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ABSTRACT 

The airline crew pairing is a problem of great economical importance to the airline 

companies. In this thesis the most common meta-heuristics that are used to solve the 

problem are presented. Moreover, different genetic algorithms were implemented in order 

to solve the problem. The implementations were tested on the data sets of Beasley and 

Chu [5,11]. 
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ΠΕΡΙΛΗΨΗ 

Η δηµιουργία ανώνυµων συνδυασµών πτήσεων είναι ένα πρόβληµα µεγάλης οικονοµικής 
σηµασίας για τις αεροπορικές εταιρείες. Σε αυτή την εργασία, παρουσιάζονται οι πιο 
διαδεδοµένοι µετα-ευρετικοί αλγορίθµοι που έχουν χρησιµοποιηθεί για να λύσουν το 
πρόβληµα αυτό. Επίσης, υλοποιήθηκαν διαφορετικοί γενετικοί αλγόριθµοι µε σκοπό να 
λύσουν το πρόβληµα. Οι υλοποιήσεις αυτές εξετάστηκαν πάνω στα δεδοµένα ελέγχου των 
Beasley και Chu [5,11].  

 

 

Θεµατική Ενότητα: Τεχνητή Νοηµοσύνη 

Λέξεις Κλειδιά: Το πρόβληµα της δηµιουργίας ανώνυµων συνδυασµών πτήσεων 
αεροπορικών εταιρειών, Γενετικοί Αλγόριθµοι, Μετα-ευρετικοί αλγόριθµοι. 
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1. Introduction 

 The airline crew pairing problem has been extensively studied due to its major 
economic significance. Given a set of flights, the airline companies must optimally assign 
their crew members to a number of flights, without leaving any of them uncovered. In other 
words, the pairings, that cover all the flights and minimize the cost, must be found. A 
pairing is a combination of flights. 

 The two most common representations of the airline crew pairing problem are the 
Set Partitioning Problem (SPP): 

      

     Minimize   ∑ ��
	
��

�
���  

     Subject to ∑ 	
�
	
��

�
��� = 1,    = �1,… ,�� 

            ��	 ∈ �0, 1�,         � = �1,… , �� 

 

and the Set Covering Problem (SCP): 

      

     Minimize   ∑ ��
	
��

�
���  

     Subject to ∑ 	
�
	
��

�
��� ≥ 1,    = �1,… ,�� 

            ��	 ∈ �0, 1�,         � = �1,… , �� 

 

where ��
	
 is the cost of pairing � and 	
�	 ∈ �0, 1�. If 	
�	 = 1 then the flight  is covered by the 

pairing �. The columns represent the pairings, whereas the rows represent the flights. The 
difference between the two formulations lies in the constraints. If the airline crew pairing 
problem is formulated as an SPP, all flights must be covered by exactly one pairing, 
whereas in the case of the SCP, all flights must be covered by at least one pairing. 

 Since both the SPP and the SCP are NP-Compete, heuristic algorithms are used in 
order to solve them. Although heuristics do not guarantee optimal solutions, such 
algorithms are vastly used to solve problems of this nature, due to the fact that they 
manage to achieve optimal or near optimal solutions in feasible time. In this work the focus 
is set on meta-heuristics and especially on Genetic Algorithms. Meta-heuristics are 
algorithms that are nature-inspired [1]. We present the most common meta-heuristics and 
the implementation of three different genetic algorithms. 
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2. Related Work 

 In this section studies, which approached the problem using meta-heuristic 
algorithms, are presented. 

 Meta-heuristic algorithms can be divided into two categories; those that are based 
on a single solution(Single-Solution Based meta-heuristics) and those that are based on 
multiple solutions (Population based meta-heuristics). The second category is as well 
divided into two subcategories; the Evolutionary Algorithms (EA) and the Swarm 
Intelligence (SI) Algorithms. 

 On one hand, Evolutionary Algorithms (e.g. Genetic Algorithms, Evolution Strategy) 
are based on the principles of Charles Darwin. These principles suggest that living 
organisms evolve and adapt to their environment. Fig. 1 presents an overview of EAs. 

 

 

 

 

 

 

 

 

 

Figure 1: Evolutionary Algorithm 

On the other hand, Swarm Intelligence algorithms simulate the behavior of social insect 
colonies and other animal societies. Examples of such algorithms are the Ant Colony 
Optimization (ACO), the Particle Swarm Optimization (PSO) and others. For more detailed 
information regarding the meta-heuristics we refer the reader to [1]. Population-based 
meta-heuristics are chosen to solve the airline crew pairing problem, due to its nature.  

2.1 Swarm Intelligence 

2.1.1 Ant Colony Optimization 

 Lessing et al. in [13] compare several ACO algorithms on instances of the Set 
Covering Problem. These algorithms are the Min-Max Ant System (MMAS), the Ant 
Colony System (ACS), a hybrid algorithm combining MMAS and ACS (MMAS-ACS-
Hybrid) and the Approximate Nondeterministic Tree Search (ANTS).  These variations of 
the ACO algorithm differ on the construction of the solutions and the way the pheromone 
trails are updated.  A local search heuristic, which is based on the r-Flip neighborhood, is 
used. The local search heuristic creates neighbor solutions by changing the value of at 
most r variables (i.e. their Hamming-Distance is at most r). Lessing et al. experimented 
with several types (static and dynamic) of heuristic information as well. The static heuristic 
information (e.g. Column Costs) is computed once and the same value is used in every 
iteration of the algorithm, whereas the dynamic heuristic information (e.g. Lagrangean 
Cover Costs, Cover Costs, Lower Bounds) is computed in every construction step.  The 
results of the study show that when the local search heuristic is not used the best solutions 

1. Initialize the population randomly 

2. Evaluate solutions 

3. Select parents 

4. Recombine parents 

5. Mutate offspring 

6. Evaluate new solution 

7. Choose new solution that is going to enter the population 

8. Iterate steps 3-7, until the terminating condition is met 

9. Return the best solution that was found 
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are obtained by ACS. ANTS combined with the Lower Bound heuristic information has the 
best performance, when the local search heuristic is used. 

