

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM

MASTER THESIS

ROBUST PRINCIPAL COMPONENT ANALYSIS:
THEORETICAL ASPECTS AND ALGORITHMIC

COMPARATIVE EVALUATION FOR DIMENSIONALITY
REDUCTION

Michail N. Giannopoulos

Advisors: Sergios Theodoridis, Professor
Yannis Kopsinis, Post Doc Researcher

ATHENS

November 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΥΡΩΣΤΗ ΑΝΑΛΥΣΗ ΚΥΡΙΩΝ ΣΥΝΙΣΤΩΣΩΝ: ΘΕΩΡΗΤΙΚΕΣ
ΠΤΥΧΕΣ ΚΑΙ ΑΛΓΟΡΙΘΜΙΚΗ ΣΥΓΚΡΙΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΓΙΑ

ΜΕΙΩΣΗ ΤΗΣ ΔΙΑΣΤΑΣΗΣ

Μιχαήλ Ν. Γιαννόπουλος

Επιβλέποντες: Σέργιος Θεοδωρίδης, Καθηγητής
Ιωάννης Κοψίνης, Μεταδιδακτορικός Ερευνητής

ΑΘΗΝΑ

Noέμβριος 2016

MASTER THESIS

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic
Comparative Evaluation for Dimensionality Reduction

Michail N. Giannopoulos

S.N.: Μ1272

Advisors: Sergios Theodoridis, Professor
Yannis Kopsinis, Post Doc Researcher

November 2016

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Εύρωστη Ανάλυση Κύριων Συνιστωσών: Θεωρητικές Πτυχές και Αλγοριθμική
Συγκριτική Αποτίμηση για Μείωση της Διάστασης

Μιχαήλ Ν. Γιαννόπουλος

Α.Μ.: Μ1272

ΕΠΙΒΛΕΠΟΝΤΕΣ: Σέργιος Θεοδωρίδης, Καθηγητής
Ιωάννης Κοψίνης, Μεταδιδακτορικός Ερευνητής

Noέμβριος 2016

ABSTRACT

In the present master thesis we examine the question of whether the PCA method for
dimensionality reduction could become robust vis-à-vis gross errors, and if so which
algorithmic scheme from the literature would be the best choice.

In the beginning, we present the classical PCA method, its main ideas, those key
properties that have made it so popular, its advantages and its disadvantages.

Afterwards, we state the main theoretical results concerning the possibility of robustyfying
the PCA method, as well as some interesting applications of real life in which a robust
PCA method could prove extremely useful.

Subsequently, a detailed presentation of the most popular algorithmic schemes designed
to tackle this problem takes place, followed by a respective comparative analysis among
them based on widely used quality metrics used in this scientific field.

Finally, a case-study inspired by the field of image processing is examined, in order on
the one hand to evaluate the performance of the algorithmic schemes studied in the
present thesis under tougher experimental circumstances, as well as on the other hand
to examine their practical use in realistic applications.

SUBJECT AREA: Signal Processing, Statistics

KEYWORDS: Principal Component Analysis, sparsity, low-rank matrices, convex

optimization, image processing

ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία εξετάζεται το κατά πόσο η ευρέως γνωστή ανάλυση
κύριων συνιστωσών ως μια μέθοδος μείωσης της διάστασης μπορεί να καταστεί εύρωστη
απέναντι σε ακραίες τιμές / παρατηρήσεις, και αν κάτι τέτοιο είναι δυνατό ποιο
αλγοριθμικό σχήμα από τη βιβλιογραφία αποτελεί την καλύτερη επιλογή.

Αρχικά, παρουσιάζεται η κλασική ανάλυση κύριων συνιστωσών, οι βασικές της ιδέες,
εκείνες οι ιδιότητες-κλειδιά της οι οποίες την έχουν καταστήσει τόσο δημοφιλή, τα
πλεονεκτήματά της καθώς και τα μειονεκτήματα αυτής.

Στη συνέχεια, γίνεται μνεία στα βασικά θεωρητικά αποτελέσματα που αφορούν στην
πιθανότητα η ανάλυση κύριων συνιστωσών να καταστεί εύρωστη απέναντι σε ακραίες
τιμές, καθώς επίσης και σε μερικές ενδιαφέρουσες εφαρμογές της πραγματικής ζωής
όπου κάτι τέτοιο θα ήταν αρκετά χρήσιμο.

Ακολούθως, λαμβάνει χώρα μια αναλυτική παρουσίαση των πιο διάσημων αλγοριθμικών
σχημάτων που σχεδιάστηκαν ώστε να αντιμετωπίσουν αυτό το πρόβλημα,
ακολουθούμενη από μία συγκριτική ανάλυση μεταξύ τους η οποία εδράζεται σε ευρέως
χρησιμοποιούμενες μετρικές ποιότητας σε αυτό το επιστημονικό πεδίο.

Τέλος, εξετάζεται μια μελέτη-περίπτωσης προερχόμενη από το πεδίο της επεξεργασίας
εικόνας, ώστε από τη μία πλευρά να αποτιμηθεί η επίδοση των υπο μελέτη αλγορίθμων
σε “δυσκολότερες” πειραματικές συνθήκες, από την άλλη δε πλευρά να διερευνηθεί η
πρακτική χρησιμότητά τους σε ρεαλιστικές εφαρμογές.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Σήματος, Στατιστική

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανάλυση κύριων συνιστωσών, αραιότητα, χαμηλής τάξης-πίνακες,

κυρτή βελτιστοποίηση, επεξεργασία εικόνας

To my family

ΕΥΧΑΡΙΣΤΙΕΣ/AKNOWLEDGEMENTS

For the completion of the present thesis I would like to thank my advisors Professor
Sergios Theodoridis and Post Doc Researcher Yannis Kopsinis for their cooperation, their
advices, and their invaluable educational directions.

CONTENTS

INTRODUCTION ... 18

1. INTRODUCTION .. 19

2. PRINCIPAL COMPONENT ANALYSIS ... 20

2.1 Motivation and statement of the problem .. 20

2.2 Linear Algebra highlights the crucial details .. 20

2.3 A Signal Processing perspective .. 21

2.4 Statistics points out the “proper” matrix .. 22

2.5 The PCA Algorithm and some examples .. 23

2.6 Redundancy and Dimensionality Reduction .. 24

2.7 Properties of PCA and general comments ... 27

3. ROBUST PRINCIPAL COMPONENT ANALYSIS ... 28

3.1 Constructional limits of PCA .. 28

3.2 PCA’s “fatal” enemy: Outliers ... 28

3.3 Motivation and statement of the problem .. 30

3.4 Theoretical aspects of Robust Principal Component Analysis .. 31

3.4.1 Choosing the algorithm .. 31

3.4.2 “Appropriate” separations ... 32

3.4.3 Main results ... 34

3.5 Applications .. 35

4. ALGORITHMIC METHODS FOR SOLVING THE RPCA PROBLEM 36

4.1 Singular Value Thresholding Algorithm ... 38

4.1.1 Algorithm Outline .. 38

4.1.2 SVD Computation ... 39

4.1.3 Step-Size Parameters ... 40

4.1.4 Initialization Steps .. 40

4.1.5 Stopping Criteria .. 40

4.1.6 SVT Algorithm .. 41

4.2 Accelerated Proximal Gradient Algorithm ... 41

4.2.1 General Formulation .. 42

4.2.2 Algorithm Outline .. 43

4.2.3 Stopping Criteria .. 44

4.2.4 Step-Size Parameters ... 44

4.2.5 SVD Computation ... 44

4.3 Dual Method ... 45

4.3.1 Algorithm Outline .. 45

4.3.2 Norm Computation .. 47

4.3.3 SVD Computation ... 47

4.3.4 Step-Size Parameters ... 48

4.3.5 Stopping Criteria .. 48

4.4 Augmented Lagrange Multiplier Method .. 48

4.4.1 Exact ALM Method ... 49

4.4.2 Inexact ALM Method.. 50

4.4.3 SVD Computation ... 51

4.4.4 Order of Updating A and E ... 51

4.4.5 Stopping Criteria .. 52

4.4.6 Step-Size Parameters ... 52

4.4.7 Initialization Steps .. 52

4.5 Alternating Direction Method ... 53

4.5.1 Algorithm Outline .. 54

4.5.2 SVD Computation ... 55

4.5.3 Step-Size Parameters ... 55

4.5.4 Initialization Steps .. 55

4.5.5 Stopping Criteria .. 56

4.6 Comparison of Algorithms .. 56

4.6.1 Simulation Conditions .. 56

4.6.2 Exact Recoverability ... 58

4.7 A Case Study: Image De-Noising .. 61

4.7.1 Simulation Conditions .. 62

4.7.2 Noiseless Scenario.. 63

4.7.3 Noisy Scenario .. 85

5. CONCLUSIONS .. 108

ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ ... 111

ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΩΝΥΜΙΑ .. 114

APPENDIX Ι: MEASURE THEORY AND FUNCTIONAL ANALYSIS .. 116

APPENDIX IΙ: CONVEX OPTIMIZATION AND CONVEX ANALYSIS 121

REFERENCES ... 134

FIGURES LIST

Figure 1: Data points and principal components of data set X....................................... 24

Figure 2: RELR-Bridge .. 67

Figure 3: RES-Bridge .. 68

Figure 4: Rank-Bridge ... 68

Figure 5: Cardinality-Bridge ... 69

Figure 6: PSNR-Bridge .. 69

Figure 7: RELR-Lights ... 74

Figure 8: RES-Lights ... 74

Figure 9: Rank-Lights .. 75

Figure 10: Cardinality-Lights .. 75

Figure 11: PSNR-Lights ... 76

Figure 12: RELR-Stones ... 80

Figure 13: RES-Stones .. 81

Figure 14: Rank-Stones ... 81

Figure 15: Cardinality-Stones .. 82

Figure 16: PSNR-Stones ... 82

Figure 17: RELR-Bridge(Noisy) ... 90

Figure 18: RES-Bridge(Noisy) ... 90

Figure 19: Rank-Bridge(Noisy) .. 91

Figure 20: Cardinality-Bridge(Noisy) .. 91

Figure 21: PSNR-Bridge(Noisy) ... 92

Figure 22: RELR-Lights(Noisy) .. 96

Figure 23: RES-Lights(Noisy) .. 97

Figure 24: Rank-Lights(Noisy) ... 97

Figure 25: Cardinality-Lights(Noisy) .. 98

Figure 26: PSNR-Lights(Noisy) ... 98

Figure 27: RELR-Stones(Noisy) .. 103

Figure 28: RES-Stones(Noisy) .. 103

Figure 29: Rank-Stones(Noisy) ... 104

Figure 30: Cardinality-Stones(Noisy) ... 104

Figure 31: PSNR-Stones(Noisy) .. 105

Figure 32: Unit ball for different values of p ... 117

IMAGES LIST

Image 1: Visualization of PCA method .. 21

Image 2: Data with high redundancy ... 25

Image 3: Data with low redundancy ... 26

Image 4: PCA success .. 29

Image 5: PCA failure ... 30

Image 6: The separation problem .. 31

Image 7: Geometrical interpretation of the Incoherence Condition 33

Image 8: The Singular Value Thresholding Algorithm ... 41

Image 9: The Proximal Gradient Algorithm .. 43

Image 10: The Accelerated Proximal Gradient Algorithm .. 44

Image 11: The Dual Method Algorithm .. 47

Image 12: The Augmented Lagrange Multiplier Method Algorithm 49

Image 13: The Exact Augmented Lagrange Multiplier Method Algorithm 50

Image 14: The Inexact Augmented Lagrange Multiplier Method Algorithm 51

Image 15: The Alternating Direction Method Algorithm ... 55

Image 16: Original Image-Bridge ... 63

Image 17: Noisy Image-Bridge .. 64

Image 18: Reconstructed Image-Bridge-EALM ... 64

Image 19: Outliers-Bridge-EALM ... 65

Image 20: Reconstructed Image-Bridge-IALM ... 65

Image 21: Outliers-Bridge-IALM .. 66

Image 22: Reconstructed Image-Bridge-ADM ... 66

Image 23: Outliers-Bridge-ADM ... 67

Image 24: Original Image-Lights .. 70

Image 25: Noisy Image-Lights ... 70

Image 26: Reconstructed Image-Lights-EALM .. 71

Image 27: Outliers-Lights-EALM .. 71

Image 28: Reconstructed Image-Lights-IALM ... 72

Image 29: Outliers-Lights-IALM ... 72

Image 30: Reconstructed Image-Lights-ADM .. 73

Image 31: Outliers-Lights-ADM ... 73

Image 32: Original Image-Stones .. 76

Image 33: Noisy Image-Stones ... 77

Image 34: Reconstructed Image-Stones-EALM .. 77

Image 35: Outliers-EALM-Stones .. 78

Image 36: Reconstructed Image-Stones-IALM .. 78

Image 37: Outliers-Stones-IALM ... 79

Image 38: Reconstructed Image-Stones-ADM .. 79

Image 39: Outliers-Stones-ADM .. 80

Image 40: Original Image-Bridge(Noisy) ... 86

Image 41: Noisy Image-Bridge(Noisy) ... 86

Image 42: Reconstructed Image-Bridge(Noisy)-EALM .. 87

Image 43: Outliers-Bridge(Noisy)-EALM ... 87

Image 44: Reconstructed Image-Bridge(Noisy)-IALM ... 88

Image 45: Outliers-Bridge(Noisy)-IALM ... 88

Image 46: Reconstructed Image-Bridge(Noisy)-ADM .. 89

Image 47: Outliers-Bridge(Noisy)-ADM ... 89

Image 48: Original Image-Lights(Noisy) .. 92

Image 49: Noisy Image-Lights(Noisy) .. 93

Image 50: Reconstructed Image-Lights(Noisy)-EALM ... 93

Image 51: Outliers-Bridge(Noisy)-EALM ... 94

Image 52: Reconstructed Image-Lights(Noisy)-IALM .. 94

Image 53: Outliers-Lights(Noisy)-IALM .. 95

Image 54: Reconstructed Image-Lights(Noisy)-ADM .. 95

Image 55: Outliers-Lights(Noisy)-ADM .. 96

Image 56: Original Image-Stones(Noisy) ... 99

Image 57: Noisy Image-Stones(Noisy) .. 99

Image 58: Reconstructed Image-Stones(Noisy)-EALM ... 100

Image 59: Outliers-Stones(Noisy)-EALM ... 100

Image 60: Reconstructed Image-Stones(Noisy)-IALM .. 101

Image 61: Outliers-Stones(Noisy)-IALM .. 101

Image 62: Reconstructed Image-Stones(Noisy)-ADM ... 102

Image 63: Outliers-Stones(Noisy)-ADM .. 102

Image 64: 𝒍𝟐-norm minimization .. 122

Image 65: 𝒍𝟏-norm minimization .. 123

Image 66: Geometrical interpretation of convex relaxation .. 125

TABLES LIST

Table 1: Versions of the RPCA-PCP problem ... 36

Table 2: Basic Algorithms for solving the RPCA-PCP problem 37

Table 3: Comparison between different algorithmic schemes on the RPCA problem-

Scenario 1 ... 59

Table 4: Comparison between different algorithmic schemes on the RPCA problem-

Scenario 2 ... 59

Table 5: Comparison between different algorithmic schemes on the Image De-noising

pursuit-Noiseless Scenario .. 83

Table 6: Comparison between different algorithmic schemes on the Image De-noising

pursuit-Noisy Scenario .. 105

INTRODUCTION

The present thesis was elaborated in the context of completion of the Graduate Program
of the Department of Informatics and Telecommunications of the National and
Kapodistrian University of Athens.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 19

1. INTRODUCTION

Living in the outer world, human perception receives multiple incentives as well as
information every day. In many cases, the data we receive from nature (e.g. the different
colors we see with our eyes) are so vast that we find it at least difficult to process them in
the way we desire to. Our mental representation of the world is although a little
“subtractive”, in the sense that it is based on a relatively small number of perceptually
relevant features. As a result, methods for removing what in science is called “redundant
information” while at the same time the remaining information retains an intuitive and
handy structure, are of utmost importance these days.

What scientists -and in many cases all humans- do when they want to examine and
explain a certain problem / phenomenon is observation. In other words, they take
measurements. A very important question that arises automatically concerns the number
of measurements / data points needed in order to obtain statistically sound and reliable
results. Unfortunately, the answer to the previous question is neither simple nor
encouraging. The reason is that as we live in the era of Big Data, the measurements we
take in most cases also live in very high dimensional spaces -often in hundreds or
thousands of dimensions. The result is that the required amount of data we need to
support our result grows dramatically fast as the dimensionality of the problem increases.
In a more formal and maybe explicative way, we can say that the time and memory
needed for an algorithm to solve a particular problem is exponential in the number of
dimensions of the data. This well-known phenomenon that appears in many different
domains of science (such as statistics, machine learning, data mining etc.) is what we call
the Curse of Dimensionality, and the first one referred to it is Richard E. Bellman when
considering problems in dynamic optimization ([7], [6]).

When facing the curse of dimensionality, a good solution can often be found by changing
the algorithm, or by pre-processing the data into a lower dimensional form. For example,
the notion of Intrinsic Dimension (ID) refers to the fact that any low-dimensional data
space can trivially be turned into a higher-dimensional space by adding redundant (e.g.
duplicate) or randomized dimensions, and in turn many high-dimensional data sets can
be reduced to lower dimensional data without significant information loss. This is also
reflected by the effectiveness of dimension reduction methods -such as Principal
Component Analysis (PCA)- in many situations.

The key feature to all previous considerations as methods facing the curse of
dimensionality is the choice of working with data in a much lower dimensional space than
the real one. In other words, our goal is to transform our original high dimensional set of
measurements into a much lower one that we can easily process, but at the same time
the relevant transformation has to be done in such a way that it removes the information
redundancies while retaining most of the useful information of the original set of
measurements. The process described below is what is called Dimensionality Reduction,
and is widely used in machine learning as well as in statistics. More precisely and formally,
dimensionality reduction is the process of reducing the number of random variables under
consideration, and can be divided into Feature Selection and Feature Extraction.

While feature selection approaches try to find a subset of the original variables (also
called features or attributes), feature extraction methods transform the data in the high-
dimensional space to a space of fewer dimensions. The data transformation may be
linear, as in PCA, but many nonlinear dimensionality reduction techniques also exist and
are widely used.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 20

2. PRINCIPAL COMPONENT ANALYSIS

As mentioned in the Introduction, principal component analysis is just one of many
techniques available in our palette for achieving dimensionality reduction. It is widely used
for this purpose, and it is not exceeding to say that it is the most popular among them.
So, it is of crucial importance to take a deeper look at it, in order to understand the method
itself as well as those key elements contributing to its popularity.

2.1 Motivation and statement of the problem

We start the conversation about PCA by presenting the motivation which led to it: in our
attempts to understand various phenomena around us we take measurements of different
quantities of interest. Unfortunately, many of the collected data may be redundant,
contaminated with noise, and in general difficult to process due to their complicated
structure. The goal of PCA is to “discover” the real underlying structure and probable
relationship among the data, in such a way that most useful information is preserved using
an intuitive method for achieving it at the same time.

It is time mathematics enter the game, explaining what until this moment may seem at

least general. Suppose we have a set of measurements 𝒙 ∈ 𝑅𝑚, whose structure is
unclear as mentioned before. What the PCA method does is creating a new set of data

𝒚 = 𝑨𝑇𝒙 (2.1)

, where 𝑨 is the Transformation Matrix which exploits the statistical information describing
the data. In terms of linear algebra, “the goal of principal component analysis is to identify
the most meaningful basis to re-express a data set. The hope is that this new basis will
filter out the noise and reveal hidden structure”, as mentioned very explicatively in [55].

2.2 Linear Algebra highlights the crucial details

At this point, let us go back to the introduction of this thesis, and mention again that PCA
is a linear method for dimensionality reduction. This may seem a surplus information
when looking at the method for the first time, but in reality it is not at all. The reason is not
only the obvious adjective that discriminates it from the relevant nonlinear methods
addressing the same problem, but most importantly that this adjective refers specifically

to the transformation matrix 𝑨 and its “properties”. Taking this argument a little further,
the crucial part is the choice of the transformation matrix 𝑨, or, in linear algebra words,
the selection of the proper basis. So, now the question PCA method is trying to answer
becomes finding a linear combination of the original basis which highlights most of the
information of the original data set.

Before answering the previous question, it is deemed necessary to give a more intuitive
interpretation of the equation (2.1) which transforms our original data set to a new one
according to the PCA method. What this equation depicts is a change of basis, which in
linear algebra can have the following interpretations:

 𝑨 is the matrix which is responsible for the transformation of 𝒙 into 𝒚

 The rows of 𝑨 constitute the new set of basis vectors

 Geometrically, 𝑨 is a rotation (and probably a following scaling) of the original basis
vectors

At this point, it is necessary to note that at the equation (2.1) 𝒙 and 𝒚 can also be matrices
(𝑿 and 𝒀 respectively) instead of vectors, without loss of generality. The relative extension
/ generalization is quite obvious, and the process of achieving it will be skipped.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 21

2.3 A Signal Processing perspective

As everything in real world is imperfect, so are the measurements used for experimental
purposes. There is quite an evolved theory around noise nowadays, concerning methods
from predicting its distribution over the data to others of removing it. In this section we are
not going to quantify the noise level of the data itself, but on the contrary we will confront
it with respect to the “pure” data -those data which are not infected with noise. In signal
processing and communication systems’ theory, this constitutes a short introduction for
making the reader familiar with what is called Signal-to-Noise Ratio (SNR). From a
mathematical point of view, SNR is defined as:

𝑆𝑁𝑅 =
𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑛𝑜𝑖𝑠𝑒
2 (2.2)

As it is obvious from the definition, we desire 𝑆𝑁𝑅 > 1 (measurements with low noise),
and surely not 𝑆𝑁𝑅 < 1 (measurements with high noise).

What PCA method is trying to do is finding those directions (in general, those structures)
towards which the SNR is maximized. In other words, those directions towards which the
Variance of the signal / data becomes maximum. When referring to directions, and taking
into mind what was discussed in the previous section, we realize that in fact we are talking
about a rotation of the Cartesian Axis System. Let’s take a look at the following image,
for further explanations:

Image 1: Visualization of PCA method

The blue dots are our data, living in the two dimensional space. In other words, each data

point is a vector with two coordinates (𝑥, 𝑦). As stated before, the goal of the PCA method
is to find along which direction(s) the greatest amount of variability of the data is found.
As it is clear from Image 1, those directions are the green lines demonstrating exactly
what we wanted. Most of our data are gathered around the “longer” green line (the first
principal component), while the “shorter” green line (the second principal component)
depicts the spread of the data around the first component. Trying to give an intuitive
interpretation leads us to the conclusion that most of our data live exactly along the first
principal component, while possible deviations from it implies that there is an amount of

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 22

noise at them. In effect, what happened is a rotation of the original axis system in the
direction in which maximum variance of data is observed (firstly for the “pure” ones and
secondly for the “infected”). Last but not least, we observe that the new axis (the principal
components) are still orthogonal to each other, a fact that it is going to be explained later.

2.4 Statistics points out the “proper” matrix

As it is clear from equation (2.1), what PCA method does is a transformation of the original
data set to a new one, exploiting the statistical information hidden in the first. At this
section we try to make this statistical asset a little clearer.

We know from statistics that for a given set of measurements 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} with zero
Mean, the variance is defined as:

𝜎𝛸
2 =

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛
 (2.3)

When referring to multivariate analysis, we introduce the notion of Covariance, which in
turn measures the variance between two variables. In a more formal way, the covariance
between two Random Variables 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} is defined as:

𝜎𝛸𝛶
2 =

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

𝑛
 (2.4)

A first conclusion which comes from the above definition is that a high 𝜎𝛸𝛶
2 indicates highly

correlated data, while a zero one indicates that our data are completely uncorrelated.
That is exactly the key point of the PCA method from a statistical point of view: it creates
new data which are (mutually) uncorrelated.

When working with vectors and generally matrices, we can easily define the respective
quantities. The most important of them is the Covariance Matrix, which is defined as:

𝑪𝑋 =
∑ 𝒙𝑖𝒙𝑖

𝑇𝑛
𝑖=1

𝑛
 (2.5)

, where 𝒙𝑖 are the data vectors. Practically, 𝑪𝑋 is an average of the data vectors 𝒙𝑖. It is
obvious from equation (2.5) and linear algebra basics ([56]) that 𝑪𝑋 is a symmetric matrix
and consequently its eigenvectors are mutually orthogonal. Concerning its elements, the

diagonal terms of 𝑪𝑋 constitute the variance of each data vector, while the off-diagonal
ones constitute the covariance between them.

Given the above definitions and their practical meaning, we turn back to equation (2.1) in

order to derive the covariance matrix of the new / transformed data. Supposed that 𝐸[𝒙] =
0, obviously 𝐸[𝒚] = 0. This may seem a tacit assumption at this point, but is not at all: in
reality, when we examine zero-mean data the covariance matrix coincides with the
Correlation Matrix (and as one entity we are going to treat them from now on in this
Chapter, unless it is pointed out differently). Consequently, we have:

𝑪𝑌 = 𝐸[𝒚𝒚𝑇] = 𝐸[𝑨𝑇𝒙𝒙𝑇𝑨] = 𝑨𝑇𝑪𝑋𝑨 (2.6)

At this point comes the crucial question: if we could manipulate matrix 𝑨 as we want, what
“form” do we desire matrix 𝑪𝑌 to have? Firstly, given the fact that our goal is to create
uncorrelated data, 𝑪𝑌 must be diagonal (all of its off-diagonal elements should be zero).
That’s a logical requirement, if we take in mind the fact that the off-diagonal terms of 𝑪𝑋
in equation (2.6) depict the covariance between our measurements. Secondly, as we
seek to find those directions / components in which the variance of the data becomes

maximum one after another, the elements of 𝑪𝑌 must be sorted in descending order
according to variance.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 23

The easiest way of achieving the previous two goals in order to diagonalize matrix 𝑪𝑌 is
to choose matrix 𝑨 in such a way that its columns are the orthonormal Eigenvectors 𝒂𝑖 of

𝑪𝑋. The result is that the matrix 𝑪𝑌 will have the following form:

𝑪𝑌 = 𝑨𝑇𝑪𝑋𝑨 = 𝜦 (2.7)

, where 𝜦 is the diagonal matrix whose diagonal elements are the respective Eigenvalues,

𝜆𝑖, of matrix 𝑪𝑋. Given the fact that 𝑪𝑋 is a positive-definite matrix (in reality, it is at least
positive-semidefinite), it is known from linear algebra that its eigenvalues are all positive.

Given the above discussion, we finally give a more natural and intuitive meaning of the

whole process: The eigenvectors 𝒂𝑖 of matrix 𝑪𝑋 are the principal components we seek
to find, and each one of them corresponds to an eigenvalue 𝜆𝑖. Those eigenvalues are all
positive and sorted in descending order according to variance, a fact that depicts “how
important” the respective principal component is for the “explanation” of as much
information as possible. The orthogonality assumption of the principal components
simplifies the solution due to handful linear algebra techniques available for achieving this
goal, and indicates that from a linear algebra perspective what is really done is just a
rotation of the Cartesian axis system.

At this point, we should mention that the PCA method was invented in 1901 by Karl
Pearson ([49]), as an analogue of the Principal Axis Theorem in mechanics; it was later
independently developed (and named) by Harold Hotelling ([37]) in the 1930s. It is also
known in the field of signal processing as the Karhunen-Loève Transform (KLT, named
after Kari Karhunen and Michel Loève), which in the theory of stochastic processes is a
representation of a Stochastic Process as an infinite linear combination of orthogonal
functions, analogous to a Fourier Series representation of a function on a bounded
interval. In reality, PCA constitutes the discrete counterpart of the KLT, in the sense that
it is the method followed by the latter when applied to a discrete and finite process. For
more information about the KLT the reader is referred to [40].

2.5 The PCA Algorithm and some examples

The goal of this section is to present in a compact form the algorithm followed by the PCA
method, and give a certain example that demonstrates its use.

The steps of the PCA algorithm are the following:

1. Estimation of the covariance matrix 𝑪𝑋, usually by the equation (2.5). If the data
mean is not zero, we must subtract it first.

2. Computation of the eigenvalues, 𝜆𝑖, and the corresponding eigenvectors, 𝒂𝑖, of the
covariance matrix 𝑪𝑋.

3. Sorting of the eigenvalues 𝜆𝑖 in descending order (according to variance, as
explained in the previous section).

4. Selection of the (for example) 𝑚 largest eigenvalues, and in general of how many
eigenvalues we think are important for not losing important part of information.

5. Utilization of the corresponding 𝑚 eigenvectors as columns for the transformation

matrix 𝑨.

6. Transformation of every element / vector 𝒙 from the original high dimensional
space to the lower new one, via the equation (2.1).

Below, it follows an example from [60] that depicts exactly how the PCA method works in
practice:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 24

We have a set 𝑿 of N=500 two-dimensional vectors from a zero-mean Gaussian
Distribution with covariance matrix

𝑪𝑋 = [
0.3 0.2
0.2 1.0

]

By applying the PCA method as explained in detailed steps above, we are going to

determine the eigenvalues 𝜆𝑖 and the corresponding eigenvectors 𝒂𝑖 of 𝑪𝑋 (in other words
the principal components), as well as the percentage of the total variance “explained” by

each one of them as the ratio
𝜆𝑖

𝜆0+𝜆1
, 𝑖 = 0, 1.

After doing so (the corresponding Matlab code which forms and solves the example is

available in [60]), the data points of the set 𝑿 and the derived principal components are
depicted below:

Figure 1: Data points and principal components of data set X

As it is obvious from Figure 1, the first principal component 𝜶0 (the one that seems “more

vertical” in the above figure) explains the most total variance of the data set 𝑿. More
precisely, after doing the required calculations, the percentage of the total variance

explained by 𝜶0 is 78.98% while that of 𝜶1 is 21.02%. In a more intuitive interpretation of
this result, we could say that if we project the data points of the data set 𝑿 along 𝜶0 we
preserve 78.98% of their total variance -at the cost of losing at the same time the rest

21.02% associated with 𝜶1.

2.6 Redundancy and Dimensionality Reduction

In section 2.3 a visualization of the manner in which the PCA method works was stated.
More precisely, Image 1 depicted how the principal components are selected according
to the maximization of variability of the data. This intuitive argument is lying in the heart
of the dimensionality reduction process that takes place via the PCA method, a formidable

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 25

advantage that has made it so famous not only among statisticians but among the whole
scientific community in general.

In order to be able to explain qualitatively how dimensionality reduction is reached, we
first give a more quantitative argument based on what is called Redundancy. In a way,
redundancy is related with the Correlation among the data. As we have seen so far, PCA
is a method which generates uncorrelated data. From a statistician’s point of view,
uncorrelated data means data whose distribution is not “very strict”, in the sense that are
quite dispersed in the space they live in. In other words, redundancy is a regime in which
our data have a high degree of correlation between them (the appearance of few data
points helps us predict the rest of them). An example of data with high redundancy is
seen in the following image:

Image 2: Data with high redundancy

On the other hand, an example of data with low redundancy is depicted in the image
below:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 26

Image 3: Data with low redundancy

As it is clear from Image 3, our data points are quite uncorrelated, in the sense that one

cannot predict 𝑿 from 𝒀 (and vice versa). On the other hand, this is quite easier to be
achieved with the data points of Image 2, using the best-fit line. In reality, due to the
highly-correlated data points, only one dimension (a line) would be enough instead of two
(a plane). This result is quite elegant, and at the same time is at perfect fit with the
parsimonious nature of everything in our world, described very aptly by the famous
Occam's Razor Principle: “Non sunt multiplicanda entia sine necessitate” (“Entities must
not be multiplied beyond necessity”) as well as by the great Ancient Greek philosopher
Aristotle himself: “Nature operates in the shortest way possible”.

