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ITepiAndm

Yuepa 1) oLVEYHC TEGOBOC GTNV TEYVOhOYid EYEL OONYNOEL GTNV AVATTUEY IO TOADTAOXWY XAl UT-
OMOYIo TG amouTNTIXWY oA yopiluwy enelepyacioc edvac. [loAlol and autolc Toug alydpriuoug
€youv vodetniel oc EVoWUATWUEVA CUGTAUATO To OTOlol GTOYEVOUV GE Lol TOLXLALYL EPUPUOY Y,
onwe 1 avtoxivntoflounyavio, 3D mhoAynor, v emtrenon, xhn. 201600, OE EVOLUATWUEVY
CUC THUTA TRUYUAUTIXOU YeOVOU, OTou 1) xaJUCTERTEN UETUPORAS DEDOUEVLV oL T1) XAUTAVIAWGCT
oy Vog SadpopatiCouy oNUUYTXG PORO, EQUPHOYES AOYLOUXO) TROCAUVATOAOUEVES VoL EXTEAOUVTAL
o€ enelepYUoTES YEVIXNC YPHOMNS OEV UTOROVY Vi TROGPELOUV IXAVOTIOLTIXEC AUCELS.

Yxomdg TNe mopolcos SIMAWUATIXAC EpYaolog Elvor 0 OYEBIOUOS EVOC CUGTAUNTOC ENECER-
Yaolog exOVag Yo EVOOUUTWUEVES EPUPUOYES, 1 LAOTOINGY| Tou ot Xuotnua-oe-Wngida xou 7
a&loAdY o™ Tou. §dC EQupUOYT) ETAEYUNXE O EVIOTIOUOS EVOC OVTIXEWEVOU XAl 1) EVNUEPKOT) TOU
YENOTN YL TO TG VO PETOXUVACEL TNV XAUEEH WOTE Vol EVVUYPOUULO TEL Ue TO avTixeluevo. 'Eva
Baowd otoyeio authAc TG SimAwpotixc epyactag elvon 1 uehéTtn Twv Brudtwy enelepyacioc Tng
EXOVOC XL O EVIOTIOUOC TwV Xplotuwy Brudtwy mou emneedlouv onuavTxd To Yeovo enelep-
yooiog. Me v egopuoyy yedodohoyindy cuoyedioone TAxold/Aoyiouxol, emuépous TuruoTo
avomTOyInxay ¢ xouudtior Tou uAxol ue T yenon VHDL xou tor undhoina ovamtdydnxoay g
CUOTATXY OTOLYEl TOU AOYLOUIXOU YENOWOTOWWVTAS TN YAWGcoo npoypoupatiopod C. H mhot-
popua oy yenotono|inxe yia TNy avdntuln Tou cuoTAUaToS PactleTon GTNV OXOYEVELL TOV
ovoxeudy Zyng-7000 All Programmable SoC (AP SoC) tne Xilinx. H aZiohéynon tou cuotiua-
To¢ Baciotnxe otn pétenomn Tou mococTol emMTUYING TG CUVOAXNC AELTOURYIOC XoU TIC PETET-
oelg mou oyeTlovTon YE TNV TAUTQOPUO TOU YPNOWOTOLETOL, OTWS 1) XUTAVIAWGT oY 00g, N
XATAVIAWOT) TOPWY, 0 YEOVog exTéreon xAT. Eniong npayupatomoiinxe cOyxpion Ue EVUAUXTIXES
TAATPOPUES Ol OToleg exTEAOUGAY TNV AELTOURYIX TOU CUCTAUNTOS ATOXAEIGTIXG GTO AOYLOULXO.

A€Zeic KAewdid— Xuoyedioon Thxol/Aoyiopxol, EneZepyooia Ewdvoc, Lootnua-ce-Uneido,
Harris Corner Detector, Evoouatouévo Lootnua, Zyng



Abstract

Nowadays the ever-increasing advancements in technology has led to the deployment of more
complex and computationally intensive image processing algorithms. Many of these algorithms
have been adopted in present-day embedded systems targeting a variety of applications such as
automotive, 3D navigation, surveillance, etc. However in real-time embedded systems, where la-
tency and power play an important role, software-oriented implementations running on general
purpose CPUs may not offer satisfactory solutions.

The purpose of this thesis is the design of an image processing system for embedded applica-
tions, its deployment on a System-on-Chip (SoC) platform and the evaluation of the developed
system. As a case study was selected to identify an object and to inform the user on how to move
the camera in order to be able to stay aligned with the object. A key element of this thesis is the
study of the image processing steps and the identification of critical steps that significantly affect
the processing time. By applying hardware/software codesign methodologies individual parts
were implemented as hardware components described using VHDL and the rest developed as
software components using the C programming language. The platform used to deploy the sys-
tem is based upon Xilinx’s Zyng-7000 All Programmable SoC (AP SoC) family of devices. The
system was evaluated based on measuring the success rate of the overall operation and on mea-
surements related to the SoC platform used, such as power consumption, resource utilization,
execution time etc. Also a comparison with software oriented approaches executed in CPUs was
conducted.

Keywords— Hardware/Software codesign, Image Processing, System-on-Chip, Harris Cor-
ner Detector, Embedded System, Zynq
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FEuyapiotieg

HpwTov, o Hieha var exppdow TNy Uy Vwuocivn Lou otoug emBAETovTéS pou, Kadnynt Anunteto
Yoovten EMII o Kadnynty) Aovioio Peton EKITA mou ye eumotebinxoy ye authyv TNy Simhe-
wotixy| epyacio mou avtwetwnilel éva ToAD amoutnTixd Véua o €vol TOAD avToywVIoTIXG Tedlo,
omwe 1 enelepyacio exodvag. Ewdwd tov Kadnyntq Anurteto Yolvipn mou you €8woe Ty €u-
xouplor vor exmtoviow Ty Btmhwuatxd| wou gpyasia oto Epyaotripio Mixpolnoloyiotomv xo Unegt-
oy Yuotnudtoy (MicroLab) oto EMILL

Enlong, Ya fleha va euyoplothow Tov petadtdoxtopixd cpeuvnth I'edpyio Aevtden xo tov
umogriglo dddxtwe Kovotavtivo Mopayxd yio 0 Borleia xou T cuvepyaoio Toug xod ‘6An
OLdpxeLal TNG OLTAWUATIXAG Hou. Ot 0EUBEPXELS TUPUTNENOELS TOUS XATA T1) DIGEXEL TWV GUVOULALGY
pog pe Bordnooay va BeATIOon xon vor ETEXTEVG TIC YVWOOELS oL YOpw omd To Veua Tng OLmhw-
HoTXrC aUTHS Epyactog xou lpon EVYVOUGY Yiot To 6Tl Yo €xe TNy guxanpior vor cuVeERYAo T pall
ToUg 010 YENOV. Ou fieha eniong va euyopioThHow Ol Tor AT Tou Microlab yia to evydploTo
Tep3dAlov epyaciog.

