
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

MASTER THESIS

Combining source code metadata and static analysis
results via a compiler plug-in

Anastasios I. Antoniadis

SUPERVISOR: Yannis Smaragdakis, Professor, University of Athens

ATHENS

OCTOBER 2016

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συνδυάζοντας μεταδεδομένα πηγαίου κώδικα και
αποτελέσματα στατικής ανάλυσης μέσω μιας επέκτασης

για το μεταγλωττιστή

Αναστάσιος Ι. Αντωνιάδης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Γιάννης Σμαραγδάκης, Καθηγητής, Πανεπιστήμιο
Αθηνών

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2016

MASTER THESIS

Combining source code metadata and static analysis results via a compiler plug-in

Anastasios I. Antoniadis

SUPERVISOR: Yannis Smaragdakis, Professor, University of Athens

EXAMINATION COMMITTEE:
Yannis Smaragdakis, Professor University of Athens
Alex Delis, Professor University of Athens

October 2016

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συνδυάζοντας μεταδεδομένα πηγαίου κώδικα και αποτελέσματα στατικής ανάλυσης
μέσω μιας επέκτασης για το μεταγλωττιστή

Αναστάσιος Ι. Αντωνιάδης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Γιάννης Σμαραγδάκης, Καθηγητής, Πανεπιστήμιο Αθηνών

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:
Γιάννης Σμαραγδάκης, Καθηγητής Πανεπιστήμιο Αθηνών

Αλέξης Δελής, Καθηγητής Πανεπιστήμιο Αθηνών

Οκτώβριος 2016

ABSTRACT

As static program analysis techniques keep evolving, leading to higher precision and im-
proved soundness, analysis results become all the more useful for consumption by code
comprehension tools. However, performing static analysis on a low-level IR (such as byte-
code) often leads to the loss of some source-code-level information. This thesis presents
a Java 8 compiler plugin that introduces a new phase to the compilation process in order to
generate metadata for classes, variables, fields, methods, method invocations, and heap
allocations. This metadata can then be used to associate low-level analysis results with
the source code of the program. The emphasis of the work is on leveraging the extensi-
ble architecture of the recent official Java compiler implementations. We show how each
facility of the Oracle Java compiler plugin infrastructure operates and how it is employed
in our system. As an application, we demonstrate how the enriched analysis results are
presented on a web-based source code viewer.

SUBJECT AREA: Program Analysis

KEYWORDS: Points-to analysis, Java compiler plug-ins, Code comprehension tools

ΠΕΡΙΛΗΨΗ

Καθώς οι τεχνικές στατικής ανάλυσης προγραμμάτων εξελίσσονται, οδηγώντας σε μεγαλύ-
τερη ακρίβεια και βελτιωμένη ορθότητα, τα αποτελέσματα των αναλύσεων γίνονται όλο
και περισσότερο χρήσιμα για κατανάλωση από εργαλεία κατανόησης κώδικα. Ωστόσο,
η εκτέλεση στατικής ανάλυσης σε ενδιάμεση γλώσσα οδηγεί σε απώλεια πληροφορίας
επιπέδου πηγαίου κώδικα. Αυτή η διπλωματική εργασία παρουσιάζει μια προσθήκη για
τον μεταγλωττιστή της Java 8 που εισάγει μία νέα φάση στη διαδικασία μεταγλώττισης
προκειμένου να παράξει μεταδεδομένα για κλάσεις, μεταβλητές, πεδία, μεθόδους, κλήσεις
μεθόδων, και δεσμεύσεις αντικειμένων στο σωρό. Αυτά τα μεταδεδομένα μπορούν να
συσχετίσουν τα χαμηλού επιπέδου αποτελέσματα της ανάλυσης με τον πηγαίο κώδικα του
προγραμμάτος. Η έμφαση αυτής της εργασίας δίνεται στην αξιοποίηση της επεκτάσιμης
αρχιτεκτονικής των πρόσφατων υλοποιήσεων του επίσημου μεταγλωττιστής της Java.
Παρουσιάζουμε πώς εκτελείται κάθε λειτουργία της υποδομής των προσθέτων του Oracle
Java μεταγλωττιστή και πώς χρησιμοποιείται το σύστημά μας. Ως εφαρμογή, παρουσιά-
ζουμε, πώς απεικονίζονται τα εμπλουτισμένα αποτελέσματα της ανάλυσης σε έναν διαδι-
κτυακό εργαλείο προβολής πηγαίου κώδικα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάλυση Προγραμμάτων

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: “Δείχνει-σε” ανάλυση, Επεκτάσεις του μεταγλωττιστή της Java, Εργαλεία
κατανόησης κώδικα

To sunshine, for always being there...

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Yannis Smaragdakis for providing his expertise and
guidance, which were valuable for the preparation and completion of this work and most
of all for his patience throughout the whole process. He has been very considerate during
our collaboration and his work ethic has been admirable.

I would also like to thank my parents for their support and faith in me, and for bearing
with me throughout all my struggles. Furthermore, I would like to thank my friends, Nikos,
Themis, Lena, Ilianna, Thomas, Nasia, Nicole, Dimitris, Dimis, Despina, Christos, Gian-
nos, Kostas, Irini to name a few, who also had to endure a lot while I was pursuing my
masters degree and stood by me.

Finally, I would like to thank Kostas Saidis for his contributions to this work and our ongoing
collaboration in order to improve this project and several others in our pipeline.

