
 
 

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS 
 

SCHOOL OF SCIENCE 
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS 

 
GRADUATE PROGRAM 

 
 
 
 

MASTER THESIS 
 
 

ROBUST PRINCIPAL COMPONENT ANALYSIS: 
THEORETICAL ASPECTS AND ALGORITHMIC 

COMPARATIVE EVALUATION FOR DIMENSIONALITY 
REDUCTION 

 
 
 

Michail N. Giannopoulos 
 
 
 
 
 
 
 
 
 
 
 

Advisors: Sergios Theodoridis, Professor 
Yannis Kopsinis, Post Doc Researcher 

 
 

ATHENS 
 

November 2016 
  



 
 

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ 
 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 

 
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ 

 
 
 
 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 
 
 

ΕΥΡΩΣΤΗ ΑΝΑΛΥΣΗ ΚΥΡΙΩΝ ΣΥΝΙΣΤΩΣΩΝ: ΘΕΩΡΗΤΙΚΕΣ 
ΠΤΥΧΕΣ ΚΑΙ ΑΛΓΟΡΙΘΜΙΚΗ ΣΥΓΚΡΙΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΓΙΑ 

ΜΕΙΩΣΗ ΤΗΣ ΔΙΑΣΤΑΣΗΣ 
 
 
 

Μιχαήλ Ν. Γιαννόπουλος 
 
 
 
 
 
 
 
 
 
 
 

Επιβλέποντες: Σέργιος Θεοδωρίδης, Καθηγητής 
Ιωάννης Κοψίνης, Μεταδιδακτορικός Ερευνητής 

 
 

ΑΘΗΝΑ 
 

Noέμβριος 2016 
  



MASTER THESIS 

 
 
 

Robust Principal Component Analysis: Theoretical Aspects and Algorithmic 
Comparative Evaluation for Dimensionality Reduction 

 
 
 

Michail N. Giannopoulos 

S.N.: Μ1272 
 
 
 
 
 
 
 
 
 
 

Advisors: Sergios Theodoridis, Professor 
Yannis Kopsinis, Post Doc Researcher 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 
 
 
 
 
 
 

November 2016 



ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

 
 
 

Εύρωστη Ανάλυση Κύριων Συνιστωσών: Θεωρητικές Πτυχές και Αλγοριθμική 
Συγκριτική Αποτίμηση για Μείωση της Διάστασης  

 
 
 

Μιχαήλ Ν. Γιαννόπουλος 

Α.Μ.: Μ1272 
 
 
 
 
 
 
 
 
 
 

ΕΠΙΒΛΕΠΟΝΤΕΣ: Σέργιος Θεοδωρίδης, Καθηγητής 
Ιωάννης Κοψίνης, Μεταδιδακτορικός Ερευνητής 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 
 
 
 
 
 
 

Noέμβριος 2016 



ABSTRACT 

 

In the present master thesis we examine the question of whether the PCA method for 
dimensionality reduction could become robust vis-à-vis gross errors, and if so which 
algorithmic scheme from the literature would be the best choice. 

In the beginning, we present the classical PCA method, its main ideas, those key 
properties that have made it so popular, its advantages and its disadvantages. 

Afterwards, we state the main theoretical results concerning the possibility of robustyfying 
the PCA method, as well as some interesting applications of real life in which a robust 
PCA method could prove extremely useful. 

Subsequently, a detailed presentation of the most popular algorithmic schemes designed 
to tackle this problem takes place, followed by a respective comparative analysis among 
them based on widely used quality metrics used in this scientific field. 

Finally, a case-study inspired by the field of image processing is examined, in order on 
the one hand to evaluate the performance of the algorithmic schemes studied in the 
present thesis under tougher experimental circumstances, as well as on the other hand 
to examine their practical use in realistic applications. 
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ΠΕΡΙΛΗΨΗ 

 

Στην παρούσα διπλωματική εργασία εξετάζεται το κατά πόσο η ευρέως γνωστή ανάλυση 
κύριων συνιστωσών ως μια μέθοδος μείωσης της διάστασης μπορεί να καταστεί εύρωστη 
απέναντι σε ακραίες τιμές / παρατηρήσεις, και αν κάτι τέτοιο είναι δυνατό ποιο 
αλγοριθμικό σχήμα  από τη βιβλιογραφία αποτελεί την καλύτερη επιλογή. 

Αρχικά, παρουσιάζεται η κλασική ανάλυση κύριων συνιστωσών, οι βασικές της ιδέες, 
εκείνες οι ιδιότητες-κλειδιά της οι οποίες την έχουν καταστήσει τόσο δημοφιλή, τα 
πλεονεκτήματά της καθώς και τα μειονεκτήματα αυτής. 

Στη συνέχεια, γίνεται μνεία στα βασικά θεωρητικά αποτελέσματα που αφορούν στην 
πιθανότητα η ανάλυση κύριων συνιστωσών να καταστεί εύρωστη απέναντι σε ακραίες 
τιμές, καθώς επίσης και σε μερικές ενδιαφέρουσες εφαρμογές της πραγματικής ζωής 
όπου κάτι τέτοιο θα ήταν αρκετά χρήσιμο. 

Ακολούθως, λαμβάνει χώρα μια αναλυτική παρουσίαση των πιο διάσημων αλγοριθμικών 
σχημάτων που σχεδιάστηκαν ώστε να αντιμετωπίσουν αυτό το πρόβλημα, 
ακολουθούμενη από μία συγκριτική ανάλυση μεταξύ τους η οποία εδράζεται σε ευρέως 
χρησιμοποιούμενες μετρικές ποιότητας σε αυτό το επιστημονικό πεδίο. 

Τέλος, εξετάζεται μια μελέτη-περίπτωσης προερχόμενη από το πεδίο της επεξεργασίας 
εικόνας, ώστε από τη μία πλευρά να αποτιμηθεί η επίδοση των υπο μελέτη αλγορίθμων 
σε “δυσκολότερες” πειραματικές συνθήκες, από την άλλη δε πλευρά να διερευνηθεί η 
πρακτική χρησιμότητά τους σε ρεαλιστικές εφαρμογές. 
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The present thesis was elaborated in the context of completion of the Graduate Program 
of the Department of Informatics and Telecommunications of the National and 
Kapodistrian University of Athens.  
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1. INTRODUCTION 

Living in the outer world, human perception receives multiple incentives as well as 
information every day. In many cases, the data we receive from nature (e.g. the different 
colors we see with our eyes) are so vast that we find it at least difficult to process them in 
the way we desire to. Our mental representation of the world is although a little 
“subtractive”, in the sense that it is based on a relatively small number of perceptually 
relevant features. As a result, methods for removing what in science is called “redundant 
information” while at the same time the remaining information retains an intuitive and 
handy structure, are of utmost importance these days. 

What scientists -and in many cases all humans- do when they want to examine and 
explain a certain problem / phenomenon is observation. In other words, they take 
measurements. A very important question that arises automatically concerns the number 
of measurements / data points needed in order to obtain statistically sound and reliable 
results. Unfortunately, the answer to the previous question is neither simple nor 
encouraging. The reason is that as we live in the era of Big Data, the measurements we 
take in most cases also live in very high dimensional spaces -often in hundreds or 
thousands of dimensions. The result is that the required amount of data we need to 
support our result grows dramatically fast as the dimensionality of the problem increases. 
In a more formal and maybe explicative way, we can say that the time and memory 
needed for an algorithm to solve a particular problem is exponential in the number of 
dimensions of the data. This well-known phenomenon that appears in many different 
domains of science (such as statistics, machine learning, data mining etc.) is what we call 
the Curse of Dimensionality, and the first one referred to it is Richard E. Bellman when 
considering problems in dynamic optimization ([7], [6]). 

When facing the curse of dimensionality, a good solution can often be found by changing 
the algorithm, or by pre-processing the data into a lower dimensional form. For example, 
the notion of Intrinsic Dimension (ID) refers to the fact that any low-dimensional data 
space can trivially be turned into a higher-dimensional space by adding redundant (e.g. 
duplicate) or randomized dimensions, and in turn many high-dimensional data sets can 
be reduced to lower dimensional data without significant information loss. This is also 
reflected by the effectiveness of dimension reduction methods -such as Principal 
Component Analysis (PCA)- in many situations. 

The key feature to all previous considerations as methods facing the curse of 
dimensionality is the choice of working with data in a much lower dimensional space than 
the real one. In other words, our goal is to transform our original high dimensional set of 
measurements into a much lower one that we can easily process, but at the same time 
the relevant transformation has to be done in such a way that it removes the information 
redundancies while retaining most of the useful information of the original set of 
measurements. The process described below is what is called Dimensionality Reduction, 
and is widely used in machine learning as well as in statistics. More precisely and formally, 
dimensionality reduction is the process of reducing the number of random variables under 
consideration, and can be divided into Feature Selection and Feature Extraction. 

While feature selection approaches try to find a subset of the original variables (also 
called features or attributes), feature extraction methods transform the data in the high-
dimensional space to a space of fewer dimensions. The data transformation may be 
linear, as in PCA, but many nonlinear dimensionality reduction techniques also exist and 
are widely used. 
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2. PRINCIPAL COMPONENT ANALYSIS 

As mentioned in the Introduction, principal component analysis is just one of many 
techniques available in our palette for achieving dimensionality reduction. It is widely used 
for this purpose, and it is not exceeding to say that it is the most popular among them. 
So, it is of crucial importance to take a deeper look at it, in order to understand the method 
itself as well as those key elements contributing to its popularity. 

2.1 Motivation and statement of the problem 

We start the conversation about PCA by presenting the motivation which led to it: in our 
attempts to understand various phenomena around us we take measurements of different 
quantities of interest. Unfortunately, many of the collected data may be redundant, 
contaminated with noise, and in general difficult to process due to their complicated 
structure. The goal of PCA is to “discover” the real underlying structure and probable 
relationship among the data, in such a way that most useful information is preserved using 
an intuitive method for achieving it at the same time. 

It is time mathematics enter the game, explaining what until this moment may seem at 

least general. Suppose we have a set of measurements 𝒙 ∈ 𝑅𝑚, whose structure is 
unclear as mentioned before. What the PCA method does is creating a new set of data 

𝒚 = 𝑨𝑇𝒙 (2.1) 

, where 𝑨 is the Transformation Matrix which exploits the statistical information describing 
the data. In terms of linear algebra, “the goal of principal component analysis is to identify 
the most meaningful basis to re-express a data set. The hope is that this new basis will 
filter out the noise and reveal hidden structure”, as mentioned very explicatively in [55]. 

2.2 Linear Algebra highlights the crucial details 

At this point, let us go back to the introduction of this thesis, and mention again that PCA 
is a linear method for dimensionality reduction. This may seem a surplus information 
when looking at the method for the first time, but in reality it is not at all. The reason is not 
only the obvious adjective that discriminates it from the relevant nonlinear methods 
addressing the same problem, but most importantly that this adjective refers specifically 

to the transformation matrix 𝑨 and its “properties”. Taking this argument a little further, 
the crucial part is the choice of the transformation matrix 𝑨, or, in linear algebra words, 
the selection of the proper basis. So, now the question PCA method is trying to answer 
becomes finding a linear combination of the original basis which highlights most of the 
information of the original data set. 

Before answering the previous question, it is deemed necessary to give a more intuitive 
interpretation of the equation (2.1) which transforms our original data set to a new one 
according to the PCA method. What this equation depicts is a change of basis, which in 
linear algebra can have the following interpretations: 

 𝑨 is the matrix which is responsible for the transformation of 𝒙 into 𝒚 

 The rows of 𝑨 constitute the new set of basis vectors 

 Geometrically, 𝑨 is a rotation (and probably a following scaling) of the original basis 
vectors 

At this point, it is necessary to note that at the equation (2.1) 𝒙 and 𝒚 can also be matrices 
(𝑿 and 𝒀 respectively) instead of vectors, without loss of generality. The relative extension 
/ generalization is quite obvious, and the process of achieving it will be skipped.  



Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction 

M. Giannopoulos                                                                                 21 

2.3 A Signal Processing perspective 

As everything in real world is imperfect, so are the measurements used for experimental 
purposes. There is quite an evolved theory around noise nowadays, concerning methods 
from predicting its distribution over the data to others of removing it. In this section we are 
not going to quantify the noise level of the data itself, but on the contrary we will confront 
it with respect to the “pure” data -those data which are not infected with noise. In signal 
processing and communication systems’ theory, this constitutes a short introduction for 
making the reader familiar with what is called Signal-to-Noise Ratio (SNR). From a 
mathematical point of view, SNR is defined as: 

𝑆𝑁𝑅 =
𝜎𝑠𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑛𝑜𝑖𝑠𝑒
2  (2.2) 

As it is obvious from the definition, we desire 𝑆𝑁𝑅 > 1 (measurements with low noise), 
and surely not 𝑆𝑁𝑅 < 1 (measurements with high noise). 

What PCA method is trying to do is finding those directions (in general, those structures) 
towards which the SNR is maximized. In other words, those directions towards which the 
Variance of the signal / data becomes maximum. When referring to directions, and taking 
into mind what was discussed in the previous section, we realize that in fact we are talking 
about a rotation of the Cartesian Axis System. Let’s take a look at the following image, 
for further explanations: 

 

Image 1: Visualization of PCA method 

The blue dots are our data, living in the two dimensional space. In other words, each data 

point is a vector with two coordinates (𝑥, 𝑦). As stated before, the goal of the PCA method 
is to find along which direction(s) the greatest amount of variability of the data is found. 
As it is clear from Image 1, those directions are the green lines demonstrating exactly 
what we wanted. Most of our data are gathered around the “longer” green line (the first 
principal component), while the “shorter” green line (the second principal component) 
depicts the spread of the data around the first component. Trying to give an intuitive 
interpretation leads us to the conclusion that most of our data live exactly along the first 
principal component, while possible deviations from it implies that there is an amount of 
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noise at them. In effect, what happened is a rotation of the original axis system in the 
direction in which maximum variance of data is observed (firstly for the “pure” ones and 
secondly for the “infected”). Last but not least, we observe that the new axis (the principal 
components) are still orthogonal to each other, a fact that it is going to be explained later. 

2.4 Statistics points out the “proper” matrix 

As it is clear from equation (2.1), what PCA method does is a transformation of the original 
data set to a new one, exploiting the statistical information hidden in the first. At this 
section we try to make this statistical asset a little clearer. 

We know from statistics that for a given set of measurements 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} with zero 
Mean, the variance is defined as: 

𝜎𝛸
2 =

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛
 (2.3) 

When referring to multivariate analysis, we introduce the notion of Covariance, which in 
turn measures the variance between two variables. In a more formal way, the covariance 
between two Random Variables 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} is defined as: 

𝜎𝛸𝛶
2 =

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

𝑛
 (2.4) 

A first conclusion which comes from the above definition is that a high 𝜎𝛸𝛶
2  indicates highly 

correlated data, while a zero one indicates that our data are completely uncorrelated. 
That is exactly the key point of the PCA method from a statistical point of view: it creates 
new data which are (mutually) uncorrelated. 

When working with vectors and generally matrices, we can easily define the respective 
quantities. The most important of them is the Covariance Matrix, which is defined as: 

𝑪𝑋 =
∑ 𝒙𝑖𝒙𝑖

𝑇𝑛
𝑖=1

𝑛
 (2.5) 

, where 𝒙𝑖 are the data vectors. Practically, 𝑪𝑋 is an average of the data vectors 𝒙𝑖. It is 
obvious from equation (2.5) and linear algebra basics ([56]) that 𝑪𝑋 is a symmetric matrix 
and consequently its eigenvectors are mutually orthogonal. Concerning its elements, the 

diagonal terms of 𝑪𝑋 constitute the variance of each data vector, while the off-diagonal 
ones constitute the covariance between them. 

Given the above definitions and their practical meaning, we turn back to equation (2.1) in 

order to derive the covariance matrix of the new / transformed data. Supposed that 𝐸[𝒙] =
0, obviously 𝐸[𝒚] = 0. This may seem a tacit assumption at this point, but is not at all: in 
reality, when we examine zero-mean data the covariance matrix coincides with the 
Correlation Matrix (and as one entity we are going to treat them from now on in this 
Chapter, unless it is pointed out differently). Consequently, we have: 

𝑪𝑌 = 𝐸[𝒚𝒚𝑇] = 𝐸[𝑨𝑇𝒙𝒙𝑇𝑨] = 𝑨𝑇𝑪𝑋𝑨 (2.6) 

At this point comes the crucial question: if we could manipulate matrix 𝑨 as we want, what 
“form” do we desire matrix 𝑪𝑌 to have? Firstly, given the fact that our goal is to create 
uncorrelated data, 𝑪𝑌 must be diagonal (all of its off-diagonal elements should be zero). 
That’s a logical requirement, if we take in mind the fact that the off-diagonal terms of 𝑪𝑋 
in equation (2.6) depict the covariance between our measurements. Secondly, as we 
seek to find those directions / components in which the variance of the data becomes 

maximum one after another, the elements of 𝑪𝑌 must be sorted in descending order 
according to variance. 
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The easiest way of achieving the previous two goals in order to diagonalize matrix 𝑪𝑌 is 
to choose matrix 𝑨 in such a way that its columns are the orthonormal Eigenvectors 𝒂𝑖 of 

𝑪𝑋. The result is that the matrix 𝑪𝑌 will have the following form: 

𝑪𝑌 = 𝑨𝑇𝑪𝑋𝑨 = 𝜦 (2.7) 

, where 𝜦 is the diagonal matrix whose diagonal elements are the respective Eigenvalues, 

𝜆𝑖, of matrix 𝑪𝑋. Given the fact that 𝑪𝑋 is a positive-definite matrix (in reality, it is at least 
positive-semidefinite), it is known from linear algebra that its eigenvalues are all positive. 

Given the above discussion, we finally give a more natural and intuitive meaning of the 

whole process: The eigenvectors 𝒂𝑖 of matrix 𝑪𝑋 are the principal components we seek 
to find, and each one of them corresponds to an eigenvalue 𝜆𝑖. Those eigenvalues are all 
positive and sorted in descending order according to variance, a fact that depicts “how 
important” the respective principal component is for the “explanation” of as much 
information as possible. The orthogonality assumption of the principal components 
simplifies the solution due to handful linear algebra techniques available for achieving this 
goal, and indicates that from a linear algebra perspective what is really done is just a 
rotation of the Cartesian axis system. 

At this point, we should mention that the PCA method was invented in 1901 by Karl 
Pearson ([49]), as an analogue of the Principal Axis Theorem in mechanics; it was later 
independently developed (and named) by Harold Hotelling ([37]) in the 1930s. It is also 
known in the field of signal processing as the Karhunen-Loève Transform (KLT, named 
after Kari Karhunen and Michel Loève), which in the theory of stochastic processes is a 
representation of a Stochastic Process as an infinite linear combination of orthogonal 
functions, analogous to a Fourier Series representation of a function on a bounded 
interval. In reality, PCA constitutes the discrete counterpart of the KLT, in the sense that 
it is the method followed by the latter when applied to a discrete and finite process. For 
more information about the KLT the reader is referred to [40].  

2.5 The PCA Algorithm and some examples 

The goal of this section is to present in a compact form the algorithm followed by the PCA 
method, and give a certain example that demonstrates its use. 

The steps of the PCA algorithm are the following: 

1. Estimation of the covariance matrix 𝑪𝑋, usually by the equation (2.5). If the data 
mean is not zero, we must subtract it first. 

2. Computation of the eigenvalues, 𝜆𝑖, and the corresponding eigenvectors, 𝒂𝑖, of the 
covariance matrix 𝑪𝑋. 

3. Sorting of the eigenvalues 𝜆𝑖 in descending order (according to variance, as 
explained in the previous section). 

4. Selection of the (for example) 𝑚 largest eigenvalues, and in general of how many 
eigenvalues we think are important for not losing important part of information. 

5. Utilization of the corresponding 𝑚 eigenvectors as columns for the transformation 

matrix 𝑨. 

6. Transformation of every element / vector 𝒙 from the original high dimensional 
space to the lower new one, via the equation (2.1). 

Below, it follows an example from [60] that depicts exactly how the PCA method works in 
practice: 
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We have a set 𝑿 of N=500 two-dimensional vectors from a zero-mean Gaussian 
Distribution with covariance matrix 

𝑪𝑋 = [
0.3 0.2
0.2 1.0

] 

By applying the PCA method as explained in detailed steps above, we are going to 

determine the eigenvalues 𝜆𝑖 and the corresponding eigenvectors 𝒂𝑖 of 𝑪𝑋 (in other words 
the principal components), as well as the percentage of the total variance “explained” by 

each one of them as the ratio 
𝜆𝑖

𝜆0+𝜆1
, 𝑖 = 0, 1. 

After doing so (the corresponding Matlab code which forms and solves the example is 

available in [60]), the data points of the set 𝑿 and the derived principal components are 
depicted below: 

 

Figure 1: Data points and principal components of data set X 

As it is obvious from Figure 1, the first principal component 𝜶0 (the one that seems “more 

vertical” in the above figure) explains the most total variance of the data set 𝑿. More 
precisely, after doing the required calculations, the percentage of the total variance 

explained by 𝜶0 is 78.98% while that of 𝜶1 is 21.02%. In a more intuitive interpretation of 
this result, we could say that if we project the data points of the data set 𝑿 along 𝜶0 we 
preserve 78.98% of their total variance -at the cost of losing at the same time the rest 

21.02% associated with 𝜶1. 

2.6 Redundancy and Dimensionality Reduction 

In section 2.3 a visualization of the manner in which the PCA method works was stated. 
More precisely, Image 1 depicted how the principal components are selected according 
to the maximization of variability of the data. This intuitive argument is lying in the heart 
of the dimensionality reduction process that takes place via the PCA method, a formidable 
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advantage that has made it so famous not only among statisticians but among the whole 
scientific community in general. 

In order to be able to explain qualitatively how dimensionality reduction is reached, we 
first give a more quantitative argument based on what is called Redundancy. In a way, 
redundancy is related with the Correlation among the data. As we have seen so far, PCA 
is a method which generates uncorrelated data. From a statistician’s point of view, 
uncorrelated data means data whose distribution is not “very strict”, in the sense that are 
quite dispersed in the space they live in. In other words, redundancy is a regime in which 
our data have a high degree of correlation between them (the appearance of few data 
points helps us predict the rest of them). An example of data with high redundancy is 
seen in the following image: 

 

Image 2: Data with high redundancy 

On the other hand, an example of data with low redundancy is depicted in the image 
below: 
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Image 3: Data with low redundancy 

As it is clear from Image 3, our data points are quite uncorrelated, in the sense that one 

cannot predict 𝑿 from 𝒀 (and vice versa). On the other hand, this is quite easier to be 
achieved with the data points of Image 2, using the best-fit line. In reality, due to the 
highly-correlated data points, only one dimension (a line) would be enough instead of two 
(a plane). This result is quite elegant, and at the same time is at perfect fit with the 
parsimonious nature of everything in our world, described very aptly by the famous 
Occam's Razor Principle: “Non sunt multiplicanda entia sine necessitate” (“Entities must 
not be multiplied beyond necessity”) as well as by the great Ancient Greek philosopher 
Aristotle himself: “Nature operates in the shortest way possible”. 

Turning back now to the quantitative arguments of achieving dimensionality reduction via 
the PCA method, we just have to bring to our memory what the method really does: it’s a 
linear transformation of a high-dimensional space into a lower one, whose components 

are uncorrelated. In other words, the original data vector 𝒙 lies in the 𝑛-dimensional space 

whereas the transformed one, 𝒚, lies into an 𝑚-dimensional subspace of 𝑛 (obviously 
𝑚 < 𝑛). That means that the intrinsic dimensionality of our data set is 𝑚 < 𝑛, or more 
formally, that our data set can be described by 𝑚 Free Parameters. In that case, there 

exist 𝑛 −𝑚 zero eigenvalues, and in practice we should ignore those eigenvalues with 
small values in order to get an approximation of the ID. An intuitive interpretation of the 
above inequality is that the intrinsic dimension is smaller than the “nominal” one exactly 
due to the correlation that exists among our original data set -which in turn leads us to 
the conclusion that geometrically they are concentrated throughout a hyperplane. That 
fact exploits the PCA method in order to reveal the dimension of that hyperplane across 
which our data are spread. In other words, PCA method achieves dimensionality 
reduction by revealing the number of free parameters that are responsible for the 
variability of a signal, namely the real information “coded” by the data. 
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2.7 Properties of PCA and general comments 

In the final section of this Chapter, we have chosen to mention some well-known 
advantages of the PCA method, indicative of its popularity. Technical details are avoided, 
but for the diligent reader they are all available in [59]. 

First of all, we should mention the reason why the adjective “principal” is of crucial 
importance for the method. The reason lies in the Mean Square Error (MSE) 

approximation of the PCA method. In particular, our original data vector in the 𝑛-
dimensional space is defined as: 

𝒙 = ∑ 𝑦(𝑖)𝒂𝑖
𝑛−1
𝑖=0  (2.8) 

, while its approximation which takes into account only 𝑚 (𝑚 < 𝑛) of the basis vectors 
(principal components) is: 

�̂� = ∑ 𝑦(𝑖)𝒂𝑖
𝑚−1
𝑖=0  (2.9) 

If we try to approximate 𝒙 by �̂�, the resulting MSE is given by the following equation: 

𝐸[‖𝒙 − 𝒙‖2] = 𝐸 [‖∑ 𝑦(𝑖)𝒂𝑖
𝑛−1
𝑖=𝑚 ‖

2
] (2.10) 

Obviously, our goal is to make the above MSE as minimum as possible. The key to 
achieve this is the proper selection of the eigenvectors. Taking into mind the definition of 
the eigenvectors as well as their orthonormal property, as it is explained in details in [59], 
we finally get: 

𝐸[‖𝒙 − �̂�‖2] = ∑ 𝒂𝑖
𝑇𝜆𝜄𝜶𝜄

𝑛−1
𝑖=𝑚 = ∑ 𝜆𝑖

𝑛−1
𝑖=𝑚  (2.11) 

As a result, if we choose in equation (2.9) those eigenvectors corresponding to the 𝑚 
largest eigenvalues of the covariance matrix, then the MSE in equation (2.11) becomes 

minimum, and more precisely is equal to the sum of the 𝑛 −𝑚 smallest eigenvalues. 
Furthermore, as it stated also in [59], this MSE is the minimum MSE regarding any other 

approximation of 𝒙 by an 𝑚-dimensional vector. Taken all this into mind, the contribution 
of the adjective “principal” to the method now becomes a little clearer. 

Last but not least, one should not forget to mention the property of the PCA method 
concerning the preservation of the maximum total variance of the original data. More 
precisely, given the equation (2.1), we have: 

𝜎𝑦(𝑖)
2 = 𝐸[𝑦(𝑖)2] = 𝜆𝑖 (2.12) 

In other words, the eigenvalues of the input covariance matrix are equal to the variances 
of the transformed data. Thus, the selection of those transformed data corresponding to 

the 𝑚 largest eigenvalues, concludes to the maximization of their sum variance ∑ 𝜆𝑖𝑖 . As 
a result, the 𝑚 selected transformed data preserve most of the total variance of the 
original data. Indeed, as it is known from linear algebra basics ([56]), that variance is 
equal to the Trace of the covariance matrix 𝑪𝑋. Finally, as it is clearly explained in [59], 
we should highlight the fact that the above property is more general, in the sense that it 

can be proven that among all possible data sets of 𝑚-dimensional vectors obtained via 
any orthogonal linear transformation of input data 𝒙, the ones resulting from the PCA 
method exhibit the largest sum variance.  
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3. ROBUST PRINCIPAL COMPONENT ANALYSIS 

In Chapter 2 a quite detailed presentation of the PCA method took place. As it became 
clear, PCA is arguably the most widely used -statistical- method nowadays in order to 
achieve dimensionality reduction. Most of the arguments that contribute to this effect were 
stated above, as well as a plethora of the benefits arising from its usage. But, as 
everything in real life, there has to be some disadvantages of the method as well. Nothing 
around us is perfect, and reasonably PCA couldn’t be an exception to the rule. The 
question that immediately arises to the diligent reader is “When does PCA fail?” 

3.1 Constructional limits of PCA 

Although it may seem a bit weird, the main disadvantage of PCA occurs from a property 
it exhibits, which in many cases is desirable for any algorithmic scheme aiming to solve 
a particular problem. More precisely, we refer to the fact that PCA is a non-parametric 
algorithm: we feed it with data -of arbitrarily magnitude or structure- and the result that 
comes out has nothing to do with any tweaking of “cheating” parameters. Obviously, this 
can be considered as positive feature of the algorithm, in the sense that its results are 
objective and do not depend on the relative user. We can compare it in a way, with a 
“black box” which operates on an input in order to generate a certain output, and whose 
internal elements cannot be touched by the user who provides it the input (just as in Linear 
Transform Invariant (LTI) Systems’ theory, except that in our case the topping of the box 
has faded a little as we are aware of its internal structure). 

On the other hand, the feature described above can also be seen as a weakness, and in 
reality is the major one of the PCA method. To be more specific, we should be aware of 
what happens in a situation in which our data have been generated (on purpose or not) 
in such a way that puts the main argument / goal of PCA in jeopardy: the decorrelation of 
the data. In other words, given the fact that the goal of PCA is to de-correlate the data by 
tossing away second order dependencies among them, what happens when the 
distribution of the data indicates that in fact there exist higher-order dependencies among 
them? Unfortunately, the news are not good: the classical PCA method, by definition, will 
fail to reveal the real structure of the data. Nevertheless, many methods have been 
derived in order to alleviate and overcome such problems among the data distribution, 
such as Kernel PCA (KPCA) and Independent Component Analysis (ICA), with great 
success in many occasions where PCA fails. 