Turning back now to the quantitative arguments of achieving dimensionality reduction via
the PCA method, we just have to bring to our memory what the method really does: it’s a
linear transformation of a high-dimensional space into a lower one, whose components

are uncorrelated. In other words, the original data vector 𝒙 lies in the 𝑛-dimensional space

whereas the transformed one, 𝒚, lies into an 𝑚-dimensional subspace of 𝑛 (obviously
𝑚 < 𝑛). That means that the intrinsic dimensionality of our data set is 𝑚 < 𝑛, or more
formally, that our data set can be described by 𝑚 Free Parameters. In that case, there

exist 𝑛 −𝑚 zero eigenvalues, and in practice we should ignore those eigenvalues with
small values in order to get an approximation of the ID. An intuitive interpretation of the
above inequality is that the intrinsic dimension is smaller than the “nominal” one exactly
due to the correlation that exists among our original data set -which in turn leads us to
the conclusion that geometrically they are concentrated throughout a hyperplane. That
fact exploits the PCA method in order to reveal the dimension of that hyperplane across
which our data are spread. In other words, PCA method achieves dimensionality
reduction by revealing the number of free parameters that are responsible for the
variability of a signal, namely the real information “coded” by the data.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 27

2.7 Properties of PCA and general comments

In the final section of this Chapter, we have chosen to mention some well-known
advantages of the PCA method, indicative of its popularity. Technical details are avoided,
but for the diligent reader they are all available in [59].

First of all, we should mention the reason why the adjective “principal” is of crucial
importance for the method. The reason lies in the Mean Square Error (MSE)

approximation of the PCA method. In particular, our original data vector in the 𝑛-
dimensional space is defined as:

𝒙 = ∑ 𝑦(𝑖)𝒂𝑖
𝑛−1
𝑖=0 (2.8)

, while its approximation which takes into account only 𝑚 (𝑚 < 𝑛) of the basis vectors
(principal components) is:

�̂� = ∑ 𝑦(𝑖)𝒂𝑖
𝑚−1
𝑖=0 (2.9)

If we try to approximate 𝒙 by �̂�, the resulting MSE is given by the following equation:

𝐸[‖𝒙 − 𝒙‖2] = 𝐸 [‖∑ 𝑦(𝑖)𝒂𝑖
𝑛−1
𝑖=𝑚 ‖

2
] (2.10)

Obviously, our goal is to make the above MSE as minimum as possible. The key to
achieve this is the proper selection of the eigenvectors. Taking into mind the definition of
the eigenvectors as well as their orthonormal property, as it is explained in details in [59],
we finally get:

𝐸[‖𝒙 − �̂�‖2] = ∑ 𝒂𝑖
𝑇𝜆𝜄𝜶𝜄

𝑛−1
𝑖=𝑚 = ∑ 𝜆𝑖

𝑛−1
𝑖=𝑚 (2.11)

As a result, if we choose in equation (2.9) those eigenvectors corresponding to the 𝑚
largest eigenvalues of the covariance matrix, then the MSE in equation (2.11) becomes

minimum, and more precisely is equal to the sum of the 𝑛 −𝑚 smallest eigenvalues.
Furthermore, as it stated also in [59], this MSE is the minimum MSE regarding any other

approximation of 𝒙 by an 𝑚-dimensional vector. Taken all this into mind, the contribution
of the adjective “principal” to the method now becomes a little clearer.

Last but not least, one should not forget to mention the property of the PCA method
concerning the preservation of the maximum total variance of the original data. More
precisely, given the equation (2.1), we have:

𝜎𝑦(𝑖)
2 = 𝐸[𝑦(𝑖)2] = 𝜆𝑖 (2.12)

In other words, the eigenvalues of the input covariance matrix are equal to the variances
of the transformed data. Thus, the selection of those transformed data corresponding to

the 𝑚 largest eigenvalues, concludes to the maximization of their sum variance ∑ 𝜆𝑖𝑖 . As
a result, the 𝑚 selected transformed data preserve most of the total variance of the
original data. Indeed, as it is known from linear algebra basics ([56]), that variance is
equal to the Trace of the covariance matrix 𝑪𝑋. Finally, as it is clearly explained in [59],
we should highlight the fact that the above property is more general, in the sense that it

can be proven that among all possible data sets of 𝑚-dimensional vectors obtained via
any orthogonal linear transformation of input data 𝒙, the ones resulting from the PCA
method exhibit the largest sum variance.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 28

3. ROBUST PRINCIPAL COMPONENT ANALYSIS

In Chapter 2 a quite detailed presentation of the PCA method took place. As it became
clear, PCA is arguably the most widely used -statistical- method nowadays in order to
achieve dimensionality reduction. Most of the arguments that contribute to this effect were
stated above, as well as a plethora of the benefits arising from its usage. But, as
everything in real life, there has to be some disadvantages of the method as well. Nothing
around us is perfect, and reasonably PCA couldn’t be an exception to the rule. The
question that immediately arises to the diligent reader is “When does PCA fail?”

3.1 Constructional limits of PCA

Although it may seem a bit weird, the main disadvantage of PCA occurs from a property
it exhibits, which in many cases is desirable for any algorithmic scheme aiming to solve
a particular problem. More precisely, we refer to the fact that PCA is a non-parametric
algorithm: we feed it with data -of arbitrarily magnitude or structure- and the result that
comes out has nothing to do with any tweaking of “cheating” parameters. Obviously, this
can be considered as positive feature of the algorithm, in the sense that its results are
objective and do not depend on the relative user. We can compare it in a way, with a
“black box” which operates on an input in order to generate a certain output, and whose
internal elements cannot be touched by the user who provides it the input (just as in Linear
Transform Invariant (LTI) Systems’ theory, except that in our case the topping of the box
has faded a little as we are aware of its internal structure).

On the other hand, the feature described above can also be seen as a weakness, and in
reality is the major one of the PCA method. To be more specific, we should be aware of
what happens in a situation in which our data have been generated (on purpose or not)
in such a way that puts the main argument / goal of PCA in jeopardy: the decorrelation of
the data. In other words, given the fact that the goal of PCA is to de-correlate the data by
tossing away second order dependencies among them, what happens when the
distribution of the data indicates that in fact there exist higher-order dependencies among
them? Unfortunately, the news are not good: the classical PCA method, by definition, will
fail to reveal the real structure of the data. Nevertheless, many methods have been
derived in order to alleviate and overcome such problems among the data distribution,
such as Kernel PCA (KPCA) and Independent Component Analysis (ICA), with great
success in many occasions where PCA fails.

3.2 PCA’s “fatal” enemy: Outliers

In the previous section we saw that the PCA method faces an important difficulty when
there is high-order dependency among the data to be processed, a difficulty however
which can be surpassed by using some modifications of the classical PCA method. Given
the fact that PCA is the most widely talked subject in applied multivariate statistics, all its’
above benefits and drawbacks are more or less taught in every department or course of
statistics around the world. Every undergraduate student probably thinks of the PCA
method in a more general matrix frame, in such a way that our available data points

constitute a data matrix 𝑫, which is the superposition of a low-rank matrix 𝑨𝟎 and a

perturbation matrix 𝑷𝟎:

𝑫 = 𝑨𝟎 + 𝑷𝟎 (3.1)

When plotting these data points they could probably seem to live in a high dimensional
space, but in reality they may be very well localized around a low-dimensional structure

(the low-rank matrix 𝑨𝟎 indicates exactly that there exists some kind of correlation among
the data). In the general case, they may not be distributed exactly around a low-

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 29

dimensional structure but around an approximately one, that’s why we should take into

account a -small- perturbation (the perturbation matrix 𝑷𝟎). So what is done when

applying the PCA method in practice is that given a data matrix 𝑫 whose columns are

data points, we seek to find the best rank-𝑘 approximation matrix 𝑨 (in an 𝑙2 sense) to the
given data matrix 𝑫. Computationally speaking, we seek to solve the following
optimization problem:

min
𝑠.𝑡. 𝑟𝑎𝑛𝑘(𝐴)≤𝑘

‖𝑫 − 𝑨‖ (3.2)

, where ‖𝑫‖ denotes the 𝑙2-norm, i.e. the largest singular value of 𝑫. The solution to this
problem is of course given via the well-known Eckart-Young-Mirsky Theorem ([27], [46]):

𝑫 = 𝑼𝜮𝑽∗ = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
∗

𝑖 −−> 𝑨 = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
∗𝑘

𝑖=1 (3.3)

, where 𝑘 is the rank of matrix 𝑨, 𝜎1, 𝜎2, … , 𝜎𝑘 are the positive Singular Values of matrix 𝑨,
and 𝑼 = [𝒖1, 𝒖2, …𝒖𝑘] and 𝑽 = [𝒗1, 𝒗2, … 𝒗𝑘] are the matrices of left and right Singular
Vectors respectively. Practically, what is done is a truncation of the Singular Value

Decomposition (SVD) of the data matrix 𝑫 by throwing away the smallest singular values,

in such a way that the resulted approximation is as close as possible to the data matrix 𝑫
(obviously achieving dimensionality reduction, via the trimming of the SVD).

What in contrary is not taught so much or is given less importance than deserved, is that
PCA has an important drawback: it is extremely sensitive to what we call outliers (in
statistics, an Outlier is an observation point that is distant from other observations -either
due to variability in the measurement or because an experimental error occurred).

For example, let’s suppose we have points in the plane lying around a one dimensional
space as in the following image:

Image 4: PCA success

If we apply the PCA method, we are going to find that in reality our data points live around
the red line in Image 4, which was successfully indicated by the PCA method.

Then, let’s suppose that during the data collection there was one data point that was
incorrectly recorded, for example due to a sensor failure, and our new dataset is like
below:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 30

Image 5: PCA failure

In fact, what really happened in contrast to the previous situation, is that there is a

significant change in the 𝑦-value of the blue data point. This data point for some reason
is quite distant from all the rest, and can be treated as we saw previously as an outlier.
The problem now is that if we apply the PCA method again as before, we are going to
find the red line in Image 5, which has nothing to do with the line of first variation.

What is clear from this example is that one single -badly- corrupted entry of the data
matrix is more than enough for things to completely break down. To make things even
worse, we just mention that in daily life “incidents” like the one mentioned above are not
the exception to the rule but they occur all the time. And the reason is that in this big data
world we live in, with vast amounts of data being collected for various application
purposes, we cannot assume that they are “clean”. On the contrary, arbitrarily corrupted
measurements can come from an “innocent” sensor failure to human-driven malicious
tampering. It is straightforward of paramount importance to overcome this fundamental
obstacle, and make the PCA method robust vis-à-vis grossly corrupted observations.

3.3 Motivation and statement of the problem

In the previous section we became familiar with the Achilles’ heel of the PCA method: its
sensitivity to the existence of outliers. So, it is clear that the motivation for dealing with
this problem is that we want to be able to apply PCA in practice and large scale, but we
cannot ignore the fact that a fraction of the entries in our data matrix may have been
corrupted. To make things a little clearer, the problem is mathematically stated as below:

Suppose there is available a huge data matrix 𝑫, which is a superposition of a low-rank

matrix 𝑨𝟎 and a sparse matrix 𝑬𝟎 -both of arbitrary magnitude- as in the following
equation:

 𝑫 = 𝑨𝟎 + 𝑬𝟎 (3.4)

We do not know neither the column or row space of 𝑨𝟎 nor the location or the cardinality
of the non-zero elements of 𝑬𝟎. Is there any way of recovering the matrices 𝑨𝟎 and 𝑬𝟎?

If we would like to visualize the mathematical notations, we would have a blind
deconvolution / separation problem as that in the following image:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 31

Image 6: The separation problem

The matrix on the left side of Image 6 is available to the statistician / machine learner,
and it’s a sum of a low-rank matrix and a sparse matrix. In other words, we have a low-
rank matrix which is not observed because some of its entries are corrupted, and the
corruption is exactly carried by the sparse matrix. The only thing we know is the sum of
these two matrices, and our goal is to recover them accurately. Of course this may seem
not to say impossible, but at least challenging.

3.4 Theoretical aspects of Robust Principal Component Analysis

Of course, the problem of robustifying PCA is not new. We just have to bring to mind from
Chapter 1 that the PCA method was “invented” in the beginning of the previous century,
to be persuaded that for sure many scientists would have faced it decades before. In
order to give a clear and up-to-date description of the theory underlying this problem, we
are going to highlight the results of the pioneering paper of Emmanuel J. Candès et al. in
2011 ([19]), due to two main reasons: the first one is that they consider an idealized
version of the Robust Principal Component Analysis (RPCA) problem (which aims to

recover a low-rank matrix 𝑨𝟎 from highly corrupted measurements which satisfy the
equation (3.4)), which can be seen as the most “universal and objective” of all the others;
the second reason is that, as it is clearly stated in [19], none of the other existing
approaches of solving the RPCA problem achieves that in polynomial time with
guaranteed performance under broad conditions (a more detailed explanation is available
in [19]).

3.4.1 Choosing the algorithm

In fact, the consideration of the RPCA problem in [19] is not only the most universal of all
the others, but mainly the most intuitive one. The method used for the decomposition of

the data matrix 𝑫 is actually a tractable convex optimization technique, which is quoted
below: Among all possible decompositions, we seek for a fit 𝑨 and a fit 𝑬 such as their
sum is of course the observation matrix 𝑫, but at the same time we desire that the final
choice guarantees minimum complexity of the whole process. In other words, we seek

for a matrix 𝑨 which is as low-rank as possible and a matrix 𝑬 which is as sparse as

possible, whose sum gives the observation matrix 𝑫. In mathematical words, we can
formulate this intuitive idea as the following optimization problem:

min
𝑠.𝑡.𝑨+𝑬=𝑫

𝑟𝑎𝑛𝑘(𝑨) + 𝜆‖𝑬‖0, 𝜆 > 0 (3.5)

, where ‖𝑬‖0 is the 𝑙0-norm of matrix 𝑬 -which is also known as the “counting norm”
because in reality it represents the number of the non-zero elements of matrix 𝑬.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 32

What depicts equation (3.5) is what seems logical to do in order to obtain the best-fitting
solution possible. But in reality, there is a huge computational problem concerning
equation (3.5), as minimizing the rank function under equality constraints is known to be

a NP-hard problem -as well as that of minimizing the 𝑙0-norm (for more details see
Appendices I and II). What practically that means is that we can be able to solve a problem
of this formulation when the dimension of the problem is for example 10 (i.e. matrices

10 × 10), but we cannot when it equals 11. The reason for that is that the best algorithms
known to do that, have complexity double exponential in the dimension 𝑛, as explained
in [15].

So what is suggested in [19], and is done into similar situations, is what is called convex
relaxation. In other words, we choose to minimize a proxy for the objective function in
(3.5), and finally -as it is clearly explained in Appendix II- we choose the nuclear norm

instead of the rank function and the 𝑙1-norm instead of the 𝑙0-norm. Taken this
modification in mind, the equation (3.5) now becomes:

min
𝑠.𝑡.𝑨+𝑬=𝑫

‖𝑨‖∗ + 𝜆‖𝑬‖1 , 𝜆 > 0 (3.6)

, where ‖𝑨‖∗ is the nuclear norm of matrix 𝑨 (the sum of its singular values) and ‖𝑬‖1 is
the 𝑙1-norm of matrix 𝑬 (the sum of its absolute values, supposed we treat it as a gigantic
vector).

The surprising as well as bizarre thing about equation (3.6), which is also known as
Principal Component Pursuit (PCP), is that it finds exactly the desired solution under
broad conditions via algorithmic schemes whose complexity is not much higher than that
of the classical PCA method.

3.4.2 “Appropriate” separations

As we noted before, equation (3.6) gives us the exact solution to our separation problem,
but it does not achieve that always and under any circumstances. On the contrary, there
has to be some restrictions. These restrictions obviously concern the observed data

matrix 𝑫, and more precisely its form.

Let’s suppose for instance that we observe a data matrix 𝑫 of the following form:

𝑫 = 𝒆1𝒆𝑛
∗ = [

0 ⋯ 1
⋮ ⋱ ⋮
0 ⋯ 0

] (3.7)

If we are given such an observation matrix, anyone could argue that the low-rank

component could be zero and the sparse one could be the matrix 𝑫 itself, or vice-versa.
Or that the low-rank component could be the “half” of matrix 𝑫 and the sparse component
the other “half”, and of course they are all good solutions. So, in order for the problem to
make sense, it is quite meaningful to demand that the low-rank component is not sparse.

Making use of the incoherence parameter 𝜇 introduced in [15], we can quantify this
demand as follows:

Given the SVD of the low-rank component:

𝑨 = 𝑼𝜮𝑽∗ = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
∗𝑟

𝑖=1 , (3.8)

, where 𝑟 is the rank of matrix 𝑨, 𝜎1, 𝜎2, … , 𝜎𝑟 are the positive singular values of matrix 𝑨,
and 𝑼 = [𝒖1, 𝒖2, …𝒖𝑟] and 𝑽 = [𝒗1, 𝒗2, … 𝒗𝑟] are the matrices of left and right singular
vectors respectively, we desire exactly those singular vectors (principal components) not
to be sparse, otherwise we are in big trouble as it became clear above. The incoherence

condition in [15] states that there exists a “coherence” parameter 𝜇 ≥ 1, which represents
the degree of sparsity of the singular vectors, such that:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 33

{

 max

𝑖
‖𝑼∗𝒆𝑖‖

2 ≤
𝜇𝑟

𝑛1
 (𝟑. 𝟗)

max
𝑖
‖𝑽∗𝒆𝑖‖

2 ≤
𝜇𝑟

𝑛2
 (𝟑. 𝟏𝟎)

‖𝑼𝑽∗‖∞ ≤ √
𝜇𝑟

𝑛1𝑛2
 (𝟑. 𝟏𝟏)

, where ‖𝑫‖∞ = max
𝑖,𝑗
|𝑫𝑖𝑗| is the 𝑙∞-norm of matrix 𝑫 treated as a gigantic vector.

Although equations (3.9)-(3.11) may seem at least daunting, if we see their geometrical
interpretation things surely become clearer:

Image 7: Geometrical interpretation of the Incoherence Condition

Image 7 shows graphically the degree of correlation between the Basis Vectors and the
Column / Row Space of our matrix. What is done intuitively is a projection of the basis

vector 𝒆𝑖 = (0,0, …1,0,0, … 0) onto the column space 𝑈 of matrix 𝑨, followed by the

calculation of the norm of this vector. If the column space is orthogonal to 𝒆𝑖 then of course
the norm is zero, whereas if the column space contains 𝒆𝑖 the norm is one. The parameter
𝜇 exactly quantifies the degree with which the column space is aligned with the basis
vector, being essentially the maximum norm of this projection normalized by the
dimension of the space we are projecting onto (i.e. the rank) divided by the ambient

dimension. The conclusion of equations (3.9)-(3.10) is that if 𝜇 is small then the column
space and the row space of our matrix are not well-aligned with the coordinate axes. On

the other hand, if 𝜇 is large then the column space and the row space of our matrix are

well-aligned with the coordinate axes, and we face situations like equation (3.7) where 𝜇
is maximum as the column space contains 𝒆𝑛. Conclusively, what we demand in reality
is a small coherence parameter 𝜇, which indicates that the singular vectors of the low-
rank matrix 𝑨 are not sparse.

Even if the above restriction seems enough for our problem to make sense and be
solvable, in fact it is not at all. And the reason for that is quite simple: what we have
managed to achieve so far is to have available a “nice” low-rank matrix whose singular
vectors are not sparse, and what is left to do is just to corrupt it -in order to create the

observed data matrix 𝑫. The bad news is that it is possible to corrupt it in such a devilish
way that the low-rank component cannot be recovered, and quite easily indeed: we just
have to corrupt one entire column / row. For example, let’s suppose there is available a

nice low-rank matrix 𝑨 constructed in such a way to obey the above incoherence
restriction, and we decide to create the sparse component in such a way as its first column

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 34

is the opposite of that of 𝑨 and every other of its columns is zero. What is going to happen

practically when we add them up in order to generate the data matrix 𝑫, is seen below:

𝑬 = [
∗ 0⋯ 0
⋮ ⋱ ⋮
∗ 0⋯ 0

] → 𝑫 = 𝑨 + 𝑬 = [
0 ∗ ⋯ ∗
⋮ ⋱ ⋮
0 ∗ ⋯ ∗

] (3.12)

In doing such a corruption we did not increase the rank, in fact we decreased it, and the

result is that there is no way of recovering 𝑨 and 𝑬 from 𝑫 -since 𝑫 has a column space

included in that of 𝑨. To avoid such situations, we demand that the entries to be corrupted
are actually selected uniformly at random, in order that an entire corrupted column / row
is met with very low probability.

Concluding, tying up together the two restrictions, we demand the low-rank component
not to be sparse and the sparse component not to be low-rank and selected uniformly at
random. If these two broad conditions are met in practice, then the PCP has a very
elegant solution which we are going to expose right below.

3.4.3 Main results

In this section we just present the main result of [19], which is a theorem that states that

the solution of PCP recovers exactly the low-rank component of 𝑫 as well as the sparse
one. We are not going to extend to technical details or proofs, because on the one hand
they are all available in [19], and on the other hand such a thing would be beyond the
scope of this thesis. Taken all this into mind, the well-known Theorem 1.1 of [19] states
the following:

Theorem: Suppose 𝑨0 is 𝑛 × 𝑛, obeys (3.9)-(3.10), and that the support set of 𝑬0 is
uniformly distributed among all sets of cardinality 𝑚. Then there is a numerical constant

𝑐 such that with probability at least 1 − 𝑐𝑛−10 (over the choice of support of 𝑬0), PCP with

𝜆 =
1

√𝑛
 is exact, i.e. 𝑨 = 𝑨0 and 𝑬 = 𝑬0, provided that:

{
𝑟𝑎𝑛𝑘(𝑨0) ≤

𝜌𝑟𝑛

𝜇(log 𝑛)2
 (𝟑. 𝟏𝟑)

𝑚 ≤ 𝜌𝑠𝑛
2 (𝟑. 𝟏𝟒)

, where 𝜌𝑟 and 𝜌𝑠 are numerical constants. In the general rectangular case where 𝑨0 is

𝑛1 × 𝑛2, PCP with 𝜆 =
1

√max𝑛1,𝑛2
(𝑛1,𝑛2)

 succeeds with probability at least 1 − 𝑐 max
𝑛1,𝑛2

(𝑛1, 𝑛2)
−10,

provided that:

{

𝑟𝑎𝑛𝑘(𝑨0) ≤

𝜌𝑟 min
𝑛1,𝑛2

(𝑛1, 𝑛2)

𝜇 (logmax
𝑛1,𝑛2

(𝑛1, 𝑛2))
2

𝑚 ≤ 𝜌𝑠𝑛1𝑛2

The remarkable thing about this result is that it works under very broad conditions with
very high probability. Of course it is a stochastic result, but the only probabilistic

assumption in it concerns the locations of the non-zero elements of 𝑬0 (in such a way as
to approach a “fair” regime for their selection).

Another feature of the main result in [19] that must be highlighted is that there is no tuning
parameter in the algorithmic scheme. Such a thing may seem at least weird, in the sense
that in similar situations usually takes place a cross-validation process in order to identify
the best scalar 𝜆 to balance the two terms of the Objective Function. But, as explained in

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 35

details in [19], this particular choice of 𝜆 is universal and in fact the simplest one among
a range of correct values emerging from the proof of the Theorem.

3.5 Applications

As we have seen so far, RPCA is a quite nice theoretical extension of the classical PCA
in order to be able to work through situations in which gross errors (i.e. outliers) occur.
But it would be a pity if all these elegant theoretical results wouldn’t be applicable in real
life. As expected although, obviously they have enormous impact in everyday
applications, a couple of whom are indicatively listed below in this last section of the
present Chapter:

Ranking and Collaborative Filtering: It concerns of course situations that arise from
incomplete questionnaires, and the goal of course is to complete the missing entries. A
classic example of this category of applications is the well-known Netflix Prize for movie
ranking. In a short, Netflix is a company that rents movies in the United States of America.
As every company of its size, it has a huge database of movies and users who have rent
any of them. What Netflix did is sending an email to every user who rented a movie from
their database, asking him to rate the movie he had just seen. And so users would go out
and sparsely enter entries in huge database Netflix was assembling, which had as
columns the company’s movies (about 18.000 of them at the time) and as rows its clients
(about 500.000 at the time). Of course this was a huge data matrix which was
extraordinarily sparsely sampled because users on average rated about 30 to 50 movies,
and so instead of having 18.000 ratings per row we had only 30 to 50. What simply Netflix
wanted is to complete the database matrix, in other words the company was seeking for
an algorithm that completes the missing users’ ratings, and launched a prize of 1.000.000
dollars to whomever could be able to come up with a prediction algorithm that was besting
their own algorithm by 10%. The reason is quite obvious, if we take in mind that the
prediction of missing ratings implies an efficient recommender system, which in turn leads
to happy customers and as a result a lot of income is generated. In fact, this problem is a
typical Matrix Completion (MC) problem, but in reality we cannot overlook the fact that in
this matrix there could be lots of bogus ratings (for some reason, people enter ratings
which have nothing to do with their own preferences). So, in reality, we must separate the
good ratings from the bogus ones, in order to be able to construct an efficient
recommender system. Obviously, the good ratings will be held at a low-rank matrix and
the bogus ones at a sparse one, making it clear that there is affinity with the RPCA
problem we studied above.

Video Surveillance: In this type of application, there is available a sequence of video
frames and the goal is to separate foreground from background. What is done practically
is a storage of the images as columns of a huge data matrix, which we want to separate
as before to a low-rank and a sparse component. The separation here makes sense in
the way that the background is going to be an extremely low-rank matrix, as it does not
change from frame to frame because it is highly correlated, while at the same time the
foreground is going to be picked up by the sparse component.

Of course these were just two of many similar applications of the RPCA problem. What
must be noticed is that any problem that requires a decomposition of a matrix to a low-
rank and a sparse component can be recasted as a RPCA problem.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 36

4. ALGORITHMIC METHODS FOR SOLVING THE RPCA PROBLEM

In the previous Chapter, a brief as well as comprehensive description of the main aspects
(theoretical and practical) of the RPCA problem took place. Most of the analysis made
was dominated by only one of the several approaches that have been developed to
address the RPCA problem via low-rank plus sparse matrix decomposition, and more
precisely the RPCA-PCP method ([19]). However, there are numerous other approaches
as well, such as the following ones:

 RPCA via Outlier Pursuit ([70])

 RPCA via Iteratively Reweighted Least Squares ([33], [34], [35])

 Bayesian RPCA ([23])

 Variational RPCA ([1])

 Approximated RPCA ([73])

Although the aforementioned approaches are quite interesting, a detailed description of
each one of them is out of the scope of this thesis. Following the reasoning of the previous
Chapter, we chose to refer to algorithmic schemes designed to address the RPCA-PCP
method as it was the leading one in this field.

Before presenting specific algorithms, it should be wise to mention the gap that they came
to fulfil, in other words some weaknesses / limitations of the original RPCA-PCP method
that became clear. More precisely, we should take into mind that the original approach
described in [19] and [69] employs convex optimization techniques to address the PRCA
problem, which under minimal assumptions recovers the low-rank matrix as well as the
sparse one perfectly. Although this is a quite encouraging result, we should not forget that
in fact it is a batch method which has consequently several limitations dealing with real-
time applications. Furthermore, as each frame is treated as a separate column vector,
any potential spatial or temporal features are lost. Finally, one of the main assumptions
of [19] referring to the demand of the low-rank component to be exactly low-rank and the
sparse one to be exactly sparse is quite often violated in many applications such as video
surveillance, as noise affects every entry of the data matrix (for other minor / major
limitations of the RPCA-PCP method concerning foreground detection in video
surveillance the diligent reader is referred to [10]).

Taking into account the comments above, many methods have been developed to
overcome the drawbacks arising from the nature of classical RPCA-PCP method itself as
well as other ones which appear commonly in practice such as:

 Presence of noise

 Quantization of the pixels

 Spatial constraints of the foreground pixels

 Local variations in the background

The most well-known methods achieving those goals are presented in [74], [5], [58] and
[68] respectively. The forthcoming table (presented in [10]) shows in details the different
versions of the RPCA-PCP problem as well as the basic “technical concepts” of each one
of them:

Table 1: Versions of the RPCA-PCP problem

Methods Decomposition Minimization Constraints Convexity

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 37

PCP[19] 𝑫 = 𝑨 + 𝑬 min
𝑨,𝑬

‖𝑨‖∗ + 𝜆‖𝑬‖1 𝑫 − 𝑨− 𝑬 = 𝟎 Yes

SPCP[74] 𝑫 = 𝑨 + 𝑬 + 𝑵 min
𝑨,𝑬

‖𝑨‖∗ + 𝜆‖𝑬‖1 ‖𝑫 − 𝑨 − 𝑬‖𝐹 < 𝛿 Yes

QPCP[5] 𝑫 = 𝑨 + 𝑬 min
𝑨,𝑬

‖𝑨‖∗ + 𝜆‖𝑬‖1 ‖𝑫 − 𝑨 − 𝑬‖∞ < 0.5 Yes

BPCP[58] 𝑫 = 𝑨 + 𝑬 min
𝑨,𝑬

‖𝑨‖∗ + 𝜅(1 − 𝜆)‖𝑨‖2,1

+ 𝜅𝜆‖𝑬‖2,1

𝑫 − 𝑨− 𝑬 = 𝟎 Yes

LPCP[68] 𝑫 = 𝑫𝑼 + 𝑬 min
𝑼,𝑬

𝛼‖𝑼‖∗ + 𝛽‖𝑼‖2,1 + 𝛽‖𝑬‖1 𝑫 − 𝑫𝑼 − 𝑬 = 𝟎 Yes

As mentioned before, in the present thesis we cope with the classical RPCA-PCP problem
(theoretically as well as concerning algorithmic schemes). In this direction, just before
presenting explicitly each one of the most basic algorithms addressing this problem, it is
deemed appropriate to collect them together as to have a general and compact view of
each one of them. This purpose is achieved via the following table (presented in [10]):

Table 2: Basic Algorithms for solving the RPCA-PCP problem

Solvers Complexity

Singular Value Thresholding Algorithm (SVT)
[12]

𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛))

Accelerated Proximal Gradient Algorithm (APG)
[43]

𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛))

Full SVD

Dual Method (DM) [43] 𝑂(𝑟𝑚𝑛)

Partial SVD

Augmented Lagrange Multiplier Method (ALM)
[42]

𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛))

Alternating Direction Method (ADM) [72] 𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛))

All the above algorithmic methods have one thing in common: they try to solve iteratively
the same optimization problem described in general by the following form:

min
𝑨,𝑬

𝜂‖𝑨‖∗ + 𝜆‖𝑬‖𝐹
2 (4.1)

, in the case that it has a closed-form solution-of course by employing different
techniques. In such a scenario, the RPCA-PCP problem can be recasted as a Semi-
Definite Programming (SDP) problem, and therefore be solved using off-the-shelf Interior-
Point Methods and packages. The main problem with this consideration is that it exhibits
prohibitive complexity as the scale of the problem increases. In fact, interior-point

methods require computing the step-direction, whose complexity for a 𝑚 × 𝑛 matrix 𝑫 is

𝑂 ((𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛))
2
). In order to understand intuitively what that means we just have to

consider the (simple) case of a square 𝑛 × 𝑛 matrix 𝑫 which leads to a computational

complexity of 𝑂(𝑛6). Obviously, any interior-point method will be brought to its knees for
even a relatively small number of data, i.e. n=100, leaving no hope about any thoughts of
tens / hundreds of thousands or millions of data -which however is mostly the case in real
applications.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 38

To overcome (mainly) this scalability issue, the algorithmic schemes presented in Table
2 use different approaches deriving quite interesting results. In the following sections,
each one of them is presented in brief focusing mainly on those key-ideas,
implementation details, parameter tuning and -of course- the algorithms themselves that
make them so extraordinary as well as worth-mentioning.

