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ABSTRACT

Widely used platforms such as the Java Class Library have always attracted attackers’
interest. One common exploitation scenario consists of an attacker triggering sensitive
platform operations, thus letting him/her retrieve sensitive data from the results of those
operations.

We present a static analysis which, considering as sources a subset of the public API
of the Java Class Library, computes an over-approximation of the parts of the platform
that could leak sensitive information, if triggered by an attacker. The main challenge in
analysing a whole library, and not a specific program, is that we have to come up with
ways to accurately fake attacker-created objects.

The analysis is based on theDoop framework which uses the Datalog language to declaratively
specify pointer analysis algorithms. The analysis logic required just about 200 lines of
Datalog code, which clearly shows the contribution of Doop in defining concise and expressive
static analyses.

SUBJECT AREA: Static program analysis

KEYWORDS: static program analysis, security, java, mock objects, datalog



ΠΕΡΙΛΗΨΗ

Ευρέως χρησιμοποιούμενες πλατφόρμες όπως η JavaClass Library έχουν πάντοτε στραμ-
μένο πάνω τους το ενδιαφέρον των εισβολέων. Ένα κοινό σενάριο εκμετάλλευσης συνί-
σταται από τον επιτιθέμενο να ενεργοποιεί ευαίσθητες λειτουργίες της πλατφόρμας, επι-
τρέποντας του να ανακτήσει ευαίσθητα δεδομένα από τα αποτελέσματα αυτών των λει-
τουργιών.

Παρουσιάζουμε μια ανάλυση η οποία, θεωρώντας ως πηγές ένα υποσύνολο των μεθό-
δων του δημόσιου API της Java Class Library, υπολογίζει μια υπερεκτίμηση των μερών
της πλατφόρμας που θα μπορούσαν να διαρρεύσουν ευαίσθητη πληροφορία αν ενεργο-
ποιηθούν από έναν εισβολέα. Η κύρια πρόκληση της ανάλυσης μιας ολόκληρης βιβλιοθή-
κης, και όχι ενός συγκεκριμένου προγράμματος, είναι πως πρέπει να βρούμε τρόπους να
απομιμηθούμε με ακρίβεια τα αντικείμενα που δημιουργεί ο επιτιθέμενος.

Η ανάλυση είναι βασισμένη στοDoop framework το οποίο χρησιμοποιεί τη γλώσσαDatalog
για να προσδιορίζει δηλωτικά αλγορίθμους ανάλυσης δεικτών. Η λογική της ανάλυσης
χρειάστηκε σχεδόν 200 γραμμές κώδικα Datalog, το οποίο είναι ενδεικτικό της συνεισφο-
ράς του Doop στον καθορισμό περιεκτικών και εκφραστικών στατικών αναλύσεων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική ανάλυση προγράμματος

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: στατική ανάλυση προγράμματος, ασφάλεια, java, εικονικά αντικεί-
μενα, datalog
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PREFACE

This thesis aims to research how mock objects can impact declarative static program
analyses specified using the Doop framework. It was developed as my undergraduate
thesis between March 2016 and October 2016 at the Department of Informatics and
Telecommunications of the University of Athens.



Security Analysis of the Java Library with Mock Objects

1. INTRODUCTION

In the context of object-oriented programming,mock objects are typically created to simulate
real objects and aid in the testing of other objects. Static analyses need mock objects in
much the same way, as many times there is a need to mimic real objects (e.g. an object
created by an attacker) in controlled ways.

This work presents an analysis in the field of security analyses and aims to find instances
of the Confused Deputy Problem in the Java Class Library. In this type of vulnerability
an attacker tricks the proxy possessing the necessary authority into carrying out sensitive
operations on its behalf. The Java Class Library has been exploited multiple times through
vulnerabilities utilizing instances of the Confused Deputy Problem.

In one common attack scenario the attacker manages to fool the platform into loading a
class, which otherwise he would not have permission to load. Two of the most prominent
exploits that employ this technique are described in the CommonVulnerabilities and Exposures
Directory under identifiers 2012-4681 and 2013-0422. In these attacks, the attackermanages
to retrieve package-restricted classes by controlling the input to a class-loading method
call (e.g. Class.forName).

Defining an analysis that can find instances of the above attack scenario in the JCL
requires the creation ofmock objects, whichmimic attacker-created objects and are provided
as arguments for the sourcemethods of the analysis. TheDoop framework already implements
algorithms for pointer analysis, which lets us focusmainly on the strategies of mock objects
creation and their level of detail. These two variables can have significant impact on the
precision and the scalability of an analysis with mock objects.

Konstantinos S. Triantafyllou 13
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2. BACKGROUND

Datalog is a declarative logic programming language that is specifically designed to facilitate
work with deductive databases. The most prominent difference between Datalog and
Prolog, which heavily influenced the former, is that Datalog programs are guaranteed to
terminate [14]. Our analysis depends on the Doop framework, which uses an extended
version of Datalog that has been developed by Logiblox, Inc.

Doop implements a range of algorithms, including context-insensitive, call-site sensitive
and object-sensitive points-to analyses. However, the modular representation of context
in the framework can make code built upon any such analysis entirely oblivious to the
exact choice of context (which is specified at runtime).

2.1 Points-To Analysis in Datalog

Doop’s defining feature is the use of Datalog for its analyses and its explicit representation
of relations as tables of a database, as it abstains from using Binary Decision Diagrams
(BDDs), which have been considered necessary for scalable points-to analysis in the past
[7, 8].

Datalog is a great fit for the domain of program analysis and, as a consequence, has been
extensively used both for low-level [9, 10] and for high-level [11, 12] analyses. Its ability
to define recursive relations solves the problem of mutual recursion, which is the source
of all complexity in program analysis. For a standard example, the logic for computing a
call-graph depends on having points-to information for pointer expressions, which, in turn,
requires a call-graph. Such recursive definitions are common in points-to analysis.

