

ΝΑTIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

THESIS

Architectural Vulnerability Factor (AVF) Assessment
of x86 CPUs using Architectural Correct Execution (ACE)

analysis in the Gem5 Simulator

Sofia Dionisios Alevizopoulos

Advisor: Dimitris Gizopoulos, Professor

ATHENS

May 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υπολογισμός του Architectural Vulnerability Factor (AVF)
μικροεπεξεργαστών x86 με χρήση της Architectural Correct

Execution (ACE) ανάλυσης στον προσομοιωτή Gem5

Σοφία Διονύσιος Αλεβιζοπούλου

Επιβλέπων: Δημήτρης Γκιζόπουλος, Καθηγητής

ΑΘΗΝΑ

Μάιος 2016

THESIS

Architectural Vulnerability Factor (AVF) Assessment

of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Sofia D. Alevizopoulos

Α.Μ.: 1115201000033

Advisor: Dimitris Gizopoulos, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υπολογισμός του Architectural Vulnerability Factor (AVF) μικροεπεξεργαστών x86 με
χρήση της Architectural Correct Execution (ACE) ανάλυσης στον προσομοιωτή Gem5

Σοφία Δ. Αλεβιζοπούλου

Α.Μ.: 1115201000033

Επιβλέπων: Δημήτρης Γκιζόπουλος, Καθηγητής

ABSTRACT

Despite the improvement of integrated circuits and microprocessor technologies,

they become more vulnerable to external factors like cosmic radiation and alpha

particles. These are the main reason causes of hardware faults. The cost for protecting

all these structures in order not to result in hardware faults with diagnostic and

protection methods is big enough. AVF (Architectural Vulnerability Factors) is a method

for computing the vulnerability of a structure. AVF estimates the probability of a

hardware fault to result in a wrong outcome for a program executing. This method can

be done in the early stage of design and as a consequence many faults can pass over.

There are several methods for estimating AVF. In this study AVF is estimated using

ACE analysis (Architectural Correct Analysis). This method is really fast as

characterizes the bits in the structure as ACE or un-ACE bits but it has one

disadvantage, it overestimates its vulnerability. ACE bits are those bits that influence the

vulnerability of a structure. The experimental vehicle of this analysis is the

microarchitecture simulator Gem5 for ISA x86-64. In this study, we computed AVF for

ten different benchmarks in two different microarchitectural modules, the integer

physical integer register file and the L1 Data Cache of Gem5. For each benchmark

statistics about its runtime and ACE interval time are reported.

SUBJECT AREA: computer architecture, hardware, reliability, fault tolerance.

KEYWORDS: vulnerability factors, register file, cache memories, microarchitectural

simulator, transient faults, AVF estimation, ACE analysis, Gem5.

ΠΕΡΙΛΗΨΗ

Όσο η τεχνολογία κατασκευής ολοκληρωμένων κυκλωμάτων και

μικροεπεξεραστών βελτιώνεται με το πέρασμα του χρόνου τόσο πιο ευάλωτα γίνοται

όλα αυτά τα κυκλώματα σε εξωτερικούς παράγοντες όπως η κοσμική ακτινοβολία και τα

σωματίδια άλφα. Πρόκειται για τη βασική πηγή που προκαλέι λάθη στο υλικό των

επεξεργαστών. Το κόστος για την προστασία όλων αυτών των κυκλωμάτων με

διαγνωστικές μεθόδους λάθους και μεθόδους προστασίας είναι πολύ μεγάλο. Ο

συντελεστής AVF (συντελεστής αρχιτεκτονικής ευπάθειας) είναι μια μέθοδος

υπολογισμού της ευπάθειας ενος συστήματος. Η μέθοδος AVF υπολογίζει την

πιθανότητα ένα λάθος υλικού να οδηγήσει σε λανθασμένο αποτέλεσμα κατά την

εκτέλεση ενός προγράμματος. Αυτή η μέθοδος μπορεί να εφαρμοστεί σε πρώιμο στάδιο

κατά τη σχεδίαση του υπολογιστικού συστήματος και έτσι πολλά ενδεχόμενα λάθη να

παραλειφθούν.

 Υπάρχουν πολλές μέθοδοι για τον υπολγισμό του AVF. Στην παρούσα εργασία θα

ασχοληθούμε με την ανάλυση ACE (Architectural Correct Execution). Πρόκειται για μια

πολύ γρήγορη μέθοδος στην οπόια τα bit ενός συστήματος χαρακτηρίζονται ως ACE ή

un-ACE. ACE ονομάζονται τα bits τα οποια συμβάλουν στο συντελεστή ευπάθειας ενός

συστήματος. Βασικό μειονέκτημα της μεθόδου είναι ότι υπερτιμά το συντελεστή

ευπάθειας του συστήματος. Ο μηχανισμός που θα χρησιμοποιηθεί για τους διάφορους

υπολογισμούς είναι ο προσομοιωτής Gem5 με αρχιτεκτονική συνόλου εντολών X86-64.

Ο συντελεστής AVF έχει υπολογιστεί για 10 διαφορετικά προγράμματα τόσο για το

αρχείο φυσικών ακέραιων καταχωρητών του Gem5 όσο και για τη μνήμη δεδομένων

πρώτου επιπέδου. Για κάθε ένα απο αυτά έχουν υπολογιστεί οι χρόνοι εκτέλεσής τους

καθώς και τα ευάλωτα διαστήματά τους.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: αρχιτεκτονική υπολογιστών, υλικό υπολογιστή, αξιοπιστία,

ανεκτικότητα σφαλμάτων.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συντελεστής αρχιτεκτονικής ευπάθειας, αρχείο καταχωρητών, μνήμη

δεδομένων, προσομοιωτής μικροαρχιτεκτονικής, σφάλματα υλικού, υπολογισμός AVF,

ανάλυση ACE, Gem5.

For the completion of the current thesis, I would like to thank my advisor

Professor, Dimitris Gizopoulos and the department’s PhD candidates: Manolis

Kaliorakis, Athanasios Chatzidimitriou and Sotiris Tselonis for their cooperation, advice

and their valuable contribution to the successful completion of this study.

TABLE OF CONTENTS

1. INTRODUCTION .. 14

1.1 Subject .. 14

2. HARDWARE FAULTS AND SOFT ERRORS ... 15

2.1 Soft errors ... 15

2.2 Intermittent faults .. 17

2.3 Permanent faults .. 18

2.4 Soft Error Background and Terminology ... 18

3. VULNERABILITY FACTORS .. 21

3.1 PVF .. 22

3.2 H-AVF .. 22

3.3 IVF ... 22

3.4 AVF ... 23

3.4.1 ACE analysis ... 25

3.4.2 AVF Equation .. 27

3.5 Diagnostic and Protection mechanisms for hardware fault ... 27

4. GEM5 SIMULATOR OVERVIEW .. 29

4.1 M5 .. 29

4.2 GEMS .. 30

4.3 Fundamental requirements of Gem5 .. 31

4.4 Memory System in Gem5 .. 31

4.4.1 Memory System Models .. 32

4.4.2 Port system .. 33

4.4.3 Packets ... 34

4.4.4 Requests ... 34

4.4.5 Atomic, functional, Timing access .. 34

4.5 CPU models ... 35

4.5.1 SimpleCPU .. 36

4.5.2 O3CPU .. 38

4.5.3 InOrder ... 40

4.6 Extensive – object oriented design .. 41

4.7 Python .. 41

4.8 Physical Integer Register File ... 42

4.9 Gem5 Configuration .. 42

4.10 Inside the Gem5 ... 43

5. SIMULATED SYSTEM ... 45

5.1 The Linux Kernel.. 45

5.2 Clock cycle... 45

5.3 Computation of simulation’s clock cycle ... 46

6. CACHE MEMORY ... 47

6.1 Instruction Cache .. 48

6.2 Data Cache .. 49

6.3 Cache Mapping and Associativity .. 49

6.4 Cache Size ... 51

7. IMPLEMENTATION OF AVF ANALYSIS ASSESSMENT IN PHYSICAL INTEGER

REGISTER FILE AND L1 DATA CACHE .. 52

7.1 Start and End Tick of the Simulation ... 52

7.2 Dynamic Instruction .. 52

7.3 AVF for Physical Integer Register File .. 54

7.3.1 Structure for holding information about a read/write at a register .. 55

7.3.2 Methods for setting and loading a value from a register index ... 57

7.3.3 Instruction committed for an integer register in Physical Integer Register File 58

7.3.4 The computation of AVF .. 58

7.4 AVF for Data Cache ... 59

7.4.1 Structure for holding information about a read/write at a word in a block .. 60

7.4.2 Methods for setting and loading a word in L1 data cache ... 64

7.4.3 Packets transfer data to dynamic instruction Object... 71

7.4.4 Instruction related with a word in L1 data cache commits .. 72

7.4.5 The Computation of AVF .. 72

8. RESULTS .. 74

8.1 Conclusions ... 86

9. APPENDIX ... 87

9.1 Commands for running a benchmark: ... 87

9.2 Hardware and Software configuration .. 88

ABBREVIATIONS ... 89

SOURCE FILES AND HEADER FILES ... 90

BIBLIOGRAPHY – REFERENCES .. 91

FIGURES’ INDEX

Figure 1: Soft errors that do not influence the outcome of the program 16

Figure 2: Soft errors that result in a wrong outcome of the program 17

Figure 3: Intermittent error not always result in wrong outcome of a program 18

Figure 4: Permanent faults result in wrong outcome of a program 18

Figure 5: Ruby Simulator overview .. 32

Figure 6: Gem5 high level overview .. 33

Figure 7: CPU Model AtomicSimpleCPU ... 36

Figure 8: CPU Model TimingSimpleCPU ... 37

Figure 9: O3CPU pipeline .. 39

Figure 10: InOrderCPU pipeline .. 40

Figure 11: Source code Tree organization for Gem5 ... 43

Figure 12: L1 & L2 cache memories .. 48

Figure 13: Divisions of the address for cache use ... 50

Figure 14: Fully associative Cache Memory .. 51

Figure 15: Class BaseO3DyInst .. 53

Figure 16: Class packet in DyInstPtr ... 53

Figure 17: Class InfoForCacheAccess .. 54

Figure 18: Class element ... 55

Figure 19: Class regi ... 55

Figure 20: Declare and initialize "class regi" .. 56

Figure 21: Vector Entry for Physical Integer Register File ... 56

Figure 22: Functions readIntReg() and setIntReg() ... 57

Figure 23: Pointer to Physical Integer Register File ... 58

Figure 24: Function about simulator termination .. 59

Figure 25: Class elementForCache ... 61

Figure 26: Class CachesImplementation ... 62

Figure 27: The architecture of sets, blocks and words in L1 data cache. 62

Figure 28: Class cache .. 63

Figure 29: Class CacheBlkpointer ... 63

Figure 30: Class CacheBlk .. 64

Figure 31: Constructor of class CacheBlk() ... 64

Figure 32: Function cmpAndSwap() .. 65

Figure 33: Function satisfyCpuSideRequest() ... 66

Figure 34: Function writebackBlk() .. 67

Figure 35: Function handleSnoop() ... 68

Figure 36: Function access() ... 69

Figure 37: Function handleFill() ... 70

Figure 38: Class Packet... 71

Figure 39: Dynamic Instruction committed in L1 data cache ... 72

Figure 40: AVF for the physical integer register file ... 75

Figure 41: AVF in physical register file using ACE analysis in comparison with fault

injection ... 76

Figure 42: AVF for the L1 data cache with 100% vulnerable written back blocks 78

Figure 43: AVF for L1 data cache with 50% vulnerable written back blocks 79

Figure 44: AVF for L1 data cache with 0% vulnerable written back blocks 79

Figure 45: AVF in L1 DCache using ACE analysis in comparison with fault injection 80

Figure 46: FIT in physical integer register File ... 84

Figure 47: FIT in L1 DCache with 100% vulnerable written back blocks 85

Figure 48: FIT in L1 DCache with 50% vulnerable written back blocks 85

Figure 49: FIT in L1 DCache with 0% vulnerable written back blocks 86

TABLES’ INDEX

Table 1: Hardware Faults and Soft Errors ... 15

Table 2: CPU Models and Memory system ... 35

Table 3: Simulator Configuration ... 42

Table 4: Benchmarks and Instruction count... 74

Table 5: Execution and ACE cycles for each benchmark .. 77

Table 6: Execution and ACE cycles for each benchmark - Data Cache size: 16 KB 81

Table 7: Execution and ACE cycles for each benchmark - Data Cache size: 32 KB 82

Table 8: Execution and ACE cycles for each benchmark - Data Cache size: 64 KB 83

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 14

1. INTRODUCTION

1.1 Subject

The current thesis focuses on the AVF equation (Average Vulnerability factor) via

ACE analysis in Gem5 simulator. My model was developed based on Gem5 (a full-

system cycle-accurate simulator), the bibliography about AVF estimation and other

various object-oriented programming practices. The AVF estimated for two different

structures of the simulator, the physical integer register file for integer registers and the

first level data cache.

