NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF UNDERGRADUATE STUDIES

UNDERGRADUATE THESIS

Efficient blockchains with contributed randomness

loannis K. Konstantinou

SUPERVISOR: Aggelos Kiayias, assistant professor

ATHENS

JUN 2016

EONIKO KAI KAMNOAIZTPIAKO NANENIZTHMIO AOHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NMPOrPAMMA MNMPOMTYXIAKQN ZMNOYAQN

NTYXIAKH EPTAZIA

Efficient blockchains with contributed randomness

lwavvng K. KwvoTavrivou

ENIBAENQN KAOHIHTHZ: AyyeAog Kiayidg, eTikoupog KaBnynTtng

AOHNA

IOYNIOZ 2016

UNDERGRADUATE THESIS

Efficient blockchains with contributed randomness

loannis K. Konstantinou
R.N.: 1115220800057

SUPERVISOR: Aggelos Kiayias, assistant professor

NTYXIAKH EPTrAZIA

Efficient blockchains with contributed randomness

lwavvng K. KwvoTavrivou
A.M.: 1115220800057

EMIBAENQN KAOGHIMHTHZ: AyyeAog Kiayidg, mTikoupog kabnyntig

ABSTRACT

We present a distributed "proof-of-stake” e-cash system that can tolerate an adversary
controlling up to 1/3 of the stake. We argue that bitcoin’s proof-of-work can be replaced
to some extent by an unbiased source of randomness and an assumption on the volatility
of honest players’ majority during each user’s offline time. Also we describe a way for
players to insert unbiased randomness into the blockchain.

SUBJECT AREA: Cryptography, Distributed Systems

KEYWORDS: e-coin, cryptocurrency, blockchain, proof of stake, unbiased randomness,
secret sharing, proof of security, bitcoin

NEPIAHWH

Mapouaoidloupe éva NAEKTPOVIKO VOPIOUa o€ éva KaTavepnuévo “proof of stake” cuoTnua
TTOU PTTOPEI va avexTei avTiTTado TTou Ba KaTéxel YEXPI Kal Ta PIoG Tou OUuvOAOU TwV
VOUIOPATWY. ETmixeipnuaToAoyoupe OTI n evepyoBopa “atrddeign epyaciag (proof of
work)” Tou Bitcoin ptropei va avtikataotaBei oe katmolo BaBud atd pia auePOANTITN
TNYR TUXQIOTNTAG KAl hIa UTTO0e0n yia TNV JETABANTOTNTA TNG TTAEIOWNQIAG TWV EVTINWY
TTAIKTWYVY KATA TNV OIAPKEIA TNG TTEPIOOOU TTOU KATTOIOG TTAIKTNG €ival EKTOG dIKTUOU. ETTiong
TTEPIYPAPOUE Evav TPOTTO WOTE OI TIAIKTES VA EI0AYOUV TETOIQ AUEPOANTTTN TUXAIOTNTA OTO
oluoTnua.

OEMATIKH NEPIOXH: Kputrtoypagia, Kataveunuéva ZuoThuara

AEZEIZ KAEIAIA: NAekTPOVIKO VOPIOUA, QUEPOANTTITN TUXAIOTNTA, ATTOdEIEN ao@aAEiag

EYXAPIZTIEZ

MNa tnv ekmrévnon g Trapoucag Mruxiokng Epyaciag, 6a nbeAa va euxapioTAow TOovV
emBAETTOVTO €TTiK. KAO. Ayyeho Kiayid, yia Tn ouvepyaaia Kal TNV TTOAUTIUN KaBodrynor)
TOU.

CONTENTS

INTRODUCTION

1.1 Relatedwork

Overview
Setting
Definitions

The Static Shares Protocol

5.1 initialization

5.2 execution

Static Shares Analysis

6.1 commonprefix
6.2 common prefix probabilistic analysis

6.3 chainquality,

Publicly Verifiable Secret Sharing

7.1 initialization
7.2 distribution

7.3 reconstruction.

The Moving Shares Protocol

8.1 initialization

8.2 execution

Moving Shares Analysis

9.1 reduction

9.2 Llongrangeattacks

REFERENCES

10
10

12

13

14

15
15
15

17
17
18
19

20
20
20
21

22
24
25

29
29
30

32

NMPOAOIOz

H TTapouca epyacia eKTTOVABNKE OTO EPYACTAPIO KPUTITOYPAQIAg Tou £TTIK. KaB. AyyeAou
Kiayid. H epyacia xpnuartodotrionke pepikwg atrd 1o ERC mpdypaupa CODAMODA.

Efficient blockchains with contributed randomness

1. INTRODUCTION

In the core of the bitcoin protocol lies its leader election procedure. The leaders for the
next block are the ones that have managed to solve the computational puzzle defined by
the previous one. The cryptographic properties of the puzzle assure us that there is no
better way for solving it than searching the space of possible solutions by brute force. Now
imagine that players of the protocol are all the units of computational power available to
its users. Then each player has an equal chance of finding the solution and become the
leader. This stochastic process picks a leader uniformly from all players. So every real
world entity has probability of becoming the leader proportional to the players it controls.