Doop’s execution involves a pre-processing step, where the input facts for an analysis are
generated with the help of the Soot framework [13]. Doop expects as input a Java program
in bytecode form, which means that only the compiled classes and not the original source
is needed, thus enabling the use of closed-source libraries. In Datalog semantics, the set
of asserted facts for a program is called its EDB (Extensional Database). The generated
relations that are directly produced from the input Java program, and any relation data
added to the asserted facts by user defined rules, constitute the EDB predicates.

1 +Type:fqn(?type:?classname),
2 +ClassType(?type) <-
3 _ClassType(?classname).

Figure 2.1: Simple Datalog example for EDB rules

The program of Figure 2.1 consists of a single EDB rule that asserts (note the plus sign)
two facts into the database. The rule creates a new Type entity ?type, which is also added

Konstantinos S. Triantafyllou 14
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to the ClassType relation, for each class type with name ?classname. Each created entity
is bound to an internal LB-Datalog ID.

Following the pre-processing step a simple pointer analysis can be expressed entirely in
Datalog as a transitive closure computation:

1 VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).
2 VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

Figure 2.2: Simple Datalog example for IDB rules

Computation in Datalog consists of monotonic logical inferences that repeatedly apply to
produce more facts until a fixpoint is reached. The simple Datalog program of Figure 2.2
comprises two rules, which in Datalog semantics are known as IDB (Intensional Database)
rules and are used to establish facts from a conjunction of already established facts. In
the LB-Datalog syntax, a derivation rule’s head (i.e. the inferred fact) is seperated by the
rule’s body (i.e. the previously established facts) by the left arrow symbol. For instance,
the above first rule is the base case of the computation stating that, upon the assignment
of an allocated heap object to a variable, this variable may point to that heap object. The
second rule employs recursion to say that, a variable may point to any heap object another
variable points to, if the value of the second variable is assigned to the first.

2.2 Context Sensitivity in Doop

For higher order (object-oriented and functional) languages, the key to enchancing
analysis precision without sacrificing scalability has come to be context sensitivity [1, 8]. A
context-sensitive analysis qualifies variables and abstract objects with context information:
the analysis collapses information (e.g., “what objects this local variable can point to”) over
executions that map to the same context value, while separating executions that map to
different contexts. Depending on the context’s components, the main flavors of context
sensitivity in modern pointer analysis are call-site sensitivity [3], object sensitivity [4, 5]
and type sensitivity [6].

1 class A {
2 void bar() { ... }
3 }
4

5 Class B {
6 void foo(A a1, A a2) {
7 a1.bar();
8 a2.bar();
9 }

10 }

Figure 2.3: Simple Java example for context-sensitivity

Konstantinos S. Triantafyllou 15
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Call-site sensitivity uses method call-sites as context elements. For instance, in our
example, a call-site sensitive analysis will create two seperate points-to sets for the
variables in method bar, one for each invocation on lines 7 and 8.

On the other hand, object sensitive analyses qualify contexts using the allocation site of
the receiver object (i.e., the method’s “this” object). In this way, the context of two method
calls may differ even if they share the same call site, due to different allocation sites of the
receiver objects. In the above example, an object-sensitive analysis will distinguish the
calls to bar depending on the allocation site of the objects that variables a1 and a2 might
point to.

Type sensitivity in Doop is analoguous to object sensitivity, yet types and not allocation
sites are used to qualify contexts. Specifically, all the allocation sites in methods of the
same class are merged. The goal of type sensitivity is to yield a more scalable analysis
without sacrificing too much precision.

In [2], one can find a detailed description of the context-insensitive and context-sensitive
analysis model in Doop. The main difference in the addition of context sensitivity is the
use of constructors also known as skolem functions [16]. These functions are black boxes
for the rest of the analysis and are used when we need to create a new calling context (or
simply Context) for a variable abstraction, or a new heap context (or simply HContext) for
a heap abstraction.

record : Allocation Site× Context → HContext

merge : Call Site×HContext× Context → Context

The record function returns the creation context of an abstract object. Respectively, the
merge function creates a calling context for every method invocation. Different flavors
of context sensitivity are implemented by specifying variations of the record and merge
functions.

Importantly, the addition of constructors by the LB-Datalog engine makes the language
Turing-complete, i.e. programs are not guaranteed to terminate as in pure Datalog. Doop’s
context constructors are recursive: they return the same type of entities that they take
as input, thus invalidating the property of polynomial execution. In order to restore this
property we limit our attention to definitions of record and merge that create contexts in
domains isomorphic to finite sets, bounded polynomially by the size of input.

Konstantinos S. Triantafyllou 16
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3. SECURITY ANALYSIS

In this chapter, we describe the analysis that computes an over-approximation of the parts
of the Java Class Library that could leak sensitive information if triggered by an attacker.

Our analysis works in a forward way: it begins at a set of sources and follows assignments
until finding a vulnerable Class.forNamemethod call, which we call a sink. Subsequently,
the analysis tracks the returned values of sinks (which can be thought of as sources now)
to check if they could leak and thus be read by an attacker.

3.1 Analysis Sources

In a real-world platform, such as the Java Class Library, that executes untrusted code,
sources are all the public API methods that are callable by the untrusted code. In order to
keep the analysis scalable, we regard as sources a subset of the public methods of the
JCL.

We consider a public method as source if it is not abstract and has at least one parameter,
whose type is interesting (or tainted, as we will call it) for our analysis. This logic is
expressed in Datalog in four simple rules (Figure 3.1). As can be seen, we do not need to
worry about the input facts (e.g. “which methods are public”) as Doop provides those by
default. Only the facts about the tainted types need to be explicitly added into the EDB,
as shown in Figure 3.2.

1 PublicMethod(?method) <-
2 MethodModifier("public", ?method).
3

4 AbstractMethod(?method) <-
5 MethodModifier("abstract", ?method).
6

7 InterestingMethod(?method) <-
8 PublicMethod(?method),
9 !AbstractMethod(?method).

10

11 SourceMethod(?method) <-
12 InterestingMethod(?method),
13 FormalParam[_, ?method] = ?formal,
14 Var:Type[?formal] = ?taintedtype,
15 TaintedType(?taintedtype).