CONTENTS

1 INTRODUCTION 1

2 JAVA 8 COMPILER PLUG-INS 2
2.1 Java 8 Compiler Plug-Ins Introduction . 2

2.2 Java Compiler Plug-in Architecture . 2

3 DOOP 4
3.1 Fact Generation and Analysis Entity Ids . 4

4 DOOP-JCPLUGIN 7
4.1 Introduction - Java Compiler Compilation Phases 7

4.2 Introducing our own compilation phase . 7

4.3 Invoking our own compilation phase . 8

4.4 Output Data Model . 10

4.5 Classes . 15

4.6 Variables and Fields . 17

4.7 Methods . 18

4.8 Method Invocations . 20

4.9 Heap Allocations . 20

4.10 Caveats . 20

5 POST PROCESSING OF THE ANALYSIS 23

6 DISCUSSION AND APPLICATION 25

7 CONCLUSIONS AND FUTURE WORK 27

LIST OF FIGURES

2.1 The com.sun.tools.Plugin interface. 2

2.2 The com.sun.tools.JavacTask class. 3

2.3 The com.sun.tools.TaskListener interface. 3

3.1 A subset of the facts produced for the variables of a program. 5

3.2 A subset of the facts produced for the methods of a program. 5

3.3 A subset of the facts produced for the fields of a program. 5

4.1 The DoopJcPlugin class implementing the Plugin interface. 8

4.2 The DoopJcPluginTaskListener class implementing the TaskListener inter-
face. 9

4.3 The abstract class ItemImpl implementing Item and GroovyObject. 11

4.4 The Element class. 11

4.5 The Class class representing class declarations. 12

4.6 The Position class representing the source code position of a symbol. . . . 12

4.7 The Variable and Field classes representing class and field declarations. . 13

4.8 TheOccurrence class representing read and write occurrences of variables
and fields. 13

4.9 The Method class representing method declarations. 14

4.10 The MethodInvocation class representing method invocations. 14

4.11 The HeapAllocation class representing heap allocations. 14

4.13 The visitClassDef() method. 15

4.12 The Symbol abstract class. 16

4.14 The visitVarDef() method for variable and field declarations. 19

4.15 The transformation functions for variables, method invocations and heap
allocations. 21

5.1 The VarPointsTo class representing VarPointsTo objects. 23

5.2 The CallGraphEdge class representing CallGraphEdgeRelations. 24

5.3 The InstanceFieldPointsTo class representing InstanceFieldPointsTo rela-
tions. 24

6.1 A screenshot of the VarPointsTo relation presented on the source code . . 26

Combining source code metadata and static analysis results via a compiler plug-in

1. INTRODUCTION

As software size and complexity increase there is a growing need for more sophisticated
and complex code comprehension and reviewing tools. Static analysis can be very useful
for code comprehension as it provides information for all possible executions of a program.

This thesis presents doop-jcplugin, the prototype of a Java Compiler plug-in that combines
static source code information generated by processing the abstract syntax tree (AST)
and the symbol tables generated during the compilation phases of the Java compiler and
points-to analysis information produced by analyzing the bytecode of the program. The
aim of our plug-in is to preserve source code information and combine it with analysis
results in order to make them presentable at the source code level.

We emphasize on pointer-analysis in particular, which is a category of static program
analysis that evaluates where each variable of a program can ’point-to’ for each possible
execution of the code. The end product of the doop-jcplugin comes in the form of metadata
that can be used to enrich analysis relations, such as where a variable may point to,
which method may be called from a method invocation, and where a field of a particular
object may point to. We also demonstrate the prototype of a web-browser-based source
code viewer enhanced with the ability to present points-to and call-graph information by
querying the post-processed metadata of our plugin after an analysis is completed.

The rest of the thesis is organized as follows:

• In Chapter 2 we make an introduction to the Doop framework.

• In Chapter 3 we present the Java Compiler plug-in mechanism introduced in Java 8.

• In Chapter 4 we present our Java Compiler plug-in (doop-jcplugin), which extracts
metadata by visiting the AST of a program and combining information found in the
symbol tables produced by the compiler. We also present the data model of the
extracted metadata.

• In Chapter 5 we present the analysis post-processing that combines the doop-jcplugin
metadata with the analysis results and stores them in a database. We also provide
a very brief summary of some of the most significant relations of points-to analysis
in Datalog. In particular, we focus on analyses in the Doop [1] framework, whose
analysis results are the target for our plug-in metadata.

• In Chapter 6 we present our web-based source code viewer as an application that
consumes the enriched relations produced during the post-processing step, to demon-
strate the analysis results on source-code level.

• In Chapter 7 we present our conclusions and future goals regarding this project.

A. Antoniadis 1

Combining source code metadata and static analysis results via a compiler plug-in

2. JAVA 8 COMPILER PLUG-INS

2.1 Java 8 Compiler Plug-Ins Introduction

In this section we provide a brief introduction to the mechanics of the Java Compiler plug-
in infrastructure. Java 8 introduced a new mechanism that allows the programmer to
write plug-ins for the Java compiler (javac) [4]. A compiler plug-in enables the developer
to introduce new phases to the compiler without making changes to the Java Compiler
codebase, a process which would be very complex and time consuming. Instead, we can
encapsulate new behavior in a Java compiler plug-in and distribute it for other people to
use. For instance, Java Compiler plug-ins could be used to do the following:

• Add extra compile-time checks.

• Add code transformations.

• Perform customized analysis at the source code level.

2.2 Java Compiler Plug-in Architecture

A javac plug-in supports two methods, getName() and call(), which it inherits and imple-
ments from the com.sun.source.util.Plugin interface:

• The getName() method returns the name of the plug-in for identification purposes.

• The call() method is invoked by the Java Compiler with the current environment it is
processing. The call() method gives access to the compiler functionalities through
a JavacTask object which allows us to perform parsing, type checking, and com-
pilation. Moreover, the JavacTask object lets us add our own task listeners i.e.,
instances of TaskListener to various events generated during compilation. This is
done through the addTaskListener() method, which accepts a TaskListener object.

public interface Plugin {
public String getName();

public void call(JavacTask task, String[] pluginArgs);
}

Figure 2.1: The com.sun.tools.Plugin interface.

We also demonstrate some of the methods in the com.sun.source.util.JavacTask class.

A. Antoniadis 2

Combining source code metadata and static analysis results via a compiler plug-in

public abstract class JavacTask implements CompilationTask {
...
public abstract Iterable<? extends Element> analyze() throws

IOException;↪→

public abstract Iterable<? extends JavaFileObject> generate() throws
IOException;↪→

public abstract void addTaskListener(TaskListener taskListener);
...

}

Figure 2.2: The com.sun.tools.JavacTask class.