The issue with the described process is that the more valuable becomes a leadership in
the real world, more players (a.k.a. computational power) will have incentive to join the
election by trying to solve the puzzle. So there exists a lineary analogous relationship be-
tween the computational power spend in the election process that ultimetaly secures the
blockchain and the total value depicted/secured by the blockchain. Bottom line, the prob-
lem is that as the economy supported by the blockchain grows, so does the computational
cost to secure it.

As an attempt to counter the above, there exist "proof-of-stake” protocols. Their differ-
ence is that the players are not all units of computational power available, but holders of
the currency. If someone wants to enter the group, he has to persuade another to transfer
coins to him. This is a less open group, but the good part is that its size does not immedi-
ately translate to computational cost. Now what is vital for the protocol is a computationaly
light random process that will elect the leader for every step of the protocol uniformly from
all players. That part is the core difference between one "proof-of-stake” protocol and
another.

1.1 Related work

There are several attempts to introduce a new cryptocurrency without the computational
cost of bitcoin.

"Democoin: A Publicly Verifiable and Jointly Serviced Cryptocurrency” [5] presents the
‘Democoin’. A "proof of stake” cryptocurrency that randomly picks a set of users from the
ones referenced in the blockchain to be the leaders for the next round. But for the source
of its randomness it relies on a external randomness beacon (e.g. stock market prices).

'Peercoin’ [6] is perhaps the most popular "proof o stake” coin. Its source of randomness
depends on the blockchain for input so an adversary can try and manipulate it to his fa-
vor. Also Peercoin uses centrally broadcasted checkpoints several times a day, to ensure
consensus on a chain.

"Cryptocurrencies without Proof of Work™ [7] lets every player in the sequence of leaders
to randomly pick a bit and then combines them all together to elect the next sequence

|. Konstantinou 10

Efficient blockchains with contributed randomness

of leaders. Depending on the combining function, the adversary needs to corrupt certain
players in the sequence to bias the result in case the are players inputs are equally divided
between 0 and 1.

"math of nxt forging” analyzes the leader election process of NextCoin, another popular
"proof-of-stake” coin. It shows that an adversary can gain significant bias if he manipulates
it properly and under certain conditions take over the protocol completely.

"CentrallyBankedCryptocurrencies” [8] does not use proof-of-work but is designed for the
case where participating players are a group of banks and are trusted more than the typical
person.

All coins above need a form of randomness beacon to make leader election a random
process where the result is not known far in the past. In almost all cases the protocols
specify a way for the users to collectively produce fresh randomness that is based on their
inputs to the blockchain. The problem is that there is always room for the adversary to
bias this result if he controls a number of key players. The most simple case being having
control of the last player that outputs the value, if he dislikes the output he can choose to
absent. And because this result is used to "randomly” sample the players who will provide
the next set of inputs, this process can potentially continue to increase the bias until the
adversary completely takes over.

Our contribution is a blockchain protocol that in parallel to building the blockchain, it pro-
duces randomness that is unbiased by the adversary and can be used in place of an
external randomness beacon.

|. Konstantinou 11

Efficient blockchains with contributed randomness

2. OVERVIEW

In section 5 we describe the ’static shares’ protocol. A simple "proof of stake” leader
based protocol that executes in synchronous rounds and at every round it aims to extend
the longest chain available. Where a trusted entity provides the players with a random
mapping from rounds to leading players, before the protocol starts.

In section 6 we give a formal analysis of the protocol and show that it maintains chain-
quality and common-prefix properties [1] against byzantine adversary controlling up to 1/2
of the total stake.

In section 7 we describe a public verfiable secret sharing scheme as presented in [2]. It
will be used as building block in section 8.

In section 8 we extend the ’static shares’ protocol by allowing stake holders to transfer
their stake to other public keys. We also introduce a way for players to collectively insert
unbiased randomness into the blockchain. The new randomness prevents the attacker
from using stake transfers to launch extra attacks.

In section 9 we show that the new mechanism for randomness is equivalant to the previous
case where a trusted party provided the randomness and then no coin transfers were
possible. This way the results of section 6 still apply.

|. Konstantinou 12

Efficient blockchains with contributed randomness

3. SETTING

All players start with a common reference string that is generated by a trusted entity and
is used to initialize the protocol. The protocols executes in synchronous rounds. All play-
ers have an independent trusted way of determining which is the current round at any
given moment. At the end of each round a message broadcasted by an honest player is
delivered to all honest players.

The adversary can abuse the broadcast primitive and selectively send different messages
to different players. An upper limit of 1/2 of all players may be corrupted by the adversary.
The adversary is computationally bounded and standard intractability assumptions must
hold for the cryptographic primitives that are used.

We also require a signature scheme sign(z, privKey), verify(y, z, pubKey) so that

verify(sign(z, privK), z, pubK) = True

|. Konstantinou 13

Efficient blockchains with contributed randomness

4. DEFINITIONS

Blockchain

Let as indroduce the blockchain notion. A block is a quadraple of the form
B = (h, content, round, openings, sgn)

where i € {0,1}*, content € {0,1}* and sgn is a signature of h||content||round. A
blockchain C of length [is a sequence of [blocks By, .., B; so that

B; = (Hash(B;_1), content;, round;, sgn;), Vi € [2,1].