Figure 3.1: Datalog code for determining source methods

We are aware that the decision to determine as sources the specific subset, and not all
the public methods might raise some concern about the completeness of the analysis.
However, experimental results of the analysis (Chapter 4) indicate that this should not be
a major concern.

Konstantinos S. Triantafyllou 17
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1 +TaintedType("java.lang.Object").
2 +TaintedType("java.lang.Object[]").
3 +TaintedType("java.lang.String").
4 +TaintedType("java.lang.String[]").

Figure 3.2: Datalog code for asserting tainted types

3.2 Mock Objects

The analysis presented in this work makes heavy use of mock objects in an attempt to
mimic attacker-created objects. In theory, there should be a distinct mock object for every
user-created one. In reality, in order to make the analysis scale better, we merge some of
them, which naturally introduces some loss of precision.

The merge of mock objects can have many variants, depending on how one wants to
handle the trade-off between scalability and precision of the analysis. For instance, an
analysis that can afford some imprecision might create onemock object for every available
class in the JCL and assign it where it is needed.

1 +MockHeap(?heap, ?type),
2 +Instruction:Value(?heap:?heapstr),
3 +HeapAllocation(?heap),
4 +HeapAllocation:Type[?heap] = ?type <-
5 ClassType(?type),
6 !TaintedType(?type),
7 Type:fqn(?type:?typestr),
8 ?heapstr = "mock-heap" + ?typestr.
9

10 +TaintedHeap(?type, ?method, ?heap),
11 +Instruction:Value(?heap:?heapstr),
12 +HeapAllocation(?heap),
13 +HeapAllocation:Type[?heap] = ?type <-
14 MethodSignature:Value(?method:?m),
15 FormalParam@previous[_, ?method] = ?formal,
16 Var:Type@previous[?formal] = ?type,
17 Type:fqn@previous(?type:?typestr),
18 TaintedType(?type),
19 ?heapstr = "tainted-heap-" + ?m + "-" + ?typestr.

Figure 3.3: Datalog code for creating mock objects

In our analysis, we follow a hybrid approach for mock object creation, which aims to
keep the analysis scalable while maintaining good precision in specific areas, such as the
tainted objects and their flow. The two EDB rules, which are responsible for the creation
of the mock objects, are presented in Figure 3.3.

The first rule creates one object for every type of the JCL, except for the tainted ones.

Konstantinos S. Triantafyllou 18
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The second one creates one object per parameter type, if the type is tainted (Figure 3.2),
for every method of the JCL. The reason why the second rule does not focus only on the
source methods, is that in this stage of the analysis (i.e. input facts generation) they have
not been computed yet.

The objects are created using the a special type of predicated called refmode predicate
+Instruction:Value(?heap:?heapstr). In +Instruction:Value(?heap:?heapstr),
?heap is bound to an internal ID of the LB-Datalog engine, and ?heapstr is the string that
uniquely identifies the object. Note also the use of the @previous suffix, which references
the population of a relation as it was immediately before the start of the transaction (i.e.
at the end of the input facts generation). In this way, the infinite delta recursion, that could
be introduced by the mutually recursive rules, is avoided.

The created mock objects (i.e. those stored in predicates MockHeap and TaintedHeap)
need to be assigned to the parameters of the source methods as substitutes for attacker-
created objects. Parameters of tainted type should point to the corresponding tainted heap
objects. As for the rest of the parameters (those of non-tainted type) and the this variables,
we choose to assign them simple mock objects (i.e. those created one per type). The
Datalog code that implements this logic is presented in Figure 3.4.

1 VarPointsTo(?hctx, ?heap, ?ctx, ?formal) <-
2 SourceMethod(?method),
3 FormalParam[_, ?method] = ?formal,
4 Var:Type[?formal] = ?type,
5 TaintedHeap(?type, ?method, ?heap),
6 GlobalContext[] = ?ctx,
7 GlobalHContext[] = ?hctx.
8

9 VarPointsTo(?hctx, ?heap, ?ctx, ?this) <-
10 SourceMethod(?method),
11 ThisVar[?method] = ?this,
12 MethodSignature:DeclaringType[?method] = ?type,
13 MockHeap(?heap, ?type),
14 GlobalContext[] = ?ctx,
15 GlobalHContext[] = ?hctx.
16

17 VarPointsTo(?hctx, ?heap, ?ctx, ?formal) <-
18 SourceMethod(?method),
19 FormalParam[_, ?method] = ?formal,
20 Var:Type[?formal] = ?type,
21 MockHeap(?heap, ?type),
22 GlobalContext[] = ?ctx,
23 GlobalHContext[] = ?hctx.

Figure 3.4: Datalog code for assigning mock objects

Note that all the above VarPointsTo rules include in their body the relations GlobalContext
and GlobalHContext to retrieve the global calling and heap context, respectively. These

Konstantinos S. Triantafyllou 19
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two global contexts are used as the starting contexts of the analysis. Their definition
depends on the flavor of context sensitivity that is used.

3.2.1 Mock Objects and Fields

Doop’s analyses are field-sensitive, which means that they are able to distinguish different
fields of the same abstract object, instead of lumping all fields together. Taking this into
consideration, there are two main approaches to handle fields of mock objects.

1. Create mock objects for the parameters of every public method and let them flow
and populate any mock object fields.

2. Manually set the fields of mock objects to point to other (or the same) mock objects.

In our analysis we follow the second approach as we want to avoid dealing with every
public method of the JCL. Moreover, the abstract objects assigned to fields of mock objects
and the mock objects themselves belong in the same set (i.e. the one per type mock
objects). This can result in the creation of objects that are not so realistic. For instance,
consider a Node object (Figure 3.5) which represents a node in a binary tree, but its child1
and child2 fields point to itself.

class BinaryTree {
Node root;

...

class Node {
...
Node child1;
Node child2;
...