4.1 Singular Value Thresholding Algorithm

As became clear before, scalability is of utmost importance in real applications. Bearing
that into mind, as well as that interior-point methods choke for even small number of data,
it would be wise to use first-order information. In such a direction was the novel iterative
algorithm introduced in [12], developed to minimize the nuclear norm for the MC problem.
This paper was addressing the problem posed in [15], in which it was solved via the usage
of an advanced SDP solver named SDPT3 ([62]). Given the fact that this solver uses
interior-point methods, it suffers from the same scalability issues mentioned before -as
for the computation of the Newton direction huge systems of linear equations needed to
be solved. To make things worse, even iterative solvers (i.e. the Method of Conjugate
Gradients) for the Newton-step do not save the day, since the Condition Number of the
Newton system increases as we approach the solution.

4.1.1 Algorithm Outline

As mentioned earlier, the Singular Value Thresholding (SVT) Algorithm is a fist-order
method designed to solve nuclear norm minimization problems of the general form:

min
𝑠.𝑡.𝑨(𝑿)=𝒃

‖𝑿‖∗ (4.2)

, where 𝑨 is a linear operator acting on the space of 𝑛1 × 𝑛2 matrices and 𝒃 ∈ 𝑅𝑚.

The above optimization problem can be reformulated as follows:

min
𝑠.𝑡.𝑃𝛺(𝜲)=𝑃𝛺(𝑴)

‖𝑿‖∗ (4.3)

, where 𝑃𝛺 is the orthogonal projector onto the span of matrices which vanish outside of
𝛺. In other words:

𝑃𝛺(𝜲)𝑖𝑗 = {
𝑋𝑖𝑗,(𝑖,𝑗)∈𝛺

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.4)

The key-idea of the SVT algorithm is summarized in the following two operations, which
take place until a specified stopping criterion is reached:

{
𝑿𝑘 = 𝑠ℎ𝑟𝑖𝑛𝑘(𝒀𝑘−1, 𝜏)

𝒀𝑘 = 𝒀𝑘−1 + 𝛿𝑘𝑃𝛺(𝑴 − 𝑿𝑘)
 (4.5)

, where 𝜏 > 0 and {𝛿𝑘}𝑘≥1 is a sequence of scalar Step-Size Parameters.

In the first equation of (4.5), 𝑠ℎ𝑟𝑖𝑛𝑘(𝒀𝑘, 𝜏) is a non-linear function which behaves as a

soft-thresholding operator at level 𝜏 to the singular values of the input matrix. As it is
expected from (4.5), it constitutes the key building block of the whole algorithm, so it is
deemed appropriate to explain exactly how it works according to [12]. More precisely, for

a given matrix 𝑿 ∈ 𝑅𝑛1×𝑛2 and its SVD 𝑿 = 𝑼𝜮𝑽∗, where 𝑼 and 𝑽 are the 𝑛1 × 𝑟 and 𝑛2 ×
𝑟 matrices with orthonormal columns containing the left and right singular values of 𝑿
respectively and 𝜮 is the matrix which contains the singular values {𝜎𝑖}1≤𝑖≤𝑟 at its diagonal,
the soft-thresholding operator 𝐷𝜏 is defined as follows:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 39

{

𝐷𝜏(𝑿) ≔ 𝑼𝐷𝜏(𝜮)𝑽
∗

𝐷𝜏(𝜮) = 𝑑𝑖𝑎𝑔({𝜎𝑖 − 𝜏}+), 𝜏 ≥ 0

𝑡+ = 𝑚𝑎𝑥(0, 𝑡)
 (4.6)

As it is obvious from the above definition, the operator 𝐷𝜏 applies a soft-thresholding
process to the singular values of 𝑿, making it responsible for the name of the whole
algorithm itself.

What should be highlighted here is on the one hand the fact that as the value of the

parameter 𝜏 increases the sequence {𝑿𝑘} converges to a solution similar to that of (4.3),

and on the other hand that in the case where many of the singular values of 𝑿 are below
the threshold 𝜏 then by construction the rank of 𝐷𝜏(𝑿) will be lower than that of 𝑿. As a
result, at each iteration step the only computational-thirsty operation to be done is a single
one computation of an SVD -which in turn leads to proportionate computational as well
as storage savings.

4.1.2 SVD Computation

As explained before, the SVT algorithm requires the computation of a SVD due to the
soft-thresholding operation that takes place. In reality however, not all the singular values
of the input matrix are needed but only that fraction of them which is above the threshold

𝜏. Since the SVT algorithm was designed to cope with large matrices and the computation
of their singular values and respective singular vectors, numerical linear algebra methods
and relative already implemented packages could become extremely useful. For that
reason as well as for some additional ones explained it details in [12], the inventors of the
SVT algorithm chose to use PROPACK ([41]).

Concerning the SVD packages, as for most of them it is possible to specify the number
of singular values to compute this is not the case with PROPACK at all. On the contrary,

PROPACK cannot compute only those singular values which are above the threshold 𝜏,
a job that has to be done -intuitively- by the user. More precisely, what has to be done is

the specification of the number 𝑠 of the desired singular values in order that the software
package computes the 𝑠-largest singular values and the corresponding singular vectors.
As this process takes place in the 𝑘-th iteration of the algorithm, the respective number

𝑠𝑘 of singular values of 𝒀𝑘−1 needs to be determined ahead of time. What is proposed in
[12] as a choice for 𝑠𝑘 is the following rule:

𝑠𝑘 = 𝑟𝑘−1 + 1 (4.7)

, where 𝑟𝑘−1 is the number of the non-zero singular values of 𝑿𝑘−1 at the previous iteration,
i.e. in mathematical terms:

𝑟𝑘−1 = 𝑟𝑎𝑛𝑘(𝑿
𝑘−1) (4.8)

The rationale of the choice in (4.7) is justified in [12] via the argument that in the case that

some of the computed singular values are below 𝜏 then the choice in (4.7) is a good one,
while if this not the case an extra increment of 𝑠𝑘 has to take place until we fall into the
first case. Such an increment may have either additive form:

𝑠𝑘+1 = 𝑠𝑘 + 𝑙 (4.9)

, or even a multiplicative one:

𝑠𝑘+1 = 𝑙𝑠𝑘 (4.10)

, where 𝑙 is a predefined integer.

In [12], the additive form of increment is chosen with 𝑙 = 5, a choice that seems to work
pretty well in practice.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 40

4.1.3 Step-Size Parameters

Another crucial part of the SVT algorithm that has to be clarified is that concerning the

choice of the step-size parameter {𝛿𝑘}𝑘≥1 involved in the second equation of (4.5). For
simplicity reasons, {𝛿𝑘}𝑘≥1 is chosen to be constant and invariant of the iteration count:

𝛿𝑘 = 𝛿, 𝑘 = 1,2, … (4.11)

As explained in details in [12], a wise choice would dictate to pick a step-size 𝛿 living in
the interval 0 < 𝛿 < 2. However, for reasons of faster convergence, in [12] the step-size
𝛿 is eventually selected as follows:

𝛿 = 1.2
𝑛1𝑛2

𝑚
 (4.12)

A heuristic reasoning for that choice is available in [12], but is at the same time out of the
scope of this thesis and therefore will be skipped.

4.1.4 Initialization Steps

As it will become clear shortly afterwards, the SVT algorithm starts with 𝒀0 = 𝟎. Of course,
our desire is to choose the threshold 𝜏 large enough to ensure that the solution provided
by the algorithm is close enough to that we desire. In order to evaluate the second

equation of (4.5), as it is explained in [12], we define 𝑘0 as that integer obeying the
following property:

𝜏

𝛿‖𝑃𝛺(𝑴)‖2
∈ (𝑘0 − 1, 𝑘0] (4.13)

Given the fact that 𝒀0 = 𝟎, it follows straightaway that:

{
𝑿𝑘 = 𝟎

𝒀𝑘 = 𝑘𝛿𝑃𝛺(𝑴), 𝑘 = 1,2, … , 𝑘0
 (4.14)

Further computational burden can be removed adopting smart strategies from the
Compressed Sensing / Compressive Sampling (CS) literature. For additional details, a
more detailed sight is available in [12].

4.1.5 Stopping Criteria

Before introducing the SVT algorithm itself, we should strictly define its stopping criteria.
In [12], two types of them are proposed:

 The first one comes from the Karush-Kuhn-Tucker (KKT) Conditions / First-Order
Optimality Conditions

 The second one is motivated by duality theory

Here we only cope with the first one just for brevity reasons. More precisely, the proposed
stopping criterion related to the KKT conditions is the above one:

‖𝑃𝛺(𝑿
𝑘−𝑴)‖

𝐹

‖𝑃𝛺(𝑴)‖𝐹
≤ 𝜀 (4.15)

, where 𝜀 is a fixed tolerance (i.e. 10−4). As it is justified in details in [12], the stopping
criterion in (4.15) somehow “equivalent” to the following one:

‖𝑿𝑘−𝑴‖
𝐹

‖𝑴‖𝑭
≤ 𝜀 (4.16)

In other words, we control the Relative Reconstruction Error by controlling the relative
error on the set of the sampled data.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 41

4.1.6 SVT Algorithm

Finally, we conclude this section by presenting the SVT algorithm itself exactly as it was
derived in [12]. We should not forget to mention here that this algorithm was designed to
tackle the MC problem, not the RPCA one. Nevertheless, with minor modifications it can
also handle the latter as well, with the main ideas remaining the same.

Before presenting the algorithm we should make clear that for each non-negative integer

𝑠 ≤ 𝑚𝑖𝑛(𝑛1, 𝑛2) the triplet [𝑼𝑘, 𝜮𝑘, 𝑽𝑘]𝑠 is composed as follows:

{

𝑼𝑘 = [𝒖1
𝑘, 𝒖2

𝑘, … , 𝒖𝑠
𝑘]

𝑽𝑘 = [𝒗1
𝑘, 𝒗2

𝑘, … , 𝒗𝑠
𝑘]

𝜮𝑘 = 𝑑𝑖𝑎𝑔(𝜎1
𝑘, 𝜎2

𝑘 , … , 𝜎𝑠
𝑘)

 (4.17)

In other words, it represents the first 𝑠 left and right singular vectors as well as the first 𝑠
singular values respectively.

After that note, the SVT algorithm is depicted in the following image:

Image 8: The Singular Value Thresholding Algorithm

4.2 Accelerated Proximal Gradient Algorithm

As it became quite clear from the discussion above, new solvers other than the interior-
point ones should be invented in order to tackle problems arising in many applications
which involve matrices with dimensions tens of thousands. The main reason for that is
that in reality interior-point methods rely on second-order information of the objective
function. To overcome the scalability issue that arises from that choice, a good alternative
is to use only first-order information -just as was the case with the Iterative Thresholding
(IT) SVT algorithm analyzed in the previous section.

Iterative thresholding algorithms’ usage does not come from the sky when referring to
scalability issues arising in convex optimization problems. In fact, it is widely used in the
field of CS as well as that of MC. Taken that into mind, an IT scheme was proposed in
[69] exhibiting quite good results concerning scalability issues. The main problem with
that algorithmic scheme however was that its convergence rate is extremely slow,
typically requiring about 10000 iterations to converge (with each one of them having the

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 42

same cost as one SVD). As a result, even for matrix sizes of less than 1000 × 1000
several hours are required for the algorithm to converge.

To alleviate such an inconvenience, two new algorithms were proposed in [43] for solving
the RPCA problem. The first one, which is presented here, is an Accelerated Proximal
Gradient (APG) Algorithm based on the FISTA framework demonstrated in [4] -coupled
with a fast continuation technique. The second one, which is presented in the upcoming
section, is a Gradient Ascend Algorithm applied to the Dual Problem -a technique to which
the whole algorithm owes its name.

4.2.1 General Formulation

The RPCA optimization problem can be recasted as an optimization problem of the
general form:

min
𝑠.𝑡.𝑨𝑿=𝒃

𝑔(𝑿) (4.18)

, where 𝑔(.) is a continuous convex function, 𝒃 is a vector of observations and 𝑨 is a
linear map. As it is explained in Appendix II, a commonly used tactic in practice when
facing optimization problems is to relax them, and if we do so with (4.18) we get:

min
𝑥∈𝐻

𝐹(𝑿) = 𝜇𝑔(𝑿) + 𝑓(𝑿) (4.19)

, where 𝐻 is a real Hilbert Space equipped with a norm ‖. ‖ and

{
𝜇 > 0

𝑓(𝑿) =
‖𝑨𝑿−𝒃‖2

2

 (4.20)

In other words, 𝑓(𝑿) depicts a kind of penalty for violations of the equality constraints
while 𝜇 is a relaxation parameter which when approaching 0 any solution of (4.19) also
approaches the solution set of (4.18).

One of the main gains of the formulation (4.19) is that it can be optimized efficiently by
Proximal Gradient (PG) Algorithms ([4], [65]) as it is explained in [43]. The reason for that

is the “nature” of the penalty function 𝑓(𝑿), which is convex, smooth and has a Lipschitz
continuous Gradient:

‖∇𝑓(𝑋1) − ∇𝑓(𝑋2)‖ ≤ 𝐿𝑓‖𝑋1 − 𝑋2‖ (4.21)

To achieve such an efficient performance, PG algorithms adopt an alternative objective

function to be minimized instead of 𝐹(𝑿), whose definition is given below:

𝑄(𝑿,𝒀) = 𝑓(𝒀) + ⟨∇𝑓(𝒀),𝑿 − 𝒀⟩ +
𝐿𝑓

2
‖𝑿 − 𝒀‖2 + 𝜇𝑔(𝑿) (4.22)

In reality, 𝑄(𝑿, 𝒀) is a sequence of separable quadratic approximations to 𝐹(𝑿) which
form upper bounds 𝐹(𝑿) for any 𝒀. Further discussion about the choice of the specific

points 𝒀 is out of the scope of this thesis, but we should highlight the fact that the whole
process is inspired by the famous paper of Y. Nesterov ([48]) and refer to [43] for further
information. Taken all that into mind, the general form of the PG Algorithm is depicted in
the following image ([43]):

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 43

Image 9: The Proximal Gradient Algorithm

4.2.2 Algorithm Outline

As explained in details above, the minimization of a sequence of separable quadratic
approximations of the objective function seems a good idea. In fact, the reason for that to
happen is that in many cases, it is possible to find a simple expression for the minimizer

𝑿𝑘+1 mentioned above. Taken into mind previous works on soft-thresholding techniques
employed in the field of CS ([4], [13]) as well as in that of MC ([12], [63]), enriching them
at the same time with continuation techniques, the algorithm proposed in [43] seems quite

promising. More precisely, the iterates 𝑿𝑘 are ordered pairs (𝑨𝑘, 𝑬𝑘) ∈ 𝑅
𝑚×𝑛 × 𝑅𝑚×𝑛 and

𝑔(𝑿𝑘) = ‖𝑨𝑘‖∗ + 𝜆‖𝑬𝑘‖1. Then the optimization problem (4.19) takes the following form:

min
𝑨,𝑬

𝐹(𝑿) = 𝜇‖𝑨‖∗ + 𝜇𝜆‖𝑬‖1 +
1

2
‖𝑫 − 𝑨 − 𝑬‖𝐹

2 (4.23)

As it is explained in details in [43], using soft-thresholding techniques to compute the

iterates 𝑿𝑘+1 is a reasonable choice made in [69]. However, as it is mentioned above, the
number of iterations required for the algorithm to converge is quite large. Nevertheless, if
we make use of the PG framework presented above in cooperation with smooth
techniques proposed in [48], we could speed up the convergence rate of the algorithm.
The most important feature although of the present algorithm is that it makes use of
continuation techniques, in the sense that it does not apply the PG algorithm directly to

(4.23) with a fixed relaxation parameter 𝜇, but on the contrary 𝜇 varies from a large initial
value 𝜇0 to a floor �̅� following a geometrical decrease at each iteration step. As a result,
the number of the required iterations for convergence reduces significantly (for more
details about convergence theorems the diligent reader is referred to [43]). Having
clarified those two crucial details, the APG algorithm for the RPCA problem is depicted in
the following image:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 44

Image 10: The Accelerated Proximal Gradient Algorithm

4.2.3 Stopping Criteria

The stopping criterion of the APG Algorithm bears a strong resemblance to that proposed
in [63]. Before stating it, just as in [43], we define:

{
𝑆𝑘+1
𝐴 = 2(𝒀𝑘

𝐴 − 𝑨𝑘+1) + (𝑨𝑘+1 + 𝑬𝑘+1 − 𝒀𝑘
𝐴 − 𝒀𝑘

𝐸)

𝑆𝑘+1
𝐸 = 2(𝒀𝑘

𝐸 − 𝑬𝑘+1) + (𝑨𝑘+1 + 𝑬𝑘+1 − 𝒀𝑘
𝐴 − 𝒀𝑘

𝐸)
 (4.24)

, where:

{
𝑆𝑘+1 = (𝑆𝑘+1

𝐴 , 𝑆𝑘+1
𝐸)

‖𝑆𝑘+1‖
2 = ‖𝑆𝑘+1

𝐴 ‖
𝐹

2
+ ‖𝑆𝑘+1

𝐸 ‖𝐹
2 (4.25)

The iteration loop is terminated when ‖𝑆𝑘+1‖ is lower than a defined tolerance. In other
words, the distance between the origin and the set of Sub-Gradients of the Cost Function

in (4.23) at (𝑨𝑘+1, 𝑬𝑘+1) remains upper bounded by ‖𝑆𝑘+1‖.

4.2.4 Step-Size Parameters

As stated in [43], as the relaxation parameter 𝜇 decreases the closer is the solution gained
by the APG algorithm to that of the RPCA problem. A good choice suggested in [43] from
empirical results is:

{
𝜇0 = 0.99‖𝑫‖2
𝛿 ≤ 10−5

 (4.26)

We should not forget to mention here that in the worst case scenario the iteration

complexity of the APG algorithm with decreasing sequence of relaxation parameters 𝜇𝑘
is no better than that with constant ones (𝜇𝑘 = �̅� for all 𝑘). However, the usage of a
decreasing sequence of relaxation parameters 𝜇𝑘 leads to a significant reduce to the
number of iterations required for the algorithm to converge for most of the practical
applications.

4.2.5 SVD Computation

Finally, as far as the SVD computation at each iteration is concerned, there is no need to
compute the full SVD at each iteration, but only a partial one. The reason for that is that

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 45

the soft-thresholding operation will evaporate those singular values corresponding to

large values of 𝜇𝑘. Towards this logic, packages for the computation of partial SVDs (like
PROPACK, [41]) would be extremely handful.

4.3 Dual Method

As it has become quite clear so far, the computational bottleneck of the most algorithms
developed to tackle the RPCA problem is the computation of the SVD. Although some
methods and useful packages may accelerate the whole process, the overall complexity
continues to strongly depend on that computation.

In order to avoid such a dependence, an interesting algorithmic scheme was developed
in [43]. The authors tried to solve firstly the dual problem (from which the novel method
inherited its name as the Dual Method (DM)), and subsequently compute the solution of
the Primal Problem.

4.3.1 Algorithm Outline

As it is explained in details in Appendix I, the spectral norm ‖. ‖2 is the dual norm of the
nuclear norm ‖. ‖∗ of a matrix. From a pure computational point of view, the spectral norm
of a matrix is much easily computed than its nuclear norm, as in reality it is its largest
singular value (and in general can be computed without the SVD). Inspired by this idea,
the authors in [43] suggested to solve the dual of the RPCA problem, which has the
following form:

max
𝑠.𝑡.𝐽(𝒀)≤1

⟨𝑫, 𝒀⟩ (4.27)

, where:

{
⟨𝑨, 𝑩⟩ = 𝑡𝑟(𝑨𝑇𝑩)

𝐽(𝒀) = 𝑚𝑎𝑥 (‖𝒀‖2,
1

𝜆
‖𝒀‖∞)

 (4.28)

From (4.27)-(4.28) it is clear that on the one hand the objective function is a linear one

while on the other hand 𝐽(𝒀) is positive and homogenous (see Appendix I for more
information about positivity-homogeneity). As a result, the optimal solution of (4.27) must
lie on the manifold:

𝑆 = {𝒀|𝐽(𝒀) = 1} (4.29)

, and therefore the inequality constraint can be replaced by an equality one. This process
will lead to an optimization problem on a nonlinear non-smooth manifold, which can then
be solved by Steepest Ascend techniques.

More precisely, at each iteration step 𝑘, we need to compute the steepest ascend

direction 𝑾𝑘 at the estimate of 𝒀 at this iteration, 𝒀𝑘. This can be achieved via the
projection of the gradient 𝑫 of the objective function of (4.27) onto the tangent cone of 𝑆.
Afterwards, line search can take place along 𝑾𝑘 in order to determine the step-size
parameter 𝛿𝑘, by solving the following problem:

𝛿𝑘 = 𝑎𝑟𝑔max
𝛿≥0

⟨𝑫,
𝒀𝑘+𝛿𝑾𝑘

𝐽(𝒀𝑘+𝛿𝑾𝑘)
⟩ (4.30)

, and then the estimation of 𝒀 at iteration 𝑘 + 1 can be computed as follows:

𝒀𝑘+1 =
𝒀𝑘+𝛿𝑘𝑾𝑘

𝐽(𝒀𝑘+𝛿𝑘𝑾𝑘)
 (4.31)

As it is stated as well as proved in [43], the subsequent algorithm which implements the
above ideas finds the optimal solution of the dual problem of the RPCA problem.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 46

In order to find the steepest ascend direction 𝑾𝑘, the suggestion made in [43] is the
following one:

𝑾𝑘 = 𝑫−𝑫𝑘 (4.32)

, where 𝑫𝑘 is the projection of 𝑫 onto the normal cone 𝑁(𝒀𝑘) of S. As it is stated in [43],
the Normal Cone is defined as:

𝑁(𝒀𝑘) = {𝛼𝑿 ∶ 𝛼 ≥ 0, 𝑿 ∈ 𝜕𝐽(𝒀𝑘)} (4.33)

Then, the sub-gradient of 𝐽 can be computed as follows:

𝜕𝐽(𝒀𝑘) =

{

 𝜕‖𝒀𝑘‖2, 𝜕‖𝒀𝑘‖2 >

1

𝜆
𝜕‖𝒀𝑘‖∞

𝜕 (
1

𝜆
‖𝒀𝑘‖∞) , 𝜕‖𝒀𝑘‖2 <

1

𝜆
𝜕‖𝒀𝑘‖∞

𝑐ℎ {𝜕‖𝒀𝑘‖2, 𝜕 (
1

𝜆
‖𝒀𝑘‖∞)} , 𝜕‖𝒀𝑘‖2 =

1

𝜆
𝜕‖𝒀𝑘‖∞

(4.34)

, as 𝐽(𝒀) is the maximum of two convex functions (“𝑐ℎ” denotes the convex hull -see
Appendix II).

As a consequence, in the case where 𝜕‖𝒀𝑘‖2 and
1

𝜆
𝜕‖𝒀𝑘‖∞ are not equal, all that has to

be done is the computation of the projection of 𝑫, 𝜋2/∞(𝑫), onto the cone 𝑁2/∞(𝒀𝑘)

generated by the respective sub-gradient 𝜕‖. ‖2/∞ at 𝒀𝑘, according to which one of them

is the larger one. However, if the aforementioned sub-gradients are equal to one another,
then the normal cone is composed as follows:

𝑁(𝒀𝑘) = 𝑁2(𝒀𝑘) + 𝑁∞(𝒀𝑘) (4.35)

In such a case the computation of the projection of 𝑫 onto 𝑁(𝒀𝑘) can be accomplished
by alternating between projections onto 𝑁2(𝒀𝑘) and 𝑁∞(𝒀𝑘). In other words, an
Alternating Projection (AP) Scheme can be implemented obeying the following idea:

{
𝑨𝑖+1 = 𝜋2(𝑫 − 𝑬𝑖)

𝑬𝑖+1 = 𝜋∞(𝐷 − 𝑨𝑖+1)
𝑖 = 𝑖 + 1

 (4.36)

, where 𝑬0 = 𝟎 and the counter 𝑖 is initialized at zero. The hopeful news are that, as it is
proved in details in [43], the above algorithmic scheme will eventually derive the desired

projection 𝑫𝑘.

As the dual problem can be solved as explained above, there remain two KKT conditions
to be fulfilled for the primal one (the RPCA problem) to have a solution as well:

{
�̂� ∈ 𝜕‖𝑨‖∗
1

𝜆
�̂� ∈ 𝜕‖𝜠‖1

 (4.37)

, where �̂� is the solution obtained for the dual problem. But from the definition of these
two sub-gradients, there are three different cases arising according to the value of the
respective norms:

 If ‖�̂�‖
2
< 1, the solution of the primal problem will be {

𝑨 = 𝟎
𝑬 = 𝑫

 If
1

𝜆
‖�̂�‖

∞
< 1, the solution of the primal problem will be {

𝑨 = 𝑫
𝑬 = 𝟎

 If ‖�̂�‖
2
=

1

𝜆
‖�̂�‖

∞
= 1, then (as it is stated in [43] in the form of Theorem 3.4) any

pair of accumulation points �̂�, �̂� generated by projecting 𝑫 onto 𝑁(�̂�) via the AP

algorithm (4.36) solves the primal RPCA problem

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 47

As a result, by solving the dual problem of the RPCA problem, we obtain the solution to
the primal one. Having explained those key ideas behind the interpretation of the duality
theory as well as its usage in order to solve the primal optimization problem, the DM
algorithm for the RPCA problem is depicted in the following image:

Image 11: The Dual Method Algorithm

4.3.2 Norm Computation

As it was mentioned above, 𝐽(.) is the maximum of two norms: the spectral norm and the
max-row-sum norm. As it is obvious from their respective definitions in Appendix II, the
most computational thirsty among them is the spectral norm. As a result, efficient methods
for computing the spectral norm of a matrix should be used in order to reduce
computational complexity. As it is explained in [43], for such a computation the PROPACK
package ([41]) is chosen because on the one hand it is way faster than the classical
Power Method (PM) and other hand it can compute solely the largest singular value of a
matrix without computing firstly its (computational “ponderous”) SVD.

Furthermore, as far as the computation of the projection 𝑫𝑘 of 𝑫 onto the normal cone

𝑁(𝒀𝑘) of 𝑆 is concerned, an “equality check” between ‖𝒀𝑘‖2 and
1

𝜆
‖𝒀𝑘‖∞ has to take

place. For this purpose, what is suggested in [43] is to check whether the discrepancy

between them is larger than a predefined tolerance 𝜀 (i.e. 𝜀 = 10−4).

4.3.3 SVD Computation

As far as the computation of the Principal Singular Spaces is concerned, the PROPACK
package ([41]) is chosen once more. Nevertheless, it should be mentioned here that
possibly there are faster methods to do this computation, as it is explained in [43], but the
authors finally selected PROPACK as at the time [43] was published the relative search
was at an exploring stage.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 48

4.3.4 Step-Size Parameters

As it is known from optimization theory, when employing steepest ascend / descend
methods, there is always the possibility of zig-zagging around the solution. Therefore for

the determination of the step-size parameter 𝛿𝑘 an exact line search has to take place.
The method chosen to do so is based on Armijo’s Rule, as it is explained in [43]. We
should not forget to mention at this point the fact that the projections onto the normal cone
described in this algorithm are performed inexactly, for speeding up the whole process
(for further details see [43]).

4.3.5 Stopping Criteria

The stopping criteria of the DM algorithm obviously concern the two different methods
that take place as the algorithm goes on: the steepest ascend method (for the

computation of the direction 𝑾𝑘) and the alternating projection method (for the

computation of the projection of 𝑫 onto 𝑁(𝒀𝑘)).

For the first one, the respective stopping criterion is suggested ([43]) to be the following
one:

‖𝑫−𝑫𝑘‖𝐹

‖𝑫‖𝐹
< 𝜀 (4.38)

, or in other words we demand the reconstruction error to be lower than a predefined

tolerance (i.e. 𝜀 = 2 × 10−5).

Following a similar way of thinking, the stopping criterion corresponding to the second
one is suggested ([43]) to be the following one:

{

‖𝑨𝒊−𝑨𝑖−1‖𝐹

‖𝑫‖𝐹
< 10−8

‖𝑬𝒊−𝑬𝑖−1‖𝐹

‖𝑫‖𝐹
< 10−8

 (4.39)

4.4 Augmented Lagrange Multiplier Method

Although the aforementioned APG method constitutes a good choice for coping with the
RPCA problem, it has been proven in theory that its convergence speed is only sub-linear.
Considering that and exploring for further ameliorations, the authors in [42] adopted an
Augmented Lagrange Multiplier (ALM) Method / approach lent by constrained
optimization theory.

More precisely, ALM methods are a certain class of algorithms for solving constrained
optimization problems. They have similarities to Penalty Methods in that they replace a
constrained optimization problem by a series of unconstrained problems and add a
penalty term to the objective; the difference is that the ALM method adds yet another
term, designed to mimic a Lagrange Multiplier. It should be mentioned here that the ALM
method is not the same as the Method of Lagrange Multipliers. Nevertheless, the two
methods are somehow related in the sense that in the ALM method the unconstrained
objective function is the Lagrangian Function of the constrained problem, with an
additional penalty term (the augmentation).

The method was originally known as the Method of Multipliers, and was studied much in
the 1970s and 1980s as a good alternative to penalty methods. It was first discussed by
Hestenes ([36]) and by Powell ([52]) in 1969. The method was also studied by Bertsekas,
notably in his 1982 book ([8]) for solving constrained optimization problems of the
following kind:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 49

{

min
𝑠.𝑡.ℎ(𝑿)=𝟎

𝑓(𝑿)

𝑓: 𝑅𝑛 → 𝑅

ℎ: 𝑅𝑛 → 𝑅𝑚
 (4.40)

This problem can be solved as a series of unconstrained minimization problems. For
example, the penalty method approach uses as the unconstrained objective function the
following one:

𝑃(𝑿, 𝒀, 𝜇) = 𝑓(𝑿) + 𝜇‖ℎ(𝑿)‖𝐹
2 (4.41)

, and then solves the optimization problem iteratively. Then, at the next iteration step, it

re-solves the problem using a larger value of the step-size parameter 𝜇, while at the same
time the old solution is used as an initial guess or a “warm-start”.

