as a single element ¢ € T; M.

We take : T* M — M with p = (x, &) — x, the canonical fiber bundle projection, which assigns to
each covector p its base point x. We will now define the Liouville 1-form (or tautological 1-form) a on
T*M. Let

dn,:T,T*M — T:M

be the induced tangent map. We consider the pullback of dx,
(dmp)* : TeM — T;T*M
thatis, (dmp)*¢=¢odmy.
Thus the Liouville 1-form may be defined point-wise by
ap=(dmp)*¢.

Equivalently, for u € T), T* M we have
ap(w) =&(dmp(w).

The canonical symplectic 2-form w on T* M is defined as

w=-da.

We will prove that w is a closed nondenerate 2-form. It is, clearly, a closed 2-form because it is
exact.

Now, let (U, x1, ..., x™) be a smooth local system of coordinates with x’ : U — R, then at any p € U,
the differentials (dxl)p,..., (dx™)), form a basis of T;,‘M. Namely, if ¢ € T;M then ¢ = Z:lzl &;dxt, for
some real coefficients {1, ..., &,. This induces a map

T*U — R*"

which maps (x,¢) to (x',...,x",&1,...,&,). The canonical fiber bundle projection 7, in terms of these
coordinates, is expressed
n(xly [) xl’l’ fl) ceey fn) = (xly ceey xn)-

Clearly, dm, is represented by the matrix
(I n  Onx n)
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and its pullback is represented by its transpose. Therefore,

2

61 .

arre=(on )1 1|
¢

0

Consequently, we express locally the Liouville 1-form in terms of these coordinates
a=&dx' + ..+ Epdx" +0dE + ...+ 0d X"

So,
n .
w=da=) dé ndx'

i=1
and by example 2.3jwe have similarly that w is nondegenerate. Finally, w is the canonical symplectic
form for the cotangent bundle since (x!, ..., x", 1, ...,&5,) is a Darboux’s coordinate system for w.

2.1.5 Lagrangian Submanifolds

Here, we first, define immersions, submersions and embeddings. We use these notions to de-
fine submanifolds of a manifold M. In particular, we define Lagrangian submanifolds and study some
results we need in section[5.2} in order to prove that the cotangent bundle has the structure of a sym-
plectic groupoid.

Let M, N be manifolds with dimN < dimM.

Definition 2.20. An immersion is a smooth map i : N — M with the property that i, : T, N — T, M
is injective at each point. In this case, N is called immersed submanifold of M. In a similar way, a
submersion is a smooth map i : N — M such that i, : T, N — T;(,) M is surjective at each point.

One special kind of immersion is particularly important.

Definition 2.21. A smooth embedding is an injective immersion i : N — M, that is also a topological
embedding, i.e. a homomorphism onto its image i (/N) € M in the subspace topology. In this case, N is
called embedded submanifold of M.

Definition 2.22. Let (M,w) be a 2n-dimensional symplectic manifold. A submanifold N of M is a
Lagrangian submanifold if, at each point p € N, T, N is a Lagrangian subspace of T, M, i.e.

wp|TpNEO
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1
and dim(T,N) = Edi m(T,M). Equivalently, if i : N — M is the inclusion map, then N is a Lagrangian

submanifold, if and only if
iw=0

anddimN = %dimM.
Definition 2.23. The conormal space at x € N is
ViN={eT;M:&(u)=0,Yue TyN}
Accordingly, the conormal bundle of N is
VIN={(x,)e T*"M:x€e N, €V N}

Proposition 2.24. Leti:v*N — T*M be the inclusion, and let « be the tautological 1-form on T* M.
Theni*a =0.

Proof. We consider
(U, x', ..., x™

to be local coordinates on M, centered at x € N, such that, N is described by xk*t1= = x"=0. Letus
take
(T*U,x", o X" 61y E)

be the associated cotangent coordinate system. Then the submanifold v* N is described by
k+1 _ _ .n_ - — —
xTt=..=x"=0 and &1=..=&=0

Since a =Y. &;dx’ on T*U, at p € v* N, we obtain that

(i*a)p=(ap)|T,,(v*N)=Zfidxi‘ 0 =0
i>k span{@,isk}

O

Corollary 2.25. For every submanifold N of a differential manifold M, the conormal bundle v* N is a
Lagrangian sumbanifold of (T* M, d«).
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2.2 Poisson structures

This section aims to offer a quick introduction to Poisson structures. We will define the Poisson
structure on a manifold to be a Lie algebra structure on its space of smooth functions (i.e. a bilinear
skew symmetric operation of Poisson bracket on functions, satisfying the Jacobi identity) such that the
operator {f,.} is an operator of differentiation by some vector field X - The vector field X ris called the
Hamiltonian vector field and the smooth function f hamiltonian function. We then express Poisson
structures in terms of bivector fields, and we will study the Lie-Poisson structure on the dual of a Lie
algebra. We follow closely [27] and [61].

2.2.1 Poisson structures

Definition 2.26. A C*°-smooth Poisson structure on a C°°-smooth finite-dimensional manifold ./ is
an R-bilinear, antisymmetric operation

C® (M) x C° (M) — C°(M), (f,8) — {f, 8}
on the space of C*°-smooth functions on .4, which satisfies the Jacobi identity

{f,ghn+ilgh, fi+{h f1g=0

and the Leibniz rule

{f,ght=1{f.gth+g{f W}, Vf,g he C®(H).
This bracket {.,.} is called Poisson bracket. A manifold .# equipped with such a bracket is called
Poisson manifold.

Examples 2.27.  a) On a manifold .# we consider the bracket {f, g} = 0 for all functions f and g in
C™ (), then we can easily see that this is a Poisson bracket and the manifold .# equipped with
this structure is a Poisson manifold. So on any manifold we can define a trivial Poisson structure.

b) Every symplectic manifold (.#,w) is Poisson. We define on the manifold .# the bracket
{f g =w(Xf, Xg)
for every smooth functions f and g.

By deﬁnitionwe have that ix,w =df and Xg = (w)1(dg), thus {f, g} = ix,(dg). We need this
formula to prove that this bracket is bilinear, skew symmetric and satisfies the Leibniz rule.

This bracket {., .} is bilinear and skew symmetric, since {f, g} = ix,(dg) , d(g1+ &) =dg1 +dg,
(X,dg1+dgo) =<(X,dg)+(X,dgo), Xprg=Xp+Xg and w is both R-bilinear and skew symmetric
0(Xfig,—) =0(Xy,—) + w(Xg,—) . Furthermore, {.,.} satisfies the Leibniz rule:

{f,gh}t=ix,d(gh)
=ix,(gdh+hdg)
=gix,dh+hix, dg
=gi{f h+hif, g
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It remains to verify the Jacobi identity of the above bracket. Since w is closed we obtain

0=dw(Xs, Xg, Xp)
= X7 ((Xg, Xp)) + Xg(0(Xp, Xp)) + Xp(0(X5, Xg))
—w([Xy, Xgl, Xp) — 0([Xf, Xgl, Xp) — 0([Xf, Xgl, Xp)
= Xr{g, M+ Xgih, f} + Xplf, 8} — [Xp, X1 (h)
= [Xg, Xpl (f) — [Xp, Xr1(8)
=0 (X7, Xign) + 0 Xg, Xin, 1)) + 0(Xn, Xi1,g)) — (Xp Xg(h) — Xg X ()
— (Xg Xn(f) — XnXg(f) — (Xn X7(8) — Xp Xn(g))
={f, g Mt +{g,th, I +{h{f, gl = {f (g, h} +{g {f, h}}
—{gAh, [ +{hig B —th{f, gt +{f {h,gh
=—{f.{g, At —{g {h, fH —{h{f,gh

where we used the Cartan’s formula:

k+1

dn(X], ceey Xk+1) = Z (—1)i+1XiT](X1, ceey 5(:.» () Xk+l)
i=1

+ Y DIUXG, X, Xy e Xy ooy Xy oo Xiet1)

l<i<j<k+1

with the usual hat notation to denote missing terms.

c) Applying the above result to the manifold .# = R?", with coordinates

d)

(qv p) = (CII; L) CIn, plr X3 pn);

one can define, in a similar way, a smooth Poisson structure on R2" for every f and g in C*°(.4)
by putting
- (0f dg of og
if,g= Z (6_0_ - a—a—)
i=10di 0Opi pi 0q;
Symplectic manifolds inherit a natural Poisson structure. However, let us give an example of

of o
a Poisson manifold that is not symplectic. We take .# = R? and put {f,g}(q,p) = q(—f—g -

dp dq
— —), we will see that not all Poisson brackets enamate from a symplectic structure on a man-

First of all, it is obvious that the above bracket is R-bilinear and antisymmetric. For the Leibniz

26



rule we have:

{f,gh}(q,p)=q(%@—@g)

of (0 ohy (0 oh\of
q(@(ﬁmga)‘%“g@)@)
af o og  of of 0h  ohof
(595"~ 3p"5) ! o0 30)

={f.gth+gl{f, M (q,p)

Similarly, via calculations we can verify the Jacobi identity. Thus, we conclude that the bracket
0fdg 0go

{f,8(q,p)= q(%% - ia—g) is a Poisson bracket.

However, this a Poisson structure on R? which is not symplectic. This is true because the bracket

vanishes when g = 0 and therefore it is not non-degenerate.

2.2.2 Hamiltonian vector fields and Poisson bracket

Proposition 2.28. Let ./ be a Poisson manifold, then ¥V f € C*° () there exists a unique, differentiable
vector field Xy on 4 such that, for every function g € C*(.4),

Proof. Letus first assume that f € C*°(#) is fixed. By the Leibniz property and linearity of the Poisson
bracket, the endomorphism of C®(#): g — {f, g} is a derivation. Since we can identify derivations
of C*°(.#) with smooth vector fields on .4, as C*°(.#)-modules, there exists a unique differentiable
vector field X on .4 which satisfies property above for every g € C*(.4). O

Since symplectic manifolds are special cases of Poisson manifolds, it is legitimate to give a more
general definition for Hamiltonian vector fields.

Definition 2.29. A vector field X € X() is called Hamiltonian iff there exists f € C®(.#) such that
for every g € C*°(#) we have {f, g} = Xf(g) = —d f (Xg). We write X = Xr € X(4).

Proposition 2.30. For functions f, g € C*(.#) the Hamiltonian vector fields X ¢, Xg satisfy the following
identily [Xf,Xg] = X{f,g}.

Proof. If f, g and h are functions in C*°(.#), then by definition of the Lie bracket and the Jacobi identity
we have

[X5.Xgl = X¢(Xg)(h) — Xg(Xp)(h)
={f.{g, h}}—{g {f h}}
={f g1}
= Xif.e)
Since h is arbitrary, it follows that [X7.Xg] = X{f ¢} O
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There are many ways to introduce the Poisson brackets, which then naturally lead to the same
results for the Poisson bracket of two functions in canonical coordinates.

Definition 2.31. Let (/,w) be a symplectic manifold, f and g two smooth functions and X, X, their
associated Hamiltonian vector fields. The Poisson bracket of the ordered pair (f.g) of smooth functions
defined on (., w) is the smooth function {f, g} defined by the formulae:

{f, 8l =Xy, Xg) =—(df, Xg) = —Xg(f) = Xr(g).

In any Darboux coordinates of the symplectic manifold (.#,w) we can compute the Poisson
bracket {f, g} explicitly

noaf & of 9 n of g Of og
g =X X)=Xp(@=) [ - =) (2L 2 - L5,
(f,8) = (X5, Xg) = X;(g) i;(mﬂ T aq,)(g) izzl(aql T aql)

The following classical theorem of Poisson is an immediate consequence of the definition of Pois-
son brackets.

Theorem 2.32. (Poisson) If g and h are functions such that Xy (g) = 0 and Xy (h) = 0 respectively, where
Xrisa Hamiltonian vector field on a Poisson manifold 4, then Xr(g, hhH=0

Proof. This a corollary of the Jacobi identity. O

2.2.3 Poisson bivector fields

In this section we will express Poisson structures in terms of 2-vector fields (bivector fields).

Definition 2.33. Let M be a manifold and V a vector space. A bivector is a vector bundle over M, whose
fiber over each point x € M is the space A% T M, where we denote by A>T M the exterior product of two
copies of the tangent space TM. In particular, A>T, M = TyM A T M.

A smooth bivector field IT on M is, by definition, a smooth section of A>TM ,i.e. amap I1 from V
to A2T M, which associates to each point x of M a bivector (2-vector) I1(x) € A2TM, in a smooth way.
Therefore, we conclude that IT€ T (A2T M).

Proposition 2.34. On every Poisson manifold ¢ there exists a unique differentiable bivector field I1
such that:

(f,g ={M,df ndg).

We call the bivector field I1 the Poisson tensor of the Poisson structure and we denote the Poisson mani-
fold equipped with its Poisson structure by (4 ,11).

Proof. We need to show that {f, g}(x) depends only on dy f and d, g in order to prove the existence and
unicity of I1.