Each method of the JavacTask class represents a Java Compiler task (parse, enter, an-
alyze, generate). We will discuss the Java Compiler tasks in detail in the next chapter.
Finally, we present the methods in the TaskListener class.

public interface TaskListener {
public void started(TaskEvent e);
public void finished(TaskEvent e);

}

Figure 2.3: The com.sun.tools.TaskListener interface.

In order to create a JavaCompiler plug-in, we need to implement the com.sun.source.util.Plugin
interface, which provides the getName() and call() methods. The next step of the setup
requires the addition of a TaskListener to JavacTask. We need to implement the TaskLis-
tener interface, which provides the started(TaskEvent e) and finished(TaskEvent e)meth-
ods. Whenever a JavacTask starts or finishes we can check for the kind of the TaskEvent
instance triggered in order to identify the nature of the event and execute our own logic
whenever a specific event is triggered. For instance, we can implement a TaskListener
that runs our logic before or after a particular task of the Java Compiler is finished, in order
to have access to the static type information produced by Java and residing in the symbol
tables.

We will discuss Java Compiler Plug-Ins further in the next chapter where see we will the
implementation of an actual javac plug-in.

A. Antoniadis 3

Combining source code metadata and static analysis results via a compiler plug-in

3. DOOP

Doop [1] is a framework for pointer, or points-to, analysis of Java programs. It implements
the variations of several different context-sensitive static analysis algorithms, written in
Datalog.

From the Doop website:
”Doop builds on the idea of specifying pointer analysis algorithms declaratively, using Dat-
alog: a logic-based language for defining (recursive) relations. Doop carries the declara-
tive approach further than past work by describing the full end-to-end analysis in Datalog
and optimizing aggressively through exposition of the representation of relations (for ex-
ample indexing) to the Datalog language level. Doop uses the Datalog dialect and engine
of LogicBlox.”

Among the advantages of Doop compared to alternative context-sensitive pointer analysis
frameworks, is that Doop is faster and provides better scalability. Also, with comparable
context-sensitivity features, Doop achieves better precision when handling some Java
features (for example exceptions and reflection) than alternatives.

3.1 Fact Generation and Analysis Entity Ids

Doop, before running a pointer or points-to analysis, invokes Soot to generate either Jim-
ple (Java simple) or Shimple (an Ssa version of Jimple) intermediate representations.
Jimple is a typed 3-address IR(Internal Representation) suitable for performing optimiza-
tions; it only has 15 statements. Doop takes the Jimple code as input and generates the
facts. The facts are then imported into a database with multiple tables, so the analysis
rules can process them. Shimple is an SSA-version of Jimple; first Jimple is generated
and then Soot applies a group of transformations to Jimple body to create Shimple.

The fact generation process is of great importance for our Java Compiler plug-in, since
it defines how each entity of the analysis is represented in the database with a unique
key. The rules of the analysis will produce new relations between these facts, so the Java
Compiler needs to correctly produce metadata that will match the analysis facts.

In the following figures we present a small subset of the analysis facts. In the chapter we
explain how the doop-jcplugin produces metadata matching the ids of the analysis entities.

A. Antoniadis 4

Combining source code metadata and static analysis results via a compiler plug-in

...
Main.main/globalMap
Main.main/args
<typechecking.GlobalSymbolTableMaker: java.lang.String

visit(syntaxtree.NodeList,java.lang.String)>/@this↪→

<typechecking.GlobalSymbolTableMaker: java.lang.String
visit(syntaxtree.PlusExpression,java.lang.String)>/@this↪→

...

Figure 3.1: A subset of the facts produced for the variables of a program.

Figure 3.1 presents some of the variable facts. The variables args and globalMap are a
parameter and a local variable respectively in themainmethod of classMain on the default
package. Since there is only one main method defined in class Main the method name is
enough to distinguish the method. The same is not true for the next two variables, this de-
fined in two overloaded visit methods. In order to distinguish them we need the full method
signature, alongwith the declaring class. <typechecking.GlobalSymbolTableMaker: java.lang.String
visit(syntaxtree.PrimaryExpression,java.lang.String)>

...
<Main: void main(java.lang.String[])>
<typechecking.GlobalSymbolTableMaker: java.lang.String

visit(syntaxtree.NodeList,java.lang.String)>↪→

<typechecking.GlobalSymbolTableMaker: java.lang.String
visit(syntaxtree.PlusExpression,java.lang.String)>↪→

...

Figure 3.2: A subset of the facts produced for the methods of a program.

Figure 3.2 presents some of the method facts. All methods are represented by their full
signature in Doop.

...
<MiniJavaParser.JJCalls: int arg>
<MiniJavaParser: Token jj_scanpos>
...

Figure 3.3: A subset of the facts produced for the fields of a program.

Figure 3.3 presents some of the field facts. All methods are represented by their full

A. Antoniadis 5

Combining source code metadata and static analysis results via a compiler plug-in

signature in Doop. The field signature consists of the fully qualified name of the field’s
declaring class, followed by ”:”, followed by the field’s type and the field’s name.

We formalize these conventions in the next chapter, where we present the necessary
transformations to match the Doop entity ids.

A. Antoniadis 6

Combining source code metadata and static analysis results via a compiler plug-in

4. DOOP-JCPLUGIN

4.1 Introduction - Java Compiler Compilation Phases

The doop-jcplugin aims to extract static type information metadata given the source code
of a program that can be compiled successfully. Before we proceed to present our own
compilation phase we need to explain the default compilation phases of the Java Compiler.

The compilation of a program in the Java compiler consists of three phases:

• Parse and Enter : The compiler reads the files explicitly specified on the command
line, parses them into ASTs, and enters externally visible definitions to the compiler’s
symbol tables.

• Annotation Processing: The compiler calls the annotation processors and restarts
the compilation if new source files have been generated.

• Analyze and Generate: The compiler analyzes the ASTs and translates them into
class files. If there are references to additional classes, then:

– If they are found on class files, the class files will be read to determine the
definitions in that class.

– If they are found on source files, these files are added to the compilation pro-
cess. The files will pass the parse and enter phase and then will be added to a
TO-DO list for the Analyze and Generate phase.