3.2 PCA’s “fatal” enemy: Outliers 

In the previous section we saw that the PCA method faces an important difficulty when 
there is high-order dependency among the data to be processed, a difficulty however 
which can be surpassed by using some modifications of the classical PCA method. Given 
the fact that PCA is the most widely talked subject in applied multivariate statistics, all its’ 
above benefits and drawbacks are more or less taught in every department or course of 
statistics around the world. Every undergraduate student probably thinks of the PCA 
method in a more general matrix frame, in such a way that our available data points 

constitute a data matrix 𝑫, which is the superposition of a low-rank matrix 𝑨𝟎 and a 

perturbation matrix 𝑷𝟎: 

𝑫 = 𝑨𝟎 + 𝑷𝟎 (3.1) 

When plotting these data points they could probably seem to live in a high dimensional 
space, but in reality they may be very well localized around a low-dimensional structure 

(the low-rank matrix 𝑨𝟎 indicates exactly that there exists some kind of correlation among 
the data). In the general case, they may not be distributed exactly around a low-
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dimensional structure but around an approximately one, that’s why we should take into 

account a -small- perturbation (the perturbation matrix 𝑷𝟎). So what is done when 

applying the PCA method in practice is that given a data matrix 𝑫 whose columns are 

data points, we seek to find the best rank-𝑘 approximation matrix 𝑨 (in an 𝑙2 sense) to the 
given data matrix 𝑫. Computationally speaking, we seek to solve the following 
optimization problem: 

min
𝑠.𝑡.  𝑟𝑎𝑛𝑘(𝐴)≤𝑘

‖𝑫 − 𝑨‖ (3.2) 

, where ‖𝑫‖ denotes the 𝑙2-norm, i.e. the largest singular value of 𝑫. The solution to this 
problem is of course given via the well-known Eckart-Young-Mirsky Theorem ([27], [46]): 

𝑫 = 𝑼𝜮𝑽∗ = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
∗

𝑖 −−> 𝑨 = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
∗𝑘

𝑖=1  (3.3) 

, where 𝑘 is the rank of matrix 𝑨, 𝜎1, 𝜎2, … , 𝜎𝑘 are the positive Singular Values of matrix 𝑨, 
and 𝑼 = [𝒖1, 𝒖2, …𝒖𝑘] and 𝑽 = [𝒗1, 𝒗2, … 𝒗𝑘] are the matrices of left and right Singular 
Vectors respectively. Practically, what is done is a truncation of the Singular Value 

Decomposition (SVD) of the data matrix 𝑫 by throwing away the smallest singular values, 

in such a way that the resulted approximation is as close as possible to the data matrix 𝑫 
(obviously achieving dimensionality reduction, via the trimming of the SVD). 

What in contrary is not taught so much or is given less importance than deserved, is that 
PCA has an important drawback: it is extremely sensitive to what we call outliers (in 
statistics, an Outlier is an observation point that is distant from other observations -either 
due to variability in the measurement or because an experimental error occurred). 

For example, let’s suppose we have points in the plane lying around a one dimensional 
space as in the following image: 

 

Image 4: PCA success 

If we apply the PCA method, we are going to find that in reality our data points live around 
the red line in Image 4, which was successfully indicated by the PCA method. 

Then, let’s suppose that during the data collection there was one data point that was 
incorrectly recorded, for example due to a sensor failure, and our new dataset is like 
below: 
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Image 5: PCA failure 

In fact, what really happened in contrast to the previous situation, is that there is a 

significant change in the 𝑦-value of the blue data point. This data point for some reason 
is quite distant from all the rest, and can be treated as we saw previously as an outlier. 
The problem now is that if we apply the PCA method again as before, we are going to 
find the red line in Image 5, which has nothing to do with the line of first variation. 

What is clear from this example is that one single -badly- corrupted entry of the data 
matrix is more than enough for things to completely break down. To make things even 
worse, we just mention that in daily life “incidents” like the one mentioned above are not 
the exception to the rule but they occur all the time. And the reason is that in this big data 
world we live in, with vast amounts of data being collected for various application 
purposes, we cannot assume that they are “clean”. On the contrary, arbitrarily corrupted 
measurements can come from an “innocent” sensor failure to human-driven malicious 
tampering. It is straightforward of paramount importance to overcome this fundamental 
obstacle, and make the PCA method robust vis-à-vis grossly corrupted observations. 

3.3 Motivation and statement of the problem 

In the previous section we became familiar with the Achilles’ heel of the PCA method: its 
sensitivity to the existence of outliers. So, it is clear that the motivation for dealing with 
this problem is that we want to be able to apply PCA in practice and large scale, but we 
cannot ignore the fact that a fraction of the entries in our data matrix may have been 
corrupted. To make things a little clearer, the problem is mathematically stated as below: 

Suppose there is available a huge data matrix 𝑫, which is a superposition of a low-rank 

matrix 𝑨𝟎 and a sparse matrix 𝑬𝟎 -both of arbitrary magnitude- as in the following 
equation: 

 𝑫 = 𝑨𝟎 + 𝑬𝟎 (3.4) 

We do not know neither the column or row space of 𝑨𝟎 nor the location or the cardinality 
of the non-zero elements of 𝑬𝟎. Is there any way of recovering the matrices 𝑨𝟎 and 𝑬𝟎? 

If we would like to visualize the mathematical notations, we would have a blind 
deconvolution / separation problem as that in the following image: 
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Image 6: The separation problem 

The matrix on the left side of Image 6 is available to the statistician / machine learner, 
and it’s a sum of a low-rank matrix and a sparse matrix. In other words, we have a low-
rank matrix which is not observed because some of its entries are corrupted, and the 
corruption is exactly carried by the sparse matrix. The only thing we know is the sum of 
these two matrices, and our goal is to recover them accurately. Of course this may seem 
not to say impossible, but at least challenging. 

3.4 Theoretical aspects of Robust Principal Component Analysis 

Of course, the problem of robustifying PCA is not new. We just have to bring to mind from 
Chapter 1 that the PCA method was “invented” in the beginning of the previous century, 
to be persuaded that for sure many scientists would have faced it decades before. In 
order to give a clear and up-to-date description of the theory underlying this problem, we 
are going to highlight the results of the pioneering paper of Emmanuel J. Candès et al. in 
2011 ([19]), due to two main reasons: the first one is that they consider an idealized 
version of the Robust Principal Component Analysis (RPCA) problem (which aims to 

recover a low-rank matrix 𝑨𝟎 from highly corrupted measurements which satisfy the 
equation (3.4)), which can be seen as the most “universal and objective” of all the others; 
the second reason is that, as it is clearly stated in [19], none of the other existing 
approaches of solving the RPCA problem achieves that in polynomial time with 
guaranteed performance under broad conditions (a more detailed explanation is available 
in [19]). 

3.4.1 Choosing the algorithm 

In fact, the consideration of the RPCA problem in [19] is not only the most universal of all 
the others, but mainly the most intuitive one. The method used for the decomposition of 

the data matrix 𝑫 is actually a tractable convex optimization technique, which is quoted 
below: Among all possible decompositions, we seek for a fit 𝑨 and a fit 𝑬 such as their 
sum is of course the observation matrix 𝑫, but at the same time we desire that the final 
choice guarantees minimum complexity of the whole process. In other words, we seek 

for a matrix 𝑨 which is as low-rank as possible and a matrix 𝑬 which is as sparse as 

possible, whose sum gives the observation matrix 𝑫. In mathematical words, we can 
formulate this intuitive idea as the following optimization problem: 

min
𝑠.𝑡.𝑨+𝑬=𝑫

𝑟𝑎𝑛𝑘(𝑨) + 𝜆‖𝑬‖0, 𝜆 > 0 (3.5) 

, where ‖𝑬‖0 is the 𝑙0-norm of matrix 𝑬 -which is also known as the “counting norm” 
because in reality it represents the number of the non-zero elements of matrix 𝑬. 
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What depicts equation (3.5) is what seems logical to do in order to obtain the best-fitting 
solution possible. But in reality, there is a huge computational problem concerning 
equation (3.5), as minimizing the rank function under equality constraints is known to be 

a NP-hard problem -as well as that of minimizing the 𝑙0-norm (for more details see 
Appendices I and II). What practically that means is that we can be able to solve a problem 
of this formulation when the dimension of the problem is for example 10 (i.e. matrices 

10 × 10), but we cannot when it equals 11. The reason for that is that the best algorithms 
known to do that, have complexity double exponential in the dimension 𝑛, as explained 
in [15]. 

So what is suggested in [19], and is done into similar situations, is what is called convex 
relaxation. In other words, we choose to minimize a proxy for the objective function in 
(3.5), and finally -as it is clearly explained in Appendix II- we choose the nuclear norm 

instead of the rank function and the 𝑙1-norm instead of the 𝑙0-norm. Taken this 
modification in mind, the equation (3.5) now becomes: 

min
𝑠.𝑡.𝑨+𝑬=𝑫

‖𝑨‖∗ + 𝜆‖𝑬‖1 , 𝜆 > 0 (3.6) 

, where ‖𝑨‖∗ is the nuclear norm of matrix 𝑨 (the sum of its singular values) and ‖𝑬‖1 is 
the 𝑙1-norm of matrix 𝑬 (the sum of its absolute values, supposed we treat it as a gigantic 
vector). 

The surprising as well as bizarre thing about equation (3.6), which is also known as 
Principal Component Pursuit (PCP), is that it finds exactly the desired solution under 
broad conditions via algorithmic schemes whose complexity is not much higher than that 
of the classical PCA method. 

3.4.2  “Appropriate” separations 

As we noted before, equation (3.6) gives us the exact solution to our separation problem, 
but it does not achieve that always and under any circumstances. On the contrary, there 
has to be some restrictions. These restrictions obviously concern the observed data 

matrix 𝑫, and more precisely its form. 

Let’s suppose for instance that we observe a data matrix 𝑫 of the following form: 

𝑫 = 𝒆1𝒆𝑛
∗ = [

0 ⋯ 1
⋮ ⋱ ⋮
0 ⋯ 0

] (3.7) 

If we are given such an observation matrix, anyone could argue that the low-rank 

component could be zero and the sparse one could be the matrix 𝑫 itself, or vice-versa. 
Or that the low-rank component could be the “half” of matrix 𝑫 and the sparse component 
the other “half”, and of course they are all good solutions. So, in order for the problem to 
make sense, it is quite meaningful to demand that the low-rank component is not sparse. 

Making use of the incoherence parameter 𝜇 introduced in [15], we can quantify this 
demand as follows: 

Given the SVD of the low-rank component: 

𝑨 = 𝑼𝜮𝑽∗ = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
∗𝑟

𝑖=1 , (3.8) 

, where 𝑟 is the rank of matrix 𝑨, 𝜎1, 𝜎2, … , 𝜎𝑟 are the positive singular values of matrix 𝑨, 
and 𝑼 = [𝒖1, 𝒖2, …𝒖𝑟] and 𝑽 = [𝒗1, 𝒗2, … 𝒗𝑟] are the matrices of left and right singular 
vectors respectively, we desire exactly those singular vectors (principal components) not 
to be sparse, otherwise we are in big trouble as it became clear above. The incoherence 

condition in [15] states that there exists a “coherence” parameter 𝜇 ≥ 1, which represents 
the degree of sparsity of the singular vectors, such that: 
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{
  
 

  
 max

𝑖
‖𝑼∗𝒆𝑖‖

2 ≤
𝜇𝑟

𝑛1
  (𝟑. 𝟗)

max
𝑖
‖𝑽∗𝒆𝑖‖

2 ≤
𝜇𝑟

𝑛2
  (𝟑. 𝟏𝟎)

‖𝑼𝑽∗‖∞ ≤ √
𝜇𝑟

𝑛1𝑛2
  (𝟑. 𝟏𝟏)

 

, where ‖𝑫‖∞ = max
𝑖,𝑗
|𝑫𝑖𝑗| is the 𝑙∞-norm of matrix 𝑫 treated as a gigantic vector. 

Although equations (3.9)-(3.11) may seem at least daunting, if we see their geometrical 
interpretation things surely become clearer: 

 

Image 7: Geometrical interpretation of the Incoherence Condition 

Image 7 shows graphically the degree of correlation between the Basis Vectors and the 
Column / Row Space of our matrix. What is done intuitively is a projection of the basis 

vector 𝒆𝑖 = (0,0, …1,0,0, … 0) onto the column space 𝑈 of matrix 𝑨, followed by the 

calculation of the norm of this vector. If the column space is orthogonal to 𝒆𝑖 then of course 
the norm is zero, whereas if the column space contains 𝒆𝑖 the norm is one. The parameter 
𝜇 exactly quantifies the degree with which the column space is aligned with the basis 
vector, being essentially the maximum norm of this projection normalized by the 
dimension of the space we are projecting onto (i.e. the rank) divided by the ambient 

dimension. The conclusion of equations (3.9)-(3.10) is that if 𝜇 is small then the column 
space and the row space of our matrix are not well-aligned with the coordinate axes. On 

the other hand, if 𝜇 is large then the column space and the row space of our matrix are 

well-aligned with the coordinate axes, and we face situations like equation (3.7) where 𝜇 
is maximum as the column space contains 𝒆𝑛. Conclusively, what we demand in reality 
is a small coherence parameter 𝜇, which indicates that the singular vectors of the low-
rank matrix 𝑨 are not sparse. 

Even if the above restriction seems enough for our problem to make sense and be 
solvable, in fact it is not at all. And the reason for that is quite simple: what we have 
managed to achieve so far is to have available a “nice” low-rank matrix whose singular 
vectors are not sparse, and what is left to do is just to corrupt it -in order to create the 

observed data matrix 𝑫. The bad news is that it is possible to corrupt it in such a devilish 
way that the low-rank component cannot be recovered, and quite easily indeed: we just 
have to corrupt one entire column / row. For example, let’s suppose there is available a 

nice low-rank matrix 𝑨 constructed in such a way to obey the above incoherence 
restriction, and we decide to create the sparse component in such a way as its first column 
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is the opposite of that of 𝑨 and every other of its columns is zero. What is going to happen 

practically when we add them up in order to generate the data matrix 𝑫, is seen below: 

𝑬 = [
∗ 0⋯ 0
⋮ ⋱ ⋮
∗ 0⋯ 0

] → 𝑫 = 𝑨 + 𝑬 = [
0 ∗ ⋯ ∗
⋮ ⋱ ⋮
0 ∗ ⋯ ∗

] (3.12) 

In doing such a corruption we did not increase the rank, in fact we decreased it, and the 

result is that there is no way of recovering 𝑨 and 𝑬 from 𝑫 -since 𝑫 has a column space 

included in that of 𝑨. To avoid such situations, we demand that the entries to be corrupted 
are actually selected uniformly at random, in order that an entire corrupted column / row 
is met with very low probability. 

Concluding, tying up together the two restrictions, we demand the low-rank component 
not to be sparse and the sparse component not to be low-rank and selected uniformly at 
random. If these two broad conditions are met in practice, then the PCP has a very 
elegant solution which we are going to expose right below. 

3.4.3 Main results 

In this section we just present the main result of [19], which is a theorem that states that 

the solution of PCP recovers exactly the low-rank component of 𝑫 as well as the sparse 
one. We are not going to extend to technical details or proofs, because on the one hand 
they are all available in [19], and on the other hand such a thing would be beyond the 
scope of this thesis. Taken all this into mind, the well-known Theorem 1.1 of [19] states 
the following: 

Theorem: Suppose 𝑨0 is 𝑛 × 𝑛, obeys (3.9)-(3.10), and that the support set of 𝑬0 is 
uniformly distributed among all sets of cardinality 𝑚. Then there is a numerical constant 

𝑐 such that with probability at least 1 − 𝑐𝑛−10 (over the choice of support of 𝑬0), PCP with 

𝜆 =
1

√𝑛
 is exact, i.e. 𝑨 = 𝑨0 and 𝑬 = 𝑬0, provided that: 

{
𝑟𝑎𝑛𝑘(𝑨0) ≤

𝜌𝑟𝑛

𝜇(log 𝑛)2
 (𝟑. 𝟏𝟑)

𝑚 ≤ 𝜌𝑠𝑛
2 (𝟑. 𝟏𝟒)

 

, where 𝜌𝑟 and 𝜌𝑠 are numerical constants. In the general rectangular case where 𝑨0 is 

𝑛1 × 𝑛2, PCP with 𝜆 =
1

√max𝑛1,𝑛2
(𝑛1,𝑛2)

 succeeds with probability at least 1 − 𝑐 max
𝑛1,𝑛2

(𝑛1, 𝑛2)
−10, 

provided that: 

{
 
 

 
 
𝑟𝑎𝑛𝑘(𝑨0) ≤

𝜌𝑟 min
𝑛1,𝑛2

(𝑛1, 𝑛2)

𝜇 (logmax
𝑛1,𝑛2

(𝑛1, 𝑛2))
2

𝑚 ≤ 𝜌𝑠𝑛1𝑛2

 

The remarkable thing about this result is that it works under very broad conditions with 
very high probability. Of course it is a stochastic result, but the only probabilistic 

assumption in it concerns the locations of the non-zero elements of 𝑬0 (in such a way as 
to approach a “fair” regime for their selection). 

Another feature of the main result in [19] that must be highlighted is that there is no tuning 
parameter in the algorithmic scheme. Such a thing may seem at least weird, in the sense 
that in similar situations usually takes place a cross-validation process in order to identify 
the best scalar 𝜆 to balance the two terms of the Objective Function. But, as explained in 
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details in [19], this particular choice of 𝜆 is universal and in fact the simplest one among 
a range of correct values emerging from the proof of the Theorem. 

3.5 Applications 

As we have seen so far, RPCA is a quite nice theoretical extension of the classical PCA 
in order to be able to work through situations in which gross errors (i.e. outliers) occur. 
But it would be a pity if all these elegant theoretical results wouldn’t be applicable in real 
life. As expected although, obviously they have enormous impact in everyday 
applications, a couple of whom are indicatively listed below in this last section of the 
present Chapter: 

Ranking and Collaborative Filtering: It concerns of course situations that arise from 
incomplete questionnaires, and the goal of course is to complete the missing entries. A 
classic example of this category of applications is the well-known Netflix Prize for movie 
ranking. In a short, Netflix is a company that rents movies in the United States of America. 
As every company of its size, it has a huge database of movies and users who have rent 
any of them. What Netflix did is sending an email to every user who rented a movie from 
their database, asking him to rate the movie he had just seen. And so users would go out 
and sparsely enter entries in huge database Netflix was assembling, which had as 
columns the company’s movies (about 18.000 of them at the time) and as rows its clients 
(about 500.000 at the time). Of course this was a huge data matrix which was 
extraordinarily sparsely sampled because users on average rated about 30 to 50 movies, 
and so instead of having 18.000 ratings per row we had only 30 to 50. What simply Netflix 
wanted is to complete the database matrix, in other words the company was seeking for 
an algorithm that completes the missing users’ ratings, and launched a prize of 1.000.000 
dollars to whomever could be able to come up with a prediction algorithm that was besting 
their own algorithm by 10%. The reason is quite obvious, if we take in mind that the 
prediction of missing ratings implies an efficient recommender system, which in turn leads 
to happy customers and as a result a lot of income is generated. In fact, this problem is a 
typical Matrix Completion (MC) problem, but in reality we cannot overlook the fact that in 
this matrix there could be lots of bogus ratings (for some reason, people enter ratings 
which have nothing to do with their own preferences). So, in reality, we must separate the 
good ratings from the bogus ones, in order to be able to construct an efficient 
recommender system. Obviously, the good ratings will be held at a low-rank matrix and 
the bogus ones at a sparse one, making it clear that there is affinity with the RPCA 
problem we studied above. 

Video Surveillance: In this type of application, there is available a sequence of video 
frames and the goal is to separate foreground from background. What is done practically 
is a storage of the images as columns of a huge data matrix, which we want to separate 
as before to a low-rank and a sparse component. The separation here makes sense in 
the way that the background is going to be an extremely low-rank matrix, as it does not 
change from frame to frame because it is highly correlated, while at the same time the 
foreground is going to be picked up by the sparse component. 

Of course these were just two of many similar applications of the RPCA problem. What 
must be noticed is that any problem that requires a decomposition of a matrix to a low-
rank and a sparse component can be recasted as a RPCA problem. 
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4. ALGORITHMIC METHODS FOR SOLVING THE RPCA PROBLEM 

In the previous Chapter, a brief as well as comprehensive description of the main aspects 
(theoretical and practical) of the RPCA problem took place. Most of the analysis made 
was dominated by only one of the several approaches that have been developed to 
address the RPCA problem via low-rank plus sparse matrix decomposition, and more 
precisely the RPCA-PCP method ([19]). However, there are numerous other approaches 
as well, such as the following ones: 

 RPCA via Outlier Pursuit ([70]) 

 RPCA via Iteratively Reweighted Least Squares ([33], [34], [35]) 

 Bayesian RPCA ([23]) 

 Variational RPCA ([1]) 

 Approximated RPCA ([73]) 

Although the aforementioned approaches are quite interesting, a detailed description of 
each one of them is out of the scope of this thesis. Following the reasoning of the previous 
Chapter, we chose to refer to algorithmic schemes designed to address the RPCA-PCP 
method as it was the leading one in this field. 

Before presenting specific algorithms, it should be wise to mention the gap that they came 
to fulfil, in other words some weaknesses / limitations of the original RPCA-PCP method 
that became clear. More precisely, we should take into mind that the original approach 
described in [19] and [69] employs convex optimization techniques to address the PRCA 
problem, which under minimal assumptions recovers the low-rank matrix as well as the 
sparse one perfectly. Although this is a quite encouraging result, we should not forget that 
in fact it is a batch method which has consequently several limitations dealing with real-
time applications. Furthermore, as each frame is treated as a separate column vector, 
any potential spatial or temporal features are lost. Finally, one of the main assumptions 
of [19] referring to the demand of the low-rank component to be exactly low-rank and the 
sparse one to be exactly sparse is quite often violated in many applications such as video 
surveillance, as noise affects every entry of the data matrix (for other minor / major 
limitations of the RPCA-PCP method concerning foreground detection in video 
surveillance the diligent reader is referred to [10]). 

Taking into account the comments above, many methods have been developed to 
overcome the drawbacks arising from the nature of classical RPCA-PCP method itself as 
well as other ones which appear commonly in practice such as: 

 Presence of noise 

 Quantization of the pixels 

 Spatial constraints of the foreground pixels 

 Local variations in the background 

The most well-known methods achieving those goals are presented in [74], [5], [58] and 
[68] respectively. The forthcoming table (presented in [10]) shows in details the different 
versions of the RPCA-PCP problem as well as the basic “technical concepts” of each one 
of them: 

Table 1: Versions of the RPCA-PCP problem 

Methods Decomposition Minimization Constraints Convexity 
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PCP[19] 𝑫 = 𝑨 + 𝑬 min
𝑨,𝑬

‖𝑨‖∗ + 𝜆‖𝑬‖1 𝑫 − 𝑨− 𝑬 = 𝟎 Yes 

SPCP[74] 𝑫 = 𝑨 + 𝑬 + 𝑵 min
𝑨,𝑬

‖𝑨‖∗ + 𝜆‖𝑬‖1 ‖𝑫 − 𝑨 − 𝑬‖𝐹 < 𝛿 Yes 

QPCP[5] 𝑫 = 𝑨 + 𝑬 min
𝑨,𝑬

‖𝑨‖∗ + 𝜆‖𝑬‖1 ‖𝑫 − 𝑨 − 𝑬‖∞ < 0.5 Yes 

BPCP[58] 𝑫 = 𝑨 + 𝑬 min
𝑨,𝑬

‖𝑨‖∗ + 𝜅(1 − 𝜆)‖𝑨‖2,1

+ 𝜅𝜆‖𝑬‖2,1 

𝑫 − 𝑨− 𝑬 = 𝟎 Yes 

LPCP[68] 𝑫 = 𝑫𝑼 + 𝑬 min
𝑼,𝑬

𝛼‖𝑼‖∗ + 𝛽‖𝑼‖2,1 + 𝛽‖𝑬‖1 𝑫 − 𝑫𝑼 − 𝑬 = 𝟎 Yes 

As mentioned before, in the present thesis we cope with the classical RPCA-PCP problem 
(theoretically as well as concerning algorithmic schemes). In this direction, just before 
presenting explicitly each one of the most basic algorithms addressing this problem, it is 
deemed appropriate to collect them together as to have a general and compact view of 
each one of them. This purpose is achieved via the following table (presented in [10]): 

Table 2: Basic Algorithms for solving the RPCA-PCP problem 

Solvers Complexity 

Singular Value Thresholding Algorithm (SVT) 
[12] 

𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛)) 

Accelerated Proximal Gradient Algorithm (APG) 
[43] 

𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛)) 

Full SVD 

Dual Method (DM) [43] 𝑂(𝑟𝑚𝑛) 

Partial SVD 

Augmented Lagrange Multiplier Method (ALM) 
[42] 

𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛)) 

Alternating Direction Method (ADM) [72] 𝑂(𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛)) 

All the above algorithmic methods have one thing in common: they try to solve iteratively 
the same optimization problem described in general by the following form: 

min
𝑨,𝑬

𝜂‖𝑨‖∗ + 𝜆‖𝑬‖𝐹
2  (4.1) 

, in the case that it has a closed-form solution-of course by employing different 
techniques. In such a scenario, the RPCA-PCP problem can be recasted as a Semi-
Definite Programming (SDP) problem, and therefore be solved using off-the-shelf Interior-
Point Methods and packages. The main problem with this consideration is that it exhibits 
prohibitive complexity as the scale of the problem increases. In fact, interior-point 

methods require computing the step-direction, whose complexity for a 𝑚 × 𝑛 matrix 𝑫 is 

𝑂 ((𝑚𝑛𝑚𝑖𝑛(𝑚, 𝑛))
2
). In order to understand intuitively what that means we just have to 

consider the (simple) case of a square 𝑛 × 𝑛 matrix 𝑫 which leads to a computational 

complexity of  𝑂(𝑛6). Obviously, any interior-point method will be brought to its knees for 
even a relatively small number of data, i.e. n=100, leaving no hope about any thoughts of 
tens / hundreds of thousands or millions of data -which however is mostly the case in real 
applications. 
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To overcome (mainly) this scalability issue, the algorithmic schemes presented in Table 
2 use different approaches deriving quite interesting results. In the following sections, 
each one of them is presented in brief focusing mainly on those key-ideas, 
implementation details, parameter tuning and -of course- the algorithms themselves that 
make them so extraordinary as well as worth-mentioning. 

4.1 Singular Value Thresholding Algorithm 

As became clear before, scalability is of utmost importance in real applications. Bearing 
that into mind, as well as that interior-point methods choke for even small number of data, 
it would be wise to use first-order information. In such a direction was the novel iterative 
algorithm introduced in [12], developed to minimize the nuclear norm for the MC problem. 
This paper was addressing the problem posed in [15], in which it was solved via the usage 
of an advanced SDP solver named SDPT3 ([62]). Given the fact that this solver uses 
interior-point methods, it suffers from the same scalability issues mentioned before -as 
for the computation of the Newton direction huge systems of linear equations needed to 
be solved. To make things worse, even iterative solvers (i.e. the Method of Conjugate 
Gradients) for the Newton-step do not save the day, since the Condition Number of the 
Newton system increases as we approach the solution. 

4.1.1 Algorithm Outline 

As mentioned earlier, the Singular Value Thresholding (SVT) Algorithm is a fist-order 
method designed to solve nuclear norm minimization problems of the general form: 

min
𝑠.𝑡.𝑨(𝑿)=𝒃

‖𝑿‖∗ (4.2) 

, where 𝑨 is a linear operator acting on the space of 𝑛1 × 𝑛2 matrices and 𝒃 ∈ 𝑅𝑚. 

The above optimization problem can be reformulated as follows: 

min
𝑠.𝑡.𝑃𝛺(𝜲)=𝑃𝛺(𝑴)

‖𝑿‖∗ (4.3) 

, where 𝑃𝛺 is the orthogonal projector onto the span of matrices which vanish outside of 
𝛺. In other words: 

𝑃𝛺(𝜲)𝑖𝑗 = {
𝑋𝑖𝑗,(𝑖,𝑗)∈𝛺

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.4) 

The key-idea of the SVT algorithm is summarized in the following two operations, which 
take place until a specified stopping criterion is reached: 

{
𝑿𝑘 = 𝑠ℎ𝑟𝑖𝑛𝑘(𝒀𝑘−1, 𝜏)

𝒀𝑘 = 𝒀𝑘−1 + 𝛿𝑘𝑃𝛺(𝑴 − 𝑿𝑘)
 (4.5) 

, where 𝜏 > 0 and {𝛿𝑘}𝑘≥1 is a sequence of scalar Step-Size Parameters. 