We define Head(C) the most recent block in C' (so if C is of length [this will be B)).
Furthermore, we define C* to mean the chain C without the last & blocks and C<" to
mean the portion of chain C' where blocks have roundstamps less than r.

Definition 4.0.1 (k-Common-Prefix). The k-common-prefix property states that at any
given round and for any honest players pl, p2 having local chains c1, ¢2, it holds that:

max(|cl — 2|, |2 —cl]) <k €N

where chains are viewed as sets of blocks, so c1 — c¢2 means the blocks of c1 not included
in c2.

Definition 4.0.2 (Chain Quality). The Chain-Quality property with parameters . € R and
| € N states that for any player P with chain C, it holds that for any | consequtive blocks
of C' the ratio of adversarial blocks to honest ones is at most /1.

When we talk about I-chain-quality in the future we will refer to the case of 1/l ratio, fixing
the first parameter to 1.

|. Konstantinou 14

Efficient blockchains with contributed randomness

5. THE STATIC SHARES PROTOCOL

5.1 initialization

There are N players, all having a public key pair. They all share an agreement on the
N public keys that participate in the protocol, an enumeration of this keys (PK1,...,PKy)
and a random number rand <« [1, N*]. They also know two cryptographic hash functions
G :{0,1}* — [1,N] and H : {0,1}* — [1,2?°]. We denote Leader(r) the public key of
the leader of round r and define it as Leader(r) = PKg(|rana)- SO essentially there exists
consensus on a sequence of L public keys Leader(1), .., Leader(L).

Notice that the random number must be generated after the enumeration of the keys. Else
the adverasry could choose an enumeration so that for example he has the leadership in
k consequtive rounds, and thus trivially create a fork.

A blockchain C will be considered valid only if VB; = (h,x,round, sgn) : B; € C, round
strictly increases on i, round < curent Round and
verify(sgn, H(x||h||round), Leader(round)) = true.

5.2 execution

At each round the players receive all valid competing chains from the network and adopt
the longest one. The leader of the current round can then extend upon the longest chain he
received. He will include in his newly created block all non-conflicting content he received
from his peers. At the end of the round everyone broadcasts his local chain to the others.

|. Konstantinou 15

Efficient blockchains with contributed randomness

Algorithm 1 ’static shares’ peer loop

1: O«

2: while true do > for all network rounds
3 C «+ maxvalid(CU all chains in Receive())

4 leader < Leader(r)= PKq(,|cRrS.rand)

5: if myPK = leader then

6: C + extend(C, sk, commitment)

7 end if

8 Broadcast(C)

9: r—r—+1
10: end while

11: function extend(C, SK)

12: hash < H(head(C))

13: content < all content in Receive()

14: signature < sign(H (content, hash,r))

15: return C U {(r, hash, content, signature)}
16: end function

|. Konstantinou 16

Efficient blockchains with contributed randomness

6. STATIC SHARES ANALYSIS

We will examine under which conditions the core assurances provided by the protocol -
common-prefix and chain-quality - hold.

6.1 common prefix

Lemma 6.1.1 Any two honest players never produce blocks for the same height (at any
chain).

Proof. If an honest block was produced at height [then at the next round every honest
player has a chain of at least [blocks. Also notice that a player never switches to a shorter
chain.

We first establish the necessary conditions for the common-prefix property to be broken
in rounds s through 7.

Proposition 6.1.2 For k-common-prefix to be broken in S = s, r|, are required to exist M
rounds lead by the adversary and H rounds lead by the honest online players such that
M > H/2.

Let’s assume that in the current round k-common-prefix property is broken.

There are at least 2 honest players p1 and p2 with chains c1 and ¢2. Let C be their common
prefix. Let ¢2 > c1. By definition ¢2 — C must be at least k blocks long. For p1 to have c1
means that this is the first round any honest player has any chain greater than c1 (else it
would be broadcasted). So all len(c2) —len(c1) most recent blocks of ¢2 must be produced
by the adversary.

For the heights that both c1 and ¢2 have blocks:

Let i be the number of heights for which blocks exist in both chains (: = len(cl — ¢)).
Since honest players produce at most one block for a given height(see Lemma 6.1.1), the
adeversary must produced at least one block for each height (either on c1 or ¢2).

In total the adversary has produced at least |2 — c1| + i = |2 — C| > k blocks. Notice
that the adversary can produce multiple blocks for the same height and so both blocks of
a specific height.

Let w = |2 — C| > k, which is the number of blocks required of the adversary. Round-
stamps must be stricly increasing over height, so each leadership may be used at most
once per chain. At best, the w adverserial blocks can be splitted evenly between the two
chains, and so only w/2 leaderships may be needed to produce them. Since the same
leadership can be used on both chains, for different heights. All this adversarial rounds
must be after the round of head(C') and not after the current one.

|. Konstantinou 17

Efficient blockchains with contributed randomness

Let S be the set of rounds between that of head(C') and the current one. The rounds in
S lead by honest online players cannot be more than len(cl — C) < w since every honest
round produces a block that increases a chain’s length by exactly one and is made public.
In other case there would be a public chain ¢3 such as len(c3) > len(cl) and pl would not
adopt cl1.