Téhog Vo Hleha var euyapEloTHOW TOLG PIAOUS xon TNV owoYéveld wou. H ouveyr| umootriplen
Toug %) ‘OAn TN o) xou TG OTOUBES POoU, oL EBWOE BUVAUY Vo CLUVEYICW Vo ETBLOXGW TOUG
GTOYOUC UOU.
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Extetapevn Iepiindn

Eioaywy

Yuepa 1) LVEYHC TEG0BOC GTNV TEYVOhOYid £YEL 0ONYNOEL GTNV AVATTUEY O TOADTAOXWY XAl UT-
OMOYIo TG amouTNTIXWY oA yopiluwy enelepyacioc etdvag. [loAlol and autolc Toug alyodpriuoug
€youv vodetniel oc EVOWUATWUEVA CUGTAUATO To OTOL GTOYEVOUV GE Lol TOLXLALYL EQPUPUOY Y,
omwe 1 autoxivntoPounyavio, 3D mhorynon, v emthenon, xAt. 20T600, GE EVOLUATOUEVA
CUC THUNTA TRUYUAUTIXOU YEOVOU, OTIou 1) xaJUCTERTEN UETAPORAS DEBOUEVWV oL T1) XAUTAVIANGCT
oy Vog SbpopatiCouy oNUAVTXG POAO, EPUPUOYES AOYIOUIXO) TROGUVATOACUEVES VoL EXTEAOUY-
Tou 0 EMELEQYAUOTES YEVIXNC YPNONG OEV UTOROUV VO TROGHPEPOLY XAVOTIOLNTIXEC AVOELS. AuTo
TEOXUTTEL OO TO YEYOVOC OTL OL ENECEQY AT TEC YOV TEPLOPIGUEVES BUVITOTNTES TUEAAANANG ETed-
epyaotag Yo Vo UToo TNe{Eouy TIC AMUTACELS TWY EQUPUOYOY UTMY YO XUTUVIABVOUY CNUAVTIXS
nocd woyvog. Ipoxeévou va Eenepaa ToOY aUTE To LELOVEXTAPOTOL Xot Vor auE el 1 oméBoon/watt,
OLdpopeg TpooeYyioelg €youy Tpotalel 6Tou EEEIBIXEVUEVO LAXO YeNoLOTOLE(ToL TopdhANhoL UE TNV
CPU vy v emitdyuvon xplolomy TUNUATOY 1 axdurn xon oAoxAnewy ahyopliuwy. Ol npooeyyloelg
autéc Pactlovta ot Bdpopoug cuvdLacUoUE ot eninedo cucThuatog, onwe CPU-DSP, CPU-GPU
xow CPU-FPGA. Qotéco, autd 1o eldog Twv cuoTNUdTnY TAoyouy ond UEWWUEVN anddocT) Tou
TEOXUTTEL oo TNV adENoN NG xdUoTEENONE OTNY ETMXOWVGVIOL PETOED TWY BLUPOPWY CUOKEUGV.
M dhAn evoddhaxtinr) Abon eivon 1 xataoxevy) ASIC. Qotéoo, 1 mpocéyyion autr Yewmpeiton
OVAMOTEAEOUATIXY OO TNV dnodr) Tou }edvou Bideons GTNV ayopd Xt To XOGTOS AVATTUENS ol
vlorolnone.

To tedeutada ypdvia, ot xataoxevaotéc FPGA ewofyoyav System-on-Chip (SoC) cuoxeuéc,
ot onolec auVBUELoLY evowpatuévo enelepyaoth(-ec) pall ue mpoypoupatilopevn Aoy FPGA
oo B0 o (SoC FPGA). H evowudtwon auth emitpénel yeyahitepn onddoaor, eEotxovounon
evépyetog xan TN Bedtionon yevind tng emxowvwviog, oe avtideorn pe amiéc vhonotoeic FPGA mou
elotepind emxovevoly ue CPUs Autd ta onuavtind tAcovextidato urnopoly vo alotoindoly oe
EVOWUATOUEVO GUC TAUATU TEXYUATIXOU YPOVOU TTOU GTOYEVOLY ATOUTNTIXEG UTOAOYIC TIXES EQUQ-
Hoyvéc, Omwe 1 emelepyacia EOVAC, xal Vo TUEEYOLY EAXUCTIXEC MOOELC UE EVTUTWOLOXES TUIES
anodooewy/watt. Axduo x av T SoOC FPGAs napéyouy uior ueydin oetpd and ogérn, 1 dadixaocta
OVAMTUENG UG EQUPUOYHAC OE QUTES TNV TAUTQPOPUES amoTeAel plar ToAOTAOXT %o Ypovofopa OL-
adxacio. Ou xataoxcvootés SoC FPGA €youv enevdioel mohhr mpoomdielo yior Ty mpominon
ey epyokeiwy xa framework pe 6téy0 va dieuxoluvidel 1 dadixaoctia avdmtuing SoC cuctn-
UaTwY. LAUEPX, €YOUV ONUELOOEL CNUUVTIXT TEO000 6C0V a@opd TNV ueiwon Tng mpoonddeiag
TEOYEUUUATIONOV LAXOU PE TNV eloaywYh e Lovieone Tdniob Emnédou (High Level Synthe-
sis - HLS) [3]. Hopdh autd 1 evowudtwon uAxol/hoyopxol xaL 1 EQUpRoYT TNg XATIAANANG
emxovwviog Petald toug e€oxohovlel vor mapapével éva Toh) eninovo xat 50ox0A0 €0Y0 Yid TOV
unyovixd. Autéd elvon amotéhecuo TS HEYSANS TEOOTEUELNS TOU AmALTELTOL VLol TNV XATAVONOT) TOV
YOUNAO) ETUTEDOU AETTOUEQLOV TWV TEWTOXOMWY ETUXOWOVING, TN TEOCUQUOYY| TV BIETAPOY
TOU EMTUYLVTH UAX0D O auTd Ta TewTdxohha xou To cross-trigger debugging, mpoxewevou va
EMXVEOVEL 1 GWOTH EVOWUETOOTN UMXOU /AOYIoUXOD.



ITepiypopy cuoTUATOg X SLadixacio VAoToinoNg

ITAatpopua YAoroinong

ITepimou o 2010 7 Xilinx nopouciace v owoyévela cuoxeunv Zyng-7000 All Programmable
SoC, tig mpwteg cuoxeuég SoC mou ouvdlalay ta yapuxtneloTixd evog Dual-Core ARM Cortex
A9 eneepyaoth (unoclotnua PS) pe mpoypaupatlopevn Aoyxy| (utoctotnua PL), ¥ e dhha
Aoy évay Bimbenvo enclepyaoth| ue éva FPGA.

Y1n ovoxeury Zyng, o ARM Cortex-A9 elvon évog enelepyacthc mou unopel va exTerécel Aet-
TOUPYWE cLOTAUATA, OTwe To Linux, eved 1 mpoypoupatilouevn hoywr| Bociletar 6Ty opyLTeEX-
tovuxt| 7-series FPGA tne¢ Xilinx . H evowydtwon evéc encéepyacti ARM ye FPGA, og pla pévo
GUOXEUT, TPOGPEREL GTOUG TPOYPUUMATIO TEG T1) DUVITOTNTA EQUPUOY TS EVOTIOMNUEVNE TROGEYYIONG
oY oYedloT LAXOU /AOYIOUIXO0) Y10l EVOOUATWHUEVY GUC TAUATY Xl TROGPEpEL ETineda anddoang
mou Aooelg pe 800 ouoxevés (m.y. CPU elwtepind ouvdedeuévn pe éva FPGA) dev umopolv
VO TROG(EQOUY AGY® TOU TEQLOPLOHEVOL €UpOUE (WVNE ETXOWVOVING, TNG XouoTERNONS XAl TNG
xatavdhwon evépyetog toug. H Xilinx €yet utodetrioer to dloawho BEBOPEVLV YLl UXEOEAEYXTES
AMBA xon 1o mpwtoxohho AXI wg 10 xplo Yéco emxowvwviag Yetallh Tou PS xon tng Aoyurc
mou ulomotelton 6to PL, 6nwe gaivetar oty Ewdva 1 6mou nopouctdleTon 1) apylTEXTOVIXTY TGV
ovoxeuwy Zyng SoC.

