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ABSTRACT 
 

Despite the improvement of integrated circuits and microprocessor technologies, 

they become more vulnerable to external factors like cosmic radiation and alpha 

particles. These are the main reason causes of hardware faults. The cost for protecting 

all these structures in order not to result in hardware faults with diagnostic and 

protection methods is big enough. AVF (Architectural Vulnerability Factors) is a method 

for computing the vulnerability of a structure. AVF estimates the probability of a 

hardware fault to result in a wrong outcome for a program executing. This method can 

be done in the early stage of design and as a consequence many faults can pass over. 

There are several methods for estimating AVF. In this study AVF is estimated using 

ACE analysis (Architectural Correct Analysis). This method is really fast as 

characterizes the bits in the structure as ACE or un-ACE bits but it has one 

disadvantage, it overestimates its vulnerability. ACE bits are those bits that influence the 

vulnerability of a structure. The experimental vehicle of this analysis is the 

microarchitecture simulator Gem5 for ISA x86-64. In this study, we computed AVF for 

ten different benchmarks in two different microarchitectural modules, the integer 

physical integer register file and the L1 Data Cache of Gem5. For each benchmark 

statistics about its runtime and ACE interval time are reported.   
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ΠΕΡΙΛΗΨΗ 

 

Όσο η τεχνολογία κατασκευής ολοκληρωμένων κυκλωμάτων και 

μικροεπεξεραστών βελτιώνεται με το πέρασμα του χρόνου τόσο πιο ευάλωτα γίνοται 

όλα αυτά τα κυκλώματα σε εξωτερικούς παράγοντες όπως η κοσμική ακτινοβολία και τα 

σωματίδια άλφα. Πρόκειται για τη βασική πηγή που προκαλέι λάθη στο υλικό των 

επεξεργαστών. Το κόστος για την προστασία όλων αυτών των κυκλωμάτων με 

διαγνωστικές μεθόδους λάθους και μεθόδους προστασίας είναι πολύ μεγάλο. Ο 

συντελεστής AVF (συντελεστής αρχιτεκτονικής ευπάθειας) είναι μια μέθοδος 

υπολογισμού της ευπάθειας ενος συστήματος. Η μέθοδος AVF υπολογίζει την 

πιθανότητα ένα λάθος υλικού να οδηγήσει σε λανθασμένο αποτέλεσμα κατά την 

εκτέλεση ενός προγράμματος. Αυτή η μέθοδος μπορεί να εφαρμοστεί σε πρώιμο στάδιο 

κατά τη σχεδίαση του υπολογιστικού συστήματος και έτσι πολλά ενδεχόμενα λάθη να 

παραλειφθούν.  

 Υπάρχουν πολλές μέθοδοι για τον υπολγισμό του AVF. Στην παρούσα εργασία θα 

ασχοληθούμε με την ανάλυση ACE (Architectural Correct Execution). Πρόκειται για μια 

πολύ γρήγορη μέθοδος στην οπόια τα bit ενός συστήματος χαρακτηρίζονται ως ACE ή 

un-ACE. ACE ονομάζονται τα bits τα οποια συμβάλουν στο συντελεστή ευπάθειας ενός 

συστήματος. Βασικό μειονέκτημα της μεθόδου είναι ότι υπερτιμά το συντελεστή 

ευπάθειας του συστήματος. Ο μηχανισμός που θα χρησιμοποιηθεί για τους διάφορους 

υπολογισμούς είναι ο προσομοιωτής Gem5 με αρχιτεκτονική συνόλου εντολών X86-64. 

Ο συντελεστής AVF έχει υπολογιστεί για 10 διαφορετικά προγράμματα τόσο για το 

αρχείο φυσικών ακέραιων καταχωρητών του Gem5 όσο και για τη μνήμη δεδομένων 

πρώτου επιπέδου. Για κάθε ένα απο αυτά έχουν υπολογιστεί οι χρόνοι εκτέλεσής τους 

καθώς και τα ευάλωτα διαστήματά τους. 
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1. INTRODUCTION 

 

1.1 Subject 

The current thesis focuses on the AVF equation (Average Vulnerability factor) via 

ACE analysis in Gem5 simulator. My model was developed based on Gem5 (a full-

system cycle-accurate simulator), the bibliography about AVF estimation and other 

various object-oriented programming practices. The AVF estimated for two different 

structures of the simulator, the physical integer register file for integer registers and the 

first level data cache. 

AVF according Mukherjee is the probability that a fault in a structure will result in 

an error in a program’s output [19]. There are several reasons that a bit of the integrated 

system can be destroyed and as a consequence change its value. The most common 

reason is the cosmic radiation. The rate at which these changes at the bit values occur 

depends on the electric potential at which this device operates, the size of transistor, the 

manufacturing technology of the device as long as the environment of the operating 

system. There are several ways to detect these errors but each of them has a big cost 

and is not always efficient. As a result, the AVF indicates how vulnerable a structure is 

in order to take it in mind during the design phase of the computing system. For 

instance, if it is known early enough during the design stage which structure of a chip is 

the most vulnerable, designers could protect it avoiding the extra cost of protecting all 

the structures of the chip. It should be noticed that the AVF also depends on the 

application as different applications use different parts of the integrated system. 
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2. HARDWARE FAULTS AND SOFT ERRORS 

 

There are many effects related to hardware or soft errors. For example, an error bit 

at a microprocessor may have no effect, may change the expecting output of the 

running program or may cause an error able to terminate the operation of the computing 

system.  

There are three types of faults than can affect several computing systems. The 

first category is the soft errors known as transient faults. The second is the intermittent 

faults and the third one is the hard (or permanent) faults. In the next subsections, we 

are going to describe in depth these three fault categories as shown in Table 1. 

 

Table 1: Hardware Faults and Soft Errors 

Faults Occurrence Sources 

Soft error instant bit fault, disappears 

on next, write at the bit 

cosmic radiation, voltage 

fluctuation, transistor 

variability 

Intermittent fault remains for some executing 

cycles, repeated after a 

period of time 

wear-out, oxide relegation, 

process differentials, 

industrialization residuals 

Permanent fault always wrong output The age of devices, materials 

wear-out, manufacturing 

characteristics 

 

 

2.1 Soft errors 

The first category is soft errors, the type of faults that will be studied in my 

implementation model. One of the main reasons that cause soft errors in computer 

applications is the induced radiation. Other factors that provoked transient faults are 

alpha particles, cosmic rays and transistor’s variability. There are three prevalent 

radiation mechanisms which can lead to soft errors: cosmic neutrons which transfer 
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high-energy interact with silicon and other device materials, cosmic neutrons which 

transfer low-energy interact with high concentrations of 10B1 in the device and alpha 

particles vented from trace radioactive corruptions in the device materials. 

The soft error leads to a bit flip, so the fault effect remains after the fault 

disappearance. In contrast, intermittent fault leads to a stuck at logic 0 or 1 of a bit value 

for an amount of cycles, but after its disappearance the bit takes the values of the 

normal operation. The increment of soft error rates (SER) has triggered computer 

architecture research to provide solutions in order to moderate soft errors.  

The reliability of the program’s outcome at this case depends on the sequence that 

several events execute. For instance if a fault event upset happens between two 

continuously write operations and a read operation occurs after the 2nd write, then the 

read operation’s outcome is correct (Figure 1). From the other hand if the read 

operation occurs exactly after the fault event, the wrong value propagates to the output 

(Figure 2). 

 

 

Figure 1: Soft errors that do not influence the outcome of the program 

     

 

 

                                            

1 Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is composed by the cosmic ray spallation  of 

oxygen. Beryllium-10 decays by beta decay  with a maximum energy of 556.2 keV. High energy galactic 

cosmic ray particles react with light elements. The spallation of the reaction products is the source 

of 10Be. 

 

https://en.wikipedia.org/wiki/Radioactivity
https://en.wikipedia.org/wiki/Isotopes_of_beryllium
https://en.wikipedia.org/wiki/Beryllium
https://en.wikipedia.org/wiki/Cosmic_ray_spallation
https://en.wikipedia.org/wiki/Spallation
https://en.wikipedia.org/wiki/Beta_decay
https://en.wikipedia.org/wiki/Galactic_cosmic_ray
https://en.wikipedia.org/wiki/Galactic_cosmic_ray
https://en.wikipedia.org/wiki/Spallation
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Figure 2: Soft errors that result in a wrong outcome of the program 

 

2.2 Intermittent faults 

The intermittent hardware faults occur very often and occasionally for a period of 

time. The dominant reasons that cause them are oxide relegation, process differentials, 

industrialization residuals and in-progress wear-out. An intermittent error is activated 

every time at the same place or is caused from the same module. As a result, even 

though this faulty component will substitute, the intermittent faults will eliminate. Also it 

is not sure that an intermittent fault will be activated or not during the lifetime of a chip, it 

can be deactivated and reactivated because of the environmental changes and the 

process.  

The duration period of this fault varies and depends on the factor that causes the 

fault. For example, the duration of a fault caused by in-progress wear-out will last some 

days and its effect may be similar to a permanent fault, whereas an intermittent fault 

caused by temperature and voltage change will last at most several seconds.  

 An intermittent fault will take place at burst. Burst informs us about the times of 

activations through the appearance of the fault. As active can be considered the 

duration of each fault's activation and as inactive time can be considered the period 

between two continuous activations.  

 It is not certain that an intermittent error will result in a wrong output. For example, 

if write operations execute after an intermittent fault, then the next read operation will 

execute with the correct bit’s value (Figure 3). 
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Figure 3: Intermittent error not always result in wrong outcome of a program 

 

2.3 Permanent faults 

A lot of reasons can result at an external or internal permanent fault. External 

permanent faults mirrors unrevoked physical changes, caused by manufacturing faults, 

like the infection in silicon devices over the time where internal faults caused because of 

wear-out of the materials. Generally some of the most correspondent causes for 

permanent errors are: electromigration interconnects (EM), thermal cycling (TC), gate 

oxides' TDDB and negative bias temperature instability (NBTI) on PMOS transistors.  

Also another cause can be the device’s mode of operation, for example, very low 

supply voltage can result in an intermittent fault or maybe the incompleteness of the 

device can cause a permanent fault. Generally a fault permanent bit will end up 

undoubtedly in a wrong output, see Figure 4. 

 

Figure 4: Permanent faults result in wrong outcome of a program 

 

2.4 Soft Error Background and Terminology 

The possible fault effects of a single bit fault are six and are used in several 

injection based studies [1].  
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 SDC: The first category is SDC (Silent Data Corruption) at which the program 

generates incorrect outcome. This type of fault is the sneakiest one as the user is 

not aware of the bit’s corruption and as result it is impossible to realize that the 

outcome of the process is incorrect.  

 DUE: The other category of faults is DUE (Detected Unrecoverable Error). At this 

case an error is detected but with no ability to be corrected. The process 

executes but with error indications that express with ISA exceptions.  

 Masked faults: An additional category is masked faults. Masked faults let the 

program to execute until its end with the outcome of the application and several 

exceptions which occur during the execution.  

 Timeout faults: Timeout faults are the faults that result in Deadlock or Livelock. At 

a Livelock the program flow has changed and the execution of the instructions 

happen in random code areas. At Deadlock the program flow has corrupted and 

no more instructions can execute. In order to deal with these two situations, a 

timeout limit is used for terminating the execution after this time limit.  