So for k-common-prefix to be broken in S, are required to exist M rounds lead by the
adversary such that M/ > w/2 > k/2 and H rounds lead by the honest online players,
such that H < w.

M>w/2 NH<w=M2>H/2

There can also be an unbounded number of offline rounds (when the respective leader is
honest and offline).

6.2 common prefix probabilistic analysis

Given the initialization of the protocol we call BadFEvent the event that in any of the L
rounds of execution, exist the necessary conditions for the adversary to break the k-
common-prefix property.

BadFEvent = U Badg—,
Va,be[l,L]:a+k<b

Bads—[,5 means that k-common-prefix can be broken in rounds S = [a, b]. Specifically
Mg > H5/2 and Mg > l{,‘/Q

L
BadFEvent = U [Of flineRounds = Of] ﬂ U Badg—q
0f=0 Va,be[1,L—0 fl:a+k<b

Constrained only to online rounds, Mg > Hg/2 becomes Mg > @

1/3— A
)

P[Bads]zp[2M>HAM2k]<P[M>|%|]:P[M>A.]S|~(1+

Notice that A - |S| is the expected value of M. So using Chernoff bound we get:

P[Bads] = P[M > A- ‘S| . (1 + 5)] < 6752A-|S|

1/3—-A

where § = i

L

P[BadEwvent] < P| U Badgs—jq] = Z (L—|S| + 1>6_52A\S\
Va,b€[1,L]:a+k<b |S|=k

|. Konstantinou 18

Efficient blockchains with contributed randomness

<L-(L—k+1)- e 02Ak 12 —02Ak _ 2InL—6%Ak

So for the next L rounds the probability the adversary creates a fork k& blocks deep, asym-
totically falls exponentially in k.

For an example, let's set L = % and assume A = 1/4. Then P[BadEvent] = ¢'0~*/4 =
e(1440-k)/1 S0 the probability a fork of 1440 + d blocks may form in the next L blocks
(rounds), falls exponentially on d. Practically, for an honest player this means that stability
of the chain is guaranteed, as there will be no long forks in the future.

6.3 chain quality

For the chain quality property to be subverted, the adversary must own £ consequtive
blocks in the chain. In any large enough(> k) sequence of rounds, with very high proba-
bility the adversary has leadership close to % of them and the rest are honest. So without
maliciously excluding honest blocks from the prevailing chain, the chain quality will hold.

Now for an honest block to be excluded from the prevailing chain, the adversary must use
one of his own in its place. So in a sequence of k£ rounds where the % are honest and
produce blocks, half of them may be replaced by using all the adversarial ones. But still
there will always be (close to)% honest blocks that the adversary cannot match and will
end up in the chain.

So at worst case the chain-quality will be 1/2.

|. Konstantinou 19

Efficient blockchains with contributed randomness

7. PUBLICLY VERIFIABLE SECRET SHARING

Our next protocol utilizies the PVSS protocol presented in [Sch99] for its leader election
process, so we will briefly describe it.

There is a dealer and n shareholders. The protocol consists of two phases, the sharing
and the reconstruction of the secret. For the reconstruction to be succesfull, ¢ out of n
shares are required.

Discrete logarithms equality

We will use the protocol by Chaum and Pedersen [CP93] as a subprotocol to prove
that Iogg1 h, = Iogg2 hy, for generators ¢y, hy, g2, he € G,. We denote this protocol by
DLEQ(g1, h1, g2, ho) and it consists of the folowing steps, where the prover knows « such
that h; = ¢ and hy = g5

1. The prover sends oy = gi’ and o = gy, with w € Z,.
2. The verifier sends a random challenge c € Z,

3. The prover responds with » = w — ac (mod q)

4. The verifier checks tha «; = ¢{h{ and ay = g5h$

7.1 initialization

We publicly select a group G|, of prime order ¢, such that computing descrete logarithms in
this groups is infeasible. We also independently select generators G, g of G, so no party
knows the discrete logarithm of g with respect to G. Also every player i publishes a public
key of the form pk; = G**.

7.2 distribution

First the dealer pick a random polynomial p of degree ¢ — 1 with coeefficients in Z,:

t—1
plz) = a’
=0

and sets his secret to be G%. The dealer keeps this polynomial secret but publishes the
related commitments C; = ¢%/, for 0 < j < t. He also publishes the encrypted shares
esh; = pkf“), for 1 < ¢ < n. Finally, let X; = H?;%)O;ﬁ". The dealer shows that the encrypted
shares are consistent, by producing a proof of knowledge of the unique p(i),1 < i < n,
satisfying:

X; = ¢" | esh; = pk‘f(i)

|. Konstantinou 20

Efficient blockchains with contributed randomness

The non-interactive proof is the n-fold parallel composition of the protocols for

DLEQ(g, X;, pki, esh;). Aplplying Fiat-Shamir’s technique, the challenge ¢ for the protocol
is computed as cryptographic hash of all X, esh;, ay,,as,, 1 < i < n. The proof consists of
the common challenge ¢ and the n responses r;. '

Verification of the shares. The verifier computes X; = H?;}JC’]?] from the C; values. Using
pki, X;,ehs;,r;, 1 < i <mnandcas input, the verifier computes ay;, as; as

T YC T c
ay; =g Xy, oo = pk;‘esh;

and checks that the hash of X;, esh;, ay;, as;, 1 < i < n, mathces c.