}
}

Node Object

Node child1

Node child2

Figure 3.5: Example of mock object with fields

The assignment of mock objects to fields of mock objects requires one simple Datalog rule,
which is presented in Figure 3.6. Note that Doop uses the relation InstanceFieldPoints,
and not VarPointsTo, as the points-to relation for fields.

Konstantinos S. Triantafyllou 20
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1 InstanceFieldPointsTo(?hctx, ?heap, ?signature, ?hctx, ?baseheap) <-
2 MockHeap(?baseheap, ?basetype),
3 ReferenceType(?basetype),
4 FieldSignature:DeclaringClass[?signature] = ?basetype,
5 FieldSignature:Type[?signature] = ?type,
6 ReferenceType(?type),
7 !FieldIsStatic(?signature),
8 MockHeap(?heap, ?type),
9 GlobalHContext[] = ?hctx.

Figure 3.6: Datalog code for assigning mock objects to mock object’s fields

3.3 Analysis Sinks

In this kind of analysis, sinks are methods that perform sensitive operations. Our analysis
focuses on finding vulnerable Class.forName method calls, and thus defines two sinks
(Figure 3.7).

1 +SinkMethod(0, ?sig) <-
2 MethodSignature:Value(?sig:"<java.lang.Class: java.lang.Class

forName(java.lang.String)>") ;
3 MethodSignature:Value(?sig:"<java.lang.Class: java.lang.Class

forName(java.lang.String,boolean,java.lang.ClassLoader)>").

Figure 3.7: Datalog code for defining analysis sinks

Thanks to Doop’s points-to analysis, which computes how heap objects flow intra- and
inter-procedurally through the program, we only need to define two rules (Figure 3.8) to find
tainted heaps that reach sinks. The first rule associates the first argument (0-th parameter,
since forName is a static method) of a forName call with the invocation site and its context
in computed relation SinkVariable. The second rule then uses SinkVariable: if the first
argument ?var of a forName call ?invocation points to a tainted heap ?heap from source
method ?source, then infer that an object can flow from ?source to ?invocation.

1 SinkVariable(?invocation, ?ctx, ?var) <-
2 SinkMethod(?index, ?tomethod),
3 CallGraphEdge(?ctx, ?invocation, _, ?tomethod),
4 ActualParam[?index, ?invocation] = ?var.
5

6 TaintedHeapFromSourceFlowsToSink(?ctx, ?source, ?invocation) <-
7 SinkVariable(?invocation, ?ctx, ?var),
8 VarPointsTo(_, ?heap, ?ctx, ?var),
9 TaintedHeap(_, ?source, ?heap).

Figure 3.8: Datalog code for computing objects flowing to sinks
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3.3.1 Sanitization

Platforms such as the JCL often need to release sensitive information in a controlled
manner. In our case, a user should be able to retrieve classes through calls to method
Class.forName, as long as the requested classes do not belong in restricted packages.

The JCL implements many mechanisms to make Class.forName more secure [15]. One
such mechanism is based on the idea of performing an additional security check that
verifies package access prior to loading a class. This security check is performed by the
method checkPackageAccess (java.lang.String) (of the sun.reflect.misc.ReflectUtil
package), which raises an exception if the user does not have the authority to access the
requested class.

For our analysis, user-created objects may be considered sensitive up to the point that
they reach method checkPackageAccess: from there they are considered sanitized. The
analysis computes the relation SanitizedHeapFromSourceFlowsToSink, which is a subset
of the TaintedHeapFromSourceFlowsToSink relation (Figure 3.8) as it stores the sources
of only the sanitized tainted heaps, that reach a sink. This relation is essential to compute
which methods can leak sensitive information (i.e. objects returned by a non-sanitized
call to forName). The Datalog code that implements the sanitization logic is presented in
Figure 3.9.

1 SanitizedHeap(?heap) <-
2 SanitizationMethod(?index, ?tomethod),
3 CallGraphEdge(?ctx, ?invocation, _, ?tomethod),
4 ActualParam[?index, ?invocation] = ?var,
5 VarPointsTo(_, ?heap, ?ctx, ?var),
6 TaintedHeap(_, _, ?heap).
7

8 SanitizedHeapFromSourceFlowsToSink(?source, ?invocation) <-
9 SinkVariable(?invocation, ?ctx, ?var),

10 VarPointsTo(_, ?heap, ?ctx, ?var),
11 TaintedHeap(_, ?source, ?heap),
12 SanitizedHeap(?heap).

Figure 3.9: Datalog code for computing sanitized objects flowing to sinks

This treatment of sanitization is optimistic as our analysis is flow-insensitive, assuming that
statements can execute in any order. Consequently, a heap that reaches a sanitization
method for the first time only after flowing to a sink, is regarded as sanitized for this sink.

3.4 Reflection

Having defined as sink the Class.forName method, we extend our analysis to handle
the two most common features of the Java Reflection API: creating a reflective object
representing a class given a string (Class.forName) and creating a new object given a
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class object (Class.newInstance).

1 +ForNameHeap(?heap, ?method),
2 +Instruction:Value(?heap:?heapstr),
3 +HeapAllocation(?heap),
4 +HeapAllocation:Type[?heap] = "java.lang.Class" <-
5 MethodSignature:Value(?method:?m),
6 ?heapstr = "for-name-heap-" + ?m.
7

8 +NewInstanceHeap(?heap, ?method),
9 +Instruction:Value(?heap:?heapstr),

10 +HeapAllocation(?heap),
11 +HeapAllocation:Type[?heap] = "java.lang.Object" <-
12 MethodSignature:Value(?method:?m),
13 ?heapstr = "new-instance-heap" + ?m.

Figure 3.10: Datalog code for creating reflective objects

Extending our analysis means adding two new input relations to the EDB, ForNameHeap
and NewInstanceHeap, presented in Figure 3.10. These two relations store one abstract
object of type java.lang.Class and one of type java.lang.Object for every method of
the JCL, respectively.

The java.lang.Class and java.lang.Object objects created by the two EDB rules
above, represent the returned objects of calls to Class.forName and Class.newInstance,
respectively. We present the two inference rules that model reflection in Figure 3.11.

