NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

UNDERGRADUATE THESIS

Doop-Soot: Parallel Fact Generation

Dimitris I. Mouris

Supervisors: Yannis Smaragdakis, Associate Professor NKUA
Anastasis Antoniadis, M.Sc. Student NKUA

ATHENS
MAY 2016

EONIKO KAI KAMNOAIZTPIAKO MNMANEMNIZTHMIO AGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NTYXIAKH EPTAZIA

Doop-Soot: MapaAAnAotroinon tng Anuioupyiag Neyovotwy

AnpnTtpng H. Moupng

EmiBAémrovreg: TMdavvng Zpapayddkng, AvamAnpwthic Kabnyntig EKIA
Avaotdaong Avtwviadng, Metatmtuxiakog doitntg EKIMA

AGOHNA
MAIOZ 2016

UNDERGRADUATE THESIS

Doop-Soot: Parallel Fact Generation

Dimitris I. Mouris
R.N.: 1115201200114

SUPERVISORS: Yannis Smaragdakis, Associate Professor NKUA
Anastasis Antoniadis, M.Sc. Student NKUA

NTYXIAKH EPTAZIA

Doop-Soot: MapaAAnAoTtroinon Tng Anuioupyiag I'eyovotwy

AnpnTpng H. Moupng
A.M.: 1115201200114

EMIBAENMONTEZ: Tidavvng Zpapayddkng, AvamAnpwthg Kabnyntrig EKMA
AvaoTtdong Avrwviadng, Metamtuyiakég doirntig EKMA

ABSTRACT

The use of deductive databases for declarative program analysis has become increasingly
popular in recent years. A typical example is Datalog databases. Generating the initial data
that is kept in the database is often as expensive as the program analysis itself and does
not scale well as the program size increases.

In this thesis we present a parallel approach of the fact-generation process from Java
bytecode in order to perform pointer, or points-to analysis in Java programs using the Doop
framework. Our goal is to evaluate the benefits of a parallel implementation compared to
the non-parallel one.

SUBJECT AREA: Static program analysis

KEYWORDS: static program analysis, doop framework, soot framework, fact
generation, java multi-threading

University of Athens

NEPIAHWYH

Ta TeAeuTaia xpovia yivetal OAO Kal TTIo dNUOPIAAG N XPRon (CUV)ETTaYWYIKWY BACEWV
d0edopévwy oTn dNAWTIKR avaAuon TTpoypauudTwy. Mia atrd TIG TTIO XOPAKTNPIOTIKEG TTE-
PITTITWOEIG gival Baoelg dedopévwy TTou XpnolpoTtrololv Datalog. H Trapaywyr) TNG apxIkAg
TTAnpo@opiag Trou eicdyetal oTn BAon OeBOUEVWY YIA TO AVOAUOUEVO TTPOYPAUNG O€ TTOA-
AEG TTEQITITWOEIS €ival e€ioou datravnpr] o€ XPOVO PE TNV avAdAuon Tou TTPOYPAUMOTOG,
€10IKA 600 TO PEYEBOG aUTOU aUEAVETQL.

2.€ QUTI TNV TITUXIOKH TTAPOUCIACOUNE TNV TTAPAAANAOTTOINON TNG O1adIKATIAG TTAPAYWYNS
TNG ApPXIKAS TTAnpogopiag atrd Java bytecode pe okoTrd va XpnolyoTroinBei yia avaluon
OeIKTWYV o€ TTpoypduuarta Java atrd 1o Doop framework. O o1dx0¢ hHOG gival va agloAoyn-
OOUWE TA OPEAN TTOU TTPOCYPEPEI MIA TTAPAAANAN UAOTTOINON O€ OXEON UE TRV OKOAOUBIOKT).

OEMATIKH MNMEPIOXH: ZtaTikr) avdAucn TTpoypapudTwy

AEZEIZ KAEIAIA: oTatiki avdAuon T1poypaupdtwy, doop framework, soot
framework, dnuioupyia yeyovotwy, TToAuvnuatiopdg o€ java

MavetmoTtruio ABnvwy

To my parents, llias & Eirini.

ACKNOWLEDGMENTS

| would like to thank my supervisor, Prof. Yannis Smaragdakis for the chance he gave me
with this project and also for his support and help all these months.

My sincere thanks also goes to M.Sc. student and my friend Anastasis Antoniadis for his
patience and guidance which had been very helpful to finish this work.

May 2016

CONTENTS

PREFACE ittt it e e e e e e e e e 14
1. INTRODUCTIONttt e e e e e e e e e e e e e e e e e e e 15
2. DOOP e e e 16
RA FactGenerationl & & & & i it e 16
.2 DoopTimeExamples & v & v v i vt e e e e e e e e e e e e e e e e e e 17
R.3 FactTable Exampld & & v v v vt ottt e e e e e e e e e e e e e e e e e 17
... 20
B.1 Applying the latest Sootversion & & v & it e e e e e e e e e e e e e 20
B.2 Bytecode TOJIMPIE . . . & & v & ot ottt ot e 21
B.3 JIMPIe EXamples . - - « « « v v v v v e 22

B.3.1 HelloWorld e 22

B.3.2 Inheritance Tesl 24
4. PARALLELIZING FACT GENERATION i it i e i i i e a 26
M4 OneThread PerMethod & &t i i i e e e e e e e e e e e e e e e e e 27
B2 OneThread PerClass . . . « « v v v v v v vt e e e e e e e e e e e e e e e e e e 28
B.3 Fork/JoIN FrameworK & & 4 & ot ot ot et e e e e e e e e e e e e e e e e e e 30
B.4 Multiple Classes PerThread « & & ¢ v o v vt b e e e e e e e e e e e e 32
5. LOCKINGt ittt e 37
B DOOP SIAE « & v v v v e 37