 In [2] Crawford et al. (2006) solve the airline crew pairing problem, which is 
formulated as an SPP,  in two different ways. The first one is a plain ACO (two different 
instances of ACO; AS and ACS) algorithm and the second is a hybrid algorithm which 
combines elements of Constraint Programming (CP) with the ACO algorithm. To be more 
specific CP is used at the stage of ACO, where the variables are selected (i.e. columns are 
added to the solution). Each pairing (i.e. column of the SPP) is associated with two values; 
the pheromone trail and a heuristic information. The pheromone trail on each pairing is 
related to its frequency in the ants' solutions. The heuristic operation measures the unit 
cost of covering one additional row. A column is added to the partial solution 
probabilistically. The probability depends on the pheromone trail and the heuristic 
information of each column.  In this study the Transition Rule Probability is used as the 
decision policy. Forward Checking with Backtracking is the CP algorithm that is combined 
with the ACO.  Both of these algorithms were tested on real problems of an American 
airline company and the computational results show that, the hybrid algorithm reaches 
better solutions than the plain ACO.  

 Ren et al. (2010) propose an ACO algorithm for the Set Covering Problem [12]. Like 
previous studies, each column of the problem is given a pheromone value and a heuristic 
value. Although, a new method is introduced for constructing the solutions. Instead of 
adding columns to the solution until all rows are covered, at each construction step an 
uncovered row is chosen. Then, a column that covers this row is selected, with probability 
that is based on the pheromone and heuristic values. This method is called single-row-
oriented solution construction and it generates solutions faster than the method mentioned 
in the previous studies. The dynamic heuristic information used in this study takes into 
account Lagrangian dual information associated with currently uncovered rows. After each 
iteration the pheromones are uniformly reduced and the ants deposit pheromones on the 
columns that are contained in the best global solution. Moreover, a local search heuristic is 
developed, that aims to remove redundant columns from the solution. The computational 
results show that the proposed algorithm can produce good solutions and that it can 
compete with other meta-heuristics.  

 Deng and Lin (2011) in [4] formulate the problem as a Traveling Salesman Problem 
(TSP), that uses a flight graph representation, and propose an ACO algorithm to solve it. 
The objective of ACO is to find the path with minimum cost in a graph, whose nodes and 
edges respectively represent  the flights and constraints between two consecutive flights. 
Each edge of the graph, is associated with a pheromone value and heuristic value. The 
state transition probability of the ACO is based on these values. The heuristic value is 
inversely proportional to the interval time of each flight (i.e. edge of the graph). After each 
iteration, the value of all pheromones are reduced and only the globally best ants deposit 
pheromones. This way, the best solutions have higher value of pheromone. The proposed 
algorithm is compared with a Genetic Algorithm on real cases and leads to better results 
for the majority of them. 

 Shihabi et al. (2015) present in [14] a hybrid, MMAS-based ACO algorithm for the 
Set Covering Problem. Before the main loop of the algorithm begins, they solve the LP-
relaxation of the problem in order to reduce its size. Unlike a typical MMAS algorithm, 
when the pheromone values are updated, they are not checked against a lower bound. 
Instead they are only checked against an upper bound. The heuristic information is based 
on the dynamic reduced costs and the number of rows that can be covered by selecting a 
certain column (similar to [12]).  Unlike the heuristic of [12], the normalization of the 
heuristic values is based on their minimum and maximum values and not on another 
parameter. The results show that the reduction of the size of the problem has a great 
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impact on the quality of the solutions and on the computation time. Fig. 2 presents an 
overview of ACO. 

 

 

 

 

 

Figure 2: Ant Colony Optimization 

2.1.2 Particle Swarm Optimization 

 In [3] a PSO algorithm is developed for the integrated airline crew scheduling 
problem. The particles are associated with two vectors; their position and their velocity. 
The position of a particle represents a solution of the problem.  In every iteration of the 
algorithm the position and the velocity are updated. The update of the velocity of a particle 
is based on the particle's best previous position and on the global best previous solution. 
The updated velocity determines the new position of the particle. 

 

 

 

 

 

 

 

Figure 3: Particle Swarm Optimization 

2.1.3 Artificial Bee Colony 

 An Artificial Bee Colony (ABC) optimization algorithm is proposed by Sundar and 
Singh (2012) in [15] for the Set Covering Problem. At the initialization step of the algorithm, 
each employed bee is associated with a randomly generated feasible solution. Onlookers 
choose a food source probabilistically. The roulette wheel selection method is used. The 
employed bees as well as the onlookers find new food sources (i.e. solutions) in their 
neighborhood. Firstly, they add a number of columns, that are part of randomly generated 
solution �, to their solution . In case there is not a collision (i.e. solution  is not equal to 
solution �), a number of columns are randomly dropped from the solution. After this step, a 
feasibility operator is used to repair illegal solutions. If an employed bee encounters a 
collision, it becomes a scout. That means it is assigned a new random food source. If the 
solution  of an onlooker equals to the random solution �, a new solution � is randomly 
generated, until there is no collision. A local search heuristic, that is similar to the one 
proposed in [12], is used. The heuristic is applied repeatedly until there cannot be any 
further improvement to the solution, that it is applied on. Moreover, each food source is 
associated with two fitness functions. The first one (primary) is the same as the objective 
function, whereas the second (secondary) is equal to the number of rows that are covered 
by a single column. The secondary fitness function is used in case there are solutions, 

1. Initialize pheromone trails 

2. Construct solutions 

3. Update pheromone 

4. Iterate steps 1-3, until terminating condition is met 

5. Return the best solution that was found  

1. Initialize the position and the velocity of the particles randomly 

2. Evaluate the position and the velocity of each particle 

3. Initialize each particle's best position and the swarm's best position 

4. Update each particle's velocity and position 

5. Update each particle's best position and the swarm's best position 

6. Iterate steps  4 and 5 until the terminating condition is met. 

7. Return the best solution that was found 
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whose objective functions have the same value. Lastly, an employed bee will become a 
scout, if its food source does not improve after a number of iterations. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Artificial Bee Colony 

2.2 Genetic Algorithms 

 Now we set our focus onto studies that have solved the airline crew pairing problem 
using Genetic Algorithms (GA). 