1 RecordMacro(?ctx, ?heap, ?hctx),
2 ClassObjectFromSink(?source, ?sink, ?heap),
3 VarPointsTo(?hctx, ?heap, ?ctx, ?to) <-
4 TaintedHeapFromSourceFlowsToSink(?ctx, ?source, ?sink),
5 ForNameHeap(?heap, ?source),
6 AssignReturnValue[?sink] = ?to.
7

8 RecordMacro(?ctx, ?heap, ?hctx),
9 HeapFromSink(?source, ?sink, ?heap),

10 VarPointsTo(?hctx, ?heap, ?ctx, ?to) <-
11 NewInstanceInvocation(_, ?to, ?from),
12 VarPointsTo(_, ?classobject, ?ctx, ?from),
13 ClassObjectFromSink(?source, ?sink, ?classobject),
14 NewInstanceHeap(?heap, ?source).

Figure 3.11: Datalog code for assigning reflective objects

Τhe first rule says that if a tainted heap from source method ?source flows to forName
sink ?sink, whose result is assigned to local variable ?to, and the invented class object
corresponding to method ?source is ?heap, then ?to should point to ?heap. The second
rule reads: if the receiver object, ?heap, of a newInstance call is a class object returned
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from sink ?sink (to which flowed a tainted heap from source method ?source), and the
result of the call is assigned to variable ?to, then ?to should point to object ?instance
(which corresponds to method ?source). The two rules use the RecordMacro to create a
new heap context for the allocated object. Note the relations ClassObjectFromSink and
HeapFromSink, which associate the object ?heap, with the source method ?source and the
sink ?sink, which it came from.

3.5 Leaks

In its final step our analysis computes which reflective objects, coming from a sink, can
leak through public functions of the API. In order to achieve this, we only need to define a
handful of rules (Figure 3.12), as Doop’s points-to analysis takes care of how objects flow
intra- and inter- procedurally throught the program.

The first rule computes the objects that may be returned by a public method. The helper
relation PublicMethodReturnsHeap is used by the second and the third rule to jointly
compute the relation SourceToSinkToLeak. A SourceToSinkToLeak(?source, ?sink,
?leak) fact is inferred when a reflective object ?heap, created by a sink ?sink to which
a non sanitized tainted heap flowed from source method ?source, is returned by a
public method ?leak. Note the additionaly computed relations LeakClassObject (2nd rule)
and LeakHeap (3rd rule), which contain the leaked objects coming from forName and
newInstance calls, respectively.

1 PublicMethodReturnsHeap(?method, ?heap) <-
2 PublicMethod(?method),
3 Instruction:Method[?x] = ?method,
4 ReturnNonvoid:Var[?x] = ?var,
5 VarPointsTo(_, ?heap, _, ?var).
6

7 LeakClassObject(?heap),
8 SourceToSinkToLeak(?source, ?sink, ?leak) <-
9 PublicMethodReturnsHeap(?leak, ?heap),

10 ClassObjectFromSink(?source, ?sink, ?heap),
11 !SanitizedHeapFromSourceFlowsToSink(?source, ?sink).
12

13 LeakHeap(?heap),
14 SourceToSinkToLeak(?source, ?sink, ?leak) <-
15 PublicMethodReturnsHeap(?leak, ?heap),
16 HeapFromSink(?source, ?sink, ?heap),
17 !SanitizedHeapFromSourceFlowsToSink(?source, ?sink).

Figure 3.12: Datalog code for computing leaked objects
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3.6 String Operations

An important way of enhancing the empirical soundness of our analysis is via richer string
flow. String concatenation in Java is typically done through StringBuffer or StringBuilder
objects. The common concatenation operator, +, reduces to calls over such factory
objects.

Figure 3.13 presents two helper relations needed to implement the analysis logic for string
factories. The relation StringFactoryVar captures which variables are of a string factory
type. The relation StringFactoryVarPointsTo is a subset of the VarPointsTo relation,
containing only the variables that are of a string factory type.

1 StringFactoryVar(?var) <-
2 Var:Type[?var] = ?type,
3 StringFactoryType(?type).
4

5 StringFactoryVarPointsTo(?factoryHctx, ?factoryHeap, ?ctx, ?var) <-
6 VarPointsTo(?factoryHctx, ?factoryHeap, ?ctx, ?var),
7 StringFactoryVar(?var).

Figure 3.13: Datalog code for computing variables pointing to string factory objects

To evaluate whether tainted objects may flow into factory objects, we leverage the points-
to analysis itself, pretending that an object flow into an append method and out of a
toString method is equivalent to an assignment. In order to keep the analysis scalable,
while treating the most common case, we require that the base variables of an append
and a toString method call over the same factory object have the same calling context
(i.e. are in the same method). The main logic for string operations is captured in three
rules illustrated in Figure 3.14.

1 VarIsTaintedFromVar(?base, ?ctx, ?param) <-
2 VirtualMethodInvocation:SimpleName[?invocation] = "append",
3 VirtualMethodInvocation:Base[?invocation] = ?base,
4 StringFactoryVarPointsTo(_, _, ?ctx, ?base),
5 ActualParam[0, ?invocation] = ?param.
6

7 VarIsTaintedFromVar(?ret, ?ctx, ?base) <-
8 VirtualMethodInvocation:SimpleName[?invocation] = "toString",
9 VirtualMethodInvocation:Base[?invocation] = ?base,

10 StringFactoryVarPointsTo(_, _, ?ctx, ?base),
11 AssignReturnValue[?invocation] = ?ret.
12

13 VarPointsTo(?hctx, ?heap, ?ctx, ?to) <-
14 VarIsTaintedFromVar(?to, ?ctx, ?from),
15 TaintedHeap(_, _, ?heap),
16 VarPointsTo(?hctx, ?heap, ?ctx, ?from).

Figure 3.14: Datalog code for computing string flow through string factory objects
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4. EXPERIMENTAL RESULTS

In this chapter, we present the evaluation of the analysis presented in Chapter 3 and
comment on the experimental results.