 Crash faults: On the other hand, crash faults consider all the cases that the 

execution of a program results in an unrecoverable situation. In this case, crash 

fault terminates the execution.  

 Assert faults: The last category is the assert faults at which the simulator has 

reached at a condition, unable to handle it. At that point the execution stops by 

an assertion. 

Vulnerability is measured in FIT (Failure in Time). FIT is one of the two commonly 

used unit for error rates. The other is MTBF (Mean Time Between Failures).The majority 

of the designers work with FIT which is reciprocally related to MTBF because FIT is 

additive. One FIT specifies one failure in a billion hours. Zero error rate equals to infinite 

MTBF and zero FIT. For example, 100 years MTBF equal to 109/ (24*365*100) FIT. The 

FIT/bit of a cell typically ranges between 0.001 - 0.010 [28]. 

The majority of the designers work with FIT which is inversely related to MTBF 

because it is additive in contrast with MTBF that is more intuitive. They use multiple 

computer models in order to compute the FIT rate for every chip’s device: latches, RAM 

cells, logic gates. Moreover, with several mitigation and error protection techniques it is 

easy to evaluate whether a chip meets its soft error budget. The overall FIT rate of a 



Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5 
Simulator 
 

Alevizopoulou Sofia   20 

chip is calculated by summing the effective FIT rates of all chip’s structures (logic gates, 

RAM, latches), where the effective FIT rate for a structure is the product of structure’s 

vulnerability factor and the raw circuit FIT rate. 

It is important to be mentioned that many faults do not lead to a system corruption or 

an incorrect outcome. For instance, a fault in a branch predictor structure will just 

provoke a delay in the processor’s performance. In another example, a corrupted bit 

may not be used in the program execution so the program outcome will be correct. At 

this moment the idea of AVF is introducing. AVF is computing the probability that a fault 

in a structure will result in an error in a program’s output [19]. AVF analysis method will 

be explained clearly later as it is the main goal of this thesis. 
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3. Vulnerability Factors 

 

Soft errors will become an increasingly important problem in the future computing 

systems, so it is crucial to deal with them. Of course there are workarounds but they are 

time consuming or they decrease the performance of the system, enlarge the chip size 

and the consuming power. As the number of transistors is expected to grow up 

exponentially the next years according to Moore’s law, the number of soft errors will 

increase, too. Consequently, methods that will provide an early assessment of chip’s 

reliability are very important. 

Vulnerability factors known as soft error sensitivity factors indicate the probability 

that an internal fault in a device’s operation will result in a visible external error. As an 

example, if a latch is accepting data with a bigger frequency than holding data, a fault 

bit may not result in an error of the program’s outcome because the wrong value of the 

bit is likely to be overridden by another value. In other case, if a latch accepts data with 

a smaller frequency than holding them, then a bit flip is more likely to provoke a visible 

error. 

There are many studies that describe several definitions of vulnerability factors. The 

main definition was AVF (Architecture Vulnerability Factor) that was proposed from 

Mukherjee et al. and it concerns the probability of a soft error to result in an error of the 

program visible output [19]. This vulnerability factor describes the masking probability of 

the entire system stack and is the metric that we are measure in this thesis. Next, 

Sridharan et al. proposed PVF (Program Vulnerability Factor) that was responsible to 

characterize the coalescent soft error masking rate of the software layer [20][18]. Bower 

et al. proposed the H-AVF (Hard-Fault Architectural Vulnerability Factor) that is used to 

compare alternative hard-fault tolerance schemes [20]. All these types focus on the 

masking probability of soft errors in hardware, software or system’s stack. The last 

vulnerability equation type is IVF (Intermittent Vulnerability Factor) that expresses the 

probability of an intermittent error to cause an external visible error.  
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3.1 PVF 

PVF is used to characterize the vulnerability of a program with no dependencies 

on the hardware layer. It refers to architecture level and evaluates the masking effect of 

soft errors in that level. Moreover, it can be used as a way to express the behavior of 

AVF during the program execution (runtime AVF) or such as metric to choose the 

appropriate algorithm or the appropriate compiler optimizations in order to reduce the 

vulnerability of a program due to soft errors. The type for its computation is: 

 

Where I is the total number of instructions in the program , B represents the total bits in 

the architecture structure and Ni 
A-bit represents the number of bits type A in instruction i. 

 

3.2 H-AVF 

H-AVF helps designers to make comparisons between different hard-fault 

tolerance techniques. The main aim of H-AVF computation is to provide information 

about different designs and used it to compare hard-fault tolerance designs. This 

information will be used to compare hard-fault tolerance designs. 

The equation type is: 

 

Where Nf is the total number of the faults sites in the structure, Ni is the total number of 

instructions in the program and insterror is the number of instructions that will corrupt 

because of the hard-faults [20]. 

 

3.3 IVF 

IVF (Intermittent Vulnerability Factor) measures the probability that an intermittent 

error will manifest an external visible error. The computation of IVF is very helpful for the 

designers as they can use it during the design of microprocessor in order to combine 

high reliability and good performance at the same time. It has been proved 

experimentally that IVF differs across different manufactures or workloads, so more 

protection can be added to the most vulnerable structures. Large percentages of IVF 

indicate that the structure is vulnerable to intermittent errors. 
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The equation type of IVF at the register file is: 

 

Where E points to the number of entries in register file, and UD
 CT(e) indicates if an 

intermittent fault has occurred in a critical period of time or not. Numerator Σ adds 

together the total number of all affected registers during the time interval that the 

intermittent fault exists.  

 

3.4 AVF 

A crucial aspect of AVF analysis is that some single-bit faults such as those 

occurring in the branch predictor will not produce an error in a program's output. AVF is 

the probability that a bit fault in the structure will result in an error, so the final outcome 

of the program will be different from that one that was expected. Thus, it has to be 

declared that not all faults in a microarchitectural structure will affect the final output of a 

program. For example, any committed instruction will not be affected from a single bit 

fault in a branch predictor; hence, the AVF for a branch predictor is 0%. On the contrary 

the program’s outcome will be affected for sure if a single bit fault occurs in the 

committed program counter. At this case the wrong instructions will be executed and as 

a result the AVF for the committed program counter is 100% [19]. 

The AVF for most of the structures is between 0% - 100%. AVF in combination 

with the raw fault rate induce the calculation of the overall error rate of a 

microarchitectural structure. Summing up, the raw fault rate that is detected by the 

process and the circuit technology can be mapped from a processor architect to an 

overall processor error rate and thus determine whether the design meets its error rate 

goals.  

There are several methods for computing the AVF of a hardware structure.   

 ACE analysis: A set of these approaches is based at ACE analysis (Architectural 

Correct Analysis) at which every bit can be ACE or un-ACE. A bit is un-ACE for 

the interval when its value can be flipped without affecting the final program 

outcome. Otherwise if this change affects the final outcome then the bit is ACE. 

Ace analysis will be presented in Section 3.4.1 with more details. 
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 Statistical Fault injection: During fault injection experiments, the output of a golden 

run is compared with that of a run that an injection of a fault was occurred. An 

injection can target the system or the application software or the hardware 

structures of a simulator. There is also injection in the RTL (Register Transfer 

Level) level. An RTL model represents the micro-architecture of a circuit 

injection. It is implemented in HDL (Hardware Description Language) for 

example, VHDL. Register variables are used to store data, whereas 

transformations represented by arithmetical and logical operators. RTL model 

composes a gate-level model of the design. 

 Probabilistic methods: Probabilistic methods for evaluating AVF provide early and 

reliable estimation. They are about models with high level performance, coupled 

with low level information about processors’ reliability. These models are 

available at early stage of the design. 

 

ACE analysis identifies which bits are necessary for architecturally correct execution 

(ACE bits) of a program. Furthermore, it measures the percentage of ACE bits in a 

hardware structure. When an ACE bit is corrupted there is a visible error at the outcome 

of the program. This analysis originally assumes that all bits in a hardware structure are 

ACE bits, after that finds the bits that can be proven unnecessary for the correct 

execution of the program (unACE bits). It is significant that ACE model can be 

performed early in the design cycle by the hardware designers.  

All these methods for evaluating AVF are really fast. After few runs of the 

benchmark and since the simulator is configured according to the requirements of the 

computing system you can have an AVF estimation in contrast to the fault injection that 

is really time consuming as needs a lot of runs for the same benchmark before 

providing the final assessments. Nevertheless all these approaches have one major 

disadvantage, they over-estimate the vulnerability of microprocessor structures in 

contrast to the fault injection method.  

Especially ACE analysis overestimates the vulnerability of soft error 3 x times in 

average against the vulnerability computed using fault injection [1]. Recent studies have 

shown that this overestimation of the AVF can be decreased by adding more details 

about the RTL (Register Transfer Level) model. The accuracy of AVF is intrinsically 

connecting with detailed models execution. The overestimation of the AVF will be 
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presented in the next sections in more details, where we compare the AVF calculated in 

this study for different benchmarks and structures with that obtained by [1]. 

 

3.4.1 ACE analysis 

In order to compute AVF we need to determine which bits are ACE bits, affecting 

the program outcome and which are un-ACE bits that do not affect the final output. Un-

ACE bits divide into two categories.  

 Microarchitectural un-ACE bits  

 Architectural un-ACE bits.  

 

3.4.1.1 Microarchitectural un-ACE bits 

An un-ACE microarchitectural bit is correlated with an idle/invalid state, a miss-

speculated state, an ex-ACE state or a predictor state. In more details:  

 Idle/invalid state: A status bit or data can be characterized as un-ACE when is idle 

or does not contain any valid information. Nevertheless control bits are always 

ACE-bits and a fault on a control bit may result in error. 

 Miss-speculated state: The bits that used to represent a wrongly speculated 

operation such as branch prediction, are un-ACE. These operations are 

performed more and more often at modern microprocessors. 

 Ex-ACE state: An ACE-bit after the last time it was used by a committed 

instruction becomes un-ACE (dead bit). With that state can be described both the 

architecturally dead value and the architecturally invisible states.  

 Predictor state: All kind of microprocessors’ predictors such as branch, jump, 

store-load dependence predictors and stack predictors consist of un-ACE bits. A 

fault in that structure most of the times will result in a misprediction. This 

misprediction will affect the performance of the program but will not result in an 

error at the final output. 

 

3.4.1.2 Architectural un-ACE bits 

An un-ACE architectural bit can be correlated with NOP instructions, performance-

enhancing instructions, predicated-false instructions, dynamically dead instructions and 
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logical masking. These bits affect the correct-path instruction execution, but they do not 

affect the output of the program. Those kinds of bits that are not used in the constitution 

of the ACE path are called un-ACE instruction bits. In more details: 

 NOP instructions: NOP instructions do not affect the architectural state of the 

processor and also there are at the majority of the instruction sets. They are used 

in order to align instructions to address boundaries or to fill VLIW-style instruction 

templates. There are some ACE bits in the NOP instruction that distinguish it 

from a non-NOP (all the other bits are un-ACE bits). These bits can be the 

opcode or the destination register specifier, depending on the instruction set. 