Suppose that the function f is fixed, then we have

28



{f, 81(x) = (X7 (8))(x) = (dxg, Xf(x)).

Consequently, when g varies, {f, g}(x) only depends on d,g.
Similarly, for g fixed when f varies, {f, g}(x) only depends on d, f, since

{f, 8Hx) = (Xp(8)(x) = —(dx f, Xg(x)).

Furthermore, we observe that the map C*(.#) > f — d, f € T; . is surjective and the Poisson bracket
is bilinear and skew-symmetric, therefore there exists a bilinear and skew-symmetric form Il1(x) on the
vector space Ty .# such that:

{f,8H(x0) =1I(x)(dy f,dx8).

The map x — II(x) is a differential bivector field on .#, since I1 € T'(A2T.4).

Locally, in a coordinate system (x%, ..., x™) where n = dim.#, Tl is written as

- 0 0
=Y. LT () —/— A ——
(x) =Y 111 (x) SN
This means that [T/ (x) = {x, x/}, which are smooth functions of x, hence IT is smooth as well. O

Remark 2.35. The converse also holds i.e. a manifold .# equipped with a bivector field IT is a Poisson
manifold, if and only if the Schouten bracket of the tensor field IT vanishes, [I1,II]sy = 0, so the Jacobi
identity is satisfied.

Examples 2.36.  a) We will calculate the Poisson tensor corresponding to the standard symplectic
structure wo = Y., dq' Adp; on R*". We know that IT1: T* M A T*M — TM A TM, so I1is

0 0
M=) —nA
i-109'  Op;
. . a a . . . . by—1 *
since every dq' and d p; maps to Ey and % respectively, via the isomorphism (w”) ™" : T*M —
q i

T M, which can be extended to (w”2)" ' =I1: T*M A T*M — TM A TM in an obvious way.

The Poisson tensor can be expressed as :

o 0 4 9
)

H:Z( —————

i-1\0qi 0p;  0p; 0q;

and, in addition, we have seen in examples that

& (0f dg Of 0g
{f’g}_;(aqiapi apiaqi)

Now, it is an easy consequence that {f, g} =II(d f,dg).
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0o 0
b) Let us take the manifold .# = R?, we define the bivector IT = q% A % Then, we calculate that

0 0
Hg,p)digp frdiqn8 = CI% A %(f, Q)

~ (5539~ ap0q) "¢

- (ﬁa_g_a_gﬁ)
Opdq OJpadq

={f.gq,p

and by example itis a Poisson tensor that is not symplectic.

Definition 2.37. Let .# be a manifold and IT a Poisson bivector, then for every Poisson manifold (., IT)
we define its sharp map

b T*M — TM

so a — fn(a) = iqIl, where fin (@) (f) = (ixID(B) = (L, a A f) =T1(a.p).

Remarks 2.38.  a) fify is a bundle map on .4, which maps each covector @ € T* M over a point x to
a unique vector fijj(a) € Ty 4.

b) Being a bundle map it induces a map on sections

i : QL) — X (M),

a— igll.

¢) In particular, on exact 1-forms one easily has i (d f) = X £ Indeed,
n(df),dg)=1df,dg) =1{f, g =(Xr,dg).

Remark then, that a vector field is uniquely determined by its contractions with exact 1-forms.
Consequently, i mfiy = Ham()- vector subspace of T M.

As illustrated in example we know that any symplectic manifold (.#,w) is a Poisson mani-
fold. The Poisson bivector field IT is related to the symplectic form w by

if, gt =T(df,dg) = w(Xy, Xg)

for f,g € C®(4).
In this case the map I1: T* M — T M is the inverse of the map w” : TM — T* M such that

X — 0’ (X)

and for avector Y € TM,
(@ (X),Y)=-w(X,Y).
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The question is when a Poisson manifold is symplectic? Only in the case where II is a nonde-
generate Poisson structure on an even dimensional smooth manifold .4 does it follow that is
symplectic as well. Its symplectic form is then

o(X,Y) ={tm ' (X),Y),X,Y e TM.

Indeed, IT is nondegenerate, i.e., firf : T*M — TM is an isomorphism, so the inverse map liﬁl :
TM — T*M is defined. If we set
W =t TM—T*M

it follows that
w(X,Y) = —(’(X),Y) = 5 (X), ¥)

is a symplectic form. By definition, it is nondegenerate, skew-symmetric and bilinear. It remains
to prove that w is closed. In order to do so, let x be a point in .#, and let Xy, Yy, Z, be vectors in
T M. Since the Poisson tensor I1 is nondegenerate there exist differentiable functions f, g and h
defined on .# which satisfy:

i, (dy f) = Xy
i, (dyg) =Yy
ﬁl’[x (dxh) = Zx-

Let in(df), tn(dg) and #r1(dh) be the Hamiltonian vector fields associated to the Hamiltonians
f, g and h respectively, then we obtain dw(in(df),in(dg), tn(dh)) = —{g,{h, f}} —{f,{g h}} -
{h,{f, g}} =0. (Jacobi identity)

Evaluating the above expression at x shows that the 2-form w is closed. It is thus a symplectic
form on the manifold .#. Finally, by (wb(X), Y) = —w(X,Y), it follows the associated Poisson
structure to this symplectic structure, coincides with the one defined by II.

2.2.4 Lie - Poisson structure

The phrase "Lie-Poisson structure" was introduced by Marsden and Weinstein (1983), but it can

be traced back to S.Lie around 1880 in the chapter 17, pages 294 — 298, where Lie defines a linear
Poisson structure on the dual of a Lie algebra, today called the Lie-Poisson structure.

Definition 2.39. Let g, [.,.] be a finite dimensional real Lie algebra and g* its dual space. Then a Lie
Poisson structure on g* is a Poisson structure on g* i.e. C*°(g*) equipped with the Poisson bracket:

{f,81(x) =<x,[dyf,dxg]) = x([dx [, dxg]).

For g a Lie algebra the underlying dual vector space g* canonically inherits the structure of a

Poisson manifold whose Poisson Lie bracket reduces on linear functions g — C*(g*) to the original
Lie bracket on g. This is the Lie-Poisson structure on g*.
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In particular, consider f € C*(g*) as smooth function on the dual of a Lie algebra, then its de
Rham differential 1-form at some x € g*, being a linear map

df|x:Txg*_’R

is canonically identified with a Lie algebra element itself, since T,g* = g* and obviously TR = R.
Therefore, df]|, : g* — R is a linear map on g*, so df € (g*)* = g. Similarly, dg € g for g € C*(g*).
Consequently, we we have that [dy f,d,g]l € g.

Conversely, let V be a finite dimensional vector space on R. A linear Poisson structure on V is a
Poisson structure on V for which the Poisson bracket of two linear functions is again a linear function.
Equivalently, in linear coordinates, the components of the corresponding Poisson tensor (bivector) are
linear functions. In this case, by restriction to linear functions, the operation (f, g) — {f, g} gives rise
to an operation [,]: V* x V* — V*  which is a Lie algebra structure on V*.

Example 2.40. Consider the Lie group G = SU(2), where U(2) = {A€ M(C): A*A=1= AA*}, so we

have that SU(2) ={Ae€ U(2):detA=1}. We can easily see that SU(2) = {(Z _ali ) :a,beC,and,|al?® +

|b|? =1} since A* = A~ and detA =1 where A= (? Z)

Then, we can calculate the Lie algebra of SU(2) to be
g=Lie(SUR)=T;SUR)={XeMy(C): X" +X=0,trX=0}
d
Indeed, let a function y : (-€,e) — SU(2) with y(0) =1, X = Eh:oﬂt) € g and take det(y(1)) =0,
Y*(6)y(#) =1, then we have the Lie algebra of SU(2).

Observe that g = R3.

We equip g with the usual bracket on the space of matrices and we have
[e1, e2] = e3,[e2, e3] = ey, [e3,e1] = €2

, where ey, e;, e3 are elements of a basis of the space g and

00 0 0 0 1 0 -1 0
e1=10 0 -1|lez=| 0 0 0les=|1 0 o0f.
01 0 -1 00 0 0 0

This Poisson bracket denotes the exterior product of the space R3.

We remark that [e;, e;] = ij ey, SO cf’z = C%s = c§1 =1 and all the other constants are zero.

In order to define the Poisson structure IT on g* we use the relation

{f,8t(w=<uldf,dgl)=uldf,dgl.
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We associate to (e, ez, e3) the linear coordinate system (x!, x2, x3) for g* and now it sufficies to deter-
mine the components IT9 (x) = {x, x/}. Therefore,
7 (x) = {x, x7} ()

= (u, [dx',dx'1)

=(u, lej, ej])

= p(le;, ej])

= H(ij er)

k k

=c;X

Finally, we defined the Poisson bracket on the dual space (g*, {., .}) to be again the exterior product

of the space R?, since g = g* and ¢}, = ¢}, = ¢, = 1 and all the other constants are zero.

2.2.5 Poisson morphisms

Definition 2.41. If (/4,{.,.}1) and (4>,{.,.}2) are two Poisson manifolds then a map ¢ : 4 — >
between the Poisson manifolds is called a Poisson map or a Poisson morphism if

{fod,godph=1f ghod

Vf,g € C®(A). In other words ¢ is a Poisson map or Poisson morphism if the associated pull-back
map ¢* : C® (M) — C*°(A,) is a Lie algebra homomorphism with respect to the corresponding Pois-
son brackets.

Example 2.42. Let (,{.,.}1) and (>, {.,.}2) be two Poisson manifolds. Then their direct product
M x M5 is also a Poisson manifold in an obvious way. So we are looking for a bracket satisfying:

{031 C® Uty x Mp) x CF (M x M) — C (M x M)
Equivalently, we can define its Poisson tensor
12 T7 (Ml x M) — T (M x M)

or,
I: T* () x T* (o) — T (ML) x T (M)

to be IT :=II; x II, where II;, I, are the Poisson tensors for the manifolds .4, .4, respectively. This
true because C™ (A1) x C*° (M) < C®° (M1 x M>). Now, we consider f,g e C* (4, x #>) and define

H(df,dg):=1l(df> dgz) x2(d fi,dg)

where we use the notation fi(x2) = f>(x1) = f(x1, x2), similarly, for the smooth function g in .4 x 4>,
X1 € Mo and x» € M.

Thus, the direct product .4 x .#» can be equipped with the following natural bracket

if. gt =Ufe, ghifi,e1)

and it is called the product Poisson structure. Finally, with respect to this product Poisson structure,
the projection maps 4 x > — 4 and 1 x M, — (> are Poisson maps.
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2.3 The Lie algebroid structure of a Poisson manifold

In this section, we will prove that attached to each Poisson manifold (.4, I1), there exists a natural
Lie algebroid structure (T*.#,1.,.],#) on the cotangent bundle of .#. In this view, we will discuss how
the Hamiltonian vector fields span a completely integrable singular foliation, in the sense of Stefan-
Sussmann. Our presentation is mainly based on [43], [27], [61] and [44].

2.3.1 Basic definitions and properties

In section[2.2.3|we defined the bundle map §I1: T*.# — T.# on a Poisson manifold (.#,11), with
fn(a)(B) = (ixID(B) = {1, a A B) = [I(a, B). We will abbreviate fiij(a), for @ € QL) to at.

Definition 2.43. Let (.#,TI) be a Poisson manifold and a, § € Q! (.#). The Poisson bracket of a and
is the 1-form:

la, h = [a*, p1".
Theorem 2.44. For a, B € Q' (4), we have
{a, B = —Sanﬁ+£ﬁ;a+ A(iy igw)
where £ is the Lie derivative.
Proof. We will use the calculus of the Lie derivative.
do(X,Y,2)=Lx Y, 2)+ Ly (w(Z, X))+ Lz(w(X,Y))—w(X,Y],Z2) -w(Y,Z],X) -w((Z,X],Y)

for X,Y,ZeX.

Let us replace X = aland Y = ,8”. Moreover, we observe that w(a?, Z) = a(Z). Indeed,
w(a,2) =’ (@) (2) = ("’ = a(2).
Now, it follows that
0=Lu(B(2)—Lpi(al2) - L2(i@)i(fHw) +{a, BHZ) + a(Lp2)—P(Lu2).

So,
0={a,fh+Luf—Lpa—diyigw).

The connection between the Poisson bracket of 1-forms and that of functions is now at hand.

Theorem 2.45. For f,g € C®°(4), we have

aif,gt=1{df,dgh.
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Proof. {df, dg}l = —Qdeg+£ngf+d(in nga)) = d(,Qng+£ng+(inngw)) = d(inngw) = d{f,g}
O

Theorem 2.46. Let (.#,11) be a Poisson manifold. The cotangent bundle of 4 , T* .4 has a Lie algebroid
structure, the Lie bracket of which is given by

[a’ ﬁ] = {a’ ﬁ}l

with a, B e QY (M) =T (T* M), and whose anchor map §11: T* 4 — T is the usual anchor map of 1.