One of the main goals of this work is to research how mock objects affect the percantage
of the codebase that is analyzed. An empirical metric to quantify this is the number of
tainted heaps that flow to a sink method. We define four mock object techniques:

1. Tainted. The analysis uses only mock objects of tainted type as arguments for the
source methods.

2. +This. Extends the first technique by assigning mock objects to source methods’ this
variables.

3. +Param. Extends the second technique by using mock objects of non tainted type
as arguments for the source methods.

4. +Field. Extends the third technique by assigning mock objects to fields of mock
objects.

Figure 4.1 plots the results of our experiments, combining both the empirical metric
(i.e. tainted heaps reaching sink methods) and the analysis time for each mock object
technique. We run a context insensitive and a 2-type sensitive+heap analysis for each
technique, so we use seperate bars (tainted heaps reaching sink methods) and lines
(analysis time) for each one.
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Figure 4.1: Reached Sinks and analysis time for JRE 7u45
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The increase in analysis time (due to extra computations) and reached sinks that
accompanies the addition of mock objects, shows the positive contribution of mock objects
towards a more complete analysis. As can be seen, the +this technique is the most
effective one, while the other two techniques are less impactful.

Table 4.1 presents more metrics that back up our claims. We are interested in
the following metrics: VarPointsTo entries (vars), TaintedHeapFromSourceFlowsToSink
(sinks), LeakClassObject (leak-co), LeakHeap (leak-h) and SourceToSinkToLeak (leak-
path).

Table 4.1: Metrics concerning the effect of mock objects for JRE 7u45

metrics
analysis technique vars sinks leak-co leak-h leak-path

insens

tainted 372,278,126 397,945 10 10 5,492
+this 667,646,329 627,159 15 15 11,895

+param 689,780,680 632,819 15 15 12,122
+field 783,466,088 685,423 15 15 13,322

2type+h

tainted 361,050,700 755,673 5 0 241
+this 382,224,371 811,833 5 0 241

+param 383,406,524 815,253 5 0 241
+field 383,761,261 816,393 5 0 241

Regarding the leakage of sensitive information, the insens +field analysis reports 15
distinct class objects leaking from 13,322 public methods. Obviously, an insensitive
analysis is not a good fit for our problem, as due to its lack in precision reports a huge
number of false positives. As expected, the 2type+h +field analysis proves more precise
reporting five distinct class objects leaking from 241 public methods. In both cases, after
inspecting the results it is almost certain that the reported vulnerabilities are false warnings.
However, many of these are to be expected as our analysis is optimistic in some cases,
and we do not implement any logic for the more advanced security mechanisms of the
JCL.

The two exploits described in the Common Vulnerabilities and Exposures Directory under
identifiers 2012-4681 and 2013-0422 are patched in JRE 7u45 and our analyses succeed
in not reporting any false positives about them. In JRE 7u6 both exploits appear to be
unpatched. Our analyses are able to report the leakage of restricted class objects in both
cases.

Table 4.2: Metrics concerning the effect of mock objects for JRE 7u6

metrics
analysis technique vars sinks leak-co leak-h leak-path

insens tainted 374,332,919 390,030 14 12 15,508
+field 784,891,220 672,740 747 746 1,360,586

2type+h tainted 485,497,672 693,223 737 725 12,635,463
+field 513,125,141 749,299 782 768 14,374,448
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Table 4.2 presents some metrics for JRE 7u6. It appears that the 2type+h analysis is
less precise for this JRE version, as it reports more leaks. However, this happens mainly
due to the imprecision of the insensitive analysis, which reports many flows to sinks as
sanitized when it should not. Both our analysis yield imprecise results, reporting a huge
number of false positives. Apparently, the sanitization method that we defined is not widely
used in this JRE version, which employs other techniques to ensure authorized access
to classes of restricted package. Our analysis could possible be extended to model more
countermeasures.
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5. CONCLUSIONS

Using Datalog and the Doop framework, we were able to express a compact and succinct
security analysis aiming to find instances of the Confused Deputy Problem in the Java
Class Library. A key feature of our analysis is the creation and use of mock objects that
mimic attacker-created objects. In this way, we were able to analyse a sufficiently large
part of the JCL codebase in about 1 to 2 hours. The scalability of the analysis results mainly
from Doop’s explicit representation of relations instead of the traditionally used BDDs. The
Doop framework also made it trivial to decouple the implementation of the analysis from
the context chosen for the points-to analysis.

Although our techniques yield positive results, further work is necessary to achieve
good empirical soundness and scalability. The JCL employs many complicated security
mechanisms that our analysis does not take into account, thus reporting false warnings
in some cases. Furthermore, our research in mock objects for points-to analysis cannot
be considered complete in any way. We hope that this work could lay the groundwork for
future security analyses that make use of mock objects to achieve better results.
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ACRONYMS AND ABBREVIATIONS

JCL Java Class Library
JRE Java Runtime Environment
EDB Extensional Database
IDB Intensional Database
API Application Programming Interface
LB LogicBlox Inc.
insens context insensitive analysis
2type+h 2-type sensitive+heap analysis
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ANNEX I: ANALYSIS INPUT RELATIONS

The domains of the analysis include: invocation sites, I; variables, V ; heap object
abstractions (i.e., allocation sites), H; calling contexts, C; heap contexts, HC; method
signatures, MS; field signatures, FS; types, T ; methods, M; natural numbers, N, and
strings. Our analysis takes as input the relations presented in Figure A.1, which are part
of the points-to analysis of Doop.

The reader might note that some of our analysis rules contain predicates of the special
form PredicateName[arg1, arg2] = value. These are functional predicates that map the
values found between the square brackets to the value right of the equals sign. Note that
if we forget about the functional property, the predicate PredicateName[arg1, arg2] =
value is equivalent to PredicateName(value, arg1, arg2).