On the other hand, the ALM method approach uses as the unconstrained objective
function the Augmented Lagrangian Function, which is defined as follows:

𝐿(𝑿, 𝒀, 𝜇) = 𝑓(𝑿) + ⟨𝒀, ℎ(𝑿)⟩ +
𝜇

2
‖ℎ(𝑿)‖𝐹

2 (4.42)

, where 𝜇 > 0 and 〈. 〉 denotes the standard Trace Inner Product. Consequently, the
optimization problem can then be solved iteratively via the algorithmic scheme ([9])
described in the following image:

Image 12: The Augmented Lagrange Multiplier Method Algorithm

The reason why the above algorithmic scheme is so attractive is that, as it has been

proven in [8], the Lagrange multipliers 𝒀𝑘 produced by it converge to the optimal solution:

 Q-linearly, when {𝜇𝑘} is a bounded increasing sequence, and 𝑓 as well as 𝑔 are
continuously differentiable functions

 Super-Q-linearly, when {𝜇𝑘} is an unbounded increasing sequence, and 𝑓 as well
as 𝑔 are continuously differentiable functions

Another advantage of the ALM method is that the parameter tuning is much easier than

that of IT algorithmic schemes, as the optimal step-size parameter for the update of 𝒀𝑘 is
proven to be the chosen penalty term 𝜇𝑘. Nevertheless, the major merit of the ALM
method is that, unlike penalty methods, it is not necessary to require 𝜇𝑘 → ∞ in order to
solve the original constrained optimization problem. Instead, because of the presence of

the (estimated) Lagrange multiplier term 𝒀𝑘 whose accuracy improves at every iteration

step, 𝜇𝑘 can stay much smaller. Furthermore, as it is suggested in [39], the ALM method
is generally preferred to the quadratic penalty method -since the extra computational cost
for its evaluation is insignificant compared to the potential of ill-conditioning that may be

caused due to the requirement of the step-size parameter 𝜇 to go to infinity.

4.4.1 Exact ALM Method

As it is stated in [42], the ALM method can be applied to the RPCA problem, if we set:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 50

{

𝑿 = (𝑨, 𝑬)

𝑓(𝑿) = ‖𝑨‖∗ + 𝜆‖𝑬‖1
ℎ(𝑿) = 𝑫 − 𝑨 − 𝑬

 (4.43)

Obviously, the Lagrangian function will then be:

𝐿(𝑨, 𝑬, 𝒀, 𝜇) = ‖𝑨‖∗ + 𝜆‖𝑬‖1 + ⟨𝒀, 𝑫 − 𝑨 − 𝑬⟩ +
𝜇

2
‖𝑫 − 𝑨 − 𝑬‖𝐹

2 (4.44)

Afterwards, there are two alternatives concerning our choice of solving the following
problem exactly or not:

(𝑨𝑘+1
∗ , 𝑬𝑘+1

∗) = 𝑎𝑟𝑔min
𝑨,𝑬

𝐿(𝑨, 𝑬, 𝒀𝑘
∗ , 𝜇) (4.45)

If we choose to solve the above sub-problem exactly, then the respective algorithm
derived in [42] is called the Exact Augmented Lagrange Multiplier (EALM) Method and is
depicted in the following image:

Image 13: The Exact Augmented Lagrange Multiplier Method Algorithm

The initialization of the above algorithm is inspired by the DM, developed in the above
section, as it is clearly stated in [42]. The most crucial part although is that concerning the
convergence rate of the EALM method, which is proven in [42] (in the form of a Theorem)

to be at least 𝑂(𝜇𝑘
−1). In other words, if on the one hand the step-size parameter 𝜇𝑘 grows

geometrically then the EALM method will converge Q-linearly. On the other hand, if the

step-size parameter 𝜇𝑘 grows faster so does the convergence rate of the EALM method.
However, one should be very cautious with the choice of {𝜇𝑘}, as larger values of it (in
order to achieve higher convergence rates) will probably conclude to slower convergence
rate of the IT solution of the sub-problem (4.45), as it is explained in details in [42].

4.4.2 Inexact ALM Method

If we choose to solve the sub-problem (4.45) inexactly, then the respective algorithm
derived in [42] is called the Inexact Augmented Lagrange Multiplier (IALM) Method and
is depicted in the following image:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 51

Image 14: The Inexact Augmented Lagrange Multiplier Method Algorithm

The main idea behind this approach is that 𝑨𝑘 as well as 𝑬𝑘 will still converge to the
optimal solution of the RPCA problem, even if their respective updates take place only
once the sub-problem (4.45) is solved.

The validity as well as the optimality of the above approach is guaranteed via two

Theorems stated in [42] concerning the choice of the step-size parameters {𝜇𝑘}.
Nevertheless, it should be mentioned that the respective convergence rate is not specified
via those two Theorems, as it was the case with the EALM method mentioned above.

4.4.3 SVD Computation

As it is apparent from the previous images describing the EALM and IALM methods, the
SVD computation is required for both of them. Borrowing the ideas developed in the
previous sections of this Chapter, there is no need to compute the full SVD but only those
singular values that exceed a specific threshold. Once more, such a goal is achieved via
the help of the PROPACK package ([41]) for the SVD computation. As it was made clear
before, the dimension of the principal singular space whose singular values exceed the
specified threshold has to be determined ahead of time. For such a prediction, the
respective criterion proposed in [42] for the IALM method is the following one:

𝑠𝑣𝑘+1 = {
𝑠𝑣𝑝𝑘 + 1, 𝑠𝑣𝑝𝑘 < 𝑠𝑣𝑘

𝑚𝑖𝑛 (𝑠𝑣𝑝𝑘 + 𝑟𝑜𝑢𝑛𝑑(0.05𝑚𝑖𝑛(𝑚, 𝑛),𝑚𝑖𝑛(𝑚, 𝑛))) , 𝑠𝑣𝑝𝑘 = 𝑠𝑣𝑘
 (4.46)

, where 𝑠𝑣𝑘 is the predicted dimension, 𝑠𝑣𝑝𝑘 is the number of singular values in 𝑠𝑣𝑘 that

exceed 𝜇𝑘
−1 and 𝑠𝑣0 = 10.

As for the EALM method, the above criterion is used for the inner loop which computes
the solution of (4.45), while for the outer one it takes the following form:

𝑠𝑣𝑘+1 = 𝑚𝑖𝑛 (𝑠𝑣𝑝𝑘 + 𝑟𝑜𝑢𝑛𝑑(0.1𝑚𝑖𝑛(𝑚, 𝑛),𝑚𝑖𝑛(𝑚, 𝑛))) (4.47)

4.4.4 Order of Updating A and E

Although it may seem meaningless, the order of updating 𝑨 and 𝑬 does count in practice.
More precisely, as it is explained in details in [42], after quite a lot numerical tests, it is

proven that it is wiser to update first 𝑬 and then 𝑨 in the EALM method as well as in the
IALM one. This is due to fact that following such an approach leads to a slightly lower
number of iterations needed to achieve the same accuracy than that occurring from the

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 52

adoption of the opposite scenario. It shouldn’t be forgotten here the fact that the update

of 𝑬 precedes that of 𝑨 will probably lead to less computational burden concerning the

partial SVD, as the rank of 𝑨𝑘 will increase monotonically -as stated in [42].

4.4.5 Stopping Criteria

The stopping criteria of the EALM and IALM methods are directly connected to the KKT
conditions of the RPCA problem ([42]):

{

𝑫 − 𝑨∗ − 𝑬∗ = 𝟎
𝒀∗ ∈ 𝜕‖𝑨∗‖∗

𝒀∗ ∈ 𝜕(‖𝜆𝑬∗‖1)
 (4.48)

For the last two conditions of (4.48) to hold, it is required that:

𝜕‖𝑨∗‖∗ ∩ 𝜕(‖𝜆𝑬
∗‖1) = ∅ (4.49)

As a consequence, the stopping criteria proposed in [42] for the EALM and IALM methods
are the summarized below:

{

‖𝑫−𝑨𝑘−𝑬𝑘‖𝐹

‖𝑫‖𝐹
< 𝜀1

𝑑𝑖𝑠𝑡(𝜕‖𝑨∗‖∗,𝜕(‖𝜆𝑬
∗‖1))

‖𝑫‖𝐹
< 𝜀2

 (4.50)

, where the 𝑑𝑖𝑠𝑡(.) operation in the second condition of (4.50) is defined as follows:

𝑑𝑖𝑠𝑡(𝑿, 𝒀) = 𝑚𝑖𝑛(‖𝑥 − 𝑦‖𝐹 | 𝑥 ∈ 𝑿, 𝑦 ∈ 𝒀) (4.51)

As far as the EALM method is concerned, the second condition of (4.50) holds always
true, due to the inner loop of the algorithm, so its check is superfluous. On the other hand,
this is not the case with the IALM method, and to make things even worse, this check is
computationally expensive -as explained in [42]. To avoid such inconvenient situations,
what is proposed in [42] is the replacement of the second condition of (4.50) with the
following one:

‖𝒀�̂� − 𝒀𝑘‖𝐹 < 𝜇𝑘−1
‖𝑬𝑘 − 𝑬𝑘−1‖𝐹 (4.52)

The key idea behind such a choice is that it constitutes a good estimate of

𝑑𝑖𝑠𝑡(𝜕‖𝑨∗‖∗, 𝜕(‖𝜆𝑬
∗‖1)) as the following two conditions hold true:

{
𝒀�̂� ∈ 𝜕‖𝑨

∗‖∗
𝒀𝑘 ∈ 𝜕(‖𝜆𝑬

∗‖1)
 (4.53)

4.4.6 Step-Size Parameters

As far as the step-size parameter 𝜇𝑘 is concerned, what is proposed in [42] is the following
adaptive update:

𝜇𝑘+1 = {
𝜌𝜇𝑘,

𝜇𝑘‖𝑬𝑘+1−𝑬𝑘‖𝐹

‖𝑫‖𝐹
< 𝜀2

𝜇𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.54)

The adaptive nature of the above choice is preferred to a constant sequence {𝜇𝑘}, as it
constitutes a special case of the more general adaptive scenario, for which (4.54) is
proven to also hold true in [42].

4.4.7 Initialization Steps

Finally, the determination of the specific values of the parameters involved in the above
criteria has to take place.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 53

According to [42], as far as the EALM method is concerned, we have:

{
𝜇0 =

0.5

‖𝑠𝑔𝑛(𝑫)‖2

𝜌 = 6
 (4.55)

For the inner loop, the stopping criteria are the following ones:

{

‖𝑨𝑘

𝑗+1
−𝑨𝑘

𝑗
‖
𝐹

‖𝑫‖𝐹
< 10−6

‖𝑬𝑘
𝑗+1

−𝑬𝑘
𝑗
‖
𝐹

‖𝑫‖𝐹
< 10−6

 (4.56)

, while for the outer loop the respective criterion is:

‖𝑫−𝑨𝑘
∗−𝑬𝑘

∗ ‖
𝐹

‖𝑫‖𝐹
< 10−7 (4.57)

In what has to do with the IALM method, the respective initial setting to (4.55) takes the
form:

{
𝜇0 =

1.25

‖𝑫‖2

𝜌 = 1.6
 (4.58)

As for the parameters involved in the stopping criteria, the following choice is proposed
([42]):

{
𝜀1 = 10−7

𝜀2 = 10−5
 (4.59)

4.5 Alternating Direction Method

The ALM method analyzed above is very elegant strategy for treating the RPCA problem,
with great theoretical as well as numerical results. However, if we examine a bit closer
the RPCA problem (3.6), we could notice that is a “well-structured” one -in the sense that
it is separable both in the objective function as well as in the constraints. With that thought
as a starting point, it was proposed in [72] to adopt the Alternating Direction Method
(ADM, also known as the Alternating Direction Method of Multipliers (ADMM)) for
exploiting exactly this favorable structure of the problem.

In general, the ADM method consists a variant of the standard ALM method that uses
partial updates (similar to the Gauss-Seidel Method for solving linear equations) for the
Dual Variables. More precisely, it tackles convex optimization problems with linear
constraints -exploiting their separable nature- of the form:

min
𝒙
𝑓(𝒙) + 𝑔(𝒙) (4.60)

The above optimization problem is equivalent to the constrained one:

min
𝑠.𝑡.𝒙=𝒚

𝑓(𝒙) + 𝑔(𝒚) (4.61)

Though this change may seem trivial, the problem can now be treated using methods of
constrained optimization (in particular, the ALM method), and the objective function is
separable in 𝒙 as well as in 𝒚. The dual update requires solving a Proximity Function in 𝒙

and 𝒚 at the same time; the ADM method allows this problem to be solved approximately
by first solving for 𝒙 with 𝒚 fixed, and then solving for 𝒚 with 𝒙 fixed -exploiting in that way
the separable nature of the problem.

Rather than iterate until convergence (like the Jacobi Method), the algorithm proceeds
directly to updating the dual variable and then repeating the process. This is not

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 54

equivalent to the exact minimization, but surprisingly, it can still be shown that this method
converges to the right answer (under some assumptions). Because of this approximation,
the algorithm is distinct from the pure ALM method.

4.5.1 Algorithm Outline

As it was made clear in the above section, when referring to the RPCA problem:

min
𝑠.𝑡.𝑩+𝑨=𝑪

‖𝑩‖∗ + 𝛾‖𝑨‖1 (4.62)

, where 𝛾 > 0, the augmented Lagrangian function defined in (4.42) has the following
form:

𝐿(𝑨,𝑩, 𝒁) = ‖𝑩‖∗ + 𝛾‖𝑨‖1 + ⟨𝒁, 𝑨 + 𝑩 − 𝑪⟩ +
𝛽

2
‖𝑨 + 𝑩 − 𝑪‖𝐹

2 (4.63)

, where 𝛽 > 0 represents a penalty parameter for violating the linear constraints and 𝒁 ∈
𝑅𝑚×𝑛 is the Lagrange multiplier of the linear constraints. After applying the ALM method,
the solution to the problem is computed iteratively throughout the following scheme:

{
(𝑨𝑘+1, 𝑩𝑘+1) ∈ 𝑎𝑟𝑔 min

𝑠.𝑡.𝑨,𝑩∈𝑅𝑚×𝑛
{𝐿(𝑨,𝑩, 𝒁𝑘)}

𝒁𝑘+1 = 𝒁𝑘 − 𝛽(𝑨𝑘+1 + 𝑩𝑘+1 − 𝑪)
 (4.64)

As it is obvious from (4.64), the low-rank component as well as the sparse one are
minimized simultaneously. Nevertheless, if we take advantage of the separable flavor of
the objective function as well as of that of the linear constraints, the above minimization
can take place separately leading to the ADM approach proposed in [72]:

{

𝑨𝑘+1 ∈ 𝑎𝑟𝑔 min
𝑠.𝑡.𝑨∈𝑅𝑚×𝑛

{𝐿(𝑨,𝑩𝑘, 𝒁𝑘)}

𝑩𝑘+1 ∈ 𝑎𝑟𝑔 min
𝑠.𝑡.𝑩∈𝑅𝑚×𝑛

{𝐿(𝑨𝒌+𝟏, 𝑩, 𝒁𝑘)}

𝒁𝑘+1 = 𝒁𝑘 − 𝛽(𝑨𝑘+1 + 𝑩𝑘+1 − 𝑪)

 (4.65)

Then, as it is explained in details in [72], the two first optimization problem of (4.65) can
be solved as follows:

{

𝑨𝑘+1 =
1

𝛽
𝜡𝑘 − 𝜝𝜅 + 𝑪 − 𝑃

𝛺∞

𝛾
𝛽⁄
[
1

𝛽
𝜡𝑘 − 𝜝𝜅 + 𝑪]

𝑩𝑘+1 = 𝑼𝑘+1𝑑𝑖𝑎𝑔 (𝑚𝑎𝑥 {𝜎𝑖
𝜅+1 −

1

𝛽
, 0}) (𝑽𝑘+1)𝑇

 (4.66)

, where 𝑃
𝛺∞

𝛾
𝛽⁄
 denotes the Euclidean Projection onto the set:

𝛺∞

𝛾
𝛽⁄
= {𝑿 ∈ 𝑅𝑛×𝑛 | −

𝛾

𝛽
≤ 𝑋𝑖𝑗 ≤

𝛾

𝛽
} (4.67)

, while at the same time 𝑼𝑘+1 ∈ 𝑅𝑚×𝑟 and 𝑽𝑘+1 ∈ 𝑅𝑛×𝑟 are obtained via the following SVD:

{
𝑪 − 𝑨𝑘+1 +

1

𝛽
𝒁𝑘 = 𝑼𝑘+1𝜮𝑘+1(𝑽𝑘+1)𝑇

𝜮𝑘+1 = 𝑑𝑖𝑎𝑔 ({𝜎𝑖
𝑘+1}

𝑖=1

𝑟
)

 (4.68)

Taking into mind the above approach, the ADM method can then be formulated as in the
following image:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 55

Image 15: The Alternating Direction Method Algorithm

4.5.2 SVD Computation

Obviously, as it is clear from Image 15, the most computational “thirsty” step of the ADM

method is that related to the SVD computation, with complexity 𝑂(𝑛3) ([30]). In order to
make such a computation even more efficient, the aid of the PROPACK package ([41])
was once more proven priceless, as was also for most of the methods described in this
Chapter.

4.5.3 Step-Size Parameters

As far as the step-size parameter 𝛽 is concerned, in [72] is proposed to be set to the
following constant value:

𝛽 =
0.25𝑚𝑛

‖𝑪‖1
 (4.69)

Concerning an adaptive strategy for the update of the step-size parameter 𝛽, the reader
is referred to [72] for further information as well as details about such a possibility.

4.5.4 Initialization Steps

In what has to do with the relaxation parameter 𝛾, in [72] is proposed to be evaluated as
follows:

{
𝛾 =

𝑡

1−𝑡

𝑡 ∈ (0,1)
 (4.70)

The rationale of such a choice is that the RPCA problem (4.62) now takes the following
form:

min
𝑠.𝑡.𝑩+𝑨=𝑪

(1 − 𝑡)‖𝑩‖∗ + 𝑡‖𝑨‖1 (4.71)

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 56

, in which the involved parameter 𝑡 lives in a finite interval compared to the infinite one

concerning the primary relaxation parameter, as 𝛾 ∈ (0,∞). In order to achieve the best
balance between the two terms of the objective function in (4.71), an interesting strategy

is proposed in [72] -based on the admission of 𝑡 staying away from the extreme points of
its “living space” (i.e. 0 and 1). After many practical tests, the parameter 𝑡 is proposed in
[72] to be set to 𝑡 = 0.1, in order to achieve the aforementioned balance.

4.5.5 Stopping Criteria

The stopping criterion of the ADM method is related to the “amount” of the relative error

between the original low-rank and sparse components we wish to recover, (𝑩∗, 𝑨∗), and

the numerical solution obtained for them via the ADM method, (𝑩�̂� , 𝑨�̂�), that can be

tolerated. In other words, the ADM method is proposed in [72] to be terminated when the

quality of recovery drops below a predefined tolerance 𝜀 > 0 (i.e. 𝜀 = 10−6):

‖(𝑩�̂�,𝑨�̂�)−(𝑩
∗,𝑨∗)‖

𝐹

‖(𝑩∗,𝑨∗)‖𝐹+1
≤ 𝜀 (4.72)

If we interpret the above criterion in terms of transition from a specific iteration, 𝑘, of the

algorithm to its consecutive one, 𝑘 + 1, then it takes the following form:

‖(𝑩𝑘+1,𝑨𝑘+1)−(𝑩𝑘,𝑨𝑘)‖
𝐹

‖(𝑩𝑘,𝑨𝑘)‖
𝐹
+1

≤ 𝜀 (4.73)

4.6 Comparison of Algorithms

Various methods were presented throughout this Chapter for dealing with the RPCA
problem. Of course, each one of them has its pros and cons -depending each time on
which specific application problem we wish to apply them. In order to avoid such an
“unfair” regime, we decided at the present section of this thesis to carry out a comparison
among them based on well-known metrics used for such purposes in this specific
scientific field.

4.6.1 Simulation Conditions

Before mentioning those Key Performance Indicators (KPI) which will constitute the basis
for the upcoming comparison, we should make clear at this point the circumstances under
which this comparison is going to take place.

First of all, the implementation of the aforementioned algorithms was done in Matlab, as
well as the simulation tests. The respective code of each one of them was kindly uploaded
by the authors to the website maintained by the research group of Professor Yi Ma at the
University of Illinois at Urbana-Champaign ([50]). All the simulations were conducted and
timed on the same Toshiba Satellite laptop, with an Intel Core i7-3630QM CPU @
2.40GHz processor and 4.00GB memory, running Windows 10 and Matlab version
R2012b.

Furthermore, we denote the true solution of the RPCA problem as (𝑨0, 𝑬0), where:

{
𝑨0 ∈ 𝑅

𝑚×𝑚

𝑬0 ∈ 𝑅
𝑚×𝑚 (4.74)

In our simulations, the low-rank component 𝑨0 is generated as a random 𝑚 ×𝑚 square
matrix of rank 𝑟. This is achieved via the multiplication of two independent factors:

{ 𝑳 ∈ 𝑅
𝑚×𝑟

𝑹𝑇 ∈ 𝑅𝑟×𝑚
 (4.75)

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 57

, which are matrices whose elements are Independent and Identically Distributed (I.I.D. /
i.i.d.) Gaussian random variables with zero mean and unit variance (see [15] for more

details). Then, 𝑨0 is set as their respective product 𝑳𝑹𝑇.

As far as the sparse component 𝑬0 is concerned, it is generated as a sparse matrix whose
support is chosen uniformly at random, and whose non-zero elements are i.i.d. uniformly

in the interval [−500,500].

Then, the input matrix of the algorithmic schemes to be tested is set as:

𝑫 = 𝑨0 + 𝑬0 (4.76)

, while its output is denoted as the ordered pair (𝑨, 𝑬).

Concerning the weighting parameter 𝜆, it is universally selected for all the algorithmic
schemes to be tested as proposed in Chapter 3 ([19]):

𝜆 =
1

√max𝑚,𝑛
(𝑚,𝑛)

=
1

√𝑚
 (4.77)

Furthermore, each algorithm terminates its main iteration loop for finding the solution to
the RPCA problem, with one of the following two different ways:

 The relative error of reconstruction of the data matrix has exceeded a predefined

tolerance set to 𝜀 = 10−6:

‖𝑫−𝑨−𝑬‖𝐹

‖𝑫‖𝐹
< 10−6 (4.78)

 The number of iterations performed by the algorithm has reached the threshold of

maximum number of iterations permitted, which is set to 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10000.

In what has to do with the specific parameters of each algorithm separately, they are
chosen as follows:

 SVT algorithm:

 𝜏 = 10000: The threshold parameter 𝜏 is set to 10000 for accuracy reasons,
as proposed in [69]. Nevertheless, if the dimension of the problem is low, a
good choice would also be the following one:

𝜏 = 5√𝑚𝑛 (4.79)

 𝛿 = 0.9: The value of the step-size parameter 𝛿 is chosen in this way for
speed-up reasons of the algorithm.

 APG algorithm:

 𝛿 = 10−9: The value of the step-size parameter 𝛿 is chosen in this way for
speed-up reasons of the algorithm.

 𝜂 = 0.9: The value of this relaxation parameter is chosen exactly as
proposed in [43].

 DM algorithm:

 𝛿 = 0.1: The value of the sequence of the step-size parameters 𝛿𝑘 is
initialized in this way for accuracy reasons of the algorithm, concerning its
adaptive changing during the optimization process.

 EALM algorithm:

 𝜌 = 6: The adaptive incremental of the step-size parameters’ sequence {𝜇𝑘}
is chosen exactly as proposed in (4.55) ([42]).

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 58

 IAML algorithm:

 𝜌 = 1.6: The adaptive incremental of the step-size parameters’ sequence
{𝜇𝑘} is chosen exactly as proposed in (4.58) ([42]).

 ADM algorithm:

 𝑡 =
𝜆

𝜆+1
: As it was made clear from (4.70) the relaxation parameter 𝛾 plays

the role of the respective parameter 𝜆 for all the other algorithms, with the
difference however that it depends on the parameter 𝑡 for convenience
reasons of narrowing the respective interval of possible values. For reasons

of fairness we chose to select 𝑡 in this way (and not as 𝑡 = 0.1, which
proposed in [72]), in order for the respective relaxation parameter to have
the same “behavior” as in the rest of the algorithms.

4.6.2 Exact Recoverability

The first KPI has to do with the relative error of reconstruction concerning the low-rank as

well as the sparse component of the data matrix, 𝑨 and 𝑬 respectively, produced by each
one of the above algorithms. However, more emphasis should be given to the low-rank
component rather than the sparse one, as it is clear from the respective papers describing
the aforementioned algorithms. The only reasoning for adopting such a choice is the
viewpoint of the whole theory developed in the previous Chapter, which confronts the
RPCA problem as recovering a low-rank matrix from gross errors ([19]). In such a case,
the relative reconstruction error of the sparse component plays a more subsidiary role
rather than a central one -which is assigned to the low-rank component.

More precisely, for each triplet {𝑚, 𝑟𝑎𝑛𝑘(𝑨0), ‖𝑬0‖0} the RPCA problem was solved for

the same input data matrix 𝑫 (created as mentioned before) using the algorithmic
schemes cited in this Chapter, and at each time we measure the relative error of
reconstruction of the low-rank and the sparse component of the data matrix:

{

‖𝑨−𝑨0‖𝐹

‖𝑨0‖𝐹
‖𝑬−𝑬0‖𝐹

‖𝑬0‖𝐹

 (4.80)

Another interesting KPI is the number of iterations required for convergence of each
algorithm, which indicates the amount of computational burden that has to be lifted by the
specific solver.

Furthermore, the total computation time in seconds performed by each algorithm until
convergence is reported likewise, as it consists a metric of speed of each solver which
indicates the time it requires for coming up with the solution of the RPCA problem.

In addition, the number of SVDs performed by each algorithm is also recorded, as some
of the algorithms use partial SVD techniques (such as the Partial Accelerated Proximal
Gradient Algorithm -PAPG- which is mentioned below as a speed-up version of the
classical APG algorithm) which lead to lower computational effort -a difference although
which is clearer as well as important as the dimension of the problem augments.

There were adopted two different scenarios concerning the “level of low rankness” as well
as the “level of sparsity” of the respective components of our input data matrix. In the first
one, the experimental regime is as follows:

{
𝑟𝑎𝑛𝑘(𝑨0) = 0.05𝑚

‖𝑬0‖0 = 0.05𝑚2 (4.81)

, while the second one is quite more challenging:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 59

{
𝑟𝑎𝑛𝑘(𝑨0) = 0.05𝑚

‖𝑬0‖0 = 0.10𝑚2 (4.82)

The respective results of each one scenario are reported in the following tables:

Table 3: Comparison between different algorithmic schemes on the RPCA problem-Scenario 1

Dimension 𝒎 Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 # SVDs # Iterations Time(s)

500 SVT

APG

PAPG

DM

EALM

IALM

ADM

8.75 × 10−6

9.23 × 10−6

8.50 × 10−6

8.01 × 10−6

8.18 × 10−7

4.76 × 10−6

5.24 × 10−6

9.09 × 10−7

7.34 × 10−7

7.32 × 10−7

9.00 × 10−7

2.00 × 10−7

1.02 × 10−6

9.26 × 10−7

25

25

25

25

25

25

25

12512

12510

12510

12500

12500

12498

12498

3689

251

251

1461

28

15

39

3689

128

128

256

5

15

39

835.92

28.66

24.44

120.65

3.26

1.23

3.69

1000 SVT

APG

PAPG

DM

EALM

IALM

ADM

3.48 × 10−6

6.40 × 10−6

6.71 × 10−6

3.24 × 10−6

6.50 × 10−7

1.31 × 10−6

3.17 × 10−6

1.00 × 10−6

7.18 × 10−7

7.98 × 10−7

9.98 × 10−7

2.15 × 10−7

4.07 × 10−7

1.04 × 10−6

50

50

50

50

50

50

50

50122

50104

50149

49993

49996

49993

49991

7446

251

249

3304

28

17

50

7446

128

127

470

5

17

50

11536.43

169.58

96.91

1347.00

17.46

5.25

28.35

1500 SVT

APG

PAPG

DM

EALM

IALM

ADM

3.30 × 10−6

5.23 × 10−6

5.48 × 10−6

5.01 × 10−6

4.00 × 10−7

2.27 × 10−6

2.47 × 10−6

1.04 × 10−6

7.16 × 10−7

7.96 × 10−7

8.08 × 10−7

1.54 × 10−7

8.69 × 10−7

9.93 × 10−7

75

75

75

75

75

75

75

112501

112683

112767

112489

112498

112490

112493

6155

252

249

7592

28

16

62

6155

128

127

1004

5

16

62

29058.89

608.61

254.38

9028.23

54.09

13.28

132.59

Table 4: Comparison between different algorithmic schemes on the RPCA problem-Scenario 2

Dimension 𝒎 Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 # SVDs # Iterations Time(s)

500 SVT

APG

PAPG

DM

EALM

IALM

ADM

1.22 × 10−5

1.15 × 10−5

1.21 × 10−5

6.54 × 10−6

1.29 × 10−6

8.34 × 10−6

5.87 × 10−6

1.89 × 10−6

8.26 × 10−7

9.17 × 10−7

3.22 × 10−6

1.82 × 10−7

1.01 × 10−6

7.56 × 10−7

31

25

25

25

25

25

25

25136

25118

25145

24999

25000

24997

24997

10000

256

254

5507

32

17

108

10000

130

129

630

5

17

108

9160.13

28.91

24.92

620.83

3.64

1.44

10.26

1000 SVT

APG

4.73 × 10−6 1.07 × 10−6 82

50

100504

100365

10000

256

10000

130

21456.78

172.11

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 60

PAPG

DM

EALM

IALM

ADM

8.13 × 10−6

7.84 × 10−6

5.05 × 10−6

8.73 × 10−7

5.72 × 10−6

4.71 × 10−6

8.24 × 10−7

8.30 × 10−7

1.05 × 10−6

1.75 × 10−7

1.03 × 10−6

1.02 × 10−6

50

50

50

50

50

101622

100002

99995

99990

99988

255

6493

32

17

99

130

783

5

17

99

98.62

2510.69

19.79

5.12

55.08

1500 SVT

APG

PAPG

DM

EALM

IALM

ADM

3.89 × 10−6

6.62 × 10−6

6.48 × 10−6

4.08 × 10−6

6.16 × 10−7

3.95 × 10−6

3.84 × 10−6

1.02 × 10−6

8.20 × 10−7

8.17 × 10−7

9.61 × 10−7

1.39 × 10−7

8.70 × 10−7

1.03 × 10−6

113

75

75

75

75

75

75

225532

225722

225488

225001

224999

224983

224987

10000

256

256

9507

32

17

91

10000

130

130

1110

5

17

91

49652.18

624.77

259.77

15904.94

60.08

14.19

198.02

As it is obvious from the above tables, there are many interesting conclusions arising from
both the scenarios examined. First of all, concerning the SVT algorithm, it should be
mentioned that on the one hand it achieves good accuracy results for the low-rank
component but on the other hand the time needed for such a result is prohibitive. The
reason for that to happen is obviously that it has to compute a SVD per iteration, which
makes its computational burden quite significant. As a result, as the dimension of the
problem increases the algorithm does not scale well, leading to computational time of
several hours for dimensions exceeding 1000 -which although is usually the case in
practice.