Proof. Tt is immediate that the bracket as defined, satisfies the Jacobi identity. We consider f,g,h €
C*° (), then by theorem we have that

dif,glt=1{df,dgh
and so on. Thus, if a =df,B = dg,y = dh are exact 1-forms, then the Jacobi identity for the triple
(df,dg,dh) follows from the Jacobi identity for the triple (f, g, h) with respect to the Poisson bracket.

It remains to verify that this bracket satisfies Leibniz rule

la, uf] ={a, upfh
=—Ly(up)+ Luﬁu(x + d(iauiuﬁuw)
d(ul(a, B)) +igd(up) —uigda
ula, Bl +1(a, Bdu+ip(dunp)+izdp— uiﬁuda
ula, Bl +ig(dunp)
ula, B+ (@) ().

O

Remark 2.47. The Lie algebroid structure (T*.#,[.,.],#) on the cotangent bundle of .# is called cotan-
gent algebroid of the Poisson manifold (.#,I1).

In the following proposition, we will prove that a Lie algebroid structure ([.,.],#) on T*.#4 comes
from a Poisson structure on ./ if and only if { is antisymmetric and the bracket of two arbitrary closed
1-forms is again a closed 1-form. This is a necessary condition for a Lie algebroid structure on a cotan-
gent bundle to correspond to a Poisson structure. So the next criterion is now at hand.

Proposition 2.48. Let .4 be a manifold. Suppose that T* .4 has a Lie algebroid structure ([.,.],1) such
that

and such that
ldf,dg]=dH(df)(g)
,forall f,g e C®(M). Then
{f,.gt=4df)(g

defines a Poisson structure on 4 for which the Lie algebroid structure on T* ./ is the given one.
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Proof. The bracket {.,.} defined on C*°(.#) is skew-symmetric. This is true because

{g, f1=1(dg)(f) =(df,4(dg)) = (dg,t"(df)) = —(dg,4d ) = -{f, g

It satisfies the Leibniz rule

{f,.ght =tdf)(gh)
=(d(gh),§(d[f))
={(gdh+ hdg,1(d[f))
= gldh,{(df))+ h{dg t(df))
=gif W+ hif, g}

Furthermore, it satisfies the Jacobi identity. We have,

{f g =4dif,ghh
=(dh,4(d{f, g
=(dh,4(d#(df)(g))
=(dh,{(ldf,dgD),

and

{{g, h}, f1+h, f} gt =(d f,4(d(t(dg) (M) +(dg, —#(d#(d f)(h)))
= ")), d(dg) () — 4" (dg), d(H(d f)(h))
—{#df),dt(dg)(h)) +4(dg), dH(df)(h)
—#(d ) H(dg)h) +1(dg)(t(d fHh)
—(dNudg) —tdg)df)n
—[(df),4(dg)lh

=—(dh,[{(df) 4(dg)]).

Adding these terms up, we get
Uf, g +i{g ht, f1+{th, f1, 8 =(dh,4(ldf,dg) —(dh,[i(df) §dg)]) =0

since f is the anchor map, so f([d f,dg]) = [§(d f),4(dg)].

It remains to show that the Lie algebroid structure on the cotangent bundle T*.# of .4, defined
by this Poisson structure, as follows by theorem is the given one. It suffices to show that f = IT*
where IT is the Poisson bivector field on .#, defined by the Poisson bracket {.,.}.

By hypothesis, {f, g} =#(df)(g), and since we just proved that {.,.} is a Poisson bracket, it follows
that

if, 8 =1 df)(g)

, whence we conclude that §(d f) = It (d f), for any f € C*°(). Since both  and I1! are bundle maps
and they coincide on exact forms, we have that # = IT". O
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2.3.2 Singular foliation of a Poisson manifold

In appendix [A.4 we proved that on every Lie algebroid corresponds a singular foliation, which
is called the characteristic foliation of a Lie algebroid. Here we discuss, in a similar way, the case of
Poisson manifolds.

We analyzed how the cotangent bundle T*.# of a Poisson manifold has a canonical Lie algebroid
structure (cotangent algebroid). In this case, the anchor map p: A — T M defined by

I T* M — T M
induces a morphism of C*°(.#)-modules
I : Q' () — X (M)

with Q! (.#) = T(T* ) and equivalently X () = T(T.4).
We denote the set that is spanned by the Hamiltonian vector fields by %, namely,

F =spanceu){Xr:f€ C*® ().

This is a singular foliation as we showed in appendix[A.4} In the next section, we will show that
the leaves of this foliation have a canonical symplectic structure.
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3 The splitting theorem and the symplectic foliation

Here we discuss the generalization of the Darboux theorem given by Weinstein in [64]. In this
paper, it was shown that a neighborhood of a point x, in a Poisson manifold can be written as the
product of a symplectic submanifold with a transverse submanifold endowed with a Poisson tensor
which vanishes at the point x.

3.1 Preliminaries

Before we prove the splitting theorem and study some of the basic consequences and results aris-
ing from it, we first recall some important notions and results needed. For a more detailed exposition
of the following, one should read [38] and [39].

Definition 3.1. Let M and N be smooth manifolds and f: M — N be a smooth map. A point p € M is
called a regular point of the map f, if the differential

dfp . TpM—> Tf(p)N
is a surjective linear map. A point g € N is a regular value of f if all points p in the pre-image f~'(g)

are regular points.

The implicit function theorem gives conditions under which a level set of a smooth map is locally
a smooth embedded submanifold.

Theorem 3.2. Implicit Function theorem Let M and N be smooth manifolds, f : M — N be a smooth
map and q € N a regular value of f, then f~1(q) € M is a smooth embedded submanifold of M, such
that

Tpf (@) = ker(df,)
Remark 3.3. The implicit function theorem asserts that C = f -1 (q) is a smooth embedded submani-
fold of M.

Another useful result is the Flow-Box theorem.

Theorem 3.4. Flow-Box theorem Let M be a smooth and X a smooth vector field on M. If X(p) # 0 for
a point p € M, then there exists a local coordinate system

(U; (J/I, [XX) J/n))

on an open neighborhood U of p so that, on U

_ 0
01
Remark 3.5. This theorem can be interpreted as follows. After a change of coordinates, i.e., in the new
coordinates, the vector field is very simple. Its solutions are horizontal straight lines. This means that

in a small neighborhood the dynamics is just monotonic evolution in time along parallel flow lines.
This is the reason why theorem [3.4]in the literature is also called the Straightening-Out theorem.
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3.2 The Splitting Theorem

Theorem 3.6. Let (P",I1) be a Poisson manifold and xo be a point in P of rank 2s = dim%6y,, where
€y, is the leaf at xo. Let N be an arbitrary (n — 2s) -dimensional manifold of P which contains xo and is
transversal to €y, at xo. We denote Ny, to be a small neighborhood of xy in N. Then there is a system of
coordinates

(Nxoy (ply eeey ps: qu eeey qs; Z1yeeey Zn—ZS)) (31)

which satisfies the following conditions:

a) pi(Ny) =qi(Ny) =0.
b) {gi,qj}=1{pi,pj}=0ifi# jandipiqi}=1,Vi.
C) {Zi,pj}z{zi,qj}ZO,Vi,j.

d) {zi,zj}(x0) =0, Vi, .

The coordinates(3.1 are called canonical coordinates. In such canonical coordinates the Poisson struc-

turell can be expressed as
50 0 0 0

M=) —AN—+) {zj,z2j}—N—.

l-zziapi qi ; ! ]azi aZj

Remark 3.7. Geometrically, theoremis called splitting because locally the Poisson manifold (P, IT)
can be splitted into the product of a 2s-dimensional symplectic manifold, with the standard symplectic

structure:
50 0

Mg=)_

/\ —_—
i-10pi 0q;

and a (n — 2s)-dimensional Poisson manifold, with Poisson structure defined by:

0 0
IIy=) {zj,zi}— N —
N lz]: B 0z; 0z;

on a neighborhood of xo in N. Since {z;, p;} = {z;, q;} =0, Vi, j, the functions {z;, z;} do not depend on
the variables (py, ..., ps, 41, ..., 4s). To better understand this, it suffices to show that Xr({z;, z;}) = 0. Let
us suppose that the converse is true, i.e. Xy # 0, for f = p; or g;. By the Flow-Box theorem there

exists a local function ¢ such that X = EP Now, the Jacobi identity gives that

Xr({zi,2zj}) =0

so we get the result required.

The equality {z;, zj}(xo) = 0, Vi, j means that the Poisson structure Iy vanishes at xy. So locally,
we can split a Poisson structure into two parts i.e. a regular part and a singular part which vanishes at
a point.
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Proof. We will prove the splitting theorem using the coordinate-by-coordinate construction method.
We will contruct these coordinates by induction on s.

If IT has rank zero at xp, then X r(x) =0 for all f € C*°(P). This means that €y, = {xo}. So N is
diffeomorphic to P, {xp} is the symplectic manifold, and we are done.

We suppose that I1(xg) # 0. First of all, we will construct the coordinates p; and g;. We know that
6y, is a submanifold of the Poisson manifold P, so by the Implicit function theorem [3.2] there exists a
local function p; such that p; : % — R which vanishes on N, where % is a small neighborhood of x
in P, and such that dp; (xo) # 0. Since 6y, is transversal to N, there is a vector Xg(xo) € €y, such that
Xp, (8)(x0) # 0, where X, denotes the Hamiltonian vector field of p;. This true because let us consider

O :T"%—Tu
/4

We know that X, € X (%) equals |4 (dp1). Moreover, we have that Xp, (x0) € Ty, €y, and that HI%XO
is an isomorphism. Thus, if we assume that X}, (xo) = 0, then we obtain that (H|<ng)_1(Xpl (xo) =0
which is false because d p; (xp) # 0.

Therefore X, (xo) # 0. By the Flow-Box theorem there exists a local function ¢, such that

0
a1 :% — Rwith X, = W In a neighborhood of xy we have
1

oqu
P g1t =Xp,q1 = o =1#0.

In addition, X and X, are linearly independent because X; = AX), implies that {g, p1} =
Xg.p1 = —AXp, p1 = 0. From the Jacobi identity for the Poisson bracket, we have that X, and X,
commute

[(Xq1, Xp,1 = Xig,,p11 = 0.

By the Frobenius theorem , these vector fields can be integrated to define a regular two dimen-
sional foliation in an neighborhood of xj. As a consequence, we can find a local system of coordinates
(¥1,..-» yn) such that

0 0

X dX .
I a)’l e En = ay,

1

With these coordinates we {q1, y;} = X4, (y;) = 0 and {p1, y;} = Xp, (y;) =0, for i = 3,4,...,n. Poisson’s
theorem then implies that {q1,{y;, y;}} = {p1,{yi;, yj1} = 0 for i, j = 3. We conclude that {y;, y;}
must be a function of y;’s.

We consider (p1, g1, ¥3, ..., Yn) as new local system of coordinates and we have

H—i/\—+2n ( )
apl aql l]>3 l] y3) lyn ay]

The above formula implies that our Poisson structure is locally the product of a standard symplectic
structure on the plane S; = {(p1, 1)} with a Poisson structure on a (n — 2)-dimensional manifold U; =
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{(y3,..., yn)}. In this product, N, = S; x U is also the direct product of a point of the plane {(p1, g1)} with
a local submanifold in the Poisson manifold {(ys, ..., yn)}.

Now, we apply the same procedure as presented above to U; and so on, going through the pro-
cedure s-times after which we have a resulting neighborhood N of xy such that N = S; x Ss x Ny, with
local system of coordinates

(pl, o Psr g1y gsy Z1y ey Zn—Zs)

in a neighborhood of x; satisfying

{gi,qjt ={pi,pj} =1{zi,pj} ={zi,qj} =0
forall i, j, and,
{pi,qjt =6ij.
We conclude that N = S x U, where S = S; x ... x §; is the symplectic manifold, and U = Uy, is the
Poisson manifold with Poisson bracket determined by H’l. j( Vi, ¥j),» which has zero rank at ITy(xo) for
large enough n. To justify this, we need only to show that an n exists such that the rank of the Poisson

bracket of U is zero at I1y(xp). This is easy because if we consider n = s, then the Poisson bracket
becomes trivial. This completes the existence proof. O

Remark 3.8. a) The manifolds S and U as described in the above theorem are in fact unique up to
local Poisson diffeomorphism (the proof of which shall be omitted, see [64]).

b) Moreover, in the view of the splitting theorem, for xy € U N S we have that I1(xg) = 0.

Corollary 3.9. Let us take a symplectic manifold, this is a Poisson manifold (.4 ,11) where rankIl =
dim i everywhere. In this case, the splitting theorem gives canonical coordinates

(pl;---r ps; CII,---; 6/5)

such that
M= 5.0 A 0
=i0pi 0qi
Equivalently, sinceIl* : T* 4 — T4 is an isomorphism, we can define a symplectic 2-form on M
w = Z dpl' N dqi.

In other words, we recover Darboux’s theorem which gives local canonical coordinates for symplectic
manifolds. This explains why Weinstein's splitting theorem is a generalization of Darboux’s theorem.