7.3 reconstruction

Decryption of the shares. Using his private key sk, each participant finds his share S; =
GP) from esh; by computing S; = esh,}/s’“. They publish S; plus a proof that the value S;
is a correct decryption of esh;. To this end it suffices to prove knowledge of an «a such
that pk; = G and esh;, = S, which is accomplished by the non-interactive version of
the protocol DLEQ(G, pk;, S;, esh;). Pooling the shares Suppose w.l.0.g. that participants
P; produce correct values for S;, for: = 1,...,t. The secret G* is obtained by Lagrange
interpolation:

I, SN =TT (GPD)N = G POA=CPO) _ ~ag

where)\, = H#i]ii is a Lagrange coefficient.

|. Konstantinou 21

Efficient blockchains with contributed randomness

8. THE MOVING SHARES PROTOCOL

We now present a new protocol that extends upon the capabilities of the ’static shares’.
As opposed to before that they were static, now the "trust shares” that define potential
leaders can be transfered from one public key to another any number of times. But now
we need to prevent the attacker from planning ahead and acquiring k£ shares that provide
consequtive leaderships. We introduce a generator of randomness into the blockchain
that is unbiased and we use it for the leader election. This way we keep the future leaders
unknown to any malicious minority that does not break the k-common-prefix and k-chain-
quality properties.

Let as fix k£ to a value -based on our assessemnt of the adversarial power- so that k-
common-prefix property holds with very high(1 — <) probability. We now define some new
special kinds of content:

transfer{ PK;, PK} that is signed by PK; and transfers all its leadership rights to PK,
effective after 2k blocks. Essentially, every player substitues PK; with PK in his list of
potential leaders, when this content is at least & blocks deep in his local chain.

commit{ PK,r,poly, enc_sharey, ..., enc_share,, DLEQs, sign} which is the sharing phase
of a non-interactive public verifiable secret sharing scheme [2]. The secret is a ran-
dom value that is shared between the & most recent eligible leaders. So if the commit
is included in a block with roundstamp r, then the shares are encrypted for public keys
Leader(r — k), ..., Leader(r — 1). PK is the public key of the commiter and sign his signa-
ture.

Definition 8.0.1 (commitment) We will now define the exact form of a commitment. Let
PK,SK be the public and private keys of the commiter and r the roundstamp of the block
it'’s included in. Also let holder; = Leader(r — i,C), except of holder, = PK. Then the
commitment will be of the form:

PK) T? gO‘O’ gal’ b gat’ Sgn = SZgn(SK, H(ga()’ gal’ * gat))
esh; = holderf(i), DLEQ(g,¢"™, holder;, esh;)¥0 < i < k
Note that besides the shares, the commiter encrypts «, to himself and proves it. So in the

future he can decrypt it to G*° and prove it without needing the shares, thus saving space.
Also he does not need to keep any local state beside his private key.

Definition 8.0.2 (assert) In the algorithms to follow, we make use of an assert() state-
ment. It takes as input a boolean value and if it evaluates to false it immediatly breaks
execution of its caller, forcing it to return false. So ’assert(false)’ is equivelant to 'return
false’.

Definition 8.0.3 (DLEQ) From now on by DLEQ(qg, hy, G, hy) we denote a structure con-
taining the corresponding DLEQ proof along with the four input arguments.

|. Konstantinou 22

Efficient blockchains with contributed randomness

Algorithm 2 verify commitment

1:
2
3
4
5
6:
7
8
9
0
1:

10:
1

function verifyCommitment(commitment, Leader H)

(PK,round, DLEQ(g, ", holder;, esh;)¥i € [0, k]) <— commitment
assert(verify(PK, H(g*, g*,..,g*), sgn))
foralli < [1,%] do
assert(holder; = Leader H[r])
verify DLEQ(g, g*, holder;, esh;)
assert(g"" = 1I_;(¢%)")
end for
verify DLEQ(g, ¢*©, PK, PK?©)
return true

end function

Algorithm 3 find commitment

1:
2
3
4:
5:
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

function findCommitment(P K, r, C, Leader H)

Cuwork <— C=" > drop blocks after round r» — 1
Cwork A Cq_[?olik > trim last 2k blocks

while length(Cior) > 0 do
B «+ head(C\york)
for all commitment € B.commitments do
if PK = commitment.PK N —used(commitment,r — 1,C, Leader H) then
return commitment
end if
end for
Cwork — 01[1107”16
end while
for all commitment € C RS.commitments do
if PK = commitment.PK A —used(commitment,r — 1,C, Leader H) then
return commitment
end if
end for
return ¢