Processing System t ]

— Static Memory Controller Dynamic Memory Controller Programmable

Quad-SPI, NAND, NOR DDR3, DDR2, LPDDR2 Logic:
’ * : 3 System Gates, -
AMBA® Switches T DSP, RAM
> 5Pl |e—s | n s
— S_AXI_HPO s
ARM® CoreSight™ Multi-core & Trace Debug p— s AXI HP1 E
> 2O eep NEON™/ FPU Engine | NEON™/ FPU Engi oy @
gine. ngine L 2
> Cortex™-A9 MPCore™ | Cortex™-A9 MPCore™ | SAXLHP2 £
o ortex ore’ ortex ore
MUx «—| 3232 KB lIDCaches 32132 KB 1D Caches S_AXI_HP3 E
2% SDIO 512KB L2 Cache Snoop Control Unit(SCU) S_AXI_ACP s
withDMa. [+ 8
Timer Counters 256KB On-Chip Memory
2xUSB General Interrupt Controller ~ DMA Configuration !;
with DMA =
2xGigE 3 t 3 t E
\I with DMA AMBA® Switches =
tt 1 -

EMIO S_AXLGPOA  M_AXI_GPOA

| Multi-Standards 1/0s (3.3V & High Speed 1.8V) | | Multi Gigabit Transceivers ‘

' ' ¢

Ewoéva 1: Apyitextovint| cuoxeuwy Zyng SoC.

To mpwtdxoro AXI elvar €va TPOTOXOMAO ETUXOWVOVIOG TOU AVAXEL TNV OLXOYEVELL TOW-
TOXOMwVY emxoveviog yio uixpoereyxtéc ARM AMBA. To AMBA eivou éva avorytodv mpodi-
aypapGY TEOTUTIO Yo on-chip dloOVOEST), Tou EMTEETEL TN GUVOEST XU TN OLUYElPLOT) TOAAGDY
EAEYXTOV X0l TEPLPERElaX®Y o€ €var multi-master cVotnua.  Aneudivetar oe cuoTHdoTo LUPN-
Mc amédoone xan cuyvotnrac. H tétoptn éxdoorn tou mpwrtoxdihou, AXI4, éyel oyedaoTel
xou Bertiotomoinlel yio var yenoyomoleltal ¢ Yéco emxowvmviag petald muphvwy viixol IP o
ovothuata vhorotnuéva ue FPGA. Trdpyouv teeig tomol Siemapav AXI4, xodeplor xatdAAnin yia
eQaploYES Ue dlopopeTixnéc amontiioels [14]:

o AXI4 (or AXI4-Full): Awcivoeon udninc anddoone, xatdAinkn yio memory mapped
ETUXOWVWVIN TOU ETUTEETEL PLTES BEBOUEVLY €mC Xot 256 Bedouéva avd dlebiuvon).

o AXI4-Lite: M maporiayr tng denogric AXI4-Full, mou yenowomoteltar yioo memory
mapped emxowvwvia uévo. Auth n mopahhoyr| 0ev unooTneilel pinég Bedopévev xon €Tt

2



HOVO €Vl BEBOUEVO avd BLlElIUVOT) UETUPECETAL.

o AXI4-Stream: H Sierapr auty| opllet Eva u6vo xavaAL yior UETOPORA BESOUEVLY GUVEY UG
poYc (streaming), emitpénovtog pinéc dedouévmy ancploplotou yeyédouc. H obvbeon ebvan
ond tov Master otov Slave pévo, ondte av ypetdletar oupidpourn UETOPoEd UETOEY Guo
TEQLPEPLUAWY, TOL TEPLPEQELOXY TPETEL VoL LAOTIOLOOY LY YEOVKE DlETapES TUTOL Master xau
Slave.

Po7 enelepyaciag suxxdvwy

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Capture Find Cluster Recognize Align
Image “| Corners “| Corners "] Object “| Camera

Ewova 2: Por eneepyaciag cuothAuatog.

H vionoinon tou cuctiuatog Baciletan ot por| enclepyaoiog €61 oTadlwy 6Twe Qaivetor TNy
Ewéva 2. Ta otddiar autd TeptypdpovTal O CUVEYELL:

e To 1° otddlo agopd T AMdn g exdvag Ye T Bordelor plag xAUECUS TOU GUVBEETAL UE TNV
mhatpodpua. H exdva anodnxedeton mpoowpevd o pia tpoxo}oploUevr) Teptoyr| otny xUpLa
UV TOLU CUCTAUATOS WOTE Vo elvor £Toln Tpog encdepyaoto.

e To 2° otddlo ebvan 1 enedepyacioa g ewdvag Yo vo Beedolv ol YOVIES, YeNOIUOTOWMYVTOS
T0 YVwoTo alyopuiuo ebpeong ywwiwy Harris. 1o otddo autd, 1 amoUnxeuuévn exova
yiveton eloooboc otov Harris, o omolog e 1 oglpd Tou e€dyel Tic ywvieg mou Beédnxay
ETMUOTEEPOVTAC TIC CUVTIETAYUEVES TOUG ol T1) DUVAUY TNG amdxplone Tng Ywviog, dOnhodr
ular Ty) mou LTOBNAGVEL TOco xahY| ywvio ebvar. Ta amoteréoyato amd oaUTé TO0 GTAOLO
amo¥nxedovTon 6T BixY| TOUC TERLOY Y| GTNY XVELL UV T TOU GUGTAUATOC.

e To 3° ctddo elvon T0 61400 070 omolo Ta AmOTEAEOUAT TTOU TEOEXUPAY antd TO MTUOLO
2 enelepydlovton amd évay akybpriuo cuotadonoinone (clustering alogrithm). H é€o8oc
awTol Tou otadiou ebvor évog aprdudc and cuotddec (ouddec). Xto Téhoc autol Tou oTadiou
xdie ywvid mou Peednxe xatnyoptonoteiton oe plar amd aUTEG TIC GUOTADES Ko VAL AVTLTROC K-
TeuTid onuelo (xevtpoeldée) yio xdie opdda urtoloyiletar. o autd 10 GTEBLO BVO ahybpL-
Yuol cuotadonolnong doxdoTnxay, o akyderiuog k-means xar o aiyodprduoc DBSCAN,
xou oL omolot Yo TopoustacToLY 0pYOTERL.

e To 4° otddio unoroyilel T YewUeTpl TOU AVTIXEWEVOU, UE BAom Tl XEVIPOELST] TOU UT-
ohoyiotnxay 6To NTdoL0 3, xou T1 cUYXEiVEL UE €V TROoXUOPLOUEVO APNENUEVO LOVTENO TOU
AVTIXEWEVOU TTou VENOLUE Vo TopaxoloudeiTtol.

e Téhoc xatd 0 5° oTddlo, €dv N aviyveuon Tou avixeyévou elvon emTLYNS, T0 GOOTNUA
EVNUEPMVEL TS VL XUl 1) xduepa WOTE Vo ELVVYEOUULOTEL UE TO avTixeluEvo.