In the first equation of (4.5), 𝑠ℎ𝑟𝑖𝑛𝑘(𝒀𝑘, 𝜏) is a non-linear function which behaves as a 

soft-thresholding operator at level 𝜏 to the singular values of the input matrix. As it is 
expected from (4.5), it constitutes the key building block of the whole algorithm, so it is 
deemed appropriate to explain exactly how it works according to [12]. More precisely, for 

a given matrix 𝑿 ∈ 𝑅𝑛1×𝑛2 and its SVD 𝑿 = 𝑼𝜮𝑽∗, where 𝑼 and 𝑽 are the 𝑛1 × 𝑟 and 𝑛2 ×
𝑟 matrices with orthonormal columns containing the left and right singular values of 𝑿 
respectively and 𝜮 is the matrix which contains the singular values {𝜎𝑖}1≤𝑖≤𝑟 at its diagonal, 
the soft-thresholding operator 𝐷𝜏 is defined as follows: 
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{

𝐷𝜏(𝑿) ≔ 𝑼𝐷𝜏(𝜮)𝑽
∗

𝐷𝜏(𝜮) = 𝑑𝑖𝑎𝑔({𝜎𝑖 − 𝜏}+), 𝜏 ≥ 0

𝑡+ = 𝑚𝑎𝑥(0, 𝑡)
 (4.6) 

As it is obvious from the above definition, the operator 𝐷𝜏 applies a soft-thresholding 
process to the singular values of 𝑿, making it responsible for the name of the whole 
algorithm itself. 

What should be highlighted here is on the one hand the fact that as the value of the 

parameter 𝜏 increases the sequence {𝑿𝑘} converges to a solution similar to that of (4.3), 

and on the other hand that in the case where many of the singular values of 𝑿 are below 
the threshold 𝜏 then by construction the rank of 𝐷𝜏(𝑿) will be lower than that of 𝑿. As a 
result, at each iteration step the only computational-thirsty operation to be done is a single 
one computation of an SVD -which in turn leads to proportionate computational as well 
as storage savings. 

4.1.2 SVD Computation 

As explained before, the SVT algorithm requires the computation of a SVD due to the 
soft-thresholding operation that takes place. In reality however, not all the singular values 
of the input matrix are needed but only that fraction of them which is above the threshold 

𝜏. Since the SVT algorithm was designed to cope with large matrices and the computation 
of their singular values and respective singular vectors, numerical linear algebra methods 
and relative already implemented packages could become extremely useful. For that 
reason as well as for some additional ones explained it details in [12], the inventors of the 
SVT algorithm chose to use PROPACK ([41]). 

Concerning the SVD packages, as for most of them it is possible to specify the number 
of singular values to compute this is not the case with PROPACK at all. On the contrary, 

PROPACK cannot compute only those singular values which are above the threshold 𝜏, 
a job that has to be done -intuitively- by the user. More precisely, what has to be done is 

the specification of the number 𝑠 of the desired singular values in order that the software 
package computes the 𝑠-largest singular values and the corresponding singular vectors. 
As this process takes place in the 𝑘-th iteration of the algorithm, the respective number 

𝑠𝑘 of singular values of 𝒀𝑘−1 needs to be determined ahead of time. What is proposed in 
[12] as a choice for 𝑠𝑘 is the following rule: 

𝑠𝑘 = 𝑟𝑘−1 + 1 (4.7) 

, where 𝑟𝑘−1 is the number of the non-zero singular values of 𝑿𝑘−1 at the previous iteration, 
i.e. in mathematical terms: 

𝑟𝑘−1 = 𝑟𝑎𝑛𝑘(𝑿
𝑘−1) (4.8) 

The rationale of the choice in (4.7) is justified in [12] via the argument that in the case that 

some of the computed singular values are below 𝜏 then the choice in (4.7) is a good one, 
while if this not the case an extra increment of 𝑠𝑘 has to take place until we fall into the 
first case. Such an increment may have either additive form: 

𝑠𝑘+1 = 𝑠𝑘 + 𝑙 (4.9) 

, or even a multiplicative one: 

𝑠𝑘+1 = 𝑙𝑠𝑘 (4.10) 

, where 𝑙 is a predefined integer. 

In [12], the additive form of increment is chosen with 𝑙 = 5, a choice that seems to work 
pretty well in practice. 
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4.1.3 Step-Size Parameters 

Another crucial part of the SVT algorithm that has to be clarified is that concerning the 

choice of the step-size parameter {𝛿𝑘}𝑘≥1 involved in the second equation of (4.5). For 
simplicity reasons, {𝛿𝑘}𝑘≥1 is chosen to be constant and invariant of the iteration count: 

𝛿𝑘 = 𝛿, 𝑘 = 1,2, … (4.11) 

As explained in details in [12], a wise choice would dictate to pick a step-size 𝛿 living in 
the interval 0 < 𝛿 < 2. However, for reasons of faster convergence, in [12] the step-size 
𝛿 is eventually selected as follows: 

𝛿 = 1.2
𝑛1𝑛2

𝑚
 (4.12) 

A heuristic reasoning for that choice is available in [12], but is at the same time out of the 
scope of this thesis and therefore will be skipped. 

4.1.4 Initialization Steps 

As it will become clear shortly afterwards, the SVT algorithm starts with 𝒀0 = 𝟎. Of course, 
our desire is to choose the threshold 𝜏 large enough to ensure that the solution provided 
by the algorithm is close enough to that we desire. In order to evaluate the second 

equation of (4.5), as it is explained in [12], we define 𝑘0 as that integer obeying the 
following property: 

𝜏

𝛿‖𝑃𝛺(𝑴)‖2
∈ (𝑘0 − 1, 𝑘0] (4.13) 

Given the fact that 𝒀0 = 𝟎, it follows straightaway that: 

{
𝑿𝑘 = 𝟎

𝒀𝑘 = 𝑘𝛿𝑃𝛺(𝑴), 𝑘 = 1,2, … , 𝑘0
 (4.14) 

Further computational burden can be removed adopting smart strategies from the 
Compressed Sensing / Compressive Sampling (CS) literature. For additional details, a 
more detailed sight is available in [12]. 

4.1.5 Stopping Criteria 

Before introducing the SVT algorithm itself, we should strictly define its stopping criteria. 
In [12], two types of them are proposed: 

 The first one comes from the Karush-Kuhn-Tucker (KKT) Conditions / First-Order 
Optimality Conditions 

 The second one is motivated by duality theory 

Here we only cope with the first one just for brevity reasons. More precisely, the proposed 
stopping criterion related to the KKT conditions is the above one: 

‖𝑃𝛺(𝑿
𝑘−𝑴)‖

𝐹

‖𝑃𝛺(𝑴)‖𝐹
≤ 𝜀 (4.15) 

, where 𝜀 is a fixed tolerance (i.e. 10−4). As it is justified in details in [12], the stopping 
criterion in (4.15) somehow “equivalent” to the following one: 

‖𝑿𝑘−𝑴‖
𝐹

‖𝑴‖𝑭
≤ 𝜀 (4.16) 

In other words, we control the Relative Reconstruction Error by controlling the relative 
error on the set of the sampled data. 
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4.1.6 SVT Algorithm 

Finally, we conclude this section by presenting the SVT algorithm itself exactly as it was 
derived in [12]. We should not forget to mention here that this algorithm was designed to 
tackle the MC problem, not the RPCA one. Nevertheless, with minor modifications it can 
also handle the latter as well, with the main ideas remaining the same. 

Before presenting the algorithm we should make clear that for each non-negative integer 

𝑠 ≤ 𝑚𝑖𝑛(𝑛1, 𝑛2) the triplet [𝑼𝑘, 𝜮𝑘, 𝑽𝑘]𝑠 is composed as follows: 

{

𝑼𝑘 = [𝒖1
𝑘, 𝒖2

𝑘, … , 𝒖𝑠
𝑘]

𝑽𝑘 = [𝒗1
𝑘, 𝒗2

𝑘, … , 𝒗𝑠
𝑘]

𝜮𝑘 = 𝑑𝑖𝑎𝑔(𝜎1
𝑘, 𝜎2

𝑘 , … , 𝜎𝑠
𝑘)

 (4.17) 

In other words, it represents the first 𝑠 left and right singular vectors as well as the first 𝑠 
singular values respectively. 

After that note, the SVT algorithm is depicted in the following image: 

 

Image 8: The Singular Value Thresholding Algorithm 

4.2 Accelerated Proximal Gradient Algorithm 

As it became quite clear from the discussion above, new solvers other than the interior-
point ones should be invented in order to tackle problems arising in many applications 
which involve matrices with dimensions tens of thousands. The main reason for that is 
that in reality interior-point methods rely on second-order information of the objective 
function. To overcome the scalability issue that arises from that choice, a good alternative 
is to use only first-order information -just as was the case with the Iterative Thresholding 
(IT) SVT algorithm analyzed in the previous section. 

Iterative thresholding algorithms’ usage does not come from the sky when referring to 
scalability issues arising in convex optimization problems. In fact, it is widely used in the 
field of CS as well as that of MC. Taken that into mind, an IT scheme was proposed in 
[69] exhibiting quite good results concerning scalability issues. The main problem with 
that algorithmic scheme however was that its convergence rate is extremely slow, 
typically requiring about 10000 iterations to converge (with each one of them having the 
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same cost as one SVD). As a result, even for matrix sizes of less than 1000 × 1000 
several hours are required for the algorithm to converge. 

To alleviate such an inconvenience, two new algorithms were proposed in [43] for solving 
the RPCA problem. The first one, which is presented here, is an Accelerated Proximal 
Gradient (APG) Algorithm based on the FISTA framework demonstrated in [4] -coupled 
with a fast continuation technique. The second one, which is presented in the upcoming 
section, is a Gradient Ascend Algorithm applied to the Dual Problem -a technique to which 
the whole algorithm owes its name. 

4.2.1 General Formulation 

The RPCA optimization problem can be recasted as an optimization problem of the 
general form: 

min
𝑠.𝑡.𝑨𝑿=𝒃

𝑔(𝑿) (4.18) 

, where 𝑔(. ) is a continuous convex function, 𝒃 is a vector of observations and 𝑨 is a 
linear map. As it is explained in Appendix II, a commonly used tactic in practice when 
facing optimization problems is to relax them, and if we do so with (4.18) we get: 

min
𝑥∈𝐻

𝐹(𝑿) = 𝜇𝑔(𝑿) + 𝑓(𝑿) (4.19) 

, where 𝐻 is a real Hilbert Space equipped with a norm ‖. ‖ and 

{
𝜇 > 0

𝑓(𝑿) =
‖𝑨𝑿−𝒃‖2

2

 (4.20) 

In other words, 𝑓(𝑿) depicts a kind of penalty for violations of the equality constraints 
while 𝜇 is a relaxation parameter which when approaching 0 any solution of (4.19) also 
approaches the solution set of (4.18). 

One of the main gains of the formulation (4.19) is that it can be optimized efficiently by 
Proximal Gradient (PG) Algorithms ([4], [65]) as it is explained in [43]. The reason for that 

is the “nature” of the penalty function 𝑓(𝑿), which is convex, smooth and has a Lipschitz 
continuous Gradient: 

‖∇𝑓(𝑋1) − ∇𝑓(𝑋2)‖ ≤ 𝐿𝑓‖𝑋1 − 𝑋2‖ (4.21) 

To achieve such an efficient performance, PG algorithms adopt an alternative objective 

function to be minimized instead of 𝐹(𝑿), whose definition is given below: 

𝑄(𝑿,𝒀) = 𝑓(𝒀) + ⟨∇𝑓(𝒀),𝑿 − 𝒀⟩ +
𝐿𝑓

2
‖𝑿 − 𝒀‖2 + 𝜇𝑔(𝑿) (4.22) 

In reality, 𝑄(𝑿, 𝒀) is a sequence of separable quadratic approximations to 𝐹(𝑿) which 
form upper bounds 𝐹(𝑿) for any 𝒀. Further discussion about the choice of the specific 

points 𝒀 is out of the scope of this thesis, but we should highlight the fact that the whole 
process is inspired by the famous paper of Y. Nesterov ([48]) and refer to [43] for further 
information. Taken all that into mind, the general form of the PG Algorithm is depicted in 
the following image ([43]): 
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Image 9: The Proximal Gradient Algorithm 

4.2.2 Algorithm Outline 

As explained in details above, the minimization of a sequence of separable quadratic 
approximations of the objective function seems a good idea. In fact, the reason for that to 
happen is that in many cases, it is possible to find a simple expression for the minimizer 

𝑿𝑘+1 mentioned above. Taken into mind previous works on soft-thresholding techniques 
employed in the field of CS ([4], [13]) as well as in that of MC ([12], [63]), enriching them 
at the same time with continuation techniques, the algorithm proposed in [43] seems quite 

promising. More precisely, the iterates 𝑿𝑘 are ordered pairs (𝑨𝑘, 𝑬𝑘) ∈ 𝑅
𝑚×𝑛 × 𝑅𝑚×𝑛 and 

𝑔(𝑿𝑘) = ‖𝑨𝑘‖∗ + 𝜆‖𝑬𝑘‖1. Then the optimization problem (4.19) takes the following form: 

min
𝑨,𝑬

𝐹(𝑿) = 𝜇‖𝑨‖∗ + 𝜇𝜆‖𝑬‖1 +
1

2
‖𝑫 − 𝑨 − 𝑬‖𝐹

2  (4.23) 

As it is explained in details in [43], using soft-thresholding techniques to compute the 

iterates 𝑿𝑘+1 is a reasonable choice made in [69]. However, as it is mentioned above, the 
number of iterations required for the algorithm to converge is quite large. Nevertheless, if 
we make use of the PG framework presented above in cooperation with smooth 
techniques proposed in [48], we could speed up the convergence rate of the algorithm. 
The most important feature although of the present algorithm is that it makes use of 
continuation techniques, in the sense that it does not apply the PG algorithm directly to 

(4.23) with a fixed relaxation parameter 𝜇, but on the contrary 𝜇 varies from a large initial 
value 𝜇0 to a floor �̅� following a geometrical decrease at each iteration step. As a result, 
the number of the required iterations for convergence reduces significantly (for more 
details about convergence theorems the diligent reader is referred to [43]). Having 
clarified those two crucial details, the APG algorithm for the RPCA problem is depicted in 
the following image: 
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Image 10: The Accelerated Proximal Gradient Algorithm 

4.2.3 Stopping Criteria 

The stopping criterion of the APG Algorithm bears a strong resemblance to that proposed 
in [63]. Before stating it, just as in [43], we define: 

{
𝑆𝑘+1
𝐴 = 2(𝒀𝑘

𝐴 − 𝑨𝑘+1) + (𝑨𝑘+1 + 𝑬𝑘+1 − 𝒀𝑘
𝐴 − 𝒀𝑘

𝐸)

𝑆𝑘+1
𝐸 = 2(𝒀𝑘

𝐸 − 𝑬𝑘+1) + (𝑨𝑘+1 + 𝑬𝑘+1 − 𝒀𝑘
𝐴 − 𝒀𝑘

𝐸)
 (4.24) 

, where: 

{
𝑆𝑘+1 = (𝑆𝑘+1

𝐴 , 𝑆𝑘+1
𝐸 )

‖𝑆𝑘+1‖
2 = ‖𝑆𝑘+1

𝐴 ‖
𝐹

2
+ ‖𝑆𝑘+1

𝐸 ‖𝐹
2  (4.25) 

The iteration loop is terminated when ‖𝑆𝑘+1‖ is lower than a defined tolerance. In other 
words, the distance between the origin and the set of Sub-Gradients of the Cost Function 

in (4.23) at (𝑨𝑘+1, 𝑬𝑘+1) remains upper bounded by ‖𝑆𝑘+1‖. 

4.2.4 Step-Size Parameters 

As stated in [43], as the relaxation parameter 𝜇 decreases the closer is the solution gained 
by the APG algorithm to that of the RPCA problem. A good choice suggested in [43] from 
empirical results is: 

{
𝜇0 = 0.99‖𝑫‖2
𝛿 ≤ 10−5

 (4.26) 

We should not forget to mention here that in the worst case scenario the iteration 

complexity of the APG algorithm with decreasing sequence of relaxation parameters 𝜇𝑘 
is no better than that with constant ones (𝜇𝑘 = �̅� for all 𝑘). However, the usage of a 
decreasing sequence of relaxation parameters 𝜇𝑘 leads to a significant reduce to the 
number of iterations required for the algorithm to converge for most of the practical 
applications. 

4.2.5 SVD Computation 

Finally, as far as the SVD computation at each iteration is concerned, there is no need to 
compute the full SVD at each iteration, but only a partial one. The reason for that is that 
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the soft-thresholding operation will evaporate those singular values corresponding to 

large values of 𝜇𝑘. Towards this logic, packages for the computation of partial SVDs (like 
PROPACK, [41]) would be extremely handful. 

4.3 Dual Method 

As it has become quite clear so far, the computational bottleneck of the most algorithms 
developed to tackle the RPCA problem is the computation of the SVD. Although some 
methods and useful packages may accelerate the whole process, the overall complexity 
continues to strongly depend on that computation. 

In order to avoid such a dependence, an interesting algorithmic scheme was developed 
in [43]. The authors tried to solve firstly the dual problem (from which the novel method 
inherited its name as the Dual Method (DM)), and subsequently compute the solution of 
the Primal Problem. 

4.3.1 Algorithm Outline 

As it is explained in details in Appendix I, the spectral norm ‖. ‖2 is the dual norm of the 
nuclear norm ‖. ‖∗ of a matrix. From a pure computational point of view, the spectral norm 
of a matrix is much easily computed than its nuclear norm, as in reality it is its largest 
singular value (and in general can be computed without the SVD). Inspired by this idea, 
the authors in [43] suggested to solve the dual of the RPCA problem, which has the 
following form: 

max
𝑠.𝑡.𝐽(𝒀)≤1

⟨𝑫, 𝒀⟩ (4.27) 

, where: 

{
⟨𝑨, 𝑩⟩ = 𝑡𝑟(𝑨𝑇𝑩)

𝐽(𝒀) = 𝑚𝑎𝑥 (‖𝒀‖2,
1

𝜆
‖𝒀‖∞)

 (4.28) 

From (4.27)-(4.28) it is clear that on the one hand the objective function is a linear one 

while on the other hand 𝐽(𝒀) is positive and homogenous (see Appendix I for more 
information about positivity-homogeneity). As a result, the optimal solution of (4.27) must 
lie on the manifold: 

𝑆 = {𝒀|𝐽(𝒀) = 1} (4.29) 

, and therefore the inequality constraint can be replaced by an equality one. This process 
will lead to an optimization problem on a nonlinear non-smooth manifold, which can then 
be solved by Steepest Ascend techniques. 

More precisely, at each iteration step 𝑘, we need to compute the steepest ascend 

direction 𝑾𝑘 at the estimate of 𝒀 at this iteration, 𝒀𝑘. This can be achieved via the 
projection of the gradient 𝑫 of the objective function of (4.27) onto the tangent cone of 𝑆. 
Afterwards, line search can take place along 𝑾𝑘 in order to determine the step-size 
parameter 𝛿𝑘, by solving the following problem: 

𝛿𝑘 = 𝑎𝑟𝑔max
𝛿≥0

⟨𝑫,
𝒀𝑘+𝛿𝑾𝑘

𝐽(𝒀𝑘+𝛿𝑾𝑘)
⟩ (4.30) 

, and then the estimation of 𝒀 at iteration 𝑘 + 1 can be computed as follows: 

𝒀𝑘+1 =
𝒀𝑘+𝛿𝑘𝑾𝑘

𝐽(𝒀𝑘+𝛿𝑘𝑾𝑘)
 (4.31) 

As it is stated as well as proved in [43], the subsequent algorithm which implements the 
above ideas finds the optimal solution of the dual problem of the RPCA problem. 
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In order to find the steepest ascend direction 𝑾𝑘, the suggestion made in [43] is the 
following one: 

𝑾𝑘 = 𝑫−𝑫𝑘 (4.32) 

, where 𝑫𝑘 is the projection of 𝑫 onto the normal cone 𝑁(𝒀𝑘) of S. As it is stated in [43], 
the Normal Cone is defined as: 

𝑁(𝒀𝑘) = {𝛼𝑿 ∶  𝛼 ≥ 0, 𝑿 ∈ 𝜕𝐽(𝒀𝑘)} (4.33) 

Then, the sub-gradient of 𝐽 can be computed as follows: 

𝜕𝐽(𝒀𝑘) =

{
 
 

 
 𝜕‖𝒀𝑘‖2, 𝜕‖𝒀𝑘‖2 >

1

𝜆
𝜕‖𝒀𝑘‖∞

𝜕 (
1

𝜆
‖𝒀𝑘‖∞) , 𝜕‖𝒀𝑘‖2 <

1

𝜆
𝜕‖𝒀𝑘‖∞

𝑐ℎ {𝜕‖𝒀𝑘‖2, 𝜕 (
1

𝜆
‖𝒀𝑘‖∞)} , 𝜕‖𝒀𝑘‖2 =

1

𝜆
𝜕‖𝒀𝑘‖∞

(4.34) 

, as 𝐽(𝒀) is the maximum of two convex functions (“𝑐ℎ” denotes the convex hull -see 
Appendix II). 

As a consequence, in the case where 𝜕‖𝒀𝑘‖2 and 
1

𝜆
𝜕‖𝒀𝑘‖∞ are not equal, all that has to 

be done is the computation of the projection of 𝑫, 𝜋2/∞(𝑫), onto the cone 𝑁2/∞(𝒀𝑘) 

generated by the respective sub-gradient 𝜕‖. ‖2/∞ at 𝒀𝑘, according to which one of them 

is the larger one. However, if the aforementioned sub-gradients are equal to one another, 
then the normal cone is composed as follows: 

𝑁(𝒀𝑘) = 𝑁2(𝒀𝑘) + 𝑁∞(𝒀𝑘) (4.35) 

In such a case the computation of the projection of 𝑫 onto 𝑁(𝒀𝑘) can be accomplished 
by alternating between projections onto 𝑁2(𝒀𝑘) and 𝑁∞(𝒀𝑘). In other words, an 
Alternating Projection (AP) Scheme can be implemented obeying the following idea: 

{
𝑨𝑖+1 = 𝜋2(𝑫 − 𝑬𝑖)

𝑬𝑖+1 = 𝜋∞(𝐷 − 𝑨𝑖+1)
𝑖 = 𝑖 + 1

 (4.36) 

, where 𝑬0 = 𝟎 and the counter 𝑖 is initialized at zero. The hopeful news are that, as it is 
proved in details in [43], the above algorithmic scheme will eventually derive the desired 

projection 𝑫𝑘. 

As the dual problem can be solved as explained above, there remain two KKT conditions 
to be fulfilled for the primal one (the RPCA problem) to have a solution as well: 

{
�̂� ∈ 𝜕‖𝑨‖∗
1

𝜆
�̂� ∈ 𝜕‖𝜠‖1

 (4.37) 

, where �̂� is the solution obtained for the dual problem. But from the definition of these 
two sub-gradients, there are three different cases arising according to the value of the 
respective norms: 

 If ‖�̂�‖
2
< 1, the solution of the primal problem will be {

𝑨 = 𝟎
𝑬 = 𝑫

 

 If 
1

𝜆
‖�̂�‖

∞
< 1, the solution of the primal problem will be {

𝑨 = 𝑫
𝑬 = 𝟎

 

 If ‖�̂�‖
2
=

1

𝜆
‖�̂�‖

∞
= 1, then (as it is stated in [43] in the form of Theorem 3.4) any 

pair of accumulation points �̂�, �̂� generated by projecting 𝑫 onto 𝑁(�̂�) via the AP 

algorithm (4.36) solves the primal RPCA problem 
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As a result, by solving the dual problem of the RPCA problem, we obtain the solution to 
the primal one. Having explained those key ideas behind the interpretation of the duality 
theory as well as its usage in order to solve the primal optimization problem, the DM 
algorithm for the RPCA problem is depicted in the following image: 

 

Image 11: The Dual Method Algorithm 

4.3.2 Norm Computation 

As it was mentioned above, 𝐽(. ) is the maximum of two norms: the spectral norm and the 
max-row-sum norm. As it is obvious from their respective definitions in Appendix II, the 
most computational thirsty among them is the spectral norm. As a result, efficient methods 
for computing the spectral norm of a matrix should be used in order to reduce 
computational complexity. As it is explained in [43], for such a computation the PROPACK 
package ([41]) is chosen because on the one hand it is way faster than the classical 
Power Method (PM) and other hand it can compute solely the largest singular value of a 
matrix without computing firstly its (computational “ponderous”) SVD. 

Furthermore, as far as the computation of the projection 𝑫𝑘 of 𝑫 onto the normal cone 

𝑁(𝒀𝑘) of 𝑆 is concerned, an “equality check” between ‖𝒀𝑘‖2 and 
1

𝜆
‖𝒀𝑘‖∞ has to take 

place. For this purpose, what is suggested in [43] is to check whether the discrepancy 

between them is larger than a predefined tolerance 𝜀 (i.e. 𝜀 = 10−4). 

4.3.3 SVD Computation 

As far as the computation of the Principal Singular Spaces is concerned, the PROPACK 
package ([41]) is chosen once more. Nevertheless, it should be mentioned here that 
possibly there are faster methods to do this computation, as it is explained in [43], but the 
authors finally selected PROPACK as at the time [43] was published the relative search 
was at an exploring stage. 
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4.3.4 Step-Size Parameters 

As it is known from optimization theory, when employing steepest ascend / descend 
methods, there is always the possibility of zig-zagging around the solution. Therefore for 

the determination of the step-size parameter 𝛿𝑘 an exact line search has to take place. 
The method chosen to do so is based on Armijo’s Rule, as it is explained in [43]. We 
should not forget to mention at this point the fact that the projections onto the normal cone 
described in this algorithm are performed inexactly, for speeding up the whole process 
(for further details see [43]). 

4.3.5 Stopping Criteria 

The stopping criteria of the DM algorithm obviously concern the two different methods 
that take place as the algorithm goes on: the steepest ascend method (for the 

computation of the direction 𝑾𝑘) and the alternating projection method (for the 

computation of the projection of 𝑫 onto 𝑁(𝒀𝑘)). 

For the first one, the respective stopping criterion is suggested ([43]) to be the following 
one: 

‖𝑫−𝑫𝑘‖𝐹

‖𝑫‖𝐹
< 𝜀 (4.38) 

, or in other words we demand the reconstruction error to be lower than a predefined 

tolerance (i.e. 𝜀 = 2 × 10−5). 

Following a similar way of thinking, the stopping criterion corresponding to the second 
one is suggested ([43]) to be the following one: 

{

‖𝑨𝒊−𝑨𝑖−1‖𝐹

‖𝑫‖𝐹
< 10−8

‖𝑬𝒊−𝑬𝑖−1‖𝐹

‖𝑫‖𝐹
< 10−8

 (4.39) 

4.4 Augmented Lagrange Multiplier Method 

Although the aforementioned APG method constitutes a good choice for coping with the 
RPCA problem, it has been proven in theory that its convergence speed is only sub-linear. 
Considering that and exploring for further ameliorations, the authors in [42] adopted an 
Augmented Lagrange Multiplier (ALM) Method / approach lent by constrained 
optimization theory. 

More precisely, ALM methods are a certain class of algorithms for solving constrained 
optimization problems. They have similarities to Penalty Methods in that they replace a 
constrained optimization problem by a series of unconstrained problems and add a 
penalty term to the objective; the difference is that the ALM method adds yet another 
term, designed to mimic a Lagrange Multiplier. It should be mentioned here that the ALM 
method is not the same as the Method of Lagrange Multipliers. Nevertheless, the two 
methods are somehow related in the sense that in the ALM method the unconstrained 
objective function is the Lagrangian Function of the constrained problem, with an 
additional penalty term (the augmentation). 

The method was originally known as the Method of Multipliers, and was studied much in 
the 1970s and 1980s as a good alternative to penalty methods. It was first discussed by 
Hestenes ([36]) and by Powell ([52]) in 1969. The method was also studied by Bertsekas, 
notably in his 1982 book ([8]) for solving constrained optimization problems of the 
following kind: 
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{

min
𝑠.𝑡.ℎ(𝑿)=𝟎

𝑓(𝑿)

𝑓: 𝑅𝑛 → 𝑅

ℎ: 𝑅𝑛 → 𝑅𝑚
 (4.40) 

This problem can be solved as a series of unconstrained minimization problems. For 
example, the penalty method approach uses as the unconstrained objective function the 
following one: 

𝑃(𝑿, 𝒀, 𝜇) = 𝑓(𝑿) + 𝜇‖ℎ(𝑿)‖𝐹
2  (4.41) 

, and then solves the optimization problem iteratively. Then, at the next iteration step, it 

re-solves the problem using a larger value of the step-size parameter 𝜇, while at the same 
time the old solution is used as an initial guess or a “warm-start”. 