Instruction:Value(i: I, s: string): instruction i is uniquely identified by the string s.
Instruction:Method(m: M, i: I): instruction i is in method m.
ReturnNonVoid:Var(v: V, i: I): instruction i returns local var v.
MethodSignature:Value(m: M, s: MS): m represents the method for method
signature s.
MethodModifier(mod: string, m: M): method’s m definition has a mod modifier.
ThisVar(v: V, m: M): var v is the this var of method m.
FormalParam(v: V, n: N, m: M): the n-th formal parameter of method m is var v.
ActualParam(v: V, n: N, i: I): at invocation i, the n-th parameter is local var v.
AssignReturnValue(v: V, i: I): at invocation i, the value returned is assigned to local
var v.
Type:fqn(t: T, s: string): type t is uniquely identified by the string s.
Var:Type(t: T, v: V): var v has type t.
HeapAllocation:Type(t: T, h: H): object h has type t.
FieldSignature:DeclaringClass(s: FS, t: T): type t has a field with signature s.
FieldSignature:Type(s: FS, t: T): field with signature s has type t.
VirtualMethodInvocation:SimpleName(s: string, i: I): instruction i is an invocation
to a method with name s.
VirtualMethodInvocation:Base(v: V, i: I): instruction i is an invocation whose
receiver object is pointed to by local var v.

Figure A.1: Analysis input relations
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ANNEX II: SECURITY ANALYSIS CODE

1 #include "../2-type-sensitive+heap/analysis.logic"
2

3 GlobalContext[] = ?ctx,
4 ContextFromRealContext[?immType, ?immType] = ?ctx,
5 Context(?ctx) <-
6 ImmutableTypeValue[] = ?immType.
7

8 GlobalHContext[] = ?hctx,
9 RecordImmutableMacro(_, _, ?hctx) <- .

10

11 FieldIsStatic(?sig) <-
12 FieldModifier("static", ?sig).
13

14 PublicMethod(?method) <-
15 MethodModifier("public", ?method).
16

17 AbstractMethod(?method) <-
18 MethodModifier("abstract", ?method).
19

20 InterestingMethod(?method) <-
21 PublicMethod(?method),
22 !AbstractMethod(?method).
23

24 SourceMethod(?method) <-
25 InterestingMethod(?method),
26 FormalParam[_, ?method] = ?formal,
27 Var:Type[?formal] = ?taintedtype,
28 TaintedType(?taintedtype).
29

30 ReachableContext(?ctx, ?method) <-
31 SourceMethod(?method),
32 GlobalContext[] = ?ctx.
33

34 /* 1 tainted heap per method */
35 OptTaintedHeap(?heap, ?type, ?method) <-
36 TaintedHeap(?type, ?method, ?heap).
37

38 VarPointsTo(?hctx, ?heap, ?ctx, ?formal) <-
39 SourceMethod(?method),
40 FormalParam[_, ?method] = ?formal,
41 Var:Type[?formal] = ?type,
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42 OptTaintedHeap(?heap, ?type, ?method),
43 GlobalContext[] = ?ctx,
44 GlobalHContext[] = ?hctx.
45

46 /* 1 mock heap per type */
47 VarPointsTo(?hctx, ?heap, ?ctx, ?this) <-
48 SourceMethod(?method),
49 ThisVar[?method] = ?this,
50 MethodSignature:DeclaringType[?method] = ?type,
51 MockHeap(?heap, ?type),
52 GlobalContext[] = ?ctx,
53 GlobalHContext[] = ?hctx.
54

55 VarPointsTo(?hctx, ?heap, ?ctx, ?formal) <-
56 SourceMethod(?method),
57 FormalParam[_, ?method] = ?formal,
58 Var:Type[?formal] = ?type,
59 MockHeap(?heap, ?type),
60 GlobalContext[] = ?ctx,
61 GlobalHContext[] = ?hctx.
62

63 InstanceFieldPointsTo(?hctx, ?heap, ?signature, ?hctx, ?baseheap) <-
64 MockHeap(?baseheap, ?basetype),
65 ReferenceType(?basetype),
66 FieldSignature:DeclaringClass[?signature] = ?basetype,
67 FieldSignature:Type[?signature] = ?type,
68 ReferenceType(?type),
69 !FieldIsStatic(?signature),
70 MockHeap(?heap, ?type),
71 GlobalHContext[] = ?hctx.
72

73 SinkVariable(?invocation, ?ctx, ?var) <-
74 SinkMethod(?index, ?tomethod),
75 CallGraphEdge(?ctx, ?invocation, _, ?tomethod),
76 ActualParam[?index, ?invocation] = ?var.
77

78 TaintedHeapFromSourceFlowsToSink(?ctx, ?source, ?invocation) <-
79 SinkVariable(?invocation, ?ctx, ?var),
80 VarPointsTo(_, ?heap, ?ctx, ?var),
81 TaintedHeap(_, ?source, ?heap).
82

83 SanitizedHeap(?heap) <-
84 SanitizationMethod(?index, ?tomethod),
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85 CallGraphEdge(?ctx, ?invocation, _, ?tomethod),
86 ActualParam[?index, ?invocation] = ?var,
87 VarPointsTo(_, ?heap, ?ctx, ?var),
88 TaintedHeap(_, _, ?heap).
89

90 SanitizedHeapFromSourceFlowsToSink(?source, ?invocation) <-
91 SinkVariable(?invocation, ?ctx, ?var),
92 VarPointsTo(_, ?heap, ?ctx, ?var),
93 TaintedHeap(_, ?source, ?heap),
94 SanitizedHeap(?heap).
95

96 RecordMacro(?ctx, ?heap, ?hctx),
97 ClassObjectFromSink(?source, ?sink, ?heap),
98 VarPointsTo(?hctx, ?heap, ?ctx, ?to) <-
99 TaintedHeapFromSourceFlowsToSink(?ctx, ?source, ?sink),

100 ForNameHeap(?heap, ?source),
101 AssignReturnValue[?sink] = ?to.
102

103 RecordMacro(?ctx, ?heap, ?hctx),
104 HeapFromSink(?source, ?sink, ?heap),
105 VarPointsTo(?hctx, ?heap, ?ctx, ?to) <-
106 NewInstanceInvocation(_, ?to, ?from),
107 VarPointsTo(_, ?classobject, ?ctx, ?from),
108 ClassObjectFromSink(?source, ?sink, ?classobject),
109 NewInstanceHeap(?heap, ?source).
110