4.2 Introducing our own compilation phase

Our own compilation phase comes into play twice, performing two passes on the program
AST. The first pass over the AST is executed before the Generate phase starts for a file.
This pass only registers all the symbol declarations (classes, methods, fields, variables)
in that file. The second pass of the AST is performed after the Generate phase finishes
and registers all the occurrences of symbols in the code, that is, read/write occurrences
for variables and fields, and also registers the invocations of methods and heap allocation,
i.e., constructor invocations that are called after the creation of new objects.

Successful compilation is a strict requirement since Java Compiler will terminate if an
error occurs, thus not reaching the Generate phase of the compilation process. In order
to extract the metadata we need to access the symbol tables and also resolve external
references, therefore we need all the previous phases to have finished. In particular, the
source code elements we are interested in for the time being are classes, variables, fields,
methods, heap allocations and method invocations.

A. Antoniadis 7

Combining source code metadata and static analysis results via a compiler plug-in

4.3 Invoking our own compilation phase

In this section we first describe how the doop-jcplugin is invoked before and after the
Generate task for each compilation unit and then we discuss the internals of the plug-in
procedures, the conventions it follows in order to produce metadata which can be used
by Doop and the caveats of trying to produce metadata which need to match an internal
representation produced by processing the Java bytecode.

The requirement for a Java Compiler plug-in in order to implement a web-based source
code viewer is the loss of information at bytecode level. The bytecode can only maintain
line number information about variables, methods, etc, while in our case we need the
exact coordinates at which a source code symbol begins and ends. This information can
be preserved by exploring the symbol tables produced by a Java compiler, and the Java 8
Compiler provides the proper infrastructure in order to implement a new compilation phase
that extracts information about every symbol as we traverse the AST of the program with
customized visitors.

public class DoopJcPlugin implements Plugin {
@Override
public String getName() {

return "DoopJcPlugin";
}

@Override
public void init(JavacTask task, String... args) {

...
Task.addTaskListener(new DoopJcPluginTaskListener());

}
}

Figure 4.1: The DoopJcPlugin class implementing the Plugin interface.

As we already explained in the previous chapter, ourDoopJcPlugin class (Figure 4.1) must
implement the Plugin interface. We also add a DoopJcPluginTaskListener object to the
current task being processed.

A. Antoniadis 8

Combining source code metadata and static analysis results via a compiler plug-in

class DoopJcPluginTaskListener implements TaskListener {
private final Reporter reporter;
...
@Override
public void started(TaskEvent arg0) {

if (arg0.getKind().equals(GENERATE)) {
if (!processedFiles.contains(arg0.getSourceFile().getName())) {

/*
Get the AST root for this source code file.
*/
JCTree treeRoot = (JCTree) arg0.getCompilationUnit();
String sourceFileName = getName(arg0.getSourceFile().getName());
String sourceFilePath = (arg0.getCompilationUnit().getPackageName() + "."

+ sourceFileName).replaceFirst("^null\\.", "");↪→

LineMap lineMap = arg0.getCompilationUnit().getLineMap();
SourceFileReport report = new SourceFileReport();
/* Declaration scanner pass */
treeRoot.accept(new DeclarationScanner(sourceFilePath, lineMap,

varSymbolMap, report));↪→

fileMap.put(arg0.getSourceFile().getName(), report);
}

}
}
@Override
public void finished(TaskEvent arg0) {

if (arg0.getKind().equals(GENERATE)) {
if (!processedFiles.contains(arg0.getSourceFile().getName())) {

processedFiles.add(arg0.getSourceFile().getName());
/*
* Get the AST root for this source code file.
*/
JCTree treeRoot = (JCTree) arg0.getCompilationUnit();
String sourceFileName = getName(arg0.getSourceFile().getName());
String sourceFilePath = (arg0.getCompilationUnit().getPackageName() + "."

+ sourceFileName).replaceFirst("^null\\.", "");↪→

LineMap lineMap = arg0.getCompilationUnit().getLineMap();
/* Deep scanner pass */
treeRoot.accept(new DeepScanner(sourceFilePath, lineMap, varSymbolMap,

fileMap.get(arg0.getSourceFile().getName())));↪→

}
}

}
}

Figure 4.2: The DoopJcPluginTaskListener class implementing the TaskListener interface.

The doop-jcplugin is invoked very straightforwardly. The DoopJcPluginTaskListener (Fig-
ure 4.2) object we create implements both the started() and the finished() method of the
TaskListener interface, since our aim is to invoke our own compilation phase before and af-

A. Antoniadis 9

Combining source code metadata and static analysis results via a compiler plug-in

ter the Generate task of the compiler. The finished()method of the DoopJcPluginTaskLis-
tener will be called every time an event indicating the start of a compiler task is triggered.
The finished()method of the DoopJcPluginTaskListener will be called every time an event
indicating the end of a task is triggered. In our case these events are the start and the end
of Generate task for each compilation unit (source file).

At the start of theGenerate phase, we execute the first part of our own logic. To accomplish
that we need to perform the following steps.

First, we need to get the LineMap of the compilation unit. This LineMap is an interface
which maps the position of a symbol as found in the symbol table to actual lines and
columns in the source file.

Afterwards, we call the accept() method of the root node of the AST passing as argument
our SymbolScanner visitor [3] with the source file name and the LineMap object as ar-
guments. From here on, our own compilation phase begins. The SymbolScanner visitor
visits all the declarations of symbols and registers them in our own structures.

The second part of our compilation phase executes after the end of the Generate task
for a compilation unit. Once again we use the LineMap in order to map symbol positions
to actual lines and columns in the source code. We then invoke our second visitor, the
DeepScanner visitor, which associates symbol occurrences with symbol declarations and
also registers method invocations and heap allocations.

In the upcoming sections of this chapter we will focus on the use of the internal API to get
information from the symbol tables and on the transformation logic necessary to conform
to the conventions enforced by Doop in order to produce metadata which can be easily
matched with Doop analysis results.