Yuoyedioaon TAwxol/Aoyiopixo XuoThApATOC

H cvoyediaon vhxol/ oylopxol apopd 6Tov TaUTOYEoVO OYEBIOUS TOGO TOU hOYLOUXOU 6GOo
xou Tou VAoU o€ éva alotnuo. To hoytopxd elvon autd mou extedeltan o enelepyaotés, Omwe
n xevtpwn povéda eneepyaciog (CPU) xou eneepyactés Pnguaxay onudtwy (DSP). To vhxé
viomoteltan w¢ ASIC ¥ oe FPGA. Aeboyévou 611 Tot cUOTAUATA AOYIOMXOU %ol LALXO) €Y0UV



ivoxag 1: Xpodvol extéleong yio Tor oTddl eneepyaoiog ToU CUCTAUATOC.

Find Corners Cluster Corners . ) .
Capture Image (Harris) means T DBSCAN Recognize Object | Align Camera
< 1 msec ~ 430 msec | < 1 msec | < 1 msec < 1 msec < 1 msec

OLUPOPETING. YUEAXTNELOTIX, EVAS GUYOUAOHUOS TOUG EYEL TN BUVATOTNTA vor LOVETATEL Tot XA TERX
YOEUXTNELOTIXG Xot TV 000 x6ouwY. 'Eva onuovtind xouudtt tng cuoyedioong etvat o Loy wplouodg
NG EQAPUOYTC OF UAXO X AOYLOULXO. 2iE ATAES EQPUQUOYES O DL WPLOUOS UE TO «YEPL> UToREl Vo
elvor emapxc. Xe Mo TOAOTAOXES EQUPUOYES, 1) ECEQEVYNOT TOL YOEOL TMV BUVATWY AVCEWY elvor
TEPLOPLOUEVT ot Tl amoTeEAEopata efvan amiavo va etvor to BérTioTa. it Tov aventuydéy chotnua,
UETE amd UETENOELS TOU YpOVou exTéAeonS TwV oTtadiny enelepyaciog mou avapépinxay vwpitepa,
0 Bl WEWOUOC PE To «yEpty LVeTHINXE AdYw Tou Younhol aprluol Twv otadiny enelepyaciog
TIOU YENOLLOTOL00OVTOL GTO GUGTNUL.

Ytov Hivoxa 1 8iveton 0 ypdvog extéheons Twv dlapdpwy oTadiny Tng enelepyacioc. Me Bdon
ToL amoTeEAESPOTO aUTA TNV Edvar 3 Biveton 0 TEAxOC Sl weloddg Twy oTadiny enelepyaciog ot
UAXO %ot AOYLOUIXG TIOU YeNOoWOTO0VTAL 0TO TEAXO GUCTNHL.

Software | Capture Cluster .| Recognize Align
Implemantation Image Corners "l Object “| Camera

Hardware Find
Implemantation Corners

Ewova 3: Atoywptonoc uhxol /hoyiopixol Tou GUGTAUITOS Tou VAOTO I nXeE.

ANyoprdpog aviyvevong ywviev Harris

H aviyvevon ywvioy etvar iot oAl xowvy| Aertovpyia o€ ToAES eapuoyéc encéepyaoiag edvag xou
o alyopwuoc Harris 8] eivou AVOUPLEBHTNTO O TO BNUOPIAAC aAYOELIUOC Yol auTd TO OXOTO. Y€
YEVIXES YPAUUUES, O alyopriuog Harris deyeton we eloodo uio grayscale euxdva xou oviyvedel o mo
Boaowd yopoxTNELo TG TNG, ONAXDY| TIC YWVIES (onpsicx OTNV EXGVOL IOV TOEOUGLALOLY ONUAVTIXN
TOTUXT| BloXOPOVOT GTNY €VTOoY OE OAEC TIC XUTEVYUVOELS), OL OTIOIEC UTOPOUY VAl OVLY VELTOUY
EMOVELNNUPEVY PE apXeTH oxpifela x8te omd BlapopeTinéc oUVITXES (Y. QWTIOPOS, TEPLOTROYY,
). H onuogLiior tou Harris xan ol TodAeg UTOAOYIGTIXES TEYVIXEC TOU (TE.X. oLVEALT), oTadepr|c
X0l XWNTHC UTOOLIGTOAYG ocpﬁ)pmtw']) x&vouv tov Harris €vo idlodtepa avTinpoomneuTind mupnva
UAOU Yl TOUG oxoToUg TNG epyaciog.

Ané ahyoprduy| dmodn, yio xde eixovootoryeio, o alyopripog Harris uroloyier tnv dOvaun
wac yoviag (“cornerness”) oOugova e tov o LI2 — (LL,)% — 0.04 - (I2 4+ I2)2, émov 12, I
xou 1L, avtimpoownedouy o Gaussian-smoothed ywoueva tov mapaydywy Tng emxovag, To onola
unoloyiCovtar Yéow evog gihtpou Sobel. Tuég Tou cornerness mou uneEBaivouv Eva GUYXEXEWEVO
OPLO X0 OL AVTIGTOLYES TYES TOV UTOAOLTMY OE Lol YELTOVLE 3 X 3 TOL UTO eEETAUOT) EIXOVOOTOLYEIOL
(amoteholy Tomxd UEYIoTO), 0pllouv YWVIEC TNy ewdva. AUTEC Ol YOVIEC QUATEHEOVTOL UE TNV
EQUQUOYT| LG TETRPUYWVIXNG ETLPAVELNS oTNY Tpoavapepieica 3 X 3 Teploy).

Y10 FPGA, o alyéprduoc Harris emitaydvetar oOugwva ye v Podidc Sloyéteuong apyltex-
Tovix| mou @aiveton oty Ewdva 4, xau 1 onolo weprypdgnxe oe VHDL. Ta eixovoctouyeio tng
EXOVOG QopT®VOVTHL oty uvAun “Image Memory”, 1 omola Tpo@odotel Tn povddo “Derivatives
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Ewova 4: Mriox dudrypoquuor aviyveutr) yowov Harris.

Convolution” pe 800 Swboyixéc piméc tng exdvog (1 exovootoryeio ovd xOxho) yia vor uTohoYi-
OEL TIC TOPAYWYoUS TNe eovag dx xou dy. O mopdywyol Tne emxédvag TeTparywviovion xal 6T
oLVEYELX armoUnXeEDoVTAL TEOOWEWE GE dloxplteg VEoelg uvAung. Kde dx?, dy? o dxdy TpowVei-
Tow UEPOVOUEVY oty povdda “Bluring Convolution” yio vo mopdyou povodind o 2, IZ and I,I,
(oL tpoxdTTOVsES THES AVTIXOMGTOUY TIC TOMES TPy WYOUS OTN UVAUY). XTn cuvéyetla to Tpla I
npowdolvan tapdhhnia oty povéda “Cornerness Calculator” (1 tedda (12, 12, I,1,) avé %0%ho)
Ylat TOV UTOAOYIOUS TOU avewTtépou padnuotixod tomou yio xdlde eixxovootolyeio (éva cornerness
avd xOxho, avtixadotd Ty avtioTtoy) Tou tedda I otn uvAun). O twée cornerness tpowdolv-
ton e puh (o ovd xOxho) oty Telinr Lovéda i vor utoo Toy non-maximal suppression xou

interpolation.