 Performance-enhancing instructions: Performance-enhancing instructions are 

included at the most of instruction sets. In a non-opcode field a single bit error 

will not affect the final outcome of the program. For example, a single bit upset at 

a prefetching instruction may cause the address to become invalid (the 

prefetching will be ignored at this case) or the wrong data will be prefetched. 

Nevertheless the program’s output will not be changed. Thus, the non-opcode 

bits are un-ACE bits. 

 Predicated-false instructions: Predicated instruction-set architectures are based on 

a predicate register in order to decide if an instruction will be executed. The 

instruction will commit only if the predicate predictor is true otherwise the 

instruction will be discarded. Thus, all bits in a Predicated false instruction set are 

un-ACE bits except the predicate register specifier bits. A fault in those bits may 

result in a false prediction for the instruction, so these bits are called ACE 

instruction bits. If the instruction is dead and there is a fault in the predicate 

register, it will not result to any problem at the computation of the program as this 

instruction is not going to be committed again. The predicate register as well as 

the corresponding specifier can be considered as un-ACE bits for that case. 

 Dynamically dead instructions: Dynamically dead instructions are the instructions 

with unused destination registers. There are two types of dynamically dead 

instructions the first-level dynamically dead (FDD) and the transitively 

dynamically dead (TDD). FDD results are not read by any other instruction. The 

TDD instructions lead to FDD or other TDD instructions 
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 Logical masking: Logically masked are the bits that belong to operands in a chain 

of computation that their bit values are not used do not influence the final 

computation. 

 

3.4.2  AVF Equation 

The AVF for a storage cell is the percentage of time at which the cell contains an 

ACE bit. For example, if a storage cell contains ACE bits for 10000 cycles out of an 

execution of 100000 cycles, then the AVF for that cell is 10%. The equation of the AVF 

for a whole hardware structure is similar with the above equation [19]. The AVF for the 

whole structure equals to the average AVF for all bits’ structure. 

 

The equation for AVF of a hardware structure is equal to: 

 

As at this study a simulator will be used for extracting data in order to compute the 

AVF,the above type can be more specified and rewriten as:   

 

Using the aforementioned type, in this study we calculated the reliability of two 

hardware structures (the physical integer register file and the L1 data cache). 

 

3.5 Diagnostic and Protection mechanisms for hardware fault 

A memory error can influence both the performance and the reliability of the 

computing system, so it is important for a computing system to be designed with a way 

in order to be reliable. The reliability of the system can be achieved by using detection 

and diagnostic mechanisms for hardware faults as long as mechanisms for system 

recovery after the fault detection. 

These tolerance mechanisms encumbrance the computing system in terms of 

execution time, memory capacity and the cost. The cost of a common memory detection 

technique for hardware errors with capabilities for recovering can be from very low to 
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very high. Mechanisms such as detection or correction of an error, being added to the 

system result to slowdown of the execution time of the benchmarks.  

 There are two types of tolerance mechanisms. The software level techniques as 

long as the hardware level techniques [13][1]. Software-level methods are responsible 

for detection and do not impose any area overhead. The hardware-level techniques do 

not use any software intervention for the detection or protection, so they increase the 

hardware cost of the computing system. For that reason the selection of best 

techniques about the diagnosis, the detection and the correction of hardware errors has 

to take into account all the characteristic of the computing system and to take place in 

an early stage of the design phase. In this way the high cost of redesign cycles on later 

integration will be avoided. 

 However is really difficult to choose the most appropriate mechanism as a lot of 

knowledge is missing at the early stages of the design procedures. The designer is not 

aware of the workload, the architecture of the system or the different hardware sizes. At 

this moment the usage of a microarchitecture simulator against RTL model is 

undoubtedly the best choice. It can give us an effective reliability estimation with much 

accuracy at the early stage before the design of the computing system.   

The microarchitectural simulators are remarkably faster than the simulators in the 

RTL level and make easier the study of large and realistic benchmarks. Moreover, the 

fact that they can be used at the early stage of the design give architects the opportunity 

to configure many parameters and hardware structures of the computing system. A 

microarchitecture simulator is responsible for modeling all the microarchitecture 

components of the system, such as the arrays for storage in a chip area. As a result, it 

determines the vulnerability factors for structures like: register files, caches, buffers, 

queues. Also, they are important for multiple performance studies since they allow study 

on software’s execution with big duration [1]. In this study, we use the GEM5, a 

microarchitectural simulator to measure the AVF of physical integer register file and L1 

data cache. 
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4. Gem5 Simulator Overview 

 

Gem5 simulator is a free open source software platform that supports simulation of 

multiple platforms as described below (Instruction Set Architectures – ISA) like ARM, 

Alpha, MIPS, Power PC, SPARC and X86 64-bit. All system components of the 

simulator are configurable. Gem5 is also a combination of two older simulators, M5 and 

GEMS. Specifically M5 has contributed with its functional full system simulator and 

GEMS with its memory modeling capabilities. 

Below we present the main details of each ISA: 

 ALPHA: the most used ISA on Gem5 simulator. Alpha architecture based on a 

DEC Tsunami system that can be extended for up to 64 cores. 

 ARM: models a Cortex-A9 and offers support for Thumb, Thumb-2, VFPv3, NEON 

instructions set extensions. 

 X86: models a X86 CPU (64 bit) which boots unmodified Linux Kernel in a SMP 

configuration (this ISA will be used in this study). 

 SPARC: models an UltraSPARC t1 processor which boots Solaris. 

 PowerPC: models a 32-bit processor based on POWER ISA v2.06 B. 

 MIPS: models a 32-bit processor. 

 

4.1 M5 

The M5 project was started at University of Michigan as a full system simulator to 

simulate large networked systems and explore designs of network I/O. M5 simulator 

offers a configuration environment for multiple Instruction Set Architectures, ISAs and 

CPU models. 

M5 consists of two CPU models, SimpleCPU and O3CPU. One of its characteristic 

is that M5 simulator can change CPU models during the runtime for example, can 

change between SimpleCPU to O3CPU if there is need for taking statistics and from 

O3CPU to Simple CPU if there is need for warm-up operation and forwarding. 

 Specifically the model of SimpleCPU is not a pipeline model. It is about an in-order 

model with only one outstanding memory operation. Its configuration can be such to 
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execute one or more instructions per cycle. Except from the previous operation 

SimpleCPU is also used to model network client systems. 

 On the other hand O3CPU is an out-of-order model, pipelined, concurrent, 

superscalar and multi-threading (SMT). It has been developed to provide timing 

accuracy. For that reason timing and functional modeling have integrated into a single 

pipeline execution (functional instructions execute at execute stage of timing pipeline). 

This type of model has several stages like decode or fetch that can be configured in 

their own attributes such as latency. Time buffers are responsible for the communication 

between these stages. In addition, the O3CPU model can simulate particularly an out-

of-order pipeline as long as it includes branch predictors, store/load queues, instruction 

queues, predictors for memory dependence and functional units. O3CPU model is going 

to be used in this thesis. 

 According to memory system, M5’s memory consists of two types of objects, the 

devices and the interconnections. As devices can be considered caches, I/O devices or 

memories. About the interconnection network there are two models: “Simple” and 

“Garnet. Simple network model is presented by default and traverse the network hop-

by-hop while it abstracts out detailed modeling within the switches. On the other hand 

Garnet is a more detailed interconnection network model. It consists of flexible and fixed 

pipeline model and it uses routing tables, variable link bandwidth and multi-cast 

messages. Simple network model is faster than Garnet. 

 M5 can support caches with configurable parameters as size, associativity, 

replacement policy, latency etc. 

 

4.2 GEMS 

The GEMS simulator was started at University of Wisconsin. GEMS features a 

timing simulator of a multiprocessor memory system called Ruby) which is used to 

model different cache coherency protocols. GEMS also supports interconnect models 

(network connection). This merge into Gem5 has taken the best aspects from these two 

simulators. 
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4.3 Fundamental requirements of Gem5 

Gem5 constructed according three fundamental requirements: flexibility, 

availability and collaboration.  

Regarding to flexibility Gem5 has two execution models. It can run as a System-

call Emulation (SE) or as a Full System (FS). In a SE mode all system calls are handled 

by the simulator and only the user space program is simulated. SE mode is really fast, if 

only memory operations need to be observed. On the other hand in a FS mode all 

systems calls and user space are simulated. Fs mode operation is slowly and provides 

Linux as the environment of the simulation. Also, it consists of two memory system 

models, the Classic and the Ruby. Ruby features in GEMS and implements a domain 

specific language called SLICC (Specification Language for Implementing Cache 

Coherence) which is used to model multiple cache coherency protocols. The Classic 

model features in M5 and provides a configurable memory system. Moreover Gem5 

supports 4 multiple CPU models, each one has a different point across the speed vs. 

accuracy spectrum. The AtomicSimple model is a minimum model of an IPC 

(Instructions Per Cycle) CPU, the TimingSimple model is a similar model which is 

configured some timing characteristics. The InOrder model simulates a pipelined in-

order CPU while the O3 model simulates a pipelined out-of-order CPU. Another proof of 

its flexibility is the fact that it is really easy to apply a wide range of investigations if you 

become familiarized on it. 

Gem5 is available for both academic and corporate researchers. Its license is based 

on BSD license and there is no dependence on proprietary code. Gem5 as an open 

source software is combined effort of many people with different specialties 

(researches, students, engineers etc.). The community of Gem5 is really active and 

uses different collaborative technologies like mailing lists, wiki, a management system 

for the several code changes based on web and a public source repository. 

 

4.4 Memory System in Gem5 

The memory system in Gem5 has been designed with modularity through several 

interfaces, flexibility as different cache models interconnects and an inclusive set of 

buildings. Memory system consists of Memobjects, ports, connections and the port 

proxies. 
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4.4.1 Memory System Models 

As the GEMS simulation system has primarily been used to study cache-coherent 

Shared memory systems (both on-chip and off-chip) and related issues, those aspects 

of GEMS 1.0 release are the most detailed and the most flexible. 

The heart of GEMS is the Ruby memory system simulator. The other model is the 

classic. Classic model is fast, easy and can configure easily the memory system. All 

memory objects are connected via ports. This model supports fast forwarding. Atomic 

accesses and timing as long as are really fast at this model. Also, it is easy to be 

configured and to keep up with other memory models. One of its disadvantage is that is 

not able to model protocol contention. 

 Ruby as a timing model of a multiprocessor memory system responsible for 

modeling caches and their controllers, system interconnect and also the bank of the 

main memory as long as the memory controllers. Ruby is the model that can have a 

combination between timing simulation for modules that have no dependence with the 

cache coherence protocol such as interconnection network and a specification language 

for Implementing Cache Coherence (SLICC). The objects do not connect via ports like 

classic model but via RubyPort object. The disadvantage of that model is that does not 

support fast forwarding. Moreover, in contrast to the classic model is slower and is 

difficult to simply extend protocols to other level of cache. An overview about Ruby is at 

Figure 5. 

 

Figure 5: Ruby Simulator overview 
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In Figure 6 a high level overview of Gem5 shows. It concerns all modules that 

interact with it from the first step until the last of a program execution. To run the 

simulator it takes a Linux kernel, a disk image and a configuration file.  