On the other hand, the ALM method approach uses as the unconstrained objective 
function the Augmented Lagrangian Function, which is defined as follows: 

𝐿(𝑿, 𝒀, 𝜇) = 𝑓(𝑿) + ⟨𝒀, ℎ(𝑿)⟩ +
𝜇

2
‖ℎ(𝑿)‖𝐹

2  (4.42) 

, where 𝜇 > 0 and 〈. 〉 denotes the standard Trace Inner Product. Consequently, the 
optimization problem can then be solved iteratively via the algorithmic scheme ([9]) 
described in the following image: 

 

Image 12: The Augmented Lagrange Multiplier Method Algorithm 

The reason why the above algorithmic scheme is so attractive is that, as it has been 

proven in [8], the Lagrange multipliers 𝒀𝑘 produced by it converge to the optimal solution: 

 Q-linearly, when {𝜇𝑘} is a bounded increasing sequence, and 𝑓 as well as 𝑔 are 
continuously differentiable functions 

 Super-Q-linearly, when {𝜇𝑘} is an unbounded increasing sequence, and 𝑓 as well 
as 𝑔 are continuously differentiable functions 

Another advantage of the ALM method is that the parameter tuning is much easier than 

that of IT algorithmic schemes, as the optimal step-size parameter for the update of 𝒀𝑘 is 
proven to be the chosen penalty term 𝜇𝑘. Nevertheless, the major merit of the ALM 
method is that, unlike penalty methods, it is not necessary to require 𝜇𝑘 → ∞ in order to 
solve the original constrained optimization problem. Instead, because of the presence of 

the (estimated) Lagrange multiplier term 𝒀𝑘 whose accuracy improves at every iteration 

step, 𝜇𝑘 can stay much smaller. Furthermore, as it is suggested in [39], the ALM method 
is generally preferred to the quadratic penalty method -since the extra computational cost 
for its evaluation is insignificant compared to the potential of ill-conditioning that may be 

caused due to the requirement of the step-size parameter 𝜇 to go to infinity. 

4.4.1 Exact ALM Method 

As it is stated in [42], the ALM method can be applied to the RPCA problem, if we set: 
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{

𝑿 = (𝑨, 𝑬)

𝑓(𝑿) = ‖𝑨‖∗ + 𝜆‖𝑬‖1
ℎ(𝑿) = 𝑫 − 𝑨 − 𝑬

 (4.43) 

Obviously, the Lagrangian function will then be: 

𝐿(𝑨, 𝑬, 𝒀, 𝜇) = ‖𝑨‖∗ + 𝜆‖𝑬‖1 + ⟨𝒀, 𝑫 − 𝑨 − 𝑬⟩ +
𝜇

2
‖𝑫 − 𝑨 − 𝑬‖𝐹

2  (4.44) 

Afterwards, there are two alternatives concerning our choice of solving the following 
problem exactly or not: 

(𝑨𝑘+1
∗ , 𝑬𝑘+1

∗ ) = 𝑎𝑟𝑔min
𝑨,𝑬

𝐿(𝑨, 𝑬, 𝒀𝑘
∗ , 𝜇) (4.45) 

If we choose to solve the above sub-problem exactly, then the respective algorithm 
derived in [42] is called the Exact Augmented Lagrange Multiplier (EALM) Method and is 
depicted in the following image: 

 

Image 13: The Exact Augmented Lagrange Multiplier Method Algorithm 

The initialization of the above algorithm is inspired by the DM, developed in the above 
section, as it is clearly stated in [42]. The most crucial part although is that concerning the 
convergence rate of the EALM method, which is proven in [42] (in the form of a Theorem) 

to be at least 𝑂(𝜇𝑘
−1). In other words, if on the one hand the step-size parameter 𝜇𝑘 grows 

geometrically then the EALM method will converge Q-linearly. On the other hand, if the 

step-size parameter 𝜇𝑘 grows faster so does the convergence rate of the EALM method. 
However, one should be very cautious with the choice of {𝜇𝑘}, as larger values of it (in 
order to achieve higher convergence rates) will probably conclude to slower convergence 
rate of the IT solution of the sub-problem (4.45), as it is explained in details in [42]. 

4.4.2 Inexact ALM Method 

If we choose to solve the sub-problem (4.45) inexactly, then the respective algorithm 
derived in [42] is called the Inexact Augmented Lagrange Multiplier (IALM) Method and 
is depicted in the following image: 
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Image 14: The Inexact Augmented Lagrange Multiplier Method Algorithm 

The main idea behind this approach is that 𝑨𝑘 as well as 𝑬𝑘 will still converge to the 
optimal solution of the RPCA problem, even if their respective updates take place only 
once the sub-problem (4.45) is solved. 

The validity as well as the optimality of the above approach is guaranteed via two 

Theorems stated in [42] concerning the choice of the step-size parameters {𝜇𝑘}. 
Nevertheless, it should be mentioned that the respective convergence rate is not specified 
via those two Theorems, as it was the case with the EALM method mentioned above. 

4.4.3 SVD Computation 

As it is apparent from the previous images describing the EALM and IALM methods, the 
SVD computation is required for both of them. Borrowing the ideas developed in the 
previous sections of this Chapter, there is no need to compute the full SVD but only those 
singular values that exceed a specific threshold. Once more, such a goal is achieved via 
the help of the PROPACK package ([41]) for the SVD computation. As it was made clear 
before, the dimension of the principal singular space whose singular values exceed the 
specified threshold has to be determined ahead of time. For such a prediction, the 
respective criterion proposed in [42] for the IALM method is the following one: 

𝑠𝑣𝑘+1 = {
𝑠𝑣𝑝𝑘 + 1, 𝑠𝑣𝑝𝑘 < 𝑠𝑣𝑘

𝑚𝑖𝑛 (𝑠𝑣𝑝𝑘 + 𝑟𝑜𝑢𝑛𝑑(0.05𝑚𝑖𝑛(𝑚, 𝑛),𝑚𝑖𝑛(𝑚, 𝑛))) , 𝑠𝑣𝑝𝑘 = 𝑠𝑣𝑘
 (4.46) 

, where 𝑠𝑣𝑘 is the predicted dimension, 𝑠𝑣𝑝𝑘 is the number of singular values in 𝑠𝑣𝑘 that 

exceed 𝜇𝑘
−1 and 𝑠𝑣0 = 10. 

As for the EALM method, the above criterion is used for the inner loop which computes 
the solution of (4.45), while for the outer one it takes the following form: 

𝑠𝑣𝑘+1 = 𝑚𝑖𝑛 (𝑠𝑣𝑝𝑘 + 𝑟𝑜𝑢𝑛𝑑(0.1𝑚𝑖𝑛(𝑚, 𝑛),𝑚𝑖𝑛(𝑚, 𝑛))) (4.47) 

4.4.4 Order of Updating A and E 

Although it may seem meaningless, the order of updating 𝑨 and 𝑬 does count in practice. 
More precisely, as it is explained in details in [42], after quite a lot numerical tests, it is 

proven that it is wiser to update first 𝑬 and then 𝑨 in the EALM method as well as in the 
IALM one. This is due to fact that following such an approach leads to a slightly lower 
number of iterations needed to achieve the same accuracy than that occurring from the 
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adoption of the opposite scenario. It shouldn’t be forgotten here the fact that the update 

of 𝑬 precedes that of 𝑨 will probably lead to less computational burden concerning the 

partial SVD, as the rank of 𝑨𝑘 will increase monotonically -as stated in [42]. 

4.4.5 Stopping Criteria 

The stopping criteria of the EALM and IALM methods are directly connected to the KKT 
conditions of the RPCA problem ([42]): 

{

𝑫 − 𝑨∗ − 𝑬∗ = 𝟎
𝒀∗ ∈ 𝜕‖𝑨∗‖∗

𝒀∗ ∈ 𝜕(‖𝜆𝑬∗‖1)
 (4.48) 

For the last two conditions of (4.48) to hold, it is required that: 

𝜕‖𝑨∗‖∗ ∩ 𝜕(‖𝜆𝑬
∗‖1) = ∅ (4.49) 

As a consequence, the stopping criteria proposed in [42] for the EALM and IALM methods 
are the summarized below: 

{

‖𝑫−𝑨𝑘−𝑬𝑘‖𝐹

‖𝑫‖𝐹
< 𝜀1

𝑑𝑖𝑠𝑡(𝜕‖𝑨∗‖∗,𝜕(‖𝜆𝑬
∗‖1))

‖𝑫‖𝐹
< 𝜀2

 (4.50) 

, where the 𝑑𝑖𝑠𝑡(. ) operation in the second condition of (4.50) is defined as follows: 

𝑑𝑖𝑠𝑡(𝑿, 𝒀) = 𝑚𝑖𝑛(‖𝑥 − 𝑦‖𝐹 | 𝑥 ∈ 𝑿, 𝑦 ∈ 𝒀) (4.51) 

As far as the EALM method is concerned, the second condition of (4.50) holds always 
true, due to the inner loop of the algorithm, so its check is superfluous. On the other hand, 
this is not the case with the IALM method, and to make things even worse, this check is 
computationally expensive -as explained in [42]. To avoid such inconvenient situations, 
what is proposed in [42] is the replacement of the second condition of (4.50) with the 
following one: 

‖𝒀�̂� − 𝒀𝑘‖𝐹 < 𝜇𝑘−1
‖𝑬𝑘 − 𝑬𝑘−1‖𝐹 (4.52) 

The key idea behind such a choice is that it constitutes a good estimate of 

𝑑𝑖𝑠𝑡(𝜕‖𝑨∗‖∗, 𝜕(‖𝜆𝑬
∗‖1)) as the following two conditions hold true: 

{
𝒀�̂� ∈ 𝜕‖𝑨

∗‖∗
𝒀𝑘 ∈ 𝜕(‖𝜆𝑬

∗‖1)
 (4.53) 

4.4.6 Step-Size Parameters 

As far as the step-size parameter 𝜇𝑘 is concerned, what is proposed in [42] is the following 
adaptive update: 

𝜇𝑘+1 = {
𝜌𝜇𝑘,

𝜇𝑘‖𝑬𝑘+1−𝑬𝑘‖𝐹

‖𝑫‖𝐹
< 𝜀2

𝜇𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.54) 

The adaptive nature of the above choice is preferred to a constant sequence {𝜇𝑘}, as it 
constitutes a special case of the more general adaptive scenario, for which (4.54) is 
proven to also hold true in [42]. 

4.4.7 Initialization Steps 

Finally, the determination of the specific values of the parameters involved in the above 
criteria has to take place. 
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According to [42], as far as the EALM method is concerned, we have: 

{
𝜇0 =

0.5

‖𝑠𝑔𝑛(𝑫)‖2

𝜌 = 6
 (4.55) 

For the inner loop, the stopping criteria are the following ones: 

{
 

 
‖𝑨𝑘

𝑗+1
−𝑨𝑘

𝑗
‖
𝐹

‖𝑫‖𝐹
< 10−6

‖𝑬𝑘
𝑗+1

−𝑬𝑘
𝑗
‖
𝐹

‖𝑫‖𝐹
< 10−6

 (4.56) 

, while for the outer loop the respective criterion is: 

‖𝑫−𝑨𝑘
∗−𝑬𝑘

∗ ‖
𝐹

‖𝑫‖𝐹
< 10−7 (4.57) 

In what has to do with the IALM method, the respective initial setting to (4.55) takes the 
form: 

{
𝜇0 =

1.25

‖𝑫‖2

𝜌 = 1.6
 (4.58) 

As for the parameters involved in the stopping criteria, the following choice is proposed 
([42]): 

{
𝜀1 = 10−7

𝜀2 = 10−5
 (4.59) 

4.5 Alternating Direction Method 

The ALM method analyzed above is very elegant strategy for treating the RPCA problem, 
with great theoretical as well as numerical results. However, if we examine a bit closer 
the RPCA problem (3.6), we could notice that is a “well-structured” one -in the sense that 
it is separable both in the objective function as well as in the constraints. With that thought 
as a starting point, it was proposed in [72] to adopt the Alternating Direction Method 
(ADM, also known as the Alternating Direction Method of Multipliers (ADMM)) for 
exploiting exactly this favorable structure of the problem. 

In general, the ADM method consists a variant of the standard ALM method that uses 
partial updates (similar to the Gauss-Seidel Method for solving linear equations) for the 
Dual Variables. More precisely, it tackles convex optimization problems with linear 
constraints -exploiting their separable nature- of the form: 

min
𝒙
𝑓(𝒙) + 𝑔(𝒙) (4.60) 

The above optimization problem is equivalent to the constrained one: 

min
𝑠.𝑡.𝒙=𝒚

𝑓(𝒙) + 𝑔(𝒚) (4.61) 

Though this change may seem trivial, the problem can now be treated using methods of 
constrained optimization (in particular, the ALM method), and the objective function is 
separable in 𝒙 as well as in 𝒚. The dual update requires solving a Proximity Function in 𝒙 

and 𝒚 at the same time; the ADM method allows this problem to be solved approximately 
by first solving for 𝒙 with 𝒚 fixed, and then solving for 𝒚 with 𝒙 fixed -exploiting in that way 
the separable nature of the problem. 

Rather than iterate until convergence (like the Jacobi Method), the algorithm proceeds 
directly to updating the dual variable and then repeating the process. This is not 
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equivalent to the exact minimization, but surprisingly, it can still be shown that this method 
converges to the right answer (under some assumptions). Because of this approximation, 
the algorithm is distinct from the pure ALM method. 

4.5.1 Algorithm Outline 

As it was made clear in the above section, when referring to the RPCA problem: 

min
𝑠.𝑡.𝑩+𝑨=𝑪

‖𝑩‖∗ + 𝛾‖𝑨‖1 (4.62) 

, where 𝛾 > 0, the augmented Lagrangian function defined in (4.42) has the following 
form: 

𝐿(𝑨,𝑩, 𝒁) = ‖𝑩‖∗ + 𝛾‖𝑨‖1 + ⟨𝒁, 𝑨 + 𝑩 − 𝑪⟩ +
𝛽

2
‖𝑨 + 𝑩 − 𝑪‖𝐹

2  (4.63) 

, where 𝛽 > 0 represents a penalty parameter for violating the linear constraints and 𝒁 ∈
𝑅𝑚×𝑛 is the Lagrange multiplier of the linear constraints. After applying the ALM method, 
the solution to the problem is computed iteratively throughout the following scheme: 

{
(𝑨𝑘+1, 𝑩𝑘+1) ∈ 𝑎𝑟𝑔 min

𝑠.𝑡.𝑨,𝑩∈𝑅𝑚×𝑛
{𝐿(𝑨,𝑩, 𝒁𝑘)}

𝒁𝑘+1 = 𝒁𝑘 − 𝛽(𝑨𝑘+1 + 𝑩𝑘+1 − 𝑪)
 (4.64) 

As it is obvious from (4.64), the low-rank component as well as the sparse one are 
minimized simultaneously. Nevertheless, if we take advantage of the separable flavor of 
the objective function as well as of that of the linear constraints, the above minimization 
can take place separately leading to the ADM approach proposed in [72]: 

{

𝑨𝑘+1 ∈ 𝑎𝑟𝑔 min
𝑠.𝑡.𝑨∈𝑅𝑚×𝑛

{𝐿(𝑨,𝑩𝑘, 𝒁𝑘)}

𝑩𝑘+1 ∈ 𝑎𝑟𝑔 min
𝑠.𝑡.𝑩∈𝑅𝑚×𝑛

{𝐿(𝑨𝒌+𝟏, 𝑩, 𝒁𝑘)}

𝒁𝑘+1 = 𝒁𝑘 − 𝛽(𝑨𝑘+1 + 𝑩𝑘+1 − 𝑪)

 (4.65) 

Then, as it is explained in details in [72], the two first optimization problem of (4.65) can 
be solved as follows: 

{

𝑨𝑘+1 =
1

𝛽
𝜡𝑘 − 𝜝𝜅 + 𝑪 − 𝑃

𝛺∞

𝛾
𝛽⁄
[
1

𝛽
𝜡𝑘 − 𝜝𝜅 + 𝑪]

𝑩𝑘+1 = 𝑼𝑘+1𝑑𝑖𝑎𝑔 (𝑚𝑎𝑥 {𝜎𝑖
𝜅+1 −

1

𝛽
, 0}) (𝑽𝑘+1)𝑇

 (4.66) 

, where 𝑃
𝛺∞

𝛾
𝛽⁄
 denotes the Euclidean Projection onto the set: 

𝛺∞

𝛾
𝛽⁄
= {𝑿 ∈ 𝑅𝑛×𝑛 | −

𝛾

𝛽
≤ 𝑋𝑖𝑗 ≤

𝛾

𝛽
} (4.67) 

, while at the same time 𝑼𝑘+1 ∈ 𝑅𝑚×𝑟 and 𝑽𝑘+1 ∈ 𝑅𝑛×𝑟 are obtained via the following SVD: 

{
𝑪 − 𝑨𝑘+1 +

1

𝛽
𝒁𝑘 = 𝑼𝑘+1𝜮𝑘+1(𝑽𝑘+1)𝑇

𝜮𝑘+1 = 𝑑𝑖𝑎𝑔 ({𝜎𝑖
𝑘+1}

𝑖=1

𝑟
)

 (4.68) 

Taking into mind the above approach, the ADM method can then be formulated as in the 
following image: 
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Image 15: The Alternating Direction Method Algorithm 

4.5.2 SVD Computation 

Obviously, as it is clear from Image 15, the most computational “thirsty” step of the ADM 

method is that related to the SVD computation, with complexity 𝑂(𝑛3) ([30]). In order to 
make such a computation even more efficient, the aid of the PROPACK package ([41]) 
was once more proven priceless, as was also for most of the methods described in this 
Chapter. 

4.5.3 Step-Size Parameters 

As far as the step-size parameter 𝛽 is concerned, in [72] is proposed to be set to the 
following constant value: 

𝛽 =
0.25𝑚𝑛

‖𝑪‖1
 (4.69) 

Concerning an adaptive strategy for the update of the step-size parameter 𝛽, the reader 
is referred to [72] for further information as well as details about such a possibility. 

4.5.4 Initialization Steps 

In what has to do with the relaxation parameter 𝛾, in [72] is proposed to be evaluated as 
follows: 

{
𝛾 =

𝑡

1−𝑡

𝑡 ∈ (0,1)
 (4.70) 

The rationale of such a choice is that the RPCA problem (4.62) now takes the following 
form: 

min
𝑠.𝑡.𝑩+𝑨=𝑪

(1 − 𝑡)‖𝑩‖∗ + 𝑡‖𝑨‖1 (4.71) 
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, in which the involved parameter 𝑡 lives in a finite interval compared to the infinite one 

concerning the primary relaxation parameter, as 𝛾 ∈ (0,∞). In order to achieve the best 
balance between the two terms of the objective function in (4.71), an interesting strategy 

is proposed in [72] -based on the admission of 𝑡 staying away from the extreme points of 
its “living space” (i.e. 0 and 1). After many practical tests, the parameter 𝑡 is proposed in 
[72] to be set to 𝑡 = 0.1, in order to achieve the aforementioned balance. 

4.5.5 Stopping Criteria 

The stopping criterion of the ADM method is related to the “amount” of the relative error 

between the original low-rank and sparse components we wish to recover, (𝑩∗, 𝑨∗), and 

the numerical solution obtained for them via the ADM method, (𝑩�̂� , 𝑨�̂�), that can be 

tolerated. In other words, the ADM method is proposed in [72] to be terminated when the 

quality of recovery drops below a predefined tolerance 𝜀 > 0 (i.e. 𝜀 = 10−6): 

‖(𝑩�̂�,𝑨�̂�)−(𝑩
∗,𝑨∗)‖

𝐹

‖(𝑩∗,𝑨∗)‖𝐹+1
≤ 𝜀 (4.72) 

If we interpret the above criterion in terms of transition from a specific iteration, 𝑘, of the 

algorithm to its consecutive one, 𝑘 + 1, then it takes the following form: 

‖(𝑩𝑘+1,𝑨𝑘+1)−(𝑩𝑘,𝑨𝑘)‖
𝐹

‖(𝑩𝑘,𝑨𝑘)‖
𝐹
+1

≤ 𝜀 (4.73) 

4.6 Comparison of Algorithms 

Various methods were presented throughout this Chapter for dealing with the RPCA 
problem. Of course, each one of them has its pros and cons -depending each time on 
which specific application problem we wish to apply them. In order to avoid such an 
“unfair” regime, we decided at the present section of this thesis to carry out a comparison 
among them based on well-known metrics used for such purposes in this specific 
scientific field. 

4.6.1 Simulation Conditions 

Before mentioning those Key Performance Indicators (KPI) which will constitute the basis 
for the upcoming comparison, we should make clear at this point the circumstances under 
which this comparison is going to take place. 

First of all, the implementation of the aforementioned algorithms was done in Matlab, as 
well as the simulation tests. The respective code of each one of them was kindly uploaded 
by the authors to the website maintained by the research group of Professor Yi Ma at the 
University of Illinois at Urbana-Champaign ([50]). All the simulations were conducted and 
timed on the same Toshiba Satellite laptop, with an Intel Core i7-3630QM CPU @ 
2.40GHz processor and 4.00GB memory, running Windows 10 and Matlab version 
R2012b. 

Furthermore, we denote the true solution of the RPCA problem as (𝑨0, 𝑬0), where: 

{
𝑨0 ∈ 𝑅

𝑚×𝑚

𝑬0 ∈ 𝑅
𝑚×𝑚 (4.74) 

In our simulations, the low-rank component 𝑨0 is generated as a random 𝑚 ×𝑚 square 
matrix of rank 𝑟. This is achieved via the multiplication of two independent factors: 

{ 𝑳 ∈ 𝑅
𝑚×𝑟

𝑹𝑇 ∈ 𝑅𝑟×𝑚
 (4.75) 
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, which are matrices whose elements are Independent and Identically Distributed (I.I.D. / 
i.i.d.) Gaussian random variables with zero mean and unit variance (see [15] for more 

details). Then, 𝑨0 is set as their respective product 𝑳𝑹𝑇. 

As far as the sparse component 𝑬0 is concerned, it is generated as a sparse matrix whose 
support is chosen uniformly at random, and whose non-zero elements are i.i.d. uniformly 

in the interval [−500,500]. 

Then, the input matrix of the algorithmic schemes to be tested is set as: 

𝑫 = 𝑨0 + 𝑬0 (4.76) 

, while its output is denoted as the ordered pair (𝑨, 𝑬). 

Concerning the weighting parameter 𝜆, it is universally selected for all the algorithmic 
schemes to be tested as proposed in Chapter 3 ([19]): 

𝜆 =
1

√max𝑚,𝑛
(𝑚,𝑛)

=
1

√𝑚
 (4.77) 

Furthermore, each algorithm terminates its main iteration loop for finding the solution to 
the RPCA problem, with one of the following two different ways: 

 The relative error of reconstruction of the data matrix has exceeded a predefined 

tolerance set to 𝜀 = 10−6: 

‖𝑫−𝑨−𝑬‖𝐹

‖𝑫‖𝐹
< 10−6 (4.78) 

 The number of iterations performed by the algorithm has reached the threshold of 

maximum number of iterations permitted, which is set to 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 10000. 

In what has to do with the specific parameters of each algorithm separately, they are 
chosen as follows: 

 SVT algorithm: 

 𝜏 = 10000: The threshold parameter 𝜏 is set to 10000 for accuracy reasons, 
as proposed in [69]. Nevertheless, if the dimension of the problem is low, a 
good choice would also be the following one: 

𝜏 = 5√𝑚𝑛 (4.79) 

 𝛿 = 0.9: The value of the step-size parameter 𝛿 is chosen in this way for 
speed-up reasons of the algorithm. 

 APG algorithm: 

 𝛿 = 10−9: The value of the step-size parameter 𝛿 is chosen in this way for 
speed-up reasons of the algorithm. 

 𝜂 = 0.9: The value of this relaxation parameter is chosen exactly as 
proposed in [43]. 

 DM algorithm: 

 𝛿 = 0.1: The value of the sequence of the step-size parameters 𝛿𝑘 is 
initialized in this way for accuracy reasons of the algorithm, concerning its 
adaptive changing during the optimization process. 

 EALM algorithm: 

 𝜌 = 6: The adaptive incremental of the step-size parameters’ sequence {𝜇𝑘} 
is chosen exactly as proposed in (4.55) ([42]). 
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 IAML algorithm: 

 𝜌 = 1.6: The adaptive incremental of the step-size parameters’ sequence 
{𝜇𝑘} is chosen exactly as proposed in (4.58) ([42]). 

 ADM algorithm: 

 𝑡 =
𝜆

𝜆+1
: As it was made clear from (4.70) the relaxation parameter 𝛾 plays 

the role of the respective parameter 𝜆 for all the other algorithms, with the 
difference however that it depends on the parameter 𝑡 for convenience 
reasons of narrowing the respective interval of possible values. For reasons 

of fairness we chose to select 𝑡 in this way (and not as 𝑡 = 0.1, which 
proposed in [72]), in order for the respective relaxation parameter to have 
the same “behavior” as in the rest of the algorithms. 

4.6.2 Exact Recoverability 

The first KPI has to do with the relative error of reconstruction concerning the low-rank as 

well as the sparse component of the data matrix, 𝑨 and 𝑬 respectively, produced by each 
one of the above algorithms. However, more emphasis should be given to the low-rank 
component rather than the sparse one, as it is clear from the respective papers describing 
the aforementioned algorithms. The only reasoning for adopting such a choice is the 
viewpoint of the whole theory developed in the previous Chapter, which confronts the 
RPCA problem as recovering a low-rank matrix from gross errors ([19]). In such a case, 
the relative reconstruction error of the sparse component plays a more subsidiary role 
rather than a central one -which is assigned to the low-rank component. 

More precisely, for each triplet {𝑚, 𝑟𝑎𝑛𝑘(𝑨0), ‖𝑬0‖0} the RPCA problem was solved for 

the same input data matrix 𝑫 (created as mentioned before) using the algorithmic 
schemes cited in this Chapter, and at each time we measure the relative error of 
reconstruction of the low-rank and the sparse component of the data matrix: 

{

‖𝑨−𝑨0‖𝐹

‖𝑨0‖𝐹
‖𝑬−𝑬0‖𝐹

‖𝑬0‖𝐹

 (4.80) 

Another interesting KPI is the number of iterations required for convergence of each 
algorithm, which indicates the amount of computational burden that has to be lifted by the 
specific solver. 

Furthermore, the total computation time in seconds performed by each algorithm until 
convergence is reported likewise, as it consists a metric of speed of each solver which 
indicates the time it requires for coming up with the solution of the RPCA problem. 

In addition, the number of SVDs performed by each algorithm is also recorded, as some 
of the algorithms use partial SVD techniques (such as the Partial Accelerated Proximal 
Gradient Algorithm -PAPG- which is mentioned below as a speed-up version of the 
classical APG algorithm) which lead to lower computational effort -a difference although 
which is clearer as well as important as the dimension of the problem augments. 

There were adopted two different scenarios concerning the “level of low rankness” as well 
as the “level of sparsity” of the respective components of our input data matrix. In the first 
one, the experimental regime is as follows: 

{
𝑟𝑎𝑛𝑘(𝑨0) = 0.05𝑚

‖𝑬0‖0 = 0.05𝑚2  (4.81) 

, while the second one is quite more challenging: 
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{
𝑟𝑎𝑛𝑘(𝑨0) = 0.05𝑚

‖𝑬0‖0 = 0.10𝑚2  (4.82) 

The respective results of each one scenario are reported in the following tables: 

Table 3: Comparison between different algorithmic schemes on the RPCA problem-Scenario 1 

Dimension 𝒎 Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

 
‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

 
𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 # SVDs # Iterations Time(s) 

500 SVT 

APG 

PAPG 

DM 

EALM 

IALM 

ADM 

8.75 × 10−6 

9.23 × 10−6 

8.50 × 10−6 

8.01 × 10−6 

8.18 × 10−7 

4.76 × 10−6 

5.24 × 10−6 

9.09 × 10−7 

7.34 × 10−7 

7.32 × 10−7 

9.00 × 10−7 

2.00 × 10−7 

1.02 × 10−6 

9.26 × 10−7 

25 

25 

25 

25 

25 

25 

25 

12512 

12510 

12510 

12500 

12500 

12498 

12498 

3689 

251 

251 

1461 

28 

15 

39 

3689 

128 

128 

256 

5 

15 

39 

835.92 

28.66 

24.44 

120.65 

3.26 

1.23 

3.69 

1000 SVT 

APG 

PAPG 

DM 

EALM 

IALM 

ADM 

3.48 × 10−6 

6.40 × 10−6 

6.71 × 10−6 

3.24 × 10−6 

6.50 × 10−7 

1.31 × 10−6 

3.17 × 10−6 

1.00 × 10−6 

7.18 × 10−7 

7.98 × 10−7 

9.98 × 10−7 

2.15 × 10−7 

4.07 × 10−7 

1.04 × 10−6 

50 

50 

50 

50 

50 

50 

50 

50122 

50104 

50149 

49993 

49996 

49993 

49991 

7446 

251 

249 

3304 

28 

17 

50 

7446 

128 

127 

470 

5 

17 

50 

11536.43 

169.58 

96.91 

1347.00 

17.46 

5.25 

28.35 

1500 SVT 

APG 

PAPG 

DM 

EALM 

IALM 

ADM 

3.30 × 10−6 

5.23 × 10−6 

5.48 × 10−6 

5.01 × 10−6 

4.00 × 10−7 

2.27 × 10−6 

2.47 × 10−6 

1.04 × 10−6 

7.16 × 10−7 

7.96 × 10−7 

8.08 × 10−7 

1.54 × 10−7 

8.69 × 10−7 

9.93 × 10−7 

75 

75 

75 

75 

75 

75 

75 

112501 

112683 

112767 

112489 

112498 

112490 

112493 

6155 

252 

249 

7592 

28 

16 

62 

6155 

128 

127 

1004 

5 

16 

62 

29058.89 

608.61 

254.38 

9028.23 

54.09 

13.28 

132.59 

 

Table 4: Comparison between different algorithmic schemes on the RPCA problem-Scenario 2 

Dimension 𝒎 Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

 
‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

 
𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 # SVDs # Iterations Time(s) 

500 SVT 

APG 

PAPG 

DM 

EALM 

IALM 

ADM 

1.22 × 10−5 

1.15 × 10−5 

1.21 × 10−5 

6.54 × 10−6 

1.29 × 10−6 

8.34 × 10−6 

5.87 × 10−6 

1.89 × 10−6 

8.26 × 10−7 

9.17 × 10−7 

3.22 × 10−6 

1.82 × 10−7 

1.01 × 10−6 

7.56 × 10−7 

31 

25 

25 

25 

25 

25 

25 

25136 

25118 

25145 

24999 

25000 

24997 

24997 

10000 

256 

254 

5507 

32 

17 

108 

10000 

130 

129 

630 

5 

17 

108 

9160.13 

28.91 

24.92 

620.83 

3.64 

1.44 

10.26 

1000 SVT 

APG 

4.73 × 10−6 1.07 × 10−6 82 

50 

100504 

100365 

10000 

256 

10000 

130 

21456.78 

172.11 
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PAPG 

DM 

EALM 

IALM 

ADM 

8.13 × 10−6 

7.84 × 10−6 

5.05 × 10−6 

8.73 × 10−7 

5.72 × 10−6 

4.71 × 10−6 

8.24 × 10−7 

8.30 × 10−7 

1.05 × 10−6 

1.75 × 10−7 

1.03 × 10−6 

1.02 × 10−6 

50 

50 

50 

50 

50 

101622 

100002 

99995 

99990 

99988 

255 

6493 

32 

17 

99 

130 

783 

5 

17 

99 

98.62 

2510.69 

19.79 

5.12 

55.08 

1500 SVT 

APG 

PAPG 

DM 

EALM 

IALM 

ADM 

3.89 × 10−6 

6.62 × 10−6 

6.48 × 10−6 

4.08 × 10−6 

6.16 × 10−7 

3.95 × 10−6 

3.84 × 10−6 

1.02 × 10−6 

8.20 × 10−7 

8.17 × 10−7 

9.61 × 10−7 

1.39 × 10−7 

8.70 × 10−7 

1.03 × 10−6 

113 

75 

75 

75 

75 

75 

75 

225532 

225722 

225488 

225001 

224999 

224983 

224987 

10000 

256 

256 

9507 

32 

17 

91 

10000 

130 

130 

1110 

5 

17 

91 

49652.18 

624.77 

259.77 

15904.94 

60.08 

14.19 

198.02 

As it is obvious from the above tables, there are many interesting conclusions arising from 
both the scenarios examined. First of all, concerning the SVT algorithm, it should be 
mentioned that on the one hand it achieves good accuracy results for the low-rank 
component but on the other hand the time needed for such a result is prohibitive. The 
reason for that to happen is obviously that it has to compute a SVD per iteration, which 
makes its computational burden quite significant. As a result, as the dimension of the 
problem increases the algorithm does not scale well, leading to computational time of 
several hours for dimensions exceeding 1000 -which although is usually the case in 
practice. 