AVF according Mukherjee is the probability that a fault in a structure will result in

an error in a program’s output [19]. There are several reasons that a bit of the integrated

system can be destroyed and as a consequence change its value. The most common

reason is the cosmic radiation. The rate at which these changes at the bit values occur

depends on the electric potential at which this device operates, the size of transistor, the

manufacturing technology of the device as long as the environment of the operating

system. There are several ways to detect these errors but each of them has a big cost

and is not always efficient. As a result, the AVF indicates how vulnerable a structure is

in order to take it in mind during the design phase of the computing system. For

instance, if it is known early enough during the design stage which structure of a chip is

the most vulnerable, designers could protect it avoiding the extra cost of protecting all

the structures of the chip. It should be noticed that the AVF also depends on the

application as different applications use different parts of the integrated system.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 15

2. HARDWARE FAULTS AND SOFT ERRORS

There are many effects related to hardware or soft errors. For example, an error bit

at a microprocessor may have no effect, may change the expecting output of the

running program or may cause an error able to terminate the operation of the computing

system.

There are three types of faults than can affect several computing systems. The

first category is the soft errors known as transient faults. The second is the intermittent

faults and the third one is the hard (or permanent) faults. In the next subsections, we

are going to describe in depth these three fault categories as shown in Table 1.

Table 1: Hardware Faults and Soft Errors

Faults Occurrence Sources

Soft error instant bit fault, disappears

on next, write at the bit

cosmic radiation, voltage

fluctuation, transistor

variability

Intermittent fault remains for some executing

cycles, repeated after a

period of time

wear-out, oxide relegation,

process differentials,

industrialization residuals

Permanent fault always wrong output The age of devices, materials

wear-out, manufacturing

characteristics

2.1 Soft errors

The first category is soft errors, the type of faults that will be studied in my

implementation model. One of the main reasons that cause soft errors in computer

applications is the induced radiation. Other factors that provoked transient faults are

alpha particles, cosmic rays and transistor’s variability. There are three prevalent

radiation mechanisms which can lead to soft errors: cosmic neutrons which transfer

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 16

high-energy interact with silicon and other device materials, cosmic neutrons which

transfer low-energy interact with high concentrations of 10B1 in the device and alpha

particles vented from trace radioactive corruptions in the device materials.

The soft error leads to a bit flip, so the fault effect remains after the fault

disappearance. In contrast, intermittent fault leads to a stuck at logic 0 or 1 of a bit value

for an amount of cycles, but after its disappearance the bit takes the values of the

normal operation. The increment of soft error rates (SER) has triggered computer

architecture research to provide solutions in order to moderate soft errors.

The reliability of the program’s outcome at this case depends on the sequence that

several events execute. For instance if a fault event upset happens between two

continuously write operations and a read operation occurs after the 2nd write, then the

read operation’s outcome is correct (Figure 1). From the other hand if the read

operation occurs exactly after the fault event, the wrong value propagates to the output

(Figure 2).

Figure 1: Soft errors that do not influence the outcome of the program

1 Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is composed by the cosmic ray spallation of

oxygen. Beryllium-10 decays by beta decay with a maximum energy of 556.2 keV. High energy galactic

cosmic ray particles react with light elements. The spallation of the reaction products is the source

of 10Be.

https://en.wikipedia.org/wiki/Radioactivity
https://en.wikipedia.org/wiki/Isotopes_of_beryllium
https://en.wikipedia.org/wiki/Beryllium
https://en.wikipedia.org/wiki/Cosmic_ray_spallation
https://en.wikipedia.org/wiki/Spallation
https://en.wikipedia.org/wiki/Beta_decay
https://en.wikipedia.org/wiki/Galactic_cosmic_ray
https://en.wikipedia.org/wiki/Galactic_cosmic_ray
https://en.wikipedia.org/wiki/Spallation

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 17

Figure 2: Soft errors that result in a wrong outcome of the program

2.2 Intermittent faults

The intermittent hardware faults occur very often and occasionally for a period of

time. The dominant reasons that cause them are oxide relegation, process differentials,

industrialization residuals and in-progress wear-out. An intermittent error is activated

every time at the same place or is caused from the same module. As a result, even

though this faulty component will substitute, the intermittent faults will eliminate. Also it

is not sure that an intermittent fault will be activated or not during the lifetime of a chip, it

can be deactivated and reactivated because of the environmental changes and the

process.

The duration period of this fault varies and depends on the factor that causes the

fault. For example, the duration of a fault caused by in-progress wear-out will last some

days and its effect may be similar to a permanent fault, whereas an intermittent fault

caused by temperature and voltage change will last at most several seconds.

 An intermittent fault will take place at burst. Burst informs us about the times of

activations through the appearance of the fault. As active can be considered the

duration of each fault's activation and as inactive time can be considered the period

between two continuous activations.

 It is not certain that an intermittent error will result in a wrong output. For example,

if write operations execute after an intermittent fault, then the next read operation will

execute with the correct bit’s value (Figure 3).

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 18

Figure 3: Intermittent error not always result in wrong outcome of a program

2.3 Permanent faults

A lot of reasons can result at an external or internal permanent fault. External

permanent faults mirrors unrevoked physical changes, caused by manufacturing faults,

like the infection in silicon devices over the time where internal faults caused because of

wear-out of the materials. Generally some of the most correspondent causes for

permanent errors are: electromigration interconnects (EM), thermal cycling (TC), gate

oxides' TDDB and negative bias temperature instability (NBTI) on PMOS transistors.

Also another cause can be the device’s mode of operation, for example, very low

supply voltage can result in an intermittent fault or maybe the incompleteness of the

device can cause a permanent fault. Generally a fault permanent bit will end up

undoubtedly in a wrong output, see Figure 4.

Figure 4: Permanent faults result in wrong outcome of a program

2.4 Soft Error Background and Terminology

The possible fault effects of a single bit fault are six and are used in several

injection based studies [1].

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 19

 SDC: The first category is SDC (Silent Data Corruption) at which the program

generates incorrect outcome. This type of fault is the sneakiest one as the user is

not aware of the bit’s corruption and as result it is impossible to realize that the

outcome of the process is incorrect.

 DUE: The other category of faults is DUE (Detected Unrecoverable Error). At this

case an error is detected but with no ability to be corrected. The process

executes but with error indications that express with ISA exceptions.

 Masked faults: An additional category is masked faults. Masked faults let the

program to execute until its end with the outcome of the application and several

exceptions which occur during the execution.

 Timeout faults: Timeout faults are the faults that result in Deadlock or Livelock. At

a Livelock the program flow has changed and the execution of the instructions

happen in random code areas. At Deadlock the program flow has corrupted and

no more instructions can execute. In order to deal with these two situations, a

timeout limit is used for terminating the execution after this time limit.

 Crash faults: On the other hand, crash faults consider all the cases that the

execution of a program results in an unrecoverable situation. In this case, crash

fault terminates the execution.

 Assert faults: The last category is the assert faults at which the simulator has

reached at a condition, unable to handle it. At that point the execution stops by

an assertion.

Vulnerability is measured in FIT (Failure in Time). FIT is one of the two commonly

used unit for error rates. The other is MTBF (Mean Time Between Failures).The majority

of the designers work with FIT which is reciprocally related to MTBF because FIT is

additive. One FIT specifies one failure in a billion hours. Zero error rate equals to infinite

MTBF and zero FIT. For example, 100 years MTBF equal to 109/ (24*365*100) FIT. The

FIT/bit of a cell typically ranges between 0.001 - 0.010 [28].

The majority of the designers work with FIT which is inversely related to MTBF

because it is additive in contrast with MTBF that is more intuitive. They use multiple

computer models in order to compute the FIT rate for every chip’s device: latches, RAM

cells, logic gates. Moreover, with several mitigation and error protection techniques it is

easy to evaluate whether a chip meets its soft error budget. The overall FIT rate of a

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 20

chip is calculated by summing the effective FIT rates of all chip’s structures (logic gates,

RAM, latches), where the effective FIT rate for a structure is the product of structure’s

vulnerability factor and the raw circuit FIT rate.

It is important to be mentioned that many faults do not lead to a system corruption or

an incorrect outcome. For instance, a fault in a branch predictor structure will just

provoke a delay in the processor’s performance. In another example, a corrupted bit

may not be used in the program execution so the program outcome will be correct. At

this moment the idea of AVF is introducing. AVF is computing the probability that a fault

in a structure will result in an error in a program’s output [19]. AVF analysis method will

be explained clearly later as it is the main goal of this thesis.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 21

3. Vulnerability Factors

Soft errors will become an increasingly important problem in the future computing

systems, so it is crucial to deal with them. Of course there are workarounds but they are

time consuming or they decrease the performance of the system, enlarge the chip size

and the consuming power. As the number of transistors is expected to grow up

exponentially the next years according to Moore’s law, the number of soft errors will

increase, too. Consequently, methods that will provide an early assessment of chip’s

reliability are very important.

Vulnerability factors known as soft error sensitivity factors indicate the probability

that an internal fault in a device’s operation will result in a visible external error. As an

example, if a latch is accepting data with a bigger frequency than holding data, a fault

bit may not result in an error of the program’s outcome because the wrong value of the

bit is likely to be overridden by another value. In other case, if a latch accepts data with

a smaller frequency than holding them, then a bit flip is more likely to provoke a visible

error.

There are many studies that describe several definitions of vulnerability factors. The

main definition was AVF (Architecture Vulnerability Factor) that was proposed from

Mukherjee et al. and it concerns the probability of a soft error to result in an error of the

program visible output [19]. This vulnerability factor describes the masking probability of

the entire system stack and is the metric that we are measure in this thesis. Next,

Sridharan et al. proposed PVF (Program Vulnerability Factor) that was responsible to

characterize the coalescent soft error masking rate of the software layer [20][18]. Bower

et al. proposed the H-AVF (Hard-Fault Architectural Vulnerability Factor) that is used to

compare alternative hard-fault tolerance schemes [20]. All these types focus on the

masking probability of soft errors in hardware, software or system’s stack. The last

vulnerability equation type is IVF (Intermittent Vulnerability Factor) that expresses the

probability of an intermittent error to cause an external visible error.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 22

3.1 PVF

PVF is used to characterize the vulnerability of a program with no dependencies

on the hardware layer. It refers to architecture level and evaluates the masking effect of

soft errors in that level. Moreover, it can be used as a way to express the behavior of

AVF during the program execution (runtime AVF) or such as metric to choose the

appropriate algorithm or the appropriate compiler optimizations in order to reduce the

vulnerability of a program due to soft errors. The type for its computation is:

Where I is the total number of instructions in the program , B represents the total bits in

the architecture structure and Ni
A-bit represents the number of bits type A in instruction i.

3.2 H-AVF

H-AVF helps designers to make comparisons between different hard-fault

tolerance techniques. The main aim of H-AVF computation is to provide information

about different designs and used it to compare hard-fault tolerance designs. This

information will be used to compare hard-fault tolerance designs.

The equation type is:

Where Nf is the total number of the faults sites in the structure, Ni is the total number of

instructions in the program and insterror is the number of instructions that will corrupt

because of the hard-faults [20].

3.3 IVF

IVF (Intermittent Vulnerability Factor) measures the probability that an intermittent

error will manifest an external visible error. The computation of IVF is very helpful for the

designers as they can use it during the design of microprocessor in order to combine

high reliability and good performance at the same time. It has been proved

experimentally that IVF differs across different manufactures or workloads, so more

protection can be added to the most vulnerable structures. Large percentages of IVF

indicate that the structure is vulnerable to intermittent errors.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 23

The equation type of IVF at the register file is:

Where E points to the number of entries in register file, and UD
 CT(e) indicates if an

intermittent fault has occurred in a critical period of time or not. Numerator Σ adds

together the total number of all affected registers during the time interval that the

intermittent fault exists.