 

 

Figure 6: Gem5 high level overview 

 

According to the Figure 6 the console output, the statistics file and the debug 

information are the output of the simulator. The statistics file (stats.txt at m5out folder), 

which contains statistics that are collected during the simulation is dumped to a file at 

the end of simulation. The debug output can be controlled using flags during the build. 

Every program that executes in Gem5 can be accessed besides having the input 

and output while it is running by connecting a terminal or GDB over specified network 

interfaces. Attaching GDB can be used to debug the simulated system. 

 

4.4.2  Port system 

Port System consists of Memobject, Ports, Connections and Port Proxies. 

 Memobjects: Every object in a memory system is inherited from MemObject. The 

calss of Memobject allows the connection of memory objects. Its functions return 

the name of the port that is going to be used for the connection. 

 Ports: Every MemObject should have at least one port in order to be useful. Each 

port can be master or slave. The master port connects to slave. All the ports 

come to peer. 

 Connections: All the entries with info about the connection are saved at a vector 

port. 

 Port Proxies: There are three types of port proxies. The first one is the PortProxy 

and is used for setting and loading physical addresses. The other two types are 
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SETranslatingPortProxy and FSTranslatingPortProxy. These ports use virtual 

addresses. 

 

4.4.3 Packets 

The encapsulated transformation among two objects in the memory system is done 

via packets. A packet is readable only in case of its value is valid. Its class has many 

information about the size, the address etc. Packet’s fields are accessed by assessors 

in order to ensure that the data in the packet are valid. All these fields as long as some 

new fields that I have added will be explained with more details later in the 

implementation model of this study. 

 

4.4.4 Requests 

The initial request issued by CPU or I/O device is encapsulated in a request 

object. Request’s fields are accessed by assessors in order to ensure that the data are 

valid. A request is demanded for a request packet construction. Request fields such as 

physical address, its size etc. will be explained in details later. 

 

4.4.5 Atomic, functional, Timing access 

The ports support three types of accesses: Atomic, Functional and Timing. Atomic 

accesses are really fast and used to forward caches. They return the expectation time 

that needed to complete the request without taking on mind the queue delays. Atomic 

and timing accesses cannot coexist in the memory system. Functional accesses have 

the same period with atomic accesses. The disadvantage of that kind of accesses is the 

fact that they can coexist in the memory system with atomic or timing accesses. They 

are used for loading binaries and changing variables in the simulated system. In the end 

Timing accesses are the accesses with the more details. They represent a real time 

model and take into account the queue delay in contrast to the atomic accesses. 

There is a need of a flow control, because timing requests simulating a realistic 

memory system are not instantaneous. The flow control is responsible for guiding when 

a packet will be resent after the first failed sent. The packet will be sent again only in 

case of received a value that will ensure that the packet can be send again. 
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4.5 CPU models 

The CPU models in Gem5 are the following: Simple CPU Model, Out-of-Order 

CPU model, In Order CPU Model and Trace CPU Model. 

In Table 2 about Memory system models and Cpu Models sum up all the 

appropriate information about that models. 

 

Table 2: CPU Models and Memory system 

Processor Memory System 

CPU Model System Mode Classic Rubby 

Simple Garnet 

Atomic Simple SE    

FS Speed   

Timing Simple SE    

FS    

In - Order SE    

FS    

O3 SE   Acuracy 

FS    
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4.5.1 SimpleCPU 

Simple CPU is a functional, in-order model without representing a detailed model. 

It is divided into three sub models, the BaseSimpleCPU, AtomicSimpleCPU and 

TimingSimpleCPU. The BaseSimpleCPU model determines functions for checking 

interrupts, setting up fetch requests, handling pre and post executing actions and for 

advancing the PC to the next instruction. The AtomicSimpleCPU model uses atomic 

memory accesses, while the TimingSimpleCPU model uses timing memory accesses. 

One main difference between AtomisSimpleCPU and TimingSimpleCPU is that 

AtomicSimpleCPU waits until memory access returns, so the stages of fetch and 

memory may last more because of the fetch delay or LD/ST delay. This difference is 

shown at Figure 7 and Figure 8 below. Simple CPU also defines the port that is used to 

hook up to memory and that connects the CPU to the cache as long as determines the 

necessary functions for handling the response from memory to the accesses sent out.  

 

Figure 7: CPU Model AtomicSimpleCPU 

 



Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5 
Simulator 
 

Alevizopoulou Sofia   37 

 

Figure 8: CPU Model TimingSimpleCPU 
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4.5.2 O3CPU 

The Out-of-Order CPU (O3CPU) model that is used is an out-of-order CPU model. 

Next, we present all the pipeline stages and resources. Pipeline stages also are 

presented at Figure 9. 

 Fetch: The first stage of pipeline is fetch. At this stage the dynamic instruction 

(«class DyInstptr») will be created for the first time. The object of «class 

DyInstptr» represents the dynamic instruction (more details for that 

structure will be given in the following section). Also, it selects the thread 

that is going to be fetched as long as it is responsible for branch prediction. 

 Decode: The other stage is Decode, and is used to handle the PC at 

unconditional branches. The next stage is rename. This stage uses physical 

integer register file and also renames architectural registers to physical 

registers according to the programs’ needs.  

 IEW stage: One of the final stage is the process of: 

 Issuing the instruction: 

 Executing the instruction 

 Writing back the instruction 

This stage is a combination of processes as it can handle both execute and 

writeback. Also manages dispatching instruction to the instruction queue. 

 Commit: The last pipeline stage is the commit. It is the stage at which an 

instruction is committed or not. This stage is the most important for ACE 

analysis, because only the instructions that are finally committed can 

corrupt the output. Instructions that did not arrive at this stage have not be 

measured in the ACE analysis presented in this study.  
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Figure 9: O3CPU pipeline 

 

 

Each pipeline stage consists of several structures (queues, buffers, predictors and 

functional units etc.). In more details, the pipeline resources are: 

o Branch predictor: Branch predictor allows the selection between a local, a 

global and a tournament predictor.  

o Reorder buffer: Reorder buffer not only handles the instruction that are 

squashed but also holds all the instruction in program order.  
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o Instruction queue: Instruction queue acquires several dependencies among 

instructions and uses the memory dependence predictor for scheduling 

when an instruction is ready. 

o Load-store queue: Load-store queue holds accesses to the memory system 

that have reached the back-end. When memory operations issue and start 

to execute then load-store queue hooks up to L1 data cache and initiates 

the accesses. Moreover it is used to detect memory violations, to replay 

memory operations in case of blocked memory system and to handle the 

forwarding operation between store and load actions.  

o Functional units: Functional units determine which instruction can be issued 

at each cycle as long as the latency of the executed instruction. 

 

4.5.3 InOrder  

In Order CPU model provides a generic framework for in –order pipelines without 

a specific ISA or pipeline description. So this model provides generic pipeline stages of 

Fetch, Decode, Execute, Memory, Writeback. If an instruction cannot complete all its 

resources requests in one stage, then it blocks the pipeline. It can be shown at Figure 

10. 

 

Figure 10: InOrderCPU pipeline 
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4.6 Extensive – object oriented design 

The flexibility of Gem5 is a consequence of its object oriented design. The way of 

its design and systems’ configuration with independent items lead to the modeling of 

multiple CPU models and systems.  

 All basic elements of Gem5 called SimObjects and have common behavior 

concerning the configuration, initialization, the collection of statistics and the 

serialization. The SimObjects contain independent constituents of hardware like cores 

of CPU, cache memories, interconnections data and devices. Furthermore there are 

some abstract entities, the workload and the System – Call Emulation (SE). 

 Every SimObject is represented by two classes, the one is written in Python and 

the other in C++ and is inherited by the main class SimObject that is written in both C++ 

and Python. The definition of the class in Python sets SimObject’s parameters and is 

used during the configuration through a script file.  

The main Python class provides consolidated mechanisms for the initialization, the 

definition of the parameter’s value and the name of the variable. The main C++ class 

holds information about the SimObject, its behavior and the characteristics of the 

simulation process. 

 

4.7 Python 

Python is a scripting programming language. It is really popular because of its 

flexibility and easiness of use. Except from the fact that the majority of the code in 

Gem5 is written in C++, Python has a very big distribution. Every SimObject as already 

mentioned is written both in Python and C++. The script files in Python offer 

initialization, configuration and the control of the simulation. The main() function as long 

as the code for the command line process and the boot process are written in Python. 

At the beginning, the simulator runs Python file. All the configuration scripts used in this 

study for the size of physical integer register file or the L1 data cache associativity are 

written in python. 
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4.8 Physical Integer Register File 

Three types of registers are used in CPU models of Gem5. The first one is the 

physical register, the next is architectural registers and the last one is Condition code 

registers (CC). The index of a physical register is the index that is encoded in the 

instruction. There are two register classes, the one for integer registers and the other for 

float registers. In this study, we make ACE analysis only for the integer register class. 

The index space for that registers start at 0. Architectural registers have been in order to 

avoid the managing dependencies that physical registers are not able to deal with. 

 

4.9 Gem5 Configuration 

Details about the configuration of the original version of the simulator which are 

related to this study are described in the next Table 3. 

 

Table 3: Simulator Configuration 

Physical Integer Register File 256 integer registers 

Load/Store Queue Entries 16 Load, 16 Store 

L1 data cache 32KB, 64B line, 128 sets, 4-way, write-back 

L1 Instruction cache 32KB, 64B line, 128 sets, 4-way, write-back 
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4.10 Inside the Gem5 

 

Figure 11: Source code Tree organization for Gem5 

     

More specifically every folder at Gem5 simulator has its own functionality that is 

described below, see Figure 11.  

 System: platform with low level software (firmware, bootloaders) – packaged 

separately. 

 Tests: files related to regression tests. 

 Configs: Configuration scripts written in Python that provide some basic 

prepackaged functionality. Also include some examples that can be used for your 

own script. 

 src: the source code of the simulator 

 src/arch: ISA implementations. 

 src/base: general data structures/facilities 

 src/cpu: Specific models of CPU 

 src/dev: : Specific models 

 src/doxygen: Doxygen templates and output. 

 src/kern: Specific Operating System but architecture is independent code. 

 src/mem: Memory System models. 
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 src/python: Python configuration code. 

 src/sim: Code for the base functionality of the simulator. 

 util: utility programs and scripts which are not parts of the Gem5 binary but are 

generally useful when working on Gem5. 

 ext: Dependencies that are really hard to find alone, not likely to be available and 

are generally useful when working on Gem5. 
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5. Simulated system 

 

The simulated system is a Linux system and the release that chosen is Ubundu 

14.4.0. Ubundu 14.4.0 is flexible and everything can be compiled from source, also is 

really helpful during the debugging. Gem5 developers propose Ubundu and concerning 

the Kernel they recommend to fetch it directly from kernel.org. A Linux Kernel and a 

Linux disk image are appropriate in order to start a simulation.  

 

5.1 The Linux Kernel 

One of the components needed for the simulation is a compiled Linux kernel. The 

Gem5 wiki provides four different configurations of the Linux kernel for x86 64-bit. 

Newer versions of the Linux kernel are preferable as the goal of this thesis is to provide 

the most recent software stack. In this study the edition of Linux kernel for X86 Gem5 is 

x86_64-vmlinux-2.6.22.9.smp.  