B.1.1 CSVDatabasd e 37

B.1.2 Representatiod 38
B.2 S00t Side . . - . i .tk e 38

B.21 TypeAssignel 38

B.2.2 PackManagell 39

523 Shimple-ssd e 39

6. EXPERIMENTAL RESULTSt ittt e et e e e e 40

7. CONCLUSIONS e e e e e e e e e e

ACRONYMS AND ABBREVIATIONS it e e e e e e

REFERENCES

LIST OF FIGURES

Figure 1: ActualParam.facts 17
Figure 2: AssignLocal.facty 18
Figure 3: ClassObjectfacty 18
Figure 4: AssignHeapAllocation.facts 18
Figure 5. ClassType.facts 19
Figure 6: Fact Generation with different Soot versiong 21
Figure 7. HelloWorld.java 22
Figure 8: HelloWorld.Jimple 23
Figure 9: inheritanceTest.java 24
Figure 10: _inheritanceTest.Jimple 25
Figure 11: Sequential Fact Generation. 26
Figure 12: One Thread PerMethod 27
Figure 13: One ThreadPerClass 29
Figure 14: Fork/Join Basic-Us€ 30
Figure 15: Fork/Join Framework 31
Figure 16: Multiple Classes Per Thread: FactGenerator.javg 32
Figure 17: Multiple Classes Per Thread: ClassGenerator.javg 33
Figure 18: Increasing the number of threads with 3 classes per thread 34
Figure 19: Increasing the number of threads with 4 classes per thread 34
Figure 20: Final approach: Driver.java 35
Figure 21: _ Final approach: ThreadFactory.java, FactGenerator.java 36
Figure 22: CSVDatabase.java 37
Figure 23: Representation.java 38

Figure 24: JimpleBodyPack.java
Figure 25: PackManager.java. i
Figure 26: Fact-generation timingresults

LIST OF TABLES

Table 1: Soot2.5.0 FGtimings 17
[Table 2: Sequential fact-generation timing examples 27
[Table 3: One thread per method timing examples 28
[Table 4: One thread per class timing examples 29
[Table 5: Fork/Join timing examples 32
[Table 6: Multiple classes per thread timing examples 33
[Table 7: Summarizing best timings of all approaches 40

PREFACE

This project was developed in Athens, Greece between September 2015 and March 2016.
At the very beginning of this work, it was essential to understand how the Doop framework
works for pointer or points-to analysis. Equally important was the task of understanding
the codebase of the Soot framework and growing familiar with its integration with Doop in
order to translate Java bytecode to an IR (Jimple) and produce the facts for the analysis.
The core of this work was focused on understanding the way Java bytecode to Jimple
translation is implemented and attempting to parallelize it without disrupting the Doop
work-flow.

Doop-Soot: Parallel Fact Generation

1. INTRODUCTION

Soot [1] is a Java bytecode optimization framework which my colleagues use for fact
generation in order to perform points-to analysis [2] of Java programs, in Datalog, using
the Doop framework [3].

This thesis aims to minimize the time consumed by the fact-generation process and also
guarantee the integrity and correctness of the generated facts. For this task, we had to
parallelize the fact-generation process and proceed to the appropriate modifications in
both Soot and Doop.

The rest of the thesis is organized as follows:
1. In Chapter 2 we present the Doop framework.

2. In Chapter 3 we describe the Soot framework which is invoked by Doop to generate
the facts.

In Chapter 4 we present the four implemented approaches to parallelize fact generation.
In Chapter § we explain the locks needed to ensure thread safety.

In Chapter [§ we present our timing results.

2

In Chapter [/ we summarize our conclusions.

Dimitris . Mouris 17

Doop-Soot: Parallel Fact Generation

2. DOOP

Doop [3] is a framework for pointer, or points-to, analysis of Java programs. Itimplements a
range of different algorithms such as context insensitive, call-site sensitive, object-sensitive
analyses and a lot of other variations of these algorithms.

From the Doop website:

"Doop builds on the idea of specifying pointer analysis algorithms declaratively, using
Datalog: a logic-based language for defining (recursive) relations. Doop carries the declarative
approach further than past work by describing the full end-to-end analysis in Datalog and
optimizing aggressively through exposition of the representation of relations (for example
indexing) to the Datalog language level. Doop uses the Datalog dialect and engine of
LogicBlox.”

The advantage of Doop compared to alternative context-sensitive pointer analysis
implementations, is that Doop is much faster, and scales better. Also, with comparable
context-sensitivity features, Doop is more precise in handling some Java features (for
example exceptions) than alternatives.

Doop is launched by specifying the type of analysis to run and the directory that contains
java bytecode (.jar file) to analyze. At first, the facts are generated by soot and imported
to a database —or more precisely a knowlegdebase— and then the specified analysis is
run.

2.1 Fact Generation

Doop, before running a pointer or points-to analysis, invokes Soot to generate either Jimple
(Java simple) or Shimple (an Ssa version of Jimple) intermediate representations. Jimple
is a typed 3-address IR suitable for performing optimizations; it only has 15 statements.
Afterward, the facts are generated from Jimple and imported into a database with multiple
tables, so the analysis rules can process them. Shimple is an SSA-version of Jimple; first
Jimple is generated and then Soot applies a group of transformations to the Jimple body
to create Shimple.

The main motivation behind this thesis was the fact that the sequential fact-generation time
amounts to more than 50% of the total execution time (both fact generation and analysis),
either for Jimple or Shimple.