> search chain backwards

end function

20: function used(commitment,r,C, Leader H)

21:
22:
23:
24:
25:
26:
27:

if Leader H[r — 1] = commitment.PK then
return true

end if

if findCommitment(PK,r — 1,C, Leader H) # commitment then
return false

end if

return used(commitment, PK,r — 1,C, Leader H)

28: end function

|. Konstantinou 23

Efficient blockchains with contributed randomness

1: function Leader(r, C, R, Leader H)
2 if 3Leader H|r| then

3 return LeaderH|r]

4: end if

5: i< 0

6: while true do

7 leader < PKG(z‘lerR[r—I])

8: if findCommitment(leader, r, C, Leader H)# ¢ then
o: Leader H[r] < leader
10: return leader

11: end if
12: i i+1
13: end while

14: end function

We also require a new field open to be present in each block header, which is the oppening
of a (uniquely specified by the protocol) previous commit. It must open the most recent
unused commit that is at least 2k blocks deep in the chain and was commited by the
creator of this block. A commiit is considered used if Also if this block has roundstamp 2
and the previous one in the chain has roundstamp r1, we require that the header includes
all the openings that were to be published in rounds r1 to r2. Basically the open of all
skipped roundstamps (provided either by the issuer or the honest shareholders) so there
is not the option of opting out and biasing the result.

Given a chain C, we denote R; the secret randomness on the commitment that was elected
to open atround i.The R; of all the rounds are multiplied together to provide for an unbiased
by the adversary source of randomness on the blockchain:

rand, = R,_1- Ry_9 - R_3 - ...

The definition of Leader() changes so that instead of the initial randomness, it uses the
collectively produced one. So Leader(r,C') = PK¢(j|r|rand,)» Where r is the round in ques-
tion, C' the chain that is extended and ¢ a counter that is increased until a PK owning a
valid commit is output. The ¢ counter is used in order to save silent rounds when a invalid
leader is elected. Notice that the final value of i for each round is totally defined by C'. In
cases were C and ¢ are implied by the context -such as above- we may ommit them.

8.1 initialization

The initialization of the protocol is done by trusted entity. It generates and publishes the
group description GG, along with its two generators g, G as required by the PVSS scheme.
Also publishes a random element from G, an ordered list of players’ public keys and a
commitment for each one of them. The shareholders for the commitments are chosen
uniformly random and independently from the trusted entity.

|. Konstantinou 24

Efficient blockchains with contributed randomness

Algorithm 4 chain validity
1: function valid(C, current Round, R, Leader H, Cpy, k)
2: assert(head(C).round < current Round)
3 assert(|Cpres — C| < k)
4 LeaderH + []
5: R 1]

6: reset PKy, ..., PKy to CRS values

7.

8

9

0

1:

for i = 1to length(C) do
assert(processBlock(B; € C,C, R, Leader H))

end for

return true

10:
11: end function

Note: in the bootstraping phase (fist 2k blocks) the only commitments that can be opened
are in the CRS. So a player cannot have 2 leadership rounds during this phase, because
he has no second commitment to open. Meaning the first 2k leaders are not truly inde-
pendent. But it does not hurt our analysis.

8.2 execution

Whenever a players wishes to add new content to the public chain, he broadcasts
it. At the start of each round every honest player examines the chains in his net-
work tape and local memory. He picks the longest of them (measured in number of
blocks) and discards the others. Let's call this chain C. If he has the private key
myS K corresponding to Leader(current Round, C') then he assembles a new block B,,.., =
(h, x, current Round, sgn, openings). Where h = Hash(Head(C)),

sgn = sign(hl||z|current Round, mySK) and x is @ maximal accumulation of known con-
tent. Maximal in the sense that no network received content exists that could be added and
still be a valid block (because content might impose some rules of its own). By openings
we denote the opening of the commitement elected for this round along with any released
shares broadcasted for rounds after head(C').round. He then appends this new block to
the top of his local chain. At the end of every round all honest players broadcast their local
chain.

|. Konstantinou 25

Efficient blockchains with contributed randomness

Algorithm 5 processBlock() (r, hash, content, signature, open, skippedOpenings)

1: function process(B;, C, R, Leader H)
2 (round, hash, content, signature, open, skippedOpenings) < B;
3 assert(round > B;_1.round)
4: for all r € (B;_y.round, B;.round) do > read openings for skipped rounds
5: com,. + findCommitment(Leader(r,C, R, LeaderH),r,C, Leader H)
6: openings, < openings of shares € B;.openings for com,
7 assert(|openings,| =t)
8: R]r] + secretReconstruction(openings,)-R[r — 1]
o: end for
10: leader < Leader(round, C, R)
11: assert(verify(signature, H(hash, content,), leader))
12: Rlround] < open.secret
13:
14: for all ¢ € content.commitments do
15: assert(verifyCommitment(c))
16: end for
17: for all t € content.transfers do
18: (PKoigy PKpew, e, signaturey) <t
19: assert(verify(signaturey, H(PKyew, 1), PKoa))
20: end for
21: forall t € B, o.transfers do > apply transfers that are deep enough
22: (PK o, PK pew, 1, Signature;) <t
23: PK 4 < PKpey > make the substitution on the global list of players
24: end for
25: return true