4.4 Output Data Model

After a successful invocation, the doop-jcplugin produces a report with all the found classes,
variables, fields, methods, the occurrences of fields or variables within a method body,
method invocations and heap allocations. Before proceeding to explain how exactly each
of these symbols is handled we present the data model describing the relationships be-
tween these symbols. Each symbol is represented in the doop-jcplugin as a Java object
with a unique id. The rest of the fields of each Java object are all related metadata ex-
tracted from the symbol tables of the Java compiler. However, we also need to represent
relationships between program symbols. To accomplish this, we use points-to-parent ref-
erences where necessary. Below we present the set of rules describing these relation-
ships:

• A field object refers to its declaring class object using the id of that class object.

• A method object refers to its declaring class object.

• A variable object refers to its declaring method object.

A. Antoniadis 10

Combining source code metadata and static analysis results via a compiler plug-in

• A field or variable occurrence refers the corresponding variable or field object.

• A method invocation object refers to the invoking method object.

• A heap allocation object refers to the allocating method object.

The following code snippets demonstrate the Java classes we created in order to represent
the source code elements as Java objects.

@EqualsAndHashCode
public abstract class ItemImpl implements Item, GroovyObject {

private static final String ID_FIELD = "id";

public ItemImpl() {
CallSite[] var1 = $getCallSiteArray();
MetaClass var2 = this.$getStaticMetaClass();
this.metaClass = var2;

}
...

}

Figure 4.3: The abstract class ItemImpl implementing Item and GroovyObject.

All the elements in our data model are subtypes of the ItemImpl class. Objects of type
ItemImpl represent items that will be stored in our NoSQL database. They also implement
toJSON() and fromJSON()methods, since the Java objects need to be converted to JSON
objects [2] before we save them to our storage.

public abstract class Element extends ItemImpl {
private String id;
...
public String getId() {

return this.id;
}

public void setId(String var1) {
this.id = var1;

}
}

Figure 4.4: The Element class.

The Element class implements ItemImpl and is the parent class of all the source elements.
The id field is used to identify each element uniquely.

A. Antoniadis 11

Combining source code metadata and static analysis results via a compiler plug-in

public class Class extends Symbol {
private String name;
private String packageName;
private boolean isInterface;
private boolean isEnum;
private boolean isInner;
private boolean isAnonymous;
...

}

Figure 4.5: The Class class representing class declarations.

The Class class represents the declarations. Its fields hold information about the name of
the class, the package name of the class, whether the class is an interface, since classes
and interfaces are represented by the same symbol in the Java Compiler, whether it is an
Enum, an inner class, or an anonymous class.

public class Position implements GroovyObject {
private long startLine;
private long startColumn;
private long endLine;
private long endColumn;
...

}

Figure 4.6: The Position class representing the source code position of a symbol.

The Position classes represents the position of the symbol, keeping its start line, start
column, end line, and end column.

A. Antoniadis 12

Combining source code metadata and static analysis results via a compiler plug-in

public class Variable extends Symbol {
private String name;
private String doopName;
private String type;
private String declaringMethodID;
private boolean isLocal;
private boolean isParameter;
...

}

public class Field extends Symbol {
private String signature;
private String type;
private String declaringClassID;
private boolean isStatic;
...

}

Figure 4.7: The Variable and Field classes representing class and field declarations.

The Variable (Figure 4.7) represents variable declarations. Its fields include the name of
the of the variable, the name of the variable entity in Doop, the type of the variable, its
declaring method id and whether the variable is a local variable or a parameter. The Field
class (Figure 4.7) represents field declarations. Its fields include the name of the signature
of the field, the type of the field, the id of the declaring class and whether the field is static
or not.

public class Occurrence extends Symbol {
private String symbolID;
private OccurrenceType occurrenceType;
...

}

public enum OccurrenceType implements GroovyObject {
READ,
WRITE,
IMPORT,
EXTEND;
...

}

Figure 4.8: The Occurrence class representing read and write occurrences of variables
and fields.

A. Antoniadis 13

Combining source code metadata and static analysis results via a compiler plug-in

The Occurrence class represents read and write occurrences of variables and fields, im-
port occurrences for packages and extend occurrences for classes.

public class Method extends Symbol {
private String name;
private String declaringClassID;
private String returnType;
private String doopSignature;
private String doopCompactName;
private String[] params;
private String[] paramTypes;
private boolean isStatic;
...

}

Figure 4.9: The Method class representing method declarations.

The Method class (Figure 4.9) represents method declarations. Its fields include the
method name, the declaring class id, the rerturn type of the method, the method signature
in Doop, the compact name of the method in Doop, the parameters of the method and
their types, and whether the method is static or not.

public class MethodInvocation extends Symbol {
private String doopID;
private String invokingMethodID;
...

}

Figure 4.10: The MethodInvocation class representing method invocations.

public class HeapAllocation extends Symbol {
private String type;
private String allocatingMethodID;
private String doopID;
...

}

Figure 4.11: The HeapAllocation class representing heap allocations.

A. Antoniadis 14

Combining source code metadata and static analysis results via a compiler plug-in

4.5 Classes

In order to record all the found classes we have to override the visitClassDef(JCClassDecl
tree) method of the TreeScanner interface. All the nodes of the AST that refer to actual
symbols in the symbol table contain a field with signature sym and type {*}Symbol which
is a subtype of the abstract Symbol class.

In the case of an object of type JCClassDecl, the field with signature sym is an instance of
the ClassSymbol class. For a class declaration the necessary metadata is the position of
the declaration (starting and ending coordinates), the source file name, the full package
name, and whether the class is an interface, enum, inner or an anonymous class.

The Symbol class provides several methods among which we can find all the methods that
return information about the characteristics of a type. For instance, whether it is an enum,
an interface, an anonymous class, or an inner class. However most of these methods are
not unique to the ClassSymbol class since they are part of the Symbol class, which is an
unexpected design choice. The following snippet shows the implementations of some of
the methods we need to use and some others like isConstructor() that are too specific to
be part of the Symbol class.

Figure 4.12 demonstrates how we create an object of typeClass, which represents a class
declaration in our data model. It also shows how the LineMap instance provided to the
visitor is used to get the source code coordinates of the class declaration.