Dimitris I. Mouris 18

Doop-Soot: Parallel Fact Generation

2.2 Doop Time Examples

Below we present a few timingﬂ] examples of the sequential Doop fact generation and total
execution time (both fact generation and analysis times) with Soot version 2.5.0.

Soot 2.5.0 antir.jar hsqgldb.jar batik.jar
Fact generation 1.16 min. 1.23 min. 1.06 min.
Total time 3.18 min. 3.21 min. 3.13 min.

Table 1: Soot 2.5.0 FG timings compared to total execution times.

2.3 Fact Table Example

After the completion of the fact-generation process, Doop executes a set of Datalog rules,
which are the specification of the selected analysis. Those Datalog rules are applied on
the EDB and keep producing new facts until fix point is reached. At the end of an analysis,
a symbolic link is created for the resulting database workspace, and another one at top
level, each time pointing to the latest successfully completed analysis.

The fact files consist of tab-separated values, where every column corresponds to an
argument of the Datalog predicate. A subset of the facts imported into the database for a
simple helloWorld example is presented below.

The actual parameters of a method invocation.

ActualParam(?index, ?param2, ?param3)

(Assign actual parameter ?param3 to formal parameter ?param2 with index ?index in
a method invocation)

java.ilo.PrintStream.requireNonNull/java.lang.NullPointerException.<init>/0
java.ilo.PrintStream.requireNonNull/rl

0 helloWorld.main/java.io.PrintStream.println/0
helloWorld.main/$stringconstant0

0 Jjava.io.PrintStream.toCharset/java.io.PrintStream.requireNonNull/0
java.lio.PrintStream.toCharset/r0

1 Java.io.PrintStream.toCharset/java.io.PrintStream.requireNonNull/0
java.lio.PrintStream.toCharset/S$stringconstant0

Y

Figure 1: ActualParam.facts

TAll the time measurements were performed on a 64-bit machine with two octa-core Intel Xeon E5-2667
(v2) CPUs at 3.30GHz (for a total of 32 logical cores) and 256GB of RAM.

Dimitris I. Mouris 19

Doop-Soot: Parallel Fact Generation

Assign local instruction.
AssignLocal (?instruction, ?index, ?from, ?to, ?inmethod)
(Assignment ?2to = ?fromin instruction ?instruction with index ? index in method

?inmethod)

helloWorld.<init>/definition/instructionl 1 helloWorld.<init>/@this
helloWorld.<init>/r0 <helloWorld: woid <init>()>
helloWorld.main/definition/instructionl 1 helloWorld.main/@paramO
helloWorld.main/r0 <helloWorld: woid main (java.lang.String[])>
/* Lo %/

Figure 2: AssignLocal.facts

Class Object.
ClassObject (?repr, ?type, actualtype)
(Representation ?repr of type ?type corresponds to actual type ?actualtype)

<class helloWorld> java.lang.Class helloWorld

<class java.io.PrintStream> java.lang.Class java.io.PrintStream
<class java.lang.Object> java.lang.Class java.lang.Object
<class java.lang.String> java.lang.Class java.lang.String
<class java.lang.System> java.lang.Class java.lang.System

/* oo K/

Figure 3: ClassObject.facts

Assign Heap Allocation.
AssignHeapAllocation (?instruction, ?index, ?heap, ?to, ?inmethod)
(Assignment ?2to = ?heap ininstruction ?instruction with index ? index in method

?inmethod)

java.ilo.PrintStream.requireNonNull/assign/instructiond 4
java.io.PrintStream.requireNonNull/new
java.lang.NullPointerException/0
java.io.PrintStream.requireNonNull/$r2 <java.io.PrintStream:
java.lang.Object requireNonNull (java.lang.Object,java.lang.String)>

helloWorld.main/invoke/instruction3 3 helloWorld
helloWorld.main/$stringconstant0 <helloWorld: wvoid
main (java.lang.String[])>

java.io.PrintStream.toCharset/invoke/instruction?2 2 charsetName
java.lio.PrintStream.toCharset/$stringconstant0
<java.io.PrintStream: java.nio.charset.Charset
toCharset (java.lang.String) >

/* Lo %/

Figure 4: AssignHeapAllocation.facts

Dimitris 1. Mouris 20

Doop-Soot: Parallel Fact Generation

Definition of a class type.
ClassType (?type)
(Type 2type is a ClassType)

helloWorld
java.lang.Class
java.io.PrintStream
java.lang.Class

/* Lo K/

Dimitris 1. Mouris

Figure 5: ClassType.facts

21

Doop-Soot: Parallel Fact Generation

3. SO0T

Soot [[1]] is the framework used by Doop to generate a relational representation of the
analyzed program. Soot originally started off as a Java optimization framework, but by now
it performs a lot of different tasks such as analyze, instrument, optimize and visualize Java
and Android applications. Soot provides four intermediate representations for analyzing
and transforming Java bytecode:

1. Baf: a streamlined representation of bytecode which is simple to manipulate.

2. Jimple: a typed 3-address intermediate representation suitable for optimization.

3. Shimple: an SSA variation of Jimple.

4. Grimp: an aggregated version of Jimple suitable for decompilation and code inspection.
5

. Jimple is Soot’s primary IR and most analyses are implemented on the Jimple level.
Custom IRs may be added when desired.

In our case, Soot is utilized to generate Jimple (or Shimple) facts from Java bytecode to
run a pointer or points-to analysis.

3.1 Applying the latest Soot version

Doop used Soot version 2.5.0 for fact generation. In order to minimize the time consumed
by Soot, before we tried to parallelize the fact generation procedure, we applied the latest
(Sept. 2015 develop branch) Soot version. We faced some minor compatibility issues
which were handled in order to have minimal impact on the generated facts, but this
change gave a speed up of 145-160%. Below we present a few example timings with
Soot-2.5.0 and the latest.