26: end function

Algorithm 6 init
: CRS.players + PK;,...,PKy

CRS.group <+ G
CRS.generator < g,G
CRS.rand +* G,
CRS.commitments <+ ()
for all p € CRS.players do

holders <% CRS.players*

CRS.commitments < CRS.commitments U commit(p, holders, secret € Z,)
end for

© o N>R N2

|. Konstantinou 26

Efficient blockchains with contributed randomness

Algorithm 7 maxvalid
1: function maxValid(chains, current Round, R, Leader H, C k)

2 mazx < C

3 for all ¢ € chains do

4 if valid(c, currentRound, R, Leader H, C, k) A length(c) > length(max) then
5: mazxr <— ¢
6
7
8

end if
end for
valid(maz, current Round, R, Leader H, ¢, k) > reread chain to restore all state (eg.
LeaderH)
9: return max
10: end function

|. Konstantinou 27

Efficient blockchains with contributed randomness

Algorithm 8 peer loop
1: C+ 0
2: Leader H +] > leadership history for all past rounds
3: while true do > for all network rounds r
4: C' + maxvalid(C'U all chains in Receive(), currentRound, R, LeaderH, C, k)
5: orphanOpenings <+ shares found in Receive(), released at rounds after
head(C').round
6: if head(C').round < r — 1 then
7 R[r — 1] <« secretReconstruction(openings for round r» — 1 found in
orphanOpenings)
8: Rlr — 1] < R[r — 2] - R[r — 1]
9: end if
10: leader < Leader(r,C, R, Leader H)
1: commitment < findCommitment(leader, r, C, Leader H) > the commit to be
opened now
12: if myPK = leader then
13: C + extend(C, mySK, commitment)
14: else
15: releaseShare(commitment, mySK) > seek out if i am shareholder for this
round
16: end if
17: Broadcast(C, orphanOpenings)
18: r<—r+1
19: end while
20: function extend(C, SK)
21: hash < H(head(C))
22: content « all content in Receive()
23: ¢ < findCommitment(myPK,r,C)
24: open « (GO DLEQ(G, myPK,G*® myPK?0))
25: skippedOpenings <« #threshold shares for each round € (head(C).round,r) as
found in Receive()
26: signature < sign(H (content, hash, 1))
27: return C U {(r, hash, content, signature, open, skippedOpenings)}
28: end function
1: function releaseShare(commitment)
2: if 3i : commitment.holder; = myPK then > i was dealt a share
3: share < commitment.esh™ > decrypt esh; to GP©)
4: Broadcast(r, i, DLEQ(G, myPK, share, myPK?®))
5: end if
6: end function

|. Konstantinou 28

Efficient blockchains with contributed randomness

9. MOVING SHARES ANALYSIS

9.1 reduction

The whole analysis for the "static shares” protocol security, relies solely on the fact that the
leader of every round is an independent random variable. We will show that this propery
is preserved in the "moving shares” protocol and so all the previous security arguments
for chain-quality and common-prefix still hold.

The system is bootstrapped with a sequnece of leaders satisfying this property and uses
this fact to generate more i.i.d leaders.

At any point, the leader of round r is defined by multiplying together £ elements of G,.
So to manipulate the outcome the adversary must at some point know all of these values
while it's time for him to give his input to the multiplication. But while picking-commiting to
this input and until it's permanently burried (£ blocks deep) into the blockchain, the protocol
specifies that the other k£ — 1 elements of the multiplication are kept secret by their owners.
So if at least one of these players is honest, the distribution of the outcome over all players
is uniform.

Now let’'s assume these £ players have been chosen randomly from a previous same pro-
cess or the CRS. Since the k parameter has been set accordingly, we are probabilitsticly
guaranteed that at least one player will be honest (close to %k actually).

So we have established a process, that given a sequence of players chosen uniformly
random, outputs a new one chosen the same way. We bootstrap this procedure by feed-
ing it an initial trusted random sequence in the CRS and then let it constantly repeat by
consuming its output and appending it to its input. This way as long as enough players
participate in the protocol, new i.u.d. leaders are generated.

The adversary has specific actions he can try to abuse to his favor; commiting, opening,
transfering and picking wich chain to extend. We saw that while commiting he has not
enough info to prefer some group element from another and if he opts out he just loses
a leadership opportunity. While opening he is binded by his previous commitment to a
spicific value. He can choose not to open, but then the honest majority of the PVSS
shareholders will open it instead.

Finally he can try to extend a chain other than the maximum one, in order to erase some
blocks he dislikes. But at all times, he cannot erase more than £ blocks from the head.
Honest commitments are revealed at least after 2k blocks -when they are permanent- and
before that there is no reason to erase them. Actually since leaders for k blocks in the
future are not known, there is no telling of when a newly included commitment will be used.
And so even if its secret is known (e.g. commited by the adversary), the other elements of
the multiplication are unknown at least until it becomes permanent in the blockchain. At
any case, while the commitment is in a block that can be erased, there is not enough info
to dislike it. He can try and erase all honest commitments blindly as a denial of service, but
chain-quality property assures us that at least one of every k£ consequtive blocks will be

|. Konstantinou 29

Efficient blockchains with contributed randomness

honest and include all denied commitments. Openings are by design not erasable, since
the protocol blocks until openings for all elected commitments are included in the chain.