3.4 AVF

A crucial aspect of AVF analysis is that some single-bit faults such as those

occurring in the branch predictor will not produce an error in a program's output. AVF is

the probability that a bit fault in the structure will result in an error, so the final outcome

of the program will be different from that one that was expected. Thus, it has to be

declared that not all faults in a microarchitectural structure will affect the final output of a

program. For example, any committed instruction will not be affected from a single bit

fault in a branch predictor; hence, the AVF for a branch predictor is 0%. On the contrary

the program’s outcome will be affected for sure if a single bit fault occurs in the

committed program counter. At this case the wrong instructions will be executed and as

a result the AVF for the committed program counter is 100% [19].

The AVF for most of the structures is between 0% - 100%. AVF in combination

with the raw fault rate induce the calculation of the overall error rate of a

microarchitectural structure. Summing up, the raw fault rate that is detected by the

process and the circuit technology can be mapped from a processor architect to an

overall processor error rate and thus determine whether the design meets its error rate

goals.

There are several methods for computing the AVF of a hardware structure.

 ACE analysis: A set of these approaches is based at ACE analysis (Architectural

Correct Analysis) at which every bit can be ACE or un-ACE. A bit is un-ACE for

the interval when its value can be flipped without affecting the final program

outcome. Otherwise if this change affects the final outcome then the bit is ACE.

Ace analysis will be presented in Section 3.4.1 with more details.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 24

 Statistical Fault injection: During fault injection experiments, the output of a golden

run is compared with that of a run that an injection of a fault was occurred. An

injection can target the system or the application software or the hardware

structures of a simulator. There is also injection in the RTL (Register Transfer

Level) level. An RTL model represents the micro-architecture of a circuit

injection. It is implemented in HDL (Hardware Description Language) for

example, VHDL. Register variables are used to store data, whereas

transformations represented by arithmetical and logical operators. RTL model

composes a gate-level model of the design.

 Probabilistic methods: Probabilistic methods for evaluating AVF provide early and

reliable estimation. They are about models with high level performance, coupled

with low level information about processors’ reliability. These models are

available at early stage of the design.

ACE analysis identifies which bits are necessary for architecturally correct execution

(ACE bits) of a program. Furthermore, it measures the percentage of ACE bits in a

hardware structure. When an ACE bit is corrupted there is a visible error at the outcome

of the program. This analysis originally assumes that all bits in a hardware structure are

ACE bits, after that finds the bits that can be proven unnecessary for the correct

execution of the program (unACE bits). It is significant that ACE model can be

performed early in the design cycle by the hardware designers.

All these methods for evaluating AVF are really fast. After few runs of the

benchmark and since the simulator is configured according to the requirements of the

computing system you can have an AVF estimation in contrast to the fault injection that

is really time consuming as needs a lot of runs for the same benchmark before

providing the final assessments. Nevertheless all these approaches have one major

disadvantage, they over-estimate the vulnerability of microprocessor structures in

contrast to the fault injection method.

Especially ACE analysis overestimates the vulnerability of soft error 3 x times in

average against the vulnerability computed using fault injection [1]. Recent studies have

shown that this overestimation of the AVF can be decreased by adding more details

about the RTL (Register Transfer Level) model. The accuracy of AVF is intrinsically

connecting with detailed models execution. The overestimation of the AVF will be

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 25

presented in the next sections in more details, where we compare the AVF calculated in

this study for different benchmarks and structures with that obtained by [1].

3.4.1 ACE analysis

In order to compute AVF we need to determine which bits are ACE bits, affecting

the program outcome and which are un-ACE bits that do not affect the final output. Un-

ACE bits divide into two categories.

 Microarchitectural un-ACE bits

 Architectural un-ACE bits.

3.4.1.1 Microarchitectural un-ACE bits

An un-ACE microarchitectural bit is correlated with an idle/invalid state, a miss-

speculated state, an ex-ACE state or a predictor state. In more details:

 Idle/invalid state: A status bit or data can be characterized as un-ACE when is idle

or does not contain any valid information. Nevertheless control bits are always

ACE-bits and a fault on a control bit may result in error.

 Miss-speculated state: The bits that used to represent a wrongly speculated

operation such as branch prediction, are un-ACE. These operations are

performed more and more often at modern microprocessors.

 Ex-ACE state: An ACE-bit after the last time it was used by a committed

instruction becomes un-ACE (dead bit). With that state can be described both the

architecturally dead value and the architecturally invisible states.

 Predictor state: All kind of microprocessors’ predictors such as branch, jump,

store-load dependence predictors and stack predictors consist of un-ACE bits. A

fault in that structure most of the times will result in a misprediction. This

misprediction will affect the performance of the program but will not result in an

error at the final output.

3.4.1.2 Architectural un-ACE bits

An un-ACE architectural bit can be correlated with NOP instructions, performance-

enhancing instructions, predicated-false instructions, dynamically dead instructions and

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 26

logical masking. These bits affect the correct-path instruction execution, but they do not

affect the output of the program. Those kinds of bits that are not used in the constitution

of the ACE path are called un-ACE instruction bits. In more details:

 NOP instructions: NOP instructions do not affect the architectural state of the

processor and also there are at the majority of the instruction sets. They are used

in order to align instructions to address boundaries or to fill VLIW-style instruction

templates. There are some ACE bits in the NOP instruction that distinguish it

from a non-NOP (all the other bits are un-ACE bits). These bits can be the

opcode or the destination register specifier, depending on the instruction set.

 Performance-enhancing instructions: Performance-enhancing instructions are

included at the most of instruction sets. In a non-opcode field a single bit error

will not affect the final outcome of the program. For example, a single bit upset at

a prefetching instruction may cause the address to become invalid (the

prefetching will be ignored at this case) or the wrong data will be prefetched.

Nevertheless the program’s output will not be changed. Thus, the non-opcode

bits are un-ACE bits.

 Predicated-false instructions: Predicated instruction-set architectures are based on

a predicate register in order to decide if an instruction will be executed. The

instruction will commit only if the predicate predictor is true otherwise the

instruction will be discarded. Thus, all bits in a Predicated false instruction set are

un-ACE bits except the predicate register specifier bits. A fault in those bits may

result in a false prediction for the instruction, so these bits are called ACE

instruction bits. If the instruction is dead and there is a fault in the predicate

register, it will not result to any problem at the computation of the program as this

instruction is not going to be committed again. The predicate register as well as

the corresponding specifier can be considered as un-ACE bits for that case.

 Dynamically dead instructions: Dynamically dead instructions are the instructions

with unused destination registers. There are two types of dynamically dead

instructions the first-level dynamically dead (FDD) and the transitively

dynamically dead (TDD). FDD results are not read by any other instruction. The

TDD instructions lead to FDD or other TDD instructions

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 27

 Logical masking: Logically masked are the bits that belong to operands in a chain

of computation that their bit values are not used do not influence the final

computation.

3.4.2 AVF Equation

The AVF for a storage cell is the percentage of time at which the cell contains an

ACE bit. For example, if a storage cell contains ACE bits for 10000 cycles out of an

execution of 100000 cycles, then the AVF for that cell is 10%. The equation of the AVF

for a whole hardware structure is similar with the above equation [19]. The AVF for the

whole structure equals to the average AVF for all bits’ structure.

The equation for AVF of a hardware structure is equal to:

As at this study a simulator will be used for extracting data in order to compute the

AVF,the above type can be more specified and rewriten as:

Using the aforementioned type, in this study we calculated the reliability of two

hardware structures (the physical integer register file and the L1 data cache).

3.5 Diagnostic and Protection mechanisms for hardware fault

A memory error can influence both the performance and the reliability of the

computing system, so it is important for a computing system to be designed with a way

in order to be reliable. The reliability of the system can be achieved by using detection

and diagnostic mechanisms for hardware faults as long as mechanisms for system

recovery after the fault detection.

These tolerance mechanisms encumbrance the computing system in terms of

execution time, memory capacity and the cost. The cost of a common memory detection

technique for hardware errors with capabilities for recovering can be from very low to

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 28

very high. Mechanisms such as detection or correction of an error, being added to the

system result to slowdown of the execution time of the benchmarks.

 There are two types of tolerance mechanisms. The software level techniques as

long as the hardware level techniques [13][1]. Software-level methods are responsible

for detection and do not impose any area overhead. The hardware-level techniques do

not use any software intervention for the detection or protection, so they increase the

hardware cost of the computing system. For that reason the selection of best

techniques about the diagnosis, the detection and the correction of hardware errors has

to take into account all the characteristic of the computing system and to take place in

an early stage of the design phase. In this way the high cost of redesign cycles on later

integration will be avoided.

 However is really difficult to choose the most appropriate mechanism as a lot of

knowledge is missing at the early stages of the design procedures. The designer is not

aware of the workload, the architecture of the system or the different hardware sizes. At

this moment the usage of a microarchitecture simulator against RTL model is

undoubtedly the best choice. It can give us an effective reliability estimation with much

accuracy at the early stage before the design of the computing system.

The microarchitectural simulators are remarkably faster than the simulators in the

RTL level and make easier the study of large and realistic benchmarks. Moreover, the

fact that they can be used at the early stage of the design give architects the opportunity

to configure many parameters and hardware structures of the computing system. A

microarchitecture simulator is responsible for modeling all the microarchitecture

components of the system, such as the arrays for storage in a chip area. As a result, it

determines the vulnerability factors for structures like: register files, caches, buffers,

queues. Also, they are important for multiple performance studies since they allow study

on software’s execution with big duration [1]. In this study, we use the GEM5, a

microarchitectural simulator to measure the AVF of physical integer register file and L1

data cache.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 29

4. Gem5 Simulator Overview

Gem5 simulator is a free open source software platform that supports simulation of

multiple platforms as described below (Instruction Set Architectures – ISA) like ARM,

Alpha, MIPS, Power PC, SPARC and X86 64-bit. All system components of the

simulator are configurable. Gem5 is also a combination of two older simulators, M5 and

GEMS. Specifically M5 has contributed with its functional full system simulator and

GEMS with its memory modeling capabilities.

Below we present the main details of each ISA:

 ALPHA: the most used ISA on Gem5 simulator. Alpha architecture based on a

DEC Tsunami system that can be extended for up to 64 cores.

 ARM: models a Cortex-A9 and offers support for Thumb, Thumb-2, VFPv3, NEON

instructions set extensions.

 X86: models a X86 CPU (64 bit) which boots unmodified Linux Kernel in a SMP

configuration (this ISA will be used in this study).

 SPARC: models an UltraSPARC t1 processor which boots Solaris.

 PowerPC: models a 32-bit processor based on POWER ISA v2.06 B.

 MIPS: models a 32-bit processor.

4.1 M5

The M5 project was started at University of Michigan as a full system simulator to

simulate large networked systems and explore designs of network I/O. M5 simulator

offers a configuration environment for multiple Instruction Set Architectures, ISAs and

CPU models.

M5 consists of two CPU models, SimpleCPU and O3CPU. One of its characteristic

is that M5 simulator can change CPU models during the runtime for example, can

change between SimpleCPU to O3CPU if there is need for taking statistics and from

O3CPU to Simple CPU if there is need for warm-up operation and forwarding.

 Specifically the model of SimpleCPU is not a pipeline model. It is about an in-order

model with only one outstanding memory operation. Its configuration can be such to

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 30

execute one or more instructions per cycle. Except from the previous operation

SimpleCPU is also used to model network client systems.

 On the other hand O3CPU is an out-of-order model, pipelined, concurrent,

superscalar and multi-threading (SMT). It has been developed to provide timing

accuracy. For that reason timing and functional modeling have integrated into a single

pipeline execution (functional instructions execute at execute stage of timing pipeline).

This type of model has several stages like decode or fetch that can be configured in

their own attributes such as latency. Time buffers are responsible for the communication

between these stages. In addition, the O3CPU model can simulate particularly an out-

of-order pipeline as long as it includes branch predictors, store/load queues, instruction

queues, predictors for memory dependence and functional units. O3CPU model is going

to be used in this thesis.

 According to memory system, M5’s memory consists of two types of objects, the

devices and the interconnections. As devices can be considered caches, I/O devices or

memories. About the interconnection network there are two models: “Simple” and

“Garnet. Simple network model is presented by default and traverse the network hop-

by-hop while it abstracts out detailed modeling within the switches. On the other hand

Garnet is a more detailed interconnection network model. It consists of flexible and fixed

pipeline model and it uses routing tables, variable link bandwidth and multi-cast

messages. Simple network model is faster than Garnet.