/*
* Visit class declaration AST node.
*/
@Override
public void visitClassDef(JCClassDecl tree) {

Map<String, Integer> methodNamesMap;

Position position = new Position(lineMap.getLineNumber(tree.pos),
lineMap.getColumnNumber(tree.pos), lineMap.getColumnNumber(tree.pos) +
tree.sym.name.toString().length());

↪→

↪→

currentClass = new Class(position, sourceFileName, tree.sym.name.toString(),
tree.sym.packge().fullname.toString(), tree.sym.isInterface(),
tree.sym.isEnum(), tree.sym.isStatic(), tree.sym.isInner(),
tree.sym.isAnonymous());

↪→

↪→

↪→

...
}

Figure 4.13: The visitClassDef() method.

Finally, we keep track of all the methods in order to identify overloaded methods. We will
explain why this is necessary in the upcoming sections that concern methods and method
invocations.

A. Antoniadis 15

Combining source code metadata and static analysis results via a compiler plug-in

public abstract class Symbol extends AnnoConstruct implements Element {
public int kind;
public long flags_field;
public Name name;
public Type type;
public Symbol owner;
public Symbol.Completer completer;
public Type erasure_field;
protected SymbolMetadata metadata;
...
public boolean isInterface() {

return (this.flags() & 512L) != 0L;
}

public boolean isPrivate() {
return (this.flags_field & 7L) == 2L;

}

public boolean isEnum() {
return (this.flags() & 16384L) != 0L;

}

public boolean isLocal() {
return (this.owner.kind & 20) != 0 || this.owner.kind == 2 && this.owner.isLocal();

}

public boolean isAnonymous() {
return this.name.isEmpty();

}

public boolean isConstructor() {
return this.name == this.name.table.names.init;

}

public Name getQualifiedName() {
return this.name;

}

public boolean isInner() {
return kind == 2 && type.getEnclosingType().hasTag(TypeTag.CLASS);

}
}

Figure 4.12: The Symbol abstract class.

A. Antoniadis 16

Combining source code metadata and static analysis results via a compiler plug-in

4.6 Variables and Fields

We classify variables and fields in the same category because their declarations are visited
by the same method, visitVarDef(JCVariableDecl tree) (Figure 4.14). The sym field of the
tree node instance tree is of type VariableSymbol both for variables and fields. The first
step is to distinguish fields and variables, since wewill handle them differently. This section
also introduces the first transformation rules in order to follow the Doop conventions.

The format for field signatures consists of the fully qualified name of the class followed by
the field name. The rest of the information we need is:

• the position of the field (mapped from the pos field of the tree node instance and
adding the length of the field name to get the ending column),

• the name of the field,

• the field signature as represented textually in Doop,

• the type of the field, and

• the id of the declaring class of the field, since each field has to reference its declaring
class and whether the field is static or not.

The format for a variable consists of (a) the fully qualified compact name of the declaring
method of the variable in case the method is not overloaded and (b) the full method signa-
ture in case the method is overloaded, since we need to distinguish methods of the same
class with the same name. This is the reason we had to identify overloaded methods
earlier, while visiting the class declaration. The rest of the metadata for a variable are the
following:

• the position of the variable,

• the name of the variable in the source code,

• the name of the variable in Doop textual representation,

• the type of the variable

• the id of the variable’s declaring method, since each variable has to reference its
declaring method, and

• whether the variable is a local variable or a parameter.

As we explained, this approach provides us only with the metadata regarding field and
variable declarations. We also need to track all occurrences of each field and variable in
the source code. In order to accomplish this, we created two more visitors, the DefOccur-
renceVisitor, which records all the writes to a field or variable and UseOccurrenceVisitor,

A. Antoniadis 17

Combining source code metadata and static analysis results via a compiler plug-in

which records all the reads of a field or variable. We distinguish the reads and writes based
on the AST information — for instance occurrences in the left-hand-side of an assignment
are writes to a variable or field, while the right-hand-side occurrences are reads. This
however, can be a very complicated process since we need to ensure both that we report
the correct occurrence type for each occurrence and that we don not miss any occurrence
by accident due to not scanning a certain branch of the AST with the appropriate visitor.
For instance, in an assignment like the following:

a.b.c.d.e = f.g;

• The occurrence of a is a read of the variable a.

• The occurrences of b, c and d are reads of the corresponding fields.

• The occurrence of e is a write to the field e.

• The occurrence of f is a read of the variable f.

• The occurrence of g is a read of the field g.

4.7 Methods

We handle method declarations by overriding the visitMethodDef(JCMethodDecl tree)
method of TreeScanner. Constructors are handled differently than all other methods since
their method name is always init. The metadata we record are the following:

• the position of the method declaration,

• the source file name where the method declaration is found,

• the name of the method,

• the id of the declaring class of the method since a method must reference its declar-
ing class,

• the compact name of the method in Doop textual format,

• the full signature of the method in Doop textual format,

• the return type of the method,

• the parameter list of the method,

• the list of parameter types of the method,

• whether the method is static or not.

A. Antoniadis 18

Combining source code metadata and static analysis results via a compiler plug-in

/** Visit variable declaration AST node. **/
@Override
public void visitVarDef(JCVariableDecl tree) {

if (tree.sym.getKind().toString().equals("FIELD")) {
Position position = new Position(this.lineMap.getLineNumber(tree.pos),

this.lineMap.getColumnNumber(tree.pos),
this.lineMap.getColumnNumber(tree.pos +
tree.sym.getQualifiedName().toString().length()));

↪→

↪→

↪→

String fieldName = tree.sym.name.toString();
String fieldSignature = this.doopReprBuilder.buildDoopFieldSignature(tree.sym);
Field field = new Field(position, sourceFileName, fieldName, fieldSignature,

tree.sym.type.toString(), currentClass.getId(), tree.sym.isStatic());↪→

SourceFileReport.fieldList.add(field);
varSymbolMap.put(tree.sym.hashCode(), field);

}
else {

Position position = new Position(this.lineMap.getLineNumber(tree.pos),
this.lineMap.getColumnNumber(tree.pos),
this.lineMap.getColumnNumber(tree.pos + tree.sym.name.toString().length()));

↪→

↪→

String varNameInDoop;
if { (this.methodNamesPerClassMap.get(tree.sym.enclClass())

.get(curMethSym.getQualifiedName().toString()) > 1)
varNameInDoop = this.doopReprBuilder.buildDoopVarName(curMethDoopSig,

tree.sym.getQualifiedName().toString());↪→

}
else {

varNameInDoop = this.doopReprBuilder.buildDoopVarName(curMethCompactName,
tree.sym.getQualifiedName().toString());↪→

Variable variable = new Variable(position, sourceFileName,
tree.sym.name.toString(), varNameInDoop, tree.sym.type.toString(),
currentMethod.getId(), isLocal, isParameter);

↪→

↪→

SourceFileReport.variableList.add(variable);
varSymbolMap.put(tree.sym.hashCode(), variable);

}
...