2.1.1 Genetic Algorithms and Set Partitioning Problem 

 Chu and Beasley [5] (1995) developed a steady-state GA combined with a heuristic 
feasibility. More specifically, the fitness of each solution is divided into two parts, the 
fitness and the unfitness. The fitness serves as the objective function of the problem and 
the unfitness measures the infeasibility of each individual. Moreover, for the selection of 
the parents, a method called Maximum Compatibility Selection (MCS) is developed. Its 
goal is to improve the fitness of the solutions and to make them more feasible. Concerning 
the goal of MCS, it is essential that the selected parents cover as much columns of the Set 
Partitioning Problem as possible and at the same time keep their common rows at low 
numbers. The Subgroup Ordering Replacement (SOR) scheme is created for the 
replacement stage of the algorithm. The SOR scheme splits the individuals of the 
population into four subgroups. The splitting is based on the offspring, which is about to 
enter the population and the current solutions are assigned to their corresponding 
subgroup based on the values of their fitness and unfitness. SOR aims to first get rid of the 
solutions with high unfitness and then of the solutions with high fitness. The feasibility 
operator consists of two stages. In the first one, it finds over-covered rows and randomly 
removes columns from them in order to be covered by, at most, one column. In the second 
stage, it finds the under-covered rows and randomly adds columns, without over-covering 
any of them. The presented GA was tested on 55 real cases and wasn't able to find a 
feasible solution for only four of them. 

 Levine (1996) in [6] approaches the problem with a steady-state GA combined with 
a local search heuristic. He introduces a linear penalty term on the fitness function, whose 
value depends on the constraint that is violated. Binary tournament selection is used to 
find the parents that are going to produce the new solutions. In each iteration of the 
algorithm either the crossover or the mutation operator is randomly chosen. In case the 
mutation operator is chosen, it is applied randomly on one of the two parents that are 
selected. The crossover operator that is used in this study is the Two-point crossover 
operator that produces two new individuals. The purpose of the local search heuristic is to 
help the GA to find feasible solutions. The computational results confirm that its use leads 
to feasible solutions on most real cases that the algorithm was tested on. 

1. Initialization 

2. Work of employed bees 

3. Work of onlooker bees 

4. Work of scout bees 

5. Save the best solution 

6. Iterate steps 2 - 5 until the terminating condition is met. 

7. Return the best solution that was found 
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 Kotecha et al. (2004) [8] choose a different way to represent the solutions of the 
problem. The representation used is called real value encoding (row based encoding). The 
length of the chromosomes is equal to the number of flights (rows). The value of a flight 
indicates the pairing that covers this flight. In this study, the Cost-Based Uniform 
Crossover (CUC) operator is introduced. CUC is a modification of the Uniform Crossover 
operator. Genes are passed from the selected parents to the offspring based on their 
costs. The mutation happens implicitly during the repair mechanism which is used when 
the CUC produces an infeasible solution. The repair mechanism tries to find columns 
(pairings) that cover under-covered flights. In case a solution is not repairable it is 
discarded and a new one is generated. This study is compared with [6] and this 
comparison shows that CUC leads to better results. 

 Elhabashy et al.(2014) combine the works of previous studies in [10]. They 
experiment with two different crossover operators. The first one is the single-point 
crossover that produces two new solutions. The second one is the fusion crossover 
proposed in [11]. The single-point crossover operator is used to increase the diversity of 
the population. Three different mutation operators are implemented. The first one is 
suggested by Levine ([6]). The second is the dynamic mutation operator that is proposed 
in [7]. The Perturbation Operator from [9] is the last one. 

2.2.2 Genetic Algorithms and Set Covering Problem 

 Beasley and Chu (1996) use a steady-state GA to solve the Set Covering Problem 
([11]). The fusion crossover operator is proposed. If the first parent chromosome is fitter 
than the second, then the genes of the first parent are more likely to be passed to the 
offspring. In addition, they present an equation that calculates the number of genes that 
are mutated in each iteration. This number depends on the convergence rate of the GA. 
The feasibility operator tries to repair infeasible solutions by finding columns (pairings) with 
low cost that cover as many uncovered rows as possible. 

 Kornilakis and Stamatopoulos [7] (2002) solve the problem in two stages. In the first 
stage a large number of pairings is produced. The second stage is the optimization, where 
the GA is used. Over-covered rows (dead-head flights) add a penalty to the fitness 
function. The selection of the parents is based on their fitness value, i.e. fitter solutions are 
more likely to be selected. A uniform crossover operator that produces a new individual 
and a dynamic mutation operator are used. The mutation operator randomly chooses a 
number of genes of the produced chromosome, which are then probabilistically mutated to 
0 (or 1) depending on the percentage of 0s (or 1s) found in the fittest solution of the 
population. In case a produced individual is infeasible (i.e. it contains under-covered 
flights), the value of some genes are changed to 1 so that all flights are covered. The 
replacement method that is used in this study is elitism. This means that the least fit 
solution is more likely  to be replaced by the offspring in the new population. 

 Zeren and Özkol (2012) in [9] use binary selection tournament to select the parents. 
The fusion crossover operator is used ([11]) to produce the child solution. In each iteration 
the number of genes to be mutated is determined (like in [11]). The mutation operator used 
is the one proposed in [7].  After the crossover and the mutation, the feasibility operator, 
that is proposed in [11], is used to repair illegal (under-covered) solutions. In this study a 
new operator, the Perturbation Operator, is introduced in the genetic iteration. The 
Perturbation Operator deliberately makes the new solutions infeasible. Its goal is to make 
the solutions feasible again by covering under-covered flights with pairings of lower cost. 
In case the operator fails to find such pairings, the chromosomes are reverted to their 
original state. Elitism is chosen to be the replacement method. The 20 fittest solutions are 
kept after each iteration.  The results show that the GA with the Perturbation Operator 
returns better results in less time compared to [11].  
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4. Genetic Algorithm Implementations 

 In this section we present three genetic algorithms that were implemented in order 
to solve the airline crew pairing problem, that was formulated not only as a Set Covering 
Problem but as a Set Partitioning Problem as well. 