As far as the APG algorithm is concerned, it achieves comparable results in terms of the
reconstruction error of the low-rank component with those of the SVT algorithm.
Nevertheless, it converges much faster than the SVT algorithm, as the continuation
technique involved in it plays a crucial role towards that direction. Consequently, the total
computational time is significant less than that of the SVT algorithm, as well as the number
of iterations needed for convergence -especially when the dimension of the problem rises.
We should also mention the fact that if we adopt the PAPG version of the APG algorithm,
the computational time can be further reduced, as the SVDs per iteration are not
computed exactly but partially. Although at the beginning the gain may seem
meaningless, it becomes quite clearer as we augment the dimension of the problem.

Concerning the DM algorithm, it is obvious from both Tables 3 and 4 that its accuracy of
recovering the low-rank component is better than that of the APG algorithm as well as
that of the SVT one. Of course such an advantage has its trade-off, which in that case is
depicted to the iterations needed for convergence and consequently the total
computational time. As a result, the DM algorithm constitutes a good alternative if we care
about accuracy, but not a good one if we do not have the time to achieve it.

In what has to do with the ALM algorithm, we should highlight the fact that it achieves the
best performance concerning both the accuracy of recovering the low-rank component
as well as the time required to achieve it. It is significantly faster than all the other
algorithms, a fact that arises from the adoption of an ADM approach for exploiting the
separable nature of the RPCA problem. Furthermore, the ALM method scales quite well
as the dimension of the problem increases, requiring less than a minute to recover the
solution for matrix dimensions exceeding 1000. We should not forget to mention here the
fact that if we adopt the IALM version, the time needed for convergence is significantly
reduced -as becomes clear from Tables 3 and 4. The reason for that to happen is that

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 61

the required number of partial SVDs for the IALM version is significantly less than that of
the EALM one, leading to less computational time.

Finally, the ADM approach also behaves quite well in what has to do with both its accuracy
and its computational time. More precisely, it overcomes the SVT algorithm as well the
APG and the DM ones. At the same time, the time needed to achieve such a performance
is also less than that of the aforementioned algorithms, making it a good alternative for
tackling the RPCA problem. A fact that should be also mentioned here is that the ADM
algorithm seems less accurate as well as slower than both the EALM and IALM
algorithms. Such a thing holds true, but does not tell the whole truth: in fact, both versions
of the ALM algorithm adopt the approach proposed in [72] for updating separately the
low-rank and sparse components, but at the same time the involved step-size parameters
are adaptively updated. Such a regime does not hold true in the ADM approach proposed

in [72], in which the step-size parameter 𝛽 has a constant value from the beginning of the
algorithm -as it is obvious from (4.69). Consequently, the accuracy of the recovered low-
rank component and the time needed to achieve it are a little worse than those of the
EALM and IALM algorithms. Although, the credits of treating separately the low-rank and
the sparse components should be given to the ADM algorithm.

4.7 A Case Study: Image De-Noising

In the final section of this thesis, we chose to cope with the well-known problem of Image
De-Noising. More precisely, we selected to formulate the image de-noising task in terms
of the RPCA problem, and subsequently try to tackle it with the algorithmic methods
described in this Chapter, in order to have a more descriptive view of their performance
in a more realistic application than the initial-random experimental evaluation which took
place in the previous section.

As it is known from the respective bibliography, image de-noising is the process of
removing noise from a noise-infected image. In general, it is a quite challenging task, as
there are many different types of noise that can affect an image either accidentally or on
purpose. For example, in salt and pepper noise (sparse light and dark disturbances),
pixels in the image are very different in color or intensity from their surrounding pixels; the
defining characteristic is that the value of a noisy pixel bears no relation to the color of
surrounding pixels. Generally this type of noise will only affect a small number of image
pixels. When viewed, the image contains dark and white dots, hence the term salt and
pepper noise. As another example, we could refer to the probably most well-known type
of noise, the Gaussian noise: in Gaussian noise, each pixel in the image will be changed
from its original value by a (usually) small amount. It owes its name to its histogram
visualization, a plot of the amount of distortion of a pixel value against the frequency with
which it occurs, which in that case shows a normal distribution of noise. Among many
reasons that have made it so popular (i.e. easy mathematical manipulation), probably the
most important one comes from the field of statistics, and has the following intuitive
interpretation: while other distributions are possible, the Gaussian (normal) distribution is
usually a good model, due to the Central Limit Theorem that states that the sum of
different noises tends to approach a Gaussian distribution.

Of course, there are many algorithms designed to tackle these problems -each one trying
to take advantage from the specific application in which is used probably. What all
algorithmic methods which cope with the image de-noising task weight in general, are the
following factors:

 Available time and computer power: As an example to set our notation, we could
think that it is much more difficult for a digital camera to apply image de-noising in

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 62

a fraction of a second using a tiny onboard CPU, than for a desktop computer
which has much more power and time

 Desired level of details: In many cases we have to decide whether sacrificing
some real detail is acceptable if it allows more noise to be removed (in other words,
we have to decide how “aggressive” we should be vis-à-vis variations in the image
that can be treated as noise)

4.7.1 Simulation Conditions

Taking the above information into mind, we decided to formulate the image de-noising
pursuit in terms of the RPCA problem as follows: we select a low-rank image (or an

approximately one) to be our low-rank component 𝑨0 ∈ 𝑅
𝑚×𝑚. Afterwards, we

contaminate it with outlier noise (𝑬0 ∈ 𝑅
𝑚×𝑚) selected uniformly at random -exactly as in

the previous experimental section. The “sparsity level” for this component was chosen as

in (4.81) to be ‖𝑬0‖0 = 0.05𝑚2. As a result, their superposition data matrix 𝑫 is going to
be the noise-infected image which we seek to de-noise.

Mainly for time-saving reasons we chose to address this problem via the use of the three
fastest algorithmic methods described in the previous section (i.e. EALM, IALM, and
ADM). The respective parameters remain the same as was the case before, mostly for
“fairness reasons”. In what has to do with the KPIs used for the upcoming ranking of the
algorithms, they also remain the same with those provided in Tables 3 and 4, but due to
the application studied an additional one was also put into the frame: the Peak-Signal-to-
Noise-Ratio (PSNR). PSNR is an engineering term for the ratio between the maximum
possible power of a signal and the power of corrupting noise that affects the fidelity of its
representation. Because many signals have a very wide dynamic range, PSNR is usually
expressed in terms of the logarithmic decibel scale. PSNR is most commonly used to
measure the quality of reconstruction of lossy compression codecs (i.e. image
compression). The signal in this case is the original data, and the noise is the error
introduced by compression. In our case, the noise-free signal is going to be the original
images to be tested each time, while the noise term is going to be dominated by the
sparse outliers.

In mathematical terms, the PSNR metric is defined via the MSE between our original
noise-free image (NFI) and its noisy approximation (NAI):

𝑀𝑆𝐸 =
∑ ∑ [𝑁𝐹𝐼(𝑖,𝑗)−𝑁𝐴𝐼(𝑖,𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0

𝑚𝑛
 (4.83)

Then the PSNR (in dB) is then defined as follows:

𝑃𝑆𝑁𝑅 = 10 log10 (
(𝑚𝑎𝑥𝑁𝐹𝐼)

2

𝑀𝑆𝐸
) (4.84)

, where 𝑚𝑎𝑥𝑁𝐹𝐼 is the maximum possible pixel value of the image. In our experiments we
coped with square images (m=n), and the pixels are represented using 8 bits per sample.

As a result, 𝑚𝑎𝑥𝑁𝐹𝐼 value is going to be 255.

The selection of the PSNR metric was based on the one hand on its relative easy
computation, while on the other hand when comparing image de-noising algorithms the
PSNR metric is an approximation to human perception of reconstruction quality. In other
words, this metric gives an intuitive argument of whether the performance of a specific
algorithm was satisfactory or not.

For the better understanding of the algorithms’ behavior under different real-application
circumstances, we sketched two different scenarios: the noiseless and the noisy one.
Both of them are described in details in the upcoming sections, together with their results
and the respective conclusions occurring from them.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 63

4.7.2 Noiseless Scenario

In the first scenario, the experimental regime is the one described just above. In other

words, the data matrix 𝑫 is the superposition of the original image and the outlier noise
added to it. The test set included three different images, in terms of image contrast as
well as image resolution. In plain English, we used images of different dimensions and
different “level of low-rankness”. More precisely, the first test-image was one with

resolution of 512 × 512 while the upcoming two had a double resolution each time
(1024 × 1024 and 2048 × 2048 respectively). In order to provide a better understanding
of the whole de-noising process, for each one of them, we present the following figures:

 Original image: The original image to be infected with outlier noise

 Noisy image: The noise-infected image to be de-noised by the three different
algorithmic methods

 Clean-Reconstructed image: The de-noised image produced by each one of the
three algorithmic methods

 Estimated outlier noise: The portion of the outlier noise captured as the sparse
component by each one of the three algorithmic methods

Furthermore, the performance of each one of the three used algorithmic methods,
according to the KPIs mentioned above, is recorded and subsequently plotted versus the
number of iterations needed for convergence -in order to have a visualization of their
relative changes during the de-noising process. The respective results are summarized
into a, similar to Tables 3 and 4, result-table -which will help in the conclusion extraction
process and therefore is presented at the end of the whole process.

For the 512 × 512 image resolution case, the selected image was one depicting one of
the famous San Francisco bridges, and is shown below:

Image 16: Original Image-Bridge

Its noisy counterpart is then depicted in the following image:

Original Image

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 64

Image 17: Noisy Image-Bridge

The task of de-noising the above noisy image is tackled by the three fastest algorithms
examined in this Chapter, as mentioned earlier. For the EALM algorithm, the
reconstructed image as well as the estimated outlier noise are depicted in the following
images:

Image 18: Reconstructed Image-Bridge-EALM

Noisy Image

Reconstructed Image-EALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 65

Image 19: Outliers-Bridge-EALM

The respective images for the IALM algorithm are the following ones:

Image 20: Reconstructed Image-Bridge-IALM

Outliers-EALM

Reconstructed Image-IALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 66

Image 21: Outliers-Bridge-IALM

As far as the ADM algorithm is concerned, its results are shown in the upcoming images:

Image 22: Reconstructed Image-Bridge-ADM

Outliers-IALM

Reconstructed Image-ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 67

Image 23: Outliers-Bridge-ADM

After the image de-noising process figures, it is deemed appropriate to show the quality
metrics used to measure the performance of the aforementioned algorithms. More
precisely, the relative error for the low-rank component (i.e. the reconstructed image) is
shown in the following figure:

Figure 2: RELR-Bridge

Outliers-ADM

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Numiter

|A
-A

0
| F

/|
A

O
| F

Relative Recovery Error for the Low-Rank Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 68

Subsequently, the relative error for the sparse component (i.e. the outliers) is depicted in
the following figure:

Figure 3: RES-Bridge

Furthermore, the rank of the low-rank component is shown below:

Figure 4: Rank-Bridge

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Numiter

|E
-E

0
| F

/|
E

O
| F

Relative Recovery Error for the Sparse Matrix

EALM

IALM

ADM

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

Numiter

R
a
n
k

Rank of the Low-Rank Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 69

At the same time, the cardinality of the sparse component is depicted below:

Figure 5: Cardinality-Bridge

Finally, the PSNR metric is depicted in the following figure:

Figure 6: PSNR-Bridge

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3
x 10

5

Numiter

C
a
rd

in
a
lit

y

Cardinality of the Sparse Matrix

EALM

IALM

ADM

0 100 200 300 400 500 600
10

15

20

25

30

35

Numiter

P
S

N
R

PSNR

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 70

For the 1024 × 1024 image resolution case, the selected image was one depicting lights
in a dark background, which is shown below:

Image 24: Original Image-Lights

Its noisy counterpart is then depicted in the following image:

Image 25: Noisy Image-Lights

For the EALM algorithm, the reconstructed image as well as the estimated outlier noise
are depicted in the following images:

Original Image

Noisy Image

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 71

Image 26: Reconstructed Image-Lights-EALM

Image 27: Outliers-Lights-EALM

The respective images for the IALM algorithm are the following ones:

Reconstructed Image-EALM

Outliers-EALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 72

Image 28: Reconstructed Image-Lights-IALM

Image 29: Outliers-Lights-IALM

As far as the ADM algorithm is concerned, its results are shown in the upcoming images:

Reconstructed Image-IALM

Outliers-IALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 73

Image 30: Reconstructed Image-Lights-ADM

Image 31: Outliers-Lights-ADM

In what has to do with the performance metrics for this case, the relative error for the low-
rank component is shown in the following figure:

Reconstructed Image-ADM

Outliers-ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 74

Figure 7: RELR-Lights

As for the relative error for the sparse component, it is depicted in the following figure:

Figure 8: RES-Lights

Furthermore, the rank of the low-rank component is shown below:

0 50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numiter

|A
-A

0
| F

/|
A

O
| F

Relative Recovery Error for the Low-Rank Matrix

EALM

IALM

ADM

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Numiter

|E
-E

0
| F

/|
E

O
| F

Relative Recovery Error for the Sparse Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 75

Figure 9: Rank-Lights

As for the cardinality of the sparse component, it is depicted below:

Figure 10: Cardinality-Lights

Finally, the PSNR metric is depicted in the following figure:

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

Numiter

R
a
n
k

Rank of the Low-Rank Matrix

EALM

IALM

ADM

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

9
x 10

5

Numiter

C
a
rd

in
a
lit

y

Cardinality of the Sparse Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 76

Figure 11: PSNR-Lights

Finally, in the case of the 2048 × 2048 image resolution, the selected image was one
depicting stones in a woody background, which is shown below:

Image 32: Original Image-Stones

Following the same pattern as above, its noisy counterpart is depicted below:

0 50 100 150 200 250 300 350 400 450
20

22

24

26

28

30

32

34

36

38

40

Numiter

P
S

N
R

PSNR

EALM

IALM

ADM

Original Image

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 77

Image 33: Noisy Image-Stones

The reconstructed image as well as the estimated outlier noise “produced” by the EALM
algorithm are depicted below:

Image 34: Reconstructed Image-Stones-EALM

Noisy Image

Reconstructed Image-EALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 78

Image 35: Outliers-EALM-Stones

Furthermore, the respective images “produced” by the IALM algorithm are shown below:

Image 36: Reconstructed Image-Stones-IALM

Outliers-EALM

Reconstructed Image-IALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 79

Image 37: Outliers-Stones-IALM

As for the ADM algorithm’s results, they are shown straightaway:

Image 38: Reconstructed Image-Stones-ADM

Outliers-IALM

Reconstructed Image-ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 80

Image 39: Outliers-Stones-ADM

As far as the performance metrics for the highest-resolution case are concerned, the
relative error for the low-rank component is depicted in the forthcoming figure:

Figure 12: RELR-Stones

At the same time, the respective relative error for the sparse component is shown below:

Outliers-ADM

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numiter

|A
-A

0
| F

/|
A

O
| F

Relative Recovery Error for the Low-Rank Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 81

Figure 13: RES-Stones

The rank of the low-rank component follows up:

Figure 14: Rank-Stones

As for the cardinality of the sparse component, it is depicted in the following figure:

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numiter

|E
-E

0
| F

/|
E

O
| F

Relative Recovery Error for the Sparse Matrix

EALM

IALM

ADM

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

Numiter

R
a
n
k

Rank of the Low-Rank Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 82

Figure 15: Cardinality-Stones

Finally, the PSNR metric is shown below:

Figure 16: PSNR-Stones

The above results can be summarized in the following table, which contains all the useful
information -for each different resolution image- which is needed to extract some initial

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Numiter

C
a
rd

in
a
lit

y

Cardinality of the Sparse Matrix

EALM

IALM

ADM

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

40

45

Numiter

P
S

N
R

PSNR

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 83

conclusions concerning the performance of the employed algorithms towards the image
de-noising pursuit:

Table 5: Comparison between different algorithmic schemes on the Image De-noising pursuit-
Noiseless Scenario

Image
Resolution

Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 PSNR # SVDs # Iterations Time(s)

𝟓𝟏𝟐 × 𝟓𝟏𝟐 EALM

IALM

ADM

8.14 × 10−2

8.26 × 10−2

8.14 × 10−2

1.02 × 10−1

1.03 × 10−1

1.02 × 10−1

309

302

273

164646

171560

142541

31.764

31.632

31.766

756

29

593

7

29

593

180.16

4.12

67.24

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 EALM

IALM

ADM

1.04 × 10−1

1.04 × 10−1

1.04 × 10−1

4.20 × 10−2

4.19 × 10−2

4.19 × 10−2

656

593

534

710035

683701

551198

39.491

39.498

39.502

612

28

439

8

28

439

1163.90

38.40

311.99

𝟐𝟎𝟒𝟖 × 𝟐𝟎𝟒𝟖 EALM

IALM

ADM

2.81 × 10−2

2.95 × 10−2

2.82 × 10−2

2.53 × 10−2

2.66 × 10−2

2.53 × 10−2

1300

1185

1042

2821847

2666190

2149958

43.890

43.456

43.873

523

31

396

8

31

396

9427.62

282.79

2573.47

If we take a deeper look at the aforementioned results, there are many interesting
conclusions that can come up into surface.

First of all, it is quite evident that in terms of the relative error of the low-rank component,
EALM and ADM achieve a slightly better performance than IALM. The situation is pretty
much the same in terms of the relative error for the sparse component also, although the
latter practically is a metric of less importance as explained also in the previous section
of this thesis. So if we care about more accurate results, picking one method among
EALM and ADM would seem a reasonable choice. The gain although does not seem so
astonishing.

In what has to do with the rank of the recovered solution, clearly the ADM method is the
leading one. The most interesting remark though concerning this metric is that as the
resolution of the image increases so does the gap between the “low-rankness” level of
the three examined methods. As a result, for handling images of even higher resolution,
it is reasonable to expect that the recovered solution obtained by the ADM method is
going to be the lowest-rank one, whose “gain” to that metric vis-à-vis the other three
methods is going to be proportional to the increase of the image resolution.

As far as the sparsity level of the obtained sparse component is concerned, even if its
utility is not as important as the above metric due to the conceptual structure of the RPCA
problem (recover a low-rank matrix from gross errors), the situation bears a strong
resemblance to that of the rank metric. In other words, the ADM method recovers the
sparsest solution followed by IALM and EALM. The difference of the sparsity level among
them is again proportional to the image resolution augmentation, which suggests that for
images of even higher resolution than those examined in the present thesis the regime is
going to ameliorate in favor of the ADM method.

In terms of the PSNR metric, the difference among the algorithms are almost insignificant.
Such a thing can be proven either by observing the respective values of the metric at
each different image resolution scenario (which differ either on the first or the second
decimal digit) or by observing the respective figures of the PSNR metric in which all three
algorithms reach almost the same final value. Furthermore, the reconstructed images
obtained by each algorithm bear a strong resemblance, which is indicative of the
aforementioned argument. What should be highlighted at this point though is the fact of
the clear improvement of the distinctive ability of the processed images as we increase

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 84

the resolution of the test-image. Furthermore, to this direction contributes also the higher-
level of “low-rankness” of a specific image, which results in better performance of the
algorithms as the contrast among different objects of the image becomes less significant.
Such a conclusion is depicted in terms of the PSNR metric, whose value has increased
about 12dBs from the lowest image resolution case to the highest one. This metric is of
crucial importance in image processing as it depicts the reconstruction quality of an
algorithm, and its amelioration up to more than 10dBs must give the credits to the
respective methods.

As far as the computational load is concerned, the number of SVDs required to obtain a
specific solution reveals two main conceptual results: the first one is that clearly the IALM
method is the less computational-thirsty one (with the respective number of SVDs staying
almost constant as the dimension of the problem increases), while the second one is that
the more we cope with images of low-contrast the better the performance of each
algorithm is going to be. Such a result of course owes its validity again to the
constructional nature of these algorithms for tackling problems which contain low-rank
structures in general.

Moreover, another result occurring from the above experiments is that the number of
required iterations for convergence stays pretty much the same for EALM and IALM
methods with a slight increase if we double the image resolution. Although this is not the
case with the ADM method, its performance ameliorates as the resolution of the image
increases as well as its “low-rankness” level.

Last but not least, there are some interesting results occurring from the computational
time needed for each algorithm to solve a problem of specific image resolution. If we
extend this argument a bit further, this metric is quite an important one -as it indicates the
performance of each algorithm in real applications where the lavishness of time is not
always guaranteed or even accepted. More precisely, the first conclusion is that clearly
IALM outperforms the other two methods -a difference which becomes quite evident in

the case of a 2048 × 2048 image resolution where the time required by IALM is up to 4.7
minutes while for ADM approaches 42 minutes and for EALM 2.5 hours.

The most interesting results although occur if we take a deeper look to the time needed
for each algorithm to transit from a lower-resolution image to a higher one as a relative
ratio: we observe that the EALM method requires about 6.4 times the time needed to

solve to 512 × 512 problem for coping with the 1024 × 1024 one, a situation which gets a

bit worse for the 2048 × 2048 case in which the respective ratio augments up to 8.1 times.
At the same time, the regime for the ADM method is 4.6 times for the transition from 512 ×
512 to 1024 × 1024 and 8.2 times for that from 1024 × 1024 to 2048 × 2048. On the
contrary, IALM may initially require 9.5 its first computational time for the first transition,
but as the dimension of the problem augments, this ratio is reduced to 7.4 times. As a
result, we could say that as the image resolution increases so does the gap between the
time needed for each algorithm to solve the problem. Consequently, the adaptive nature
of the IALM method (in terms of the step-sizes) combined with its non-exact computation
of the updates for the low-rank and sparse components can be proved very efficient for
tackling real application problems even for high-resolution images that lie into thousands
of dimensions.

Another interesting comment could be made about the relative speed of the fastest
method (i.e. IALM) compared to the other 2 as we transit to higher-resolution images. In

plain English, we observe that as for the 512 × 512 problem IALM is about 45 times faster
than EALM and 16 times faster than ADM, this relative ratio decreases as we double the

resolution of the image to 1024 × 1024 to 30 times for EALM and 8 times for ADM. Further
increase of the image resolution up to 2048 × 2048 does not change the situation

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 85

significantly, as the relative time ratios slightly augment up to 33 times and 9.1 times
respectively. As a consequence, we could say that as we increase the dimensionality of
the problem, the two slowest methods (i.e. ADM and EALM) will retain their current
performance compared to the fastest one (i.e. IALM) as their dependence seems to look
like a linear one with different scaling factors, as well as their relative ranking based on
the time metric.

4.7.3 Noisy Scenario

In the scenario studied in the above section, we supposed that our image was corrupted
only by outlier noise of very intense magnitude. However, in many real world applications
in the field of image processing, the observed image is often corrupted with noise (which
may be stochastic or deterministic) affecting every pixel of the image. Therefore, for the
techniques studied in the present thesis to be a good alternative for image de-noising
purposes, results that examine stability and accurate recovery in the presence of entry-
wise noise must be provided.

The whole experimental concept remains pretty much the same as in the aforementioned
scenario, but now the measurement model includes another one term standing for the
extra entry-wise noise added to each pixel of the image. In mathematical terms, our data
matrix is going to have to following form:

𝑫 = 𝑨0 + 𝑬0 + 𝑷0 (4.85)

, where 𝑨0 and 𝑬0 represent once more the low-rank and the sparse component
respectively, while 𝑷0 is a small-perturbation noise term.

From a theoretical point of view, the significance of the validity of the model described in
(4.85) is quite important in the sense that it provides sophisticated as well as apt
arguments for the stability of the RPCA decomposition of a matrix in its low-rank plus
sparse components in the presence of small entry-wise noise. At the same time, the
practical impact is also considerable as in many occasions imperfections that affect the
whole available data may happen during the acquisition process -leading to situations
that can be perfectly modeled like (4.85). Of course, at this point of this thesis, the goal is
by no means to provide theoretical results concerning the applicability of (4.85). The
diligent reader is referred to [74] for more details.

Before presenting the respective images for the present scenario, it is deemed

appropriate to refer to the kind of perturbation noise term 𝑷0 mentioned in (4.85). For our
experimental purposes we assumed that each entry of 𝑷0 is i.i.d. Gaussian random
variable with zero mean and 0.01 variance. This choice was made mainly to ensure that
the portion of the entry-wise noise is not insignificant, and really affects the image, in
order to be able to extract some useful conclusions about the performance of the three
different employed algorithmic methods under more challenging situations.

Taking the above information into mind, we continue by presenting the de-noising process

right away. For the 512 × 512 image resolution case, the original image which depicts
one of the famous San Francisco bridges is shown below:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 86

Image 40: Original Image-Bridge(Noisy)

Its noisy counterpart is then depicted in the following image:

Image 41: Noisy Image-Bridge(Noisy)

For the EALM algorithm, the reconstructed image as well as the estimated outlier noise
are depicted in the following images:

Original Image

Noisy Image

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 87

Image 42: Reconstructed Image-Bridge(Noisy)-EALM

Image 43: Outliers-Bridge(Noisy)-EALM

The respective images for the IALM algorithm are the following ones:

Reconstructed Image-EALM

Outliers-EALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 88

Image 44: Reconstructed Image-Bridge(Noisy)-IALM

Image 45: Outliers-Bridge(Noisy)-IALM

As far as the ADM algorithm is concerned, its results are shown in the upcoming images:

Reconstructed Image-IALM

Outliers-IALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 89

Image 46: Reconstructed Image-Bridge(Noisy)-ADM

Image 47: Outliers-Bridge(Noisy)-ADM

Concerning the quality metrics used to measure the performance of the aforementioned
algorithms in the present scenario, they are presented straight away. More precisely, the
relative error for the low-rank component is shown in the following figure:

Reconstructed Image-ADM

Outliers-ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 90

Figure 17: RELR-Bridge(Noisy)

Subsequently, the relative error for the sparse component is depicted in the following
figure:

Figure 18: RES-Bridge(Noisy)

Furthermore, the rank of the low-rank component is shown below:

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Numiter

|A
-A

0
| F

/|
A

O
| F

Relative Recovery Error for the Low-Rank Matrix

EALM

IALM

ADM

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Numiter

|E
-E

0
| F

/|
E

O
| F

Relative Recovery Error for the Sparse Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 91

Figure 19: Rank-Bridge(Noisy)

At the same time, the cardinality of the sparse component is depicted below:

Figure 20: Cardinality-Bridge(Noisy)

Finally, the PSNR metric is depicted in the following figure:

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

Numiter

R
a
n
k

Rank of the Low-Rank Matrix

EALM

IALM

ADM

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3
x 10

5

Numiter

C
a
rd

in
a
lit

y

Cardinality of the Sparse Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 92

Figure 21: PSNR-Bridge(Noisy)

For the 1024 × 1024 image resolution case, the original image which depicts lights in a
dark background, is shown below:

Image 48: Original Image-Lights(Noisy)

Its noisy counterpart is then depicted in the following image:

0 10 20 30 40 50 60 70 80
10

12

14

16

18

20

22

24

26

28

Numiter

P
S

N
R

PSNR

EALM

IALM

ADM

Original Image

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 93

Image 49: Noisy Image-Lights(Noisy)

For the EALM algorithm, the reconstructed image as well as the estimated outlier noise
are depicted in the following images:

Image 50: Reconstructed Image-Lights(Noisy)-EALM

Noisy Image

Reconstructed Image-EALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 94

Image 51: Outliers-Bridge(Noisy)-EALM

The respective images for the IALM algorithm are the following ones:

Image 52: Reconstructed Image-Lights(Noisy)-IALM

Outliers-EALM

Reconstructed Image-IALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 95

Image 53: Outliers-Lights(Noisy)-IALM

As far as the ADM algorithm is concerned, its results are shown in the upcoming images:

Image 54: Reconstructed Image-Lights(Noisy)-ADM

Outliers-IALM

Reconstructed Image-ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 96

Image 55: Outliers-Lights(Noisy)-ADM

In what has to do with the performance metrics for this case, the relative error for the low-
rank component is shown in the following figure:

Figure 22: RELR-Lights(Noisy)

As for the relative error for the sparse component, it is depicted in the following figure:

Outliers-ADM

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numiter

|A
-A

0
| F

/|
A

O
| F

Relative Recovery Error for the Low-Rank Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 97

Figure 23: RES-Lights(Noisy)

Furthermore, the rank of the low-rank component is shown below:

Figure 24: Rank-Lights(Noisy)

As for the cardinality of the sparse component, it is depicted below:

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Numiter

|E
-E

0
| F

/|
E

O
| F

Relative Recovery Error for the Sparse Matrix

EALM

IALM

ADM

0 50 100 150 200 250
0

100

200

300

400

500

600

Numiter

R
a
n
k

Rank of the Low-Rank Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 98

Figure 25: Cardinality-Lights(Noisy)

Finally, the PSNR metric is depicted in the following figure:

Figure 26: PSNR-Lights(Noisy)

Finally, in the case of the 2048 × 2048 image resolution, the original image which depicts
stones in a woody background, is shown below:

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Numiter

C
a
rd

in
a
lit

y

Cardinality of the Sparse Matrix

EALM

IALM

ADM

0 50 100 150 200 250
20

22

24

26

28

30

32

34

Numiter

P
S

N
R

PSNR

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 99

Image 56: Original Image-Stones(Noisy)

Following the same pattern as above, its noisy counterpart is depicted below:

Image 57: Noisy Image-Stones(Noisy)

The reconstructed image as well as the estimated outlier noise “produced” by the EALM
algorithm are depicted below:

Original Image

Noisy Image

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 100

Image 58: Reconstructed Image-Stones(Noisy)-EALM

Image 59: Outliers-Stones(Noisy)-EALM

Furthermore, the respective images “produced” by the IALM algorithm are shown below:

Reconstructed Image-EALM

Outliers-EALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 101

Image 60: Reconstructed Image-Stones(Noisy)-IALM

Image 61: Outliers-Stones(Noisy)-IALM

As for the ADM algorithm’s results, they are shown straightaway:

Reconstructed Image-IALM

Outliers-IALM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 102

Image 62: Reconstructed Image-Stones(Noisy)-ADM

Image 63: Outliers-Stones(Noisy)-ADM

As far as the performance metrics for the highest-resolution case are concerned, the
relative error for the low-rank component is depicted in the forthcoming figure:

Reconstructed Image-ADM

Outliers-ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 103

Figure 27: RELR-Stones(Noisy)

At the same time, the respective relative error for the sparse component is shown below:

Figure 28: RES-Stones(Noisy)

The rank of the low-rank component follows up:

0 50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numiter

|A
-A

0
| F

/|
A

O
| F

Relative Recovery Error for the Low-Rank Matrix

EALM

IALM

ADM

0 50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numiter

|E
-E

0
| F

/|
E

O
| F

Relative Recovery Error for the Sparse Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 104

Figure 29: Rank-Stones(Noisy)

As for the cardinality of the sparse component, it is depicted in the following figure:

Figure 30: Cardinality-Stones(Noisy)

Finally, the PSNR metric is shown below:

0 50 100 150
0

200

400

600

800

1000

1200

Numiter

R
a
n
k

Rank of the Low-Rank Matrix

EALM

IALM

ADM

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Numiter

C
a
rd

in
a
lit

y

Cardinality of the Sparse Matrix

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 105

Figure 31: PSNR-Stones(Noisy)

The above results can again be summarized in a table similar to Table 5. In this case,
this table is going to contain all those key elements allowing us to extract useful
information concerning the stability of the employed algorithmic methods under entry-
wise noise added to each image pixel:

Table 6: Comparison between different algorithmic schemes on the Image De-noising pursuit-

Noisy Scenario

Image
Resolution

Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 PSNR # SVDs # Iterations Time(s)

𝟓𝟏𝟐 × 𝟓𝟏𝟐 EALM

IALM

ADM

1.98 × 10−1

1.68 × 10−1

1.98 × 10−1

2.82 × 10−1

3.27 × 10−1

2.81 × 10−1

310

286

284

161326

203026

146675

24.036

25.493

24.036

1202

28

74

7

28

74

109.44

4.03

8.08

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 EALM

IALM

ADM

4.78 × 10−1

3.72 × 10−1

4.78 × 10−1

2.10 × 10−2

2.48 × 10−2

2.10 × 10−2

600

565

571

626535

838184

591403

26.261

28.451

26.260

1312

27

233

7

27

233

830.15

32.77

159.79

𝟐𝟎𝟒𝟖 × 𝟐𝟎𝟒𝟖 EALM

IALM

ADM

2.39 × 10−1

1.85 × 10−1

2.38 × 10−1

2.48 × 10−1

2.93 × 10−1

2.48 × 10−1

1196

1136

1138

2489325

3325088

2362938

25.317

27.507

25.318

1190

29

150

7

29

150

7547.67

281.24

982.62

If we look closer the results of the above table, there are many useful conclusions that
arise.