> UCTABOTOINCY] BESOUEVWLY

H cuotadonoinon dedouevemy elvon o dtadixascta avdeong evog GuVOROL BEBOUEVLY GE UTOGUVORY
(xatnyopieg), mou ovoudlovtar cuctddec (clusters), étol wote to Hedouéva 6To (Bl LTOGUVOND
va ebvon opduota xou deBopéva oe BLapopeTixd uTocUvoha va Blapépouy opxetd [10]. H cuota-
domoinoT BEBOPEVLY GLYVE GUYYEETOL UE TNV ToEVOUNGT), OTNV oTtola To avTLXEluEVa EXympoLVTL
o€ TEoXAOPIOUEVES XUTNYOoplEC. MTNV cucTAdOTOMOT BEBOUEVLY, OL XATNYORIEC TEEMEL VoL X0
YoploToUV.

Y& auth TNV gpyacio 6Vo alyoprluol cUCTABOTOMONE YENOWOTOLOUVTOL Xal AELOAOYOUVTIL WS
TEOC TO OGO XAUAA EXTEAOUV TO PONO TOUC OTN POY| EMELERYATIAC TNG ELXGVOC TIOU TOPOUCLICTNXE
vopitepa. Autol ot ahyderduol ebvar o k-means xaw 0 DBSCAN xon o oOvtoun meptypagpy| Toug
ofveTar TopoxdTe.

O aAyoéprdpog k-means

O ahyodpriuog yia cuctadomoinon k-means [15] eivar 0 mo eupéwg XPTOULOTOLOUUEVOS BLOUEQLO-
TIXO¢ ahyobpripog cucTadonoinong. Zexwvd ue TNy emhoyr| k aviimpoowneutinmy onuelnv g
apyd xevTpoetdr. Kdie dedouévo otn ouvéyeia avtiototyileton 0To TANCIECTEQO XEVTPOEIDES UE
Bdon o petplxn yio Ty amdo oot mou el emAeyel. Mol dnutovpynloly ol cuCTAdES, Tar XEV-
TEOEWT| Yl xdde cuoTdda avavewvovtal. O odyopriuog ot cuvéyeta enavahouBdvel auTd To 500
BripoTo u€ypt Tot XEVROELDY| Vo UnY ahhdlouv 1) OTOLOBHTOTE GAAO EVOAAIXTIXG XQITH L0 GUYXALONG
va extAnpwiel. O ahyodpriuog k-means eivon Evag greedy alydprduog mou eyyunuéva cuyxAlvel oe
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TOTUXO ENAYLOTO.

O aiydéprdpnoc DBSCAN

O ahy6priuoc DBSCAN [6] unohoyilet tnv muxvdTnto twv SeBouévmv HETPOVTAC TOV aptiud Twy
onuelwy og po yertovid otadepric oxtivag xat Yewpet 800 onueio 6Tt cuvdEovTon av BeloxovTal 6To
E0WTEPIXO TNG YEITOVIAS TOL dAAou. ‘Evo onuelo ovopdleton onuelo muphvag oy 0T YEITOVIA TOU
axtivag eps TEpLEYOVTAL TOLAGYLoTOY minPts onuelo, dnhady| 1 TUXVOTNTU GTY) YELTOVLY TRETEL VA
umepPadver xdmoto dplo. Eva onueio g elvon dueca mpoofdoiuo amd €va ornuelo Tuphva p, av To
q elvon evtog g oxtivag eps tou p. Abo onuelor p xan ¢ AEPE OTL GUVOEOVTOL XOUTAL TUXVOTNTA
av udpyet éva Tpito onuelo o amd To omolo Ta p xan g elvan dueca mpooPdotua. Mia cuoTdda
elvon TOTE €Vl GOVOAO ONUEIWY GUVOEDEUEVOL XOUTS TUXVOTNTA, 1) OTolor TUXVOTHTA Efval UEYLOTY OF
oyéon Je TNV muxvotnTa-tpoofactuotntac. O YépuBoc opiletar w¢ 10 GUVolo TwV oruciny ard
TO oPy 6 GUVOLO BEBOPEVWY TIOU OEV avixoLy oe xouio and Tig ouotddes. H cuotadonolnon pe
Bdon Ty muxvoTnTa etvan v Bpedoly dAeg oL cuoTAdES Ue Bdor TIC TapapETeous eps xou minPts
O EVOL CUYXEXPWEVO GUVOLO DEDOUEVMV.

ITepBdAhov Aoyiouixon

To hertovpyind oot anoTeAe! Evay oNUOVTIXG ToEdYoVTo Tou ETNEESLEL TNV AnddOGT) TOU OAOU
UG TAUTOS, XS xaL TNV TpooTddeior avdmTuéne Tou amouteltar yioo TNy egopuoyr tou. Ilapd
TO YEYOVOS OTL O EVOWUATWUEVN GUCTHUNTY [ULX EUREWS YEYNOLIOTOLOVUEVT] TEOCEYYLOT vl 1
avanTuén hoyiouixol o€ bare-metal nep3dAiov, 6mou o TMEOYEAUUUATIOTAC PTopel Vo TEEEEL TO
Aoyiouxd amevdeiog oto LAXG avtl va yenowonotioel xdmoto AettovpYxd cloTtnue. o eqop-
HOYEC UE YOUNAT) TOAUTAOXOTNTA UTO 0ONYEL OE o EAPEUC AUCELC oL OE EEOLXOVOUNOT| TTORMV.
Qot600, N avdnTuln bare-metal eopuoy®y elvon wa enitovn xou ypovoBdpa diadixacio Aoyw Tng
neploplopévng dldeodtntag o BBAoUAXES Aoylouxo) oL TG avdyxng TEOYEUUUATIoNo) OF
YUUNAO ETUTEDO TWV BLaPOEmY ECUPTNUATWY TOU UALXOU Xl TV TROYEUUUATWY 00HYNONS YLo GUY-
AEXPWEVES ouoxeVEC. Eva dhho uetovéxtnua etvor 6Tl ot tepi3dAioy bare-metal 1 egopuoyy| elvor
single-threaded. Emmiéov, doxipéc xon eviomopog oQoiudtony Yropoly va tpoyuatononioly
HECW cross-compilation.

H evohhoxtixry Aoon ebvon vor yenowonomndel éva Aettovpyind cOGTNUO AvOLXTOU XOOXA TO
omoio mpoopépet o TANdGea amd o@érn. To mo onpavTnd and autd Ta ogérn cuvodilovto
TR TE:

o Ilpoogéper évar uPNAG eninedo agaulpeone Tou cucTAUaTog Uéoa amd o oo BuSlo-
U@y v 10 uAxd. €2¢ ex TOUTOU, O TEOYRUUUATIOTAS UTOPEL VoL ETUIXEVTPWUEL GTNY xUpLa
AELTOLRYIXOTNTA TNG EQUEUOYNG Ywplc vor avnouyel yior AETTOPERELES YoUnAoU ETUTEDOL.

o IlapEyel ETOWOUg PO YE1OT 00N YOUS GUOXEUMY YL EVal EVPU YU TEPLPEQELAXMY.
o Mmopeil va yiver yprjon multithreading yia moapddhnin enclepyacia.

o Ilpoogépet aopdhelor meplopilovtac TNV EQPUPUOYT OE Uit CUYXEXPWIEVT TEQLOY T TNG UVAUNG
XU TPOOTATEVEL O U1 EEOUCLOBOTNUEVES TPOCPBAGELS GTO UAXO.