Dimitris |. Mouris 22

Doop-Soot: Parallel Fact Generation

Il Soot2.5.0
Il Soot Latest Version

I
|

90

time (sec)

antlr hsqgldb batik

Figure 6: Fact Generation with different Soot versions

Then, to gain more speedup we tried to parallelize the fact generation part, which takes
a similar amount of time as an entire simple analysis. In order to do that, we had to
understand the way bytecode is translated to Jimple. Below we explain in more detail
this procedure.

3.2 Bytecode To Jimple

As mentioned already, Soot is able to translate Java bytecode to a typed 3-address IR,
Jimple. Jimple (Java simple) is a very convenient IR for performing optimizations, it only
has 15 statements.

Soot has various phases and a lot of different options for transformations given. The one
that is responsible for bytecode to Jimple translation is the jb phase. In this phase, Soot
first translates bytecode to untyped Jimple and introduces new local variables; Jimple is
stackless, Soot is using variables for stack locations. Then it infers types for the untyped
Jimple. The next step is to linearize all the expressions to statements that only reference
at most 3 local variables or constants.

Dimitris |. Mouris 23

Doop-Soot: Parallel Fact Generation

Getting a little deeper, in a general case the way Soot handles Java bytecode classes is
the following:

Soot is launched by specifying a directory with the Application code as a parameter (Java
bytecode, either a class file or a jar). First, the main () method of the Main class is
executed and calls Scene.loadNecessaryClasses () (Inourcase Doop calls Scene.
loadNecessaryClasses () directly and not the Main class). This method loads basic
Java classes and then loads specific Application classes by calling 1oadClass (). Then,
SootResolver.resolveClass () iscalled. The resolver calls SourcelLocator.get—-
ClassSource () to fetch a reference to a Class-Source, an interface between the file
containing the Java bytecode and Soot. For Java bytecode to Jimple translation the class
sourceisaCoffiClassSource because itisthe coffimodule that handles this conversion.
Then, the resolver having a reference to a class source, calls resolve () on it. This
method in turn calls soot.coffi.Util.resolveFromClassFile () which creates a
SootClass from the corresponding Java bytecode class. All source fields of Soot class
methods are set to refer to a CoffiMethodSource object. This object is used later to get
the Jimple representation of the method. For example, if during an analysis with Soot
the analysis code calls SootMethod. getActiveBody () and the Jimple code of the
method was not already generated, getActiveBody () willcall Cof ficMethodSource.
getBody () to compute Jimple code from the Java bytecode. The Jimple code representation
of the method can then be analyzed and/or transformed. Actually, this method (getActive-
Body ()) occupies the most of the Java bytecode to Jimple conversion time.

The above method, getActiveBody, as well as all methods it calls, are the ones we
intend to parallelize and make thread-safe. We describe our locking policy in more detail
for both Doop and Soot in Chapter [.

3.3 Jimple Examples

Below are two simple Java programs along with their Jimple translation. The first one is the
classic HelloWorld, and the second is a simple inheritance test that depends on the user’s
input. The local variables that start with a $ sign represent stack positions and not local
variables in the original program whereas those without $ represent real local variables.

3.3.1 Hello World

a B~ W N =

public class helloWorld {
public static void main(String[] args) {
System.out.println ("Hello, World");
}

Figure 7: HelloWorld.java

Dimitris I. Mouris 24

Doop-Soot: Parallel Fact Generation

public class helloWorld extends java.lang.Object {

public void <init>() {
helloWorld r0;
rQ := @this: helloWorld;
specialinvoke r0.<java.lang.Object: woid <init>()>();
return;

public static void main(java.lang.String[]) {
java.lang.String[] rO;
java.io.PrintStream S$rl;
r0 := (@parameter0O: java.lang.Stringl];
Srl = <java.lang.System: java.io.PrintStream out>;
virtualinvoke $rl.<java.io.PrintStream: void

println(java.lang.String)>("Hello, World");

return;

Figure 8: HelloWorld.Jimple

Dimitris 1. Mouris

25

Doop-Soot: Parallel Fact Generation

3.3.2 Inheritance Test

20

21

22

23

24

26

27

28

29

30

public class inheritanceTest {
public static void main(String[] args) {

testA a;

if (args.length < 1) {

a = new testA(5)
} else {

a = new testB(5)
}

’

’

int result = a.getA();
System.out.println ("the value of a is " + result);

public static class testA {

int a;
public testA(int a)

this.a = a;

public int getA() {
return this.a;

{

public static class testB extends testA ({

public testB(int a)
super (a+100) ;

{

Dimitris 1. Mouris

Figure 9: inheritanceTest.java

26

Doop-Soot: Parallel Fact Generation

public class inheritanceTest extends java.lang.Object {
public void <init>() {

29

30

31

32

33

34

35

36

37

38

39

inheritanceTest r0;

rQ0 := @this: inheritanceTest;

specialinvoke r0.<java.lang.Object: wvoid <init>()>();
return;

public static void main(java.lang.String[]) {

java.lang.String[] r0;

int $i0, il;

inheritanceTestS$StestA $rl, r2;
inheritanceTest$testB S$r3;
java.io.PrintStream $r4;
java.lang.StringBuilder $r5, S$ro6, S$r7;
java.lang.String $r8;

r0 := @parameter0: java.lang.Stringl[];
$i0 = lengthof r0;

if $i0 >= 1 goto labell;

Srl = new inheritanceTestS$testA;
specialinvoke $rl.<inheritanceTestS$StestA: wvoid <init> (int)>(5);
r2 = Srl;

goto label2;

labell:

Sr3 = new inheritanceTestS$StestB;
specialinvoke $r3.<inheritanceTestS$StestB: wvoid <init> (int)>(5);
r2 = $r3;

label2:
il = virtualinvoke r2.<inheritanceTestS$testA: int getA()>();
Sr4d = <java.lang.System: java.io.PrintStream out>;

Sr5 = new java.lang.StringBuilder;

specialinvoke $r5.<java.lang.StringBuilder: wvoid <init>()>();

Sr6 = virtualinvoke S$r5.<java.lang.StringBuilder:
java.lang.StringBuilder append(java.lang.String)>("the value
of a is ");

Sr7 = virtualinvoke S$r6.<java.lang.StringBuilder:
java.lang.StringBuilder append(int)>(il);

$r8 = virtualinvoke S$r7.<java.lang.StringBuilder:
java.lang.String toString()>();

virtualinvoke $r4.<java.io.PrintStream: void
println(java.lang.String)>($r8);

return;

Figure 10: inheritanceTest.Jimple

Dimitris 1. Mouris

27

Doop-Soot: Parallel Fact Generation

4. PARALLELIZING FACT GENERATION

In order to parallelize the fact generation part, we did not change the way facts are generated
from Soot. We actually called Soot concurrently from Doop and made Soot thread safe.

We now describe the basic idea of fact generation from the Doop side. Given all the classes
(sootClasses) to generate, Doop iterates over each one of them and then generates all
fields (sootFields) and methods (sootMethods). Below we show the FactGenerator. java
which implements the work described above and then calls Soot retrieveActiveBody.

20

21

22

23

24

25

public class FactGenerator {
VA

public void generate (sootClass) {
if (c.hasSuperclass() && !c.isInterface())
_writer.writeDirectSuperclass(c, c.getSuperclass());
for (SootField f : c.getFields())
generate (f);
for (SootMethod m : c.getMethods ()) {
Session session = new Session();
generate (m, session);

public void generate (SootMethod m, Session session) {

/x . K/

/* This instruction consumes more than 80% of FG time */
m.retrieveActiveBody ()

/x .. K/

/* oo K/

Figure 11: Sequential Fact Generation

Having the previous basic structure in mind, and consideringthatm. retrieveActiveBody ()
occupies more than 80% of total fact-generation time, we tried to parallelize the method
thatcallsm.retrieveActiveBody (). Inorderto do that, we approached the problem in
four ways. Three of them are pretty similar while the fourth one is based on a recursive Java
Framework (Fork/Join Framework [4]). Below we present some Fact-Generation timings
with the sequential FG and the latest Soot version.

Dimitris 1. Mouris 28

Doop-Soot: Parallel Fact Generation

Jars Time (sec.)
antlr 48
eclipse 27
jython 32
hsqldb 50
batik 63

Table 2: Sequential fact-generation timing examples

4.1 One Thread Per Method

Our first approach to parallelize fact-generation is similar to the sequential one, but instead

of having a loop over all Soot methods and call generate (m, session), we assign the
task to a thread for each one of them. We created a new Java class, MethodGenerator,
which is identical to FactGenerator and in addition has a run () method to generate

every meth

od.

20

21

22

23

24

public class FactGenerator {
private ExecutorService MgExecutor = new ThreadPoolExecutor (8, 16,
TimeUnit .MILLISECONDS, new LinkedBlockingQueue<Runnable>()) ;

oL,
/*

*/

public void generate (sootClass) {
if (c.hasSuperclass () && !c.isInterface())
_writer.writeDirectSuperclass(c, c.getSuperclass());

for (SootField £

for (SootMethod m

generate (f);

c.getFields())

c.getMethods ()) {

Session session = new Session();

Runnable mg

new MethodGenerator () ;

MgExecutor.execute (mg) ;

public class MethodGenerator {

public

void run ()

{

generate (this.m,

/*

*/

this.s)

Dimitris 1. Mouris

Figure 12: One Thread Per Method

29

Doop-Soot: Parallel Fact Generation

The results were very encouraging as we achieved a 325-400% speedup compared to the
sequential FG (latest Soot version). Below we show some fact-generation timing examples

with the One Thread Per Method FG approach for various thread-pool sizes (such as
4, 16 and 32).

Jars | Time (sec.)
Pool Size |4 16 32
antlr 21 14 13
eclipse 13 7 8

jython 14 9 9

hsqldb 23 15 16
batik 26 23 18

Table 3: One thread per method timing examples, with pool size: 4, 16, 32

4.2 One Thread Per Class

In our second approach, we tried to find ways to gain more speedup. So, we observed
that some threads did not have much work to do, they were finishing their task instantly.
Allocating a new object and assigning to it a task just to finish instantly was an overhead.
As a result, we tried to feed the threads with more than just one method, so we created a
new thread for each class, not for each method.

Dimitris 1. Mouris 30

Doop-Soot: Parallel Fact Generation

20

21

22

23

24

25

26

public class FactGenerator {
private ExecutorService CgExecutor = new ThreadPoolExecutor (8, 16,
0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()) ;
/* .. */

public void generate (sootClass) {
Runnable cg = new ClassGenerator();
CgExecutor.execute (cq) ;

public class ClassGenerator {
public void run () {

if (c.hasSuperclass() && !c.isInterface())
_writer.writeDirectSuperclass(c, c.getSuperclass());

for (SootField f : c.getFields())
generate (f);

for (SootMethod m : c.getMethods ()) {
Session session = new Session();
Runnable mg = new MethodGenerator () ;
MgExecutor.execute (mg) ;
generate (m, session);

/* e K/

Figure 13: One Thread Per Class

The results were slightly better than our previous effort, but without achieving a remarkable
speedup. Below we present some fact-generation timings with the One Thread Per
Class FG approach for various thread-pool sizes (such as 4, 16 and 32).