As far as the APG algorithm is concerned, it achieves comparable results in terms of the 
reconstruction error of the low-rank component with those of the SVT algorithm. 
Nevertheless, it converges much faster than the SVT algorithm, as the continuation 
technique involved in it plays a crucial role towards that direction. Consequently, the total 
computational time is significant less than that of the SVT algorithm, as well as the number 
of iterations needed for convergence -especially when the dimension of the problem rises. 
We should also mention the fact that if we adopt the PAPG version of the APG algorithm, 
the computational time can be further reduced, as the SVDs per iteration are not 
computed exactly but partially. Although at the beginning the gain may seem 
meaningless, it becomes quite clearer as we augment the dimension of the problem. 

Concerning the DM algorithm, it is obvious from both Tables 3 and 4 that its accuracy of 
recovering the low-rank component is better than that of the APG algorithm as well as 
that of the SVT one. Of course such an advantage has its trade-off, which in that case is 
depicted to the iterations needed for convergence and consequently the total 
computational time. As a result, the DM algorithm constitutes a good alternative if we care 
about accuracy, but not a good one if we do not have the time to achieve it. 

In what has to do with the ALM algorithm, we should highlight the fact that it achieves the 
best performance concerning both the accuracy of recovering the low-rank component 
as well as the time required to achieve it. It is significantly faster than all the other 
algorithms, a fact that arises from the adoption of an ADM approach for exploiting the 
separable nature of the RPCA problem. Furthermore, the ALM method scales quite well 
as the dimension of the problem increases, requiring less than a minute to recover the 
solution for matrix dimensions exceeding 1000. We should not forget to mention here the 
fact that if we adopt the IALM version, the time needed for convergence is significantly 
reduced -as becomes clear from Tables 3 and 4. The reason for that to happen is that 
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the required number of partial SVDs for the IALM version is significantly less than that of 
the EALM one, leading to less computational time. 

Finally, the ADM approach also behaves quite well in what has to do with both its accuracy 
and its computational time. More precisely, it overcomes the SVT algorithm as well the 
APG and the DM ones. At the same time, the time needed to achieve such a performance 
is also less than that of the aforementioned algorithms, making it a good alternative for 
tackling the RPCA problem. A fact that should be also mentioned here is that the ADM 
algorithm seems less accurate as well as slower than both the EALM and IALM 
algorithms. Such a thing holds true, but does not tell the whole truth: in fact, both versions 
of the ALM algorithm adopt the approach proposed in [72] for updating separately the 
low-rank and sparse components, but at the same time the involved step-size parameters 
are adaptively updated. Such a regime does not hold true in the ADM approach proposed 

in [72], in which the step-size parameter 𝛽 has a constant value from the beginning of the 
algorithm -as it is obvious from (4.69). Consequently, the accuracy of the recovered low-
rank component and the time needed to achieve it are a little worse than those of the 
EALM and IALM algorithms. Although, the credits of treating separately the low-rank and 
the sparse components should be given to the ADM algorithm. 

4.7 A Case Study: Image De-Noising 

In the final section of this thesis, we chose to cope with the well-known problem of Image 
De-Noising. More precisely, we selected to formulate the image de-noising task in terms 
of the RPCA problem, and subsequently try to tackle it with the algorithmic methods 
described in this Chapter, in order to have a more descriptive view of their performance 
in a more realistic application than the initial-random experimental evaluation which took 
place in the previous section. 

As it is known from the respective bibliography, image de-noising is the process of 
removing noise from a noise-infected image. In general, it is a quite challenging task, as 
there are many different types of noise that can affect an image either accidentally or on 
purpose. For example, in salt and pepper noise (sparse light and dark disturbances), 
pixels in the image are very different in color or intensity from their surrounding pixels; the 
defining characteristic is that the value of a noisy pixel bears no relation to the color of 
surrounding pixels. Generally this type of noise will only affect a small number of image 
pixels. When viewed, the image contains dark and white dots, hence the term salt and 
pepper noise. As another example, we could refer to the probably most well-known type 
of noise, the Gaussian noise: in Gaussian noise, each pixel in the image will be changed 
from its original value by a (usually) small amount. It owes its name to its histogram 
visualization, a plot of the amount of distortion of a pixel value against the frequency with 
which it occurs, which in that case shows a normal distribution of noise. Among many 
reasons that have made it so popular (i.e. easy mathematical manipulation), probably the 
most important one comes from the field of statistics, and has the following intuitive 
interpretation: while other distributions are possible, the Gaussian (normal) distribution is 
usually a good model, due to the Central Limit Theorem that states that the sum of 
different noises tends to approach a Gaussian distribution. 

Of course, there are many algorithms designed to tackle these problems -each one trying 
to take advantage from the specific application in which is used probably. What all 
algorithmic methods which cope with the image de-noising task weight in general, are the 
following factors: 

 Available time and computer power: As an example to set our notation, we could 
think that it is much more difficult for a digital camera to apply image de-noising in 
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a fraction of a second using a tiny onboard CPU, than for a desktop computer 
which has much more power and time 

 Desired level of details: In many cases we have to decide whether sacrificing 
some real detail is acceptable if it allows more noise to be removed (in other words, 
we have to decide how “aggressive” we should be vis-à-vis variations in the image 
that can be treated as noise) 

4.7.1 Simulation Conditions 

Taking the above information into mind, we decided to formulate the image de-noising 
pursuit in terms of the RPCA problem as follows: we select a low-rank image (or an 

approximately one) to be our low-rank component 𝑨0 ∈ 𝑅
𝑚×𝑚. Afterwards, we 

contaminate it with outlier noise (𝑬0 ∈ 𝑅
𝑚×𝑚) selected uniformly at random -exactly as in 

the previous experimental section. The “sparsity level” for this component was chosen as 

in (4.81) to be ‖𝑬0‖0 = 0.05𝑚2. As a result, their superposition data matrix 𝑫 is going to 
be the noise-infected image which we seek to de-noise. 

Mainly for time-saving reasons we chose to address this problem via the use of the three 
fastest algorithmic methods described in the previous section (i.e. EALM, IALM, and 
ADM). The respective parameters remain the same as was the case before, mostly for 
“fairness reasons”. In what has to do with the KPIs used for the upcoming ranking of the 
algorithms, they also remain the same with those provided in Tables 3 and 4, but due to 
the application studied an additional one was also put into the frame: the Peak-Signal-to-
Noise-Ratio (PSNR). PSNR is an engineering term for the ratio between the maximum 
possible power of a signal and the power of corrupting noise that affects the fidelity of its 
representation. Because many signals have a very wide dynamic range, PSNR is usually 
expressed in terms of the logarithmic decibel scale. PSNR is most commonly used to 
measure the quality of reconstruction of lossy compression codecs (i.e. image 
compression). The signal in this case is the original data, and the noise is the error 
introduced by compression. In our case, the noise-free signal is going to be the original 
images to be tested each time, while the noise term is going to be dominated by the 
sparse outliers. 

In mathematical terms, the PSNR metric is defined via the MSE between our original 
noise-free image (NFI) and its noisy approximation (NAI): 

𝑀𝑆𝐸 =
∑ ∑ [𝑁𝐹𝐼(𝑖,𝑗)−𝑁𝐴𝐼(𝑖,𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0

𝑚𝑛
 (4.83) 

Then the PSNR (in dB) is then defined as follows: 

𝑃𝑆𝑁𝑅 = 10 log10 (
(𝑚𝑎𝑥𝑁𝐹𝐼)

2

𝑀𝑆𝐸
) (4.84) 

, where 𝑚𝑎𝑥𝑁𝐹𝐼 is the maximum possible pixel value of the image. In our experiments we 
coped with square images (m=n), and the pixels are represented using 8 bits per sample. 

As a result, 𝑚𝑎𝑥𝑁𝐹𝐼 value is going to be 255.  

The selection of the PSNR metric was based on the one hand on its relative easy 
computation, while on the other hand when comparing image de-noising algorithms the 
PSNR metric is an approximation to human perception of reconstruction quality. In other 
words, this metric gives an intuitive argument of whether the performance of a specific 
algorithm was satisfactory or not. 

For the better understanding of the algorithms’ behavior under different real-application 
circumstances, we sketched two different scenarios: the noiseless and the noisy one. 
Both of them are described in details in the upcoming sections, together with their results 
and the respective conclusions occurring from them.  
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4.7.2 Noiseless Scenario 

In the first scenario, the experimental regime is the one described just above. In other 

words, the data matrix 𝑫 is the superposition of the original image and the outlier noise 
added to it. The test set included three different images, in terms of image contrast as 
well as image resolution. In plain English, we used images of different dimensions and 
different “level of low-rankness”. More precisely, the first test-image was one with 

resolution of 512 × 512 while the upcoming two had a double resolution each time 
(1024 × 1024 and 2048 × 2048 respectively). In order to provide a better understanding 
of the whole de-noising process, for each one of them, we present the following figures: 

 Original image: The original image to be infected with outlier noise 

 Noisy image: The noise-infected image to be de-noised by the three different 
algorithmic methods 

 Clean-Reconstructed image: The de-noised image produced by each one of the 
three algorithmic methods 

 Estimated outlier noise: The portion of the outlier noise captured as the sparse 
component by each one of the three algorithmic methods 

Furthermore, the performance of each one of the three used algorithmic methods, 
according to the KPIs mentioned above, is recorded and subsequently plotted versus the 
number of iterations needed for convergence -in order to have a visualization of their 
relative changes during the de-noising process. The respective results are summarized 
into a, similar to Tables 3 and 4, result-table -which will help in the conclusion extraction 
process and therefore is presented at the end of the whole process. 

For the 512 × 512 image resolution case, the selected image was one depicting one of 
the famous San Francisco bridges, and is shown below: 

 

Image 16: Original Image-Bridge 

Its noisy counterpart is then depicted in the following image: 

Original Image
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Image 17: Noisy Image-Bridge 

The task of de-noising the above noisy image is tackled by the three fastest algorithms 
examined in this Chapter, as mentioned earlier. For the EALM algorithm, the 
reconstructed image as well as the estimated outlier noise are depicted in the following 
images: 

 

Image 18: Reconstructed Image-Bridge-EALM 

Noisy Image

Reconstructed Image-EALM
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Image 19: Outliers-Bridge-EALM 

The respective images for the IALM algorithm are the following ones: 

 

Image 20: Reconstructed Image-Bridge-IALM 

Outliers-EALM

Reconstructed Image-IALM
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Image 21: Outliers-Bridge-IALM 

As far as the ADM algorithm is concerned, its results are shown in the upcoming images: 

 

Image 22: Reconstructed Image-Bridge-ADM 

Outliers-IALM

Reconstructed Image-ADM
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Image 23: Outliers-Bridge-ADM 

After the image de-noising process figures, it is deemed appropriate to show the quality 
metrics used to measure the performance of the aforementioned algorithms. More 
precisely, the relative error for the low-rank component (i.e. the reconstructed image) is 
shown in the following figure: 

 

Figure 2: RELR-Bridge 

Outliers-ADM
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Subsequently, the relative error for the sparse component (i.e. the outliers) is depicted in 
the following figure: 

 

Figure 3: RES-Bridge 

Furthermore, the rank of the low-rank component is shown below: 

 

Figure 4: Rank-Bridge 
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At the same time, the cardinality of the sparse component is depicted below: 

 

Figure 5: Cardinality-Bridge 

Finally, the PSNR metric is depicted in the following figure: 

 

Figure 6: PSNR-Bridge 
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For the 1024 × 1024 image resolution case, the selected image was one depicting lights 
in a dark background, which is shown below: 

 

Image 24: Original Image-Lights 

Its noisy counterpart is then depicted in the following image: 

 

Image 25: Noisy Image-Lights 

For the EALM algorithm, the reconstructed image as well as the estimated outlier noise 
are depicted in the following images: 

Original Image

Noisy Image
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Image 26: Reconstructed Image-Lights-EALM 

 

Image 27: Outliers-Lights-EALM 

The respective images for the IALM algorithm are the following ones: 

Reconstructed Image-EALM

Outliers-EALM
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Image 28: Reconstructed Image-Lights-IALM 

 

Image 29: Outliers-Lights-IALM 

As far as the ADM algorithm is concerned, its results are shown in the upcoming images: 

Reconstructed Image-IALM

Outliers-IALM
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Image 30: Reconstructed Image-Lights-ADM 

 

Image 31: Outliers-Lights-ADM 

In what has to do with the performance metrics for this case, the relative error for the low-
rank component is shown in the following figure: 

Reconstructed Image-ADM

Outliers-ADM
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Figure 7: RELR-Lights 

As for the relative error for the sparse component, it is depicted in the following figure: 

 

Figure 8: RES-Lights 
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Figure 9: Rank-Lights 

As for the cardinality of the sparse component, it is depicted below: 

 

Figure 10: Cardinality-Lights 
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Figure 11: PSNR-Lights 

Finally, in the case of the 2048 × 2048 image resolution, the selected image was one 
depicting stones in a woody background, which is shown below: 

 

Image 32: Original Image-Stones 

Following the same pattern as above, its noisy counterpart is depicted below: 
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Image 33: Noisy Image-Stones 

The reconstructed image as well as the estimated outlier noise “produced” by the EALM 
algorithm are depicted below: 

 

Image 34: Reconstructed Image-Stones-EALM 

Noisy Image

Reconstructed Image-EALM
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Image 35: Outliers-EALM-Stones 

Furthermore, the respective images “produced” by the IALM algorithm are shown below: 

 

Image 36: Reconstructed Image-Stones-IALM 

Outliers-EALM

Reconstructed Image-IALM
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Image 37: Outliers-Stones-IALM 

As for the ADM algorithm’s results, they are shown straightaway: 

 

Image 38: Reconstructed Image-Stones-ADM 

Outliers-IALM

Reconstructed Image-ADM
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Image 39: Outliers-Stones-ADM 

As far as the performance metrics for the highest-resolution case are concerned, the 
relative error for the low-rank component is depicted in the forthcoming figure: 

 

Figure 12: RELR-Stones 

At the same time, the respective relative error for the sparse component is shown below: 
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Figure 13: RES-Stones 

The rank of the low-rank component follows up: 

 

Figure 14: Rank-Stones 

As for the cardinality of the sparse component, it is depicted in the following figure: 
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Figure 15: Cardinality-Stones 

Finally, the PSNR metric is shown below: 

 

Figure 16: PSNR-Stones 
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conclusions concerning the performance of the employed algorithms towards the image 
de-noising pursuit: 

Table 5: Comparison between different algorithmic schemes on the Image De-noising pursuit-
Noiseless Scenario 

Image 
Resolution 

Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

 
‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

 
𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 PSNR # SVDs # Iterations Time(s) 

𝟓𝟏𝟐 × 𝟓𝟏𝟐 EALM 

IALM 

ADM 

8.14 × 10−2 

8.26 × 10−2 

8.14 × 10−2 

1.02 × 10−1 

1.03 × 10−1 

1.02 × 10−1 

309 

302 

273 

164646 

171560 

142541 

31.764 

31.632 

31.766 

756 

29 

593 

7 

29 

593 

180.16 

4.12 

67.24 

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 EALM 

IALM 

ADM 

1.04 × 10−1 

1.04 × 10−1 

1.04 × 10−1 

4.20 × 10−2 

4.19 × 10−2 

4.19 × 10−2 

656 

593 

534 

710035 

683701 

551198 

39.491 

39.498 

39.502 

612 

28 

439 

8 

28 

439 

1163.90 

38.40 

311.99 

𝟐𝟎𝟒𝟖 × 𝟐𝟎𝟒𝟖 EALM 

IALM 

ADM 

2.81 × 10−2 

2.95 × 10−2 

2.82 × 10−2 

2.53 × 10−2 

2.66 × 10−2 

2.53 × 10−2 

1300 

1185 

1042 

2821847 

2666190 

2149958 

43.890 

43.456 

43.873 

523 

31 

396 

8 

31 

396 

9427.62 

282.79 

2573.47 

If we take a deeper look at the aforementioned results, there are many interesting 
conclusions that can come up into surface. 

First of all, it is quite evident that in terms of the relative error of the low-rank component, 
EALM and ADM achieve a slightly better performance than IALM. The situation is pretty 
much the same in terms of the relative error for the sparse component also, although the 
latter practically is a metric of less importance as explained also in the previous section 
of this thesis. So if we care about more accurate results, picking one method among 
EALM and ADM would seem a reasonable choice. The gain although does not seem so 
astonishing. 

In what has to do with the rank of the recovered solution, clearly the ADM method is the 
leading one. The most interesting remark though concerning this metric is that as the 
resolution of the image increases so does the gap between the “low-rankness” level of 
the three examined methods. As a result, for handling images of even higher resolution, 
it is reasonable to expect that the recovered solution obtained by the ADM method is 
going to be the lowest-rank one, whose “gain” to that metric vis-à-vis the other three 
methods is going to be proportional to the increase of the image resolution. 

As far as the sparsity level of the obtained sparse component is concerned, even if its 
utility is not as important as the above metric due to the conceptual structure of the RPCA 
problem (recover a low-rank matrix from gross errors), the situation bears a strong 
resemblance to that of the rank metric. In other words, the ADM method recovers the 
sparsest solution followed by IALM and EALM. The difference of the sparsity level among 
them is again proportional to the image resolution augmentation, which suggests that for 
images of even higher resolution than those examined in the present thesis the regime is 
going to ameliorate in favor of the ADM method. 

In terms of the PSNR metric, the difference among the algorithms are almost insignificant. 
Such a thing can be proven either by observing the respective values of the metric at 
each different image resolution scenario (which differ either on the first or the second 
decimal digit) or by observing the respective figures of the PSNR metric in which all three 
algorithms reach almost the same final value. Furthermore, the reconstructed images 
obtained by each algorithm bear a strong resemblance, which is indicative of the 
aforementioned argument. What should be highlighted at this point though is the fact of 
the clear improvement of the distinctive ability of the processed images as we increase 
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the resolution of the test-image. Furthermore, to this direction contributes also the higher-
level of “low-rankness” of a specific image, which results in better performance of the 
algorithms as the contrast among different objects of the image becomes less significant. 
Such a conclusion is depicted in terms of the PSNR metric, whose value has increased 
about 12dBs from the lowest image resolution case to the highest one. This metric is of 
crucial importance in image processing as it depicts the reconstruction quality of an 
algorithm, and its amelioration up to more than 10dBs must give the credits to the 
respective methods. 

As far as the computational load is concerned, the number of SVDs required to obtain a 
specific solution reveals two main conceptual results: the first one is that clearly the IALM 
method is the less computational-thirsty one (with the respective number of SVDs staying 
almost constant as the dimension of the problem increases), while the second one is that 
the more we cope with images of low-contrast the better the performance of each 
algorithm is going to be. Such a result of course owes its validity again to the 
constructional nature of these algorithms for tackling problems which contain low-rank 
structures in general. 

Moreover, another result occurring from the above experiments is that the number of 
required iterations for convergence stays pretty much the same for EALM and IALM 
methods with a slight increase if we double the image resolution. Although this is not the 
case with the ADM method, its performance ameliorates as the resolution of the image 
increases as well as its “low-rankness” level. 

Last but not least, there are some interesting results occurring from the computational 
time needed for each algorithm to solve a problem of specific image resolution. If we 
extend this argument a bit further, this metric is quite an important one -as it indicates the 
performance of each algorithm in real applications where the lavishness of time is not 
always guaranteed or even accepted. More precisely, the first conclusion is that clearly 
IALM outperforms the other two methods -a difference which becomes quite evident in 

the case of a 2048 × 2048 image resolution where the time required by IALM is up to 4.7 
minutes while for ADM approaches 42 minutes and for EALM 2.5 hours. 

The most interesting results although occur if we take a deeper look to the time needed 
for each algorithm to transit from a lower-resolution image to a higher one as a relative 
ratio: we observe that the EALM method requires about 6.4 times the time needed to 

solve to 512 × 512 problem for coping with the 1024 × 1024 one, a situation which gets a 

bit worse for the 2048 × 2048 case in which the respective ratio augments up to 8.1 times. 
At the same time, the regime for the ADM method is 4.6 times for the transition from 512 ×
512  to 1024 × 1024 and 8.2 times for that from 1024 × 1024 to 2048 × 2048. On the 
contrary, IALM may initially require 9.5 its first computational time for the first transition, 
but as the dimension of the problem augments, this ratio is reduced to 7.4 times. As a 
result, we could say that as the image resolution increases so does the gap between the 
time needed for each algorithm to solve the problem. Consequently, the adaptive nature 
of the IALM method (in terms of the step-sizes) combined with its non-exact computation 
of the updates for the low-rank and sparse components can be proved very efficient for 
tackling real application problems even for high-resolution images that lie into thousands 
of dimensions. 

Another interesting comment could be made about the relative speed of the fastest 
method (i.e. IALM) compared to the other 2 as we transit to higher-resolution images. In 

plain English, we observe that as for the 512 × 512 problem IALM is about 45 times faster 
than EALM and 16 times faster than ADM, this relative ratio decreases as we double the 

resolution of the image to 1024 × 1024 to 30 times for EALM and 8 times for ADM. Further 
increase of the image resolution up to 2048 × 2048 does not change the situation 
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significantly, as the relative time ratios slightly augment up to 33 times and 9.1 times 
respectively. As a consequence, we could say that as we increase the dimensionality of 
the problem, the two slowest methods (i.e. ADM and EALM) will retain their current 
performance compared to the fastest one (i.e. IALM) as their dependence seems to look 
like a linear one with different scaling factors, as well as their relative ranking based on 
the time metric. 

4.7.3 Noisy Scenario 

In the scenario studied in the above section, we supposed that our image was corrupted 
only by outlier noise of very intense magnitude. However, in many real world applications 
in the field of image processing, the observed image is often corrupted with noise (which 
may be stochastic or deterministic) affecting every pixel of the image. Therefore, for the 
techniques studied in the present thesis to be a good alternative for image de-noising 
purposes, results that examine stability and accurate recovery in the presence of entry-
wise noise must be provided. 

The whole experimental concept remains pretty much the same as in the aforementioned 
scenario, but now the measurement model includes another one term standing for the 
extra entry-wise noise added to each pixel of the image. In mathematical terms, our data 
matrix is going to have to following form: 

𝑫 = 𝑨0 + 𝑬0 + 𝑷0 (4.85) 

, where 𝑨0 and 𝑬0 represent once more the low-rank and the sparse component 
respectively, while 𝑷0 is a small-perturbation noise term. 

From a theoretical point of view, the significance of the validity of the model described in 
(4.85) is quite important in the sense that it provides sophisticated as well as apt 
arguments for the stability of the RPCA decomposition of a matrix in its low-rank plus 
sparse components in the presence of small entry-wise noise. At the same time, the 
practical impact is also considerable as in many occasions imperfections that affect the 
whole available data may happen during the acquisition process -leading to situations 
that can be perfectly modeled like (4.85). Of course, at this point of this thesis, the goal is 
by no means to provide theoretical results concerning the applicability of (4.85). The 
diligent reader is referred to [74] for more details. 

Before presenting the respective images for the present scenario, it is deemed 

appropriate to refer to the kind of perturbation noise term 𝑷0 mentioned in (4.85). For our 
experimental purposes we assumed that each entry of 𝑷0 is i.i.d. Gaussian random 
variable with zero mean and 0.01 variance. This choice was made mainly to ensure that 
the portion of the entry-wise noise is not insignificant, and really affects the image, in 
order to be able to extract some useful conclusions about the performance of the three 
different employed algorithmic methods under more challenging situations. 