To npoavapeplévia 0QéRT UTOEOLY Vo UEWWGOUY TO YPOVO OVATTUENG UG EQUQUOYTIC OTUay-
T @0 TPOGPEEOLY EVaL TLO AVETO TERBAAAOV YIo TROYPUUUATIOUO EVOWUATWHUEVLY GUC TNUSTGLY.
Me Bdion owtd Toe TAEOVEXTHUNTA EYIVE YPTOT AELTOURYIXOV GUC TAUATOC Yiot TNV YR YO ovamTUEn
TOU AOYIoUX0U. APXETE AEITOURYIXE UG TAUATO ovOLXTOU XMoo Utopolv va Beetdoly Stodéotua
v SoC FPGAs Baciopéva oe enelepyactéc ARM (n.y. 7to Petalinux tne Xilinx, to Linaro
Ubuntu x.A.m.). Ltnv napoloa epyasio ypnowonothinxe to Xillinux [1], wo Stovour Linux mou



Baoiletoan oto Ubuntu LTS 12.04 yio ARM enelepyaoctéc, Aon nou toupldlel eniong xohd ye tov
Yenolomololuevo tpémo emxowvwviag PS-PL tou neprypdpeton ot cuvéyeta.

YAoroinon Enuxowwviag PS-PL

H enelepyaoio edvoc amoutel uPnid nocootd anddoong xar younis xodbuoTtéenorn aviahaync
oedopévwy petal Tng CPU xou tou emtaryuvt| ulol. AoufBdvovtag umddn auTéc T anuThoELs,
€V TEWTOXOANO GUVEYOUE POTIC (streaming protocol) etvor 1 TAEOV EVOEOELYUEVT) AOOT) Yol TETOLES
EQUOUOYES. e EVa TPWTOXOANO GLVEY0UE PoY|G oL pnyaviopol yetpobiog (handshake mechanism)
neptoptlovton otnv apyr e emxowvwviag petachd tng CPU xou tou emitoyuvth) ulxol xau ot
OLVEYEL, EYXLPA BEBOPEVA UTopoUV Vo ueTapepdoly yia enclepyacio oe xde Saboyixd xUxho
coroylol. H viomoinon plag anotedeoyatinic emxotvwviag ocuveyolg pofic Yo mpémel vo Pactleton
o€ éva unyoviopd dueong tpooméhaone e uviune (DMA).

H oywp DMA emtpénel otov emtoyuvty) ulixol va €yel dueon mpdoPact otn Uviun Tou
cvothuatog anodeopedovtag TNy CPU and 1o v eunieéxeton otny Uetapopd twv dedopévwy. O
UNYAVIOHOS 0UTOG AUEAVEL GNUOYTIXG TN GUVOAXY| mOBOGT) ToL GLGTRUATOC, apol 1 CPU unopel va
ouveyloel va enegepydleTon TaUTOY POV ko Sedouéva. LTy Tapolca epyacia yenotuonotiinxe
QUTY| 1) TEOCEYYLON Yo TN UETAUQOpd dedopévwy and to PS oto PL xau avtiotpogo. e SoC
FPGAs Baowopéva oe ARM éva cupéwe ypnotuonololuevo tpnmtdxolho cuveyolc pofg elvor To
AXI4-Stream, mou Booiletan 670 npwtéxolho AXI4 [11]. Iopd)l” awtd, n vionoinon tov AXI4-
Stream amoteAel ueydhn oyedlao T TEOXANCT), AbY W TOU YPOVOU TOU TEETEL Var damavnUel YL TNV
TOPUUETEOTONGCT] TWV BIETUPMOY TOU ETUTAYUVTY| CUUPOVOL UE UTO TO TEOTOXOAAO, TNV ETXVENOT
¢ 0p¥nc Aettovpylag %ol TNV EVOWUATWOT 0TO GUGTNUA.

‘O00 agopd TNy PeTaPopd aNudtwy eAEyyou oTov emttayUVTH UAXoU (.. start, enable, com-
plete, xh1.), xadde xat yio TV opyxoroinon tou unyoviouob DMA | yenotuonotolvto arholotepa
TewToX0M o emowvmviag. Tétow tpwtéxolha Bactlovton ot €va amhé unyaviopod yetpodiag. Mia
gUpEnC yenoylomolouevn teocéyyion Y SoC FPGAs nou BaciCovtar e ARM enelepyaotéc
elvan T0 mpwTOXoA 0 AXI4-Lite.

[Tpoxewévou va dieuxoluviel 1 vhonoinon tne emxowvwviag yetald e CPU xou tou emi-
ToyUVTH UAXOU €Yve yprion wlag yevixhc Abong, 1 omolo pumopel va evowupatwiel oto clotnua
OYETWXE YT YOpa %ot ETUTAEOY €Vl TPOGUPUOGIUT WOTE VoL XUNOTITEL CUYXEXQUIEVES OVEYXES TNG
EXACTOTE EQUOUOYNS.

ITup7Hvag LVAxoU Xillybus

To Xillybus eivan o oxoyévewn and mupriveg ulol IP, mou avamtiydnxay and tnv etonpeia
Xillybus Ltd. [2], xou amoteheiton and 800 mLPHVES TOU GTOYEVOUY EPUPUOYES UE OLUPORETIXES
avdyxec. O mpwtog muprvac Lo, Tou ovoudletor Xillybus IP, elvon pior Abon mou uodetel to
unyaviopd DMA, %o mpoo@épet €totueg mpog yer|on BlEnapéc emxovemviog GUVEY0US PO HETUED
¢ CPU xau tou emtayuvth vAixol oto PL. Topéyel wo oeipd and yopaxtnetotind yia adénon
NG TR WYIXOTNTOC. AUTd Tar yapoxTneloTixd cuvodilovtar 6Tr cuvEyeLa:

o Buehi&io 650V agopd Tov apriud twy dienapdy Teog to PL xat tny tpocapuoyy| To:v mapouétomy

OLopoppwoNe Yo xdle EeywploTh Blemowpy.

o YuuPato ue dwpopetixols xataoxevactéc FPGAs (m.y. Xilinx, Altera) xou pe Siopopetind
Aettoupyd ovotiuata (m.y. Linux, Windows).

e E0x0h0 TEOYQOUUOTIOTING UOVTELOD, TOU UTOCTNEILEL OLUPORETIXES YAWOOES TROYQOUUO-
tiopoy (t.y. C/C++, Java, Python »ir.).



e IIoh0 amAd povtého Slolvdeong and v mAsupd tou PL, ywelc vo amouteiton emmicov
TeooTdUEL AVATTUENS YLl TNY EVOWUATMON YE TO ETULTUYLVTH LALXOU.