Jars | Time (sec.)
Pool Size ‘ 4 16 32
antlr 20 14 13
eclipse 11 7 7

jython 13 8 8

hsqldb 22 15 18
batik 26 18 19

Table 4: One thread per class timing examples, with pool size: 4, 16, 32

Dimitris 1. Mouris 31

Doop-Soot: Parallel Fact Generation

4.3 Fork/Join Framework

In order to achieve more speedup we tried a completely different approach than the
two previous ones: a recursive Java Framework (Fork/Join framework [4]). As Oracle
describes in Java Documentation, the Fork/Join Framework is "an implementation of the
ExecutorService interface that helps you take advantage of multiple processors. It is designed
for work that can be broken into smaller pieces recursively. The goal is to use all the
available processing power to enhance the performance of your application.

The center of the fork/join framework is the ForkJoinPool class, an extension of the
AbstractExecutorService class. ForkJoinPool implements the core work-stealing algorithm
and can execute ForkJoinTask processes.

The idea of using the fork/join framework is to write code that performs a segment of the
work. The basic structure should be like the following pseudocode.”

o o A W N =

if (my portion of the work is small enough) {
do the work directly
} else {
split my work into two pieces
invoke the two pieces and wait for the results

Figure 14: Fork/Join Basic-Use

Dimitris 1. Mouris 32

Doop-Soot: Parallel Fact Generation

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

public class FactGenerator {
private ForkJoinPool classGeneratorPool = new ForkJoinPool () ;

/*

*/

public void generate (sootClass) {

if (c.hasSuperclass() && !c.isInterface())
_writer.writeDirectSuperclass(c, c.getSuperclass());

for (SootClass i1 : c.getInterfaces())
_writer.writeDirectSuperinterface(c, 1i);

for (SootField f : c.getFields())
generate (f);

if (c.getMethods () .size() > 0) {
ClassGenerator classGenerator = new ClassGenerator(writer,

_ssa, ¢, 0, c.getMethods() .size());

classGeneratorPool.invoke (classGenerator) ;

public class ClassGenerator {

/* */
public void compute () {
List<SootMethod> sootMethods = sootClass.getMethods();
/* if (my portion of the work is small enough) */
if (to - from < threshold) { /* How many classes can I
process? */
for (int i = from ; 1 < to ; 1i++) {
SootMethod m = sootMethods.get (i) ;
Session session = new Session|();
generate (m, session);
}
} else { /* split work*/
int half = (_to - from)/2;
ClassGenerator cl = new ClassGenerator(writer, ssa,
_sootClass, from, from + half);
ClassGenerator c2 = new ClassGenerator(writer, ssa,
_sootClass, from + half, to);
invokeAll (cl, c2);
}
}
/* */

Figure 15: Fork/Join Framework

As we already mentioned, Fork/Join framework is designed for work that can be broken

into smaller pieces recursively, in contrast with the fact-generation process which is not

designed to run recursively. Thus, the results were worse than the two previous approaches
(still better than then sequential approach). Below are some fact-generation timing examples
with the Fork/Join Framework FG approach for various threshold values (such as 2, 3 and

4). The threshold value is the number of classes for a thread to process.

Dimitris 1. Mouris 33

Doop-Soot: Parallel Fact Generation

Jars | Time (sec.)

Threshold (classes to generate) \ 2 3 4

antlr 23 25 25
eclipse 13 15 18
jython 16 17 19
hsqldb 25 28 31
batik 34 37 38

Table 5: Fork/Join timing examples, with threshold 2, 3, 4 and pool size 16

4.4 Multiple Classes Per Thread

Our last approach is similar to the second one, but instead of having one thread per class,
we now have one thread per multiple classes. Even in the second approach some threads
had minimal work to do, so we decided to grow the amount of work assigned to each

thread. Below we show an abstract version of the code implementing the Multiple Classes

Per Thread approach.

public class FactGenerator {

public FactGenerator (FactWriter writer, boolean ssa, int

totalClasses) {

_writer = writer;

_ssa = ssa;

_classCounter = 0;

_sootClassArray = new ArrayList<>();
_totalClasses = totalClasses;

_cores = Runtime.getRuntime () .availableProcessors();
_executor = new ThreadPoolExecutor(cores/2, cores, 0L,
TimeUnit .MILLISECONDS, new LinkedBlockingQueue<Runnable>());

public void generate (sootClass) {
_classCounter++;
_sootClassArray.add(sootClass);

if ((_classCounter % classSplit == 0) || (_classCounter + 1 ==

_totalClasses)) {

Runnable classGenerator = new ClassGenerator(writer, ssa,

_sootClassArray) ;
_classGeneratorExecutor.execute (classGenerator) ;
_sootClassArray = new ArrayList<>();

Figure 16: Multiple Classes Per Thread: FactGenerator.java

Dimitris 1. Mouris

34

Doop-Soot: Parallel Fact Generation

© o N o a @~ w N =

public class ClassGenerator {
public void run () {

if (c.hasSuperclass() && !c.isInterface())
_writer.writeDirectSuperclass(c, c.getSuperclass());

for (SootField f : c.getFields())
generate (f);

for (SootMethod m : c.getMethods ()) {
Session session = new Session();
Runnable mg = new MethodGenerator () ;
MgExecutor.execute (mg) ;
generate (m, session);

/* oo K/

Figure 17: Multiple Classes Per Thread: ClassGenerator.java

This approach minimizes the overhead produced by assignments and allocations of our
first and second effort. Therefore the Multiple Classes Per Thread FG approach produced
the best timing results so far. Below we show some fact-generation timings for various
thread-pool sizes (such as 4, 16 and 32) and various numbers of classes per thread.