Taking the above information into mind, we continue by presenting the de-noising process 

right away. For the 512 × 512 image resolution case, the original image which depicts 
one of the famous San Francisco bridges is shown below: 
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Image 40: Original Image-Bridge(Noisy) 

Its noisy counterpart is then depicted in the following image: 

 

Image 41: Noisy Image-Bridge(Noisy) 

For the EALM algorithm, the reconstructed image as well as the estimated outlier noise 
are depicted in the following images: 

Original Image

Noisy Image
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Image 42: Reconstructed Image-Bridge(Noisy)-EALM 

 

Image 43: Outliers-Bridge(Noisy)-EALM 

The respective images for the IALM algorithm are the following ones: 

Reconstructed Image-EALM

Outliers-EALM
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Image 44: Reconstructed Image-Bridge(Noisy)-IALM 

 

Image 45: Outliers-Bridge(Noisy)-IALM 

As far as the ADM algorithm is concerned, its results are shown in the upcoming images: 

Reconstructed Image-IALM

Outliers-IALM
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Image 46: Reconstructed Image-Bridge(Noisy)-ADM 

 

Image 47: Outliers-Bridge(Noisy)-ADM 

Concerning the quality metrics used to measure the performance of the aforementioned 
algorithms in the present scenario, they are presented straight away. More precisely, the 
relative error for the low-rank component is shown in the following figure: 

Reconstructed Image-ADM

Outliers-ADM
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Figure 17: RELR-Bridge(Noisy) 

Subsequently, the relative error for the sparse component is depicted in the following 
figure: 

 

Figure 18: RES-Bridge(Noisy) 

Furthermore, the rank of the low-rank component is shown below: 
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Figure 19: Rank-Bridge(Noisy) 

At the same time, the cardinality of the sparse component is depicted below: 

 

Figure 20: Cardinality-Bridge(Noisy) 

Finally, the PSNR metric is depicted in the following figure: 
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Figure 21: PSNR-Bridge(Noisy) 

For the 1024 × 1024 image resolution case, the original image which depicts lights in a 
dark background, is shown below: 

 

Image 48: Original Image-Lights(Noisy) 

Its noisy counterpart is then depicted in the following image: 
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Image 49: Noisy Image-Lights(Noisy) 

For the EALM algorithm, the reconstructed image as well as the estimated outlier noise 
are depicted in the following images: 

 

Image 50: Reconstructed Image-Lights(Noisy)-EALM 

Noisy Image

Reconstructed Image-EALM
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Image 51: Outliers-Bridge(Noisy)-EALM 

The respective images for the IALM algorithm are the following ones: 

 

Image 52: Reconstructed Image-Lights(Noisy)-IALM 

Outliers-EALM

Reconstructed Image-IALM
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Image 53: Outliers-Lights(Noisy)-IALM 

As far as the ADM algorithm is concerned, its results are shown in the upcoming images: 

 

Image 54: Reconstructed Image-Lights(Noisy)-ADM 

Outliers-IALM

Reconstructed Image-ADM
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Image 55: Outliers-Lights(Noisy)-ADM 

In what has to do with the performance metrics for this case, the relative error for the low-
rank component is shown in the following figure: 

 

Figure 22: RELR-Lights(Noisy) 

As for the relative error for the sparse component, it is depicted in the following figure: 
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Figure 23: RES-Lights(Noisy) 

Furthermore, the rank of the low-rank component is shown below: 

 

Figure 24: Rank-Lights(Noisy) 

As for the cardinality of the sparse component, it is depicted below: 
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Figure 25: Cardinality-Lights(Noisy) 

Finally, the PSNR metric is depicted in the following figure: 

 

Figure 26: PSNR-Lights(Noisy) 

Finally, in the case of the 2048 × 2048 image resolution, the original image which depicts 
stones in a woody background, is shown below: 
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Image 56: Original Image-Stones(Noisy) 

Following the same pattern as above, its noisy counterpart is depicted below: 

 

Image 57: Noisy Image-Stones(Noisy) 

The reconstructed image as well as the estimated outlier noise “produced” by the EALM 
algorithm are depicted below: 

Original Image

Noisy Image
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Image 58: Reconstructed Image-Stones(Noisy)-EALM 

 

Image 59: Outliers-Stones(Noisy)-EALM 

Furthermore, the respective images “produced” by the IALM algorithm are shown below: 

Reconstructed Image-EALM

Outliers-EALM
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Image 60: Reconstructed Image-Stones(Noisy)-IALM 

 

Image 61: Outliers-Stones(Noisy)-IALM 

As for the ADM algorithm’s results, they are shown straightaway: 

Reconstructed Image-IALM

Outliers-IALM
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Image 62: Reconstructed Image-Stones(Noisy)-ADM 

 

Image 63: Outliers-Stones(Noisy)-ADM 

As far as the performance metrics for the highest-resolution case are concerned, the 
relative error for the low-rank component is depicted in the forthcoming figure: 

Reconstructed Image-ADM

Outliers-ADM
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Figure 27: RELR-Stones(Noisy) 

At the same time, the respective relative error for the sparse component is shown below: 

 

Figure 28: RES-Stones(Noisy) 

The rank of the low-rank component follows up: 
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Figure 29: Rank-Stones(Noisy) 

As for the cardinality of the sparse component, it is depicted in the following figure: 

 

Figure 30: Cardinality-Stones(Noisy) 

Finally, the PSNR metric is shown below: 
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Figure 31: PSNR-Stones(Noisy) 

The above results can again be summarized in a table similar to Table 5. In this case, 
this table is going to contain all those key elements allowing us to extract useful 
information concerning the stability of the employed algorithmic methods under entry-
wise noise added to each image pixel: 

Table 6: Comparison between different algorithmic schemes on the Image De-noising pursuit-

Noisy Scenario 

Image 
Resolution 

Algorithm ‖𝑨 − 𝑨𝟎‖𝑭
‖𝑨𝟎‖𝑭

 
‖𝑬 − 𝑬𝟎‖𝑭
‖𝑬𝟎‖𝑭

 
𝒓𝒂𝒏𝒌(𝑨) ‖𝑬‖𝟎 PSNR # SVDs # Iterations Time(s) 

𝟓𝟏𝟐 × 𝟓𝟏𝟐 EALM 

IALM 

ADM 

1.98 × 10−1 

1.68 × 10−1 

1.98 × 10−1 

2.82 × 10−1 

3.27 × 10−1 

2.81 × 10−1 

310 

286 

284 

161326 

203026 

146675 

24.036 

25.493 

24.036 

1202 

28 

74 

7 

28 

74 

109.44 

4.03 

8.08 

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 EALM 

IALM 

ADM 

4.78 × 10−1 

3.72 × 10−1 

4.78 × 10−1 

2.10 × 10−2 

2.48 × 10−2 

2.10 × 10−2 

600 

565 

571 

626535 

838184 

591403 

26.261 

28.451 

26.260 

1312 

27 

233 

7 

27 

233 

830.15 

32.77 

159.79 

𝟐𝟎𝟒𝟖 × 𝟐𝟎𝟒𝟖 EALM 

IALM 

ADM 

2.39 × 10−1 

1.85 × 10−1 

2.38 × 10−1 

2.48 × 10−1 

2.93 × 10−1 

2.48 × 10−1 

1196 

1136 

1138 

2489325 

3325088 

2362938 

25.317 

27.507 

25.318 

1190 

29 

150 

7 

29 

150 

7547.67 

281.24 

982.62 

If we look closer the results of the above table, there are many useful conclusions that 
arise. 

First of all, it is quite evident that compared to the noiseless scenario the reconstruction 
error for the low-rank component is higher. Of course, this is a quite reasonable result as 
the problem now is tougher than before due to the extra entry-wise Gaussian noise. 
Although, if we address problems which contain low-contrast images (mainly which these 
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algorithms tackle better), the relative error drops, a quite encouraging result for handling 
images of higher resolution. 

In what has to do with the level of “low-rankness” of the acquired solution, the IALM 
method seems turning the tide and achieving the best performance -surpassing the ADM 
method which was the leading one in the noiseless scenario in terms of this performance 
metric. The most interesting remark though concerning this metric is that as the resolution 
of the image increases so does the gap between the “low-rankness” level of the two 
aforementioned methods in contrast with the EALM one. As a result, for handling images 
of even higher resolution, it is reasonable to expect that the recovered solution obtained 
by the IALM and ADM methods is going to be of even lower rank than that by EALM, a 
“gain” which is going to be proportional to the increase of the image resolution. 

Concerning the sparsity level of the obtained sparse component, even if its utility is not 
as important as the above metric (as also mentioned earlier), the situation bears a strong 
resemblance to that of the noiseless case. In other words, the ADM method recovers 
once more the sparsest solution but this time is followed by EALM and afterwards IALM. 
The IALM method seems more prone to the addition of entry-wise noise to the image than 
the other two methods in terms of this quality metric, a difference which becomes quite 
clear as the resolution of the image increases. As a consequence, the more we augment 
the noise power, the more favorable is going to be the case for the ADM method. 

Furthermore, in perfect alignment with the above remark is another one concerning the 
distinctive ability of the images occurring from the processing via the above mentioned 
methods. More precisely, if we take a deeper look at them compared to the respective 
ones occurred in the noiseless scenario, it is quite obvious that the de-noising process 
has lower quality results. Of course such a result is quite logical, as our test images are 
contaminated with quite a lot amount of noise -which makes the de-noising process 
tougher. This difference is also depicted in terms of the PSNR metric (mentioned below), 
which is clearly lower than in the noiseless case. 

As far as the computational load is concerned, the number of SVDs required to obtain a 
specific solution reveals two main conceptual results: the first one is that clearly the IALM 
method is the less computational-thirsty one (with the respective number of SVDs staying 
almost constant as the dimension of the problem increases) -just as in the noiseless case, 
while the second one is that as we added extra entry-wise noise the performance of the 
ADM method ameliorated while that of the EALM one deteriorated. Such a result indicated 
that clearly the IALM method is the best one according to this performance metric even if 
we add further noise to our test image, but at the same time the ADM method is also a 
good alternative. 

In terms of the PSNR metric, the situation is quite clear. More precisely, the odds are 
clearly in favor of the IALM method, as the additional entry-wise noise leaded to its 
overtaking in this performance index. Getting started from a 1.5dBs gain against the other 
two methods for the lowest image resolution case, this gain of IALM seems widening and 
consolidating over 2.2dBs as we increase the resolution of the test image. Furthermore, 
the more noise we add to the image, the more this gap is widened. Such a thing can be 
proven either by observing the respective values of the metric at each different image 
resolution scenario or by observing the respective figures of the PSNR metric in which all 
the aforementioned gap is quite evident. As a final result we could consequently say that 
the IALM method seems being more stable to the addition of further noise to our image, 
concerning the PSNR metric. 

Moreover, another result occurring from the above experiments is that the number of 
required iterations for convergence stays pretty much the same for EALM and IALM 
methods, just as in the noiseless case. Although this is not the case with the ADM method, 
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its performance seems ameliorating as we added extra noise to the test image. Such a 
thing is a quite encouraging one, as even if its performance is still the worst one among 
the three employed methods it seems more stable to the addition of extra entry-wise 
noise. 

Last but not least, there are some interesting results occurring again from the 
computational time needed for each algorithm to solve a problem of specific image 
resolution. More precisely, the first conclusion is that clearly IALM once more outperforms 
the other two methods -a difference which becomes quite evident in the case of the 
highest image resolution where the time required by IALM to solve the problem is up to 
4.6 minutes while for ADM approaches 16 minutes and for EALM 2 hours.  

The most interesting results although occur if we take a deeper look to the time needed 
for each algorithm to transit from a lower-resolution image to a higher one as a relative 
ratio: we observe that the EALM method requires about 7.58 times the time needed to 

solve to 512 × 512 problem for coping with the 1024 × 1024 one, a situation which gets a 

bit worse for the 2048 × 2048 case in which the respective ratio augments up to 9.09 
times. At the same time, the regime for the ADM method is 19.77 times for the transition 

from 512 × 512 to 1024 × 1024 and 6.14 times for that from 1024 × 1024 to 2048 × 2048. 
On the contrary, IALM initially requires 8.13 its first computational time for the first 
transition, but as the dimension of the problem augments, this ratio is slightly augmented 
up to 8.5 times. As a result, we could say that as the image resolution increases both 3 
algorithms seem coping respectively well with that, but the rate of doing so is a bit higher 
for the ADM method. On the contrary, the IALM method seems achieving a constant rate 
of up to 8 times its previous required time, which may seem not having a decreasing rate, 
but still is the fastest one as well as the more stable one. 

Another interesting comment could be made about the relative speed of the fastest 
method (i.e. IALM) compared to the other 2 as we transit to higher-resolution images. In 

plain English, we observe that as for the 512 × 512 problem IALM is about 27.15 times 
faster than EALM and 2 times faster than ADM, this relative ratio changes as we double 

the resolution of the image to 1024 × 1024 to 25.33 times for EALM and 4.87 times for 
ADM. Further increase of the image resolution up to 2048 × 2048 does not change the 
situation significantly, as the relative time ratios are slightly modified to 26.83 times and 
3.49 times respectively. As a consequence, we could say that as we increase the 
dimensionality of the problem, the two slowest methods (i.e. ADM and EALM) seem 
ameliorating their current performance compared to the fastest one (i.e. IALM). Such an 
argument contributes to the fact of them coping better with the extra entry-wise noise in 
terms of time metric than the IALM method, but at the same time, one should not surpass 
the fact that the IALM method is still the fastest one and at the same time the one 
achieving the best performance regarding the (crucial in this kind of application) PSNR 
performance metric. 
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5. CONCLUSIONS 

The present thesis was focused on the theoretical as well as the algorithmic aspects of 
the RPCA problem. In the beginning, we presented the classical PCA technique for 
dimensionality reduction, mentioning those advantages that have made it so popular 
among scientists from different fields and with different backgrounds. Subsequently, the 
main disadvantage of it (i.e. its sensitivity to outliers) was clarified, triggering at the same 
time the question of whether the whole method could become robust vis-à-vis gross 
errors. Towards this direction, the whole theoretical aspects of the RPCA problem was 
stated, concerning basic theorems, constructional limits occurring from them, as well as 
applications of real life where the RPCA plays a key role. 

Furthermore, the main research part of this thesis was focused on algorithmic schemes 
which were developed exactly to tackle the RPCA problem. After each one of them was 
presented in details -according to the respective publications- several experimental tests 
among them took place in order to evaluate their performance under different 
experimental circumstances. Subsequently, a real-application case-study from the 
scientific field of image processing took place, in order to examine the performance of the 
three fastest algorithmic methods studied in this thesis in more realistic datasets. 

Based on widely used KPIs in this scientific field, which were presented in Chapter 4, we 
could highlight the following conclusions: 

 Concerning the relative error of reconstruction of the low-rank component, the ALM 
algorithm (both the EALM and the IALM versions) is the most accurate one, 
followed by the ADM, the DM, the SVT and finally by the APG algorithm. 

 As far as the relative error of reconstruction of the sparse component is concerned, 
the ALM algorithm (both the EALM and the IALM versions) is again the most 
accurate one, followed this time by the APG, the ADM, the DM and finally by the 
SVT algorithm. 

 Concerning the number of SVDs computed by each algorithmic scheme until 
convergence, the IALM version of the ALM algorithm does the less number of 
computations. It is followed by the EALM version of the ALM algorithm, the ADM, 
the APG, the DM and finally by the SVT algorithm. Obviously, the adoption of 
versions of algorithms which adopt partial SVDs (such as PAPG and IALM) rather 
than full ones could prove extremely useful concerning this KPI, especially as the 
dimension of the problem augments. 

 As far as the number of iterations required for convergence is concerned, the 
EALM version of the ALM algorithm is the leading one, followed by the IALM 
version of the ALM algorithm, the ADM, the APG, the DM and finally the SVT 
algorithm. This KPI is related with the aforementioned one, as the SVD 
computation is the most computational “thirsty” operation done by each algorithm. 

 Concerning the total computational time of each algorithm, once more the ALM 
algorithm proved to be the best one -independently of which one version was 
adopted- followed by the ADM, the APG, the DM and the SVT algorithm. Once 
more the number of the SVDs computed by each algorithm plays an important role 
also in this KPI, for the same reason as was the case with the number of iterations 
until convergence. 

Given the above conclusions, it may seem easy to conclude that the ALM algorithm is the 
best one among all the algorithmic schemes which were presented and tested in this 
thesis. Such a thing holds true for most of the experimental circumstances as well as the 
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KPIs chosen for the testing process. In general the ALM algorithm enriched with an ADM 
approach scales well for several optimization problems, and the RPCA problem could not 
be an exception to the rule. The combination of these two approaches with an adaptive 
update of the step-size parameters leads to significant results which deserve the attention 
of anyone involved in this field of research. 

Furthermore, it is deemed appropriate to mention the fact that the above comparison took 
place under the specific simulation conditions described in the final section of Chapter 4. 
The main idea was that all the involved parameters should be tuned in such a way that 
the upcoming comparison would be “as fair as possible”. For most of them, there were 
chosen the values proposed in the respective publications, but there were some cases in 
which this was not the case: in the DM algorithm we chose to do an exact line search 
(rather than an inexact one which was proposed in the respective publication) in order to 
determine the respective step-size parameter, while on the ADM algorithm we chose a 

different value than the proposed one for the relaxation parameter 𝛾. Both these 
“initiatives” were adopted in the “spirit of fairness” mentioned above, as well as for not 
throwing away key ideas of the algorithms presented in this thesis. 

Concerning the case-study of the image de-noising problem, we should mention the 
following results: 

 In what has to do with the relative error of reconstruction of the low-rank 
component, both the EALM, IALM and ADM methods achieve equally good 
performance either we add extra entry-wise noise to the image or not. 

 As far as the relative error of reconstruction of the sparse component is concerned, 
the situation is pretty much the same as above for the noiseless case, while if we 
add further noise to the image there are observed small differences in favor of the 
EALM and ADM methods. Although, this metric is of less importance than the 
above one, one should not surpass it without mentioning the occurring ranking of 
the methods employed. 

 Concerning the level of “low-rankness” of the de-noised images, the ADM method 
is the best choice in the noiseless case, while in the noisy one the IALM method 
scales better. Although the gap between them is not wide enough, this turnaround 
is indicative of the fact that the IALM method seems more stable than the ADM 
one if we add extra noise to our test image. 

 In what has to do with the cardinality metric, the ADM method seems achieving 
the best score -both in the noiseless scenario as well as in the noisy one. What 
should also be mentioned here is that the performance of the IALM method seems 
deteriorating if we add further noise to the image -leading to “more dense” 
estimations of the outlier noise. 

 In terms of the PSNR metric, which probably is the most crucial one due to the 
nature of the application studied, in the noiseless case all three algorithms seem 
achieving similar performance. Nevertheless, as we add further noise to the image, 
the IALM method clearly outperforms the other two methods -indicating that it is 
more stable in the presence of extra noise at each pixel of the image. 

 Concerning the number of SVDs computed by each algorithmic scheme until 
convergence, clearly the IALM method is the leading one both in the noiseless as 
well as in the noisy case. Nevertheless, we should underline here the fact that the 
ADM method seems scaling better with the addition of further noise in the image 
than the EALM one. 
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 As far as the number of iterations required for convergence is concerned, the 
EALM and IALM methods seem the best alternative -either we add further noise 
to the image or not. Although, it is worth-mentioning here the fact that even if the 
performance of the ADM method is the worst one according to this metric, it seems 
quite stable to the addition of extra entry-wise noise to the image. 

 Concerning the total computational time of each algorithm, clearly the IALM 
method is the most trust-worthy one in any case. Its relative performance over the 
other two employed method in this case-study seems constant in the noiseless 
case, whereas the addition of extra entry-wise noise seems on the one hand 
ameliorating the situation for the other two slowest methods although on the other 
hand this amelioration seems not enough to dethrone the IALM method from the 
leading position. 

Finally, we should not forget to refer to the fact that the specific application to which these 
algorithms are used plays an important role. In the case-study examined here, the 
selection of the algorithms to be tested was based mainly on their performance in terms 
of the computational time index computed in the first experiments of this thesis. Perhaps, 
in another application where some other KPIs play a more important role (i.e. the 
accuracy of the low-rank component), also other algorithms studied in this thesis could 
be an equally good alternative (i.e. the DM / SVT algorithms). As a result, our decision of 
which algorithm should be chosen for a specific application is in the end a matter of on 
the one hand the “nature” of the application and on the other hand of which KPI we desire 
each time to be the leading one. 
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ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ 

Ξενόγλωσσος όρος Ελληνικός Όρος 

Big Data Μεγάλα Δεδομένα 

Curse of Dimensionality Κατάρα της Διαστατικότητας 

Intrinsic Dimension Εγγενής Διάσταση 

Dimensionality Reduction Μείωση της Διάστασης 

Feature Selection Επιλογή Χαρακτηριστικών 

Feature Extraction Εξαγωγή Χαρακτηριστικών 

Principal Component Analysis Ανάλυση Κύριων Συνιστωσών 

Transformation Matrix Μητρώο Μετασχηματισμού 

Signal-to-Noise Ratio Λόγος Σήμα-προς-Θόρυβος 

Variance Διακύμανση / Διασπορά 

Cartesian Axis System Σύστημα Καρτεσιανών Συντεταγμένων 

Mean Μέση Τιμή 

Covariance Συνδιακύμανση / Συνδιασπορά 

Random Variables Τυχαίες Μεταβλητές 

Covariance Matrix Μητρώο Συνδιακύμανσης / Συνδιασποράς 

Correlation Matrix Μητρώο Συσχέτισης 

Eigenvectors Ιδιοδιανύσματα 

Eigenvalues Ιδιοτιμές 

Principal Axis Theorem Θεώρημα Κύριων Αξόνων 

Karhunen-Loève Transform Μετασχηματισμός Karhunen-Loève 

Stochastic Process Στοχαστική Διαδικασία 

Fourier Series Σειρά Fourier 

Gaussian Distribution Gaussian / Κανονική Κατανομή 

Redundancy Πλεονασμός 

Correlation Συσχέτιση 

Occam’s Razor Principle Αρχή του Ξυραφιού του Occam 

Free Parameters Ελεύθερες Παράμετροι 

Mean Square Error Μέσο Τετραγωνικό Σφάλμα 

Trace Ίχνος 

Linear Transform Invariant System Γραμμικό Χρονικά Αναλλοίωτο Σύστημα 

Kernel Principal Component Analysis Ανάλυση Κύριων Συνιστωσών με χρήση 
Συναρτήσεων Πυρήνα 

Independent Component Analysis Ανάλυση Ανεξάρτητων Συνιστωσών 

Eckart-Young-Mirsky Theorem Θεώρημα Eckart-Young-Mirsky 

Rank Τάξη / Βαθμός 

Singular Values Ιδιάζουσες Τιμές 

Singular Vectors Ιδιάζοντα Διανύσματα 

Singular Value Decomposition Ανάλυση Ιδιάζουσων Τιμών 

Outlier Ακραία Τιμή 

Robust Principal Component Analysis Εύρωστη Ανάλυση Κύριων Συνιστωσών 

Basis Vectors Διανύσματα Βάσης 

Column Space Χώρος Στηλών 

Row Space Χώρος Γραμμών 

Objective Function Αντικειμενική Συνάρτηση 

Netflix Prize Βραβείο Netflix 

Matrix Completion Συμπλήρωση Πινάκων 

Interior-Point Methods Μέθοδοι Εσωτερικού-Σημείου 



Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction 

M. Giannopoulos                                                                                 112 

Method of Conjugate Gradients Μέθοδος των Συζυγών Διευθύνσεων 

Condition Number Δείκτης Κατάστασης 

Singular Value Thresholding Algorithm Αλγόριθμος Κατωφλίωσης των 
Ιδιάζουσων Τιμών 

Step-Size Parameter Παράμετρος βήματος 

Compressed Sensing / Compressive 
Sampling 

Συμπιεστική Δειγματοληψία 

Karush-Kuhn-Tucker Conditions / First-
Order Optimality Conditions 

Συνθήκες Karush-Kuhn-Tucker / Συνθήκες 
Βελτιστοποίησης Πρώτης-Τάξης 

Relative Reconstruction Error Σχετικό Σφάλμα Ανακατασευής 

Iterative Thresholding Επαναληπτική Κατωφλίωση 

Gradient Ascend Algorithm Αλγόριθμος Ανάδυσης Κλίσης 

Dual Problem Δυϊκό Πρόβλημα 

Hilbert Space Χώρος Hilbert 

Gradient Κλίση / Βαθμίδα / Διανυσματική 
Παράγωγος 

Sub-Gradient Υπο-κλίση / Υπο-βαθμίδα / Υπο-
Διανυσματική Παράγωγος 

Cost Function Συνάρτηση Κόστους 

Dual Method Δυϊκή Μέθοδος 

Primal Problem Αρχικό Πρόβλημα 

Steepest Ascend Algorithm Αλγόριθμος Απότομης Ανάδυσης 

Normal Cone Κανονικός Κώνος 

Alternating Projection Scheme Σχήμα Εναλλασσόμενων Προβολών 

Power Method Μέθοδος των Δυνάμεων 

Principal Singular Spaces Κύριοι Ιδιάζοντες Χώροι 

Armijo’s Rule Κανόνας του Armijo 

Augmented Lagrange Multiplier Method Προσαυξημένη Μέθοδος των 
Πολλαπλασιαστών Lagrange 

Penalty Methods Μέθοδοι Ποινών 

Lagrange Multiplier Πολλαπλασιαστής Lagrange 

Method of Lagrange Multipliers Μέθοδος των Πολλαπλασιαστών 
Lagrange 

Lagrangian Function Συνάρτηση Lagrange / Λαγκρανζιανή 
Συνάρτηση 

Method of Multipliers Μέθοδος των Πολλαπλασιαστών 

Augmented Lagrangian Function Προσαυξημένη Συνάρτηση Lagrange / 
Προσαυξημένη Λαγκρανζιανή Συνάρτηση 

Trace Inner Product Εσωτερικό Γινόμενου Ίχνους 

Exact Augmented Lagrange Multiplier 
Method 

Ακριβής Προσαυξημένη Μέθοδος των 
Πολλαπλασιαστών Lagrange 

Inexact Augmented Lagrange Multiplier 
Method 

Μη-Ακριβής Προσαυξημένη Μέθοδος των 
Πολλαπλασιαστών Lagrange 

Alternating Direction Method Μέθοδος των Εναλλασσόμενων 
Διευθύνσεων 

Alternating Direction Method of Multipliers Μέθοδος των Εναλλασσόμενων 
Διευθύνσεων των Πολλαπλασιαστών 

Gauss-Seidel Method Μέθοδος Gauss-Seidel 

Dual Variable Δυϊκή Μεταβλητή 

Jacobi Method Μέθοδος Jacobi 

Euclidean Projection Ευκλίδεια Προβολή 
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Key Performance Indicators Βασικοί Δείκτες Απόδοσης 

Independent and Identically Distributed Ανεξάρτητες και Όμοια Κατανεμημένες 

Image De-Noising Από-θορυβοποίηση Εικόνας 

Central Limit Theorem Κεντρικό Οριακό Θεώρημα 

Peak-Signal-to-Noise-Ratio Μέγιστος Λόγος Σήματος προς Θόρυβο 

Absolute Value Απόλυτη Τιμή 

Norm Νόρμα 

Triangle Inequality Τριγωνική Ανισότητα 

Sum-Absolute-Value Norm / Taxicab 
Norm / Manhattan Norm 

Αθροιστική-κατ’ Απόλυτη Τιμή Νόρμα / 
Manhattan Νόρμα 

Euclidean Norm Ευκλείδια Νόρμα 

Infinity Norm / Chebyshev Norm Άπειρη Νόρμα / Chebyshev Νόρμα 

Hamming Distance Απόσταση Hamming 

Unit Ball Μοναδιαία Σφαίρα 

Euclidean Space Ευκλείδειος Χώρος 

Matrix Norm Νόρμα Μητρώου 

Operator Norm Τελεστική Νόρμα 

Rayleigh Quotient Πηλίκο Rayleigh 

Spectral Norm Φασματική Νόρμα 

Max-Column-Sum Norm Μέγιστη-κατά Στήλες-Αθροιστική Νόρμα 

Max-Row-Sum Norm Μέγιστη-κατά Γραμμές-Αθροιστική Νόρμα 

Frobenius Norm / Hilbert-Schmidt Norm Frobenius Νόρμα / Hilbert-Schmid Νόρμα 

Frobenius Inner Product Frobenius Εσωτερικό Γινόμενο 

Inner Product Εσωτερικό Γινόμενο 

Sum-Absolute-Value Norm Αθροιστική-κατ’ Απόλυτη Τιμή Νόρμα 

Maximum-Absolute-Value Norm Μέγιστη-κατ’ Απόλυτη Τιμή Νόρμα 

Dual Norm Δυϊκή Νόρμα 

Nuclear Norm Πυρηνική Νόρμα 

Schatten 1-Norm Schatten 1-Νόρμα 

Ky Fan r-norm Ky Fan r-Νόρμα 

Hölder's Inequality Ανισότητα του Hölder 

Linear Programming Γραμμικός Προγραμματισμός 

Non-Linear Programming Μη-Γραμμικός Προγραμματισμός 

Sparsity Αραιότητα 

Sparse Αραιός 

Underdetermined System Αόριστο Σύστημα 

Convex Relaxation Κυρτή Χαλάρωση 

Convex Hull / Convex Envelope Κυρτή Θήκη / Κυρτό Περίβλημα 

Nullspace Μηδενοχώρος 

Mutual Coherence Αμοιβαία Συνοχή 

Welch Bound Όριο Welch 

Grassmanian Frames Grassmanian Πλαίσια 

Restricted Isometry Property Ιδιότητα της Περιορισμένης Ισομετρίας 
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ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΩΝΥΜΙΑ 

ID Intrinsic Dimension 

PCA Principal Component Analysis 

SNR Signal-to-Noise Ratio 

KLT Karhunen-Loève Transform 

MSE Mean Square Error 

LTI Linear Transform Invariant 

KPCA Kernel Principal Component Analysis 

ICA Independent Component Analysis 

SVD Singular Value Decomposition 

RPCA Robust Principal Component Analysis 

PCP Principal Component Pursuit 

MC Matrix Completion 

SDP Semi-Definite Programming 

SVT Singular Value Thresholding 

CS Compressed Sensing / Compressive Sampling 

KKT Karush-Kuhn-Tucker 

IT Iterative Thresholding 

APG Accelerated Proximal Gradient 

PG Proximal Gradient 

DM Dual Method 

AP Alternating Projection 

PM Power Method 

ALM Augmented Lagrange Multiplier 

EALM Exact Augmented Lagrange Multiplier 

IALM Inexact Augmented Lagrange Multiplier 

ADM Alternating Direction Method 

ADMM Alternating Direction Method of Multipliers 

KPI Key Performance Indicators 

I.I.D. / i.i.d. Independent and Identically Distributed 

PAPG Partial Accelerated Proximal Gradient 

PSNR Peak-Signal-to-Noise-Ratio 

LP Linear Programming 

NLP Non-Linear Programming 
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RIP Restricted Isometry Property 
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APPENDIX Ι: MEASURE THEORY AND FUNCTIONAL ANALYSIS 

In this Appendix we give a brief review of some basic concepts from measure theory as 
well as from functional analysis. The treatment is by no means complete, and is meant 
mostly to set out our notation. 
Vector Norms 
Norms give a rough measure of the magnitude of the entries in vectors and matrices. 
They generalize the notion of Absolute Value for real numbers. In general, a function 

𝑓: 𝑅𝑛 → 𝑅 is called a Norm if it respects the following four requirements: 

1. 𝑓(𝒙) ≥ 0, for all 𝒙 ∈ 𝑅𝑛 (𝑓 is non-negative) 
2. 𝑓(𝒙) = 0 ↔ 𝒙 = 𝟎 (𝑓 is definite) 
3. 𝑓(𝑐𝒙) = |𝑐|𝑓(𝒙), for all 𝒙 ∈ 𝑅𝑛 and 𝑐 ∈ 𝑅 (𝑓 is positively homogenous) 

4. 𝑓(𝒙 + 𝒚) ≤ 𝑓(𝒙) + 𝑓(𝒚), for all 𝒙, 𝒚 ∈ 𝑅𝑛 (𝑓 satisfies the Triangle Inequality) 

The most widely used notation for norm functions is 𝑓(𝑥) = ‖𝒙‖, in order to indicate that 
in reality they form a generalization of the absolute value on 𝑅. 
Of course there are many different kinds of norms, according to what we desire to 
compute. In order to have a general symbolism for all of them, it is commonly used the 
notation ‖𝒙‖𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 where the subscript indicates exactly to which norm we refer to. 