First of all, it is quite evident that compared to the noiseless scenario the reconstruction
error for the low-rank component is higher. Of course, this is a quite reasonable result as
the problem now is tougher than before due to the extra entry-wise Gaussian noise.
Although, if we address problems which contain low-contrast images (mainly which these

0 50 100 150
12

14

16

18

20

22

24

26

28

30

32

Numiter

P
S

N
R

PSNR

EALM

IALM

ADM

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 106

algorithms tackle better), the relative error drops, a quite encouraging result for handling
images of higher resolution.

In what has to do with the level of “low-rankness” of the acquired solution, the IALM
method seems turning the tide and achieving the best performance -surpassing the ADM
method which was the leading one in the noiseless scenario in terms of this performance
metric. The most interesting remark though concerning this metric is that as the resolution
of the image increases so does the gap between the “low-rankness” level of the two
aforementioned methods in contrast with the EALM one. As a result, for handling images
of even higher resolution, it is reasonable to expect that the recovered solution obtained
by the IALM and ADM methods is going to be of even lower rank than that by EALM, a
“gain” which is going to be proportional to the increase of the image resolution.

Concerning the sparsity level of the obtained sparse component, even if its utility is not
as important as the above metric (as also mentioned earlier), the situation bears a strong
resemblance to that of the noiseless case. In other words, the ADM method recovers
once more the sparsest solution but this time is followed by EALM and afterwards IALM.
The IALM method seems more prone to the addition of entry-wise noise to the image than
the other two methods in terms of this quality metric, a difference which becomes quite
clear as the resolution of the image increases. As a consequence, the more we augment
the noise power, the more favorable is going to be the case for the ADM method.

Furthermore, in perfect alignment with the above remark is another one concerning the
distinctive ability of the images occurring from the processing via the above mentioned
methods. More precisely, if we take a deeper look at them compared to the respective
ones occurred in the noiseless scenario, it is quite obvious that the de-noising process
has lower quality results. Of course such a result is quite logical, as our test images are
contaminated with quite a lot amount of noise -which makes the de-noising process
tougher. This difference is also depicted in terms of the PSNR metric (mentioned below),
which is clearly lower than in the noiseless case.

As far as the computational load is concerned, the number of SVDs required to obtain a
specific solution reveals two main conceptual results: the first one is that clearly the IALM
method is the less computational-thirsty one (with the respective number of SVDs staying
almost constant as the dimension of the problem increases) -just as in the noiseless case,
while the second one is that as we added extra entry-wise noise the performance of the
ADM method ameliorated while that of the EALM one deteriorated. Such a result indicated
that clearly the IALM method is the best one according to this performance metric even if
we add further noise to our test image, but at the same time the ADM method is also a
good alternative.

In terms of the PSNR metric, the situation is quite clear. More precisely, the odds are
clearly in favor of the IALM method, as the additional entry-wise noise leaded to its
overtaking in this performance index. Getting started from a 1.5dBs gain against the other
two methods for the lowest image resolution case, this gain of IALM seems widening and
consolidating over 2.2dBs as we increase the resolution of the test image. Furthermore,
the more noise we add to the image, the more this gap is widened. Such a thing can be
proven either by observing the respective values of the metric at each different image
resolution scenario or by observing the respective figures of the PSNR metric in which all
the aforementioned gap is quite evident. As a final result we could consequently say that
the IALM method seems being more stable to the addition of further noise to our image,
concerning the PSNR metric.

Moreover, another result occurring from the above experiments is that the number of
required iterations for convergence stays pretty much the same for EALM and IALM
methods, just as in the noiseless case. Although this is not the case with the ADM method,

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 107

its performance seems ameliorating as we added extra noise to the test image. Such a
thing is a quite encouraging one, as even if its performance is still the worst one among
the three employed methods it seems more stable to the addition of extra entry-wise
noise.

Last but not least, there are some interesting results occurring again from the
computational time needed for each algorithm to solve a problem of specific image
resolution. More precisely, the first conclusion is that clearly IALM once more outperforms
the other two methods -a difference which becomes quite evident in the case of the
highest image resolution where the time required by IALM to solve the problem is up to
4.6 minutes while for ADM approaches 16 minutes and for EALM 2 hours.

The most interesting results although occur if we take a deeper look to the time needed
for each algorithm to transit from a lower-resolution image to a higher one as a relative
ratio: we observe that the EALM method requires about 7.58 times the time needed to

solve to 512 × 512 problem for coping with the 1024 × 1024 one, a situation which gets a

bit worse for the 2048 × 2048 case in which the respective ratio augments up to 9.09
times. At the same time, the regime for the ADM method is 19.77 times for the transition

from 512 × 512 to 1024 × 1024 and 6.14 times for that from 1024 × 1024 to 2048 × 2048.
On the contrary, IALM initially requires 8.13 its first computational time for the first
transition, but as the dimension of the problem augments, this ratio is slightly augmented
up to 8.5 times. As a result, we could say that as the image resolution increases both 3
algorithms seem coping respectively well with that, but the rate of doing so is a bit higher
for the ADM method. On the contrary, the IALM method seems achieving a constant rate
of up to 8 times its previous required time, which may seem not having a decreasing rate,
but still is the fastest one as well as the more stable one.

Another interesting comment could be made about the relative speed of the fastest
method (i.e. IALM) compared to the other 2 as we transit to higher-resolution images. In

plain English, we observe that as for the 512 × 512 problem IALM is about 27.15 times
faster than EALM and 2 times faster than ADM, this relative ratio changes as we double

the resolution of the image to 1024 × 1024 to 25.33 times for EALM and 4.87 times for
ADM. Further increase of the image resolution up to 2048 × 2048 does not change the
situation significantly, as the relative time ratios are slightly modified to 26.83 times and
3.49 times respectively. As a consequence, we could say that as we increase the
dimensionality of the problem, the two slowest methods (i.e. ADM and EALM) seem
ameliorating their current performance compared to the fastest one (i.e. IALM). Such an
argument contributes to the fact of them coping better with the extra entry-wise noise in
terms of time metric than the IALM method, but at the same time, one should not surpass
the fact that the IALM method is still the fastest one and at the same time the one
achieving the best performance regarding the (crucial in this kind of application) PSNR
performance metric.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 108

5. CONCLUSIONS

The present thesis was focused on the theoretical as well as the algorithmic aspects of
the RPCA problem. In the beginning, we presented the classical PCA technique for
dimensionality reduction, mentioning those advantages that have made it so popular
among scientists from different fields and with different backgrounds. Subsequently, the
main disadvantage of it (i.e. its sensitivity to outliers) was clarified, triggering at the same
time the question of whether the whole method could become robust vis-à-vis gross
errors. Towards this direction, the whole theoretical aspects of the RPCA problem was
stated, concerning basic theorems, constructional limits occurring from them, as well as
applications of real life where the RPCA plays a key role.

Furthermore, the main research part of this thesis was focused on algorithmic schemes
which were developed exactly to tackle the RPCA problem. After each one of them was
presented in details -according to the respective publications- several experimental tests
among them took place in order to evaluate their performance under different
experimental circumstances. Subsequently, a real-application case-study from the
scientific field of image processing took place, in order to examine the performance of the
three fastest algorithmic methods studied in this thesis in more realistic datasets.

Based on widely used KPIs in this scientific field, which were presented in Chapter 4, we
could highlight the following conclusions:

 Concerning the relative error of reconstruction of the low-rank component, the ALM
algorithm (both the EALM and the IALM versions) is the most accurate one,
followed by the ADM, the DM, the SVT and finally by the APG algorithm.

 As far as the relative error of reconstruction of the sparse component is concerned,
the ALM algorithm (both the EALM and the IALM versions) is again the most
accurate one, followed this time by the APG, the ADM, the DM and finally by the
SVT algorithm.

 Concerning the number of SVDs computed by each algorithmic scheme until
convergence, the IALM version of the ALM algorithm does the less number of
computations. It is followed by the EALM version of the ALM algorithm, the ADM,
the APG, the DM and finally by the SVT algorithm. Obviously, the adoption of
versions of algorithms which adopt partial SVDs (such as PAPG and IALM) rather
than full ones could prove extremely useful concerning this KPI, especially as the
dimension of the problem augments.

 As far as the number of iterations required for convergence is concerned, the
EALM version of the ALM algorithm is the leading one, followed by the IALM
version of the ALM algorithm, the ADM, the APG, the DM and finally the SVT
algorithm. This KPI is related with the aforementioned one, as the SVD
computation is the most computational “thirsty” operation done by each algorithm.

 Concerning the total computational time of each algorithm, once more the ALM
algorithm proved to be the best one -independently of which one version was
adopted- followed by the ADM, the APG, the DM and the SVT algorithm. Once
more the number of the SVDs computed by each algorithm plays an important role
also in this KPI, for the same reason as was the case with the number of iterations
until convergence.

Given the above conclusions, it may seem easy to conclude that the ALM algorithm is the
best one among all the algorithmic schemes which were presented and tested in this
thesis. Such a thing holds true for most of the experimental circumstances as well as the

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 109

KPIs chosen for the testing process. In general the ALM algorithm enriched with an ADM
approach scales well for several optimization problems, and the RPCA problem could not
be an exception to the rule. The combination of these two approaches with an adaptive
update of the step-size parameters leads to significant results which deserve the attention
of anyone involved in this field of research.

Furthermore, it is deemed appropriate to mention the fact that the above comparison took
place under the specific simulation conditions described in the final section of Chapter 4.
The main idea was that all the involved parameters should be tuned in such a way that
the upcoming comparison would be “as fair as possible”. For most of them, there were
chosen the values proposed in the respective publications, but there were some cases in
which this was not the case: in the DM algorithm we chose to do an exact line search
(rather than an inexact one which was proposed in the respective publication) in order to
determine the respective step-size parameter, while on the ADM algorithm we chose a

different value than the proposed one for the relaxation parameter 𝛾. Both these
“initiatives” were adopted in the “spirit of fairness” mentioned above, as well as for not
throwing away key ideas of the algorithms presented in this thesis.

Concerning the case-study of the image de-noising problem, we should mention the
following results:

 In what has to do with the relative error of reconstruction of the low-rank
component, both the EALM, IALM and ADM methods achieve equally good
performance either we add extra entry-wise noise to the image or not.

 As far as the relative error of reconstruction of the sparse component is concerned,
the situation is pretty much the same as above for the noiseless case, while if we
add further noise to the image there are observed small differences in favor of the
EALM and ADM methods. Although, this metric is of less importance than the
above one, one should not surpass it without mentioning the occurring ranking of
the methods employed.

 Concerning the level of “low-rankness” of the de-noised images, the ADM method
is the best choice in the noiseless case, while in the noisy one the IALM method
scales better. Although the gap between them is not wide enough, this turnaround
is indicative of the fact that the IALM method seems more stable than the ADM
one if we add extra noise to our test image.

 In what has to do with the cardinality metric, the ADM method seems achieving
the best score -both in the noiseless scenario as well as in the noisy one. What
should also be mentioned here is that the performance of the IALM method seems
deteriorating if we add further noise to the image -leading to “more dense”
estimations of the outlier noise.

 In terms of the PSNR metric, which probably is the most crucial one due to the
nature of the application studied, in the noiseless case all three algorithms seem
achieving similar performance. Nevertheless, as we add further noise to the image,
the IALM method clearly outperforms the other two methods -indicating that it is
more stable in the presence of extra noise at each pixel of the image.

 Concerning the number of SVDs computed by each algorithmic scheme until
convergence, clearly the IALM method is the leading one both in the noiseless as
well as in the noisy case. Nevertheless, we should underline here the fact that the
ADM method seems scaling better with the addition of further noise in the image
than the EALM one.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 110

 As far as the number of iterations required for convergence is concerned, the
EALM and IALM methods seem the best alternative -either we add further noise
to the image or not. Although, it is worth-mentioning here the fact that even if the
performance of the ADM method is the worst one according to this metric, it seems
quite stable to the addition of extra entry-wise noise to the image.

 Concerning the total computational time of each algorithm, clearly the IALM
method is the most trust-worthy one in any case. Its relative performance over the
other two employed method in this case-study seems constant in the noiseless
case, whereas the addition of extra entry-wise noise seems on the one hand
ameliorating the situation for the other two slowest methods although on the other
hand this amelioration seems not enough to dethrone the IALM method from the
leading position.

Finally, we should not forget to refer to the fact that the specific application to which these
algorithms are used plays an important role. In the case-study examined here, the
selection of the algorithms to be tested was based mainly on their performance in terms
of the computational time index computed in the first experiments of this thesis. Perhaps,
in another application where some other KPIs play a more important role (i.e. the
accuracy of the low-rank component), also other algorithms studied in this thesis could
be an equally good alternative (i.e. the DM / SVT algorithms). As a result, our decision of
which algorithm should be chosen for a specific application is in the end a matter of on
the one hand the “nature” of the application and on the other hand of which KPI we desire
each time to be the leading one.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 111

ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ

Ξενόγλωσσος όρος Ελληνικός Όρος

Big Data Μεγάλα Δεδομένα

Curse of Dimensionality Κατάρα της Διαστατικότητας

Intrinsic Dimension Εγγενής Διάσταση

Dimensionality Reduction Μείωση της Διάστασης

Feature Selection Επιλογή Χαρακτηριστικών

Feature Extraction Εξαγωγή Χαρακτηριστικών

Principal Component Analysis Ανάλυση Κύριων Συνιστωσών

Transformation Matrix Μητρώο Μετασχηματισμού

Signal-to-Noise Ratio Λόγος Σήμα-προς-Θόρυβος

Variance Διακύμανση / Διασπορά

Cartesian Axis System Σύστημα Καρτεσιανών Συντεταγμένων

Mean Μέση Τιμή

Covariance Συνδιακύμανση / Συνδιασπορά

Random Variables Τυχαίες Μεταβλητές

Covariance Matrix Μητρώο Συνδιακύμανσης / Συνδιασποράς

Correlation Matrix Μητρώο Συσχέτισης

Eigenvectors Ιδιοδιανύσματα

Eigenvalues Ιδιοτιμές

Principal Axis Theorem Θεώρημα Κύριων Αξόνων

Karhunen-Loève Transform Μετασχηματισμός Karhunen-Loève

Stochastic Process Στοχαστική Διαδικασία

Fourier Series Σειρά Fourier

Gaussian Distribution Gaussian / Κανονική Κατανομή

Redundancy Πλεονασμός

Correlation Συσχέτιση

Occam’s Razor Principle Αρχή του Ξυραφιού του Occam

Free Parameters Ελεύθερες Παράμετροι

Mean Square Error Μέσο Τετραγωνικό Σφάλμα

Trace Ίχνος

Linear Transform Invariant System Γραμμικό Χρονικά Αναλλοίωτο Σύστημα

Kernel Principal Component Analysis Ανάλυση Κύριων Συνιστωσών με χρήση
Συναρτήσεων Πυρήνα

Independent Component Analysis Ανάλυση Ανεξάρτητων Συνιστωσών

Eckart-Young-Mirsky Theorem Θεώρημα Eckart-Young-Mirsky

Rank Τάξη / Βαθμός

Singular Values Ιδιάζουσες Τιμές

Singular Vectors Ιδιάζοντα Διανύσματα

Singular Value Decomposition Ανάλυση Ιδιάζουσων Τιμών

Outlier Ακραία Τιμή

Robust Principal Component Analysis Εύρωστη Ανάλυση Κύριων Συνιστωσών

Basis Vectors Διανύσματα Βάσης

Column Space Χώρος Στηλών

Row Space Χώρος Γραμμών

Objective Function Αντικειμενική Συνάρτηση

Netflix Prize Βραβείο Netflix

Matrix Completion Συμπλήρωση Πινάκων

Interior-Point Methods Μέθοδοι Εσωτερικού-Σημείου

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 112

Method of Conjugate Gradients Μέθοδος των Συζυγών Διευθύνσεων

Condition Number Δείκτης Κατάστασης

Singular Value Thresholding Algorithm Αλγόριθμος Κατωφλίωσης των
Ιδιάζουσων Τιμών

Step-Size Parameter Παράμετρος βήματος

Compressed Sensing / Compressive
Sampling

Συμπιεστική Δειγματοληψία

Karush-Kuhn-Tucker Conditions / First-
Order Optimality Conditions

Συνθήκες Karush-Kuhn-Tucker / Συνθήκες
Βελτιστοποίησης Πρώτης-Τάξης

Relative Reconstruction Error Σχετικό Σφάλμα Ανακατασευής

Iterative Thresholding Επαναληπτική Κατωφλίωση

Gradient Ascend Algorithm Αλγόριθμος Ανάδυσης Κλίσης

Dual Problem Δυϊκό Πρόβλημα

Hilbert Space Χώρος Hilbert

Gradient Κλίση / Βαθμίδα / Διανυσματική
Παράγωγος

Sub-Gradient Υπο-κλίση / Υπο-βαθμίδα / Υπο-
Διανυσματική Παράγωγος

Cost Function Συνάρτηση Κόστους

Dual Method Δυϊκή Μέθοδος

Primal Problem Αρχικό Πρόβλημα

Steepest Ascend Algorithm Αλγόριθμος Απότομης Ανάδυσης

Normal Cone Κανονικός Κώνος

Alternating Projection Scheme Σχήμα Εναλλασσόμενων Προβολών

Power Method Μέθοδος των Δυνάμεων

Principal Singular Spaces Κύριοι Ιδιάζοντες Χώροι

Armijo’s Rule Κανόνας του Armijo

Augmented Lagrange Multiplier Method Προσαυξημένη Μέθοδος των
Πολλαπλασιαστών Lagrange

Penalty Methods Μέθοδοι Ποινών

Lagrange Multiplier Πολλαπλασιαστής Lagrange

Method of Lagrange Multipliers Μέθοδος των Πολλαπλασιαστών
Lagrange

Lagrangian Function Συνάρτηση Lagrange / Λαγκρανζιανή
Συνάρτηση

Method of Multipliers Μέθοδος των Πολλαπλασιαστών

Augmented Lagrangian Function Προσαυξημένη Συνάρτηση Lagrange /
Προσαυξημένη Λαγκρανζιανή Συνάρτηση

Trace Inner Product Εσωτερικό Γινόμενου Ίχνους

Exact Augmented Lagrange Multiplier
Method

Ακριβής Προσαυξημένη Μέθοδος των
Πολλαπλασιαστών Lagrange

Inexact Augmented Lagrange Multiplier
Method

Μη-Ακριβής Προσαυξημένη Μέθοδος των
Πολλαπλασιαστών Lagrange

Alternating Direction Method Μέθοδος των Εναλλασσόμενων
Διευθύνσεων

Alternating Direction Method of Multipliers Μέθοδος των Εναλλασσόμενων
Διευθύνσεων των Πολλαπλασιαστών

Gauss-Seidel Method Μέθοδος Gauss-Seidel

Dual Variable Δυϊκή Μεταβλητή

Jacobi Method Μέθοδος Jacobi

Euclidean Projection Ευκλίδεια Προβολή

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 113

Key Performance Indicators Βασικοί Δείκτες Απόδοσης

Independent and Identically Distributed Ανεξάρτητες και Όμοια Κατανεμημένες

Image De-Noising Από-θορυβοποίηση Εικόνας

Central Limit Theorem Κεντρικό Οριακό Θεώρημα

Peak-Signal-to-Noise-Ratio Μέγιστος Λόγος Σήματος προς Θόρυβο

Absolute Value Απόλυτη Τιμή

Norm Νόρμα

Triangle Inequality Τριγωνική Ανισότητα

Sum-Absolute-Value Norm / Taxicab
Norm / Manhattan Norm

Αθροιστική-κατ’ Απόλυτη Τιμή Νόρμα /
Manhattan Νόρμα

Euclidean Norm Ευκλείδια Νόρμα

Infinity Norm / Chebyshev Norm Άπειρη Νόρμα / Chebyshev Νόρμα

Hamming Distance Απόσταση Hamming

Unit Ball Μοναδιαία Σφαίρα

Euclidean Space Ευκλείδειος Χώρος

Matrix Norm Νόρμα Μητρώου

Operator Norm Τελεστική Νόρμα

Rayleigh Quotient Πηλίκο Rayleigh

Spectral Norm Φασματική Νόρμα

Max-Column-Sum Norm Μέγιστη-κατά Στήλες-Αθροιστική Νόρμα

Max-Row-Sum Norm Μέγιστη-κατά Γραμμές-Αθροιστική Νόρμα

Frobenius Norm / Hilbert-Schmidt Norm Frobenius Νόρμα / Hilbert-Schmid Νόρμα

Frobenius Inner Product Frobenius Εσωτερικό Γινόμενο

Inner Product Εσωτερικό Γινόμενο

Sum-Absolute-Value Norm Αθροιστική-κατ’ Απόλυτη Τιμή Νόρμα

Maximum-Absolute-Value Norm Μέγιστη-κατ’ Απόλυτη Τιμή Νόρμα

Dual Norm Δυϊκή Νόρμα

Nuclear Norm Πυρηνική Νόρμα

Schatten 1-Norm Schatten 1-Νόρμα

Ky Fan r-norm Ky Fan r-Νόρμα

Hölder's Inequality Ανισότητα του Hölder

Linear Programming Γραμμικός Προγραμματισμός

Non-Linear Programming Μη-Γραμμικός Προγραμματισμός

Sparsity Αραιότητα

Sparse Αραιός

Underdetermined System Αόριστο Σύστημα

Convex Relaxation Κυρτή Χαλάρωση

Convex Hull / Convex Envelope Κυρτή Θήκη / Κυρτό Περίβλημα

Nullspace Μηδενοχώρος

Mutual Coherence Αμοιβαία Συνοχή

Welch Bound Όριο Welch

Grassmanian Frames Grassmanian Πλαίσια

Restricted Isometry Property Ιδιότητα της Περιορισμένης Ισομετρίας

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 114

ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΩΝΥΜΙΑ

ID Intrinsic Dimension

PCA Principal Component Analysis

SNR Signal-to-Noise Ratio

KLT Karhunen-Loève Transform

MSE Mean Square Error

LTI Linear Transform Invariant

KPCA Kernel Principal Component Analysis

ICA Independent Component Analysis

SVD Singular Value Decomposition

RPCA Robust Principal Component Analysis

PCP Principal Component Pursuit

MC Matrix Completion

SDP Semi-Definite Programming

SVT Singular Value Thresholding

CS Compressed Sensing / Compressive Sampling

KKT Karush-Kuhn-Tucker

IT Iterative Thresholding

APG Accelerated Proximal Gradient

PG Proximal Gradient

DM Dual Method

AP Alternating Projection

PM Power Method

ALM Augmented Lagrange Multiplier

EALM Exact Augmented Lagrange Multiplier

IALM Inexact Augmented Lagrange Multiplier

ADM Alternating Direction Method

ADMM Alternating Direction Method of Multipliers

KPI Key Performance Indicators

I.I.D. / i.i.d. Independent and Identically Distributed

PAPG Partial Accelerated Proximal Gradient

PSNR Peak-Signal-to-Noise-Ratio

LP Linear Programming

NLP Non-Linear Programming

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 115

RIP Restricted Isometry Property

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 116

APPENDIX Ι: MEASURE THEORY AND FUNCTIONAL ANALYSIS

In this Appendix we give a brief review of some basic concepts from measure theory as
well as from functional analysis. The treatment is by no means complete, and is meant
mostly to set out our notation.
Vector Norms
Norms give a rough measure of the magnitude of the entries in vectors and matrices.
They generalize the notion of Absolute Value for real numbers. In general, a function

𝑓: 𝑅𝑛 → 𝑅 is called a Norm if it respects the following four requirements:

1. 𝑓(𝒙) ≥ 0, for all 𝒙 ∈ 𝑅𝑛 (𝑓 is non-negative)
2. 𝑓(𝒙) = 0 ↔ 𝒙 = 𝟎 (𝑓 is definite)
3. 𝑓(𝑐𝒙) = |𝑐|𝑓(𝒙), for all 𝒙 ∈ 𝑅𝑛 and 𝑐 ∈ 𝑅 (𝑓 is positively homogenous)

4. 𝑓(𝒙 + 𝒚) ≤ 𝑓(𝒙) + 𝑓(𝒚), for all 𝒙, 𝒚 ∈ 𝑅𝑛 (𝑓 satisfies the Triangle Inequality)

The most widely used notation for norm functions is 𝑓(𝑥) = ‖𝒙‖, in order to indicate that
in reality they form a generalization of the absolute value on 𝑅.
Of course there are many different kinds of norms, according to what we desire to
compute. In order to have a general symbolism for all of them, it is commonly used the
notation ‖𝒙‖𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 where the subscript indicates exactly to which norm we refer to.

𝑳𝒑 (Holder) Vector Norms

The most widely used vector norms are the well-known 𝑙𝑝-norms (with 𝑝 ≥ 1), which are

defined as follows:

Definition A.1.1: For a given vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈ 𝑅𝑛, its 𝑙𝑝-norm is defined as:

‖𝒙‖𝑝 ≡ (∑ |𝑥𝑖|
𝑝𝑛

𝑖=1)
1

𝑝 = (|𝑥1|
𝑝 + |𝑥2|

𝑝 +⋯+ |𝑥𝑛|
𝑝)

1

𝑝 (A.1.1)

The simplest 𝑙𝑝-norm is the 𝑙1-norm, which is given by equation (A.1.1) for 𝑝 = 1:

‖𝒙‖1 ≡ ∑ |𝑥𝑖|
𝑛
𝑖=1 = |𝑥1| + |𝑥2| + ⋯+ |𝑥𝑛| (A.1.2)

, which is also known as the Sum-Absolute-Value Norm or the Taxicab Norm or the
Manhattan Norm.

Perhaps the most widely used 𝑙𝑝-norm is the 𝑙2-norm, which is given by equation (A.1.1)

for 𝑝 = 2:

‖𝒙‖2 ≡ (∑ |𝑥𝑖|
2𝑛

𝑖=1)
1

2 = (|𝑥1|
2 + |𝑥2|

2 +⋯+ |𝑥𝑛|
2)

1

2 = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛2 (A.1.3)

, which of course is the well-known Euclidean Norm.

Another norm which is used in practice is the 𝑙∞-norm, which is derived by the definition
of the 𝑙𝑝-norm if we let 𝑝 → ∞:

‖𝒙‖∞ ≡ lim
𝑝→∞

‖𝒙‖𝑝 = lim
𝑝→∞

(|𝑥𝑖𝑚𝑎𝑥|
𝑝
∑ (

|𝑥𝑖|

|𝑥𝑖𝑚𝑎𝑥|
)
𝑝

𝑛
𝑖=1)

1

𝑝

= |𝑥𝑖𝑚𝑎𝑥| = max
1≤𝑖≤𝑛

{|𝑥𝑖|} (A.1.4)

, which is also known as the Infinity Norm or the Chebyshev Norm.
The four requirements for a function to be a norm guarantee that in fact it is also a convex
function. This is a very important property, due to the fact that the minimization of a convex
function leads to a unique solution (i.e. a global optimum), as it is known from optimization
theory. As a result, the choice of norm-based functions as objective functions in
optimization problems seems quite reasonable.
Last but not least, a widely used norm in many application fields (such as signal
processing and statistics) is the 𝑙0-norm, which is derived by the definition of the 𝑙𝑝-norm

if we let 𝑝 → 0:

‖𝒙‖0 ≡ lim
𝑝→0

‖𝒙‖𝑝
𝑝 = lim

𝑝→0
∑ |𝑥𝑖|

𝑝𝑛
𝑖=1 = #{𝑖: 𝑥𝑖 ≠ 0} (A.1.5)

, and which represents the number of the non-zero coordinates of the vector 𝒙, or
otherwise the Hamming Distance of 𝒙 from zero. It should be mentioned here that in

reality the 𝑙0-norm is not a true norm, because it does not fulfil the third requirement for

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 117

being one as: ‖𝑎𝒙‖0 ≠ |𝑎|‖𝒙‖0, ∀𝑎 ≠ 1. However, it has come to be considered as a norm,
with a slight abuse of the strict sense of the definition.
Unit Ball and Geometrical Interpretation of 𝒍𝒑-Norms

Definition A.1.2: The set of all vectors with norm less than or equal to one:

𝑈𝐵 = {𝒙 ∈ 𝑅𝑛: ‖𝒙‖ ≤ 1} (A.1.6)
is called the Unit Ball of the norm ‖∙‖. This set is very important for the geometrical
interpretation of the norm functions, because it exhibits the following properties:

1. 𝑈𝐵 is symmetric about the origin

2. 𝑈𝐵 is convex
3. 𝑈𝐵 is closed, bounded, and has nonempty interior

The concept of unit ball is different in different norms. Its’ geometrical depiction is based
on the isovalue curves on the Euclidean Space that correspond to the respective norm.