Examining the proof of the splitting theorem 3.6 more closely, we can see that it is a direct con-
sequence that the leaves of the singular foliation defined in section[2.3]are symplectic.

Proposition 3.10. Let (#,I1) a Poisson manifold. On each leaf €y there is a well defined symplectic
structure.

Proof. Let a point x € . We consider a local canonical coordinate neighborhood
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(U, P1yees Py G1s oes Gy 215 0 Zn—25)
for €. Therefore, € has a natural symplectic structure with Darboux’s coordinates
(PLy s P 1y G-
We define
wy=XY"  dxpi Ndyq;
for x € U. This is the symplectic structure on each leaf € of &. a

Remark 3.11. The Poisson structure is completely determined by the symplectic leaves of &. (see
[271)

In the next section, we give one example of the Splitting theorem and the singular symplectic
foliation.

3.3 Coadjoint Orbits

Here, we will discuss a result developed by Kirillov, Konstant and Souriau. We will prove that the
coadjoint orbits of a Lie group are symplectic. Moreover, these symplectic manifolds are the symplectic
leaves of the Lie-Poisson bracket. We follow [36], [35] and [45].

First, let us recall that the adjoint representation of a Lie group G is defined by
Adg=Telg:g—g

where g € G, g = Lie(G) and Ig : G — G is the inner automorphism I (h) = ghg™'. Now we consider
g*, the vector space dual to g. Let X € g, F € g*, then the coadjoint representation

Ad*:Gxg* —g"
of Gin g* is defined by
where Ad*(g) = Ad(—g)*. Thus
(Ad(-g)"F, X) = (F Ad(-g)X)

by (.,.) we denote the pairing between g* and g.

We can now define the notion of a coadjoint orbit.

Definition 3.12. Given F € g*. The coadjoint orbit OF is the subset of g* defined by
Or={Ad(-8)"F:g€G}

Remark 3.13. Like the orbit of any group action, O is a submanifold of g*.

42



Example 3.14. Here we will calculate the coadjoints orbits of G = SU(2). Recall that the Lie algebra of
SU(2)is

g=Lie(SUR)={XeMC): X" +X=0,trX=0}

equivalently,

ib c+id
g_{(—c+id ~ib )'b’b’deR}

and that g =~ g* =~ RS,

Let F € g*, then, by definition[3.12]it suffices to find all F’ € g* such that F' = gFg~! for all g €
SU(2). Equivalently, it suffices to find a function Q : g — C which is invariant on every orbit, this is
Q(gFg™!) = Q(F) i.e. Q = ct on every orbit.

Consider Q(F) = tr(F?), where F € g means that

[ ib c+id
“\—c+id -ib
and
= —b?—c? - d? 0
0 —b?—c? - d?
ct
so tr(F?) = —=2(b® + c? + d?) = ct. Without loss of generality, we can write r2 = Y for r € R. Hence,

2

we obtain b? + ¢ + d? = r? i.e. the two-dimensional concentric spheres and the origin.

Remark 3.15. Notice that the coadjoint orbits of SU(2) are always even-dimensional.

The next theorem explains how the coadjoint orbits are endowed with symplectic structure (the
proof of which we omit, for a detailed proof see [45]) .

Theorem 3.16. Kirillov-Konstant-Souriau Let G be a Lie group and © c g* be a coadjoint orbit. Then
on every coadjoint orbit there exists a symplectic form Q, defined by

QF)X,Y)=(E[X,Y])

forX,Y e gandF € g*. This symplectic form is also called the Kirillov form or Kirillov-Konstant-Souriau
form (KKS-form).

Example 3.17. We will calculate explicitly the symplectic form of the coadjoint orbits of example[3.14]
in the spherical coordinate system. In particular, in order to find the Kirillov form, we consider R3 with
Poisson bracket defined in[2.40} then, we will restrict this bracket on the coadjoint orbits, and finally,
show that this bracket is non degenerate.

Let {x1, X2, x3} be the standard coordinates in R® . The spheres of radius R inR® are given by the
equation
X%+ x5 + x5 = R
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We can cover the sphere by two charts. One chart being the whole sphere minus the northpole
(8@ = 0), which we denote by U,, the other chart being the whole sphere minus the southpole (6 = ),
which we denote by U_. Let us calculate the symplectic form on U_.

The parametrization of U_ is in terms of the parameters ¢, 6 and is given by

x1 = Rsin(0)cos(¢)

Xp = Rsin(0)sin(¢p)
X3 = Rcos(0)

for0s¢p<2mrand0=<0 <.

In example we calculated the Poisson bracket in R? = g = g*. Thus R? is a Poisson manifold.
We know that in this case the structure constants of the Poisson bracket relations and the Lie bracket
relations between the generators of g = SU(2) are the same.

As we saw in|2.40] it holds that
{x1, X2} = 2x3, {x2, X3} = 2x1 and {x3, x1} = 2x2

X
Now we will calculate {¢,0}. First, let us calculate {—1, xg}, because we have
X2

of og

{f(¢),g0)} = ££{¢,9}

Thus, we obtain

{ﬂ,xg} = {tan(¢), Rcos(0)} = ( Rsin(0)i,0}
X2

-1
cos?(¢) )

The Leibniz rule gives

X1 1 X1
{—,xs} = —1{x1, X3} = — {x2, X3}
X2 X2 x2

1 X1
= —(=2x) - 5 (2x1)
X2 x2
X
of-1-2)

2
X3

= —2(1 + ran2(¢))
=2
" cos2(¢)

Consequently, it follows that
2

Rsin(0)

{$,0} =
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So we obtain the matrix

2
- ({¢>,¢>} {M}) | % Rn®
0.9 16,6 |___2
Rsin(0)
It clearly has a nonvanishing determinant, implying that it is invertible. The inverse is given by
1.
0 —Rsin(0)
w = 1 2
- ERsin(B) 0

So we obtain the nondegenerate 2-form w (notational abuse):

1 1
w=0dpAdp+0dOAdb— 5Rsin(9)d<p AndO + ERsin(Q)dQ ndg
= Rsin(@)do nd¢p

It remains to show that w is closed. Indeed, dw = Rsin(0)dO A dB A d¢ = 0. Similarly, we can calculate
the Kirillov form on U,..

Remark 3.18. In the above example we calculated the Kirilov form on the coadjoint orbits of SU(2).
This symplectic form can define a bracket on every coadjoint orbit, in an obvious way. The bracket is
sometimes called orbit bracket. It can be defined via restriction of the Lie-Poisson bracket as illustrated
in the above example. The next theorem [3.19|summarizes all this (see [45]).

Theorem 3.19. The Lie-Poisson bracket and the coadjoint orbit symplectic structure (Kirillov form) are
consistent in the following sense. For F,H : g* — R and @ a coadjoint orbit in g*, we have

{F, H}lg = {Flo, Hlo}

Here, the first bracket is the Lie-Poisson bracket, while the bracket on the right-hand side of is the Poisson
bracket defined by the coadjoint orbit symplectic structure on ©.

Another way to calculate the coadjoint orbits of SU(2) is to look the Lie-Poisson structure R3 =
su™*(2) as a foliated manifold and then calculate the leaves of this foliation.

So we consider, again, the set
F =spance.u){Xr:f€ C*® (),

which is a foliation on R3.

We will calculate the leaves of this foliation as follows. A basic property of the Casimir functions
is that they are constant along the integral curves of the Hamiltonian vector fields. In other words, the
integral curves of the Hamiltonian vector fields reside on the level sets of the Casimir functions. So the
symplectic leaves, in this case, are the connected components of the level sets of the Casimir functions.

In example we showed that the components [T/ of the Poisson structure IT on (s5u(2))* are:
M2 = 3 1123 = ¢! 118 = — 42
X - y x ) x .
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Consequently, the Poisson structure is

A 0 5 0 A 0 g 0 A 0
0x2  0x3 oxl  0x3 oxl  0x?
By solving the system of pde’s [1!(dC) = 0, where C is the Casimir function of II, we have that C =

(x1) + (x?) + (x%) i.e. the symplectic leaves of the g* are again the concentric spheres and the origin {0}
which is itself a singular symplectic leaf.

Example 3.20. Let us consider the Lie group G = SU(2), with Lie algebra g = su(2) and dual space g*.
In example we saw that g* is endowed with the Lie-Poisson structure

-7 ax2 T 0x3 oxl  0x3 oxl  0x?

As we saw previously the symplectic leaves of g* are the concentric spheres and the origin {0}.

Now we take the leaf €, = {0}, which is a manifold equipped with the trivial symplectic structure.
In the view of the Splitting theorem the transversal Poisson manifold N is g* = R3.
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4 Local symplectic Realizations of Poisson manifolds

As we saw in the splitting theorem, Poisson structures are quite complicated. Alan Weinstein’s
idea ([64]) is to search for lifts which have simpler structure. Namely, given a Poisson manifold (B II)
find a symplectic manifold (S, w) together with a surjective submersion r : S — P, which is a Poisson
map. This is called a symplectic realization and the idea is that we can work at (S, w) and push our
results down to (B II) via r.

In the next section, we overview the origins of this idea.

4.1 Function Groups and Realizations

Sophus Lie in his treatise on transformation groups written around 1890, considers functions
Fy, ..., Fr on a symplectic manifold and states the next definition for function groups.

Definition 4.1. Let (S,w) be a symplectic manifold, and (g;, p;) be the canonical variables defined by
the Darboux theorem. Then, a function group is a collection § of functions of the canonical variables
such that

a) §isa Lie algebra under Poisson bracket,

b) if F,...,FreFand G:R" — R, then G(Fy,...,F;) €F.

In what follows, we will explain the definition of a function group 4.1}and analyze how the sym-
plectic realization problem arises from it, in global terms.

Remark 4.2. Let (S,w) be a symplectic manifold and ® a foliation on the manifold S such that the
quotient space S/® is a manifold. We may define a global function group, which we will denote with
S, to be the space of functions constant on the leaves L of ® closed under Poisson bracket. Thus,

Fo=Cg(S) ={feC®®): fly=ct,VL}.

Firstly, let us explain what the condition that §¢ be closed under Poisson bracket means geomet-
rically.

By definition a foliation ® on S is a locally finitely generated submodule of the C*(S)-
module of compactly supported vector fields X (S) which is involutive. Let ot = spances){Z € X(S):
w(X,Z) =0,YX € ®} be its orthogonal complement under the symplectic structure w. We consider the
set

X3, = spances){Cr: f€Fo) € Xc(S)
where ¢ ¢ are the hamiltonian vector fields of functions along the leaves of ®. If Z € @t and ¢ £ € Xgo»
then we have that w(Z, Ef) = igfw(Z) = Z(f) =0, because f is a function in §F¢. So the hamiltonian

vector field ¢ f lies in @4, i.e. Xz, € ®*. On the other hand, we take Z € ®* and we have that w(X, Z) =
0, forall X € ®. But we also know that w(Z, ¢ ¢) = 0. Hence, w(X, Z) = w(Z,¢ ) and by dimension count,
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since w is an isomorphism, we can easily see that ®* is filled at each point by the hamiltonian vector
fields of functions in Fo. Finally, we obtain that Xz, = ®*.

If §o is a Lie algebra, then the identity [X 1 Xgl = Xi,g) holds and the set Xz is involutive,
since [X3,, X3,] € X3, .

Futhermore, by Lie’s definition, the set §¢ must be finitely generated in order to be a function
group. Thus Xz, is finitely generated.

Therefore, by Stefan-Sussmann theoremthere is another foliation, which we may call ®, and
we obtain the following result X3 < ®. Conversely, if the foliation ® satisfies the conditions above,then
itis obviously that ® € Xz .

Therefore, we have proven the following result.

Proposition 4.3. Let® be a singular foliation on a symplectic manifold S. Then the space§ ¢ of functions
along the leaves of ® is a function group if and only if Xz, is involutive.

Remark 4.4.  a) If the hypotheses of proposition [4.3]are satisfied the functions along the leaves of
® form another global function group §4. called its polar.

b) The quotient spaces S/® and S/®L are Poisson manifolds. Indeed, the following bracket obvi-
ously defines a Poisson structure on C*°(S/®P):

{f,8lggom={fomgomnls
where f, g € C*°(S/®) and the canonical projection 7 : S — S/® is a Poisson map.

Definition 4.5. A symplectic realization of a Poisson manifold (B {.,.}) is a symplectic manifold (S, w)
together with a submersion r : S — P, which is a Poisson map.

Example 4.6. Let the circle S' acting differentially on the sphere S2. The orbits of the action are the
parallels and the poles of the sphere and form a singular foliation. We consider the function i : S — R,
with h(p) = z, where p = (x, y, 2) is a point on the sphere.

Now, we observe that £ is a surjective submersion. Moreover, we can identify R with the quotient
S2/S', so we have h: S> — $?/S! = R. The quotient $?/S! is a manifold (with boundary), which we
will write C. In order to prove that the map £ is a symplectic realization it remains to show it is also a
Poisson map, since the manifold S? is obviously symplectic. This is true in a trivial way, because if we
equip R = lie*(S!) with the Lie -Poisson bracket, then the bracket defined is trivial.