 

5.2 Clock cycle 

Clock cycle is the amount of time between two pulses of an oscillator and is the 

parameter that determines the speed of CPU or a computer processor. It is known that 

the higher pulses per second, the faster the computer processor will be able to process 

information. 

  Clock speed or cock rate is the speed that the microprocessor executes each 

instruction or vibration of the clock. For each instruction’s execution the CPU requires a 

number of clock ticks or cycles to be executed. The measurement for clock speed is Hz. 

Typically is measured in MHz or GHz. For example, a 2 GHz processor executes 

2.000.000.000 clock cycles per second.  

According to the type of the processor, computer processors can execute one or 

more instructions per clock cycle. Nowadays the modern processors can execute 

multiple instructions per cycle while earlier computer processors and slower CPUs can 

only execute one instruction per clock cycle. 

A tick is an arbitrary unit for measuring internal system time. There is usually an OS-

internal counter for ticks; the current time and date used by various functions of the OS 



Architectural Vulnerability Factor (AVF) Assessment of x86 CPUs using Architectural Correct Execution (ACE) analysis in the Gem5 
Simulator 
 

Alevizopoulou Sofia   46 

are derived from that counter. A tick is 1 pico second and in order to convert it to clock 

cycle is needed to be known how many seconds is a clock cycle. Consequently, a clock 

cycle can be any number of ticks. For example, for a 2 GHz CPU that is the CPU speed 

for my implementation, 1 clock cycle takes 500 pico seconds that means 500 ticks (1 

tick=1 pico second). 

 

5.3 Computation of simulation’s clock cycle 

In order to calculate the exact clock cycles of the simulation execution, it is needed 

to be divided the whole ticks of the simulation by 500 (for a 2 GHz CPU that is the CPU 

speed for this study, 1 clock cycle takes 500 pico seconds that means 500 ticks). The 

same calculation has been done in order to compute how many clock cycles is the ACE 

interval time of the simulation. 
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6. Cache Memory 

 

Cache memory at Gem5 simulator is related on Harvard’s architecture. According to 

that architecture model, cache memory is separated into data cache and instruction 

cache.  

The advantage of this architecture is that the system can fetch an instruction from 

the instruction cache simultaneously with data from data cache. Other important 

advantage of that architecture is that keeping instruction cache and data caches 

separated, prevents conflicts between set of instructions and data. The disadvantage of 

that model is that the size of Icache (Instruction cache) as the size of L1 data cache 

(data cache) is not fixable. It is fixed depending on the architecture. The major 

difference between them is that the data cache must be capable of performing both 

read and write operations, while instruction cache needs to provide only read operation. 

This type of memory is really faster than architectures like Newmann. At Newmann’s 

architecture data and instruction cache are the same. 
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 Figure 12 represents the hierarchy between L1 and L2 cache memory as long as 

the stages that an instruction follows until accesses data cache. 

 

Figure 12: L1 & L2 cache memories 

                    

 

6.1  Instruction Cache 

Instruction cache holds only the instructions that processor will execute. Usually its 

size is smaller than data cache as instructions for a program take less memory that 

program’s data. It is very often the same instruction executed so many times during a 

program execution for that reason designers have decided to devote more chip area at 

data cache memory. 
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6.2 Data Cache 

Data Cache holds temporarily data that processor uses during the program 

execution. From that type of memory data can be stored or loaded from the memory.  

Considering the process of writing data at data cache there are two policies: Write 

Back and Write Through. At write through policy, the data setting happens at the same 

time at data cache memory and memory system. For some benchmarks, the 

disadvantage of the write through method is that continuously memory access will 

reduce the performance as it is needed to wait until the completion of the previous 

access in order to access memory again. Write back policy allows data writing to 

memory system only if some structures of the processor are available. The 

disadvantage of that policy is the cost and the complexity of the memory. Some 

writeback caches include write-buffer as temporary storage for lines that are being 

written back in order to avoid the big delay. Gem5 implements only the write-back 

policy.  

 

6.3 Cache Mapping and Associativity 

A very important factor that determines the effectiveness of cache memory is related 

with the way that is mapped to the system memory. There are many ways to allocate 

the storage in our cache to the memory addresses it serves. More clearly the 

associativity is the answer to the question “how will be divided the address lines in 

cache memory amongst the system memory”. Three different ways can do this mapping 

in the memory system.  

 Direct Mapped Cache: The simplest way for memory mapping. The memory 

system chopped in chunks. The number of chunks is equal to the number of 

address lines in cache. Then each chunk gets the use of one cache line. This is 

called direct mapping. Although this way is very simple, it has no flexibility about 

where to put the blocks in the cache. 

 Fully Associative Cache: In a fully associative mapping a cache block can go 

anywhere in the cache. There is no need to allocate cache line to a specific 

memory location. Every tag must be compared when finding a block in the cache, 

but block placement is very flexible! 
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 n-Way Set Associative Cache: "n" is a number, at least 2 as 1-way associative is 

the direct mapping. It about a conciliation between the direct mapped and fully 

associative designs. At this design cache memory split into sets, the number of 

sets depends on the way of association. For example, at a 4-way set 

associativity, cache memory consists four sets. Each memory address is 

assigned a set, and can be cached in any one of those four locations within the 

set that it is assigned to. Generally, “n” means that there are "n" possible places 

that a given memory location may be in the cache. A n-way associative cache 

memory, with n blocks is a fully associative cache. In order to compute a set 

index or to select a set within the cache instead of an individual block the next 

equation types are used: 

 Block Offset = Memory Address mod 2n  

 Block Address = Memory Address / 2n  

 Set Index = Block Address mod 2s 

 In this study, cache memory is 4-way associative and all the computation about 

number of sets and blocks computed with the above arithmetical types. 

A memory address of m-bits shows all of the information needed to locate the data 

in the cache. The address consists of three parts: tag, set index and block offset. The 

length of these fields differs from design to design. The least significant bits are used to 

determine the block offset. If the block size is B then the block offset needs b = log2B 

bits to be specified. The next highest group of bits is the set index and is used to 

determine which cache set we will look at. If S is the number of sets in our cache, then 

the set index has s = log2S bits. The remaining bits are used for the tag. Tag field is 

used to differentiate the several regions of memory that will be mapped into a block. It is 

like a unique identifier for that group of data. As the length of the address in bits is m-

bits, then the number of tag bits is t = m − b − s. See Figure 13. 

 

Figure 13: Divisions of the address for cache use 
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Figure 13 also shows a memory address for a direct mapping or a n-way associative 

cache memory. A full associative cache memory is shown at Figure 14. Due to a cache 

block can go anywhere in the cache there is no need for index field in the memory 

address. 

 

Figure 14: Fully associative Cache Memory 

 

6.4 Cache Size 

The capacity of a cache represents the amount of data that can be stored in the 

cache. For example, a cache with capacity 64KB can store 64kilobytes of data. In this 

study, the AVF was computed for three different data cache capacities, 64KB, 32KB 

and 16KB. 
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7. Implementation of AVF analysis assessment in Physical Integer 
Register File and L1 Data Cache 

 

In this study vulnerability factors computed at the physical integer register file and L1 

data Cache. In order to export the final results for that two modules all the ACE bits in 

the structure, should be recorded. The overall ACE bits consist of ACE bits in physical 

integer register file and ACE bits in L1 data cache, as well. I have extended the code of 

Gem5 by adding new fields and methods at some existing classes or by implementing 

new classes. AVF computation for physical integer register file will be analyzed 

thoroughly in Section 7.3 and about L1 data cache at Section 7.4. 

 

7.1 Start and End Tick of the Simulation 

For 10 benchmarks executed in Gem5, we created checkpoints for every 

workload. Each benchmark restore a checkpoint which is in the folder gem5/m5out. 

Because of the restore mode, the simulation does not start at Tick 0 but at the Tick 

which the checkpoint has taken. For that reason the initial tick of simulation has to be 

noted for the computation of the program duration. At the physical integer register file 

simulate.hh as long as simulate.cc a new variable, the variable «Tick initial_time» is 

defined for that scope: Tick initial_time= CurTick ();. CurTick () function returns the tick 

time at that moment of execution. 

 The end simulation Tick is taken at the file sim_events.cc with the same way, 

using function CurTick() in the function «exitSimLoop()». The subtraction of end and 

initial Tick gives the program duration that is going to be used in AVF equations. 

 

7.2 Dynamic Instruction 

The dynamic instruction is the instruction that executed and is responsible for 

modifying the data of a register in the physical integer register file or a word in L1 data 

cache. It is declared in the header file dyn_inst.hh in the «class BaseO3DynInst». In 

order to know which dynamic instruction is responsible for a change in the data field of a 

physical integer register or a word of the L1 data cache, three more fields were added at 

the class of BaseO3DynInst. The extra fields are shown in Figure 15.  
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Figure 15: Class BaseO3DyInst 

 

A load dynamic instruction in the physical integer register file can access the value 

from one or more register at the same time. Even in data cache a load instruction can 

access more than one word simultaneously. So, when a load instruction is committed all 

the entries in vectors Entry (analyzed in more detail at the next Sections) that are 

related with that instruction updated according to that commission. Entry is a structure 

that holds information about the time that happens a change in the data field of a 

physical integer register or a word of the L1 data cache. The above vectors: 

read_packet and packetInfoCacheAccess hold information about the registers and the 

words of L1 data cache which are depend on this instruction. As a result two new 

classes have been added. The «class packet» for the physical integer register file and 

the «class InfoForCacheAccess» for the L1 data cache. 

«Class packet» as shown in Figure 16, has information about the index of the 

integer register and details about the exact row and column that is in the vector Entry. 

The value of row_of_Entry indicates the register ID, while the column_of_Entry indicates 

the load instruction that accessed that entry. All the packets’ fields are accessed by 

senders and receivers. 

 

Figure 16: Class packet in DyInstPtr 

 

Respectively, «class InfoForCacheAccess» that is presented in Figure 17, has 

information about the related set, block and word of L1 data cache. Also has fields 

about the exact row and column that is related in the vector Entry. The value of 

row_of_Entry indicates the word, while column_of_Entry indicates the load that 
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accessed that word. Moreover, the field of NumSet indicates the set, NumBlock refers 

to the block and NumWord indicates the word in the block. All InfoForCacheAccess’s 

fields are accessed by senders and receivers. This class has meaning only for load 

instruction, because write requests in L1 data cache indicate that the store instruction 

was committed. 

 

Figure 17: Class InfoForCacheAccess 

 

7.3 AVF for Physical Integer Register File 

As it is illustrated at Figure 11, Gem5 consists of several folders, each folder has 

its own functionality. The functionality that I am interested in is inside the folder src and 

especially the subfolder of src/cpu. Inside src/cpu there are subfolders for each model of 

CPU. This study will implement the classes and methods from O3CPU model (out-of-

order model), so the source code files from src/cpu/o3 will be edited. From now on, we 

will not refer to the accurate path in Gem5 for every header or source file because we 

present details about source and header files of the simulator in the last Section. 