4.1 Set Covering Problem 

 The SCP formulation is approached by two different implementations. The most 
important difference between the two approaches is the crossover operator. In the first one 
the fusion crossover operator from [11] is used, whereas in the second approach the one-
point crossover is used. 

Chromosome Encoding and Objective Function 

 The objective function of a solution is the total cost of the pairings that belong to this 
solution. Each chromosome of the population represents a potential solution to the 
problem. Column-based encoding is selected for both approaches. Each gene of a 
chromosome represents a pairing. A gene takes one out of two values, 0 or 1. If the value 
of the �� gene is equal to 1 then the �� pairing is a part of the solution. 

Mutation Operator 

 The mutation operator that is implemented in both approaches is inspired by the 
dynamic mutation operator that is proposed in [7].  Each gene has the same probability to 
be mutated. If a gene is selected for mutation and its current value is 0 (or 1) then the 
value of this gene is altered to 1 (or 0) with a probability that is equal to the number of 
genes that are equal to 1 (or 0) divided by the number of the total genes of the solution. 

Feasibility Operator 

 After the crossover and the mutation operator the resulting solution might be 
infeasible. That means that some of the rows, i.e. flights, of this individual are uncovered. 
The feasibility operator is applied on such solutions in order to make the feasible. The 
feasibility operator that is implemented is greedy. For each uncovered row, the operator 
inserts into the solution the pairing that covers this row and has the minimum cost. 

Local Search 

 In order to make the individuals better, a local search is implemented. Its purpose is 
to remove redundant pairings from the solutions. Firstly, the local search finds the flights 
that are covered by at least two pairings. For each over-covered row, it finds the pairings 
that cover this row and are part of the solution. Then it starts removing such pairings, 
without making the solutions infeasible.  

Replacement Method 

 Elitism is chosen as the replacement method. After each iteration of the algorithm, 
the fittest individuals are kept in the population. 

4.1.1 SCP with Fusion Crossover 

Parent Selection 

 In this approach, the Binary Tournament is chosen as the parent selection method. 
In each iteration two parents are selected for reproduction purposes. Fitter solutions are 
more likely to be selected. 
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Crossover Operator 

 The fusion crossover operator is introduced by Beasley and Chu in [11]. It is a 
probabilistic operator and produces one new solution. The genes of the fitter parent are 
more likely to be passed to the offspring. 

��				��� = 	����,  	���� = 	�!�� 

  ��		�	�	��� = 	����, "#ℎ	%&'(	()#*	% = 	
+,

+-	.	+,
 

                �(�	��� = 	�!��, "#ℎ	%&'(	()#*	�1 − %� 

where  � and  ! are the values of the fitness function of the first and second parent 
respectively. 

4.1.2 SCP with One-point Crossover 

Parent Selection 

 Each individual has the same probability to be selected. At each iteration of the 
algorithm, the number of parents is even. 

Crossover Operator 

 The one-point crossover produces two new solutions. The crossover point is 
randomly chosen. The children are produced by swapping the segments of the two 
parents [11]. 

 

 
Figure 6: One-point Crossover 

4.2 Set Partitioning Problem 

Chromosome Encoding and Objective Function 

 The objective function is the same as the one used in the SCP approach. However 
the chromosome encoding is different. Row-encoding is used for the SPP. Each gene 
represents a flight. The value of each gene is an integer number in the range 
�1, �0�(1&_' _�')0��3�. The value of a gene indicates the pairing that is covering the 

flight represented by this particular gene. 

Parent Selection and Crossover Operator 

 The parent selection method and the crossover operator are the same as those 
used in section 4.1.2. 
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Mutation Operator 

 Each gene has the same probability to be mutated. The new value is a pairing that 
also covers this flight. In this way, there is not a flight which remains uncovered. 

Feasibility Operator 

 After the crossover and the mutation, the solutions might be infeasible, i.e. there are 
over-covered flights. The feasibility operator tries to make such solutions feasible by 
removing redundant pairings. Since the SPP is highly constrained, the operator's success 
is not guaranteed. 

Replacement Method 

 Just as the SCP approach, elitism is the replacement method. Between infeasible 
solutions, those who have less over-covered rows are considered fitter.  
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5. Experimental Results 

 The data sets from the OR Library of Beasley [5,11] were given as input to the 
proposed algorithms. The algorithms were coded on Java and tested on a Intel(R) 
Core(TM) i3-4170 CPU @ 3.70GHz. In the tables that are presented below, the column 
"Problem" contains the name of each problem, the column "OPT/BKS" contains the 
optimal/best known solution of each problem. Due to their non-deterministic nature, the 
algorithms were executed several times. The columns "1st" to "5th"/"7th" are different 
executions of the problems and their cells contain the value of the best solution that was 
found in each execution. The cells of the last column, namely "AVG CPU TIME", hold the 
average CPU time in seconds that was needed for each problem to complete. 

5.1 Set Covering Problem 

 The experimental results of the two different approaches for the set covering 
problem are presented below. 

5.1.1 Set Covering Problem with Fusion Crossover 

 This approach was tested using four different sets of parameters on 30  problems 
from OR Library. The four sets of parameters are listed below. 