}
}

Figure 4.14: The visitVarDef() method for variable and field declarations.

A. Antoniadis 19

Combining source code metadata and static analysis results via a compiler plug-in

4.8 Method Invocations

The deep-scanner visitor is responsbile for scanning the method body of each method
declaration in order to find heap allocations (i.e., constructor/special method invocations)
and normal method invocations (virtual or static). If the invoked method is not overloaded,
the invocation text representation will consist of its compact name followed by a slash and
a counter n, which indicates that this is the (n + 1)th invocation of this particular method
within the current method body. The same rule applies for overloaded methods with the
exception that we use the full method signature as we did in the case of method decla-
rations. In order to keep track of method invocations, we keep a map of MethodSymbol
objects to the number of invocations found for each symbol.

Constructors are handled slightly differently, since there is only one counter for all the
different constructor invocations within the current method body and we have to increase
it every time we encounter a constructor invocation.

4.9 Heap Allocations

Whenever the deep scanner visitor encounters a constructor invocation, we also need to
record an abstract heap allocation object of the class whose constructor was invoked. The
heap allocation id consists of the allocating method signature, followed by “new”, followed
by the fully qualified type of the allocation, a slash and a counter n, which indicates the
(n+1)th occurrence of this particular heap allocation of type T in the current method body.
We also record the position, the type of the heap allocation and the current method id,
since a heap allocation must reference the allocating method.

In Figure 4.15 we present the functions that perform the transformation in order to produce
entity ids for Doop().

4.10 Caveats

The main difficulties we have encountered in this project are related to three different
parameters.

• The process of identifying the correct representation of ids by inspecting the IR pro-
duced by the bytecode and covering corner cases, such as Java idioms, erased
generics, different transformation rules for inner and anonymous classes is very dif-
ficult. This has led to mismatches between analysis entity ids and plug-in metadata
object ids leading to loss of information. For instance any ArrayList<T> type where
T is a type will appear as ArrayList where its type occurs in the bytecode since T
will be erased to Object. Another example is the naming scheme for nested classes.
Instead of com.anantoni.demo.Klass.NestedKlasswe need to convert all the dots af-

A. Antoniadis 20

Combining source code metadata and static analysis results via a compiler plug-in

gen_msig(⟨R,m, P ⟩) = R + ”␣”+m+ ”(”+ P + ”)”

gen_m(⟨R,m, P ⟩) = m

gen_variable_id(C, M, V, m) =

{
C + ”.”+ gen_m(M) + ”/”+ V m is not overloaded
C + ”:”+ gen_msig(M) + ”/”+ V m is overloaded

gen_method_invo_id(M, i, mI) =

{
gen_m(M) + ”/”+mI + ”/”+ i m is not overloaded
gen_msig(M) + ”/”+mI + ”/”+ i m is overloaded

where i indicates the i-th invocation of a method named mI in M, starting from 0

gen_heap_alloc_id(M, C, j) =

{
gen_m(M) + ”/new”+ C + ”/”+ j m is not overloaded
gen_msig(M) + ”/new”+ C + ”/”+ j m is overloaded

where j indicates the j-th heap allocation of C in M , starting from 0

Symbol Description Type
R fully qualified return type String
m method name String
P fully qualified parameter types list String
M method signature ⟨R,m, P ⟩
C fully qualified class name String
V variable name String
I method invocation String

Figure 4.15: The transformation functions for variables, method invocations and heap
allocations. We use + to show string concatenation. The symbol ␣ stands for the space
character.

A. Antoniadis 21

Combining source code metadata and static analysis results via a compiler plug-in

ter the first class to ”.”, thus generating the com.anantoni.demo.Klass$NestedKlass
string representation.

• As we have already explained, identifying all read and write occurrences correctly
without missing any of them is also a very complicated process.

• Identifying the exact beginning and ending columns of a symbol is also not trivial and
sometimes requires the traversal of more than one node in order to identify syntactic
sugar and correctly calculate the full length of the symbol in the source code. For
instance, declaring the type of a variable as java.util.ArrayList instead of ArrayList
will lead to the same information, since the import on the latter case is just syntactic
sugar. The symbol tables will be identical in both cases in terms of type information,
but the two programs will have different ASTs, which we need to handle accordingly.

A. Antoniadis 22

Combining source code metadata and static analysis results via a compiler plug-in

5. POST PROCESSING OF THE ANALYSIS

The doop-jcplugin produces metadata ready to be consumed by a post-processing step
and matched with Doop analysis results. The ids generated by the doop-jcplugin need
to be identical to the ones identifying analysis entities, so that by querying the analysis
database for relations of interest we can match the ids of symbols produced by the doop-
jcplugin with entity ids in the database and produce enriched relations.

As we have already explained Doop performs points-to analysis in Datalog so the initial
relations we enrich are all points-to information related.

• The VarPointsTo(var, heap) relation representing the heap allocations a variable var
may point to. By matching the string representation value of var and heap with the
variable ids and heap allocation ids produced by the plug-in, we manage to enrich
both parts of the relation with the corresponding Variable and HeapAllocation meta-
data objects and produce a source code presentable VarPointsTo relation.