111 PublicMethodReturnsHeap(?method, ?heap) <-
112 PublicMethod(?method),
113 Instruction:Method[?x] = ?method,
114 ReturnNonvoid:Var[?x] = ?var,
115 VarPointsTo(_, ?heap, _, ?var).
116

117 LeakClassObject(?source, ?sink),
118 SourceToSinkToLeak(?source, ?sink, ?leak) <-
119 PublicMethodReturnsHeap(?leak, ?heap),
120 ClassObjectFromSink(?source, ?sink, ?heap),
121 !SanitizedHeapFromSourceFlowsToSink(?source, ?sink).
122

123 LeakHeap(?source, ?sink),
124 SourceToSinkToLeak(?source, ?sink, ?leak) <-
125 PublicMethodReturnsHeap(?leak, ?heap),
126 HeapFromSink(?source, ?sink, ?heap),
127 !SanitizedHeapFromSourceFlowsToSink(?source, ?sink).
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128

129 /* String operations */
130 StringFactoryVar(?var) <-
131 Var:Type[?var] = ?type,
132 StringFactoryType(?type).
133

134 StringFactoryVarPointsTo(?factoryHctx, ?factoryHeap, ?ctx, ?var) <-
135 VarPointsTo(?factoryHctx, ?factoryHeap, ?ctx, ?var),
136 StringFactoryVar(?var).
137

138 VarIsTaintedFromVar(?base, ?ctx, ?param) <-
139 VirtualMethodInvocation:SimpleName[?invocation] = "append",
140 VirtualMethodInvocation:Base[?invocation] = ?base,
141 StringFactoryVarPointsTo(_, _, ?ctx, ?base),
142 ActualParam[0, ?invocation] = ?param.
143

144 VarIsTaintedFromVar(?ret, ?ctx, ?base) <-
145 VirtualMethodInvocation:SimpleName[?invocation] = "toString",
146 VirtualMethodInvocation:Base[?invocation] = ?base,
147 StringFactoryVarPointsTo(_, _, ?ctx, ?base),
148 AssignReturnValue[?invocation] = ?ret.
149

150 VarPointsTo(?hctx, ?heap, ?ctx, ?to) <-
151 VarIsTaintedFromVar(?to, ?ctx, ?from),
152 TaintedHeap(_, _, ?heap),
153 VarPointsTo(?hctx, ?heap, ?ctx, ?from).
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1 #include "../2-type-sensitive+heap/delta.logic"
2

3 /* Methods and invocations */
4 +SinkMethod(0, ?sig) <-
5 MethodSignature:Value(?sig:"<java.lang.Class: java.lang.Class

forName(java.lang.String)>") ;
6 MethodSignature:Value(?sig:"<java.lang.Class: java.lang.Class

forName(java.lang.String,boolean,java.lang.ClassLoader)>").
7

8 +SanitizationMethod(0, ?sig) <-
9 MethodSignature:Value(?sig:"<sun.reflect.misc.ReflectUtil: void

checkPackageAccess(java.lang.String)>").
10

11 +NewInstanceInvocation(?invocation, ?to, ?from) <-
12 MethodSignature:Value(?sig:"<java.lang.Class: java.lang.Object

newInstance()>"),
13 MethodInvocation:Signature[?invocation] = ?sig,
14 AssignReturnValue[?invocation] = ?to,
15 VirtualMethodInvocation:Base[?invocation] = ?from.
16

17

18 /* Tainted types */
19 +TaintedType("java.lang.Object").
20 +TaintedType("java.lang.Object[]").
21 +TaintedType("java.lang.String").
22 +TaintedType("java.lang.String[]").
23

24

25 /* Mock objects */
26

27 /* 1 mock heap per type */
28 +MockHeap(?heap, ?type),
29 +Instruction:Value(?heap:?heapstr),
30 +HeapAllocation(?heap),
31 +HeapAllocation:Type[?heap] = ?type <-
32 ClassType(?type),
33 !TaintedType(?type),
34 Type:fqn(?type:?typestr),
35 ?heapstr = "mock-" + ?typestr.
36

37 /* 1 tainted mock heap per method's parameter type
38 *
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39 * The input facts have already been added in a previous transaction, so we use
40 * the @previous suffix to avoid delta recursion.
41 */
42 +TaintedHeap(?type, ?method, ?heap),
43 +Instruction:Value(?heap:?heapstr),
44 +HeapAllocation(?heap),
45 +HeapAllocation:Type[?heap] = ?type <-
46 MethodSignature:Value(?method:?m),
47 FormalParam@previous[_, ?method] = ?formal,
48 Var:Type@previous[?formal] = ?type,
49 Type:fqn@previous(?type:?typestr),
50 TaintedType(?type),
51 ?heapstr = "tainted-heap-" + ?m + "-" + ?typestr.
52

53 /* We create 2 heap abstractions, one of type java.lang.Class and one of type
54 * java.lang.Object, for every available method.
55 */
56 +ForNameHeap(?heap, ?method),
57 +Instruction:Value(?heap:?heapstr),
58 +HeapAllocation(?heap),
59 +HeapAllocation:Type[?heap] = "java.lang.Class" <-
60 MethodSignature:Value(?method:?m),
61 ?heapstr = "for-name-sink-heap-" + ?m.
62

63 +NewInstanceHeap(?heap, ?method),
64 +Instruction:Value(?heap:?heapstr),
65 +HeapAllocation(?heap),
66 +HeapAllocation:Type[?heap] = "java.lang.Object" <-
67 MethodSignature:Value(?method:?m),
68 ?heapstr = "new-instance-sink-heap" + ?m.
69

70

71 /* String factory types */
72 +StringFactoryType("java.lang.StringBuffer").
73 +StringFactoryType("java.lang.StringBuilder").
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