First set: 

• Population Size = 20 
• Number of Iterations = 30000 
• Mutation Probability p = 0.05 
• Probability p' of Binary Tournament: 0.20 

Second set: 

• Population Size = 20 
• Number of Iterations = 30000 
• Mutation Probability p = 0.08 
• Probability p' of Binary Tournament: 0.25 

Third set: 

• Population Size = 15 
• Number of Iterations = 30000 
• Mutation Probability p = 0.10 
• Probability p' of Binary Tournament: 0.30 

Fourth set: 

• Population Size = 25 
• Number of Iterations = 30000 
• Mutation Probability p = 0.12 
• Probability p' of Binary Tournament: 0.18 
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Table 1: SCP fusion crossover first set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG 
CPU 
TIME 

Scp41 429 443 432 432 438 442 436 432 21.0129 
Scp42 512 512 540 512 512 512 533 512 18.7136 
Scp43 516 528 518 516 528 517 528 516 19.0210 
Scp44 494 509 512 509 512 500 529 512 20.0760 
Scp45 512 518 518 518 518 518 517 517 18.5089 
Scp46 560 562 568 570 562 573 560 562 19.0755 
Scp47 430 433 433 432 433 433 433 433 18.2809 
Scp48 492 493 499 499 499 499 497 499 19.2598 
Scp49 641 660 663 655 660 655 660 655 18.8521 
Scp410 514 546 543 517 544 547 547 520 19.3459 
Scp51 253 260 260 264 261 253 253 260 35.6548 
Scp52 302 313 306 308 308 313 308 313 30.7857 
Scp53 226 230 230 230 231 231 230 226 48.3351 
Scp54 242 243 242 243 243 242 243 242 42.9212 
Scp55 211 212 212 211 211 212 211 211 34.1253 
Scp56 213 226 227 214 237 214 232 237 25.3318 
Scp57 293 301 308 307 308 308 306 313 27.4383 
Scp58 288 297 291 300 302 301 308 304 26.8516 
Scp59 279 280 280 280 281 283 292 291 23.6058 
Scp510 265 272 265 268 273 265 271 272 28.0885 
Scp61 138 143 148 147 143 143 145 145 20.4567 
Scp62 146 150 151 151 150 151 149 147 19.1676 
Scp63 145 145 150 148 145 150 148 145 23.5578 
Scp64 131 131 131 132 132 135 132 132 19.0770 
Scp65 161 164 161 161 165 161 175 161 18.6749 
Scpa1 253 255 255 255 255 255 255 257 65.6941 
Scpa2 252 266 265 263 258 262 262 264 74.5672 
Scpa3 232 244 239 241 238 238 242 239 72.9458 
Scpa4 234 239 239 244 246 239 244 238 69.5138 
Scpa5 236 239 236 238 238 240 236 238 69.1541 
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Table 2: SCP fusion crossover second set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG 
CPU 
TIME 

Scp41 429 438 437 437 443 430 438 443 23.4884 
Scp42 512 556 512 512 530 541 541 521 18.6707 
Scp43 516 528 528 528 516 522 528 529 21.5846 
Scp44 494 512 520 520 512 529 512 529 19.7701 
Scp45 512 518 518 514 518 518 518 517 21.4739 
Scp46 560 561 573 564 561 574 560 562 22.6518 
Scp47 430 433 431 439 432 430 433 433 22.9302 
Scp48 492 497 499 497 499 499 499 497 25.0373 
Scp49 641 655 662 666 659 663 663 655 22.1025 
Scp410 514 537 546 552 519 542 519 554 20.4363 
Scp51 253 264 266 261 264 260 273 269 30.7530 
Scp52 302 313 313 313 311 313 313 313 33.1131 
Scp53 226 231 231 230 230 230 230 230 27.6089 
Scp54 242 245 245 243 245 245 245 243 29.1724 
Scp55 211 211 212 211 211 212 212 212 29.4056 
Scp56 213 214 232 226 233 236 214 232 27.9219 
Scp57 293 308 312 303 310 308 312 308 29.5610 
Scp58 288 304 301 299 304 298 298 288 30.0938 
Scp59 279 288 288 291 288 286 289 292 28.3607 
Scp510 265 272 265 272 272 268 266 272 30.2492 
Scp61 138 145 145 145 151 143 145 145 23.6128 
Scp62 146 150 151 151 151 151 147 151 20.6181 
Scp63 145 150 150 150 145 150 150 150 20.4167 
Scp64 131 132 132 131 132 132 132 134 23.2174 
Scp65 161 161 161 171 164 161 165 164 20.8500 
Scpa1 253 261 255 255 255 255 260 255 82.5397 
Scpa2 252 262 266 264 260 262 261 260 81.9745 
Scpa3 232 242 235 237 243 236 243 242 79.6414 
Scpa4 234 239 241 240 237 243 245 238 74.8716 
Scpa5 236 239 239 240 238 239 239 239 73.3673 
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Table 3: SCP fusion crossover third set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG 
CPU 
TIME 

Scp41 429 438 432 438 432 438 438 441 21.5105 
Scp42 512 533 512 518 547 512 540 540 20.4446 
Scp43 516 518 520 528 516 528 528 528 21.3335 
Scp44 494 509 512 503 516 511 505 498 19.4025 
Scp45 512 518 518 518 518 518 517 514 19.4383 
Scp46 560 585 574 564 570 586 574 560 20.7097 
Scp47 430 432 433 433 433 433 438 433 18.1855 
Scp48 492 499 499 497 497 499 513 499 19.3908 
Scp49 641 660 661 666 661 666 653 662 21.7285 
Scp410 514 550 550 535 546 518 517 558 21.9549 
Scp51 253 259 263 265 268 268 263 265 31.8028 
Scp52 302 308 313 308 313 311 313 313 29.7353 
Scp53 226 231 230 230 234 235 231 231 27.6426 
Scp54 242 243 242 242 245 243 242 243 28.1025 
Scp55 211 212 212 211 211 211 211 211 25.7069 
Scp56 213 236 222 214 214 217 221 217 29.8760 
Scp57 293 308 312 301 304 304 310 301 32.4437 
Scp58 288 301 301 306 304 298 308 302 33.1513 
Scp59 279 283 280 284 289 286 281 279 28.6000 
Scp510 265 265 265 268 272 272 266 267 28.9574 
Scp61 138 145 138 145 145 143 149 143 26.2052 
Scp62 146 151 150 151 151 151 152 151 21.5395 
Scp63 145 148 150 150 150 148 150 148 21.2777 
Scp64 131 132 131 132 132 135 135 135 25.1530 
Scp65 161 161 161 161 164 173 177 161 22.4013 
Scpa1 253 258 258 255 260 258 259 258 79.1766 
Scpa2 252 260 275 279 263 262 266 281 81.4079 
Scpa3 232 247 247 242 243 242 244 246 74.7733 
Scpa4 234 247 240 240 240 239 244 238 77.4462 
Scpa5 236 240 240 239 236 238 238 242 81.3286 
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Table 4: SCP fusion crossover fourth set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG 
CPU 
TIME 