H emxowvovia uhixol/loylopxol pe Bdon to Xillybus unopel va mparyyatonomiel péow evoc
TETPLIUEVOL TROYEUUMATIOTIXOU ovTélou.  Xtov Kodixa 1 dlvete €va evOETInd Topddelyua
emxovwviog péow Xillybus t6c0 yio v amoctohf} 660 xau yior T Mg Sedouévev and/npog
évay emitoyuvTth VAol oto PL. Ot Sienagéc emxowvwviog (m.y. eyypaphc, avdyvomong) yeipl-
Covton w¢ opyela ovoxeudv (device files). A&iler vo onuewwdel 6t undpyet 1 duvotdTnTaL TNG
T tdypovne extéreonc amd Ty CPU dAAwv Slepyaolidv YeTol) TwV AELTOURYLOY EYYRUPHC Xol
AVEY VWO,

O deltepog muprvag LoV, Tou ovoudleton Xillybus-Lite IP, mpocgépet éva eninedo agaipeong
oto mpwtoxolho AXI4-Lite, tpoopépovtog elxoln Tpdofucn Ge xaUToyWENTES 1) LOVAOES UVANNG
mou vhonotovvton 6To PL. Mmogel va yivel yprion TOAATAGY TURHV®Y Xl TO TEOYQUUUATIC TIXO
Hovtélo tou etvar e€{oou amid dco xan tou Xillybus IP, ue opiouévec earpéoeic. Tar vor umopet
va. yenowonondel, n guoxr diediuvor Tou Teénel va avTioTolyNUel 6TO ¥ WEO BLEVIUVOEWY TNG
eQapOYNG Xt 1) TeooPaoT uEcw autol o Topoug 6to PL mpayuatonoeiton ye avodeoeig petofSA-
nTev. ‘Evo mopdderyuo Tou mpoypauuatio Tixol wovtéhou tou Xillybus-Lite diveton otov Komowa 2.

int write_fd, read_fd; int xillite fd;
/x host application data buffer =/ void sxmap_addr;
unsigned char xbuffer;
/x open Xillybus—Lite interface x/

/x open Xillybus write interface x/ xillite_fd = open("/dev/uio0" O RDWR) ;
write_fd = open("/dev/
xillybus__write_device" ,O_WRONLY) ; /x creates user address space for
mapping of Xillybus—Lite interfacing
/x write sizeof(buffer) number of bytes x/

x/ map_addr = mmap(NULL, size ,PROT_READ |
write (write_fd , buffer ,sizeof(buffer)); PROT_WRITE,MAP_SHARED, xillite_fd ,0);
/x close Xillybus write interface x/ volatile unsigned int xpointer =
close (wrire_fd); map_addr;

/x write to address x/

. xpointer = the_value_to_ write;

/x open Xillybus read interface x/
read_fd = open("/dev/ /% read from address x/

xillybus_read_ device" ,O0 RDONLY) ; the_value_read_from_register = xpointer
/x read sizeof(buffer) number of bytes

%/ /x deletes Xillybus—Lite mapping */
read (read_fd , buffer ,sizeof(buffer)); munmap (map_ addr, size ) ;
/x close Xillybus read interface x/ /x close Xillybus—Lite interface */
close (read_fd); close (xillite_fd);

Koodwag 1: Ipoypouuatiotind poviéro y 1o Kodwoag 2: Hpoypouuatiotnind povieho yia To
Xillybus IP. Xillybus-Lite IP.

Teyvixég Luyypoviopmol yia Evooudtworn YAuxolL/Aoyiopuixod

Ta SoC FPGAs neploufBdvouy didgpopoug Ttouceic mou avagépovton oto PS, PL, xou otn uvAun
%o AELTOLEYOUV UE BLAQORETIXT LY VOTNTA poroytol. Luvidwe, to poldl 6to PL dewpelton o
{10 Ue AUTO TV EMTUYLVTGY LAXOV Xou NG uTodourg emxowvwviag. To medfinua etvor 6TL 1)
UTOBOUT| ETXOVGVING UTOREL Vol AELTOURYNOEL 0&LOTIUGTO UEY QL oL GUYXEXPUIEVT] GUY VOTNTA XUk WG
€x ToUTOL uTopel va eumodicel TN adEnom TN améd00T) EVOG ETUTAYUVTY, TOU EVOEYOUEVWS UTOREL
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VoL AELTOURYHOEL UE UEYUAUTERT oLy VOTNTa pohoytol. TTpoxeévou va Eenepaotel autd TO EUTOBLO
€youv mpotael didpopeg Teyvixég cross-clock domain [4].

‘Otav aoyoroluaote ye dedouéva 1-bit wa eupéwe yvwo | teyvint| mou Baciletoan otnyv yerion
ocuvypeovio oy e dimhd flip-flops umopet va yenowwonomdel. Auth n teyvixn lvon Tohd amhr 6To
OYEBLOUO, ahhG amontel TNV EQUEUOYY) TEOCVETWY TEPLOPLOUMY X Td TN QdoT TNG LAOTOINoNG %ot
ToEOUGLALEL aVaELOTIO TY GUUTERLPORA Yiot UPMAES cuyvoTnTee poroytol. Mia dAAn Abor etvar va
EUTAOLTIGTOUY Ol cuvyeovioTéc e Oimhd flip-flop pe éva unyoavioud yepadlag, mpoxewévou va
uetwdel n miovéTnTo B1ddoonc AavlacUEVLY BEBOUEVKY, aLEAVOVTIS OUWS TNV xaUoTEENOT OLd-
doomne TV dedopévey. TIapdN autd, n mpocéyyion auty| aroutel emmhéov Tpoomdielor avamTUENS Xou
uTOpEL Vo 001 YHOEL OE avaxELfr] ATOTEAEGUOTA TTOU OQEIAOVTOL OTT) BLAXVUAVOT) TG XAUG TERNONG
oddoomng mou mapouctdlel xdde orua Tou 1-bit 6tay auTd anoTEAOLY PEPOC CNUATWY TOANATAGDY
bit (1.y. dloaviog dedopévmv).

M evahhaxtixd mpoogyyion yia Ty eiteuln Tou cuyyeoviouol elvan 1 yeron ooy eovwy
FIFO. To x0plo mieovéxtnua twv achvyypovewy FIFO civar 611 nopéyouy aclyypovn avdyvemon
XU EYYPAUPT Amd TEQLOYEC TOU AELTOUEYOUV UE BLUPORETIXEG oUYVOTNTEG poloylol. EmnAicov, n
TEOGEYYLON QUTY| TOREYEL TaL XOAOLYA TASOVEX TY|oTaL:

e ‘Ohot o1 xataoxevaotéc FPGA mopéyouv €toydoug mpog yefon npocopudciuoug tuerveg IP
yioe acOyypoves uviueg FIFO, ou omolol €youv Behtiotonomiel yia yprion otny exdotote
GUGOXEUT) X0l 1) EVOWUATWOT| Toug amoutel eEAdyloTtn npoondieia.

7, / 7’ 4 z 7/ z ’ 7

e Otav o emtoyuvthc VAxol enelepydletar €val 0UVOAO BEBOUEVWY, TO ETOUEVO GUVOLO BE-
dopévwy umopel va amoUnxevel Tpocwpetvd ot va elvon £Toluo Tpog enclepyaoia aUEcns OTo
YeetaoTeL.

o M cuppetewd TAdTn BladAwy BEBOUEVLY UTOPOUY V. Yenoloroindoly 6TIC BIETAPES ELG0-
0oL o e£660uL Twv Pvnuey FIFO. T mapdderyua mohhamhd dedopéva umopoly va YeopoLy
TOEEAANAL o Vo BLaBaoTOOY GELRLXY ATt TOV ETULTUYUVTH) LALXOU.