 M5 can support caches with configurable parameters as size, associativity,

replacement policy, latency etc.

4.2 GEMS

The GEMS simulator was started at University of Wisconsin. GEMS features a

timing simulator of a multiprocessor memory system called Ruby) which is used to

model different cache coherency protocols. GEMS also supports interconnect models

(network connection). This merge into Gem5 has taken the best aspects from these two

simulators.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 31

4.3 Fundamental requirements of Gem5

Gem5 constructed according three fundamental requirements: flexibility,

availability and collaboration.

Regarding to flexibility Gem5 has two execution models. It can run as a System-

call Emulation (SE) or as a Full System (FS). In a SE mode all system calls are handled

by the simulator and only the user space program is simulated. SE mode is really fast, if

only memory operations need to be observed. On the other hand in a FS mode all

systems calls and user space are simulated. Fs mode operation is slowly and provides

Linux as the environment of the simulation. Also, it consists of two memory system

models, the Classic and the Ruby. Ruby features in GEMS and implements a domain

specific language called SLICC (Specification Language for Implementing Cache

Coherence) which is used to model multiple cache coherency protocols. The Classic

model features in M5 and provides a configurable memory system. Moreover Gem5

supports 4 multiple CPU models, each one has a different point across the speed vs.

accuracy spectrum. The AtomicSimple model is a minimum model of an IPC

(Instructions Per Cycle) CPU, the TimingSimple model is a similar model which is

configured some timing characteristics. The InOrder model simulates a pipelined in-

order CPU while the O3 model simulates a pipelined out-of-order CPU. Another proof of

its flexibility is the fact that it is really easy to apply a wide range of investigations if you

become familiarized on it.

Gem5 is available for both academic and corporate researchers. Its license is based

on BSD license and there is no dependence on proprietary code. Gem5 as an open

source software is combined effort of many people with different specialties

(researches, students, engineers etc.). The community of Gem5 is really active and

uses different collaborative technologies like mailing lists, wiki, a management system

for the several code changes based on web and a public source repository.

4.4 Memory System in Gem5

The memory system in Gem5 has been designed with modularity through several

interfaces, flexibility as different cache models interconnects and an inclusive set of

buildings. Memory system consists of Memobjects, ports, connections and the port

proxies.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 32

4.4.1 Memory System Models

As the GEMS simulation system has primarily been used to study cache-coherent

Shared memory systems (both on-chip and off-chip) and related issues, those aspects

of GEMS 1.0 release are the most detailed and the most flexible.

The heart of GEMS is the Ruby memory system simulator. The other model is the

classic. Classic model is fast, easy and can configure easily the memory system. All

memory objects are connected via ports. This model supports fast forwarding. Atomic

accesses and timing as long as are really fast at this model. Also, it is easy to be

configured and to keep up with other memory models. One of its disadvantage is that is

not able to model protocol contention.

 Ruby as a timing model of a multiprocessor memory system responsible for

modeling caches and their controllers, system interconnect and also the bank of the

main memory as long as the memory controllers. Ruby is the model that can have a

combination between timing simulation for modules that have no dependence with the

cache coherence protocol such as interconnection network and a specification language

for Implementing Cache Coherence (SLICC). The objects do not connect via ports like

classic model but via RubyPort object. The disadvantage of that model is that does not

support fast forwarding. Moreover, in contrast to the classic model is slower and is

difficult to simply extend protocols to other level of cache. An overview about Ruby is at

Figure 5.

Figure 5: Ruby Simulator overview

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 33

In Figure 6 a high level overview of Gem5 shows. It concerns all modules that

interact with it from the first step until the last of a program execution. To run the

simulator it takes a Linux kernel, a disk image and a configuration file.

Figure 6: Gem5 high level overview

According to the Figure 6 the console output, the statistics file and the debug

information are the output of the simulator. The statistics file (stats.txt at m5out folder),

which contains statistics that are collected during the simulation is dumped to a file at

the end of simulation. The debug output can be controlled using flags during the build.

Every program that executes in Gem5 can be accessed besides having the input

and output while it is running by connecting a terminal or GDB over specified network

interfaces. Attaching GDB can be used to debug the simulated system.

4.4.2 Port system

Port System consists of Memobject, Ports, Connections and Port Proxies.

 Memobjects: Every object in a memory system is inherited from MemObject. The

calss of Memobject allows the connection of memory objects. Its functions return

the name of the port that is going to be used for the connection.

 Ports: Every MemObject should have at least one port in order to be useful. Each

port can be master or slave. The master port connects to slave. All the ports

come to peer.

 Connections: All the entries with info about the connection are saved at a vector

port.

 Port Proxies: There are three types of port proxies. The first one is the PortProxy

and is used for setting and loading physical addresses. The other two types are

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 34

SETranslatingPortProxy and FSTranslatingPortProxy. These ports use virtual

addresses.

4.4.3 Packets

The encapsulated transformation among two objects in the memory system is done

via packets. A packet is readable only in case of its value is valid. Its class has many

information about the size, the address etc. Packet’s fields are accessed by assessors

in order to ensure that the data in the packet are valid. All these fields as long as some

new fields that I have added will be explained with more details later in the

implementation model of this study.

4.4.4 Requests

The initial request issued by CPU or I/O device is encapsulated in a request

object. Request’s fields are accessed by assessors in order to ensure that the data are

valid. A request is demanded for a request packet construction. Request fields such as

physical address, its size etc. will be explained in details later.

4.4.5 Atomic, functional, Timing access

The ports support three types of accesses: Atomic, Functional and Timing. Atomic

accesses are really fast and used to forward caches. They return the expectation time

that needed to complete the request without taking on mind the queue delays. Atomic

and timing accesses cannot coexist in the memory system. Functional accesses have

the same period with atomic accesses. The disadvantage of that kind of accesses is the

fact that they can coexist in the memory system with atomic or timing accesses. They

are used for loading binaries and changing variables in the simulated system. In the end

Timing accesses are the accesses with the more details. They represent a real time

model and take into account the queue delay in contrast to the atomic accesses.

There is a need of a flow control, because timing requests simulating a realistic

memory system are not instantaneous. The flow control is responsible for guiding when

a packet will be resent after the first failed sent. The packet will be sent again only in

case of received a value that will ensure that the packet can be send again.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 35

4.5 CPU models

The CPU models in Gem5 are the following: Simple CPU Model, Out-of-Order

CPU model, In Order CPU Model and Trace CPU Model.

In Table 2 about Memory system models and Cpu Models sum up all the

appropriate information about that models.

Table 2: CPU Models and Memory system

Processor Memory System

CPU Model System Mode Classic Rubby

Simple Garnet

Atomic Simple SE

FS Speed

Timing Simple SE

FS

In - Order SE

FS

O3 SE Acuracy

FS

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 36

4.5.1 SimpleCPU

Simple CPU is a functional, in-order model without representing a detailed model.

It is divided into three sub models, the BaseSimpleCPU, AtomicSimpleCPU and

TimingSimpleCPU. The BaseSimpleCPU model determines functions for checking

interrupts, setting up fetch requests, handling pre and post executing actions and for

advancing the PC to the next instruction. The AtomicSimpleCPU model uses atomic

memory accesses, while the TimingSimpleCPU model uses timing memory accesses.

One main difference between AtomisSimpleCPU and TimingSimpleCPU is that

AtomicSimpleCPU waits until memory access returns, so the stages of fetch and

memory may last more because of the fetch delay or LD/ST delay. This difference is

shown at Figure 7 and Figure 8 below. Simple CPU also defines the port that is used to

hook up to memory and that connects the CPU to the cache as long as determines the

necessary functions for handling the response from memory to the accesses sent out.

Figure 7: CPU Model AtomicSimpleCPU

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 37

Figure 8: CPU Model TimingSimpleCPU

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 38

4.5.2 O3CPU

The Out-of-Order CPU (O3CPU) model that is used is an out-of-order CPU model.

Next, we present all the pipeline stages and resources. Pipeline stages also are

presented at Figure 9.

 Fetch: The first stage of pipeline is fetch. At this stage the dynamic instruction

(«class DyInstptr») will be created for the first time. The object of «class

DyInstptr» represents the dynamic instruction (more details for that

structure will be given in the following section). Also, it selects the thread

that is going to be fetched as long as it is responsible for branch prediction.

 Decode: The other stage is Decode, and is used to handle the PC at

unconditional branches. The next stage is rename. This stage uses physical

integer register file and also renames architectural registers to physical

registers according to the programs’ needs.

 IEW stage: One of the final stage is the process of:

 Issuing the instruction:

 Executing the instruction

 Writing back the instruction

This stage is a combination of processes as it can handle both execute and

writeback. Also manages dispatching instruction to the instruction queue.

 Commit: The last pipeline stage is the commit. It is the stage at which an

instruction is committed or not. This stage is the most important for ACE

analysis, because only the instructions that are finally committed can

corrupt the output. Instructions that did not arrive at this stage have not be

measured in the ACE analysis presented in this study.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 39

Figure 9: O3CPU pipeline

Each pipeline stage consists of several structures (queues, buffers, predictors and

functional units etc.). In more details, the pipeline resources are:

o Branch predictor: Branch predictor allows the selection between a local, a

global and a tournament predictor.

o Reorder buffer: Reorder buffer not only handles the instruction that are

squashed but also holds all the instruction in program order.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 40

o Instruction queue: Instruction queue acquires several dependencies among

instructions and uses the memory dependence predictor for scheduling

when an instruction is ready.

o Load-store queue: Load-store queue holds accesses to the memory system

that have reached the back-end. When memory operations issue and start

to execute then load-store queue hooks up to L1 data cache and initiates

the accesses. Moreover it is used to detect memory violations, to replay

memory operations in case of blocked memory system and to handle the

forwarding operation between store and load actions.

o Functional units: Functional units determine which instruction can be issued

at each cycle as long as the latency of the executed instruction.

4.5.3 InOrder

In Order CPU model provides a generic framework for in –order pipelines without

a specific ISA or pipeline description. So this model provides generic pipeline stages of

Fetch, Decode, Execute, Memory, Writeback. If an instruction cannot complete all its

resources requests in one stage, then it blocks the pipeline. It can be shown at Figure

10.

Figure 10: InOrderCPU pipeline

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 41

4.6 Extensive – object oriented design

The flexibility of Gem5 is a consequence of its object oriented design. The way of

its design and systems’ configuration with independent items lead to the modeling of

multiple CPU models and systems.

 All basic elements of Gem5 called SimObjects and have common behavior

concerning the configuration, initialization, the collection of statistics and the

serialization. The SimObjects contain independent constituents of hardware like cores

of CPU, cache memories, interconnections data and devices. Furthermore there are

some abstract entities, the workload and the System – Call Emulation (SE).

 Every SimObject is represented by two classes, the one is written in Python and

the other in C++ and is inherited by the main class SimObject that is written in both C++

and Python. The definition of the class in Python sets SimObject’s parameters and is

used during the configuration through a script file.

The main Python class provides consolidated mechanisms for the initialization, the

definition of the parameter’s value and the name of the variable. The main C++ class

holds information about the SimObject, its behavior and the characteristics of the

simulation process.

4.7 Python

Python is a scripting programming language. It is really popular because of its

flexibility and easiness of use. Except from the fact that the majority of the code in

Gem5 is written in C++, Python has a very big distribution. Every SimObject as already

mentioned is written both in Python and C++. The script files in Python offer

initialization, configuration and the control of the simulation. The main() function as long

as the code for the command line process and the boot process are written in Python.

At the beginning, the simulator runs Python file. All the configuration scripts used in this

study for the size of physical integer register file or the L1 data cache associativity are

written in python.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 42

4.8 Physical Integer Register File

Three types of registers are used in CPU models of Gem5. The first one is the

physical register, the next is architectural registers and the last one is Condition code

registers (CC). The index of a physical register is the index that is encoded in the

instruction. There are two register classes, the one for integer registers and the other for

float registers. In this study, we make ACE analysis only for the integer register class.

The index space for that registers start at 0. Architectural registers have been in order to

avoid the managing dependencies that physical registers are not able to deal with.

4.9 Gem5 Configuration

Details about the configuration of the original version of the simulator which are

related to this study are described in the next Table 3.

Table 3: Simulator Configuration

Physical Integer Register File 256 integer registers

Load/Store Queue Entries 16 Load, 16 Store

L1 data cache 32KB, 64B line, 128 sets, 4-way, write-back

L1 Instruction cache 32KB, 64B line, 128 sets, 4-way, write-back

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 43

4.10 Inside the Gem5

Figure 11: Source code Tree organization for Gem5

More specifically every folder at Gem5 simulator has its own functionality that is

described below, see Figure 11.