Scp41 429 438 430 432 432 432 433 446 25.7125 
Scp42 512 548 512 512 512 540 512 512 22.0225 
Scp43 516 516 518 516 520 518 516 522 20.7871 
Scp44 494 520 510 498 512 510 512 508 22.1518 
Scp45 512 518 518 518 517 517 518 518 20.4968 
Scp46 560 569 561 572 561 562 570 560 22.8565 
Scp47 430 433 433 433 433 433 433 439 20.5028 
Scp48 492 499 497 499 499 499 497 497 22.9962 
Scp49 641 655 666 660 666 655 671 660 20.3098 
Scp410 514 543 528 540 540 535 562 543 21.0828 
Scp51 253 263 260 262 254 261 267 262 34.3798 
Scp52 302 313 315 311 311 311 316 311 32.8454 
Scp53 226 231 226 234 232 228 231 230 29.7204 
Scp54 242 245 247 243 245 242 244 243 31.6180 
Scp55 211 211 212 211 211 212 211 211 28.3998 
Scp56 213 214 214 235 239 222 214 214 30.9698 
Scp57 293 305 306 312 308 312 312 303 33.1998 
Scp58 288 293 298 301 304 299 293 297 36.6296 
Scp59 279 280 291 284 280 288 281 281 31.1161 
Scp510 265 270 267 272 266 268 273 274 33.9168 
Scp61 138 145 142 143 143 143 142 145 22.7366 
Scp62 146 151 151 151 151 151 151 150 24.2598 
Scp63 145 149 150 148 148 150 150 150 21.6757 
Scp64 131 132 132 135 132 132 132 134 25.6442 
Scp65 161 164 167 167 161 174 171 172 25.9891 
Scpa1 253 269 280 268 258 276 265 266 87.6003 
Scpa2 252 262 266 262 268 262 291 264 86.7707 
Scpa3 232 243 247 243 243 240 242 243 87.2608 
Scpa4 234 251 240 235 248 246 254 246 81.8247 
Scpa5 236 239 240 239 239 238 240 238 82.2204 

 

 The above results show that the first set of parameters managed to achieve optimal 
solutions to more problems than the rest of the sets, whereas the fourth set achieved the 
lowest number of optimal solutions. The parameters that influence the results the most are 
the probabilities p and p'. If the probability of the Binary Tournament p' is low, then the 
impact that less fit individuals have on the population is higher. On the other hand, the 
mutation probability p has a negative impact on the results if it is given a relatively high 
value. In the fourth set, p' has the lowest value and p the highest value in comparison to 
the other sets. 

  



Airline Crew Pairing Problem and Meta-heuristics 

Nikolaos Karalis  27 

5.1.2 Set Covering Problem with One-point Crossover 

 The second approach to the Set Covering Problem was tested in a similar way. The 
results indicate that the parent selection probability need to be relatively high in order for 
the algorithm to reach good solutions. The last set of parameters was the most successful. 
For the majority of the problems it managed to reach the optimal solution or near-optimal 
solutions. It should be noted that the higher the parent selection probability is, the longer it 
takes for the algorithm to finish. The sets of parameters and their results are presented 
below. 

First set: 

• Population Size = 20 
• Number of Iterations = 3000 
• Mutation Probability p = 0.05 
• Parent Selection Probability p': 0.30 

Second set: 

• Population Size = 20 
• Number of Iterations = 3500 
• Mutation Probability p = 0.08 
• Parent Selection Probability p': 0.40 

Third set: 

• Population Size = 40 
• Number of Iterations = 3000 
• Mutation Probability p = 0.05 
• Parent Selection Probability p': 0.25 

Fourth set: 

• Population Size = 40 
• Number of Iterations = 3000 
• Mutation Probability p = 0.03 
• Parent Selection Probability p': 0.40 
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Table 5: SCP one-point crossover first set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG CPU 
TIME 

Scp41 429 434 432 432 438 438 432 432 9.8181 
Scp42 512 528 535 548 540 512 512 534 10.7911 
Scp43 516 523 525 517 524 516 518 528 10.2120 
Scp44 494 532 495 507 512 515 494 498 12.3485 
Scp45 512 518 518 518 514 526 518 517 11.8877 
Scp46 560 561 572 590 568 572 562 563 13.7227 
Scp47 430 433 433 433 432 433 433 439 13.5010 
Scp48 492 499 497 499 497 499 499 497 13.4489 
Scp49 641 666 660 668 650 662 657 663 12.2621 
Scp410 514 527 543 537 530 547 532 547 14.3670 
Scp51 253 256 266 262 267 254 269 272 21.1917 
Scp52 302 323 314 313 315 319 315 320 21.0623 
Scp53 226 230 230 231 230 229 230 231 15.80478 
Scp54 242 248 242 244 242 245 243 242 15.3942 
Scp55 211 212 212 218 211 219 212 212 14.6613 
Scp56 213 227 236 217 232 214 214 219 15.2381 
Scp57 293 308 301 309 310 305 302 305 15.6532 
Scp58 288 293 304 301 301 302 298 304 16.2382 
Scp59 279 281 290 281 283 283 283 290 14.5375 
Scp510 265 269 265 272 272 268 273 269 14.4140 
Scp61 138 148 151 143 149 143 148 138 10.3082 
Scp62 146 151 151 151 154 151 151 151 10.5643 
Scp63 145 145 150 150 150 150 150 150 9.8433 
Scp64 131 131 132 132 132 132 132 132 9.6974 
Scp65 161 169 171 168 167 176 171 171 9.7880 
Scpa1 253 266 262 266 260 260 259 256 35.3104 
Scpa2 252 270 262 262 274 272 274 264 37.3639 
Scpa3 232 253 243 246 246 247 248 245 39.3966 
Scpa4 234 243 243 248 250 247 240 248 35.7380 
Scpa5 236 239 241 239 240 239 240 238 36.9488 
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Table 6: SCP one-point crossover second set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG CPU 
TIME 