4.2 Existence of Local Symplectic Realizations

In this section we will prove the local existence of symplectic realization of a Poisson manifold.

The next lemma is also called Perturbation theorem and it is a result we need in order to prove
the local existence of symplectic realizations.
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Lemma 4.7. Let ¢ andn be vector fields, with compact support on a differentiable manifold M. Denote
¢ and ¢" the flows of & and n respectively. Then, for all x € M and t € R one has

— cean oy [ ¢
T @ = [ @0 conds

d
Proof. Withrespectto 1, gbi”n is a path of local diffeomorphisms. Thus 71 A_Ocpiﬂm (x) is the tangent

vector of this path at y = gb‘; (x). The point y as defined gives

d d
INCARCE W00 = 5 0 o)

il
dAllr=0 dAlr=0 A=0

We denote this tangent vector by

_d Eran
(= 2| @ gt )
and obviously we have ((y) € T,y M. This expression suggests that we consider the path given by

_4a S+An
G = =] @ ot (1)

with 0 <7 <, in the tangent space Ty, M. Equivalently,

Sd Sd
cs(y)=f0 E(,:t“f(”)‘”:fo 7|, Grermat

So we should calculate {;,(y)
d ) :
(o) = =] @510, ()

d ¢+A E+A
- Hh:o(‘/’; Togt M Mogt 0t (1)

=) + (D) (@, 00

d
where we derivated the two appearances of 1 (see also Posilicano [52]). Applying e we get
T

NS RN CARSCNE)

K ())—i|
10 t+tl) = A=

drt

d ¢ :
o= RCAN(SCMG)

= (¢%). & (@5, (1))

d
E‘TZO

o
_('bt*dr

e
TR A

@M @S ()

0
rzoﬁ |/1:0

€A @1+ @@ ()
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. +A .
Moreover, since (,bg " = id, we calculate

d e d
Gt = @D (5

drl: L E A @ 1) +E@E ()

= (9. M@, 1))
Now we put back y = (,bi”n (x) and we are done. O

Theorem 4.8. Weinstein, 1983 Any point x of a Poisson manifold (B I1) has an open neighborhood U
such that (U,11|y) admits a realization by a symplectic manifold of dimension2(dimP — (1/2)rank,II).

Proof. By the splitting theorem [3.6} it suffices to discuss only the transversal part of I1. So we assume
that rank,I1=0.

We can, now, think of our problem as that of finding a symplectic structure on R?", with coordi-
nates
oLyl y™

together with the projection o ‘
(x', y") = (x
to be a local symplectic realization of (R",{.,.}) with {x’,x/} =11;;.
One may think that the canonical structure

n . .
Y dx'ndy'
i=1
yields such a realization. However, this is true only for the trivial Poisson structure I1;; = 0.

This leads us to reformulate the problem and look for new coordinates X; = ¢! (x, y) instead of
the x;. There is no need in changing the y;-coordinates, because the Poisson structure depends only
by the x;’s via the projection map.

By Darboux theorem the requested symplectic form is expressed as

n . .
o=) d¢'ndy'
i=1
hence, . . ‘
no Gt . .1 N 00t o . .
o= ) (p.dx]/\dyl—— > (i—i)dylAdyf
ij=10x/ 2= oyl oy

To find o it suffices to solve the well-known equation
i(Xl')U = —dx,-
where X; is the Hamiltonian vector field of x? with respect to o, given by the formula

;0 i 0
X; :f{— +T]{—
o0xJ 0y!
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with 5{ = {x!, x/}. Then, we get

S ni2l - gt

- iaxk i

and,

h k k
> g Gy gy} =0

i

0x
So, 1, =—

i —j’

X

and we remain with the system of equations

oxl

20 (a0t oo
*oxk ayh  ayk

ob k h
0p™ 0"
ayh ok = —{pr, dnin

Let us take the function f¥(x) = X7, x'y’, and let X v be the Hamiltonian vector field where the
function f7 is seen as a function in x. We denote by ¢} the flow of X v, and define

. S .
Xi=¢'(x,y) :fo xlogplds

Now we differentiate ¢’ with respect to y’, and we have

o' _ 09’y _op'y + N _0gl(y + M)
ayl oyl lyi A+ =0 oA A=0

We know, by the definition of ¢"’s above, that they are integrals of the coordinates of the points along
the flow of Xyy. In this view, ¢'(y/ + A) are the integrals of the coordinates of the points along the flow
of Xfym- This is

; 0 0
. P . l_ 2. —
Xpyion = ig’kl'l,ky 3k +)L§k H]k()xk
= fyj+/1Xxj
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So by lemma[4.7]the required derivative is given by a straightforward calculation. Hence,

acpi_ 0 i (XA
ayj—a—yj(f (] ()))ds

Xfy+ﬂ.

15
:f ﬁ‘/lo ((PS
Xfy+ﬂ i
[t
mf ()™ (X (bt ds
ff {xfx op " }o fy)dtds

ff{’“ocps 1l og " )drds

(x)))ds

By the change of variables (s, £) — (s,7 = s — £) we have

ay] f f {x]og[)Tfy X og[)tfy}d‘rds

Similarly, interchanging i and j we get

o) 1 el .
ai;i:—j(;fo{xfogbffy,x’o(,bffy}drds

Thus, we combine the last two results to get

i j
- ad) ff{x’wr xog,Vdrds

oy’
[ wertvan et
o 0
={¢p/, 9"}

which completes the proof of existence.
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5 Global symplectic realizations of Lie-Poisson structures

In theorem [4.8we showed that every Poisson manifold (M, II) has local symplectic realizations.
In this section we examine the problem of existence of global realizations as such. We start with the
case of a Lie group G and the Lie-Poisson structure on g* and show that it admits 7*G as a global
symplectic realization. We observe that in fact T*G has extra structure, namely it has the structure
of a Lie groupoid and moreover its standard symplectic structure is compatible with the groupoid
structure. In other words, it is a symplectic groupoid.

This understanding of the Lie-Poisson case gives rise to the idea that global symplectic realiza-
tions of an arbitrary Poisson manifold (M,II), if they exist, might be found among the symplectic
groupoids over M. On the other hand, as we saw in section [2.3} a Poisson structure on M is really a
Lie algebroid structure on the cotangent bundle 7* M. In view of this, in chapter[6|we discuss how the
search for groupoids as such can be cast in the integrability of Lie algebroids. In particular, we prove
that, given a Poisson manifold (M, II) such that the Lie algebroid T* M integrates to a Lie groupoid X
over M, then X is a global symplectic realization in a canonical way. This is a result by Karasev and
Weinstein.

5.1 Global realizations of Lie-Poisson structures

Let G be a Lie group and (.#,I1) be a Poisson manifold. We consider the (smooth) left action of
G on /. Namely,
O:GxM— M

with the action of a group element g on the point m, written as ®¢(m). In terms of this notation, a
group action ® satisfies:

a) @g o®g, =Dy o, and
b) ®,=1d,.
Since the action is smooth, for each g € G, the map
Gg: M — M
is a diffeomorhism with inverse CDgA. So, locally, we get
@:G— Dif fioc (M)

where,
Dif fioc(M) ={f : Ur — Vrdiffeomorphisms: Uy, Vy < .# open}

We, also, have that Di f f(.#) < Dif fi,.(#), which is a Lie pseudogroup. So a smooth action of a Lie
group G is, in fact, a homomorphism of Lie groups.
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Differentiating this map (Di f fj,.(#) is an infinite-dimensional manifold which is smooth), we
obtain the infinitesimal action associated to X € g:

Te®:T,G— Trq,(Dif fioc( M)
simplifying the notation, we have equivalently,
D, :g— X(M)
defined by X — X 4. In detail,

d
X ;0 (m) = —t)tzoqxexp(txn(m)

_d
N E’tzo
=-07"(X)(e)

(Dexp(tX) (m)

The induced vector field X 4 is called infinitesimal generator.

Definition 5.1. Let G be a Lie group with Lie algebra g and ® : G x .4 — .# the group action of Gon .#.
We call @ a Poisson action if, Vg € G, the map ®g : .4 — ./ is a Poisson map. Furthermore, if VX € g
there is a function fx € C*°(.#) such that X 4 is precisely the Hamiltonian vector field of fx, then ® is
called Hamiltonian action. In this case, we have

dfx =ix,II
Let us give an example of a Hamiltonian group action.
Example 5.2. Let us take the manifold R?, equipped with Poisson structure given by
MM=dxndy

Now we consider the one-dimensional torus S! acting on R? by rotations

o)< expo
where 0 1
xa(r )
Then the corresponding vector field on R? is
0
M=) ax x@

1
Hence, for fx = > (x? + y?) we have an example of a Hamiltonian group action. Indeed,

ix,I=ydy+xdx=dfx
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Proposition 5.3. Let G be a Lie group with Lie algebra g and g* its dual space. An action of a connected
Lie group G on the Poisson manifold (.4 ,11) is Hamiltonian if and only if there exists a differentiable
mapping J : M4 — g* such that for all X € g the function J(X) € C*°(#) defined by

J(X)(x) = J(x)(X) (5.1)
satisfies

Xu=Xix (5.2)

Proof. 1f ] exists we obviously have a Hamiltonian action. Conversely, We assume that for all X € g, we
have some fx € C*° (), such that

Xu =Xy

We consider a basis Xj, ..., X on g and we define J(x) by[5.1|where if

S .

X=)c'X;
i=1
we take S
Jx)=Y ¢ fx,

i=1

Then J: .4 — g*, and it satisfies the properties requested. O

Definition 5.4. A mapping J : .4 — g* that satisfies [5.1] and [5.2] is called a momentum map of the
Hamiltonian action of G on (., I1).

Definition 5.5. A momentum map is called equivariant if J(g(x)) = Adg (J(x)), for g€ G.

Proposition 5.6. An equivariant momentum map J : M4 — g* is a Poisson morphism, if g* is endowed
with its Lie-Poisson structure.

Proof. Let X,Y € g. Firstly, we need to prove that an equivariant momentum map satisfies

Ux, Iy} =Jix,v)

For x € ./, we have

Ux, Jy}(x) = X5 (x)Uy)
=X 4 x)Uy)

=) Iyexpux)(o)

=——| _(Ad" exp(tX)U)Y)

-2 JAdexpax))
dtlt=0

= U)X, Y1)

=Jix,v1(x)
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Now, we can prove that J is a Poisson morphism. Let us take functions [, [ € C*°(g*) and check that
{hhol,lbo}={l1,l}o]
where the bracket of the right hand side is the Lie - Poisson bracket of g*. So

({h, LYo N(x) = {1y, b} o J(x)
224 0 (U, b))

@][11,121(10
=, 1,1 (X)
={lio],[roJ}(x)

since x is an arbitrary element of .4/, we are done. O
Now we consider the group actions of G on itself
a) Leftaction Lg: G — G defined by Lg(h) = gh
b) Right action Rg : G — G defined by R¢ (h) = hg_l.
We denote by @, and Wy the lift of these actions to T*G defined by

a) Ly T} yG— T Gwith L (©)(@) =€((Lg)(0)), and

b) R;—l : TL*(1 wC— T, G with R;_l () (o) = {((Rg) « (), respectively.
Then we will show that ® and ¥ are Hamiltonian actions that have equivariant momentum maps
12 Y TG — g*

defined by

a) J®() =-R;(), and

b) J¥ (&) =L;(),forée Ty G.
As a first step, we notice that we have a natural identification

T*G=Gxg"*

given by the natural projection x : T*G — G, and by the projection pr: T*G — g* defined by pr(¢) =
L;(E) (&). This also induces an identification

T;T"G=gxg"

given by the projections n’ = Lg. om, and pr’ = pr.. Thus we express the actions ® and ¥ by
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mo®g=Lgom, pro®g=pr,no¥g=Rgomand pro¥y=Adgopr.

We will compute X}?* ¢ and X;y* ¢» Which are the corresponding infinitesimal actions, and we will
show that X qT)* cand X ? ¢ are precisely the Hamiltonian vector fields of ]gg and ]}I(’ respectively. Hence,
J® and J¥ are indeed momentum maps and the actions ® and ¥ are Hamiltonian actions. So

d
1y ® _7-1 =2
7 (X7 6EN = L],

= _Lg*Rg* (X)
=-(Adg H(X),

:O(exp(—tX) ()

pr'(X7.c) =0,

(X @)=L,

11( (gexp(tX)) = X
gt 771 (86XP

and

d
priXy.g)=——| _ (Ad"(exp(tX)Ly(®)

= (Ad* X)(pr($)

Now, let a be the Liouville form, and w = da be the canonical symplectic form of T* G defined in
Letée Tg G,E,E,5€T:T*G,and =4, 2, be the values at E in T* G of the vector fields given by
the cross sections of TT*G = G x g x g* over G that have the same (constant) projections on g and g*
as 21, Z,. Then the definition of « yields

ag(E)=¢(mE) = pr(f)(n'(E))
and

(da)¢(E1,Z2) = E1(a(En)) - E2(a(E1) e ([E1, E2])
= Z,(pr@) (' (Ey) - Ex(pr@) (' (E)) — pr@(n'E,, 7'Z,))

—
(=)

= pr' (E1) (' (E2) - pr'(E2) (' (E1) - pré)([7'E, ' E,)).