 System: platform with low level software (firmware, bootloaders) – packaged

separately.

 Tests: files related to regression tests.

 Configs: Configuration scripts written in Python that provide some basic

prepackaged functionality. Also include some examples that can be used for your

own script.

 src: the source code of the simulator

 src/arch: ISA implementations.

 src/base: general data structures/facilities

 src/cpu: Specific models of CPU

 src/dev: : Specific models

 src/doxygen: Doxygen templates and output.

 src/kern: Specific Operating System but architecture is independent code.

 src/mem: Memory System models.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 44

 src/python: Python configuration code.

 src/sim: Code for the base functionality of the simulator.

 util: utility programs and scripts which are not parts of the Gem5 binary but are

generally useful when working on Gem5.

 ext: Dependencies that are really hard to find alone, not likely to be available and

are generally useful when working on Gem5.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 45

5. Simulated system

The simulated system is a Linux system and the release that chosen is Ubundu

14.4.0. Ubundu 14.4.0 is flexible and everything can be compiled from source, also is

really helpful during the debugging. Gem5 developers propose Ubundu and concerning

the Kernel they recommend to fetch it directly from kernel.org. A Linux Kernel and a

Linux disk image are appropriate in order to start a simulation.

5.1 The Linux Kernel

One of the components needed for the simulation is a compiled Linux kernel. The

Gem5 wiki provides four different configurations of the Linux kernel for x86 64-bit.

Newer versions of the Linux kernel are preferable as the goal of this thesis is to provide

the most recent software stack. In this study the edition of Linux kernel for X86 Gem5 is

x86_64-vmlinux-2.6.22.9.smp.

5.2 Clock cycle

Clock cycle is the amount of time between two pulses of an oscillator and is the

parameter that determines the speed of CPU or a computer processor. It is known that

the higher pulses per second, the faster the computer processor will be able to process

information.

 Clock speed or cock rate is the speed that the microprocessor executes each

instruction or vibration of the clock. For each instruction’s execution the CPU requires a

number of clock ticks or cycles to be executed. The measurement for clock speed is Hz.

Typically is measured in MHz or GHz. For example, a 2 GHz processor executes

2.000.000.000 clock cycles per second.

According to the type of the processor, computer processors can execute one or

more instructions per clock cycle. Nowadays the modern processors can execute

multiple instructions per cycle while earlier computer processors and slower CPUs can

only execute one instruction per clock cycle.

A tick is an arbitrary unit for measuring internal system time. There is usually an OS-

internal counter for ticks; the current time and date used by various functions of the OS

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 46

are derived from that counter. A tick is 1 pico second and in order to convert it to clock

cycle is needed to be known how many seconds is a clock cycle. Consequently, a clock

cycle can be any number of ticks. For example, for a 2 GHz CPU that is the CPU speed

for my implementation, 1 clock cycle takes 500 pico seconds that means 500 ticks (1

tick=1 pico second).

5.3 Computation of simulation’s clock cycle

In order to calculate the exact clock cycles of the simulation execution, it is needed

to be divided the whole ticks of the simulation by 500 (for a 2 GHz CPU that is the CPU

speed for this study, 1 clock cycle takes 500 pico seconds that means 500 ticks). The

same calculation has been done in order to compute how many clock cycles is the ACE

interval time of the simulation.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 47

6. Cache Memory

Cache memory at Gem5 simulator is related on Harvard’s architecture. According to

that architecture model, cache memory is separated into data cache and instruction

cache.

The advantage of this architecture is that the system can fetch an instruction from

the instruction cache simultaneously with data from data cache. Other important

advantage of that architecture is that keeping instruction cache and data caches

separated, prevents conflicts between set of instructions and data. The disadvantage of

that model is that the size of Icache (Instruction cache) as the size of L1 data cache

(data cache) is not fixable. It is fixed depending on the architecture. The major

difference between them is that the data cache must be capable of performing both

read and write operations, while instruction cache needs to provide only read operation.

This type of memory is really faster than architectures like Newmann. At Newmann’s

architecture data and instruction cache are the same.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 48

 Figure 12 represents the hierarchy between L1 and L2 cache memory as long as

the stages that an instruction follows until accesses data cache.

Figure 12: L1 & L2 cache memories

6.1 Instruction Cache

Instruction cache holds only the instructions that processor will execute. Usually its

size is smaller than data cache as instructions for a program take less memory that

program’s data. It is very often the same instruction executed so many times during a

program execution for that reason designers have decided to devote more chip area at

data cache memory.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 49

6.2 Data Cache

Data Cache holds temporarily data that processor uses during the program

execution. From that type of memory data can be stored or loaded from the memory.

Considering the process of writing data at data cache there are two policies: Write

Back and Write Through. At write through policy, the data setting happens at the same

time at data cache memory and memory system. For some benchmarks, the

disadvantage of the write through method is that continuously memory access will

reduce the performance as it is needed to wait until the completion of the previous

access in order to access memory again. Write back policy allows data writing to

memory system only if some structures of the processor are available. The

disadvantage of that policy is the cost and the complexity of the memory. Some

writeback caches include write-buffer as temporary storage for lines that are being

written back in order to avoid the big delay. Gem5 implements only the write-back

policy.

6.3 Cache Mapping and Associativity

A very important factor that determines the effectiveness of cache memory is related

with the way that is mapped to the system memory. There are many ways to allocate

the storage in our cache to the memory addresses it serves. More clearly the

associativity is the answer to the question “how will be divided the address lines in

cache memory amongst the system memory”. Three different ways can do this mapping

in the memory system.

 Direct Mapped Cache: The simplest way for memory mapping. The memory

system chopped in chunks. The number of chunks is equal to the number of

address lines in cache. Then each chunk gets the use of one cache line. This is

called direct mapping. Although this way is very simple, it has no flexibility about

where to put the blocks in the cache.

 Fully Associative Cache: In a fully associative mapping a cache block can go

anywhere in the cache. There is no need to allocate cache line to a specific

memory location. Every tag must be compared when finding a block in the cache,

but block placement is very flexible!

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 50

 n-Way Set Associative Cache: "n" is a number, at least 2 as 1-way associative is

the direct mapping. It about a conciliation between the direct mapped and fully

associative designs. At this design cache memory split into sets, the number of

sets depends on the way of association. For example, at a 4-way set

associativity, cache memory consists four sets. Each memory address is

assigned a set, and can be cached in any one of those four locations within the

set that it is assigned to. Generally, “n” means that there are "n" possible places

that a given memory location may be in the cache. A n-way associative cache

memory, with n blocks is a fully associative cache. In order to compute a set

index or to select a set within the cache instead of an individual block the next

equation types are used:

 Block Offset = Memory Address mod 2n

 Block Address = Memory Address / 2n

 Set Index = Block Address mod 2s

 In this study, cache memory is 4-way associative and all the computation about

number of sets and blocks computed with the above arithmetical types.

A memory address of m-bits shows all of the information needed to locate the data

in the cache. The address consists of three parts: tag, set index and block offset. The

length of these fields differs from design to design. The least significant bits are used to

determine the block offset. If the block size is B then the block offset needs b = log2B

bits to be specified. The next highest group of bits is the set index and is used to

determine which cache set we will look at. If S is the number of sets in our cache, then

the set index has s = log2S bits. The remaining bits are used for the tag. Tag field is

used to differentiate the several regions of memory that will be mapped into a block. It is

like a unique identifier for that group of data. As the length of the address in bits is m-

bits, then the number of tag bits is t = m − b − s. See Figure 13.

Figure 13: Divisions of the address for cache use

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 51

Figure 13 also shows a memory address for a direct mapping or a n-way associative

cache memory. A full associative cache memory is shown at Figure 14. Due to a cache

block can go anywhere in the cache there is no need for index field in the memory

address.

Figure 14: Fully associative Cache Memory

6.4 Cache Size

The capacity of a cache represents the amount of data that can be stored in the

cache. For example, a cache with capacity 64KB can store 64kilobytes of data. In this

study, the AVF was computed for three different data cache capacities, 64KB, 32KB

and 16KB.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 52

7. Implementation of AVF analysis assessment in Physical Integer
Register File and L1 Data Cache

In this study vulnerability factors computed at the physical integer register file and L1

data Cache. In order to export the final results for that two modules all the ACE bits in

the structure, should be recorded. The overall ACE bits consist of ACE bits in physical

integer register file and ACE bits in L1 data cache, as well. I have extended the code of

Gem5 by adding new fields and methods at some existing classes or by implementing

new classes. AVF computation for physical integer register file will be analyzed

thoroughly in Section 7.3 and about L1 data cache at Section 7.4.

7.1 Start and End Tick of the Simulation

For 10 benchmarks executed in Gem5, we created checkpoints for every

workload. Each benchmark restore a checkpoint which is in the folder gem5/m5out.

Because of the restore mode, the simulation does not start at Tick 0 but at the Tick

which the checkpoint has taken. For that reason the initial tick of simulation has to be

noted for the computation of the program duration. At the physical integer register file

simulate.hh as long as simulate.cc a new variable, the variable «Tick initial_time» is

defined for that scope: Tick initial_time= CurTick ();. CurTick () function returns the tick

time at that moment of execution.

 The end simulation Tick is taken at the file sim_events.cc with the same way,

using function CurTick() in the function «exitSimLoop()». The subtraction of end and

initial Tick gives the program duration that is going to be used in AVF equations.

7.2 Dynamic Instruction

The dynamic instruction is the instruction that executed and is responsible for

modifying the data of a register in the physical integer register file or a word in L1 data

cache. It is declared in the header file dyn_inst.hh in the «class BaseO3DynInst». In

order to know which dynamic instruction is responsible for a change in the data field of a

physical integer register or a word of the L1 data cache, three more fields were added at

the class of BaseO3DynInst. The extra fields are shown in Figure 15.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 53

Figure 15: Class BaseO3DyInst

A load dynamic instruction in the physical integer register file can access the value

from one or more register at the same time. Even in data cache a load instruction can

access more than one word simultaneously. So, when a load instruction is committed all

the entries in vectors Entry (analyzed in more detail at the next Sections) that are

related with that instruction updated according to that commission. Entry is a structure

that holds information about the time that happens a change in the data field of a

physical integer register or a word of the L1 data cache. The above vectors:

read_packet and packetInfoCacheAccess hold information about the registers and the

words of L1 data cache which are depend on this instruction. As a result two new

classes have been added. The «class packet» for the physical integer register file and

the «class InfoForCacheAccess» for the L1 data cache.

«Class packet» as shown in Figure 16, has information about the index of the

integer register and details about the exact row and column that is in the vector Entry.

The value of row_of_Entry indicates the register ID, while the column_of_Entry indicates

the load instruction that accessed that entry. All the packets’ fields are accessed by

senders and receivers.

Figure 16: Class packet in DyInstPtr

Respectively, «class InfoForCacheAccess» that is presented in Figure 17, has

information about the related set, block and word of L1 data cache. Also has fields

about the exact row and column that is related in the vector Entry. The value of

row_of_Entry indicates the word, while column_of_Entry indicates the load that

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 54

accessed that word. Moreover, the field of NumSet indicates the set, NumBlock refers

to the block and NumWord indicates the word in the block. All InfoForCacheAccess’s

fields are accessed by senders and receivers. This class has meaning only for load

instruction, because write requests in L1 data cache indicate that the store instruction

was committed.

Figure 17: Class InfoForCacheAccess

7.3 AVF for Physical Integer Register File

As it is illustrated at Figure 11, Gem5 consists of several folders, each folder has

its own functionality. The functionality that I am interested in is inside the folder src and

especially the subfolder of src/cpu. Inside src/cpu there are subfolders for each model of

CPU. This study will implement the classes and methods from O3CPU model (out-of-

order model), so the source code files from src/cpu/o3 will be edited. From now on, we

will not refer to the accurate path in Gem5 for every header or source file because we

present details about source and header files of the simulator in the last Section.