Scp41 429 437 432 432 432 435 432 432 17.4724 
Scp42 512 518 512 512 512 512 512 533 15.9680 
Scp43 516 525 518 528 518 518 516 518 15.3840 
Scp44 494 512 515 501 498 508 504 523 16.5586 
Scp45 512 518 518 518 514 514 517 518 15.9611 
Scp46 560 578 570 561 560 571 561 561 16.9890 
Scp47 430 433 439 433 433 433 433 433 17.2101 
Scp48 492 495 499 499 499 497 497 499 16.0078 
Scp49 641 660 660 655 661 657 667 658 16.1707 
Scp410 514 545 547 526 541 550 537 538 16.1837 
Scp51 253 269 266 263 269 261 254 263 24.6621 
Scp52 302 319 312 317 314 312 313 308 25.8210 
Scp53 226 231 231 231 231 231 228 230 23.2509 
Scp54 242 243 243 244 245 245 245 242 24.9432 
Scp55 211 211 212 211 212 212 211 218 24.2837 
Scp56 213 214 222 217 221 234 226 231 24.6342 
Scp57 293 298 304 314 293 308 308 308 26.2531 
Scp58 288 296 297 302 298 297 293 293 25.4230 
Scp59 279 290 289 281 288 288 281 287 24.2408 
Scp510 265 271 272 274 271 272 273 270 30.2387 
Scp61 138 143 145 145 145 150 143 143 19.4016 
Scp62 146 152 150 150 154 151 152 151 18.4041 
Scp63 145 150 150 150 150 150 150 148 19.0133 
Scp64 131 132 132 132 138 132 132 132 18.4975 
Scp65 161 161 171 164 163 163 172 161 17.6584 
Scpa1 253 262 260 259 261 260 259 253 60.7527 
Scpa2 252 272 269 272 274 269 269 290 68.4845 
Scpa3 232 246 244 246 240 252 251 248 64.9335 
Scpa4 234 243 239 253 247 239 237 239 63.3171 
Scpa5 236 239 240 242 239 239 240 239 66.2644 
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Table 7: SCP one-point crossover third set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG CPU 
TIME 

Scp41 429 437 432 432 437 433 437 432 19.1709 
Scp42 512 512 512 533 533 512 512 532 15.5740 
Scp43 516 517 518 518 522 522 528 518 15.3375 
Scp44 494 523 512 529 508 495 527 512 17.2258 
Scp45 512 514 518 518 518 518 518 517 16.9060 
Scp46 560 569 561 561 560 564 564 564 17.2015 
Scp47 430 432 433 433 433 432 432 433 15.3691 
Scp48 492 497 499 497 495 497 497 499 16.9255 
Scp49 641 662 655 661 661 655 660 653 18.7886 
Scp410 514 549 550 526 543 516 525 533 16.8945 
Scp51 253 267 267 265 270 254 266 262 29.6499 
Scp52 302 312 306 308 313 309 309 314 29.6340 
Scp53 226 230 230 231 230 231 228 230 34.9070 
Scp54 242 245 246 242 242 243 242 243 37.6054 
Scp55 211 212 211 211 211 212 217 211 33.2320 
Scp56 213 232 232 237 226 233 214 214 25.7412 
Scp57 293 307 305 303 304 300 310 304 26.1056 
Scp58 288 301 297 293 297 301 301 293 26.5918 
Scp59 279 291 288 288 281 280 280 292 25.2772 
Scp510 265 267 268 267 267 267 267 267 26.4362 
Scp61 138 143 145 151 138 151 143 143 17.5144 
Scp62 146 151 151 151 151 151 151 152 18.4807 
Scp63 145 150 150 148 150 150 150 150 18.0413 
Scp64 131 131 132 132 132 132 132 132 19.0449 
Scp65 161 171 168 171 163 166 164 172 18.7634 
Scpa1 253 255 255 266 255 260 260 255 69.9863 
Scpa2 252 268 276 265 269 261 263 264 71.2212 
Scpa3 232 236  243 242 246 248 246 243 69.0105 
Scpa4 234 239 236 244 241 245 245 240 65.4523 
Scpa5 236 240 240 240 239 240 239 238 67.2173 
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Table 8: SCP one-point crossover fourth set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th 6th 7th AVG CPU 
TIME 

Scp41 429 430 432 432 432 432 432 432 37.2136 
Scp42 512 512 540 532 526 512 534 512 33.0798 
Scp43 516 528 518 516 516 516 522 516 34.2717 
Scp44 494 502 513 510 500 497 495 520 26.0497 
Scp45 512 518 518 518 518 516 518 518 24.9219 
Scp46 560 561 573 560 560 562 562 569 26.3440 
Scp47 430 439 433 433 432 431 433 432 23.8103 
Scp48 492 497 497 499 495 497 497 499 25.3080 
Scp49 641 660 661 645 663 657 655 661 26.2824 
Scp410 514 520 545 534 535 534 525 526 25.8261 
Scp51 253 262 259 262 260 255 262 262 43.6478 
Scp52 302 306 316 313 313 308 313 318 42.1924 
Scp53 226 230 230 230 230 230 232 227 39.9239 
Scp54 242 243 242 243 245 242 242 243 39.9704 
Scp55 211 212 211 211 211 212 211 211 41.2342 
Scp56 213 214 220 217 217 214 221 226 40.8091 
Scp57 293 293 301 297 293 298 300 308 42.8903 
Scp58 288 300 297 298 291 298 301 304 43.1817 
Scp59 279 287 279 287 280 280 280 281 36.8587 
Scp510 265 267 267 265 272 265 268 268 44.9013 
Scp61 138 143 145 138 143 149 143 143 29.3501 
Scp62 146 151 155 151 150 150 150 150 28.0672 
Scp63 145 150 150 148 150 150 150 149 28.6059 
Scp64 131 132 132 132 134 131 131 132 31.4056 
Scp65 161 168 166 166 161 168 161 168 29.3265 
Scpa1 253 259 255 259 255 255 255 255 120.4850 
Scpa2 252 267 261 262 254 266 266 258 150.1444 
Scpa3 232 237 237 239 243 240 243 242 151.5062 
Scpa4 234 246 242 239 246 240 238 235 122.1941 
Scpa5 236 239 239 238 240 239 238 239 104.4803 

 

The number of iterations that are needed in the second approach is lower than the first 
one, since it produces more solutions in each loop of the algorithm. In the first approach 
only one offspring is created in each iteration.  
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5.2 Set Partitioning Problem 

 The proposed algorithm managed to find a feasible solution for seven out of ten 
problems. For one of those problems it also reached an optimal solution. The results of the 
four different sets were similar and are presented below.  