Time (sec.)
Jars Classes Per_ Thread 2 3 4
Pool Size
4 22 18 19
antlr 16 13 12 14
32 14 13 13
4 12 10 11
eclipse 16 7 8 6
32 8 8 8
4 13 14 13
jython 16 11
32 9 8 8
4 25 22 20
hsqldb 16 17 14 16
32 16 18 14
4 23 24 25
batik 16 22 20 17
32 21 17 17
Table 6: Multiple classes per thread timing examples, with pool size: 4, 16, 32 and classes per
thread: 2, 3, 4

Dimitris |. Mouris 35

Doop-Soot: Parallel Fact Generation

Il 4 threads
i1 16 threads
"1 32 threads
25 7
20
9 15|
@2
[}
£
= 10
5 -
0
antlr hsqgldb batik
Figure 18: Increasing the number of threads with 3 classes per thread
Il 4 threads
i1 16 threads
"1 32 threads
25
20
)
f,,i 15+
[}
£
10
5 -
0

antlr hsqldb batik

Figure 19: Increasing the number of threads with 4 classes per thread

Dimitris |. Mouris 36

Doop-Soot: Parallel Fact Generation

BasedontheMultiple Classes per threadapproach,ourfinal versionis presented
below:

21

22

23

24

25

26

27

28

29

public class Driver ({
public Driver (ThreadFactory factory, boolean ssa, int totalClasses)

{

_factory = factory;

_ssa = ssaj;
_classCounter = 0;

_sootClasses = new ArrayList<>();

_totalClasses = totalClasses;

_cores = Runtime.getRuntime () .availableProcessors();
_executor = new ThreadPoolExecutor(cores/2, cores, 0L,

TimeUnit .MILLISECONDS, new LinkedBlockingQueue<Runnable>())

public void doInParallel (List<SootClass> sootClasses) {
for (SootClass ¢ : sootClasses) {
generate (c);
}
_executor.shutdown () ;
_executor.awaitTermination (Long.MAX VALUE, TimeUnit.NANOSECONDS) ;

void generate (SootClass _sootClass) {

_classCounter++;

_sootClasses.add(sootClass);

if ((_classCounter % classSplit == 0) || (classCounter + 1 ==
_totalClasses)) {
Runnable runnable = factory.newRunnable(sootClasses);

_executor.execute (runnable) ;
_sootClasses = new ArrayList<>();

Figure 20: Final approach: Driver.java

Dimitris |. Mouris 37

Doop-Soot: Parallel Fact Generation

public class ThreadFactory {
public Runnable newRunnable (List<SootClass> sootClasses) {
if (makeClassGenerator) ({
return new FactGenerator(factWriter, ssa, sootClasses);
} else {
return new FactPrinter(ssa, toStdout, outputDir,
_printWriter, sootClasses);

public class FactGenerator implements Runnable {
public void run () {
for (SootClass sootClass : sootClasses) {
/* for all soot classes generate like the sequential
FactGenerator */

/F o0 K/

Figure 21: Final approach: ThreadFactory.java, FactGenerator.java

At first, the Main method calls driver.doInParallel (classes) Which takes as an
argument all the SootClasses to be generated. driver calculates the available threads
to run the fact-generation process and then calls the Driver.generate (c) method for
each SootClass. Then driver.generate creates a new ThreadFactory thread for
every classSplitclasses(e.g classSplit = 3classes). ThreadFactoryinturn
calls the original FactGenerator (from the sequential approach) but instead of having a
generate method, it has a run method with the same body.

Dimitris 1. Mouris 38

Doop-Soot: Parallel Fact Generation

5. LOCKING

Along with threads come locks. An incorrect use of locking could have severe impact
on performance, produce incorrect results or even lead to non-termination of the fact-

generation process. A conservative approach could lead to having more locks than necessary

which would be a major source of bottleneck. Having fewer could lead to more races. So,
locks had to be used with extreme care.

At the very beginning of this project, we tried a lot of different locking approaches such as
lock everything. Of course the results were pretty much similar to the sequential ones. As
a result we decided to implement more fine-grained locking and also change some global
objects to thread-local in order to achieve thread safety. We first tried to understand which
part of Soot is used by Doop to generate the facts, and then tried to make that specific
part thread-safe.

5.1 Doop Side

In Doop the only tasks that required synchronization to avoid any race conditions, which
would lead to the corruption of the fact-generation results, were the writing to the output
files and three methods that were accessing the same field of each SootMethod object
leading to a race condition. The code modifications are explained below.

5.1.1 CSVDatabase

In the file cCSvDatabase. java we had to lock each output . facts file to prevent more
than one threads from writing simultaneously. By synchronizing the predicate file, we
ensure that output files are written by one thread at a time and as a result the integrity
and correctness of the generated facts are guaranteed.

synchronized (predicateFile) {
Writer writer = getWriter (predicateFile);
addColumn (writer, arg, shouldTruncate);
for (Column col : args)
addColumn (writer.append (SEP), col, shouldTruncate);
writer.write (EOL) ;

Figure 22: CSVDatabase.java

Dimitris 1. Mouris 39

Doop-Soot: Parallel Fact Generation

5.1.2 Representation

The other synchronization we had to provide was in three methods inthe Representation.
java file. Those methods were accessing and trying to retrieve some fields from a SootMethod
object passed as an argument while threads were still active.