This study targets to have access and to note the accurate time that a dynamic 

instruction will read or write the data of a register. The methods for reading and writing 

at a register is implemented at header file regfile.hh. The functions with the specific 

functionality in that module are «readIntReg()» and «setIntReg()». The source code for 

those functions has moved to the source file regfile.cc, as regfile.hh is imported to many 

files in Gem5. For saving the exact Tick that becomes a read or a write at a register we 

created a structure that holds information about the time of reading or writing process 

and also information about the commission or no of the specific dynamic instruction.   
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7.3.1 Structure for holding information about a read/write at a register 

A new header file pinakas.h is created in order to set a new class, «class 

element». «Class element» holds information about the Tick that an instruction 

accesses a register with the variable «Tick time» as long as a boolean variable «Bool 

isSquashed» which becomes true if the instruction that accessed the register was finally 

committed. All the elements’ fields are accessed by senders and receivers. The 

constructor initializes time to CurTick() Tick and the boolean variable as false, therefore 

all instruction at first steps considered as not committed and so on bits are considered 

un-ACE bits. Below in Figure 18 we present the fields of «Class element». 

 

Figure 18: Class element 

 

In order to compute ACE bits during the execution of the benchmark, statistics for 

every register of the simulator need to be hold. In this study we used three different 

configurations of physical integer register file. The first one is for 256 registers, the other 

for 128 registers and the last one for 64 registers. The configuration about the number 

of physical registers is defined in a python file, O3CPU.py. In all of these cases we did 

not take under consideration the register 16 because it is implemented in a non-realistic 

functional way representing the zero register. In our analysis, we stored all the 

information needed concerning the registers in vectors. This vector is declared in the 

same file (pinakas.h) with the class «class regi», see Figure 19. 

 

Figure 19: Class regi 

 

Each cell of the vector Entry is a «class element» object. The vector Entry is 

declared in the «class PhysRegFile» at the header file regfile.hh and is initialized with 

the constructor of «class PhysRegFile» in source file regfile.cc. «Class PhysRegFile» 

constructs a physical integer register file with integer and floating point registers and 
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also methods about handling registers. The declaration and initialization of «class regi» 

is presented in Figure 20. The variable _numPhysicalIntRegs is the number of physical 

registers of the simulator. In this study it is equal to 256, 128 or 64. 

 

Figure 20: Declare and initialize "class regi" 

 

At this point it is important to explain the functionality of vector Entry and how a set 

operand of a register distinguishes from a read operand. A detailed diagram presents in 

Figure 21. 

 

Figure 21: Vector Entry for Physical Integer Register File 
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The first column at the Entry represents the write accesses for a specific register 

whereas the other columns represent the read operation for the specific register. Thus, 

the first column of each row represents different write operations in the register. Every 

other column at the specific row is a read operation of the value which is written 

according to the write operation of the first column. For example, (Figure 21) every 

register has 4 different sets “set0-set3”. “Load0-Loadn” correspond to n different loads 

of the register. There are n loads for the 1st set, n loads for the 2nd set and so on. 

 

7.3.2 Methods for setting and loading a value from a register index 

In «Class PhysRegFile» there are the functions, «setIntReg()» and «readIntReg()» 

for setting a value in an integer register and the other for loading a value from it. The 

input parameters in both functions are different, see Figure 22. One more argument has 

been added, the argument of «DynInstPtr inst», «class DynInstPt» has been explained 

in Section 7.2.  

 

Figure 22: Functions readIntReg() and setIntReg() 

 

 Inside the body of that methods, we added functionality in order to fill the vector 

Entry for the register with specific id, «PhysRegIndex reg_idx». Time field is an element 

object that takes its value from curTick (). boolean variable isSquashed assigns with 

false (all bits before the commit stage assume as un-ACE bits). In that functions one 

more field of «class DynInstPtr» has to be assigned, that stores the details concerning 

the dynamic instructions that accesses the hardware entry. 

«class packet» saves details about the index of the integer physical register, the 

number of row and column in the vector Entry where is located the element related to 

this access of the register. The information of «class packet» will be used later at 

commit stage in order to inform all the cells of the vector that are related to the 

committed instruction. 
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7.3.3 Instruction committed for an integer register in Physical Integer Register File 

At first steps all bits of the hardware structures are assumed as un-ACE bits. Each 

element object initializes its boolean variable about the commit as false. When an 

instruction arrives at commit stage, the function «void commitInsts()» in commit_impl.hh 

is called. The instruction that arrives at that stage is certain that is committed, so the bits 

that are related to that dynamic instruction are ACE bits. At this point the boolean 

variable in vector Entry has to be set as true. The extension of «class DyInstPtr» with 

the extra fields, see Section 7.2 help us to have information about the exact register this 

instruction is referred. If it is a load instruction it may refers to more than one registers. 

As a result all the related cells in Entry vectors set their boolean variable at the commit 

stage. Thus, this interval considered as ACE during the AVF equation. 

 

7.3.3.1 Pointer to Physical Integer Register File from commit stage 

Access to CPU object is available only at the functions inside src/cpu, while the 

structures out of the core has no knowledge about CPU elements. The vector Entry that 

is used in order to hold statistics about physical integer register file has defined and 

takes value inside CPU, so it is not accessible out of CPU. In order to have access in 

the several structures of CPU a pointer has defined to a CPU object. The pointer 

«regi*myRegfileForModify» is declared in sim_events.cc and extended in other source 

files. The initialization becomes in «void commitInsts ()», see Figure 23. 

 

Figure 23: Pointer to Physical Integer Register File 

 

7.3.4 The computation of AVF 

Inside folder src/sim there is the source file sim_events.cc. At this file, the 

simulator handles several termination event. When the benchmark comes to the end or 

when the user terminates the execution (using Ctrl-X, Ctrl-C), the function from Figure 

24 called. At this function, the simulation ends up so the end simulation Tick that will be 

used for calculation program’s duration is available.  
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Figure 24: Function about simulator termination 

 

 In this implementation in order to compute the overall ACE-bits of the register, all 

the entries of the vector Entry have to be checked. For each entry that is not committed 

according to the boolean variable isSquashed, Time is set equal to 0 (zero). If the 

instruction was committed, the period between the write and the load is considered as 

ACE period. Otherwise if the last load is not committed, continue with the previous load 

and so on. It is important to be noted that if the write operation of register is not 

committed then there is no ACE period for that interval.  

This process is repeated for every register in the physical integer register file 

except zeroReg. At the end, ACE interval Ticks for all the registers in the register file are 

available. The general equation type for AVF calculation that was presented in Section 

3.4.2 was used. The next equation was redefined in order to be more specified in this 

study:  

 

ACE Interval Ticks are the overall ACE Ticks for the physical integer register file.  

Program duration is the duration in Ticks for the simulation and the number of Physical 

registers is the number of physical integer registers in the physical integer register file. 

 

7.4 AVF for Data Cache 

The source files concerning memory is in the folder src/mem in Gem5. At this 

folder there is source code about general handling of the memory. Specifically for cache 

memory that this study is talking about, all its files are inside the subfolder 

src/mem/cache. There is one more subfolder inside, src/mem/cache/tag that contains all 

the source and header files with information about cache characteristics and its 

configuration.  

All the information about sets and blocks is taken from the file base_set_assoc.cc. 

Inside the tags subfolder there are all the details about the tags of the cache. Tags 
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contain configuration details like the block size, the number of blocks etc. A tag object 

passes as argument to the majority of functions in order to find if a particular word exists 

in the cache or not. 

The L1 data cache consists of sets, each set depending on cache associativity 

consists of n blocks (n-way associative). Each block depends on the address size in bits 

(64 bit address) and the block size consists of words. In this study, the first level data 

cache consists of blocks of 64B size, with 8 words of 64 bit each. The size of the cache 

memory in combination with the way of associativity also determine the number of sets 

in cache.   

 

In this study all the benchmarks will be executed with several cache sizes: 16KB, 

32KB and 64KB. The configuration about the cache size is defined from the running 

script that starts the simulation (using the option –l1d cache=…) and the configuration 

about the way associativity is set at a python file (Tags.py) in the class «class 

BaseSetAssoc(BaseTags)». Furthermore, the way of associativity in all our experiments 

is 4-way associativity meaning that every set consists of 4 blocks. 

 

7.4.1 Structure for holding information about a read/write at a word in a block 

Similar to the physical integer register file, we store information at a vector 

concerning details about the time when an instruction accesses a hardware entry and if 

this instruction is finally commit. The goal is to have access and to note the accurate 

time that an instruction reads or writes a word in L1 data cache. The access in L1 data 

cache is implemented in the file cache_impl.hh. Four writing accesses and four reading 

accesses at L1 data cache have been identified. The exact points in the source code 

will be presented later.  

We created a structure that holds information about the moment of a read or a 

write operation in a word of L1 data cache about the commission or not of the specific 

dynamic instruction that accessed the entry. Except from that information that is similar 

to that of physical integer register file, the L1 data cache needs one more variable that 

represents if the load operation of the entry concerns a writeback or not. This difference 

exists due to the writeback of some dirty blocks from the first level data cache to the 

lower layers of the cache hierarchy. As a result our implementation cannot correlate a 
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committed or not instruction with a written back block. For that reason in our 

implementation we used a parameter (p) that defines the percentage of the intervals 

that were written back and are considered as ACE. Thus, if p=100%, then all the 

intervals that were written back are ACE. If p=50%, only the half of the intervals that 

were written back are considered as ACE. Finally, if p=0%, all the intervals that were 

written back are considered un-ACE.  

At the path src/mem/cache a new header file pinakas2.h has been created in order 

to set a new class «class elementForCache». This class holds information about the 

time (in Ticks) that an instruction accesses a word in the data cache with the variable 

Tick time. Moreover, a boolean variable Bool blockValidation is used and is set when 

the instruction that accessed the word is committed. The field Bool iswritebackload 

determines if a block was written back or not. All the elementForCache’s fields are 

accessed by senders and receivers. The constructor initializes time using CurTick() 

function and the boolean field blockValidation is unset (false), therefore all instruction at 

first steps considered as not committed and consequently bits are considered as un-

ACE. The field iswritebackload is false in case of the block is not written back, otherwise 

is true. This class is presented at Figure 25. 

 

Figure 25: Class elementForCache 

 

There are three possible configurations according the cache size. The first one is 

for 16KB cache size, the second for 32KB cache size and the last for 64KB cache size. 

The cache size determines the numbers of sets in the cache as long as the number of 

blocks. In order to compute ACE bits for data cache during the execution of the 

benchmark we need to hold statistics for every word of the data cache in a vector. This 

vector is implemented in the same file (pinakas2.h) with the class «class 

cachesImplementation », see Figure 26. Every word in a block has its own vector Entry. 
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Figure 26: Class CachesImplementation 

 

The first column at each row of the vector Entry reflects the sets of the word and 

the other columns correspond to the loads of this word’s set. At Figure 27 except from 

vector Entry three more modules are shown. They have been constructed in order to 

express the cache’s division in sets, blocks and words. 

 

 

Figure 27: The architecture of sets, blocks and words in L1 data cache. 

 

7.4.1.1 The structure used to store information of sets, blocks and words 

Figure 27 makes clear the idea of the model for expressing sets, blocks and 

words. The declaration for mysets becomes in the «class cache», for myblocks inside 

«class CacheBlkpointer» and for blkEntryimpl in «class Cacheblk». 