Now we have to compute i(X?,;\g) da,for X e g,and atapoint € T*G. Let y € T: T*G be extended

by a field Y as we did above. Then we get
(i(X?*G)da)(Y) = (da)f(X(D*G, Y) = pr'(Y)((Adg1)(X)) + pr (&) ([(Adg-1)(X), ' Y])
and

(X2 )da)(V) = ([da)e (X2, Y) = —((Ad* X) (prE))@'Y) - (pr'Y)(X) - pr@ (X, 7' Y]) =
~(pr'(Y))(X0)
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On the other hand, for X € g, we take ]g; and ];I(' as defined in and we will compute their
derivatives in the direction of the field Y, at the point ¢ € Tg G. So we have

JRE) = ~(REOX) = =Ry L%, pr(©)(X)) = —(Adg) (pr(©)(X)

whence

d —
= _ Uk (exp(T)©))
d

dt|t:0
| (Ad" (gtexptun V) (pr@) + tpr' vN(X)
= Adg ((ad”™ (' Y) (pr(E)))(X) - (Adg) (pr'Y))(X)
= —prQ)((Adg-) X, ' Y]) = (pr'Y)(Ad- (X))

(e (Y) =

(Ad* (exp(tm. Y)(£)))

In a similar way we obtain,
Jx© =Ly OO = prX)

and

Yy (VY — \P_i
@@ =YI{==|

- dt|t:0(expt(pr Y)(pr())(X)
= (pr'(VNX)

O(J)‘?(expt?(é))

Summarizing all the above, we conclude that X ¥ ¢ are precisely the Hamiltonian vector fields of

J% and J¥, respectively, and that J® , J¥ are momentum maps as mentioned previously. Moreover,
these momentum maps are equivariant.

Therefore, by propositionwe can easily, see that ]?é and ];l(’ are symplectic realizations of g*
of the symplectic manifold T*G.

5.2 The Lie groupoid structure of T*G

In this section we, briefly, introduce the notion of a Lie groupoid and study some basic results.
Our goal is to define a symplectic groupoid structure on the cotangent bundle T*G.

Definition 5.7. A groupoid over a set M is a set X together with the following structure maps:

1. Two maps s and t from X to M, called respectively the source map and the target map.
2. A product map, which is a partial multiplication m: X5y — Z with (g, h) — gh, where
o ={gheZxZ:s(h)=1t(g}

subject to the following condition:
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(a) compatibility with s and t:
s(gh)=s(h)and t(gh) =t(g) ,Y(g, h) €Z

(b) associativity:
(gh)j=ghj)
forall g, i, j € Z such that s(g) = t(h) and s(h) = £(j).

3. Amap1l: M — X, m— 1,, called the object inclusion such that:
Mmlsim)y =m=1mm
In particular, s(1,,) = ¢t(1,,) = m is the identity map on M.
4. An inversion i(g) of an element g € X is denoted by g~

Remark 5.8. M is also denoted by X and is called the set of objects, or base points and is often identi-
fied with the set 1), of identity elements of 2. X is also denoted by Z(;y. An element of ~ may be called
an arrow. We often indicate a groupoid and its base by £ = M.

Definition 5.9. A Lie groupoid £ = M, is a groupoid Z on base M together with smooth structures on
G and M such that the maps s, : £ — M are surjective submersions, the inclusion map 1: M — X is
smooth, and the partial multiplication Xy — X is smooth.

Remark 5.10. The fact that s, ¢ are surjective submersions implies that X, is a closed embedded sub-
manifold. Whence, it makes sense for the partial multiplication to be smooth. (see MacKenzie [43])

The following examples are basic.
Examples 5.11.  a) A groupis a groupoid over a point.

b) Let M be an arbitrary manifold, and we will show that the cartesian square X = M x M is a Lie
groupoid on M. So we define the structure maps in the following way:

1. source map, s: X — M with s(x, y) = x and target map, ¢: Z — M with #(x, y) = y.
2. product map m: X — Z with

o) ={x,y,2,h) € M*:s(z,h) = t(x, )}
={(x,y,2,h) e M*: z=y}

so, we get
m((x, )y, ) = (x,y)-(y, h) = (x, h)

3. inclusion map 1: M — X with 1, = (x, x), and
4. inversion map i : X — X with
i(x,3)=0xy"=x

The Lie groupoid o = M x M is called the pair groupoid on M.
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c) We consider 0 : G x M — M the left action of a group G on a manifold M, and we denote the
product manifold G x M by X = G x M. This the action groupoid defined as follows:

s(gx)=x
t(x,y)=06(g,x)
1y=(ex)
(g0 '=(g",6(g %)
where g € G, x € M and e € G is the neutral element of G. Moreover, the multiplication
(82,):(81,x) = (g281,%)

is defined if and only if y = g1 x. In the literature, the Lie groupoid X = G x M is also called the
transformation groupoid (see Dufour [27]).

Proposition 5.12. Let G be a Lie group with Lie algebra g. Then T*G has a natural structure of a Lie

groupoid with base g*, sourcemap s = J* and target map t = —J°®.

Proof. We consider the multiplication of the group G
m:GxG—G

and, we take the differential
Tm: T(GxG)=TGxTG—-TG

Now, we suppose that X € Ty, G and Y € Tg, G for g1, g2 € G. Applying the Leibniz rule in the usual way
to the map
Tiggnm: Tg,Gx Tg,G — Tg,6,G

we define an operation on the tangent bundle TG
¢:Tg GxTg,G— Tg G

given by
XeoY =Rg:(X)+Lg «(Y)

Therefore, the formula
(§1062)(XeY)=¢1(X)+E2(Y)

yields a well defined operation between ¢; € Ty G and ¢ € Tg, G with the result in Tg, g, G if and only if
the above formula vanishes on kere = {(X,Y) : (Rg,)«(X) = —(Lg,)« (Y)}.

Equivalently, (X,Y) € kere means that X = —(Rg1)«(Lg))« (Y). Thus we get
Lg Rg,&1=2¢>.
Since left and right translations commute, we obtain the following result

T &) =-J%(E).
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In other words, the operation « is the product map. So e satisfies the second axiom of definition[5.7] It
is easy to verify the rest axioms, if we take into account the formula

1
S1e62= 5(3;51 +Lg &)

with inverse map defined by
&M=Ly Ry €.

These formulas, also, define differentiable operators. Moreover, J¥ and J® are submersions.
Thus, we conclude that the cotangent bundle T*G is equipped naturally with a Lie groupoid struc-
ture. O

At this point, let us recall some classical results of symplectic geometry presented in section
Solet N be a k-dimensional submanifold of an n-dimensional manifold M, then we have the following:

For every submanifold N of a differential manifold M, the conormal bundle v* N is a Lagrangian
sumbanifold of (T* M, da). (see[2.24), where the conormal bundle of N is

VIN={(x,)e T*"M:x€e N,{ €V N}

Proposition 5.13. The graph of the multiplication Té) G — TG is a Lagrangian submanifold of T* G x
T*G x T*G, endowed with the symplectic structure da x da x (—da), where « is the Liouville form.

Proof. The multiplication space Gs = {(g1, g2, 8182) : &1, & € G} is a submanifold of G x G x G. Then, us-
ing proposition[2.24} we have that the conormal bundle v* G3 given by {({1,¢2, —¢1 » {2)}, is Lagrangian
inT*(GxGxG)=T*Gx T*Gx T*G, where T*G has the canonical symplectic structure w = da.

We observe that the graph of the multiplication mapping Té) G — T*G differs from v* G only by
the sign of the last factor. Thus, multiplying the last component by —1 we get a Lagrangian submanifold
of T*Gx T*G x T*G,da x da x (—da). This completes the proof. O
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6 Global Symplectic Realization and Integrability (discussion)

In sectionsp.1]and[5.2]we proved explicitly that given a Lie group G with Lie algebra g and the Lie-
Poisson structure on g*, we can find global symplectic realization by the cotangent bundle T* G, which
has the algebraic structure of a Lie groupoid. But what happens for an arbitrary Poisson manifold
(B I1)? Is there a global symplectic realization in this case?

There are two ways to approach the global symplectic realization problem.

6.1 Glueing

As we saw in section[4.2]local symplectic realizations always exist. One might try to glue them to
a global symplectic realization. This was performed first by Karasev in [34].

Another approach was given by Crainic and Marcut in [22]. This approach uses the formulation
of Poisson geometry using the language of Lie algebroids, namely the Lie algebroid T* P. Very roughly,
using the contravariant geometry of T* P together with an averaging process, these authors showed
that there exists a neighborhood of the zero section of T* P which has a certain symplectic structure
so that the restriction of the projection map 7 : T*P — P is a Poisson map. This symplectic structure
coincides locally with the one constructed by Weinstein.

6.2 Integrating

The case of the Lie-Poisson structure leads to the following notion which was introduced in-
dependently by Karasev [34], Weinstein [65], Coste,Dazord and Weinstein [21], and by Zakrzewski
[67],168].

Definition 6.1. Let P be a smooth manifold. A symplectic groupoid over P is a Lie groupoid £ = P,
equipped with a symplectic form w on X, such that the graph of the multiplication map is a Lagrangian
submanifold of X x X x (—X), where —Z means the manifold Z with the opposite symplectic form —w.

Note that, given a Lie groupoid G = M, there is a Lie functor which associates to G a Lie algebroid
AG — M. Roughly, if s, t are the source and target maps of G respectively, the vector bundle AG is
ker ds|ys and the anchor map is the restriction dt|sc : AG — T M. The full details of this construction
can be found in [43], [27] and [47].

For a symplectic groupoid ~ = P in particular, we find in [43} Prop. 11.5.3] the following proper-
ties:

a) The manifold P has a canonical Poisson structure II.
b) The source map s:Z — P is a Poisson map and the target map ¢: X — P is anti-Poisson.

c) The source map induces an isomorphism of Lie algebroids between AX and the Lie algebroid
structure of T* P induced by the Poisson structure II.
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On the other hand, in [43] we find the following result:

Proposition 6.2. Let (PI1) be a Poisson manifold and consider the associated Lie algebroid structure on
T* P. If there exists a Lie groupoid X = P such that T* P = AX then the canonical symplectic structure of
T* P gives rise to a symplectic structure on the manifold ¥ which makes Z = P a symplectic groupoid.

The above results cast the problem of existence of global realizations to the problem of intgrabil-
ity for Lie algebroids. Namely, given a Lie algebroid A — M, is there a Lie groupoid G = M such that
AG = A? In other words, does Sophus Lie’s third theorem (Lie III) apply for Lie algebroids?

To discuss this, first recall that Lie’s third theorem produces a connected and simply connected
Lie group. Given a Lie groupoid G = M, the fibers of AG are nothing else than tangent spaces at
identity elements of the s-fibers of G. Whence, the correct formulation of Lie III in the context of Lie
algebroids is that the integrating groupoid G should have connected and simply connected s-fibers.

As it happens, Lie’s third theorem does not hold in the context of Lie algebroids. The specific inte-
grability obstructions were given by Crainic and Fernandes in [23], following the work of Cattaneo and
Felder [16]. Note that the ideas involved can be traced back to the proof of Lie III given by Duistermaat
and Kolk in [28].

Due to the lack of time we do not discuss these obstructions here. However, it is worth men-
tioning that, the integrability of a Poisson manifold (P I1) is really controlled by the topology of its
associated symplectic foliation.

63



A Foliations

The study of foliations has a long history in mathematics, even though it did not emerge as a
distinct field, until the 1940’s, when the concept of a foliation first appeared explicitly in the work of
Ehresmann and Reeb. They were motivated by the question of existence of completely integrable vec-
tor fields on three dimensional manifolds. Since that time the subject has enjoyed a rapid development
and the theory of foliations has now become a rich and exiting geometric subject by itself as illustrated
by the famous results of Reeb (1952) [53], Haefliger (1956) [30], Novikov (1964) [50], Thurston (1974)
[60], Molino (1988) [48], Connes (1994) [20] and many others. At the moment it is the focus of a great
deal of research activity.

The purpose of this chapter is to provide an introduction to the subject and present the field as it
is currently evolving.

A.1 Partitions to leaves and foliations

Definition A.1. Let .# be a finite-dimensional manifold and & be a decomposition of .4 into im-
mersed submanifolds, called leaves. Then & is called a smooth partition to leaves (possibly of different
dimension, hence the singularities).

Remark A.2. In the definition above[A.Ijwe consider smooth foliations. By smooth we mean that for
every x € ./ and every u € Ty L,, then there is a vector field X € .# such that it satisfies the following:

a) u=X(x),and

b) X(y)e TyLy,Vye X.

Such partition to leaves occur naturally in various geometric contexts.