This study targets to have access and to note the accurate time that a dynamic

instruction will read or write the data of a register. The methods for reading and writing

at a register is implemented at header file regfile.hh. The functions with the specific

functionality in that module are «readIntReg()» and «setIntReg()». The source code for

those functions has moved to the source file regfile.cc, as regfile.hh is imported to many

files in Gem5. For saving the exact Tick that becomes a read or a write at a register we

created a structure that holds information about the time of reading or writing process

and also information about the commission or no of the specific dynamic instruction.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 55

7.3.1 Structure for holding information about a read/write at a register

A new header file pinakas.h is created in order to set a new class, «class

element». «Class element» holds information about the Tick that an instruction

accesses a register with the variable «Tick time» as long as a boolean variable «Bool

isSquashed» which becomes true if the instruction that accessed the register was finally

committed. All the elements’ fields are accessed by senders and receivers. The

constructor initializes time to CurTick() Tick and the boolean variable as false, therefore

all instruction at first steps considered as not committed and so on bits are considered

un-ACE bits. Below in Figure 18 we present the fields of «Class element».

Figure 18: Class element

In order to compute ACE bits during the execution of the benchmark, statistics for

every register of the simulator need to be hold. In this study we used three different

configurations of physical integer register file. The first one is for 256 registers, the other

for 128 registers and the last one for 64 registers. The configuration about the number

of physical registers is defined in a python file, O3CPU.py. In all of these cases we did

not take under consideration the register 16 because it is implemented in a non-realistic

functional way representing the zero register. In our analysis, we stored all the

information needed concerning the registers in vectors. This vector is declared in the

same file (pinakas.h) with the class «class regi», see Figure 19.

Figure 19: Class regi

Each cell of the vector Entry is a «class element» object. The vector Entry is

declared in the «class PhysRegFile» at the header file regfile.hh and is initialized with

the constructor of «class PhysRegFile» in source file regfile.cc. «Class PhysRegFile»

constructs a physical integer register file with integer and floating point registers and

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 56

also methods about handling registers. The declaration and initialization of «class regi»

is presented in Figure 20. The variable _numPhysicalIntRegs is the number of physical

registers of the simulator. In this study it is equal to 256, 128 or 64.

Figure 20: Declare and initialize "class regi"

At this point it is important to explain the functionality of vector Entry and how a set

operand of a register distinguishes from a read operand. A detailed diagram presents in

Figure 21.

Figure 21: Vector Entry for Physical Integer Register File

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 57

The first column at the Entry represents the write accesses for a specific register

whereas the other columns represent the read operation for the specific register. Thus,

the first column of each row represents different write operations in the register. Every

other column at the specific row is a read operation of the value which is written

according to the write operation of the first column. For example, (Figure 21) every

register has 4 different sets “set0-set3”. “Load0-Loadn” correspond to n different loads

of the register. There are n loads for the 1st set, n loads for the 2nd set and so on.

7.3.2 Methods for setting and loading a value from a register index

In «Class PhysRegFile» there are the functions, «setIntReg()» and «readIntReg()»

for setting a value in an integer register and the other for loading a value from it. The

input parameters in both functions are different, see Figure 22. One more argument has

been added, the argument of «DynInstPtr inst», «class DynInstPt» has been explained

in Section 7.2.

Figure 22: Functions readIntReg() and setIntReg()

 Inside the body of that methods, we added functionality in order to fill the vector

Entry for the register with specific id, «PhysRegIndex reg_idx». Time field is an element

object that takes its value from curTick (). boolean variable isSquashed assigns with

false (all bits before the commit stage assume as un-ACE bits). In that functions one

more field of «class DynInstPtr» has to be assigned, that stores the details concerning

the dynamic instructions that accesses the hardware entry.

«class packet» saves details about the index of the integer physical register, the

number of row and column in the vector Entry where is located the element related to

this access of the register. The information of «class packet» will be used later at

commit stage in order to inform all the cells of the vector that are related to the

committed instruction.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 58

7.3.3 Instruction committed for an integer register in Physical Integer Register File

At first steps all bits of the hardware structures are assumed as un-ACE bits. Each

element object initializes its boolean variable about the commit as false. When an

instruction arrives at commit stage, the function «void commitInsts()» in commit_impl.hh

is called. The instruction that arrives at that stage is certain that is committed, so the bits

that are related to that dynamic instruction are ACE bits. At this point the boolean

variable in vector Entry has to be set as true. The extension of «class DyInstPtr» with

the extra fields, see Section 7.2 help us to have information about the exact register this

instruction is referred. If it is a load instruction it may refers to more than one registers.

As a result all the related cells in Entry vectors set their boolean variable at the commit

stage. Thus, this interval considered as ACE during the AVF equation.

7.3.3.1 Pointer to Physical Integer Register File from commit stage

Access to CPU object is available only at the functions inside src/cpu, while the

structures out of the core has no knowledge about CPU elements. The vector Entry that

is used in order to hold statistics about physical integer register file has defined and

takes value inside CPU, so it is not accessible out of CPU. In order to have access in

the several structures of CPU a pointer has defined to a CPU object. The pointer

«regi*myRegfileForModify» is declared in sim_events.cc and extended in other source

files. The initialization becomes in «void commitInsts ()», see Figure 23.

Figure 23: Pointer to Physical Integer Register File

7.3.4 The computation of AVF

Inside folder src/sim there is the source file sim_events.cc. At this file, the

simulator handles several termination event. When the benchmark comes to the end or

when the user terminates the execution (using Ctrl-X, Ctrl-C), the function from Figure

24 called. At this function, the simulation ends up so the end simulation Tick that will be

used for calculation program’s duration is available.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 59

Figure 24: Function about simulator termination

 In this implementation in order to compute the overall ACE-bits of the register, all

the entries of the vector Entry have to be checked. For each entry that is not committed

according to the boolean variable isSquashed, Time is set equal to 0 (zero). If the

instruction was committed, the period between the write and the load is considered as

ACE period. Otherwise if the last load is not committed, continue with the previous load

and so on. It is important to be noted that if the write operation of register is not

committed then there is no ACE period for that interval.

This process is repeated for every register in the physical integer register file

except zeroReg. At the end, ACE interval Ticks for all the registers in the register file are

available. The general equation type for AVF calculation that was presented in Section

3.4.2 was used. The next equation was redefined in order to be more specified in this

study:

ACE Interval Ticks are the overall ACE Ticks for the physical integer register file.

Program duration is the duration in Ticks for the simulation and the number of Physical

registers is the number of physical integer registers in the physical integer register file.

7.4 AVF for Data Cache

The source files concerning memory is in the folder src/mem in Gem5. At this

folder there is source code about general handling of the memory. Specifically for cache

memory that this study is talking about, all its files are inside the subfolder

src/mem/cache. There is one more subfolder inside, src/mem/cache/tag that contains all

the source and header files with information about cache characteristics and its

configuration.

All the information about sets and blocks is taken from the file base_set_assoc.cc.

Inside the tags subfolder there are all the details about the tags of the cache. Tags

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 60

contain configuration details like the block size, the number of blocks etc. A tag object

passes as argument to the majority of functions in order to find if a particular word exists

in the cache or not.

The L1 data cache consists of sets, each set depending on cache associativity

consists of n blocks (n-way associative). Each block depends on the address size in bits

(64 bit address) and the block size consists of words. In this study, the first level data

cache consists of blocks of 64B size, with 8 words of 64 bit each. The size of the cache

memory in combination with the way of associativity also determine the number of sets

in cache.

In this study all the benchmarks will be executed with several cache sizes: 16KB,

32KB and 64KB. The configuration about the cache size is defined from the running

script that starts the simulation (using the option –l1d cache=…) and the configuration

about the way associativity is set at a python file (Tags.py) in the class «class

BaseSetAssoc(BaseTags)». Furthermore, the way of associativity in all our experiments

is 4-way associativity meaning that every set consists of 4 blocks.

7.4.1 Structure for holding information about a read/write at a word in a block

Similar to the physical integer register file, we store information at a vector

concerning details about the time when an instruction accesses a hardware entry and if

this instruction is finally commit. The goal is to have access and to note the accurate

time that an instruction reads or writes a word in L1 data cache. The access in L1 data

cache is implemented in the file cache_impl.hh. Four writing accesses and four reading

accesses at L1 data cache have been identified. The exact points in the source code

will be presented later.

We created a structure that holds information about the moment of a read or a

write operation in a word of L1 data cache about the commission or not of the specific

dynamic instruction that accessed the entry. Except from that information that is similar

to that of physical integer register file, the L1 data cache needs one more variable that

represents if the load operation of the entry concerns a writeback or not. This difference

exists due to the writeback of some dirty blocks from the first level data cache to the

lower layers of the cache hierarchy. As a result our implementation cannot correlate a

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 61

committed or not instruction with a written back block. For that reason in our

implementation we used a parameter (p) that defines the percentage of the intervals

that were written back and are considered as ACE. Thus, if p=100%, then all the

intervals that were written back are ACE. If p=50%, only the half of the intervals that

were written back are considered as ACE. Finally, if p=0%, all the intervals that were

written back are considered un-ACE.

At the path src/mem/cache a new header file pinakas2.h has been created in order

to set a new class «class elementForCache». This class holds information about the

time (in Ticks) that an instruction accesses a word in the data cache with the variable

Tick time. Moreover, a boolean variable Bool blockValidation is used and is set when

the instruction that accessed the word is committed. The field Bool iswritebackload

determines if a block was written back or not. All the elementForCache’s fields are

accessed by senders and receivers. The constructor initializes time using CurTick()

function and the boolean field blockValidation is unset (false), therefore all instruction at

first steps considered as not committed and consequently bits are considered as un-

ACE. The field iswritebackload is false in case of the block is not written back, otherwise

is true. This class is presented at Figure 25.

Figure 25: Class elementForCache

There are three possible configurations according the cache size. The first one is

for 16KB cache size, the second for 32KB cache size and the last for 64KB cache size.

The cache size determines the numbers of sets in the cache as long as the number of

blocks. In order to compute ACE bits for data cache during the execution of the

benchmark we need to hold statistics for every word of the data cache in a vector. This

vector is implemented in the same file (pinakas2.h) with the class «class

cachesImplementation », see Figure 26. Every word in a block has its own vector Entry.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 62

Figure 26: Class CachesImplementation

The first column at each row of the vector Entry reflects the sets of the word and

the other columns correspond to the loads of this word’s set. At Figure 27 except from

vector Entry three more modules are shown. They have been constructed in order to

express the cache’s division in sets, blocks and words.

Figure 27: The architecture of sets, blocks and words in L1 data cache.

7.4.1.1 The structure used to store information of sets, blocks and words

Figure 27 makes clear the idea of the model for expressing sets, blocks and

words. The declaration for mysets becomes in the «class cache», for myblocks inside

«class CacheBlkpointer» and for blkEntryimpl in «class Cacheblk».

In «class cache» apart from the variable mysets that is used to express the set of

the L1 data cache an extra function has been added (Cache* get_cache()) to access

the pointer of the L1 data cache. This pointer is used to sim_Events.cc and

commit_impl.hh files where we need to access the structures of data cache for

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 63

computing the ACE periods and mark instruction as committed. The extra fields of

«class cache» are illustrated at Figure 28.

Figure 28: Class cache

The initialization for the field mysets is in the file cache_impl.hh.

Information concerning the blocks at each set is saved at the «class

CacheBlkpointer». CacheBlkpointer is a new class constructed to identify the block an

n-way associative cache memory (each set has n blocks). The declaration is in the

header file cache.hh (Figure 29).

Figure 29: Class CacheBlkpointer

The last information about the words in data cache is also important. In «class

CacheBlk» in header file blk.hh there is the declaration for the object blkEntryimpl,

(Figure 30). BlkEntryimpl field is an object of the «class cachesImplementation», the

class with the vector Entry that holds statistics for each word in a block.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 64

Figure 30: Class CacheBlk

The initialization happens in the constructor of CacheBlk at the same file blk.hh, see

Figure 31.

Figure 31: Constructor of class CacheBlk()

The size of blkEntryimpl depends on the address size in bits. In this study the

address is 64 bit, so every word is 8 bytes. Consequently blocksize/8 gives the exact

width of words in a block. Concluding all the previous classes and their functionality if it

we want to access the the 3rd word of the 4th block at 134 set in data cache it should be

written: mysets[133].myblocks[3].blkEntryimpl[2].

7.4.2 Methods for setting and loading a word in L1 data cache

The header file commit_impl.hh monitors the set and load operands of the words of

the L1 data cache. Four different functions are responsible for loading the data value

form a word in the L1 data cache, in two of them also a set operation takes place. Two

other functions are responsible for the write operation. Below is the prototype of that

functions with a sample of theirs source code.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 65

 Void Cache::cmpAndSwap(CacheBlk *, PacketPtr): This function handles the

comparison and swap for SPARC (a Scalable Processor Architecture) 2. This

function monitors read as long as set operation in the L1 data cache. In this study

the benchmarks that are executed do not call this function. The exact line at the

source code that a load operand took place is shown at Figure 32.