𝑳𝒑 (Holder) Vector Norms 

The most widely used vector norms are the well-known 𝑙𝑝-norms (with 𝑝 ≥ 1), which are 

defined as follows: 

Definition A.1.1: For a given vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈ 𝑅𝑛, its 𝑙𝑝-norm is defined as: 

‖𝒙‖𝑝 ≡ (∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝 = (|𝑥1|
𝑝 + |𝑥2|

𝑝 +⋯+ |𝑥𝑛|
𝑝)

1

𝑝 (A.1.1) 

The simplest 𝑙𝑝-norm is the 𝑙1-norm, which is given by equation (A.1.1) for 𝑝 = 1: 

‖𝒙‖1 ≡ ∑ |𝑥𝑖|
𝑛
𝑖=1 = |𝑥1| + |𝑥2| + ⋯+ |𝑥𝑛| (A.1.2) 

, which is also known as the Sum-Absolute-Value Norm or the Taxicab Norm or the 
Manhattan Norm. 

Perhaps the most widely used 𝑙𝑝-norm is the 𝑙2-norm, which is given by equation (A.1.1) 

for 𝑝 = 2: 

‖𝒙‖2 ≡ (∑ |𝑥𝑖|
2𝑛

𝑖=1 )
1

2 = (|𝑥1|
2 + |𝑥2|

2 +⋯+ |𝑥𝑛|
2)

1

2 = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛2 (A.1.3) 

, which of course is the well-known Euclidean Norm. 

Another norm which is used in practice is the 𝑙∞-norm, which is derived by the definition 
of the 𝑙𝑝-norm if we let 𝑝 → ∞: 

‖𝒙‖∞ ≡ lim
𝑝→∞

‖𝒙‖𝑝 = lim
𝑝→∞

(|𝑥𝑖𝑚𝑎𝑥|
𝑝
∑ (

|𝑥𝑖|

|𝑥𝑖𝑚𝑎𝑥|
)
𝑝

𝑛
𝑖=1 )

1

𝑝

= |𝑥𝑖𝑚𝑎𝑥| = max
1≤𝑖≤𝑛

{|𝑥𝑖|} (A.1.4) 

, which is also known as the Infinity Norm or the Chebyshev Norm. 
The four requirements for a function to be a norm guarantee that in fact it is also a convex 
function. This is a very important property, due to the fact that the minimization of a convex 
function leads to a unique solution (i.e. a global optimum), as it is known from optimization 
theory. As a result, the choice of norm-based functions as objective functions in 
optimization problems seems quite reasonable. 
Last but not least, a widely used norm in many application fields (such as signal 
processing and statistics) is the 𝑙0-norm, which is derived by the definition of the 𝑙𝑝-norm 

if we let 𝑝 → 0: 

‖𝒙‖0 ≡ lim
𝑝→0

‖𝒙‖𝑝
𝑝 = lim

𝑝→0
∑ |𝑥𝑖|

𝑝𝑛
𝑖=1 = #{𝑖: 𝑥𝑖 ≠ 0} (A.1.5) 

, and which represents the number of the non-zero coordinates of the vector 𝒙, or 
otherwise the Hamming Distance of 𝒙 from zero. It should be mentioned here that in 

reality the 𝑙0-norm is not a true norm, because it does not fulfil the third requirement for 
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being one as: ‖𝑎𝒙‖0 ≠ |𝑎|‖𝒙‖0, ∀𝑎 ≠ 1. However, it has come to be considered as a norm, 
with a slight abuse of the strict sense of the definition. 
Unit Ball and Geometrical Interpretation of 𝒍𝒑-Norms 

Definition A.1.2: The set of all vectors with norm less than or equal to one: 

𝑈𝐵 = {𝒙 ∈ 𝑅𝑛: ‖𝒙‖ ≤ 1} (A.1.6) 
is called the Unit Ball of the norm ‖∙‖. This set is very important for the geometrical 
interpretation of the norm functions, because it exhibits the following properties: 

1. 𝑈𝐵 is symmetric about the origin 

2. 𝑈𝐵 is convex 
3. 𝑈𝐵 is closed, bounded, and has nonempty interior 

The concept of unit ball is different in different norms. Its’ geometrical depiction is based 
on the isovalue curves on the Euclidean Space that correspond to the respective norm. 

More precisely, these isovalue curves for the 𝑙0, 𝑙1, 𝑙2 and 𝑙∞-norms are depicted in the 
figure below: 

 

Figure 32: Unit ball for different values of p 

As it is clear from Figure 32, the unit ball in 𝑅2 is a: 

 Single point at the origin of the coordinate axes (0,0), for the 𝑙0-norm 

 Rhombus, for the 𝑙1-norm 

 Circle, for the 𝑙2-norm 

 Square, for the 𝑙∞-norm 
Generally, for any 𝑙𝑝-norm, it is a superellipse (with congruent axes). The fact that the 

isovalue curve of the 𝑙0-norm consists of only one point is a direct consequence of its 
discrete nature, as well as that it is not a norm in the strict sense. 
Matrix Norms 
As well as vector norms, there exists also matrix norms. In most cases, they are defined 
in terms of the respective vector norms. Their meaning is to have a measure of the size 
of a matrix, as happens with vectors and vector norms respectively. 
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Just as in the definition of vector norms, a function ‖𝑨‖: 𝑅𝑚×𝑛 → 𝑅 is called a Matrix Norm 
if it satisfies the following five requirements: 

1. ‖𝑨‖ ≥ 0, for all 𝑨 ∈ 𝑅𝑚×𝑛 (‖𝑨‖ is non-negative) 
2. ‖𝑨‖ = 0 ↔ 𝑨 = 𝟎 (‖𝑨‖ is definite) 
3. ‖𝑐𝑨‖ = |𝑐|‖𝑨‖, for all 𝑨 ∈ 𝑅𝑚×𝑛 and 𝑐 ∈ 𝑅 ((‖𝑨‖ is positively homogenous) 

4. ‖𝑨 + 𝑩‖ ≤ ‖𝑨‖ + ‖𝑩‖, for all 𝑨,𝑩 ∈ 𝑅𝑚×𝑛 (‖𝑨‖ satisfies the triangle inequality) 

5. ‖𝑨𝒙‖ ≤ ‖𝑨‖‖𝒙‖ and ‖𝑨𝑩‖ ≤ ‖𝑨‖‖𝑩‖, for all 𝑨,𝑩 ∈ 𝑅𝑚×𝑛 and 𝒙 ∈ 𝑅𝑛 
In contrast with vector norms, matrix norms must additionally satisfy the fifth above 
requirement, a consequence of the fact that matrices are more than just vectors as they 
multiply. That specific requirement demands that the size (growth) of this multiplication 
must stay under control. 
Operator Norms 

Definition A.1.3: Suppose there is available a matrix 𝑨 ∈ 𝑅𝑚×𝑛 and a norm ‖∙‖𝑎 on 𝑅𝑚 
as well as one ‖∙‖𝑏 on 𝑅𝑛. Then, the Operator Norm of matrix 𝑨, which is induced by the 

norms ‖∙‖𝑎 and ‖∙‖𝑏, is defined as: 

‖𝑨‖𝑎,𝑏 = 𝑠𝑢𝑝{‖𝑨𝒙‖𝑎: ‖𝒙‖𝑏 ≤ 1} = 𝑠𝑢𝑝 {
‖𝑨𝒙‖𝑎

‖𝒙‖𝑏
: 𝒙 ≠ 𝟎} (A.1.7) 

Furthermore, it can be proved (via the use of the famous Rayleigh Quotient) that when 
‖∙‖𝑎 and ‖∙‖𝑏 are both Euclidean norms, the operator norm of the matrix 𝑨 is its maximum 
singular value, and is defined as: 

‖𝑨‖2 = 𝜎𝑚𝑎𝑥(𝑨) = (𝜆𝑚𝑎𝑥(𝑨
𝑇𝑨))

1

2 = √𝜆𝑚𝑎𝑥(𝑨𝑇𝑨) (A.1.8) 

, which is also known as the 𝑙2-norm or the Spectral Norm. If the matrix 𝑨 is a square 

symmetric matrix then: ‖𝑨‖2 = |𝜆𝑚𝑎𝑥(𝑨)|. 
The matrix norm which corresponds to the 𝑙1-norm on 𝑅𝑚 and 𝑅𝑛 is defined as: 

‖𝑨‖1 = max
1≤𝑗≤𝑛

{∑ |𝑎𝑖𝑗|
𝑚
𝑖=1 } (A.1.9) 

, which is also known as the Max-Column-Sum Norm. 

Finally, the matrix norm which corresponds to the 𝑙∞-norm on 𝑅𝑚 and 𝑅𝑛 is defined as: 

‖𝑨‖∞ = max
1≤𝑖≤𝑛

{∑ |𝑎𝑖𝑗|
𝑛
𝑗=1 } (A.1.10) 

, which is also known as the Max-Row-Sum Norm. 
From a computational point of view, we should not forget to mention that the computation 

of ‖𝑨‖2 is generally more demanding than those of ‖𝑨‖1 and ‖𝑨‖∞. 
“Elementwise” matrix norms 

These matrix norms treat a 𝑚× 𝑛 matrix 𝑨 as a (huge) vector of size 𝑚 × 𝑛, and 
afterwards use one of the familiar vector norms for the respective definition. 
For example, using the 𝑙𝑝-norm for vectors, we get the following definition for the 

“elementwise” matrix norms: 

‖𝑨‖𝑝 = ‖𝑣𝑒𝑐(𝑨)‖𝑝 = (∑ ∑ |𝑎𝑖𝑗|
𝑝𝑛

𝑗=1
𝑚
𝑖=1 )

1

𝑝 = (|𝑎11|
𝑝 + |𝑎12|

𝑝 +⋯+ |𝑎𝑚𝑛|
𝑝)

1

𝑝 (A.1.11) 

An “elementwise” matrix norm which is commonly used is the Frobenius Norm of a matrix 

𝑨 ∈ 𝑅𝑚×𝑛, which is defined as: 

‖𝑨‖𝐹 = (𝑡𝑟(𝑨
𝑇𝑨))

1

2 = (∑ ∑ 𝑿𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 )

1

2 = √∑ ∑ 𝑿𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1  (A.1.12) 

, which is also called the Hilbert-Schmidt Norm -though the latter term is often reserved 
for operators on Hilbert spaces. Its name comes from the well-known Frobenius Inner 
Product on the space of all matrices, which is the component-wise Inner Product of two 
matrices as though they were vectors. In reality, the Frobenius norm of a matrix is the 
Euclidean norm of the vector obtained by listing the coefficients of the matrix. At this point 
we should emphasize the fact that the Frobenius norm of a matrix does not coincide with 

its 𝑙2-norm defined above. 
Two equally well-known “elementwise” matrix norms are the Sum-Absolute-Value Norm, 

which arises from equation (A.1.11) for 𝑝 = 1 and is defined as: 
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‖𝑨‖𝑠𝑎𝑣 = ∑ ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1

𝑚
𝑖=1  (A.1.13) 

, and the Maximum-Absolute-Value Norm, which arises from equation (A.1.11) for 𝑝 = ∞ 
and is defined as: 

‖𝑨‖𝑚𝑎𝑣 = max
1≤𝑖≤𝑚,1≤𝑗≤𝑛

{|𝑎𝑖𝑗|} (A.1.14) 

Dual Norm 
Definition A.1.4: Let ‖∙‖ be a norm on 𝑅𝑛. The associated Dual Norm, denoted ‖∗‖𝑑, is 
defined as: 

‖𝒚‖𝑑 = 𝑠𝑢𝑝{‖𝒚
𝑇𝒙‖: ‖𝒙‖ ≤ 1} = 𝑠𝑢𝑝 {

‖𝒚𝑇𝒙‖

‖𝒙‖
: 𝒙 ≠ 𝟎} (A.1.15) 

As expected, the dual norm of the dual norm is the original norm: 
‖𝒙‖𝑑𝑑 = ‖𝒙‖ (A.1.16) 

, for all 𝒙. 
For all known 𝑙𝑝-norms there exists a respective dual norm 𝑙𝑞, where the subscripts satisfy 

the equation: 
1

𝑝
+

1

𝑞
= 1 (A.1.17) 

Taken this into mind, it can be easily proved that: 

 The dual norm of the 𝑙1-norm is the 𝑙∞-norm 

 The dual norm of the 𝑙∞-norm is the 𝑙1-norm 

 The dual norm of the Euclidean norm is the Euclidean norm 
A more interesting example though is that of the dual norm of the spectral or 𝑙2-norm, as 
we refer to an operator norm. Then, applying the definition of the dual norm, we have: 

‖𝑨‖2𝑑 = ‖𝑨‖∗ = 𝑠𝑢𝑝{‖𝑨𝑇𝒙‖: ‖𝒙‖2 ≤ 1} = 𝑠𝑢𝑝 {
‖𝑨𝑇𝒙‖

‖𝒙‖2
: 𝒙 ≠ 𝟎} = 𝑡𝑟(𝑨𝑇𝑨)

1

2 = √𝑡𝑟(𝑨𝑇𝑨) =

𝜎1(𝑨) + 𝜎2(𝑨) + ⋯+ 𝜎𝑟(𝑨) (A.1.18) 
, where 𝑟 = 𝑟𝑎𝑛𝑘(𝑨). This norm is known as the Nuclear Norm, though it has nothing to 
do with nuclear physics. It is also known by several other names such as the Schatten 1-

norm (the Schatten 𝑝-norms arise when applying the 𝑙𝑝-norm to the vector of singular 

values of a matrix) or the Ky Fan 𝑟-norm (in general, the Ky Fan 𝑟-norm of a given matrix 

𝑨 is the sum of its 𝑟 largest singular values). 
Equivalence of norms 
We conclude this first Appendix with a significant result from functional analysis, which in 
reality states that all norms (vector and matrix) are equivalent. 

More precisely, supposed that ‖∙‖𝑎 and ‖∙‖𝑏 are norms on 𝑅𝑛, then there exist positive 
real numbers 𝑐 > 0, 𝑑 > 0 such that: 

𝑐‖𝒙‖𝑎 ≤ ‖𝒙‖𝑏 ≤ 𝑑‖𝒙‖𝑎 (A.1.19) 
, for all vectors 𝒙 ∈ 𝑅𝑛. 

A more general form of this result states that on 𝐶𝑛, if 0 < 𝑎 < 𝑏, then: 

‖𝒙‖𝑏 ≤ ‖𝒙‖𝑎 ≤ 𝑛
(
1

𝑎
−
1

𝑏
)‖𝒙‖𝑏 (A.1.20) 

, for all 𝒙 ∈ 𝑅𝑛. 
In particular, it can be easily proven that the following equations are true: 

 
1

√𝑛
‖𝒙‖1 ≤ ‖𝒙‖2 ≤ ‖𝒙‖1 

 
1

𝑛
‖𝒙‖1 ≤ ‖𝒙‖∞ ≤ ‖𝒙‖1 

 ‖𝒙‖2 ≤ ‖𝒙‖1 ≤ √𝑛‖𝒙‖2 

 
1

√𝑛
‖𝒙‖2 ≤ ‖𝒙‖∞ ≤ ‖𝒙‖2 

 ‖𝒙‖∞ ≤ ‖𝒙‖1 ≤ 𝑛‖𝒙‖∞ 

 ‖𝒙‖∞ ≤ ‖𝒙‖2 ≤ √𝑛‖𝒙‖∞ 
The important thing about equivalent norms is that they define the same notions of 
continuity and convergence and for many purposes do not need to be distinguished. To 
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be more precise, the uniform structure defined by equivalent norms on the vector space 
is uniformly isomorphic. In fact, if the vector space is a finite-dimensional real or complex 
one, all norms are equivalent. On the other hand, in the case of infinite-dimensional vector 
spaces, this result need not hold. 
As for vector norms, there holds a similar equivalence result for matrix norms as well. 

More precisely, supposed that ‖∙‖𝑎 and ‖∙‖𝑏 are norms on 𝑅𝑛, then there exist positive 

real numbers 𝑐 > 0, 𝑑 > 0 such that: 
𝑐‖𝑨‖𝑎 ≤ ‖𝑨‖𝑏 ≤ 𝑑‖𝑨‖𝑎 (A.1.21) 

, for all matrices 𝑨 ∈ 𝑅𝑚×𝑛. In this occasion, the equivalence of norms means that they 
induce the same topology on 𝑅𝑚×𝑛. Of course, just as before, such a result holds true 

because the vector space 𝑅𝑚×𝑛 has a finite dimension equal to 𝑚 × 𝑛. 
In particular, just as above, it can be easily proven that the following equations concerning 
matrix norms’ equivalence are true: 

 ‖𝑨‖2 ≤ ‖𝑨‖𝐹 ≤ √𝑟‖𝑨‖2 

 ‖𝑨‖𝐹 ≤ ‖𝑨‖∗ ≤ √𝑟‖𝑨‖𝐹 

 ‖𝑨‖𝑚𝑎𝑥 ≤ ‖𝑨‖2 ≤ √𝑚𝑛‖𝑨‖𝑚𝑎𝑥 

 
1

√𝑛
‖𝑨‖∞ ≤ ‖𝑨‖2 ≤ √𝑚‖𝑨‖∞ 

 
1

√𝑚
‖𝑨‖1 ≤ ‖𝑨‖2 ≤ √𝑛‖𝑨‖1 

, where 𝑨 ∈ 𝑅𝑚×𝑛, 𝑟 = 𝑟𝑎𝑛𝑘(𝑨) and ‖𝑨‖𝑝 refers to the matrix norm induced by the 

respective 𝑙𝑝-vector norm (operator norm). 

Finally, a useful inequality between matrix norms which is commonly used in practice is 
the following one: 

‖𝑨‖2 ≤ √𝑨1𝑨∞ (A.1.22) 

, which is nothing more than a special case of the famous Hölder's Inequality. 
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APPENDIX IΙ: CONVEX OPTIMIZATION AND CONVEX ANALYSIS 

In this Appendix we give a brief review of some basic concepts from convex optimization 
and convex analysis. As in the previous Appendix, the treatment is also here by no means 
complete, and again is meant mostly to set out our notation. 
Mathematical Optimization Problems 
As it is known from optimization theory, a mathematical optimization problem has the 
following general form: 

min
𝑠.𝑡.𝑓𝑖(𝒙)≤𝑏𝑖

𝑓(𝒙) , 𝑖 = 1,2, … ,𝑚 (A.2.1) 

, where: 

 𝒙 is the optimization variable 

 𝑓 is the objective function 

 𝑓𝑖 are the constraint functions 

 𝑏𝑖 are constants, which represent the limits for the constraints (of course there can 
be equality constraints instead of inequality ones) 

The goal of such a problem is to find the optimal vector 𝒙∗ that fits the constraints and 
has the minimum objective value, among all possible vectors fitting the constraints. 
Depending on the “form” of the objective function, as well as that of the constraint ones, 
there arise different classes of optimization programs. For example, if the objective 
function and the constraint functions are linear functions, then the respective optimization 
problem is called a Linear Programming (LP) program. On the other hand, if they are not 
linear, the arising optimization problem is called a Non-Linear Programming (NLP) 
program. 
A very interesting class of optimization problems are the so called convex optimization 
problems, in which class the objective and constraint functions are convex functions. The 
reason why this class of problems is so interesting is that the resulting solution is 
guaranteed to be not only a local optimum solution to the problem, but in fact the global 
one. 
A solution method for a particular optimization problem lies in finding an algorithmic 
scheme that computes the desired solution. Of course, for every different class of 
optimization problems, there is available a variety of algorithms which are able to solve 
them. Each one of them has its special features and characteristics, making it the 
“appropriate choice” for particular problems. It is exactly this adjective, i.e. “particular”, 
that discriminates an effective algorithm for an optimization problem from a non-effective 
one. Reading between the lines, that means that there exist certain factors which affect 
the behavior of an algorithm aiming to solve an optimization problem, some of whom are 
the particular form of the objective and constraint functions, the number of the variables 
and the constraints, and the possible special structures among them-such as Sparsity (a 
problem is Sparse if each constraint function depends on only a small number of the 
variables). 
Norm-Based Objective Functions 
As mentioned before, a widely occurring class of optimization problems are the convex 
optimization problems, due to the fact that the convexity of the objective function 
guarantees the uniqueness of the solution. As it became quite clear in the Appendix I, the 
𝑙𝑝-norms (𝑝 ≥ 1) are convex functions, so they form a potential choice as objective 

functions. The goal of this Appendix is to demonstrate the utility of such a choice in 
problems at which some extra information is known about the structure of the solution, 
concerning more specifically sparsity and low rankness. In order to achieve that, we 
formulate the desired goal as the following optimization program: 
Suppose we are given a system of linear equations: 

𝑨𝒙 = 𝒃 (A.2.2) 
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, with 𝒃 ∈ 𝑅𝑚, 𝒙 ∈ 𝑅𝑛, 𝑨 ∈ 𝑅𝑚×𝑛, 𝑟𝑎𝑛𝑘(𝑨) = 𝑚 and 𝑚 < 𝑛. Of course, such a system has 
in general infinitely many solutions, due to the fact that it has fewer equations than 
unknowns, and is widely known as an Underdetermined System. For a fixed set of 

measurements 𝒃, and a specific transformation matrix 𝑨, the set of possible solutions 
obviously depends directly on 𝒙 and its structure. Therefore, if we desire to narrow the 
choice to one well-defined solution, additional criteria concerning 𝒙 are needed. 
A very interesting idea is to impose the sparsity constraint on the solution 𝒙 (i.e. we seek 

for a vector 𝒙 with few non-zero entries), as we could be able to solve the resulting 
optimization problem using techniques from convex analysis. Taken that into mind, there 
exist three possible norm-based objective functions to be minimized in order to achieve 
our goal of obtaining the sparsest solution of our underdetermined system, which are 
examined in details below: 

1. 𝑙2-norm 
2. 𝑙0-norm 
3. 𝑙1-norm 

𝒍𝟐-Norm Minimization 
In this case, the goal is to choose the optimal vector 𝒙∗ that is consistent with the 
underdetermined system (A.2.2) in such a way that it has the minimum 𝑙2-norm. In other 
words, we have to solve the following optimization problem: 

min
𝑠.𝑡.𝒂𝑛

𝑇𝒙=𝒃𝑛

‖𝒙‖2
2, 𝑛 = 1,2, …𝑚 (A.2.3) 

Of course, this problem has a unique solution, which is given by the following formula: 

𝒙∗ = 𝑨
𝑇(𝑨𝑨𝑇)−1𝒃 (A.2.4) 

, a fact that may seem quite encouraging as the solution is given in closed form. But there 
is one drawback in the whole process, which unfortunately is directly connected with our 
primal goal of recovering a solution as sparse as possible. This can become more evident 

if we consider the geometrical interpretation of the 𝑙2-norm minimization process, which 
is depicted in the following image: 

 

Image 64: 𝒍𝟐-norm minimization 

What is obvious from Image 64 is that by minimizing the 𝑙2-norm we cannot expect to 
recover the sparsest solution. This is explained in the following sense: let’s suppose that 

the sparse solution we seek to recover is the point 𝑿 in Image 64 (it is sparse because its 
coordinate on the 𝑥-axis is zero whereas that on the 𝑦-axis is not), of which we make one 
measurement. As it is known from middle-school mathematics, the (feasible) set of all 𝑥 
that share the same measurement value is a line, and more precisely the black one in 

Image 64. The task of finding the point on this line with the minimum 𝑙2-norm is 
accomplished by expanding the radius of the spherical and completely isotropic 

Euclidean 𝑙2 ball until it intersects the line. By definition, the first point at which this 
happens is the one with minimum 𝑙2-norm, and constitutes the solution we are seeking 

for. As it is clear from Image 16, this point (i.e. the point �̂�) does not have to be sparse as 
we desired. Although in low dimensions the obtained solution via the 𝑙2-norm minimization 
looks close to the desired one, the occurring situation in high dimensions is a disaster. As 

a result, even if the minimization of the 𝑙2-norm is a well-posed and tractable optimization 
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program, it gives no guarantee that the recovered solution will be a sparse one -as we 
desire. 

𝒍𝟎-Norm Minimization 

In this case, the goal is to choose the optimal vector 𝒙∗ that is consistent with the 
underdetermined system (A.2.2) in such a way that it has the minimum 𝑙0-norm. In other 
words, we have to solve the following optimization problem: 

min
𝑠.𝑡.𝒂𝑛

𝑇𝒙=𝒃𝑛

‖𝒙‖0 , 𝑛 = 1,2, … ,𝑚 (A.2.5) 

, which seems to be exactly what we should be doing in order to obtain the sparsest 

possible solution -given the meaning of the 𝑙0-norm. Although the optimization problem in 
(A.2.5) looks like that of in (A.2.3), in reality they bear significant differences. The solution 

to the 𝑙2-norm minimization problem is always unique, and can be computed via the usage 
of innovative numerical linear algebra methods and tools. On the other hand, the solution 

to the 𝑙0-norm minimization problem is a more complex task. This comes from the fact 
that the 𝑙0-norm is not a true norm function in the strict sense of the definition, as 
mentioned in Appendix I, but in reality is a discrete and discontinuous function. The bad 
news that arise from this fact are that all the available tools from optimization theory of 
convex functions are automatically useless, making the questions of uniqueness and 
verification of the solutions seem at least daunting. 

To make things even worse, it has been proved in [47] that a direct solution to the 𝑙0-norm 
minimization problem under linear equality constraints is infeasible, and the problem is 
generally considered as a NP-hard one. This comes out essentially from the fact that in 
reality it is a classical combinatorial problem of exhaustive search, in which we should 
systematically enumerate all possible candidates for the solution and check whether each 
candidate satisfies the problem's statement. While an exhaustive search is simple to 
implement, and will always find a solution if it exists, its cost is proportional to the number 
of candidate solutions -which in many practical problems tends to grow very quickly as 
the size of the problem increases. In our case, the complexity of adopting such a 

technique is proved to be exponential in 𝑛, making it prohibitive for real-world problems. 

𝒍𝟏-Norm Minimization 
From so far analysis, the gap between the 𝑙0-norm minimization problem and the 𝑙2-norm 
minimization problem may seem unbridgeable. This gap comes to fill in another 𝑙𝑝-norm, 

and more precisely the 𝑙1-norm. Now, the optimization problem has the following form: 
min

𝑠.𝑡.𝒂𝑛
𝑇𝒙=𝒃𝑛

‖𝒙‖1 , 𝑛 = 1,2, … ,𝑚 (A.2.6) 

As in the 𝑙2-norm case, the geometrical interpretation of the minimization process is 
illustrated in the following image: 

 

Image 65: 𝒍𝟏-norm minimization 

Following the same reasoning as before, the radius of the anisotropic and “pointy” along 

the axes 𝑙1 ball is expanded until it intersects the black line representing the (feasible) set 
of solutions. The difference now is that the flatness of the line (in general, of the plane) of 

solutions combined with the diamond-shaped 𝑙1 ball results in picking a solution point 
which is extremely sparse, as we desired. As a result, the minimization of the 𝑙1-norm 
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seems a good proxy for the minimization of the 𝑙0-norm, which identically we would desire, 

compared to that of the 𝑙2-norm. Despite the seemingly negligible differences among their 
definitions, and even the fact that they are both convex functions and as a result the task 

of finding the optimal solution becomes computationally tractable, the 𝑙1-norm is the only 
one among the 𝑙𝑝-norms (𝑝 ≥ 1) which respects small values and results in recovering 

sparse solutions. From an algorithmic point of view, the 𝑙1-norm minimization task can be 
recast as a LP program, and consequently be solved by anyone of the related methods. 
Last but not least, we should highlight the fact that sparse signals (which we seek for) 

have small 𝑙1-norms relative to their energy -as stated in [54]- a fact that overbids the 

preference of minimizing the 𝑙1-norm instead of the 𝑙2 one. 

Convex Relaxation: A Priceless Treasure 

As mentioned before, minimizing the 𝑙1-norm would be a good idea, in the context of 
recovering sparse solutions to underdetermined system of equations, instead of trying to 

cope with the combinatorically hard task of minimizing the 𝑙0-norm. But such a choice is 
not as simple as it seems, given the fact that the 𝑙1-norm is a totally different “creature” 
from the 𝑙0-norm -which is not even a norm in the strict sense as mentioned in Appendix 
I. The transition from a non-convex objective function to a convex one should be very 
cautious, even if it is widely known that convex optimization techniques play an important 
role in problems that are not convex. In fact, convex optimization is the basis for several 
heuristics for solving non-convex problems, and this is justified by the fact that convexity 
implies that every local minimum / maximum is also a global one -which is not guaranteed 
when considering non-convex problems. 
When facing situations in which our optimization problem (convex or not) is a NP-hard 

one (as here with the minimization of the 𝑙0-norm), a common practice is to relax it. What 
practically relaxation techniques do is approximating difficult problems of constrained 
optimization by simpler ones, which are solvable in polynomial time. As a result, a solution 
to the relaxed problem is an approximate solution to the original problem, and therefore 
provides useful information. Given the fact that norm-based objective functions are 
convex functions as mentioned in the Appendix I, the relative relaxation is called Convex 
Relaxation, and is defined as below: 

Definition A.2.1: For a non-convex function 𝑓: 𝑆 → 𝑅, where 𝑆 is a non-empty convex 
subset of 𝑅𝑛, a convex function 𝑢: 𝑆 → 𝑅 will be called a convex relaxation of 𝑓(𝒙) if it 
obeys the following inequality: 

𝑢(𝒙) ≤ 𝑓(𝒙), ∀𝒙 ∈ 𝑆 (A.2.7) 
The above inequality condition is depicted in the Euclidean plane below, so as its’ 
geometrical interpretation to become sufficiently clarified: 
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Image 66: Geometrical interpretation of convex relaxation 

It is worth mentioning that among all convex relaxations 𝑢(𝒙) of a non-convex function 

𝑓(𝒙), the one for which holds true the following inequality: 

𝑢(𝒙) ≤ 𝑓𝑆(𝒙), ∀𝒙 ∈ 𝑆 (A.2.8) 

is called the Convex Hull / Convex Envelope of 𝑓(𝒙) over 𝑆. In other words, the convex 
hull is the tightest possible convex relaxation of a nonconvex function. 