1 public synchronized String signature (SootMethod) { /*...*/ }

> public synchronized String handler (SootMethod, Trap, Session) {
/*oo0x))

s public synchronized String compactMethod (SootMethod) { /*...*/ }

Figure 23: Representation.java

5.2 Soot Side

In the implementation of Soot, all the global objects are enclosed in the class G (G. java)
and are initialized and accessed using the Singleton design pattern. As we mentioned
before, Soot does much more than just translate bytecode to Jimple, so it has various
phases and a lot of different options which apply a variety of code transformations. The
phase responsible for bytecode to Jimple translation is the jb phase. In this phase we
identified all global objects, the methods that access and write to them and the methods
called by these global objects and we synchronized them and/or made them thread-local.

5.2.1 Type Assigner

The class JimpleBodyPack applies the transformations corresponding to the given options.
In our case, itapplies "jb. tr" which means “Jimple body transformation”. From bytecode
to Jimple translation this is the only group of transformations needed. So we used one lock
before applying Type Assigner and unlocked afterwards. All the transformations that
take place to perform the bytecode to Jimple translation are first inserted to and then
retrieved from packManager, a global object. In order to prevent race conditions, we
changed the packManager from global to thread-local. The new packManager that we
use is PackManager.

1 lock.lock () ;
2 PackManager.v () .getTransform("jb.tr") .apply(b);
3 lock.unlock () ;

Figure 24: JimpleBodyPack.java

Dimitris I. Mouris 40

Doop-Soot: Parallel Fact Generation

5.2.2 Pack Manager

As mentioned before, the groups of transformations (Soot names them "packs ") containing
the various phases and their options are managed by the class PackManager. To ensure
thread-safety, we used another lock which protects a group of transformations which
access Class Hierarchy Analysis.

a b~ N =

lock.lock () ;

p.add (new Transform("cg.cha", CHATransformer.v()));
p.add (new Transform("cg.spark", SparkTransformer.v())):;
p.add (new Transform("cg.paddle", PaddleHook.v()));
lock.unlock () ;

Figure 25: PackManager.java

This functionality is not currently necessary for Doop, but may be useful in the future and
does not impact performance.

5.2.3 Shimple -ssa

We also use Soot to produce Shimple which is an SSA variation of Jimple. The way
Shimple is generated is similar to Jimple generation with the exception of a different final
step, during which Shimple. java is called, which is the class handling the translation
from Jimple to Shimple. In this case, we synchronized all Shimple-body-creation methods
that access global objects, or can be accessed from more than one threads simultaneously.
To generate Shimple instead of Jimple, Soot must be given the -ssa flag.

Dimitris I. Mouris 41

Doop-Soot: Parallel Fact Generation

6. EXPERIMENTAL RESULTS

Summarizing, below we gather all fact-generation times for the previous version of Soot
(2.5.0), the latest and all our four approaches.

I1 Soot2.5.0

I1 Soot Latest Version
Fork/Join Framework
Thread/Methods

Il Thread/Class
Thread/Classes

90]

80 | 2

time (sec)

antlr hsqldb batik

Figure 26: Fact-generation timing results

Jars | Time (sec.)

Approach \ Sequential Fork/Join Thread/Method Thread/Class Thread/Classes
antlr 48 23 13 13 12

eclipse 27 13 7 7 6

jython 32 16 8 8 7

hsqldb 50 25 15 14 14

batik 63 34 18 17 17

Table 7: Summarizing best timings of all approaches with pool size 16-32

Dimitris |. Mouris 42

Doop-Soot: Parallel Fact Generation

7. CONCLUSIONS

In conclusion, just by updating the Soot version and applying the latest, we achieved a
speedup of 145-160%. With the latest soot-version and our best approach we achieved a
speedup of 450-625% compared to the sequential fact-generation with Soot version 2.5.0.
Our third attempt (Fork/Join Framework) was not a successful one: it was better than the
sequential fact generation (obviously) but not as good as the other three approaches.

In most cases we used as few locks as possible in both Doop and Soot, so the locking did
not significantly hinder the performance of the fact-generation process. We also have to
mention that with those locks Soot is thread-safe for the purpose it is used by Doop (Java
bytecode to Jimple or Shimple translation), but thread-safety is not guaranteed for all the
other functionality it provides.

Dimitris I. Mouris 43

Doop-Soot: Parallel Fact Generation

ACRONYMS AND ABBREVIATIONS

IR Intermediate Representation
SSA Static Single Assignment
Jimple Soot typed 3-address IR
Shimple An SSA-version of Jimple
FG Fact Generation

EDB Extensional Database

jb Jimple Body

Dimitris 1. Mouris

44

Doop-Soot: Parallel Fact Generation

REFERENCES

[1] "Sable: Soot”
[Online]
Available: https://sable.github.io/soot/

[2] "Points-to Analysis” [Online]
Available: http://yanniss.github.io/points—-to-tutoriall5.pdf

[3] "Doop: Framework for Java Pointer Analysis”
[Online]
Available: http://doop.program-analysis.org/

[4] "Oracle Java Fork/Join Framework”
[Online]
Available: https://docs.oracle.com/javase/tutorial/essential/

concurrency/forkjoin.html

Dimitris . Mouris 45

https://sable.github.io/soot/
http://yanniss.github.io/points-to-tutorial15.pdf
http://doop.program-analysis.org/
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

	Preface
	Introduction
	Doop
	Fact Generation
	Doop Time Examples
	Fact Table Example

	Soot
	Applying the latest Soot version
	Bytecode To Jimple
	Jimple Examples
	Hello World
	Inheritance Test

	Parallelizing Fact Generation
	One Thread Per Method
	One Thread Per Class
	Fork/Join Framework
	Multiple Classes Per Thread

	Locking
	Doop Side
	CSVDatabase
	Representation

	Soot Side
	Type Assigner
	Pack Manager
	Shimple -ssa

	Experimental Results
	Conclusions
	Acronyms and Abbreviations
	References