Figure 32: Function cmpAndSwap()

2 SPARC stands for a Scalable Processor Architecture. SPARC has been implemented in processors

used in a range of computers from laptops to supercomputers [33]

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 66

 Void Cache::satisfyCpuSideRequest(PacketPtr , CacheBlk*, bool , bool):

This function represents cache read and write from the CPU. It signs a request for

loading data using a packet from a word in the L1 data cache or write data in a word

using a packet (Figure 33).

Figure 33: Function satisfyCpuSideRequest()

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 67

 PacketPtr Cache::writebackBlk(CacheBlk *):

This function creates a writeback request for a given block. In this study writeback

blocks are assumed as totally committed, or totally squashed or partially committed.

The source code for that function is on next Figure 34.

Figure 34: Function writebackBlk()

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 68

 Void Cache::handleSnoop(PacketPtr, CacheBlk *, bool, bool):

This function is executed a very few times and as a result in this implementation each

load from that function is assumed as committed (the influence of the final result due to

these cases is negligible). It sets the cache block that have being snooped to a new

coherence state for that block. A sample from the source code of this function is in

Figure 35.

Figure 35: Function handleSnoop()

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 69

 Bool Cache::access(PacketPtr, CacheBlk *, Cycles &,PacketList &):

This function monitors a set operation in the L1 data cache, see Figure 36 for the

source code.

Figure 36: Function access()

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 70

 CacheBlk* Cache::handleFill(PacketPtr, CacheBlk *, PacketList &):

This function is responsible for cache filling. More specifically this function populates a

cache block and handles all outstanding requests for this fill request (Figure 37).

Figure 37: Function handleFill()

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 71

7.4.3 Packets transfer data to dynamic instruction Object

According to the source code for cache memory, in the header file cache_impl.hh

that handles the access at data cache’s words there is no way to access the dynamic

instruction. Nevertheless, in this header file there are the methods for writing and

loading a word in the L1 data cache and the assignment to the field

packetInfoCacheAccess has to be done in that point. This was done using another class

object, the «class packet». «class packet» as shown in Figure 38, is the structure that

transfers data from L1 to L2 level cache. Packets are response for each request in order

to transfer data in memory hierarchy.

Figure 38: Class Packet

At «class packet» a new field has been added. The field of infoforcacheaccess

that is an object of «class InfoForCacheAccess». This class has analyzed in Section 7.2

where the class of DyInstPtr was explored. The field infoforcacheaccess used to hold

information about the access (set or load operation) in a word of L1 data cache. «class

packet» is available in the header file cache_impl.hh so it can transfer details that are

related with a specific dynamic instruction in the header file lsq_unit_impl.hh where the

object of dynamic instruction is accessible. At the function «completeDataAccess()» in

lsq_unit_impl.hh the index of the element infoforcacheaccess of «class packet» is

copied to the element infoforcacheaccess of «class DyInstPtr». Consequently, during

the commit stage the dynamic instruction can inform the vector Entry about which of its

cells have to assigned as committed. All dynamic instructions follow the same path:

lsq_unit.hh -> cache_ipml.hh -> lsq_unit_impl.hh except from the load that are

correlated with a writeback block that they do not pass from the file lsq_unit_impl.hh. In

conclusion, the packet structure is used to pass important information to dynamic

instruction as there is no access to that object inside CPU core.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 72

7.4.4 Instruction related with a word in L1 data cache commits

Like the physical integer register file (Section 7.3.3), an instruction is checked as

squashed or not in the function «commitInsts ()» in commit_impl.hh . At this point we

have to identify all instructions of data cache that were committed. The access in the

Entry vector happens via a pointer to the cache object which has initialized in the

header file cache.hh.

Cache * mycopycache;

Using this pointer (mycopycache), we can correlate a specific element of the vector

Entry with a specific dynamic committed instruction (packetinfocacheaccess). Finally if

the dynamic instruction was committed then the boolean variable “blockValidation” is set

as presented at Figure 39. Otherwise, it remains as unset.

Figure 39: Dynamic Instruction committed in L1 data cache

7.4.5 The Computation of AVF

The function «exitSimLoop()» according to Section 7.1 signs the end of the

simulation. The overall ACE bits for the physical integer register file as long as for the

L1 data cache are computed at this function. The process for the two modules is similar.

It should be noticed that every set instruction in the L1 data cache is always committed

so there is no need to check if the instruction commits or not in contrast to the physical

integer register file.

At the end for each block of the cache, the total ACE interval is computed. Three

different cases of AVF have to be computed so different total ACE Interval period is

used for each equation. The general equation type for AVF in the data cache is:

Where ACE Interval Ticks are the overall ACE Ticks for the L1 data cache,

Program duration is the duration in Ticks for the simulation. The number of words in L1

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 73

data cache is computed multipling the number of sets, the number of ways and the

number of words per block. Ace Interval Ticks are not the same at the three different

cases due to the writeback blocks.

The first case assumes that all loads correlated to writeback blocks in the L1 data

cache are committed (parameter p=100%), ACE Interval Ticks are computed with the

same way like physical integer register file. In the loop for every set, way and finally

every word we check if the last load instruction of the word is committed by checking the

boolean variable blockValidation. If it is committed then the period between the set and

the load is assumed as ACE. Otherwise if the last load is not committed, we continue

with the previous load and so on.

 The second case assumes that all loads correlated to writeback blocks in the

data cache are not committed (parameter p=0%), we execute the same loop as

previously mentioned with the only difference that if the last load of the word is

correlated with a writeback block, then it is ignored and we continue to the next loads.

The variable iswritebackload is used for that operation.

In the third case where we assume that partially some loads correlated to

writeback blocks are ACE (parameter p=50%), we use a factor that defines the

percentage of these loads that are finally assumed as committed.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 74

8. Results

In our study we evaluated 10 benchmarks: cjpeg, djpeg, fft, qsort, sha,

stringsearch, susan_corners, susan_edges, susan_smoothing and rijndael_enc from

MiBench suite, using the small data sets. In Table 4 we present the exact number of

committed instructions per benchmark [28]. Specifically according to the stringsearch

benchmark, we run many small versions of it and also a lot of big versions from the

benchmarks of fft and qsort.

Table 4: Benchmarks and Instruction count

Benchmark Committed Instructions

Cjpeg 28,108,471

Djpeg 6,677,595

Fft 52,625,918

Qsort 43,604,903

Sha 13,541,298

Stringsearch 158,646

susan_corners 1,062,891

susan_edges 1,836,965

susan_smoothing 24,897,492

rijndael_enc 28,108,471

Each benchmark is executed four times. In this study we ran every benchmark for

three different sizes of physical integer register file (256, 128 and 64 registers) as long

as for three different sizes of L1 data cache (64 KB, 32 KB and 16KB). For each

configuration there are diagrams that shown the AVF estimation and tables with the

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 75

program duration in cycles for every executed benchmark and the ACE cycles during

the execution. The rightmost end of each diagram, “avg” is used for the average case of

each AVF estimation.

Figure 40 shows the faulty behavior classification for the physical integer register

file. For each size of the physical integer register file we assume that L1 data cache size

is 32KB (Table 3). As the size of the physical integer register file is increased, the AVF

is decreased. This is a logical because when there are more registers available, the

workload of its one register is not so big. We observe the same trend at all benchmarks;

AVF is higher using 64 registers than 128 and 256 registers respectively. If we compare

these results with the results of [1] that runs the same benchmarks, where the AVF was

computed with statistical fault-injection, we can observe the overestimation of ACE

analysis method. This overestimation is presented in the Figure 41. As it is shown from

the diagram the overestimation of AVF computation using ACE analysis is about 2,97 x

times in average against the vulnerability computed using fault injection [1], this

prediction about the overestimation has been done again in Section 3.4.1.

Figure 40: AVF for the physical integer register file

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 76

Figure 41: AVF in physical register file using ACE analysis in comparison with fault injection

It is remarkable that the program duration of each executed benchmark is notably

shorter than the ACE period (Table 5).

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 77

Table 5: Execution and ACE cycles for each benchmark

 64 Registers 128 Registers 256 Registers

cjpeg Execution cycles 26109073 24550085 24531382

 ACE cycles 50200000000000 66500000000000 669000000

djpeg Execution cycles 7243352 7234256 7232260

 ACE cycles 130858000 167260000 169096000

fft Execution cycles 29383619 23296147 23170500

 ACE cycles 525357000 506215000 513736000

qsort Execution cycles 40156029 38146020 38115535

 ACE cycles 694974000 718016000 718227000

sha Execution cycles 9671548 9846765 9857959

 ACE cycles 181904000 244828000 245914000

stringsearch Execution cycles 811506 799344 800968

 ACE cycles 14102700 16000900 16049300

susan_corners Execution cycles 2228972 2128850 2130583

 ACE cycles 36658900 39248600 39677700

susan_edges Execution cycles 3626864 3563908 3563791

 ACE cycles 69738500 77107400 77457200

susan_smoothing Execution cycles 22677032 13120004 12642338

 ACE cycles 407996000 295436000 359820000

rijndael_enc Execution cycles 24861482 23545044 23310484

 ACE cycles 417967000 447784000 44520900

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 78

The next three Figure 42, Figure 43 and Figure 44 show the AVF estimation for

the same ten benchmarks but for the L1 data Cache. The size of physical integer

register file for the three different executions is 256 registers (Table 3). Each diagram

presents the AVF for the three different sizes of L1 data cache: 16KB, 32KB and 64KB.

The AVF is decreased while the size of the L1 data cache is increased. As the number

of words, sets and blocks in the L1 data cache depend on its size, bigger L1 data cache

corresponds to more words that are available for setting and loading value from them.

The cache stores more unused data in this case.

 The only difference among these three executions is the percentage of the

writeback blocks that are correlated with instructions and we assume that are finally

committed. The Figure 42 illustrates the case in which we assume that 100% of these

written back blocks are vulnerable. At Figure 43 only 50% of the written back blocks are

assumed as vulnerable and at Figure 44 all the written back blocks are assumed non-

vulnerable. The overestimation of AVF with ACE analysis is also conspicuous in these

cases in comparison with the statistical fault injection [1] but that time not as big as in

the physical integer register file (Figure 41). In this case the overestimation of AVF

using ACE analysis is about 1,23 x times in average against the vulnerability computed

using fault injection [1] (Figure 45). On Figure 45, AVF using ACE analysis has

estimated for L1 data cache with 100% vulnerable written blocks.

Figure 42: AVF for the L1 data cache with 100% vulnerable written back blocks

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 79

Figure 43: AVF for L1 data cache with 50% vulnerable written back blocks

Figure 44: AVF for L1 data cache with 0% vulnerable written back blocks

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 80

Figure 45: AVF in L1 DCache using ACE analysis in comparison with fault injection

On the other hand, in the physical integer register file there are not so much

differences between the 10 benchmarks in ΑVF results compared to the L1 data cache.

The above Figures verify the initial idea of this thesis at which AVF computation with

ACE analysis should result in pessimistic AVF estimation than other methods of AVF

computation such as statistical fault injection.