More precisely, these isovalue curves for the 𝑙0, 𝑙1, 𝑙2 and 𝑙∞-norms are depicted in the
figure below:

Figure 32: Unit ball for different values of p

As it is clear from Figure 32, the unit ball in 𝑅2 is a:

 Single point at the origin of the coordinate axes (0,0), for the 𝑙0-norm

 Rhombus, for the 𝑙1-norm

 Circle, for the 𝑙2-norm

 Square, for the 𝑙∞-norm
Generally, for any 𝑙𝑝-norm, it is a superellipse (with congruent axes). The fact that the

isovalue curve of the 𝑙0-norm consists of only one point is a direct consequence of its
discrete nature, as well as that it is not a norm in the strict sense.
Matrix Norms
As well as vector norms, there exists also matrix norms. In most cases, they are defined
in terms of the respective vector norms. Their meaning is to have a measure of the size
of a matrix, as happens with vectors and vector norms respectively.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

l
0
-norm

l
1
-norm

l
2
 norm

l

-norm

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 118

Just as in the definition of vector norms, a function ‖𝑨‖: 𝑅𝑚×𝑛 → 𝑅 is called a Matrix Norm
if it satisfies the following five requirements:

1. ‖𝑨‖ ≥ 0, for all 𝑨 ∈ 𝑅𝑚×𝑛 (‖𝑨‖ is non-negative)
2. ‖𝑨‖ = 0 ↔ 𝑨 = 𝟎 (‖𝑨‖ is definite)
3. ‖𝑐𝑨‖ = |𝑐|‖𝑨‖, for all 𝑨 ∈ 𝑅𝑚×𝑛 and 𝑐 ∈ 𝑅 ((‖𝑨‖ is positively homogenous)

4. ‖𝑨 + 𝑩‖ ≤ ‖𝑨‖ + ‖𝑩‖, for all 𝑨,𝑩 ∈ 𝑅𝑚×𝑛 (‖𝑨‖ satisfies the triangle inequality)

5. ‖𝑨𝒙‖ ≤ ‖𝑨‖‖𝒙‖ and ‖𝑨𝑩‖ ≤ ‖𝑨‖‖𝑩‖, for all 𝑨,𝑩 ∈ 𝑅𝑚×𝑛 and 𝒙 ∈ 𝑅𝑛
In contrast with vector norms, matrix norms must additionally satisfy the fifth above
requirement, a consequence of the fact that matrices are more than just vectors as they
multiply. That specific requirement demands that the size (growth) of this multiplication
must stay under control.
Operator Norms

Definition A.1.3: Suppose there is available a matrix 𝑨 ∈ 𝑅𝑚×𝑛 and a norm ‖∙‖𝑎 on 𝑅𝑚
as well as one ‖∙‖𝑏 on 𝑅𝑛. Then, the Operator Norm of matrix 𝑨, which is induced by the

norms ‖∙‖𝑎 and ‖∙‖𝑏, is defined as:

‖𝑨‖𝑎,𝑏 = 𝑠𝑢𝑝{‖𝑨𝒙‖𝑎: ‖𝒙‖𝑏 ≤ 1} = 𝑠𝑢𝑝 {
‖𝑨𝒙‖𝑎

‖𝒙‖𝑏
: 𝒙 ≠ 𝟎} (A.1.7)

Furthermore, it can be proved (via the use of the famous Rayleigh Quotient) that when
‖∙‖𝑎 and ‖∙‖𝑏 are both Euclidean norms, the operator norm of the matrix 𝑨 is its maximum
singular value, and is defined as:

‖𝑨‖2 = 𝜎𝑚𝑎𝑥(𝑨) = (𝜆𝑚𝑎𝑥(𝑨
𝑇𝑨))

1

2 = √𝜆𝑚𝑎𝑥(𝑨𝑇𝑨) (A.1.8)

, which is also known as the 𝑙2-norm or the Spectral Norm. If the matrix 𝑨 is a square

symmetric matrix then: ‖𝑨‖2 = |𝜆𝑚𝑎𝑥(𝑨)|.
The matrix norm which corresponds to the 𝑙1-norm on 𝑅𝑚 and 𝑅𝑛 is defined as:

‖𝑨‖1 = max
1≤𝑗≤𝑛

{∑ |𝑎𝑖𝑗|
𝑚
𝑖=1 } (A.1.9)

, which is also known as the Max-Column-Sum Norm.

Finally, the matrix norm which corresponds to the 𝑙∞-norm on 𝑅𝑚 and 𝑅𝑛 is defined as:

‖𝑨‖∞ = max
1≤𝑖≤𝑛

{∑ |𝑎𝑖𝑗|
𝑛
𝑗=1 } (A.1.10)

, which is also known as the Max-Row-Sum Norm.
From a computational point of view, we should not forget to mention that the computation

of ‖𝑨‖2 is generally more demanding than those of ‖𝑨‖1 and ‖𝑨‖∞.
“Elementwise” matrix norms

These matrix norms treat a 𝑚× 𝑛 matrix 𝑨 as a (huge) vector of size 𝑚 × 𝑛, and
afterwards use one of the familiar vector norms for the respective definition.
For example, using the 𝑙𝑝-norm for vectors, we get the following definition for the

“elementwise” matrix norms:

‖𝑨‖𝑝 = ‖𝑣𝑒𝑐(𝑨)‖𝑝 = (∑ ∑ |𝑎𝑖𝑗|
𝑝𝑛

𝑗=1
𝑚
𝑖=1)

1

𝑝 = (|𝑎11|
𝑝 + |𝑎12|

𝑝 +⋯+ |𝑎𝑚𝑛|
𝑝)

1

𝑝 (A.1.11)

An “elementwise” matrix norm which is commonly used is the Frobenius Norm of a matrix

𝑨 ∈ 𝑅𝑚×𝑛, which is defined as:

‖𝑨‖𝐹 = (𝑡𝑟(𝑨
𝑇𝑨))

1

2 = (∑ ∑ 𝑿𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1)

1

2 = √∑ ∑ 𝑿𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 (A.1.12)

, which is also called the Hilbert-Schmidt Norm -though the latter term is often reserved
for operators on Hilbert spaces. Its name comes from the well-known Frobenius Inner
Product on the space of all matrices, which is the component-wise Inner Product of two
matrices as though they were vectors. In reality, the Frobenius norm of a matrix is the
Euclidean norm of the vector obtained by listing the coefficients of the matrix. At this point
we should emphasize the fact that the Frobenius norm of a matrix does not coincide with

its 𝑙2-norm defined above.
Two equally well-known “elementwise” matrix norms are the Sum-Absolute-Value Norm,

which arises from equation (A.1.11) for 𝑝 = 1 and is defined as:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 119

‖𝑨‖𝑠𝑎𝑣 = ∑ ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1

𝑚
𝑖=1 (A.1.13)

, and the Maximum-Absolute-Value Norm, which arises from equation (A.1.11) for 𝑝 = ∞
and is defined as:

‖𝑨‖𝑚𝑎𝑣 = max
1≤𝑖≤𝑚,1≤𝑗≤𝑛

{|𝑎𝑖𝑗|} (A.1.14)

Dual Norm
Definition A.1.4: Let ‖∙‖ be a norm on 𝑅𝑛. The associated Dual Norm, denoted ‖∗‖𝑑, is
defined as:

‖𝒚‖𝑑 = 𝑠𝑢𝑝{‖𝒚
𝑇𝒙‖: ‖𝒙‖ ≤ 1} = 𝑠𝑢𝑝 {

‖𝒚𝑇𝒙‖

‖𝒙‖
: 𝒙 ≠ 𝟎} (A.1.15)

As expected, the dual norm of the dual norm is the original norm:
‖𝒙‖𝑑𝑑 = ‖𝒙‖ (A.1.16)

, for all 𝒙.
For all known 𝑙𝑝-norms there exists a respective dual norm 𝑙𝑞, where the subscripts satisfy

the equation:
1

𝑝
+

1

𝑞
= 1 (A.1.17)

Taken this into mind, it can be easily proved that:

 The dual norm of the 𝑙1-norm is the 𝑙∞-norm

 The dual norm of the 𝑙∞-norm is the 𝑙1-norm

 The dual norm of the Euclidean norm is the Euclidean norm
A more interesting example though is that of the dual norm of the spectral or 𝑙2-norm, as
we refer to an operator norm. Then, applying the definition of the dual norm, we have:

‖𝑨‖2𝑑 = ‖𝑨‖∗ = 𝑠𝑢𝑝{‖𝑨𝑇𝒙‖: ‖𝒙‖2 ≤ 1} = 𝑠𝑢𝑝 {
‖𝑨𝑇𝒙‖

‖𝒙‖2
: 𝒙 ≠ 𝟎} = 𝑡𝑟(𝑨𝑇𝑨)

1

2 = √𝑡𝑟(𝑨𝑇𝑨) =

𝜎1(𝑨) + 𝜎2(𝑨) + ⋯+ 𝜎𝑟(𝑨) (A.1.18)
, where 𝑟 = 𝑟𝑎𝑛𝑘(𝑨). This norm is known as the Nuclear Norm, though it has nothing to
do with nuclear physics. It is also known by several other names such as the Schatten 1-

norm (the Schatten 𝑝-norms arise when applying the 𝑙𝑝-norm to the vector of singular

values of a matrix) or the Ky Fan 𝑟-norm (in general, the Ky Fan 𝑟-norm of a given matrix

𝑨 is the sum of its 𝑟 largest singular values).
Equivalence of norms
We conclude this first Appendix with a significant result from functional analysis, which in
reality states that all norms (vector and matrix) are equivalent.

More precisely, supposed that ‖∙‖𝑎 and ‖∙‖𝑏 are norms on 𝑅𝑛, then there exist positive
real numbers 𝑐 > 0, 𝑑 > 0 such that:

𝑐‖𝒙‖𝑎 ≤ ‖𝒙‖𝑏 ≤ 𝑑‖𝒙‖𝑎 (A.1.19)
, for all vectors 𝒙 ∈ 𝑅𝑛.

A more general form of this result states that on 𝐶𝑛, if 0 < 𝑎 < 𝑏, then:

‖𝒙‖𝑏 ≤ ‖𝒙‖𝑎 ≤ 𝑛
(
1

𝑎
−
1

𝑏
)‖𝒙‖𝑏 (A.1.20)

, for all 𝒙 ∈ 𝑅𝑛.
In particular, it can be easily proven that the following equations are true:


1

√𝑛
‖𝒙‖1 ≤ ‖𝒙‖2 ≤ ‖𝒙‖1


1

𝑛
‖𝒙‖1 ≤ ‖𝒙‖∞ ≤ ‖𝒙‖1

 ‖𝒙‖2 ≤ ‖𝒙‖1 ≤ √𝑛‖𝒙‖2


1

√𝑛
‖𝒙‖2 ≤ ‖𝒙‖∞ ≤ ‖𝒙‖2

 ‖𝒙‖∞ ≤ ‖𝒙‖1 ≤ 𝑛‖𝒙‖∞

 ‖𝒙‖∞ ≤ ‖𝒙‖2 ≤ √𝑛‖𝒙‖∞
The important thing about equivalent norms is that they define the same notions of
continuity and convergence and for many purposes do not need to be distinguished. To

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 120

be more precise, the uniform structure defined by equivalent norms on the vector space
is uniformly isomorphic. In fact, if the vector space is a finite-dimensional real or complex
one, all norms are equivalent. On the other hand, in the case of infinite-dimensional vector
spaces, this result need not hold.
As for vector norms, there holds a similar equivalence result for matrix norms as well.

More precisely, supposed that ‖∙‖𝑎 and ‖∙‖𝑏 are norms on 𝑅𝑛, then there exist positive

real numbers 𝑐 > 0, 𝑑 > 0 such that:
𝑐‖𝑨‖𝑎 ≤ ‖𝑨‖𝑏 ≤ 𝑑‖𝑨‖𝑎 (A.1.21)

, for all matrices 𝑨 ∈ 𝑅𝑚×𝑛. In this occasion, the equivalence of norms means that they
induce the same topology on 𝑅𝑚×𝑛. Of course, just as before, such a result holds true

because the vector space 𝑅𝑚×𝑛 has a finite dimension equal to 𝑚 × 𝑛.
In particular, just as above, it can be easily proven that the following equations concerning
matrix norms’ equivalence are true:

 ‖𝑨‖2 ≤ ‖𝑨‖𝐹 ≤ √𝑟‖𝑨‖2

 ‖𝑨‖𝐹 ≤ ‖𝑨‖∗ ≤ √𝑟‖𝑨‖𝐹

 ‖𝑨‖𝑚𝑎𝑥 ≤ ‖𝑨‖2 ≤ √𝑚𝑛‖𝑨‖𝑚𝑎𝑥


1

√𝑛
‖𝑨‖∞ ≤ ‖𝑨‖2 ≤ √𝑚‖𝑨‖∞


1

√𝑚
‖𝑨‖1 ≤ ‖𝑨‖2 ≤ √𝑛‖𝑨‖1

, where 𝑨 ∈ 𝑅𝑚×𝑛, 𝑟 = 𝑟𝑎𝑛𝑘(𝑨) and ‖𝑨‖𝑝 refers to the matrix norm induced by the

respective 𝑙𝑝-vector norm (operator norm).

Finally, a useful inequality between matrix norms which is commonly used in practice is
the following one:

‖𝑨‖2 ≤ √𝑨1𝑨∞ (A.1.22)

, which is nothing more than a special case of the famous Hölder's Inequality.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 121

APPENDIX IΙ: CONVEX OPTIMIZATION AND CONVEX ANALYSIS

In this Appendix we give a brief review of some basic concepts from convex optimization
and convex analysis. As in the previous Appendix, the treatment is also here by no means
complete, and again is meant mostly to set out our notation.
Mathematical Optimization Problems
As it is known from optimization theory, a mathematical optimization problem has the
following general form:

min
𝑠.𝑡.𝑓𝑖(𝒙)≤𝑏𝑖

𝑓(𝒙) , 𝑖 = 1,2, … ,𝑚 (A.2.1)

, where:

 𝒙 is the optimization variable

 𝑓 is the objective function

 𝑓𝑖 are the constraint functions

 𝑏𝑖 are constants, which represent the limits for the constraints (of course there can
be equality constraints instead of inequality ones)

The goal of such a problem is to find the optimal vector 𝒙∗ that fits the constraints and
has the minimum objective value, among all possible vectors fitting the constraints.
Depending on the “form” of the objective function, as well as that of the constraint ones,
there arise different classes of optimization programs. For example, if the objective
function and the constraint functions are linear functions, then the respective optimization
problem is called a Linear Programming (LP) program. On the other hand, if they are not
linear, the arising optimization problem is called a Non-Linear Programming (NLP)
program.
A very interesting class of optimization problems are the so called convex optimization
problems, in which class the objective and constraint functions are convex functions. The
reason why this class of problems is so interesting is that the resulting solution is
guaranteed to be not only a local optimum solution to the problem, but in fact the global
one.
A solution method for a particular optimization problem lies in finding an algorithmic
scheme that computes the desired solution. Of course, for every different class of
optimization problems, there is available a variety of algorithms which are able to solve
them. Each one of them has its special features and characteristics, making it the
“appropriate choice” for particular problems. It is exactly this adjective, i.e. “particular”,
that discriminates an effective algorithm for an optimization problem from a non-effective
one. Reading between the lines, that means that there exist certain factors which affect
the behavior of an algorithm aiming to solve an optimization problem, some of whom are
the particular form of the objective and constraint functions, the number of the variables
and the constraints, and the possible special structures among them-such as Sparsity (a
problem is Sparse if each constraint function depends on only a small number of the
variables).
Norm-Based Objective Functions
As mentioned before, a widely occurring class of optimization problems are the convex
optimization problems, due to the fact that the convexity of the objective function
guarantees the uniqueness of the solution. As it became quite clear in the Appendix I, the
𝑙𝑝-norms (𝑝 ≥ 1) are convex functions, so they form a potential choice as objective

functions. The goal of this Appendix is to demonstrate the utility of such a choice in
problems at which some extra information is known about the structure of the solution,
concerning more specifically sparsity and low rankness. In order to achieve that, we
formulate the desired goal as the following optimization program:
Suppose we are given a system of linear equations:

𝑨𝒙 = 𝒃 (A.2.2)

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 122

, with 𝒃 ∈ 𝑅𝑚, 𝒙 ∈ 𝑅𝑛, 𝑨 ∈ 𝑅𝑚×𝑛, 𝑟𝑎𝑛𝑘(𝑨) = 𝑚 and 𝑚 < 𝑛. Of course, such a system has
in general infinitely many solutions, due to the fact that it has fewer equations than
unknowns, and is widely known as an Underdetermined System. For a fixed set of

measurements 𝒃, and a specific transformation matrix 𝑨, the set of possible solutions
obviously depends directly on 𝒙 and its structure. Therefore, if we desire to narrow the
choice to one well-defined solution, additional criteria concerning 𝒙 are needed.
A very interesting idea is to impose the sparsity constraint on the solution 𝒙 (i.e. we seek

for a vector 𝒙 with few non-zero entries), as we could be able to solve the resulting
optimization problem using techniques from convex analysis. Taken that into mind, there
exist three possible norm-based objective functions to be minimized in order to achieve
our goal of obtaining the sparsest solution of our underdetermined system, which are
examined in details below:

1. 𝑙2-norm
2. 𝑙0-norm
3. 𝑙1-norm

𝒍𝟐-Norm Minimization
In this case, the goal is to choose the optimal vector 𝒙∗ that is consistent with the
underdetermined system (A.2.2) in such a way that it has the minimum 𝑙2-norm. In other
words, we have to solve the following optimization problem:

min
𝑠.𝑡.𝒂𝑛

𝑇𝒙=𝒃𝑛

‖𝒙‖2
2, 𝑛 = 1,2, …𝑚 (A.2.3)

Of course, this problem has a unique solution, which is given by the following formula:

𝒙∗ = 𝑨
𝑇(𝑨𝑨𝑇)−1𝒃 (A.2.4)

, a fact that may seem quite encouraging as the solution is given in closed form. But there
is one drawback in the whole process, which unfortunately is directly connected with our
primal goal of recovering a solution as sparse as possible. This can become more evident

if we consider the geometrical interpretation of the 𝑙2-norm minimization process, which
is depicted in the following image:

Image 64: 𝒍𝟐-norm minimization

What is obvious from Image 64 is that by minimizing the 𝑙2-norm we cannot expect to
recover the sparsest solution. This is explained in the following sense: let’s suppose that

the sparse solution we seek to recover is the point 𝑿 in Image 64 (it is sparse because its
coordinate on the 𝑥-axis is zero whereas that on the 𝑦-axis is not), of which we make one
measurement. As it is known from middle-school mathematics, the (feasible) set of all 𝑥
that share the same measurement value is a line, and more precisely the black one in

Image 64. The task of finding the point on this line with the minimum 𝑙2-norm is
accomplished by expanding the radius of the spherical and completely isotropic

Euclidean 𝑙2 ball until it intersects the line. By definition, the first point at which this
happens is the one with minimum 𝑙2-norm, and constitutes the solution we are seeking

for. As it is clear from Image 16, this point (i.e. the point �̂�) does not have to be sparse as
we desired. Although in low dimensions the obtained solution via the 𝑙2-norm minimization
looks close to the desired one, the occurring situation in high dimensions is a disaster. As

a result, even if the minimization of the 𝑙2-norm is a well-posed and tractable optimization

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 123

program, it gives no guarantee that the recovered solution will be a sparse one -as we
desire.

𝒍𝟎-Norm Minimization

In this case, the goal is to choose the optimal vector 𝒙∗ that is consistent with the
underdetermined system (A.2.2) in such a way that it has the minimum 𝑙0-norm. In other
words, we have to solve the following optimization problem:

min
𝑠.𝑡.𝒂𝑛

𝑇𝒙=𝒃𝑛

‖𝒙‖0 , 𝑛 = 1,2, … ,𝑚 (A.2.5)

, which seems to be exactly what we should be doing in order to obtain the sparsest

possible solution -given the meaning of the 𝑙0-norm. Although the optimization problem in
(A.2.5) looks like that of in (A.2.3), in reality they bear significant differences. The solution

to the 𝑙2-norm minimization problem is always unique, and can be computed via the usage
of innovative numerical linear algebra methods and tools. On the other hand, the solution

to the 𝑙0-norm minimization problem is a more complex task. This comes from the fact
that the 𝑙0-norm is not a true norm function in the strict sense of the definition, as
mentioned in Appendix I, but in reality is a discrete and discontinuous function. The bad
news that arise from this fact are that all the available tools from optimization theory of
convex functions are automatically useless, making the questions of uniqueness and
verification of the solutions seem at least daunting.

To make things even worse, it has been proved in [47] that a direct solution to the 𝑙0-norm
minimization problem under linear equality constraints is infeasible, and the problem is
generally considered as a NP-hard one. This comes out essentially from the fact that in
reality it is a classical combinatorial problem of exhaustive search, in which we should
systematically enumerate all possible candidates for the solution and check whether each
candidate satisfies the problem's statement. While an exhaustive search is simple to
implement, and will always find a solution if it exists, its cost is proportional to the number
of candidate solutions -which in many practical problems tends to grow very quickly as
the size of the problem increases. In our case, the complexity of adopting such a

technique is proved to be exponential in 𝑛, making it prohibitive for real-world problems.

𝒍𝟏-Norm Minimization
From so far analysis, the gap between the 𝑙0-norm minimization problem and the 𝑙2-norm
minimization problem may seem unbridgeable. This gap comes to fill in another 𝑙𝑝-norm,

and more precisely the 𝑙1-norm. Now, the optimization problem has the following form:
min

𝑠.𝑡.𝒂𝑛
𝑇𝒙=𝒃𝑛

‖𝒙‖1 , 𝑛 = 1,2, … ,𝑚 (A.2.6)

As in the 𝑙2-norm case, the geometrical interpretation of the minimization process is
illustrated in the following image:

Image 65: 𝒍𝟏-norm minimization

Following the same reasoning as before, the radius of the anisotropic and “pointy” along

the axes 𝑙1 ball is expanded until it intersects the black line representing the (feasible) set
of solutions. The difference now is that the flatness of the line (in general, of the plane) of

solutions combined with the diamond-shaped 𝑙1 ball results in picking a solution point
which is extremely sparse, as we desired. As a result, the minimization of the 𝑙1-norm

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 124

seems a good proxy for the minimization of the 𝑙0-norm, which identically we would desire,

compared to that of the 𝑙2-norm. Despite the seemingly negligible differences among their
definitions, and even the fact that they are both convex functions and as a result the task

of finding the optimal solution becomes computationally tractable, the 𝑙1-norm is the only
one among the 𝑙𝑝-norms (𝑝 ≥ 1) which respects small values and results in recovering

sparse solutions. From an algorithmic point of view, the 𝑙1-norm minimization task can be
recast as a LP program, and consequently be solved by anyone of the related methods.
Last but not least, we should highlight the fact that sparse signals (which we seek for)

have small 𝑙1-norms relative to their energy -as stated in [54]- a fact that overbids the

preference of minimizing the 𝑙1-norm instead of the 𝑙2 one.

Convex Relaxation: A Priceless Treasure

As mentioned before, minimizing the 𝑙1-norm would be a good idea, in the context of
recovering sparse solutions to underdetermined system of equations, instead of trying to

cope with the combinatorically hard task of minimizing the 𝑙0-norm. But such a choice is
not as simple as it seems, given the fact that the 𝑙1-norm is a totally different “creature”
from the 𝑙0-norm -which is not even a norm in the strict sense as mentioned in Appendix
I. The transition from a non-convex objective function to a convex one should be very
cautious, even if it is widely known that convex optimization techniques play an important
role in problems that are not convex. In fact, convex optimization is the basis for several
heuristics for solving non-convex problems, and this is justified by the fact that convexity
implies that every local minimum / maximum is also a global one -which is not guaranteed
when considering non-convex problems.
When facing situations in which our optimization problem (convex or not) is a NP-hard

one (as here with the minimization of the 𝑙0-norm), a common practice is to relax it. What
practically relaxation techniques do is approximating difficult problems of constrained
optimization by simpler ones, which are solvable in polynomial time. As a result, a solution
to the relaxed problem is an approximate solution to the original problem, and therefore
provides useful information. Given the fact that norm-based objective functions are
convex functions as mentioned in the Appendix I, the relative relaxation is called Convex
Relaxation, and is defined as below:

Definition A.2.1: For a non-convex function 𝑓: 𝑆 → 𝑅, where 𝑆 is a non-empty convex
subset of 𝑅𝑛, a convex function 𝑢: 𝑆 → 𝑅 will be called a convex relaxation of 𝑓(𝒙) if it
obeys the following inequality:

𝑢(𝒙) ≤ 𝑓(𝒙), ∀𝒙 ∈ 𝑆 (A.2.7)
The above inequality condition is depicted in the Euclidean plane below, so as its’
geometrical interpretation to become sufficiently clarified:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 125

Image 66: Geometrical interpretation of convex relaxation

It is worth mentioning that among all convex relaxations 𝑢(𝒙) of a non-convex function

𝑓(𝒙), the one for which holds true the following inequality:

𝑢(𝒙) ≤ 𝑓𝑆(𝒙), ∀𝒙 ∈ 𝑆 (A.2.8)

is called the Convex Hull / Convex Envelope of 𝑓(𝒙) over 𝑆. In other words, the convex
hull is the tightest possible convex relaxation of a nonconvex function.

Taking into mind the above definitions, it would seem apparent to consider the 𝑙1-norm
minimization task as the convex relaxation of the 𝑙0-norm minimization one. In fact, such
a conclusion holds true, as it is shown below. But before this, it is wise to reveal those
conditions under which both tasks recover a unique solution to the underdetermined
system of equations (A.2.2).

Uniqueness of the Solution recovered by 𝒍𝟏-Norm Minimization

Concerning the uniqueness of the solution of the 𝑙1-norm minimization task, the following
Lemma is stated without proof (the diligent reader is referred to the relative reference
below):

Lemma A.2.1: An element 𝒙 ∈ 𝑋, where 𝑋 is the set of the solutions of the
underdetermined system of equations (A.2.2), has minimal 𝑙1-norm if and only if it obeys
the following inequality condition:

|∑ 𝑠𝑔𝑛(𝑥𝑖)𝑧𝑖𝑖:𝑥𝑖≠0
| ≤ ∑ |𝑧𝑖|𝑖:𝑥𝑖=0

, ∀𝒛 ∈ 𝑛𝑢𝑙𝑙(𝑋) (A.2.9)

, where 𝑛𝑢𝑙𝑙(𝑋) is the Nullspace of 𝑋. Furthermore, the solution is unique if and only if the

above inequality condition is a strict one ∀𝒛 ≠ 𝟎, as stated in [51].

From linear algebra basics it is known that for the dimension of the nullspace of 𝑨 holds
the following equality:

𝑑𝑖𝑚(𝑛𝑢𝑙𝑙(𝑨)) = 𝑛 − 𝑟𝑎𝑛𝑘(𝑨) = 𝑛 −𝑚 (A.2.10)

Taken that in mind, and combining the above Lemma as well as the fact that a vector 𝒙
is called 𝑆-sparse if it has at most 𝑆 non-zero coordinates, it becomes clear that if there

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 126

exists a unique solution to the underdetermined system of equations (A.2.2) then it will

be an 𝑆-sparse vector with 𝑆 ≤ 𝑚. This is a very important result, considering that it
defines a strict upper bound for the number of the non-zero elements of the unique
solution of (A.2.2), as it states that for sure the recovered solution will be a sparse one.

A final remark that should be made concerning the minimization of the 𝑙1-norm is that
there are specific conditions that must hold true (as it became clear from the above
Lemma) for the solution to be unique, which is clearly not the case for the respective

minimization of the 𝑙2-norm. This is a direct result of the “nature” of the 𝑙1-norm which is
not a strict convex function, unlike the 𝑙2-norm which is one-and whose minimization will
always lead to a unique solution.

Uniqueness of the Solution recovered by 𝒍𝟎-Norm Minimization

Following the same reasoning as before, the sufficient conditions that must hold true in

order for the solution arising via the 𝑙0-norm minimization task to be unique, are presented
in form of two important Lemmas (again, the relevant proofs are omitted as they are
beyond the scope of this thesis, however the adventurous reader is given the required
references in order to confirm their validity).

Both of them contain a key matrix quantity, called Spark, which was defined in [24] as the

smallest number of linearly dependent columns of a full rank matrix 𝑨 ∈ 𝑅𝑚×𝑛, 𝑚 > 𝑛. By
definition, the spark of a square 𝑚 ×𝑚 matrix 𝑨 is m+1, and any number of columns of
cardinality beyond the spark of a matrix are necessarily linearly independent.

A very interesting corollary arising from the definition of the spark of a matrix is stated in
the above Lemma:

Lemma A.2.2: If 𝑛𝑢𝑙𝑙(𝑨) is the nullspace of matrix 𝑨, then the following inequality holds
true:

‖𝒙‖0 ≥ 𝑠𝑝𝑎𝑟𝑘(𝑨), ∀𝒙 ∈ 𝑛𝑢𝑙𝑙(𝑨), 𝒙 ≠ 𝟎 (A.2.11)

, where 𝑠𝑝𝑎𝑟𝑘(𝑨) is the spark of the full-rank matrix 𝑨 ∈ 𝑅𝑚×𝑛, 𝑚 > 𝑛.

Although the definition of the spark of a matrix bears a strong resemblance to that of its
rank, in reality not only they differ conceptually, but in the same time the necessary effort
needed for their computation deviates significantly. In fact, the spark of a matrix is NP-

hard to compute, as a combinatorial search over all possible subsets of columns from 𝑨
is needed, as stated in [24].

At first sight, the definition of the spark combined with the difficulty of its computation
would seem redundant. On the contrary, this is clearly not the case, as it plays a crucial
role in our attempt to discover those conditions needed to hold true for the uniqueness of

the solution recovered via the 𝑙0-norm minimization task, as it becomes crystal clear from
the following Lemma ([24], [16]):

Lemma A.2.3: If the underdetermined system of equations (A.2.2) has a solution that
satisfies the following inequality condition:

‖𝒙‖0 <
𝑠𝑝𝑎𝑟𝑘(𝑨)

2
 (A.2.12)

, then this solution is unique, and at the same time the sparsest one.

Although the result of the above Lemma is elementary, it is also a very interesting one. If
we take a deeper look at inequality (A.2.12) we could easily understand that in reality it
constitutes a sufficient condition for checking the optimality of a solution to an NP-hard
problem of combinatorial flavor. And more precisely, this check concerns the global

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 127

optimality of the solution, and not the local one as it is usually the case when dealing with
combinatorial optimization problems.

As it became clear from Lemma A.2.3, it is of crucial importance the value of the spark to
be as large as possible, so that the sufficiency condition (A.2.12) holds true for a
respective range as wide as possible. Fortunately, the range of sparks’ values is known
by definition, as also stated in [11], to be:

1 ≤ 𝑠𝑝𝑎𝑟𝑘(𝑨) ≤ 𝑚 + 1 (A.2.13)

, and the construction of random matrices 𝑨 with i.i.d. entries has been proven to lead to
𝑠𝑝𝑎𝑟𝑘(𝑨) = 𝑚 + 1, as we would ideally desire.

Clearly, the result of Lemma A.2.3 provides us the sufficient condition we were seeking
for, but bearing into mind that the computation of the spark is a tough combinatorial
problem would be a discouraging factor for sure. This fundamental obstacle is overcomed
by the usage of another significant quantity of a matrix instead of its spark, which is much
easier to compute, and is called Mutual Coherence. More formally, the mutual coherence
is defined as follows:

Definition A.2.2: For a given matrix 𝑨 ∈ 𝑅𝑚×𝑛, its’ mutual coherence is given by the
following equation ([44], [24], [17], [11]):

𝜇(𝑨) ≡ max
1≤𝑖<𝑗≤𝑛

|𝒂𝑖
𝑇𝒂𝑗|

‖𝒂𝑖‖‖𝒂𝑗‖
 (A.2.14)

, where 𝒂𝑖, 𝑖 = 1,2, … , 𝑛 denotes the 𝑖 − 𝑡ℎ column of matrix 𝑨.

As it is obvious from its definition, mutual coherence measures the “similarity” between
the columns of a matrix, computing for that reason the maximum value of the absolute
inner product between them, renormalized properly. For general full-rank matrices with
more columns than rows (𝑛 > 𝑚) mutual coherence is proven to satisfy the famous Welch
Bound ([67]):

√
𝑛−𝑚

𝑚(𝑛−1)
≤ 𝜇(𝑨) ≤ 1 (A.2.15)

, with the equality being achieved for the so-called Grassmanian Frames matrices, as
proven in [57]. Obviously, from the above inequality condition, square orthogonal matrices

will always have zero mutual coherence. Another important conclusion is that if 𝑚 ≪ 𝑛

then the lower bound of (A.2.15) approaches
1

√𝑚
.