In «class cache» apart from the variable mysets that is used to express the set of 

the L1 data cache an extra function has been added (Cache* get_cache()) to access 

the pointer of the L1 data cache. This pointer is used to sim_Events.cc and 

commit_impl.hh files where we need to access the structures of data cache for 
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computing the ACE periods and mark instruction as committed. The extra fields of 

«class cache» are illustrated at Figure 28. 

 

Figure 28: Class cache 

 

The initialization for the field mysets is in the file cache_impl.hh. 

 

 

Information concerning the blocks at each set is saved at the «class 

CacheBlkpointer». CacheBlkpointer is a new class constructed to identify the block an 

n-way associative cache memory (each set has n blocks). The declaration is in the 

header file cache.hh (Figure 29). 

 

Figure 29: Class CacheBlkpointer 

 

The last information about the words in data cache is also important. In «class 

CacheBlk» in header file blk.hh there is the declaration for the object blkEntryimpl, 

(Figure 30). BlkEntryimpl field is an object of the «class cachesImplementation», the 

class with the vector Entry that holds statistics for each word in a block. 
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Figure 30: Class CacheBlk 

 

The initialization happens in the constructor of CacheBlk at the same file blk.hh, see 

Figure 31.  

 

Figure 31: Constructor of class CacheBlk() 

 

The size of blkEntryimpl depends on the address size in bits. In this study the 

address is 64 bit, so every word is 8 bytes. Consequently blocksize/8 gives the exact 

width of words in a block. Concluding all the previous classes and their functionality if it 

we want to access the the 3rd word of the 4th block at 134 set in data cache it should be 

written: mysets[133].myblocks[3].blkEntryimpl[2]. 

 

7.4.2 Methods for setting and loading a word in L1 data cache 

The header file commit_impl.hh monitors the set and load operands of the words of 

the L1 data cache. Four different functions are responsible for loading the data value 

form a word in the L1 data cache, in two of them also a set operation takes place. Two 

other functions are responsible for the write operation. Below is the prototype of that 

functions with a sample of theirs source code. 
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 Void Cache::cmpAndSwap(CacheBlk *, PacketPtr ): This function handles the 

comparison and swap for SPARC (a Scalable Processor Architecture) 2. This 

function monitors read as long as set operation in the L1 data cache. In this study 

the benchmarks that are executed do not call this function. The exact line at the 

source code that a load operand took place is shown at Figure 32. 

 

 

Figure 32: Function cmpAndSwap() 

 

                                            

2 SPARC stands for a Scalable Processor Architecture. SPARC has been implemented in processors 

used in a range of computers from laptops to supercomputers [33]  
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 Void Cache::satisfyCpuSideRequest(PacketPtr , CacheBlk*, bool , bool ):  

This function represents cache read and write from the CPU. It signs a request for 

loading data using a packet from a word in the L1 data cache or write data in a word 

using a packet (Figure 33). 

 

Figure 33: Function satisfyCpuSideRequest() 
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 PacketPtr Cache::writebackBlk(CacheBlk *):  

This function creates a writeback request for a given block. In this study writeback 

blocks are assumed as totally committed, or totally squashed or partially committed. 

The source code for that function is on next Figure 34. 

 

Figure 34: Function writebackBlk() 
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 Void Cache::handleSnoop(PacketPtr, CacheBlk *, bool, bool ):  

This function is executed a very few times and as a result in this implementation each 

load from that function is assumed as committed (the influence of the final result due to 

these cases is negligible). It sets the cache block that have being snooped to a new 

coherence state for that block. A sample from the source code of this function is in 

Figure 35. 

 

Figure 35: Function handleSnoop() 
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 Bool Cache::access(PacketPtr, CacheBlk *, Cycles &,PacketList &):  

This function monitors a set operation in the L1 data cache, see Figure 36 for the 

source code. 

 

Figure 36: Function access() 
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 CacheBlk* Cache::handleFill(PacketPtr, CacheBlk *, PacketList &):  

This function is responsible for cache filling. More specifically this function populates a 

cache block and handles all outstanding requests for this fill request (Figure 37). 

 

Figure 37: Function handleFill() 
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7.4.3 Packets transfer data to dynamic instruction Object 

According to the source code for cache memory, in the header file cache_impl.hh 

that handles the access at data cache’s words there is no way to access the dynamic 

instruction. Nevertheless, in this header file there are the methods for writing and 

loading a word in the L1 data cache and the assignment to the field 

packetInfoCacheAccess has to be done in that point. This was done using another class 

object, the «class packet». «class packet» as shown in Figure 38, is the structure that 

transfers data from L1 to L2 level cache. Packets are response for each request in order 

to transfer data in memory hierarchy. 

 

Figure 38: Class Packet 

At «class packet» a new field has been added. The field of infoforcacheaccess 

that is an object of «class InfoForCacheAccess». This class has analyzed in Section 7.2 

where the class of DyInstPtr was explored. The field infoforcacheaccess used to hold 

information about the access (set or load operation) in a word of L1 data cache. «class 

packet» is available in the header file cache_impl.hh so it can transfer details that are 

related with a specific dynamic instruction in the header file lsq_unit_impl.hh where the 

object of dynamic instruction is accessible. At the function «completeDataAccess()» in 

lsq_unit_impl.hh the index of the element infoforcacheaccess of «class packet» is 

copied to the element infoforcacheaccess of «class DyInstPtr». Consequently, during 

the commit stage the dynamic instruction can inform the vector Entry about which of its 

cells have to assigned as committed. All dynamic instructions follow the same path: 

lsq_unit.hh -> cache_ipml.hh -> lsq_unit_impl.hh except from the load that are 

correlated with a writeback block that they do not pass from the file lsq_unit_impl.hh. In 

conclusion, the packet structure is used to pass important information to dynamic 

instruction as there is no access to that object inside CPU core. 
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7.4.4 Instruction related with a word in L1 data cache commits  

Like the physical integer register file (Section 7.3.3), an instruction is checked as 

squashed or not in the function «commitInsts ()» in commit_impl.hh . At this point we 

have to identify all instructions of data cache that were committed. The access in the 

Entry vector happens via a pointer to the cache object which has initialized in the 

header file cache.hh. 

Cache * mycopycache; 

Using this pointer (mycopycache), we can correlate a specific element of the vector 

Entry with a specific dynamic committed instruction (packetinfocacheaccess). Finally if 

the dynamic instruction was committed then the boolean variable “blockValidation” is set 

as presented at Figure 39. Otherwise, it remains as unset. 

 

Figure 39: Dynamic Instruction committed in L1 data cache 

 

7.4.5 The Computation of AVF 

The function «exitSimLoop()» according to Section 7.1 signs the end of the 

simulation. The overall ACE bits for the physical integer register file as long as for the 

L1 data cache are computed at this function. The process for the two modules is similar. 

It should be noticed that every set instruction in the L1 data cache is always committed 

so there is no need to check if the instruction commits or not in contrast to the physical 

integer register file.  

At the end for each block of the cache, the total ACE interval is computed. Three 

different cases of AVF have to be computed so different total ACE Interval period is 

used for each equation. The general equation type for AVF in the data cache is:  

 

Where ACE Interval Ticks are the overall ACE Ticks for the L1 data cache, 

Program duration is the duration in Ticks for the simulation. The number of words in L1 
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data cache is computed multipling the number of sets, the number of ways and the 

number of words per block. Ace Interval Ticks are not the same at the three different 

cases due to the writeback blocks. 

The first case assumes that all loads correlated to writeback blocks in the L1 data 

cache are committed (parameter p=100%), ACE Interval Ticks are computed with the 

same way like physical integer register file. In the loop for every set, way and finally 

every word we check if the last load instruction of the word is committed by checking the 

boolean variable blockValidation. If it is committed then the period between the set and 

the load is assumed as ACE. Otherwise if the last load is not committed, we continue 

with the previous load and so on. 

 The second case assumes that all loads correlated to writeback blocks in the 

data cache are not committed (parameter p=0%), we execute the same loop as 

previously mentioned with the only difference that if the last load of the word is 

correlated with a writeback block, then it is ignored and we continue to the next loads. 

The variable iswritebackload is used for that operation. 

In the third case where we assume that partially some loads correlated to 

writeback blocks are ACE (parameter p=50%), we use a factor that defines the 

percentage of these loads that are finally assumed as committed.  
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8. Results  

 

In our study we evaluated 10 benchmarks: cjpeg, djpeg, fft, qsort, sha, 

stringsearch, susan_corners, susan_edges, susan_smoothing and rijndael_enc from 

MiBench suite, using the small data sets. In Table 4 we present the exact number of 

committed instructions per benchmark [28]. Specifically according to the stringsearch 

benchmark, we run many small versions of it and also a lot of big versions from the 

benchmarks of fft and qsort. 

 

Table 4: Benchmarks and Instruction count 

Benchmark Committed Instructions  

Cjpeg 28,108,471 

Djpeg 6,677,595 

Fft 52,625,918 

Qsort 43,604,903 

Sha 13,541,298 

Stringsearch 158,646 

susan_corners 1,062,891 

susan_edges 1,836,965 

susan_smoothing 24,897,492 

rijndael_enc 28,108,471 

 

Each benchmark is executed four times. In this study we ran every benchmark for 

three different sizes of physical integer register file (256, 128 and 64 registers) as long 

as for three different sizes of L1 data cache (64 KB, 32 KB and 16KB). For each 

configuration there are diagrams that shown the AVF estimation and tables with the 
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program duration in cycles for every executed benchmark and the ACE cycles during 

the execution. The rightmost end of each diagram, “avg” is used for the average case of 

each AVF estimation. 

Figure 40 shows the faulty behavior classification for the physical integer register 

file. For each size of the physical integer register file we assume that L1 data cache size 

is 32KB (Table 3). As the size of the physical integer register file is increased, the AVF 

is decreased. This is a logical because when there are more registers available, the 

workload of its one register is not so big. We observe the same trend at all benchmarks; 

AVF is higher using 64 registers than 128 and 256 registers respectively. If we compare 

these results with the results of [1] that runs the same benchmarks, where the AVF was 

computed with statistical fault-injection, we can observe the overestimation of ACE 

analysis method. This overestimation is presented in the Figure 41. As it is shown from 

the diagram the overestimation of AVF computation using ACE analysis is about 2,97 x 

times in average against the vulnerability computed using fault injection [1], this 

prediction about the overestimation has been done again in Section 3.4.1. 

 

 

Figure 40: AVF for the physical integer register file 
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Figure 41: AVF in physical register file using ACE analysis in comparison with fault injection 

 

It is remarkable that the program duration of each executed benchmark is notably 

shorter than the ACE period (Table 5). 
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Table 5: Execution and ACE cycles for each benchmark 

     

  64 Registers 128 Registers 256 Registers 

     

cjpeg Execution cycles 26109073 24550085 24531382 

 ACE cycles 50200000000000 66500000000000 669000000 

     

djpeg Execution cycles 7243352 7234256 7232260 

 ACE cycles 130858000 167260000 169096000 

     

fft Execution cycles 29383619 23296147 23170500 

 ACE cycles 525357000 506215000 513736000 

     

qsort Execution cycles 40156029 38146020 38115535 

 ACE cycles 694974000 718016000 718227000 

     

sha Execution cycles 9671548 9846765 9857959 

 ACE cycles 181904000 244828000 245914000 

     

stringsearch Execution cycles 811506 799344 800968 

 ACE cycles 14102700 16000900 16049300 

     

susan_corners Execution cycles 2228972 2128850 2130583 

 ACE cycles 36658900 39248600 39677700 

     

susan_edges Execution cycles 3626864 3563908 3563791 

 ACE cycles 69738500 77107400 77457200 

     

susan_smoothing Execution cycles 22677032 13120004 12642338 

 ACE cycles 407996000 295436000 359820000 

     

rijndael_enc Execution cycles 24861482 23545044 23310484 

 ACE cycles 417967000 447784000 44520900 
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The next three Figure 42, Figure 43 and Figure 44 show the AVF estimation for 

the same ten benchmarks but for the L1 data Cache. The size of physical integer 

register file for the three different executions is 256 registers (Table 3). Each diagram 

presents the AVF for the three different sizes of L1 data cache: 16KB, 32KB and 64KB. 