At the tables below presented the program duration and ACE cycles for each

configuration. Program duration is significantly shorter than the intervals which

considered as ACE. (Table 6, Table 7, Table 8)

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 81

Table 6: Execution and ACE cycles for each benchmark - Data Cache size: 16 KB

 Possibility of written back blocks

 100% 50% 0%

cjpeg Execution cycles 24769238

 ACE cycles 16653200000 13881800000 11202400000

djpeg Execution cycles 7384642

 ACE cycles 2686690000 2015230000 1374440000

fft Execution cycles 23275293

 ACE cycles 7264800000 5606040000 4080820000

qsort Execution cycles 38438355

 ACE cycles 15053500000 11744100000 8501020000

sha Execution cycles 9930908

 ACE cycles 2994280000 2599700000 2224150000

stringsearch Execution cycles 804384

 ACE cycles 303449000 258007000 215830000

susan_corners Execution cycles 2140134

 ACE cycles 877765000 682586000 496273000

susan_edges Execution cycles 3577858

 ACE cycles 2482890000 2100310000 1745540000

susan_smoothing Execution cycles 12652161

 ACE cycles 11432100000 10236900000 9511760000

rijndael_enc Execution cycles 25426260

 ACE cycles 2631840000 2148620000 1673580000

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 82

Table 7: Execution and ACE cycles for each benchmark - Data Cache size: 32 KB

 Possibility of written back blocks

 100% 50% 0%

cjpeg Execution

cycles

24531382

 ACE cycles 32600000000 27100000000 21700000000

djpeg Execution

cycles

7232260

 ACE cycles 4499100000 3331440000 2261040000

fft Execution

cycles

23170500

 ACE cycles 12317000000 12317000000 5886210000

qsort Execution

cycles

38115535

 ACE cycles 27018300000 20294100000 13695600000

sha Execution

cycles

9857959

 ACE cycles 5057630000 4546450000 4082710000

stringsearch Execution

cycles

800968

 ACE cycles 406528000 335073000 267157000

susan_corners Execution

cycles

2130583

 ACE cycles 1493100000 1112130000 742535000

susan_edges Execution

cycles

3563791

 ACE cycles 3740920000 3029750000 2363770000

susan_smoothing Execution

cycles

12642338

 ACE cycles 16321900000 14545800000 13694900000

rijndael_enc Execution

cycles

23310484

 ACE cycles 6601380000 4797970000 3013750000

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 83

Table 8: Execution and ACE cycles for each benchmark - Data Cache size: 64 KB

 Possibility of written back blocks

 100% 50% 0%

Cjpeg Execution

cycles

24397209

 ACE cycles 53916400000 43737700000 33721700000

Djpeg Execution

cycles

7133827

 ACE cycles 7257210000 5535100000 3582450000

Fft Execution

cycles

23139759

 ACE cycles 20622100000 13816100000 7087980000

Qsort Execution

cycles

37719873

 ACE cycles 45806900000 32314400000 18917700000

Sha Execution

cycles

9833305

 ACE cycles 5260870000 4730310000 4227450000

Stringsearch Execution

cycles

793112

 ACE cycles 366489000 305387000 246845000

susan_corners Execution

cycles

2114984

 ACE cycles 2284790000 1662710000 1066200000

susan_edges Execution

cycles

3546738

 ACE cycles 4652960000 3635030000 2677370000

susan_smoothing Execution

cycles

12631586

 ACE cycles 17457900000 15104900000 13551100000

rijndael_enc Execution

cycles

23126288 16702000000 8062530000 4563740000

 ACE cycles

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 84

As analyzed in Section 2.4, FIT as a Vulnerability measurement reflects the

accurate reliability of a component. FIT is estimated with the type:

Where raw FIT rate = 0.01 per bit, the number of bits is the overall number of bits in a

structure. For example, for a physical integer register file with 256 registers the number

of bits is: 256x64bits. AVF is the computed vulnerability factor (if AVF is 10%, for the

FIT computation will be considered as 0,10).

 For every AVF diagram that shown before, there is a corresponding FIT diagram.

In Figure 46, Figure 47, Figure 48 and Figure 49 FIT rate estimation is presented for the

different configurations of physical integer register and L1 data cache.

Figure 46: FIT in physical integer register File

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 85

Figure 47: FIT in L1 DCache with 100% vulnerable written back blocks

Figure 48: FIT in L1 DCache with 50% vulnerable written back blocks

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 86

Figure 49: FIT in L1 DCache with 0% vulnerable written back blocks

From Figure 46, Figure 47, Figure 48 and Figure 49 it is obvious that the

benchmark with the most FITS is susan_smoothing. The next benchmarks with the

most FITS are susan_edges and cjpeg. One FIT specifies one failure in a billion hours

so for example, a benchmark with a FIT rate of 10 has 10e-9 FITS. High FIT rate equals

to big number of FITS and as a consequence it signs a not reliable component. In our

study the most reliable benchmark is rijndael_enc while the most unreliable benchmark

is susan_smoothing.

8.1 Conclusions

AVF estimation is a problem with many interesting aspects for a designer during the

early design phase, because he can design reliable integrated circuits with smaller cost.

 The problem is that at the next generation of microprocessors the hardware faults

due to cosmic radiation, alpha particles is going to increase and as result more research

about this topic has to be done. Until now there are many methods for computing

vulnerability factors, fault injection is the most accurate method but of course with other

methods like ACE analysis which is the subject of this thesis a fast but pessimistic

vulnerability estimation can be offered.

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 87

9. APPENDIX

9.1 Commands for running a benchmark:

 To build, the next command should be executed:

 scons build/X86/gem5.opt

 To restore a checkpoint L1 data cache size has to been set. For example, the next

command for running the checkpoint has been set to 32KB. The executing

checkpoint is in the subfolder Gem5/m5out. The commands for execution is :

 export M5_PATH= the path to gem5 images

 ./build/X86/gem5.opt --stats-file=stats.txt configs/example/fs.py --disk-

image=…linux-x86-new.img --kernel=…./binaries/x86_64-vmlinux-2.6.22.9.smp

-r1 --caches –l1d=32kb --l2cache --cpu-type=detailed --restore-with-

cpu=detailed

 For changing the size of physical integer register file, the python file O3CPU.py

should modify. The next instruction has to change. For example, at this case the

size of physical integer register file is 256 registers:

 numPhysIntRegs= Param.Unsigned(256, "Number of physical integer registers")

 For setting the assocciativity of cache memory, the python file Tags.py should

modify. For example, with the next association, cache associativity is four:

 assoc=Param.Int(4, "associativity")

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 88

9.2 Hardware and Software configuration

The execution of benchmarks carried out in my personal computer. Its

configuration details are shown below.

CPU: Intel(R) Core(TM) i5 CPU M 520 @ 2.40GHz

Cache size: 3072 KB

Disk size: 25.4 GB

OS: Ubuntu 14.04 LTS – 64 bit

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 89

ABBREVIATIONS

AVF Average Vulnerability Factor

ACE Architectural Correct Analysis

DCache Data Cache

ICache Instruction Cache

 FIT Failure in Time

MTBF Mean Time Between Faults

 SE System-call Emulation

 FS Full System

RTL Register Transfer Level

O3CPU Out of Order CPU

IEW Issuing, Executing, Writeback

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 90

SOURCE FILES AND HEADER FILES

regfile.hh Gem5/src/cpu/o3

regfile.cc Gem5/src/cpu/o3

pinakas.hh Gem5/src/cpu/o3

dyn_inst.hh Gem5/src/cpu/o3

commit_impl.hh Gem5/src/cpu/o3

lsq_unit_impl.hh Gem5/src/cpu/o3

03CPU.py Gem5/build/X86/cpu/o3

sim_events.cc Gem5/src/sim

simulate.hh Gem5/src/sim

simulate.cc Gem5/src/sim

cache.hh Gem5/src/mem/cache

cache_impl.hh Gem5/src/mem/cache

blk.hh Gem5/src/mem/cache

base_set_assoc.cc Gem5/src/mem/cache/tags

Tags.py Gem5/src/mem/cache/tags

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 91

BIBLIOGRAPHY – REFERENCES

[1] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, N.Foutris, D.Gizopoulos, “Differential Fault Injection
on Microarchitectural Simulators”, IEEE International Symposium on Workload Characterization
(IISWC), 2015.

[2] R.C.Baumann, “Soft errors in advanced computer systems”, IEEE Design & Test of Comp.,
May/June 2005.

[3] S.Pan, Y.Hu, X.Li “IVF: Characterizing the vulnerability of microprocessor structures to
intermittent faults”, IEEE Transactions on VLSI Systems, May 2012.

[4] S.Feng, S.Gupta, A.Ansari, S.Mahlke, “Shoestring: probabilistic soft error reliability on the cheap”,
ASPLOS 2010.

[5] S.S.Mukherjee, C.T.Weaver, J.Emer, S.K.Reinhardt, T.Austin, “A systematic methodology to
compute the architectural vulnerability factors for a high-performance microprocessor, MICRO
2003.

[6] G.Yalcin, O.S.Unsal, A.Cristal, M.Valero, “FIMSIM: A fault injection infrastructure for
microarchitectural simulators”, ICCD 2011.

[7] N.J.Wang, A.Mahesri, S.J.Patel, “Examining ACE analysis reliability estimates using fault
injection”, ISCA 2007.

[8] V.Sridharan, D.R.Kaeli, “Eliminating microarchitectural dependency from architectural
vulnerability”, IEEE International Symposium on High Performance Computer Architecture
(HPCA-15), 2009.

[9] A.Biswas et al., “Computing architectural vulnerability factors for address-based structures”, ISCA
2005.

[10] L.Duan, B.Li, L.Peng, “Versatile prediction and fast estimation of architectural vulnerability factor
from processor performance metrics”, HPCA 2009.

[11] S.Feng, S.Gupta, A.Ansari, S.Mahlke, “Shoestring: probabilistic soft error reliability on the cheap”,
ASPLOS 2010.

[12] N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile architecture-level fault injection
framework for reliability evaluation”, IOLTS 2014.

[13] Y.Luo et al., “Characterizing application memory error vulnerability to optimize datacenter cost via
heterogeneousreliability memory”, DSN 2014.

[14] N.L.Binkert et al., “The M5 simulator: modeling networked systems, IEEE Micro, July/August
2006.

[15] M.K.Martin et al., “Multifacet's general execution-driven multiprocessor simulator (GEMS)
toolset”, ACM SIGARCH Computer Arch. News, November 2005.

[16] http://www.m5sim.org
[17] http://www.computerhope.com/jargon/c/clockcyc.htm web
[18] V. Sridharan and D. R. Kaeli, “Using pvf traces to accelerate avf modeling,” in Proceedings of the

IEEE Workshop on Silicon Errors in Logic-System Effects, 2010
[19] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer,Steven K. Reinhardt, Todd Austin, “A

systematic methodology to compute the architectural vulnerability factors for a high-performance
microprocessor”, Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM
International Symposium.

[20] Songjun Pan, Student Member, IEEE, YuHu, Member, IEEE, and Xiaowei Li, Senior Member,
IEEE,” IVF: Characterizing the Vulnerability of Microprocessor Structures to Intermittent Faults “,
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20,
NO. 5, MAY 2012.

[21] Songjun Pan , YuHu, Xiaowei LI, Key Laboratory of Computer System and Architecture, Institute
of Computing Technology, “IVF: Characterizing the Vulnerability of Microprocessor Structures to
Intermittent Faults”

[22] Chao(Saul)Wang, Zhong-Chuan Fu, Hong-Song Chen, Dong-ShengWang1, “Characterizing the
Effects of Intermittent Faults on a Processor for Dependability Enhancement Strategy”, April 2014

[23] Michail Maniatakos, Maria K. Michael, Yiorgos Makris, “Investigating the Limits of AVF Analysis in
the Presence of Multiple Bit Errors” , 2013 IEEE 19th International On-Line Testing Symposium
(IOLTS)

[24] Anastasiia Butko, Rafael Garibotti, Luciano Ost, Gilles Sassatelli, “Accuracy Evaluation of GEM5
Simulator System”, [http://www.lirmm.fr/ADAC]

[25] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti5, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, David A. Wood, “The gem5 Simulator” ,
ACM SIGARCH Computer Architecture News Vol. 39, No. 2, May 2011, [http://gem5.org]

[26] Anders Handler, “Cycle-accurate Benchmarking of JavaScript Programs”, Kongens Lyngby 2012

http://www.m5sim.org/
http://www.computerhope.com/jargon/c/clockcyc.htm%20web

Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5
Simulator

Alevizopoulou Sofia 92

[27] Brad Beckmann, Nathan Binkert, Ali Saidi, Joel Hestness,, Gabe Black, Korey Sewell, Derek
Hower, “The gem5 Simulator ISCA 2011” , June 5th, 2011

[28] M.R.Guthaus et al., “MiBench: A free, commercially representative embedded benchmark suite”,
IWWC 2001.

[29] Tosaka, et al., “Impact of Cosmic Ray Neutron Induced Soft Errors, on Advanced Submicron
CMOS circuits,” Symposium on VLSI Technology Digest of Technical papers,1996

[30] Nik Bessis (Edge Hill University, UK), “Technology Integration Advancements in Distributed

Systems and Computing”, Release Date: April, 2012. Copyright © 201

[31] Wai-Kai Chen, “Memory, Microprocessor, and ASIC: Memory, Microprocessor and ASIC

(Principles and Applications in Engineering)”
[32] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu, “Improving cache lifetime reliability at

ultra-low voltages”,MICRO 2009.
[33] California David L. Weaver,”The SPARC Architecture Manual Version 9 SPARC”, International,

Inc. San Jose