Taking into mind the above definitions, it would seem apparent to consider the 𝑙1-norm 
minimization task as the convex relaxation of the 𝑙0-norm minimization one. In fact, such 
a conclusion holds true, as it is shown below. But before this, it is wise to reveal those 
conditions under which both tasks recover a unique solution to the underdetermined 
system of equations (A.2.2). 

Uniqueness of the Solution recovered by 𝒍𝟏-Norm Minimization 

Concerning the uniqueness of the solution of the 𝑙1-norm minimization task, the following 
Lemma is stated without proof (the diligent reader is referred to the relative reference 
below): 

Lemma A.2.1: An element 𝒙 ∈ 𝑋, where 𝑋 is the set of the solutions of the 
underdetermined system of equations (A.2.2), has minimal 𝑙1-norm if and only if it obeys 
the following inequality condition: 

|∑ 𝑠𝑔𝑛(𝑥𝑖)𝑧𝑖𝑖:𝑥𝑖≠0
| ≤ ∑ |𝑧𝑖|𝑖:𝑥𝑖=0

, ∀𝒛 ∈ 𝑛𝑢𝑙𝑙(𝑋) (A.2.9) 

, where 𝑛𝑢𝑙𝑙(𝑋) is the Nullspace of 𝑋. Furthermore, the solution is unique if and only if the 

above inequality condition is a strict one ∀𝒛 ≠ 𝟎, as stated in [51]. 

From linear algebra basics it is known that for the dimension of the nullspace of 𝑨 holds 
the following equality: 

𝑑𝑖𝑚(𝑛𝑢𝑙𝑙(𝑨)) = 𝑛 − 𝑟𝑎𝑛𝑘(𝑨) = 𝑛 −𝑚 (A.2.10) 

Taken that in mind, and combining the above Lemma as well as the fact that a vector 𝒙 
is called 𝑆-sparse if it has at most 𝑆 non-zero coordinates, it becomes clear that if there 
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exists a unique solution to the underdetermined system of equations (A.2.2) then it will 

be an 𝑆-sparse vector with 𝑆 ≤ 𝑚. This is a very important result, considering that it 
defines a strict upper bound for the number of the non-zero elements of the unique 
solution of (A.2.2), as it states that for sure the recovered solution will be a sparse one. 

A final remark that should be made concerning the minimization of the 𝑙1-norm is that 
there are specific conditions that must hold true (as it became clear from the above 
Lemma) for the solution to be unique, which is clearly not the case for the respective 

minimization of the 𝑙2-norm. This is a direct result of the “nature” of the 𝑙1-norm which is 
not a strict convex function, unlike the 𝑙2-norm which is one-and whose minimization will 
always lead to a unique solution. 

Uniqueness of the Solution recovered by 𝒍𝟎-Norm Minimization 

Following the same reasoning as before, the sufficient conditions that must hold true in 

order for the solution arising via the 𝑙0-norm minimization task to be unique, are presented 
in form of two important Lemmas (again, the relevant proofs are omitted as they are 
beyond the scope of this thesis, however the adventurous reader is given the required 
references in order to confirm their validity). 

Both of them contain a key matrix quantity, called Spark, which was defined in [24] as the 

smallest number of linearly dependent columns of a full rank matrix 𝑨 ∈ 𝑅𝑚×𝑛, 𝑚 > 𝑛. By 
definition, the spark of a square 𝑚 ×𝑚 matrix 𝑨 is m+1, and any number of columns of 
cardinality beyond the spark of a matrix are necessarily linearly independent. 

A very interesting corollary arising from the definition of the spark of a matrix is stated in 
the above Lemma: 

Lemma A.2.2: If 𝑛𝑢𝑙𝑙(𝑨) is the nullspace of matrix 𝑨, then the following inequality holds 
true: 

‖𝒙‖0 ≥ 𝑠𝑝𝑎𝑟𝑘(𝑨), ∀𝒙 ∈ 𝑛𝑢𝑙𝑙(𝑨), 𝒙 ≠ 𝟎 (A.2.11) 

, where 𝑠𝑝𝑎𝑟𝑘(𝑨) is the spark of the full-rank matrix 𝑨 ∈ 𝑅𝑚×𝑛, 𝑚 > 𝑛. 

Although the definition of the spark of a matrix bears a strong resemblance to that of its 
rank, in reality not only they differ conceptually, but in the same time the necessary effort 
needed for their computation deviates significantly. In fact, the spark of a matrix is NP-

hard to compute, as a combinatorial search over all possible subsets of columns from 𝑨 
is needed, as stated in [24]. 

At first sight, the definition of the spark combined with the difficulty of its computation 
would seem redundant. On the contrary, this is clearly not the case, as it plays a crucial 
role in our attempt to discover those conditions needed to hold true for the uniqueness of 

the solution recovered via the 𝑙0-norm minimization task, as it becomes crystal clear from 
the following Lemma ([24], [16]): 

Lemma A.2.3: If the underdetermined system of equations (A.2.2) has a solution that 
satisfies the following inequality condition: 

‖𝒙‖0 <
𝑠𝑝𝑎𝑟𝑘(𝑨)

2
 (A.2.12) 

, then this solution is unique, and at the same time the sparsest one. 

Although the result of the above Lemma is elementary, it is also a very interesting one. If 
we take a deeper look at inequality (A.2.12) we could easily understand that in reality it 
constitutes a sufficient condition for checking the optimality of a solution to an NP-hard 
problem of combinatorial flavor. And more precisely, this check concerns the global 
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optimality of the solution, and not the local one as it is usually the case when dealing with 
combinatorial optimization problems. 

As it became clear from Lemma A.2.3, it is of crucial importance the value of the spark to 
be as large as possible, so that the sufficiency condition (A.2.12) holds true for a 
respective range as wide as possible. Fortunately, the range of sparks’ values is known 
by definition, as also stated in [11], to be: 

1 ≤ 𝑠𝑝𝑎𝑟𝑘(𝑨) ≤ 𝑚 + 1 (A.2.13) 

, and the construction of random matrices 𝑨 with i.i.d. entries has been proven to lead to 
𝑠𝑝𝑎𝑟𝑘(𝑨) = 𝑚 + 1, as we would ideally desire. 

Clearly, the result of Lemma A.2.3 provides us the sufficient condition we were seeking 
for, but bearing into mind that the computation of the spark is a tough combinatorial 
problem would be a discouraging factor for sure. This fundamental obstacle is overcomed 
by the usage of another significant quantity of a matrix instead of its spark, which is much 
easier to compute, and is called Mutual Coherence. More formally, the mutual coherence 
is defined as follows: 

Definition A.2.2: For a given matrix 𝑨 ∈ 𝑅𝑚×𝑛, its’ mutual coherence is given by the 
following equation ([44], [24], [17], [11]): 

𝜇(𝑨) ≡ max
1≤𝑖<𝑗≤𝑛

|𝒂𝑖
𝑇𝒂𝑗|

‖𝒂𝑖‖‖𝒂𝑗‖
 (A.2.14) 

, where 𝒂𝑖, 𝑖 = 1,2, … , 𝑛 denotes the 𝑖 − 𝑡ℎ column of matrix 𝑨. 

As it is obvious from its definition, mutual coherence measures the “similarity” between 
the columns of a matrix, computing for that reason the maximum value of the absolute 
inner product between them, renormalized properly. For general full-rank matrices with 
more columns than rows (𝑛 > 𝑚) mutual coherence is proven to satisfy the famous Welch 
Bound ([67]): 

√
𝑛−𝑚

𝑚(𝑛−1)
≤ 𝜇(𝑨) ≤ 1 (A.2.15) 

, with the equality being achieved for the so-called Grassmanian Frames matrices, as 
proven in [57]. Obviously, from the above inequality condition, square orthogonal matrices 

will always have zero mutual coherence. Another important conclusion is that if 𝑚 ≪ 𝑛 

then the lower bound of (A.2.15) approaches 
1

√𝑚
. 

Taking a deeper look at the definition of mutual coherence, we would surely desire its 

value to be as small as possible, for a matrix 𝑨 satisfying the underdetermined system of 
equations (A.2.2). This demand is in perfect alignment with the “service” that matrix 𝑨 has 
to carry out: the linear combination of its columns with the respective coordinates of the 

unknown vector 𝒙 must “absorb” as much information about 𝒙 as possible, as the result 

of this process will derive the measurement vector 𝒃. Therefore, it is of utmost importance 
the columns of matrix 𝑨 to be as “less-similar” as possible, in order the recovery process 
of 𝒙 to be as less toilsome as possible. Of course, the ideal scenario for matrix 𝑨 is to 
have pairwise orthogonal columns (i.e. to be orthogonal), a regime however not very rare 
in practice ([17], [38]). 

Having introduced the notion of mutual coherence as well as exposed its intuitive 
meaning, we should not forget the purpose of its usage. In reality, mutual coherence was 
mentioned in order to overcome the difficulty of computing the spark of a matrix, in our 

effort to check the uniqueness of the solution recovered via the 𝑙0-norm minimization task. 



Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction 

M. Giannopoulos                                                                                 128 

It is time then to state the connection between them, in the form of a Lemma whose proof 
is available in [24]: 

Lemma A.2.4: For any matrix 𝑨 ∈ 𝑅𝑚×𝑛 the following inequality holds: 

𝑠𝑝𝑎𝑟𝑘(𝑨) ≥ 1 +
1

𝜇(𝑨)
 (A.2.16) 

The above inequality is quite important as it provides us a lower bound for the spark, 
which in turn can be computed much easier than the spark. We should not forget to 
mention here that it is clear from (A.2.16) that the spark of a matrix is inversely 
proportional to its mutual coherence, a fact that was in reality expected by their respective 

definitions: a small value of 𝜇(𝑨) indicates that its columns are not depending on each 
other, which of course leads to high values for the 𝑠𝑝𝑎𝑟𝑘(𝑨) -as we desire. 

It is now time to tie Lemmas A.2.3 and A.2.4 together, in order to conclude to a sufficient 
condition whose validity can be easily checked. The following important Theorem which 
achieves that purpose, was firstly stated in [24]: 

Theorem A.2.1: If a system of linear equations 𝑨𝒙 = 𝒃 has a solution 𝒙 that satisfies the 
following condition: 

‖𝒙‖0 <
1+

1

𝜇(𝜜)

2
 (Α.2.17) 

, then this solution is necessarily the sparsest one possible. 

Obviously, the result of the above Theorem is of significant importance. As the mutual 
coherence of a matrix is not a difficult task to compute, we have an easily checkable 
sufficient condition in our hands. Of course, we should not forget that as the mutual 
coherence of a matrix constitutes a “relaxation” of its spark, so do their respective results 
concerning the sparsity level of the recovered solution. In fact, if we look closer to this 
tacit assumption, it can be easily proven that as the mutual coherence can never be lower 

than 
1

√𝑚
 (as stated below inequality condition (A.2.15)), then its corresponding bound from 

(A.2.17) will be 
√𝑚

2
. At the same time, an expected high value of the spark -proportional 

to m (identically, equal to m+1)- dictates that its corresponding bound from (A.2.12) will 

be 
𝑚

2
. This expansion of the sparsity level of the recovered solution is a direct 

consequence of the fact that in reality Lemma A.2.3 is far sharper than Theorem A.2.1, 
but at the same time far more difficult to check -a worthwhile and bearable tradeoff in 
practical applications though. 

Equivalence of 𝒍𝟎-𝒍𝟏-Norm Minimization Tasks 

In the so far analysis that took place, those sufficient conditions that have to be fulfilled in 

order for the solutions recovered by the minimization of the 𝑙0-norm as well as that of the 

𝑙1-norm to be unique became clear. As everyone could have suspected from the above 
analysis, the 𝑙1-norm constitutes a convenient proxy for the 𝑙0-norm, whose minimization 
is difficult combinatorial optimization task as we have seen so far. The crucial part though 
before adopting this powerful heuristic is to ensure that its minimization will lead to the 
same result as that of its discrete and discontinuous counterpart. Of course, in general 
such a conclusion can never always hold true (if it would, we would have solved practically 
the famous P=NP? problem!), but under suitable sufficient conditions it can. It is now time 
to state those important sufficient conditions: 

Theorem A.2.2: For the system of linear equations 𝑨𝒙 = 𝒃, where 𝐴 ∈ 𝑅𝑚×𝑛 (𝑚 < 𝑛) is a 
full-rank matrix, if a solution 𝒙 exists, and at the same time it obeys the following inequality 
condition: 
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‖𝒙‖0 <
1+

1

𝜇(𝜜)

2
 (Α.2.17) 

, then this solution is the unique one of both the 𝑙1-norm and 𝑙0-norm minimization tasks. 

The above very important Theorem A.2.2 was stated and proved independently in [24] 
and [32], while an elegant proof can also be found in [11]. Its validity is based on the 
notion of mutual coherence, defining a specific bound for the sparsity level of the 
recovered solution. Of course, this is not the only approach available concerning the 

equivalence of the 𝑙0-𝑙1-norm minimization tasks. There exists a whole relative literature, 
containing numerous approaches seeking to prove this statement, each one adopting its 
own assumptions and producing its own results. Indicatively, the interested reader is 
referred to [20], [17], [64], [26], while a more informative list containing a summarized 
description of each method can be found in [11]. 

Obviously, a detailed presentation of each one of the methods available in the literature 

for achieving equivalence of the 𝑙0-𝑙1-norm minimization tasks is beyond the scope of this 
Appendix -and this thesis in general. On the other hand, we should not forget to highlight 
the astonishing result of [17], in which is adopted a key notion that dominates the research 
directions on the CS framework -the so-called Restricted Isometry Property (RIP). More 
specifically, as it was pioneeringly stated in [17], we have the following definition: 

Definition A.2.3: For each integer 𝑆 = 1,2, …, the isometry constant 𝛿𝑆 of a matrix 𝑨 is 
defined as the smallest number such that the following inequality condition: 

(1 − 𝛿𝑆)‖𝒙‖2
2 ≤ ‖𝑨𝒙‖2

2 ≤ (1 + 𝛿𝑆)‖𝒙‖2
2 (A.2.18) 

holds true for all 𝑆-sparse vectors 𝒙. Furthermore, a matrix 𝑨 is called to obey the RIP of 
order 𝑆 if 𝛿𝑆 is not close to one. 

What intuitively the RIP condition (A.2.18) says is that if it holds true, then the 𝑙2-norm of 
𝒙 is “preserved” even after the operation of matrix 𝑨 onto 𝒙. An also interesting 

interpretation of the RIP condition (A.2.18) is that each submatrix 𝑨𝑆 formed by combining 
at most 𝑆 columns of matrix 𝑨 has its nonzero singular values bounded below by (1 − 𝛿𝑆) 
and above by (1 + 𝛿𝑆) (a related work in [3] is also very informative), or in other words its 
columns are nearly orthogonal (they cannot be exactly orthogonal, since 𝑚 < 𝑛). 

In order for the importance of the above “preservation of the 𝑙2-norm” to become clear, 

let’s consider two 𝑆-sparse vectors 𝒙1, 𝒙2 and apply the RIP condition (A.2.18) to their 

difference-which in general is a 2𝑆-sparse vector: 

(1 − 𝛿2𝑆)‖𝒙1 − 𝒙2‖2
2 ≤ ‖𝑨(𝒙1 − 𝒙2)‖2

2 ≤ (1 + 𝛿2𝑆)‖𝒙1 − 𝒙2‖2
2 (A.2.19) 

Clearly, (A.2.19) implies that all pairwise distances between 𝑆-sparse signals are well 
preserved in the measurement space, and therefore when 𝛿2𝑆 is “sufficiently small” the 
odds of recovering 𝑆-sparse vectors / signals with matrix 𝑨 are surely not against us. 

The significance of exhibiting the RIP is justified in the following Theorem ([17], [21], [18], 
[16], [14]): 

Theorem A.2.3: Assume that 𝛿2𝑆 < √2 − 1. Then, the solution 𝒙∗ to the 𝑙1-norm 
minimization task (A.2.6) satisfies the following two inequality conditions: 

{
‖𝒙∗ − 𝒙‖1 ≤ 𝐶0‖𝒙 − 𝒙𝑆‖1

‖𝒙∗ − 𝒙‖2 ≤
𝐶0‖𝒙−𝒙𝑆‖1

√𝑆

 (A.2.20) 

, for some constant 𝐶0, where 𝒙𝑆 is the best sparse approximation of 𝒙 if we knew exactly 
the locations and amplitudes of the 𝑆-largest entries of 𝒙 (practically, 𝒙𝑆 results from 𝒙 if 
we set to zero all but its 𝑆-largest coordinates). 



Robust Principal Component Analysis: Theoretical Aspects and Algorithmic Comparative Evaluation for Dimensionality Reduction 

M. Giannopoulos                                                                                 130 

In particular, if 𝒙 is 𝑆-sparse, the recovery is exact. On the other hand, if 𝒙 is not 𝑆-sparse, 
then the accuracy of the recovered vector / signal depends, in some magic way, directly 

on the 𝑆-largest entries of 𝒙. Furthermore, there is no piece of randomness in Theorem 
A.2.3, since everything is completely deterministic: if matrix 𝑨 obeys the RIP condition 

with 𝛿2𝑆 < √2 − 1, then Theorem A.2.3 certifies that the recovered solution of the 𝑙1-norm 

minimization task (A.2.6) would be either an exactly 𝑆-sparse vector or, in the worst case 
scenario, an approximately 𝑆-sparse one-whose 𝑆-largest values are definitely the 
“dominant” ones. 

Advocating to the groundbreaking significance of the RIP condition, it would be a pity if 

we wouldn’t mention that in the case of seeking an 𝑆-sparse solution (which is clearly our 

goal from the beginning), what Theorem A.2.3 claims is that in fact the 𝑙1-norm 

minimization task and the 𝑙0 one are formally equivalent. This assertion arises from two 
important interpretations of the isometry constant 𝛿2𝑆([14]): 

1. If 𝛿2𝑆 < 1, then 𝑙0-norm minimization task has a unique 𝑆-sparse solution -as it is 
shown in [16]. 

2. If 𝛿2𝑆 < √2 − 1, then the solution to the 𝑙1-norm minimization task is the same as 
that of the 𝑙0-norm minimization task. Of course, such a thing does not comes from 
the sky, and is makes completely sense: if we desire our convex relaxation to be 
exact, obviously we have also to decrease accordingly the range of values for the 

isometry constant 𝛿2𝑆. 

Concluding this section, it is deemed necessary to dwell on the fact that obviously we 

desire to deal with matrices for which the RIP condition holds true with as high value of 𝑆 
as possible. Unfortunately, there are no known large matrices with bounded restricted 
isometry constants, and -as with the computation of the spark of a matrix- computing 
these constants is a strongly NP-hard task ([61]). However, many random matrices have 
been shown to remain bounded. More precisely, it has been shown that with exponentially 
high probability, random Gaussian, Bernoulli, and partial Fourier matrices satisfy the RIP 
condition with number of measurements nearly linear in the sparsity level ([71]). The 
current smallest upper bounds for any large rectangular matrices are for those of 
Gaussian matrices according to [2]. 

Rank Minimization 

Inspired by the reasoning developed above, a question of similar nature which is 
commonly addressed in practice (and in a sense, seems more generic) is whether it is 

possible to recover instead of an unknown vector 𝒙 which is assumed to be sparse, an 
unknown matrix 𝑫 which is assumed to be low-rank -given the fact that only a fraction of 
its entries are observed. In other words, as common sense approach dictates, we aim at 
solving the following optimization problem: 

min
𝑠.𝑡.𝑿𝑖𝑗=𝑫𝑖𝑗,(𝑖,𝑗)∈𝛺

𝑟𝑎𝑛𝑘(𝑿) (A.2.21) 

, where 𝛺 is the set of observed entries of matrix 𝑫 ∈ 𝑅𝑚×𝑛, sampled uniformly at random, 

and 𝑿 is the decision variable. 

Although (A.2.21) may seem quite reasonable as an approach for tackling the rank 
minimization problem, in reality it is of quite limited practical use. The reason for that is 
on the one hand that is a problem of combinatorial nature -recasting it almost immediately 
as a NP-hard one- while on the other hand all known algorithmic schemes require time 

doubly exponential in the dimension of the matrix 𝑫 (both in theory and practice) in order 
to provide the desired solution ([22], [66]). 

𝒍∗-Norm Minimization 
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Just as the rank minimization task resembles in flavor with the 𝑙0-norm minimization one, 
so does the alternative used to overcome it: a handful proxy for the rank functional, which 
nevertheless can be efficiently optimized. With this guideline into mind, various heuristics 
have been developed. One of the most famous among them is the trace heuristic ([45]), 
which can be minimized in place of the rank functional when the matrix of interest is 
positive semidefinite. The main problem with this heuristic is that it is simply not applicable 
in situations where the desired matrix is non-symmetric or non-square, as in such cases 
the trace is not even defined. 

To overcome such difficulties, M. Fazel championed a more “universal” heuristic both in 
[29] and [28], which at the same time constitutes the convexly relaxed counterpart of the 
rank functional in (A.2.21): the nuclear norm. So replacing the rank with the nuclear norm 
in (A.2.21), the optimization task now takes the following form: 

min
𝑠.𝑡.𝑿𝑖𝑗=𝑫𝑖𝑗,(𝑖,𝑗)∈𝛺

‖𝑿‖∗ (A.2.22) 

As a result, the emerging optimization task in (A.2.22) is a convex optimization problem 
which can be solved efficiently via SDP -in contrast to its primal combinatorically hard 
counterpart. Furthermore, it is worth mentioning the fact that in the case where the matrix 

𝑿 is symmetric and positive semidefinite, its singular values coincide with its eigenvalues, 
and the computation of the nuclear norm of matrix 𝑿 reduces to the computation of its 
trace. Of course, such a transition (from the rank functional to the nuclear norm) should 
be cautious, as the two objective functions are of different “nature”: on the one hand, the 
rank function counts the number of the non-vanishing singular values of a matrix 
(interpreting it via its SVD), while on the other hand the nuclear norm sums their 
amplitude. Yet again, convexity plays the key role in this direction -as it becomes clearer 
below. 

Prior Art Applied Once More 

Bearing into mind the fact that the 𝑙1-norm minimization task constitutes the convex 
relaxation of the 𝑙0-norm minimization one, and more precisely that in fact it is the tightest 
one (convex hull / convex envelope), a similar analogy would also be convenient in our 
attempt to tackle the NP-hard rank minimization task. Fortunately, such a hope holds true, 
and the relative formality was given in [29] (as well as its proof) in the form of the following 
Theorem: 

Theorem A.2.4: The convex envelope of the function 𝑓(𝑿) = 𝑟𝑎𝑛𝑘(𝑿) on 𝐶 =
{𝑿 ∈ 𝑅𝑚×𝑛: ‖𝑿‖ ≤ 1} is 𝑢(𝑿) = ‖𝑿‖∗. 

The significance of the above Theorem is exactly that of the technique of convex 
relaxation: the provision of useful information concerning the solution of the original NP-
hard optimization problem, by finding that of the relaxed one. In other words, by solving 
the nuclear norm minimization task, we obtain helpful clues in our quest for the solution 

of the rank minimization task. In fact, as it is shown in [29], if the feasible set, 𝐶, is bounded 
by 𝑀, i.e. ‖𝑿‖ ≤ 𝑀 for all 𝑿 ∈ 𝐶, (provided we can find such a bound 𝑀), then for all 𝑿 ∈
𝐶 holds true the following inequality: 

‖𝑿‖∗

𝑀
≤ 𝑟𝑎𝑛𝑘(𝑿) (A.2.23) 

What practically (A.2.23) means is that the optimal solutions of the respective 
minimization tasks also obey a similar inequality equation: 

𝑜𝑠∗

𝑀
≤ 𝑜𝑠𝑟𝑎𝑛𝑘 (A.2.24) 

, where 𝑜𝑠∗ denotes the optimal solution of the nuclear norm minimization task and 𝑜𝑠𝑟𝑎𝑛𝑘 
denotes the optimal solution of the rank minimization task. 
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As it is obvious from (A.2.24), the optimal solution of the rank minimization task is 
bounded below from that of the nuclear norm minimization task. As a result, by finding 
the solution to the heuristic problem we surely obtain an approximate value of the solution 
of our original NP-hard combinatorial problem. 

Equivalence of Rank-𝒍∗-Norm Minimization Tasks 

As it became clear from the above analysis, the adoption of the nuclear norm heuristic for 

the rank minimization problem generalizes the results derived by the 𝑙1-norm minimization 
in CS literature, exploiting the apparently strong parallels among them. As a 
consequence, it is reasonable to expect a similar analogy concerning those sufficient 

conditions under which the rank minimization and 𝑙∗-norm minimization tasks are 
equivalent and provide us the optimum solution. In fact, this is indeed the case, as it was 
shown in [53]. The elegant results of this paper build on the concept of restricted 
isometries introduced in [17] by Candès and Tao, deriving the homonymous property 

(RIP) under which the 𝑙∗-norm minimization task can be guaranteed to produce the 
minimum rank solution. 

Generalizing the definition of the RIP from vectors to matrices, we have the following 
definition ([53]): 

Definition A.2.4: Let 𝑨: 𝑅𝑚×𝑛 → 𝑅𝑝 be a linear map. Without loss of generality, assume 

𝑚 ≤ 𝑛. For every integer 𝑟 with 1 ≤ 𝑟 ≤ 𝑚, define the 𝑟-restricted isometry constant to be 
the smallest number 𝛿𝑟(𝑨) such that: 

(1 − 𝛿𝑟(𝑨))‖𝑿‖𝐹 ≤ ‖𝑨(𝑿)‖ ≤ (1 + 𝛿𝑟(𝑨))‖𝑿‖𝐹 (A.2.25) 

holds for all matrices 𝑿 of rank at most 𝑟. 

The similarities between (A.2.19) and (A.2.25) are more than obvious, as it was expected: 

the 𝑙2-norm is replaced by the Frobenius norm, and the 𝑙0-norm by the rank functional. In 
a sense, we could say that (A.2.25) extends the concept of (A.2.19) in the diagonal case, 
as in this regime the Frobenius norm is equal to the Euclidean norm of the diagonal. 

Nevertheless, there are also some differences among the two definitions, which are not 
of the same importance. The first one concerns the fact that in (A.2.25) the norms involved 
are not squared as it is the case in (A.2.19), a choice although made by the authors of 
[53] just for simplification of the analysis following (A.2.25) and not for some exceptional 
(mathematical or not) advantage gained by adopting it. The second and most important 
difference however is that (A.2.25) cannot guarantee that all submatrices of the linear 

transform 𝑨 of a certain size to be well conditioned, in the sense that the set of matrices 
𝑿 obeying (A.2.25) is not a finite union of subspaces. 

Despite the aforementioned differences, and more precisely the second one which has a 
strong theoretical and conceptual flavor, the recovery results derived using (A.2.25) 
remain analogous to those using (A.2.19). As before, the significance of the RIP becomes 
perceivable via the derivation of theorems resulting from it ([53]): 

Theorem A.2.5: Suppose that 𝛿2𝑟 < 1 for some integer 𝑟 ≥ 1. Then 𝑿0 is the only matrix 

of rank at most 𝑟 satisfying 𝑨(𝑿) = 𝒃, where 𝑿0 is a matrix of rank 𝑟. 

The above Theorem is quite important due to the fact that it leads us to derive an 

analogous of the Theorem A.2.3 in order to identify those conditions under which 𝑿0 is 
the minimum rank solution (𝑿∗) of 𝑨(𝑿) = 𝒃 ([53]): 

Theorem A.2.6: Suppose that 𝑟 ≥ 1 is such that 𝛿5𝑟 <
1

10
. Then 𝑿∗ = 𝑿0. 

Technical details concerning the proofs of Theorems A.2.4 and A.2.5 are of course 
available in [53], but enlisting them here is out of the scope of this Appendix. An important 
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point although that has to be highlighted is the fact that the recovery condition on 𝛿5𝑟 is 

an absolute constant, which is independent both from the dimensions of the linear map 𝜜 
and from the rank of 𝑿0. Finally, concluding this section as well as the whole present 
Appendix, it would be a significant omission not to mention the fact that there are quite a 
lot linear transformations, arising from the sampling of widely used random matrices 
(Gaussian, Bernoulli), which exhibit the RIP property with overwhelming probability (as it 
is proven in details in [53]), making its’ influence of utmost theoretical as well as practical 
importance at the same time. 
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