• The CallGraphEdge(invocation, method) relation representing the method method
that may be called by a method invocation, invocation. For this relation we compare
the method ids and invocation ids generated by the doop-jcplugin with the values of
method and invocation respectively, in order to match method analysis entities with
Method metadata objects and method invocation analysis entities with MethodInvo-
cation metadata objects.

• The InstanceFieldPointsTo(baseheap, sig, heap) relation, representing the heap al-
locations heap that the field sig of an object baseheapmay point to. For this relation
we match the value baseheap with the corresponding HeapAllocation object of type
T, then we match the value of field signature sig with the Field object referring to
the Class object representing type T. In order to complete the enriched relation, we
match all the values of ?heap with the correspoding HeapAllocation object.

By processing the results of the analysis we create objects that represent the analysis
relations and refer to the plugin metadata associated with the entities of each relation.

class VarPointsTo extends SymbolRelation {

String variableID;
List<String> heapAllocationIDSet;
...

}

Figure 5.1: The VarPointsTo class representing VarPointsTo objects.

A. Antoniadis 23

Combining source code metadata and static analysis results via a compiler plug-in

The field variableID of the class VarPointsTo is a String indicating the id of the Variable
metadata object for a particular variable entity of the relation. The set of Strings hea-
pAllocationIDSet contains the ids of the HeapAllocation metadata objects for the heap
allocation entities of the VarPointsTo relation, one for each heap allocation the variable
may point to.

class CallGraphEdge extends SymbolRelation {

String methodInvocationID;
List<String> methodIDSet;
...

}

Figure 5.2: The CallGraphEdge class representing CallGraphEdgeRelations.

The field methodInvocationID of the class MethodInvocation is a String indicating the id
of the MethodInvocation metadata object for the method entity of the relation and the set
of Strings methodIDSet contains the ids of the Method metadata objects for the method
entities of the CallGraphEdge relation, one for each method that may be called by the
invocation.

class InstanceFieldPointsTo extends SymbolRelation {

String fieldID;
String baseHeapAllocationID;
List<String> heapAllocationIDSet;
...

}

Figure 5.3: The InstanceFieldPointsTo class representing InstanceFieldPointsTo rela-
tions.

The field fieldID of the class InstanceFieldPointsTo is a String indicating the id of the Field
metadata object for the field entity of the InstanceFieldPointsTo relation. The baseHea-
pAllocationID field is a String indicating the instance of the object whose field may point
to other objects. The set of Strings heapAllocationIDSet field contains the ids of the Hea-
pAllocation metadata objects for the heap allocation entities of the relation, one for each
heap allocation that the field of the specified object may point to.

Finally, the results can be stored in a database and queried by a code comprehension tool
in order to demonstrate the analysis results on the source code.

A. Antoniadis 24

Combining source code metadata and static analysis results via a compiler plug-in

6. DISCUSSION AND APPLICATION

In this chapter we present a source code viewer as an application that consumes our
enriched relations to demonstrate analysis results on the source code. Our source code
viewer is a read-only web-based editor, on which the user can view the source code of a
program. Moreover, the user can click on any position within the browser and our database
will be queried about the symbol that may be residing in those coordinates. If there is
indeed a symbol there, depending on whether it is a class, field, method, variable, method
invocation or heap allocation, we present any information we have in the database for
that symbol. For symbols that are variables, fields or methods, in particular, we execute a
second query to our database which will return the enriched VarPointsTo, CallGraphEdge
or FieldPointsTo objects. Thereupon, we can represent the analysis results for these
relations on the source code since the enriched relations contain the coordinates of all the
symbols associated.

Figure 6.1 demonstrates the result of a click to a variable occurrence in the source code
viewer. The occurrence of variable test1 in line 46 which the user clicked, is underlined,
along with its declaration in line 14. The heap allocations that test1 may point to are high-
lighted in lines 14, 23, 56, 63, 74, 84 — we demonstrate the highlighted heap allocations
up to line 34 due to space limitations.

Currently, our doop-jcplugin project consists of 1,464 lines of Java code. Utilizing the
extensible architecture of the Java Compiler it was much easier to create our own compi-
lation phase rather than having to intervene to the source code of the Java Compiler itself,
which spans over 130,000 lines of code. Our approach is much simpler and cleaner, and
at the same time fully modular. Anyone can use the doop-jcplugin as long as they have
the Java 8 Compiler on their system.

A. Antoniadis 25

Combining source code metadata and static analysis results via a compiler plug-in

Figure 6.1: A screenshot of the VarPointsTo relation presented on the source code

A. Antoniadis 26

Combining source code metadata and static analysis results via a compiler plug-in

7. CONCLUSIONS AND FUTURE WORK

We presented a Java Compiler plug-in that produces source-code metadata in order to
match them with static analysis results and enrich them. This is an ongoing project and in
the future we aim to be able to produce metadata for every possible valid Java program.
Another step forward for the doop-jcplugin will be the generation of metadata for complex
expressions instead of just symbols. We also showcased the simplicity of utilizing the new
Java Compiler mechanism for plug-ins and we presented a fair amount of the obtainable
information during the compilation phases.

A. Antoniadis 27

Combining source code metadata and static analysis results via a compiler plug-in

BIBLIOGRAPHY

[1] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of so-
phisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’09,
pages 243–262, New York, NY, USA, 2009. ACM.

[2] Douglas Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, October 2015.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1995.

[4] Raoul-Grabriel Urma and Jonathan Gibbons. Java Compiler Plug-ins in Java 8. Oracle
Java Magazine, January/February 2013.

A. Antoniadis 28

	CONTENTS
	INTRODUCTION
	JAVA 8 COMPILER PLUG-INS
	Java 8 Compiler Plug-Ins Introduction
	Java Compiler Plug-in Architecture

	DOOP
	Fact Generation and Analysis Entity Ids

	DOOP-JCPLUGIN
	Introduction - Java Compiler Compilation Phases
	Introducing our own compilation phase
	Invoking our own compilation phase
	Output Data Model
	Classes
	Variables and Fields
	Methods
	Method Invocations
	Heap Allocations
	Caveats

	POST PROCESSING OF THE ANALYSIS
	DISCUSSION AND APPLICATION
	CONCLUSIONS AND FUTURE WORK