Taking a deeper look at the definition of mutual coherence, we would surely desire its

value to be as small as possible, for a matrix 𝑨 satisfying the underdetermined system of
equations (A.2.2). This demand is in perfect alignment with the “service” that matrix 𝑨 has
to carry out: the linear combination of its columns with the respective coordinates of the

unknown vector 𝒙 must “absorb” as much information about 𝒙 as possible, as the result

of this process will derive the measurement vector 𝒃. Therefore, it is of utmost importance
the columns of matrix 𝑨 to be as “less-similar” as possible, in order the recovery process
of 𝒙 to be as less toilsome as possible. Of course, the ideal scenario for matrix 𝑨 is to
have pairwise orthogonal columns (i.e. to be orthogonal), a regime however not very rare
in practice ([17], [38]).

Having introduced the notion of mutual coherence as well as exposed its intuitive
meaning, we should not forget the purpose of its usage. In reality, mutual coherence was
mentioned in order to overcome the difficulty of computing the spark of a matrix, in our

effort to check the uniqueness of the solution recovered via the 𝑙0-norm minimization task.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 128

It is time then to state the connection between them, in the form of a Lemma whose proof
is available in [24]:

Lemma A.2.4: For any matrix 𝑨 ∈ 𝑅𝑚×𝑛 the following inequality holds:

𝑠𝑝𝑎𝑟𝑘(𝑨) ≥ 1 +
1

𝜇(𝑨)
 (A.2.16)

The above inequality is quite important as it provides us a lower bound for the spark,
which in turn can be computed much easier than the spark. We should not forget to
mention here that it is clear from (A.2.16) that the spark of a matrix is inversely
proportional to its mutual coherence, a fact that was in reality expected by their respective

definitions: a small value of 𝜇(𝑨) indicates that its columns are not depending on each
other, which of course leads to high values for the 𝑠𝑝𝑎𝑟𝑘(𝑨) -as we desire.

It is now time to tie Lemmas A.2.3 and A.2.4 together, in order to conclude to a sufficient
condition whose validity can be easily checked. The following important Theorem which
achieves that purpose, was firstly stated in [24]:

Theorem A.2.1: If a system of linear equations 𝑨𝒙 = 𝒃 has a solution 𝒙 that satisfies the
following condition:

‖𝒙‖0 <
1+

1

𝜇(𝜜)

2
 (Α.2.17)

, then this solution is necessarily the sparsest one possible.

Obviously, the result of the above Theorem is of significant importance. As the mutual
coherence of a matrix is not a difficult task to compute, we have an easily checkable
sufficient condition in our hands. Of course, we should not forget that as the mutual
coherence of a matrix constitutes a “relaxation” of its spark, so do their respective results
concerning the sparsity level of the recovered solution. In fact, if we look closer to this
tacit assumption, it can be easily proven that as the mutual coherence can never be lower

than
1

√𝑚
 (as stated below inequality condition (A.2.15)), then its corresponding bound from

(A.2.17) will be
√𝑚

2
. At the same time, an expected high value of the spark -proportional

to m (identically, equal to m+1)- dictates that its corresponding bound from (A.2.12) will

be
𝑚

2
. This expansion of the sparsity level of the recovered solution is a direct

consequence of the fact that in reality Lemma A.2.3 is far sharper than Theorem A.2.1,
but at the same time far more difficult to check -a worthwhile and bearable tradeoff in
practical applications though.

Equivalence of 𝒍𝟎-𝒍𝟏-Norm Minimization Tasks

In the so far analysis that took place, those sufficient conditions that have to be fulfilled in

order for the solutions recovered by the minimization of the 𝑙0-norm as well as that of the

𝑙1-norm to be unique became clear. As everyone could have suspected from the above
analysis, the 𝑙1-norm constitutes a convenient proxy for the 𝑙0-norm, whose minimization
is difficult combinatorial optimization task as we have seen so far. The crucial part though
before adopting this powerful heuristic is to ensure that its minimization will lead to the
same result as that of its discrete and discontinuous counterpart. Of course, in general
such a conclusion can never always hold true (if it would, we would have solved practically
the famous P=NP? problem!), but under suitable sufficient conditions it can. It is now time
to state those important sufficient conditions:

Theorem A.2.2: For the system of linear equations 𝑨𝒙 = 𝒃, where 𝐴 ∈ 𝑅𝑚×𝑛 (𝑚 < 𝑛) is a
full-rank matrix, if a solution 𝒙 exists, and at the same time it obeys the following inequality
condition:

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 129

‖𝒙‖0 <
1+

1

𝜇(𝜜)

2
 (Α.2.17)

, then this solution is the unique one of both the 𝑙1-norm and 𝑙0-norm minimization tasks.

The above very important Theorem A.2.2 was stated and proved independently in [24]
and [32], while an elegant proof can also be found in [11]. Its validity is based on the
notion of mutual coherence, defining a specific bound for the sparsity level of the
recovered solution. Of course, this is not the only approach available concerning the

equivalence of the 𝑙0-𝑙1-norm minimization tasks. There exists a whole relative literature,
containing numerous approaches seeking to prove this statement, each one adopting its
own assumptions and producing its own results. Indicatively, the interested reader is
referred to [20], [17], [64], [26], while a more informative list containing a summarized
description of each method can be found in [11].

Obviously, a detailed presentation of each one of the methods available in the literature

for achieving equivalence of the 𝑙0-𝑙1-norm minimization tasks is beyond the scope of this
Appendix -and this thesis in general. On the other hand, we should not forget to highlight
the astonishing result of [17], in which is adopted a key notion that dominates the research
directions on the CS framework -the so-called Restricted Isometry Property (RIP). More
specifically, as it was pioneeringly stated in [17], we have the following definition:

Definition A.2.3: For each integer 𝑆 = 1,2, …, the isometry constant 𝛿𝑆 of a matrix 𝑨 is
defined as the smallest number such that the following inequality condition:

(1 − 𝛿𝑆)‖𝒙‖2
2 ≤ ‖𝑨𝒙‖2

2 ≤ (1 + 𝛿𝑆)‖𝒙‖2
2 (A.2.18)

holds true for all 𝑆-sparse vectors 𝒙. Furthermore, a matrix 𝑨 is called to obey the RIP of
order 𝑆 if 𝛿𝑆 is not close to one.

What intuitively the RIP condition (A.2.18) says is that if it holds true, then the 𝑙2-norm of
𝒙 is “preserved” even after the operation of matrix 𝑨 onto 𝒙. An also interesting

interpretation of the RIP condition (A.2.18) is that each submatrix 𝑨𝑆 formed by combining
at most 𝑆 columns of matrix 𝑨 has its nonzero singular values bounded below by (1 − 𝛿𝑆)
and above by (1 + 𝛿𝑆) (a related work in [3] is also very informative), or in other words its
columns are nearly orthogonal (they cannot be exactly orthogonal, since 𝑚 < 𝑛).

In order for the importance of the above “preservation of the 𝑙2-norm” to become clear,

let’s consider two 𝑆-sparse vectors 𝒙1, 𝒙2 and apply the RIP condition (A.2.18) to their

difference-which in general is a 2𝑆-sparse vector:

(1 − 𝛿2𝑆)‖𝒙1 − 𝒙2‖2
2 ≤ ‖𝑨(𝒙1 − 𝒙2)‖2

2 ≤ (1 + 𝛿2𝑆)‖𝒙1 − 𝒙2‖2
2 (A.2.19)

Clearly, (A.2.19) implies that all pairwise distances between 𝑆-sparse signals are well
preserved in the measurement space, and therefore when 𝛿2𝑆 is “sufficiently small” the
odds of recovering 𝑆-sparse vectors / signals with matrix 𝑨 are surely not against us.

The significance of exhibiting the RIP is justified in the following Theorem ([17], [21], [18],
[16], [14]):

Theorem A.2.3: Assume that 𝛿2𝑆 < √2 − 1. Then, the solution 𝒙∗ to the 𝑙1-norm
minimization task (A.2.6) satisfies the following two inequality conditions:

{
‖𝒙∗ − 𝒙‖1 ≤ 𝐶0‖𝒙 − 𝒙𝑆‖1

‖𝒙∗ − 𝒙‖2 ≤
𝐶0‖𝒙−𝒙𝑆‖1

√𝑆

 (A.2.20)

, for some constant 𝐶0, where 𝒙𝑆 is the best sparse approximation of 𝒙 if we knew exactly
the locations and amplitudes of the 𝑆-largest entries of 𝒙 (practically, 𝒙𝑆 results from 𝒙 if
we set to zero all but its 𝑆-largest coordinates).

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 130

In particular, if 𝒙 is 𝑆-sparse, the recovery is exact. On the other hand, if 𝒙 is not 𝑆-sparse,
then the accuracy of the recovered vector / signal depends, in some magic way, directly

on the 𝑆-largest entries of 𝒙. Furthermore, there is no piece of randomness in Theorem
A.2.3, since everything is completely deterministic: if matrix 𝑨 obeys the RIP condition

with 𝛿2𝑆 < √2 − 1, then Theorem A.2.3 certifies that the recovered solution of the 𝑙1-norm

minimization task (A.2.6) would be either an exactly 𝑆-sparse vector or, in the worst case
scenario, an approximately 𝑆-sparse one-whose 𝑆-largest values are definitely the
“dominant” ones.

Advocating to the groundbreaking significance of the RIP condition, it would be a pity if

we wouldn’t mention that in the case of seeking an 𝑆-sparse solution (which is clearly our

goal from the beginning), what Theorem A.2.3 claims is that in fact the 𝑙1-norm

minimization task and the 𝑙0 one are formally equivalent. This assertion arises from two
important interpretations of the isometry constant 𝛿2𝑆([14]):

1. If 𝛿2𝑆 < 1, then 𝑙0-norm minimization task has a unique 𝑆-sparse solution -as it is
shown in [16].

2. If 𝛿2𝑆 < √2 − 1, then the solution to the 𝑙1-norm minimization task is the same as
that of the 𝑙0-norm minimization task. Of course, such a thing does not comes from
the sky, and is makes completely sense: if we desire our convex relaxation to be
exact, obviously we have also to decrease accordingly the range of values for the

isometry constant 𝛿2𝑆.

Concluding this section, it is deemed necessary to dwell on the fact that obviously we

desire to deal with matrices for which the RIP condition holds true with as high value of 𝑆
as possible. Unfortunately, there are no known large matrices with bounded restricted
isometry constants, and -as with the computation of the spark of a matrix- computing
these constants is a strongly NP-hard task ([61]). However, many random matrices have
been shown to remain bounded. More precisely, it has been shown that with exponentially
high probability, random Gaussian, Bernoulli, and partial Fourier matrices satisfy the RIP
condition with number of measurements nearly linear in the sparsity level ([71]). The
current smallest upper bounds for any large rectangular matrices are for those of
Gaussian matrices according to [2].

Rank Minimization

Inspired by the reasoning developed above, a question of similar nature which is
commonly addressed in practice (and in a sense, seems more generic) is whether it is

possible to recover instead of an unknown vector 𝒙 which is assumed to be sparse, an
unknown matrix 𝑫 which is assumed to be low-rank -given the fact that only a fraction of
its entries are observed. In other words, as common sense approach dictates, we aim at
solving the following optimization problem:

min
𝑠.𝑡.𝑿𝑖𝑗=𝑫𝑖𝑗,(𝑖,𝑗)∈𝛺

𝑟𝑎𝑛𝑘(𝑿) (A.2.21)

, where 𝛺 is the set of observed entries of matrix 𝑫 ∈ 𝑅𝑚×𝑛, sampled uniformly at random,

and 𝑿 is the decision variable.

Although (A.2.21) may seem quite reasonable as an approach for tackling the rank
minimization problem, in reality it is of quite limited practical use. The reason for that is
on the one hand that is a problem of combinatorial nature -recasting it almost immediately
as a NP-hard one- while on the other hand all known algorithmic schemes require time

doubly exponential in the dimension of the matrix 𝑫 (both in theory and practice) in order
to provide the desired solution ([22], [66]).

𝒍∗-Norm Minimization

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 131

Just as the rank minimization task resembles in flavor with the 𝑙0-norm minimization one,
so does the alternative used to overcome it: a handful proxy for the rank functional, which
nevertheless can be efficiently optimized. With this guideline into mind, various heuristics
have been developed. One of the most famous among them is the trace heuristic ([45]),
which can be minimized in place of the rank functional when the matrix of interest is
positive semidefinite. The main problem with this heuristic is that it is simply not applicable
in situations where the desired matrix is non-symmetric or non-square, as in such cases
the trace is not even defined.

To overcome such difficulties, M. Fazel championed a more “universal” heuristic both in
[29] and [28], which at the same time constitutes the convexly relaxed counterpart of the
rank functional in (A.2.21): the nuclear norm. So replacing the rank with the nuclear norm
in (A.2.21), the optimization task now takes the following form:

min
𝑠.𝑡.𝑿𝑖𝑗=𝑫𝑖𝑗,(𝑖,𝑗)∈𝛺

‖𝑿‖∗ (A.2.22)

As a result, the emerging optimization task in (A.2.22) is a convex optimization problem
which can be solved efficiently via SDP -in contrast to its primal combinatorically hard
counterpart. Furthermore, it is worth mentioning the fact that in the case where the matrix

𝑿 is symmetric and positive semidefinite, its singular values coincide with its eigenvalues,
and the computation of the nuclear norm of matrix 𝑿 reduces to the computation of its
trace. Of course, such a transition (from the rank functional to the nuclear norm) should
be cautious, as the two objective functions are of different “nature”: on the one hand, the
rank function counts the number of the non-vanishing singular values of a matrix
(interpreting it via its SVD), while on the other hand the nuclear norm sums their
amplitude. Yet again, convexity plays the key role in this direction -as it becomes clearer
below.

Prior Art Applied Once More

Bearing into mind the fact that the 𝑙1-norm minimization task constitutes the convex
relaxation of the 𝑙0-norm minimization one, and more precisely that in fact it is the tightest
one (convex hull / convex envelope), a similar analogy would also be convenient in our
attempt to tackle the NP-hard rank minimization task. Fortunately, such a hope holds true,
and the relative formality was given in [29] (as well as its proof) in the form of the following
Theorem:

Theorem A.2.4: The convex envelope of the function 𝑓(𝑿) = 𝑟𝑎𝑛𝑘(𝑿) on 𝐶 =
{𝑿 ∈ 𝑅𝑚×𝑛: ‖𝑿‖ ≤ 1} is 𝑢(𝑿) = ‖𝑿‖∗.

The significance of the above Theorem is exactly that of the technique of convex
relaxation: the provision of useful information concerning the solution of the original NP-
hard optimization problem, by finding that of the relaxed one. In other words, by solving
the nuclear norm minimization task, we obtain helpful clues in our quest for the solution

of the rank minimization task. In fact, as it is shown in [29], if the feasible set, 𝐶, is bounded
by 𝑀, i.e. ‖𝑿‖ ≤ 𝑀 for all 𝑿 ∈ 𝐶, (provided we can find such a bound 𝑀), then for all 𝑿 ∈
𝐶 holds true the following inequality:

‖𝑿‖∗

𝑀
≤ 𝑟𝑎𝑛𝑘(𝑿) (A.2.23)

What practically (A.2.23) means is that the optimal solutions of the respective
minimization tasks also obey a similar inequality equation:

𝑜𝑠∗

𝑀
≤ 𝑜𝑠𝑟𝑎𝑛𝑘 (A.2.24)

, where 𝑜𝑠∗ denotes the optimal solution of the nuclear norm minimization task and 𝑜𝑠𝑟𝑎𝑛𝑘
denotes the optimal solution of the rank minimization task.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 132

As it is obvious from (A.2.24), the optimal solution of the rank minimization task is
bounded below from that of the nuclear norm minimization task. As a result, by finding
the solution to the heuristic problem we surely obtain an approximate value of the solution
of our original NP-hard combinatorial problem.

Equivalence of Rank-𝒍∗-Norm Minimization Tasks

As it became clear from the above analysis, the adoption of the nuclear norm heuristic for

the rank minimization problem generalizes the results derived by the 𝑙1-norm minimization
in CS literature, exploiting the apparently strong parallels among them. As a
consequence, it is reasonable to expect a similar analogy concerning those sufficient

conditions under which the rank minimization and 𝑙∗-norm minimization tasks are
equivalent and provide us the optimum solution. In fact, this is indeed the case, as it was
shown in [53]. The elegant results of this paper build on the concept of restricted
isometries introduced in [17] by Candès and Tao, deriving the homonymous property

(RIP) under which the 𝑙∗-norm minimization task can be guaranteed to produce the
minimum rank solution.

Generalizing the definition of the RIP from vectors to matrices, we have the following
definition ([53]):

Definition A.2.4: Let 𝑨: 𝑅𝑚×𝑛 → 𝑅𝑝 be a linear map. Without loss of generality, assume

𝑚 ≤ 𝑛. For every integer 𝑟 with 1 ≤ 𝑟 ≤ 𝑚, define the 𝑟-restricted isometry constant to be
the smallest number 𝛿𝑟(𝑨) such that:

(1 − 𝛿𝑟(𝑨))‖𝑿‖𝐹 ≤ ‖𝑨(𝑿)‖ ≤ (1 + 𝛿𝑟(𝑨))‖𝑿‖𝐹 (A.2.25)

holds for all matrices 𝑿 of rank at most 𝑟.

The similarities between (A.2.19) and (A.2.25) are more than obvious, as it was expected:

the 𝑙2-norm is replaced by the Frobenius norm, and the 𝑙0-norm by the rank functional. In
a sense, we could say that (A.2.25) extends the concept of (A.2.19) in the diagonal case,
as in this regime the Frobenius norm is equal to the Euclidean norm of the diagonal.

Nevertheless, there are also some differences among the two definitions, which are not
of the same importance. The first one concerns the fact that in (A.2.25) the norms involved
are not squared as it is the case in (A.2.19), a choice although made by the authors of
[53] just for simplification of the analysis following (A.2.25) and not for some exceptional
(mathematical or not) advantage gained by adopting it. The second and most important
difference however is that (A.2.25) cannot guarantee that all submatrices of the linear

transform 𝑨 of a certain size to be well conditioned, in the sense that the set of matrices
𝑿 obeying (A.2.25) is not a finite union of subspaces.

Despite the aforementioned differences, and more precisely the second one which has a
strong theoretical and conceptual flavor, the recovery results derived using (A.2.25)
remain analogous to those using (A.2.19). As before, the significance of the RIP becomes
perceivable via the derivation of theorems resulting from it ([53]):

Theorem A.2.5: Suppose that 𝛿2𝑟 < 1 for some integer 𝑟 ≥ 1. Then 𝑿0 is the only matrix

of rank at most 𝑟 satisfying 𝑨(𝑿) = 𝒃, where 𝑿0 is a matrix of rank 𝑟.

The above Theorem is quite important due to the fact that it leads us to derive an

analogous of the Theorem A.2.3 in order to identify those conditions under which 𝑿0 is
the minimum rank solution (𝑿∗) of 𝑨(𝑿) = 𝒃 ([53]):

Theorem A.2.6: Suppose that 𝑟 ≥ 1 is such that 𝛿5𝑟 <
1

10
. Then 𝑿∗ = 𝑿0.

Technical details concerning the proofs of Theorems A.2.4 and A.2.5 are of course
available in [53], but enlisting them here is out of the scope of this Appendix. An important

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 133

point although that has to be highlighted is the fact that the recovery condition on 𝛿5𝑟 is

an absolute constant, which is independent both from the dimensions of the linear map 𝜜
and from the rank of 𝑿0. Finally, concluding this section as well as the whole present
Appendix, it would be a significant omission not to mention the fact that there are quite a
lot linear transformations, arising from the sampling of widely used random matrices
(Gaussian, Bernoulli), which exhibit the RIP property with overwhelming probability (as it
is proven in details in [53]), making its’ influence of utmost theoretical as well as practical
importance at the same time.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 134

REFERENCES

[1] S. Babacan, M. Luessi, R. Molina and A. Katsaggelos, Sparse bayesian methods for low-rank matrix
estimation, IEEE Transactions on Signal Processing, vol. 60, no.8, pp. 3964-3977, May 2012.

[2] B. Bah and J. Tanner, Improved Bounds on Restricted Isometry Constants for Gaussian Matrices, SIAM
Journal on Matrix Analysis and Applications, vol. 31, no. 5, pp. 2882-2898, 2010.

[3] R. G. Baraniuk, M. Davenport, R. DeVore and M. B. Wakin, A simple proof of the restricted isometry
property for random matrices, Constructive Approximation, vol. 28, pp. 253-263, 2008.

[4] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.

[5] S. Becker, E. J. Candès and M. Grant, TFOCS: flexible first-order methods for rank minimization, Low-
rank Matrix Optimization Symposium, SIAM Conference on Optimization, 2011.

[6] R. E. Bellman, ed., Adaptive control processes: a guided tour, Princeton University Press, 1961.
[7] R. E. Bellman, ed., Dynamic programming, Princeton University Press, 1957.
[8] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New

York / London, 1982.
[9] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
[10] T. Bouwmans and E. Zahzah, Robust PCA via Principal Component Pursuit: A Review for a

Comparative Evaluation in Video Surveillance, Computer Vision and Image Understanding, vol. 122,
pp. 22-34, May 2014.

[11] A. M. Bruckstein, D. L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse
modeling of signals and images, SIAM Review, vol. 51, no. 1, pp. 34-81, 2009.

[12] J. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM
Journal on Optimization, vol. 20, no. 4, pp. 1956-1982, January 2010.

[13] J.-F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for compressed sensing, Mathematics
of Computation, vol. 78, pp. 1515-1536, 2009.

[14] E. J. Candès, The Restricted Isometry Property and its Implications for Compressed Sensing, Comptes
Rendus Mathematique de l’ Academie des Sciences, Paris, France, vol. 346, no. 9, pp. 589-592, 2008.

[15] E. J. Candès and B. Recht, Exact Matrix Completion via Convex Optimization, Foundations of
Computational Mathematics, vol. 9, no. 6, pp. 717-772, 2009.

[16] E. J. Candès and J. Romberg, Practical signal recovery from random projections, Proceedings of the
SPIE 17th Annual Symposium on Electronic Imaging, Bellingham, WA, 2005.

[17] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory,
vol. 51, no. 12, pp. 4203-4215, 2005.

[18] E. J. Candès and M. B. Wakin, An Introduction To Compressive Sampling, Signal Processing
Magazine, IEEE, vol. 25, no. 2, pp. 21-30, March 2008.

[19] E. J. Candès, X. Li, Y. Ma and J. Wright, Robust Principal Component Analysis?, Journal of the Applied
and Computational Mathematics, vol. 58, no. 3, Article no. 11, pp. 1-37, June 2011.

[20] E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from
highly incomplete Fourier information, IEEE Transactions on Information Theory, vol. 52, no. 2, pp.
489-509, 2006.

[21] E. J. Candès, J. Romberg and T. Tao, Stable recovery from incomplete and inaccurate measurements,
Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207-1223, 2006.

[22] A. L. Chistov and D. Yu. Grigoriev, Complexity of quantifier elimination in the theory of algebraically
closed fields, Proceedings of the 11th Symposium on Mathematical Foundations of Computer Science,
vol. 176 of Lecture Notes in Computer Science, pp. 17-31, 1984.

[23] X. Ding, L. He and L. Carin, Bayesian robust principal component analysis, IEEE Transaction on Image
Processing, vol. 20, no. 12, pp. 3419-3430, January 2012.

[24] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via
𝑙1 minimization, Proceedings of National Academy of Sciences, pp. 2197-2202, 2003.

[25] D. L. Donoho and X. Huo, Uncertainty Principles and Ideal Atomic Decomposition, IEEE Transactions
on Information Theory, vol. 47, no. 7, pp. 2845-2862, 2001.

[26] D.L. Donoho, For most large underdetermined systems of linear equations, the minimal 𝑙1-norm solution
is also the sparsest solution, Communications on Pure and Applied Mathematics, vol. 59, pp. 797–829,
2006.

[27] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika,
vol. 1, no. 3, pp. 211–218, 1936.

[28] M. Fazel, “Matrix Rank Minimization with Applications”, PhD thesis, Stanford University, 2002.
[29] M. Fazel, H. Hindi, and S. P. Boyd, A rank minimization heuristic with application to minimum order

system approximation, American Control Conference, Proceedings of the 2001, pp. 4734-4739, 2001.
[30] G. H. Golub and C. F. van Loan, Matrix Computation, The Johns Hopkins University Press, 1996.

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 135

[31] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: A re-
weighted minimum norm algorithm, IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 600-
614, 1997.

[32] R. Gribonval and M. Nielsen, Sparse decompositions in unions of bases, IEEE Transactions on
Information Theory, vol. 49, no. 12, pp. 3320-3325, 2003.

[33] C. Guyon, T. Bouwmans and E. Zahzah, Foreground detection via robust low-rank matrix
decomposition including spatiotemporal constraint, International Workshop on Background Model
Challenges, ACCV 2012, November 2012.

[34] C. Guyon, T. Bouwmans and E. Zahzah, Foreground detection via robust low-rank matrix factorization
including spatial constraint with iterative reweighted regression, International Conference on Pattern
Recognition, ICPR 2012, November 2012.

[35] C. Guyon, T. Bouwmans, and E. Zahzah, Moving object detection via robust low-rank matrix
decomposition with IRLS scheme, International Symposium on Visual Computing, ISVC 2012, pp. 665-
674, July 2012.

[36] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and Applications, vol.
4, pp. 303-320, 1969.

[37] H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of
Educational Psychology, vol. 24, pp. 417–441 and 498–520, 1933.

[38] X. Huo, “Sparse Image representation via Combined Transforms”, Ph.D. thesis, Stanford, 1999.
[39] N. Jorge, S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial

Engineering, Berlin/New York, 2006.
[40] K. Karhunen, “Zur spektraltheorie stochastischer prozesse,” Annales Academiae Scientiarum

Fennicae, vol. 37, 1946.
[41] R. M. Larsen, PROPACK-software for large and sparse SVD calculations, 2004;

http://sun.stanford.edu/~rmunk/PROPACK/ [Accessed 29/06/2016].
[42] Z. Lin, M. Chen, L. Wu and Y. Ma, The augmented Lagrange multiplier method for exact recovery of

corrupted low-rank matrices, UIUC Technical Report, November 2009.
[43] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact

recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), July 2009.

[44] S. Mallat and S. Zhang, Matching Pursuit in a time-frequency dictionary, IEEE Transactions on Signal
Processing, vol. 41, pp. 3397-3415, 1993.

[45] M. Mesbahi and G. Papavassilopoulos, On the rank minimization problem over a positive semidefinite
linear matrix inequality, IEEE Transactions on Automatic Control, vol. 42, no. 2, pp. 239-243, February
1997.

[46] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quarterly Journal of Mathematics,
vol. 11, no. 1, pp. 50–59, 1960.

[47] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing, vol. 24,
pp. 227-234, 1995.

[48] Y. Nesterov, A method of solving a convex programming problem with convergence rate 𝑂 (
1

𝑘2
), Soviet

Mathematics Doklady, vol. 27, no. 2, pp. 372-376, 1983.
[49] K. Pearson, On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine,

vol. 2, no. 11, pp.559-572, 1901.
[50] Perception and Decision Lab, University of Illinois, Low-Rank Matrix Recovery and Completion via

Convex Optimization, August 2012; http://perception.csl.illinois.edu/matrix-rank/home.html [Accessed
19/07/2016].

[51] A. M. Pinkus, On 𝑙1-approximation, Cambridge Tracts in Mathematics, vol. 93, Cambridge University
Press, 1989.

[52] M. J. D. Powell, edited by R. Fletcher, A method for nonlinear constraints in minimization problems,
Optimization, Academic Press, New York, pp. 283-298, 1969.

[53] B. Recht, M. Fazel, and P. Parrilo, Guaranteed minimum rank solutions of matrix equations via nuclear
norm minimization, SIAM Review, vol. 52, no.3, pp. 471-501, 2010.

[54] J. Romberg, Imaging via Compressive Sampling, IEEE Signal Processing Magazine, vol. 25, no. 2,
pp.14-20, March 2008.

[55] J. Shlens, A Tutorial on Principal Component Analysis, Google Research, Version 3.02, April 2014.
[56] G. Strang, ed., Introduction to Linear Algebra, 4th edition, Wellesley-Cambridge Press, 2009.
[57] T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication,

Applied and Computational Harmonic Analysis, vol. 14, pp. 257–275, 2003.
[58] G. Tang and A. Nehorai, Robust principal component analysis based on low-rank and block-sparse

matrix decomposition, Annual Conference on Information Sciences and Systems, CISS 2011, 2011.
[59] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th edition, Elsevier, 2009.

http://sun.stanford.edu/~rmunk/PROPACK/
http://perception.csl.illinois.edu/matrix-rank/home.html

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction

M. Giannopoulos 136

[60] S. Theodoridis, A. Pikrakis, K. Koutroumbas and D. Cavouras, An Introduction to Pattern Recognition-
A Matlab Approach, Elsevier, 2010.

[61] A. M. Tillmann and M. E. Pfetsch, The Computational Complexity of the Restricted Isometry Property,
the Nullspace Property, and Related Concepts in Compressed Sensing, IEEE Transactions on
Information Theory, vol. 60, no. 2, pp. 1248–1259, 2013.

[62] K. C. Toh, M. J. Todd and R.H. Tütüncü, A Matlab software package for semidefinite-quadratic-linear
programming, version 3.0, August 2001; http://www.math.nus.edu.sg/~mattohkc/sdpt3.html [Accessed
29/06/2016].

[63] K. C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least
squares problems, Pacific Journal of Optimization, vol. 6, no. 3, pp. 615-640, 2009.

[64] J. A. Tropp and A. A. Gilbert, Signal recovery from random measurements via orthogonal matching
pursuit, IEEE Transactions on Information Theory, vol. 53, pp. 4655–4666, 2007.

[65] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, Technical
report, University of Washington, Seattle, 2008.

[66] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, vol. 38, no. 1, pp. 49-95,
March 1996.

[67] L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Transactions on
Information Theory, vol. 20, no. 3, pp. 397-399, 1974.

[68] B. Wohlberg, R. Chartrand and J. Theiler, Local principal component analysis for nonlinear datasets,
International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012, pp. 3925-3928,
March 2012.

[69] J. Wright, Y. Peng, Y. Ma, A. Ganesh and S. Rao. Robust principal component analysis: Exact recovery
of corrupted low-rank matrices by convex optimization, Advances on Neural Information Processing
Systems, NIPS 2009, pp. 2080-2088, December 2009.

[70] H. Xu, C. Caramanis and S. Sanghavi, Robust PCA via outlier pursuit, IEEE Transactions on
Information Theory, vol. 58, no. 5, pp. 3047-3064, 2012.

[71] F. Yang, S. Wang and C. Deng, Compressive Sensing of Image Reconstruction Using Multi-wavelet
Transforms, IEEE International Conference on Intelligent Computing and Intelligent Systems, vol. 1,
pp. 702–705, 2010.

[72] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods,
Pacific Journal of Optimization, vol. 9, no. 1, January 2009.

[73] T. Zhou and D. Tao, GoDec: randomized low-rank and sparse matrix decomposition in noisy case,
International Conference on Machine Learning, ICML 2011, 2011.

[74] Z. Zhou, X. Li, J. Wright, E. J. Candès, Y. Ma. Stable principal component pursuit, IEEE ISIT
Proceedings, pp. 1518-1522, June 2010.

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