The AVF is decreased while the size of the L1 data cache is increased. As the number 

of words, sets and blocks in the L1 data cache depend on its size, bigger L1 data cache 

corresponds to more words that are available for setting and loading value from them. 

The cache stores more unused data in this case. 

 The only difference among these three executions is the percentage of the 

writeback blocks that are correlated with instructions and we assume that are finally 

committed. The Figure 42 illustrates the case in which we assume that 100% of these 

written back blocks are vulnerable. At Figure 43 only 50% of the written back blocks are 

assumed as vulnerable and at Figure 44 all the written back blocks are assumed non-

vulnerable. The overestimation of AVF with ACE analysis is also conspicuous in these 

cases in comparison with the statistical fault injection [1] but that time not as big as in 

the physical integer register file (Figure 41). In this case the overestimation of AVF 

using ACE analysis is about 1,23 x times in average against the vulnerability computed 

using fault injection [1] (Figure 45). On Figure 45, AVF using ACE analysis has 

estimated for L1 data cache with 100% vulnerable written blocks. 

 

 

Figure 42: AVF for the L1 data cache with 100% vulnerable written back blocks  
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Figure 43: AVF for L1 data cache with 50% vulnerable written back blocks 

 

 

Figure 44: AVF for L1 data cache with 0% vulnerable written back blocks 
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Figure 45: AVF in L1 DCache using ACE analysis in comparison with fault injection 

 

On the other hand, in the physical integer register file there are not so much 

differences between the 10 benchmarks in ΑVF results compared to the L1 data cache. 

The above Figures verify the initial idea of this thesis at which AVF computation with 

ACE analysis should result in pessimistic AVF estimation than other methods of AVF 

computation such as statistical fault injection. 

At the tables below presented the program duration and ACE cycles for each 

configuration. Program duration is significantly shorter than the intervals which 

considered as ACE. (Table 6, Table 7, Table 8) 
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Table 6: Execution and ACE cycles for each benchmark - Data Cache size: 16 KB 

 

 

 

 

   

   Possibility of written back blocks 

   100% 50% 0% 

cjpeg Execution cycles 24769238    

 ACE cycles  16653200000 13881800000 11202400000 

      

djpeg Execution cycles 7384642    

 ACE cycles  2686690000 2015230000 1374440000 

      

fft Execution cycles 23275293    

 ACE cycles  7264800000 5606040000 4080820000 

      

qsort Execution cycles 38438355    

 ACE cycles  15053500000 11744100000 8501020000 

      

sha Execution cycles 9930908    

 ACE cycles  2994280000 2599700000 2224150000 

      

stringsearch Execution cycles 804384    

 ACE cycles  303449000 258007000 215830000 

      

susan_corners Execution cycles 2140134    

 ACE cycles  877765000 682586000 496273000 

      

susan_edges Execution cycles 3577858    

 ACE cycles  2482890000 2100310000 1745540000 

      

susan_smoothing Execution cycles 12652161    

 ACE cycles  11432100000 10236900000 9511760000 

      

rijndael_enc Execution cycles 25426260    

 ACE cycles  2631840000 2148620000 1673580000 
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Table 7: Execution and ACE cycles for each benchmark - Data Cache size: 32 KB 

    

   Possibility of written back blocks 

   100% 50% 0% 

cjpeg Execution 

cycles 

24531382    

 ACE cycles  32600000000 27100000000 21700000000 

      

djpeg Execution 

cycles 

7232260    

 ACE cycles  4499100000 3331440000 2261040000 

      

fft Execution 

cycles 

23170500    

 ACE cycles  12317000000 12317000000 5886210000 

      

qsort Execution 

cycles 

38115535    

 ACE cycles  27018300000 20294100000 13695600000 

      

sha Execution 

cycles 

9857959    

 ACE cycles  5057630000 4546450000 4082710000 

      

stringsearch Execution 

cycles 

800968    

 ACE cycles  406528000 335073000 267157000 

      

susan_corners Execution 

cycles 

2130583    

 ACE cycles  1493100000 1112130000 742535000 

      

susan_edges Execution 

cycles 

3563791    

 ACE cycles  3740920000 3029750000 2363770000 

      

susan_smoothing Execution 

cycles 

12642338    

 ACE cycles  16321900000 14545800000 13694900000 

      

rijndael_enc Execution 

cycles 

23310484    

 ACE cycles  6601380000 4797970000 3013750000 
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Table 8: Execution and ACE cycles for each benchmark - Data Cache size: 64 KB 

    
   Possibility of written back blocks 

   100% 50% 0% 

Cjpeg Execution 

cycles 

24397209    

 ACE cycles  53916400000 43737700000 33721700000 

      

Djpeg Execution 

cycles 

7133827    

 ACE cycles  7257210000 5535100000 3582450000 

      

Fft Execution 

cycles 

23139759    

 ACE cycles  20622100000 13816100000 7087980000 

      

Qsort Execution 

cycles 

37719873    

 ACE cycles  45806900000 32314400000 18917700000 

      

Sha Execution 

cycles 

9833305    

 ACE cycles  5260870000 4730310000 4227450000 

      

Stringsearch Execution 

cycles 

793112    

 ACE cycles  366489000 305387000 246845000 

      

susan_corners Execution 

cycles 

2114984    

 ACE cycles  2284790000 1662710000 1066200000 

      

susan_edges Execution 

cycles 

3546738    

 ACE cycles  4652960000 3635030000 2677370000 

      

susan_smoothing Execution 

cycles 

12631586    

 ACE cycles  17457900000 15104900000 13551100000 

      

rijndael_enc Execution 

cycles 

23126288 16702000000 8062530000 4563740000 

 ACE cycles     
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As analyzed in Section 2.4, FIT as a Vulnerability measurement reflects the 

accurate reliability of a component. FIT is estimated with the type: 

 

Where raw FIT rate = 0.01 per bit, the number of bits is the overall number of bits in a 

structure. For example, for a physical integer register file with 256 registers the number 

of bits is: 256x64bits. AVF is the computed vulnerability factor (if AVF is 10%, for the 

FIT computation will be considered as 0,10).  

 For every AVF diagram that shown before, there is a corresponding FIT diagram. 

In Figure 46, Figure 47, Figure 48 and Figure 49 FIT rate estimation is presented for the 

different configurations of physical integer register and L1 data cache. 

 

 

Figure 46: FIT in physical integer register File 
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Figure 47: FIT in L1 DCache with 100% vulnerable written back blocks 

 

 

 

 

Figure 48: FIT in L1 DCache with 50% vulnerable written back blocks 
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Figure 49: FIT in L1 DCache with 0% vulnerable written back blocks 

 

From Figure 46, Figure 47, Figure 48 and Figure 49 it is obvious that the 

benchmark with the most FITS is susan_smoothing. The next benchmarks with the 

most FITS are susan_edges and cjpeg. One FIT specifies one failure in a billion hours 

so for example, a benchmark with a FIT rate of 10 has 10e-9 FITS. High FIT rate equals 

to big number of FITS and as a consequence it signs a not reliable component. In our 

study the most reliable benchmark is rijndael_enc while the most unreliable benchmark 

is susan_smoothing. 

 

8.1 Conclusions 

AVF estimation is a problem with many interesting aspects for a designer during the 

early design phase, because he can design reliable integrated circuits with smaller cost. 

 The problem is that at the next generation of microprocessors the hardware faults 

due to cosmic radiation, alpha particles is going to increase and as result more research 

about this topic has to be done. Until now there are many methods for computing 

vulnerability factors, fault injection is the most accurate method but of course with other 

methods like ACE analysis which is the subject of this thesis a fast but pessimistic 

vulnerability estimation can be offered. 
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9. APPENDIX  

 

9.1 Commands for running a benchmark: 

 To build, the next command should be executed: 

 scons build/X86/gem5.opt 

 

 To restore a checkpoint L1 data cache size has to been set. For example, the next 

command for running the checkpoint has been set to 32KB. The executing 

checkpoint is in the subfolder Gem5/m5out. The commands for execution is : 

 export M5_PATH= the path to gem5 images 

 ./build/X86/gem5.opt --stats-file=stats.txt configs/example/fs.py --disk-

image=…linux-x86-new.img --kernel=…./binaries/x86_64-vmlinux-2.6.22.9.smp 

-r1 --caches –l1d=32kb --l2cache --cpu-type=detailed --restore-with-

cpu=detailed 

 

 For changing the size of physical integer register file, the python file O3CPU.py 

should modify. The next instruction has to change. For example, at this case the 

size of physical integer register file is 256 registers: 

 numPhysIntRegs= Param.Unsigned(256, "Number of physical integer registers") 

 

 For setting the assocciativity of cache memory, the python file Tags.py should 

modify. For example, with the next association, cache associativity is four: 

 assoc=Param.Int(4, "associativity") 
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9.2 Hardware and Software configuration  

The execution of benchmarks carried out in my personal computer. Its 

configuration details are shown below. 

CPU: Intel(R) Core(TM) i5 CPU M 520 @ 2.40GHz 

Cache size: 3072 KB 

Disk size: 25.4 GB 

OS: Ubuntu 14.04 LTS – 64 bit 
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ABBREVIATIONS 

AVF Average Vulnerability Factor 

ACE Architectural Correct Analysis 

DCache Data Cache 

ICache Instruction Cache 

 FIT Failure in Time 

MTBF Mean Time Between Faults 

 SE System-call Emulation 

 FS Full System 

RTL Register Transfer Level 

O3CPU Out of Order CPU 

IEW Issuing, Executing, Writeback 
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SOURCE FILES AND HEADER FILES 

regfile.hh Gem5/src/cpu/o3 

regfile.cc Gem5/src/cpu/o3 

pinakas.hh Gem5/src/cpu/o3 

dyn_inst.hh Gem5/src/cpu/o3 

commit_impl.hh Gem5/src/cpu/o3 

lsq_unit_impl.hh Gem5/src/cpu/o3 

03CPU.py Gem5/build/X86/cpu/o3 

sim_events.cc Gem5/src/sim 

simulate.hh Gem5/src/sim 

simulate.cc Gem5/src/sim 

cache.hh Gem5/src/mem/cache 

cache_impl.hh Gem5/src/mem/cache 

blk.hh Gem5/src/mem/cache 

base_set_assoc.cc Gem5/src/mem/cache/tags 

Tags.py Gem5/src/mem/cache/tags 
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