First set: 

• Population Size = 450 
• Number of Iterations = 1000 
• Mutation Probability p = 0.01 
• Parent Selection Probability p': 0.40 

Second set: 

• Population Size = 275 
• Number of Iterations = 4000 
• Mutation Probability p = 0.03 
• Parent Selection Probability p': 0.45 

Third set: 

• Population Size = 320 
• Number of Iterations = 3500 
• Mutation Probability p = 0.02 
• Parent Selection Probability p': 0.30 

Fourth set: 

• Population Size = 300 
• Number of Iterations = 3000 
• Mutation Probability p = 0.04 
• Parent Selection Probability p': 0.45 
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Table 9: SPP first set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th AVG 
CPU 
TIME 

Sppnw01 114852 NF NF NF NF NF 82.8117 
Sppnw02 105444 NF NF NF NF NF 109.3052 
Sppnw03 24492 36543 34713 37926 37056 38100 78.4090 
Sppnw04 16862 25206 22524 24848 26848 26200 92.2241 
Sppnw05 132878 NF NF NF NF NF 200.7750 
Sppnw06 7810 10792 8442 9314 9540 10280 69.1156 
Sppnw07 5476 7128 6084 7120 6778 6906 56.6352 
Sppnw08 35894 36978 37488 37694 36682 37906 60.4090 
Sppnw09 67760 74920 83592 84390 76508 82600 65.6734 
Sppnw10 68271 68847 82971 73434 72921 74460 62.8007 

 

 

Table 10: SPP second set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th AVG 
CPU 
TIME 

Sppnw01 114852 NF NF NF NF NF 142.3004 
Sppnw02 105444 NF NF NF NF NF 134.6297 
Sppnw03 24492 32886 35247 35307 40008 35607 109.6284 
Sppnw04 16862 26904 24418 28798 34224 25824 159.7935 
Sppnw05 132878 NF NF NF NF NF 306.8929 
Sppnw06 7810 10138 9604 10414 11932 9466 74.6557 
Sppnw07 5476 6294 6952 6696 6072 6326 75.3364 
Sppnw08 35894 36682 38132 37740 36478 36348 60.7300 
Sppnw09 67760 84248 93068 83862 83652 73904 71.7349 
Sppnw10 68271 74328 83847 82794 72009 73989 57.6926 
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Table 11: SPP third set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th AVG 
CPU 
TIME 

Sppnw01 114852 NF NF NF NF NF 90.4123 
Sppnw02 105444 NF NF NF NF NF 118.3216 
Sppnw03 24492 33429 41142 40278 39084 39102 87.0224 
Sppnw04 16862 24978 23584 NF 25410 26494 95.8669 
Sppnw05 132878 NF NF NF NF NF 267.9071 
Sppnw06 7810 9604 8878 9012 9590 9286 64.4284 
Sppnw07 5476 6686 7086 6084 6200 5476 57.5947 
Sppnw08 35894 36682 36682 36068 38766 38862 51.3768 
Sppnw09 67760 83384 102326 91974 74394 82998 59.4897 
Sppnw10 68271 83121 84147 80190 82635 70596 52.8919 

 

 

Table 12: SPP fourth set 

Problem OPT/BKS 1st 2nd 3rd 4th 5th AVG 
CPU 
TIME 

Sppnw01 114852 NF NF NF NF NF 153.4881 
Sppnw02 105444 NF NF NF NF NF 206.2682 
Sppnw03 24492 36102 32142 37716 35964 37962 102.2535 
Sppnw04 16862 NF 24008 37132 33744 27428 138.037 
Sppnw05 132878 NF NF NF NF NF 357.8799 
Sppnw06 7810 8382 12326 9170 9196 9494 78.2370 
Sppnw07 5476 6996 6084 6786 6200 6312 71.0792 
Sppnw08 35894 36682 37694 36578 38482 36682 56.6291 
Sppnw09 67760 73160 82050 74256 83638 83262 64.332 
Sppnw10 68271 73368 72933 NF 73971 72396 59.5922 
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6. Conclusions 

 In conclusion, in this work we present the airline crew pairing problem and how it 
can be formulated as a Set Covering Problem and as a Set Partitioning Problem. In 
addition, we describe the most common meta-heuristics that are used to solve the 
problem. Multiple genetic algorithms were implemented in order to solve the problem, 
which was formulated as an SCP and an SPP. The results of these implementations show 
that GAs are efficient at finding optimal or near-optimal solutions, especially for the SCP. 
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Acronyms and Abbreviations 

SPP Set Partitioning Problem 
SCP Set Covering Problem 
EA Evolutionary Algorithm 
SI Swarm Intelligence 

ACO Ant Colony Optimization 
PSO Particle Swarm Optimization 
ABC Artificial Bee Colony 

MMAS Min-Max Ant System 
ACS Ant Colony System 

ANTS Approximate Nondeterministic Tree Search 
CP Constraint Programming 
AS Ant System 

TSP Traveling Salesman Problem 
MCS Max Compatibility Selection 
SOR Subgroup Ordering Replacement 
CUC Cost-Based Uniform Crossover 
OPT Optimal 
BKS Best Known Solution 
NF Not Feasible 
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