Examples A.3. a) Letasubmersion f:.# — ./, from a manifold .# of dimension z to a manifold
A of dimension d. Any submersion defines a partition to leaves & (f) of .4 whose leaves are
the connected components of the fibers of .A".

The Submersion Theorem asserts that for each p € .#, there is a coordinate neighborhood
,y",...y™) of p in .4 and a coordinate neighborhood (7, x',..., x%) of f(p) in ¥, relative to
which the formula for f|, becomes:

FOL ey =0y,
It follows via the surjective form of the implicit function theorem that the level sets:
[l =tpedfp)=x

are properly embedded submanifolds of .#, of dimension k = n —d, for every p € .4, since
dfy: Tyt — Tr) N is surjective at every point of .#. Locally these submanifolds fit together
exactly like parallel copies of R¥ in R”. An atlas representing % (f) is also constructed by the
implicit function theorem and is called atlas of submersions.
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b)

The leaves of the partition & (f) are the level sets of f (the fibers of A).

If 4 is connected and each of these level sets is compact then f : .4 — A& is actually a fiber
bundle.

A fiber bundle is always a submersion, but the inverse is not true. Indeed, consider

f:R?—R
fy) =*-1)eY

Here,

fx(x,y) =2xeY
fyxy) =(x*-1e”

so f is a submersion because the derivative fy vanishes when x = 0, while f, only vanishes along
the lines x = +1. As mention above, the level sets of f give a partition to leaves % on R2. In this
case, the leaves are of the form: f~!(p) = {(x,y) € R?|f(x,y) = p}. For p = 0 the leaves are the
vertical lines x = +1, for p < 0 the leaves are asymptotic curves between the lines x = +1 and
for p > 0 each leave falls into two components, one lying in the region x < —1 and asymptotic to
x = —1 and one lying in the region x > 1 and asymptotic to x = 1.

The leaf space R?/.% formed by collapsing each leaf to a point equipped with the quotient topol-
ogy, is locally Euclidean of dimension 1, but is not Hausdorff, so it cannot be base manifold of a
bundle.

Let X € X() a nonsingular complete vector field for a manifold .#, then the local flow lines
defined by X patched together define a partition to leaves of dimension 1.

The fact that X is nonsingular allows us to utilize the Flow Box Theorem for an arbitrary point
x € ./ to find a coordinate neighborhood (@, x,...,x™) about x such that —e < x! < ¢,1 < i < n,
0

and — = X|U.

ox!
Geometrically, the flowlines (integral curves) are the level sets xi=cl,2<i<nwhereall Icil <E.
In order to better understand these class of examples, consider the partition to leaves of the torus
g2
Given X = 0, +60, a vector field on R2. The partition to leaves &' on R? has as leaves the parallel
lines of slope 0, which are of the form: L' = {(xo + t,y0 + 01)}ser . This partition to leaves is
invariant under translations and passes to a partition & on the torus 92 = R?/Z2.

Now, we consider two different cases for the slope to be rational and irrational.

When the slope is rational, the corresponding leaves of & are closed curves homeomorphic to
the circle. Indeed, for fixed f € R, the points of L' corresponding to values of ¢ € fy + Z all project
to the same point of I72. Since L is arbitrary, & is a partition to leaves 2 by circles.

In the irrational case, the partition to leaves % on the torus 92 is totally different. The leaves
of & are noncompact, homeomorphic to the real line R and are everywhere dense in 92 (Kro-
necker’s Theorem).
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If we restrict the plane R? to a unitary 2-cube (square), we visualize the example by observing
a starting point which is moved by the flow in the direction 0 at constant speed and when it
reaches the border of the unitary square it jumps to the opposite face of the square.

c) Let GbeaLie group and H — G a connected Lie subgroup then the partition to leaves ./ of G is
defined by the collection {g H}¢c i of the left cosets of H(set of leaves).

If H is closed subgroup, then G/H is a manifold and the fiber bundle = : G — G/ H defines the
leaves of the partition to leaves # as illustrated in example 2.2.a. If not, we choose instead of H
the closure H which is also a Lie subgroup so the leaves of the partition to leaves in these case,
are the fibers of the bundle 7 : G — G/ H.

The linear partitions to leaves of torus 92 are special cases of this, where 2 = R?/Z2.

d) Let G be a Lie group acting differentiably on a manifold .#. For every point m € M the orbit is
defined by 0,,, = Gm = {g * m : g € G} and the isotropy subgroup by H,, = Stab(m) = {g€ G :
g * m=m}. Then H is a Lie subgroup in G, and g — g * m is an injective immersion G/ H — .#
whose image coincides with the orbit G,,,. Whence, the orbits of G form a partition to leaves of
M as illustrated in the previous example.

To make these class of examples more meaningful, we consider the Lie group action of the Spe-
cial Orthogonal Group SO(3) on the Sphere S2 = R3. In this case the orbits of the action are the
parallels of the sphere and the poles.

Remark A.4. We observe that in the last two examples the dimension of the leaves is not the same
everywhere. For instance, the parallels of the sphere, in the last example, are of dimension 1, while the
poles are of dimension zero 0, hence the singularities we will present and study later on.

A.2 Regular Foliations

Before setting out the theory of foliations in the singular case, the regular case is required. So we
assume these leaves to be of the same dimension and fit together nicely. We follow closely [9], [17], [37]
and [47].

A.2.1 Foliation atlas

A way to define a regular foliation is to give only the foliation atlas. Let .4 be a smooth manifold
of dimension 7. A foliation atlas of codimension g (0 < g < n) isan atlas (¢; : U; — R =R"" 9 xRY);¢;
of .4 . R" 9 coordinate is the longitudinal direction and the R” coordinate is the transversal direction.
The change of charts diffeomorphisms ¢; ; are locally of the form:

@ij(l,0)=(gij(L, 1), hij(1)
with respect to the decomposition R” = R”~9 x RY. This means that the change of charts diffeomor-

phisms depends only on the transversal direction in the second variable. The charts of a foliation atlas
are called foliation charts.
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Thus each U; is divided into plaques, which are the connected components of the submanifolds
@7 R" T x {1}), r € R7 (Indeed, for id_ 4 : 7 (R x {t}) — M).

The plaques globally amalgamate into leaves. These leaves are immersed submanifolds of di-
mension 1 — .

A foliation of dimension n — g of .4 is a maximal foliation atlas of .# of dimension n — q. Each
foliation atlas determines a foliation, since it is included in a unique maximal foliation atlas. Two
foliation atlases define the same foliation of .4 precisely if they induce the same partition of .4 into
leaves. A (smooth) foliated manifold is a pair (.#,%), where .# is a smooth manifold and & a foliation
of 4.

Finally, we can obtain the space of leaves by defining an equivalence relation on .#. Let x -~ y iff
X,y € M if they lie on the same leaf &. Then the space of leaves .# /% is the quotient space of 4.

A.2.2 Distributions and Frobenius Theorem

In the previous section, we defined foliations given by a suitable foliation atlas on manifold .#
and we saw that, in general, a foliation on .# is a decomposition of .# into leaves which are locally
given by the fibers of a submersion. In this section, we present an equivalent way of defining a foliation
by an integrable subbundle of the tangent bundle of .#. The equivalence of all these descriptions is a
consequence of the Frobenius integrability theorem (see [11] and [39] for any proofs omitted).

Definition A.5. Let .4 be a smooth manifold, and suppose for each p € .# we are given a linear sub-
space A, < Ty,.#, whose dimension is k(p). Then A = UpeuDp ST M is a smooth distribution if the
following condition is satisfied:

"Each point p € .4 has a neighborhood U on which there are smooth vector fields
Y1,y Yip) : U = T such that Y1y, ..., Yi(p)lp form a basis for A, for every pe U."

Remark A.6. a) The function
M—7

defined by
p— k(p)

is assumed to be lower semi-continuous.
b) In case k(p) is constant, the distribution is called regular.

Definition A.7. A vector subbundle of the tangent bundle T M is a bundle Fwith a vector bundle mor-
phism i : F — T M, which is everywhere injective.

Remark A.8. The dimension of each fiber of the subbundle A is called dimension of the distribution.
In case where the dimension is constant everywhere, then we call the distribution regular, otherwise
singular. So in what follows we work on the regular case, unless otherwise specified.

Proposition A.9. A regular distribution A is a vector subbundle of T M.
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Proof. Asubbundle may be defined, equivalently, as follows: Given a smooth vectorbundle n: E — .4,
a (smooth) subbundle of E is a subset A € E with the following properties:

a) Aisan embedded submanifold of E.
b) Foreach p € 4, the fiber A, = AN n~1(p) is a linear subspace of Ep = x(p).

c¢) With the vector space structure on each A, inherited from E), and the projection 7[5 : A — 4, A
is a smooth vector bundle over ..

In this view, if A is a distribution, then by definition[A.5} obviously satisfies[b] Thus, it remains to
show that A satisfies the other two conditions, in order to be a subbundle.

To prove that A is an embedded submanifold, it suffices to show that each point p € 4 has a
neighborhood U such that ANz~ (U) is an embedded submanifold of 7~} (U) € T.#. Given p € .4 ,
let

Yl, veey Yk(p)

be vector fields defined on a neighborhood of p and satisfying the hypothesis of definition[A.5] The
independent vectors
Yllp, ooy Yk(p)lp

can be extended to a basis
Yllp; ey Ynlp

for T),.#, and then
Yicr1lps oo Yip)ln

can be extended to vector fields in a neighborhood of p. By continuity, they will still be independent
in some neighborhood U of p. Hence, they form a local frame for T.4 over U. This yields a local
trivialization

' (U): U —R"

defined by .
V'Yilp— (0, ™)

In terms of this trivialization, A N 7~ (U) corresponds to
U xR ={(p, )}, ..,¥%,0,..,0) c U x R"
which is obviously a regular submanifold. Moreover, the map
Dlpmpiy : ANTHU) — U xR
is obviously a local trivialization of A, showing that A is itself a vector bundle. O

Definition A.10. Suppose that A ¢ T./ is a distribution. An immersed submanifold A" < ./ is called
an integral manifold of A if T,/ = A, at each point p € 4.
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Before we present the general theory, let us describe an example of distributions and integral
manifolds.

Example A.11. If 0 # V : 4 — T.# is any nowhere-vanishing vector field on a manifold .#. Then for
each p € ./ take
Ap=span<V,>

so V spans a 1-dimensional distribution on .#. Now, consider an integral curve y : ] — .4 and take
A < . a submanifold of ./, where A" = Imy then T,/ = Aj,. So the image of any integral curve of
V is an integral manifold of A.

Definition A.12. We call a distribution A < T .4 involutive if there exists a local basis Xj,...,X,, in a
neighborhood of each point such that:

n
[Xi, Xj1= ) cf Xk
k=1

1<i,j<n.(The cfj will not in general be constants, but will be C* functions on the neighborhood.)

Remark A.13. In other words, we say that a tangent distribution A is involutive if given any pair of
local sections of A (i.e., vector fields X, Y defined on an open subset of .4, such that X, Y), € A, for
each p), their Lie bracket is also a section of A.

Example A.14. An important example of an involutive distribution is furnished by the Lie algebra k) of
asubgroup H of a Lie group G. Here } consists of left-invariant vector fields on G which are tangent to
H at the identity. We know that this determines a subalgebra, the image of the Lie algebra of H under
the inclusion map. These give a (left-invariant) distribution A on G such that A; = T,4(H) for every
g € H. The cosets g H are the integral manifolds of this distribution, which is evidently involutive since
h is a subalgebra of g.

Definition A.15. A distribution A < T ./ is integrable, if through each point of ./, there exists an inte-
gral manifold of A.

Proposition A.16. Every integrable distribution is involutive.

Proof. Suppose X and Y are local sections of A defined on some open subset U < M. Let p be any point
in U, and let N be an integral manifold of A passing through p. The fact that X and Y are sections of
A means that X and Y are tangent to N. This implies that [X, Y] is also tangent to N, and therefore
[X,Y]p €Ay O

Theorem A.17. (Local Frobenius Theorem) Every involutive distribution is integrable.

Remark A.18. The local form of Frobenius Theorem says that a neighborhood of every point on a
manifold is filled up with integral manifolds, fitting together nicely like parallel subspaces of R”.

The main fact about foliations is that they are in one-to-one correspondence with involutive dis-
tributions. One direction, expressed in the next lemma, is an easy consequence of the definitions.
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LemmaA.19. Let % be a foliation of a smooth manifold .4 . Then the collection of tangent spaces to the
leaves of & forms an involutive distribution on 4 .

Proof. The tangent spaces to the leaves clearly give a distribution on .4, because for each point we
have identified a subspace of the tangent space at that point.

We must verify that this distribution is involutive. Integrability implies involutivity, so we can see
through the leaves that the distribution is integrable, because T, L, = A, for every p € /4. O

Theorem A.20. Global Frobenius Theorem) Let A be an involutive distribution on a manifold 4. Then
there is a partition of immersed submanifolds L, on #, such that TxyL, = A foreveryx € 4.