In conclusion , the adversary has no way -intrinsic to the protocol- to interfere with the
process of indepentently electing uniformly distributed random leaders.

Since this procedure is always fed fresh random data from the honest users, its output
is unpredictable until all honest players out of £ reveal their multiplication inputs. Which
means that at worst case where there is just one honest player and he is first in the se-
quence, the output leader is known by the adversary £ — 1 blocks in advance, but not
before. While note that a transfer is applied after 2% blocks.

9.2 Long range attacks

Let's define the weight of a subchain as -l 50 weight € [0, 1] At
any point in time, a collusion of past players is able to produce with high probability a chain
heavier than the current chain, as long as at the height of the fork they owned a percentage
of tokens greater than the weight of the current chain’s part they try to overrride. So for
example if all the players defined in the genesis block -even if they no longer posses any
tokens- decided to produce a new chain, it would have weight = 1 and would be the
longest possible, able to override any competing chain with at least on silent round. So
the longest chain rule is not enough to achieve a persistent blockchain in the long run,

when past players may have no incentive to behave honestly any more.

As a counter a measure, we introduce some state information in every player executing
the protocol. This state is the longest chain that won during the last online round of the
player. When a player receives a longer chain, he will consider it valid only if it excludes at
most k blocks of his stored one. So it does not present a fork deeper than & blocks. Else it
will just be discarded. This way very deep forks are prevented and players do not need to
trust token owners after k& blocks from their last transfer. Meaning, a player that transfers
all his tokens needs to be trusted only until this transfer becomes permanent (consensus
achieved for all honest online players). Then he can no longer reverse it for the set of
players that have heard k blocks in a chain verifing it. The remaining offline players who
have not yet received this % blocks are still vulnerable.

At any given time a player P, has reached a permanent consensus either on a chain
burried k£ blocks deep or on the genesis block. Let's denote this chain as Cs. Block
Be = Head(Cp) is irreversable for P;. He will later receive a longer chain Cy.,, which
contains B.. We denote Owners(B) the set of players that would own tokens if B was
the head of the prevailing chain. Player P, must trust that VB € (Cne, — Cc) U{ B¢} there
exists honest majority in Owners(B). Where honest means that he was and is still honest
until now.

In consequence, for all players to reach consensus, we must trust that a majority of
Owners(B) is honest and remains honest until it is burried under & blocks in the local
chains of all players.

|. Konstantinou 30

Efficient blockchains with contributed randomness

This is the key difference from the trust assumptions of the Bitcoin protocol. We must trust
not only that players act honestly during their leadership round, but that they continue to
do so for some time (k blocks) in the future.

To justify this assumption for rational players, we propose to assume that volatility of coin
ownership is small. That is, a vast majority of players -coin owners- hold on to their coin
balances for long periods of time. And so only a small percentage of coins change hands
during a period long enough for all players to come online and hear £ blocks from their
peers. Giving no incetive to the majority of players to start behaving maliciously.

|. Konstantinou 31

Efficient blockchains with contributed randomness

REFERENCES

[1] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology - EUROCRYPT 2015 Proceedings, Part
Il, pages 281-310, 2015.

[2] Berry Schoenmakers. "A Simple Publicly Verifiable Secret Sharing Scheme and its
Application to Electronic Voting” In Advances in Cryptology[ICRYPTO 199, pp. 148-
164, 1999.

[3] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in Cryp-
tology ICRYPTO (192, volume 740 of Lecture Notes in Computer Science, pages
8911105, 1993.

[4] Amos Fiat and Adi Shamir. "THow to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. CRYPTO 1986: pp. 186-194, 1986.

[5] Sergey Gorbunov and Silvio Micali. "Democoin: A Publicly Verifiable and Jointly Ser-
viced Cryptocurrency” , https://eprint.iacr.org/2015/521

[6] Sunny King and Scott Nadal. "PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-
Stake” , https://peercoin.net/assets/paper/peercoin-paper.pdf

[7] |ddo Bentov, Ariel Gabizon, Alex Mizrahi. "Cryptocurrencies without Proof of Work” ,
https://arxiv.org/abs/1406.5694v2

[8] George Danezis and Sarah Meiklejohn. "Centrally Banked Cryptocurrencies” ,
https://eprint.iacr.org/2015/502.pdf

|. Konstantinou 32

	CONTENTS
	INTRODUCTION
	Related work

	Overview
	Setting
	Definitions
	The Static Shares Protocol
	initialization
	execution

	Static Shares Analysis
	common prefix
	common prefix probabilistic analysis
	chain quality

	Publicly Verifiable Secret Sharing
	initialization
	distribution
	reconstruction

	The Moving Shares Protocol
	initialization
	execution

	Moving Shares Analysis
	reduction
	Long range attacks

	REFERENCES