A.3 Singular Foliations
A.3.1 Stefan-Sussmann Theorem

In the regular case, the classical Frobenius Theorem yields a necessary and sufficient condition
of integrability. However, the following example due to Sussmann [57] shows that this theorem may
not hold in the singular case.

Example A.21. Let 4 = R? and the function o(x) = {O = <)0 . Consider, now, the vector fields X = %,

e @ x>0

Y =¢(x) @ and take the CSO(RZ)-module
F = SpﬂnC?O(RZ) <X Y>

Here we have [X,Y] =0 for x <0 and

0 0
Oyax

Oln(p

[X,Y]= —</>( )— — 0= ( G )) —e 2 iy C g Ling L =22 )
' ox x 0y ox ' dy

for x > 0. So the Frobenius involutivity condition holds, but the integrability condition is obviously

violated for translations parallel to the x-axis and which cross the y-axis. Thus, there are no leaves

through the points of the y-axis.

Sussmann and Stefan have found another condition which ensures complete integrability in all
cases.

Definition A.22. A distribution A is called invariant with respect to a family of smooth vector fields C
if it is invariant with respect to every element of C: if X € C and (/)5( denotes the local flow of X, then
we have (%) Ay = Ayt (x) Wherever ¢ % (x) is well defined.

The following result, due to Stefan and Sussmann (see [56] and [57]) gives an answer to the follow-
ing question: what are the conditions for a smooth singular distribution to be the tangent distribution
of a singular foliation?

Theorem A.23. (Stefan - Sussmann) Let A be a distribution on a smooth manifold .4 . Then the follow-
ing three conditions are equivalent:

70



a) A isintegrable,
b) A is generated by a family C of smooth vector fields and is invariant with respect to C,

c) A is the tangent distribution A of a smooth singular foliation .

Remark A.24. Itis clear that if a singular distribution is integrable, then it is involutive. Conversely, for
regular distributions we have the Frobenius Theorem as presented in section 2.1, but what happens in
the singular case?

Definition A.25. A smooth distribution A on a manifold .4 is called locally finitely generated if for
any x € ./ there is a finite number of smooth vector fields Xj, ..., X;; in a neighborhood U of x, which
are tangent to A, such that any smooth vector field Y in U which is tangent to A can be written as:
Y=Y", fiX;with f; € C*®(U).

Theorem A.26. (Hermann,1963) Any locally finitely generated smooth involutive distribution on a
smooth manifold is integrable.

A.3.2 Modules and Serre-Swan Theorem

In the previous sections we analysed the term foliation on a manifold .# in either of the following
ways:

a) A partition of .# to disjoint submanifolds (leaves), possibly of different dimension (hence the
singularities), or

b) A distribution & on the tangent bundle T.# which is locally finitely generated by (globally de-
fined) vector fields and involutive (satisfying the conditions given by Stefan and Sussmann).

If a foliation is regular, then the two notions coincide (Frobenius Theorem), namely the leaves
determine the vector fields which define the distribution. Another way to see this is that in this case &%
is a (constant rank) vector subbundle of T.#, so locally its module of sections does not depend on the
choice of vector fields which generate it.

In the singular case though, this is no longer true. One can get the same leaves from different
choices of vector fields as we can see from the examples below.

Examples A.27.  a) Consider the real line and the partition of R into three leaves L; = R*, L, = {0}
and L3 = R}. These may be considered integral submanifolds to any of the submodules &%, =<
x”% > of X () for a positive integer n. Although, %, lies inside &, the converse does not
hold. In this example we have a preferred choice of module, say %}, but in several other cases

no such choice is possible.

b) Suppose that R is foliated by the leaves R, and {x} for any x < 0. Then we can take & =< f % >
where the function f = 0 vanishes for every non-positive real. Observe that we cannot consider
the module of all vector fields which vanish on R_, as it is not locally finitely generated.
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So in the singular case one needs to determine a priori the module of vector fields which gives
the distribution. We therefore need to postulate the following definition given by I.Androulidakis and
G.Skandalis:(see [4])

Definition A.28. Let .4 be a smooth manifold. A (Stefan-Sussmann) foliation on .# is alocally finitely
generated submodule of the C*°(.#)-module of compactly supported vector fields X (.#), stable un-
der Lie brackets.

Remark A.29. It was shown by Stefan and Sussmann that such a module induces a partition of .4 to
(immersed) submanifolds, called leaves. The leaf at x € .4 of a singular foliation % is the set of points
in .4 which can be connected to x following integral curves of vector fields in &.

Now, we consider a manifold .#, & a foliation on .4 and x € 4. We take I, = {f € C*(4) :
f(x) =0} and the space % (x) = {X € & : X, = 0}, which is a Lie subalgebra of &. Then I,.% < % (x).

Moreover, we notice that the evaluation map ey : & — T4 vanishes on I,%. Thus, we obtain a
surjective homomorphism ey, : %, — F,, where F; is the tangent space of the leaf L, i.e. F, = TyL and
it is, obviously, the image of the evaluation map. They are both finite-dimensional linear spaces.

We denote the kernel of the evaluation map by g, and we get that g, = % (x)/[,%. We have the
short exact sequence
0—gx—Fy—F—0

Proposition A.30. Let L be a leaf of . Then for any x € L, gy vanishes if and only if L is a regular leaf.

Proof. If L is a regular leaf, then nearby the point x we can find generators of % which are linearly
independent at x, implying that & (x) = I,%. If L is a singular leaf, pick a neighborhood W in .#
of some x € L, and pick a set of generators Xj,.., X;; of & defined on W. We may assume that this
is a minimal set of generators, i.e. we may assume that none of the X; can be written as a C®(W)
linear combination of the others. Further, as {X;(x)} spans TxL and W contains leaves of dimension
> dim(L), we may assume that Xj (x) is a linear combination of the remaining X;(x), in other words
X; € ¥ (x). However X] ¢ I,.F because if we could write X; = Z;’:I fiX; with fi € I, then we would have
Xi =Yz fi!/ (1 - f1)X;, which contradicts the minimality assumption. O

Theorem A.31. (Serre-Swan) The category of vector bundles over a compact Haussdorf space X is equiv-
alent to the category of finitely generated projective modules over the algebra of continuous functions on
X.

Remark A.32. Consider a vector bundle i : E — .4 and take the set of sectionsI'E ={0: 4 — E,mo0 =
id}i.e. for E = T/ we have I'E = X(.#), then one can easily see that I'E is C*° (.4 )-module.

On the other hand, we have the Serre-Swan theorem, which relates the category of vector bundles
over a compact smooth manifold .# to the category of finite rank projective modules, over the algebra
of smooth functions C*°(M) of /. It relates geometric and algebraic notions and is, in particular, the
starting point for the definition of vector bundles in non-commutative geometry.

Therefore if the submodule of the definition is projective we have the regular case (where
F, = Fy, since TE/I,T'E = E, = 171 (x)), otherwise we have the singular case.
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Theorem A.33. (Stefan - Sussmann) Let & be a C*°(M) - submodule of compactly supported vector
fields X () (not necessarily projective) which is locally finitely generated and involutive (¥, %] < &).
Then there is a decomposition of M into immersed submanifolds (the leaves of the foliation & ).

Example A.34. Take ¢ : R — R, ¢ € C*°(R) such that ¢ ( = 0 and nonzero elsewhere. Consider

11
~203)
0
now, the vector field X = ¢(x) Fp and for & = (X) we will prove that this is a singular foliation of the
space R.

Observe that & is obviously, locally finitely generated submodule of compactly supported vector
fields X, (R).

Moreover, the involutivity condition is satisfied. Indeed, for ¢, € &, we have that { = fX and
1 = gX, where f, g are C*°(R)- functions. Then, we calculate their Lie bracket

[E,nl=1[fX.gX]

= fIX.gX1+ X(flgX

=—flgX, X1+ X(f)gX
—fglX, X1 - FX(@X+X(f)gX
0+ (—fX(@+X(e)XeF

Now, in order to complete our proof, we will show that the Serre-Swan theorem does not
hold in this case. In this way, we show that % is, in fact, a singular foliation. So we need to examine the
following cases:

x=1: Let us consider the function
FILZ —R

which maps [¢] to £(1). In this case, we can easily verify that

FILF =R

For the one-to-one correspondence (1-1), it suffices to show that

ker(F /L% — R) = {0}

0
Taking an arbitrary ¢ € &, we have that { = gX, where X = ¢(x) Ep and g € C*®(F/11%). Hence,
X

0
&= g(/)a. Now we take [{] € ker (¥ /L& — R), then

0=¢(1) = (1)<l7(1)i
B -§ oxh
and we obtain that g(1) = 0, because for x = 1, we know that ¢(1) # 0. Therefore, we get that

gel,and ¢ =gXe 1 %. Consequently, ker (¥ /1% — R) = {0}, since [¢] = 0. The surjectivity of
F 1L F — Ris obvious.
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x=0: On the other hand, we consider
Fl1hF — Oz 1,7

where [{] — £(0). The function as defined is surjective. Indeed, for every ¢ € &, we have £(0) = 0,

0
since{e F =>¢= g(/)a—. We calculate
X

¢(0) =g(0) (0)i =0

because ¢(0) =0, for every x € (-3, 3).

It remains to show the one-to-one correspondence. In a similar way as previously, we will show
that the kernel is trivial, i.e.
ker(F11pF — {0tz /1,7) = {0}

Taking an arbitrary ¢ € &, we will show that this belongs in Ip%. This is true, because we have

0
 1£g(0) #0, then [¢] = g(0) ¢~ = g(0)[X] = gO)evo(X) = 0.

A.4 Foliations arising from Lie algebroids

In this section we will show that every Lie algebroid has an associated foliation, which in general
will be a foliation with singularities.

Firstly, let us introduce the concept of a Lie algebroid and study some basic consequences com-
ing up.

Definition A.35. Let M be a smooth manifold. A Lie algebroid over M is a vector bundle A — M
equipped with a smooth vector bundle map p : A — T M, called the anchor of A, and a Lie bracket
[.,.] on the space I'(A) of smooth sections of A

I'(A) xI'(A) =T (A
X, Y)—[X,Y]

such that, we have the following Leibniz-type formula:
(X, fY]=fIX, Y]+ (pX(f)Y
for allX, Y smooth sections of A and f € C*°(M).

Remark A.36. We will denote a Lie algebroid by (A4, [.,.], p), or only by the letter A.

Next lemma describes a fundamental property of Lie algebroids, and is often considered as a part
of the definition[A.35] However, we will see that it is a consequence of the other conditions.
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LemmaA.37. Let (A,l.,.],p) be a Lie algebroid, then the anchor map is a Lie algebra homomorphism
plo,nl =lpo,pn]

forallo,neT(A).

Proof. By the Jacobi identity and the Leibniz rule, we have

0=[[o,n], fO1+In, fO1,0] +[[f0O,0],1]
= fllo,nl,0] + (plo,nl(f)O + flIn,0],0]
—(po (NI, 0]+ (on(MI6, 0] - (pa(pn()NO + f116,0],7]
—(pen(NI1O,01— (pa (6,0l + (pn(pa(f)))0
= ((plo,nl —[po, pnD (f)O.

Since 0,71 € I'(A) and function f are arbitrary, we conclude that

plo,nl =[po, pnl.

The anchor map p: A— TM induces a morphism of C*°(M)-modules,
p:T'(A)—XM)

(we abuse the notation and denote this map p as well). Now we put

F =spancep (Imp).

In other words, elements of & are C°°(M)-linear combinations
n
Y fiploy)
i=1
where f; € C*(M), o; € T'(A). In addition, & satisfies the following properties:

a) & islocally finitely generated C*°(M)-submodule of X (M), because I'(A) is so.

b) & is involutive because for o,n € I'(A) we have the following fundamental property plo,n] =
oo, pnl.

This means that the set & is completely integrable in the sense of Stefan-Sussmann. Thus every Lie
algebroid corresponds to a singular foliation.

Remark A.38. The singular foliation of a Lie algebroid (A4, [.,.], p) is also called the characteristic folia-
tion of A.
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Example A.39. Consider A= T*.#4 and p = { for (.#,I1) a Poisson manifold (see. Note that in this
case
F =spanceu){Xr:f€ C*® ().

We showed how foliations arise naturally from Lie algebroids. Now we consider the singular
foliation & and take a leaf L. For a point x € L, we will denote by A, the fiber over x, and by kerp, the
kernel of the anchor map

Px:Ax— TxM

The kernel ker p, has a natural Lie algebra structure, defined as follows. For any ay, b, € kerpy, denote
by a, b arbitrary sections of A whose value at x is a, and b, respectively, and put

lax, bx] = [a, bl (x).
Hence g, = kerpy is a Lie algebra, called the isotropy algebra of A at x. We have that
0— gy — Ay 25 TLM —0

We rewrite g, = % (x)/ 1%, where the space & (x) = {X € & : X, =0} is a Lie subalgebra of & as illus-
trated in section[A.3.2]
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