AopBdvovtag umddn ta Tapandve TheovexThuaTa, Yenowwonotiinxay aclyypoves pviee FIFO
oTo avanTttuy¥év oloTtnua petadl Tou tuprva Xillybus IP xou tou Harris, t6c0 yio tnv petagopd
ONUETWY EAEYYOU OGO Yo YOl TN HETUPOQRE OEDOPEVGY. € YEVIXEC YRUUUES AUTH 1) TEOCEYYLON
OLoPUMTEL TO OWOTO CLYYEOVIOUS TOU GUGTAUATOS UE oEANTEN TPooTdELaL.

T

e A ‘ e N
: . _ Control _ ;
/_‘_} Xillybus-Lite FIFO Harris Corner :
: IP Core Response Detector Control | :
AXIBus i < FFFO < :
A J - o
Dual Core : : 3
ARM : 3 ;
AXiBus | [ ] Pixels | I
i, Xilybus FIFO Harris Corner |
IP Core Corners Detector :
) FIFO L P

Xillybus Clock : Harris Corner Detector
,,,,,,,,,,,,,,,, Domain  __..i...... GClockDomain _ _  :

Processing System(PS) Programmable Logic(PL)

Ewova 5: Telur| apyttextovinr| uhxoU.
Egopuélovtag OAeg TIC TEYVIXES TTOU TEQLYPAPNXAY GE AUTT) TNV EVOTNTA, 1) TEAXT] AEYITEXTOVLXN

ToU cuoTAUaTog divetar ot Ewdveg 5 xou 6. Mty Ewdva 5 napouctdletar 1 apylTeEXTOVIXT TOU
UAX0U, 6Ttou gatveton twe dtaouvdéovtor ta atotyeio Llixol ato PL (m.y. Harris, Xillybus) yetagd
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Capture Send Receive Cluster Recognize Align
Image Pixels Corners Corners Object Camera

(a) Emoxénnon egappoyhc xehot.

Xillinux OS
v412
Driver

User
Application

User Space

/dev/write
/dev/read

Dual Core
ARM

~ .
~
~ .

(b) Emioxémnomn Aeltoupynol cUoTAUATOS Xat NOYIOWXOU.

Ewova 6: Telwnr| apyttextovins) hoylouxoo.

ToUug AN xan pe to PS, otnv Ewdva Ga diveton 1 poY| exTtEAeonS NG €Qopuoyc Tou exTelel O
Yenotng, evey oty Ewdva 6b qalveton mwg 1 e@apuoyr yerotn emxovevel Ye tor amopodtnTa
TEPLPEQLAXY HEGK TOU AELTOURY X0V GUCTAUTOC.

ITeoapotind AnoteAéopata xow Avaiuvor Enddcewy

H evotnto autr ETXEVTRMVETAL OTNY TOROUGIACT) TV ETLOOCEWY TOLU GUCTAUATOC TOU avamTOYUNXE
UE BAom TIC YENOWOTOOVUEVES TEYVIXES TTOL TopouatdoTnXay vwpeltepa. H avdluon twv emddoewmy
yivetaw o ouvdptnon pe TN ouyvotnta Acttovpyloc Tou Harris xou cuyxpivete 1 vhomoinom ot
ovoxevy| Zynq XC7Z020 SoC FPGA pe evahhaxtinég mhatgpopueg encéepyooiog amd mAeupds
YPOVOU EXTEAEOTC, XUTAVIAWGT Loy Vog xau evépyelag. Emmiéov 1o tehnd clotnua alloloyeiton
(¢ TEOG TNV TOLOTNTA TWV ATOTEAECUTLY TOU.

‘Oha tar merpdpotar Slelhinpay e o (Blor dedopéva elc6dou — exdva ueyédoug 512x384 —
Tot omolal Ty TEOUTOUNUEVUEVOL GTN) VAU TOU GUCTAUNTOS Xat (BLEC TWES YId TIC TORUUETEOUC
dlouoppwong tou alyoprduou Harris. EmmAcov, Sluc@ahiotnxe 6Tt 0eV EXTEAOUVTOY TEQLITTES OLEp-
yaoieg oto PS. Enedn 1o yéyetog tng emxdvag ebvar mohd PEYSAO yid VO YWEECEL GTOUC TOPOUG
uviung tou FPGA| 1 exdva ywelotnxe oe Tohhég uxpdtepeg LOVES, TROXEWEVOU VoL ETEEEQYAO-
o0V Btadoyxd (Ue enavoypnotponoinon twy topwy tou FPGA). Ynuewdveton 61t 0 oprdude twy
vy €yel onuovTxy eTinTwon 6To cuvolxd yeodvo extéieonc. Tlpdtov, ol {wveg emxaibTTouy
1 plor TV AN Yo vor e€ao@ahlo TeL AEITOURY NG LlGOBUVAUO OTOTEAEGUN UE TOV apytxd olyopLiuo,
XL G €X ToUTOL, 1 adEnon Tou aptiuod TV (wvmV elodyel NEYUAUTERY YEVIXE xaducTépnon
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oto ypeoévo extéheons. Aeltepov, 600 uxedTEpog eivon 0 oprduds TV Lwvmy, AYOTERES XA
OELC CLOTAUATOS TEETEL VoL Tparyatonotnoly Yo vo yetagepdoly mpog to PL to dedopéva. Xtny

1.1 T T 100
—&—Bandwi dt h

- 4 -BRAM Ui lization

1.05 b 90

80

-~ Z

c

§- 70 ©

-

~ ©

< 60 N
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3 40 Mm

Bands Per | nmage

Ewoéva 7: Edpog (vng cusTAUITOS Xt xatovdAwon tépwy uviune oto FPGA cuvoptioel tou
aprduol Ty {ovey avo exova Yenoylorowwvtoag 16-bit ebpog dlabiou eyypaprc amd to Xillybus.

Ewova 7 anewoviCeton 1 oyéon petalld tng yenong népwyv uvAune oto FPGA o tou ebpoug {ovng
emxovwviag cuvaETAcEL Tou aELUo) TwY (wVmy ava exdva. Emimhéoy, wa dAAN TopdueTeog Tou
ennpedlel To vpog Lwvng NS Emxowmviag lvor To €0p0¢ TNG BLETAPAC EYYEAUPNS TWV OEGOUEVHV
am6 o Xillybus. ITpoxewévou vo emiteuydel to péytoto Yewpentind edpog Lovne twv ~2,4 Gbps
mou npoo@épet to Xillybus IP, 32-bit €lpog diadhou Yo TN UETAPOES TwV DEDOUEVWY TRETEL VoL
Yenoylornotniel.

YnuetdveTor 6TL yior Tor UTOholma TeLpaudTa, yiveton yerion 12 {wvov ava emédva, pe 0pog
otdhou emxotvoviog 16-bit. Me dedouévn auvtr Ty unddeon, otov Iivaxa 2 diveton 1 cuvohixn
YPNon oWV xou 1) cuYVOTNTA Acttoupyiag Tou CUCTAUATOS, 660 aPopd TNy TAeupd Tou PL xou
n omola avolbetar o€ BVo pépn, otov akydpriuo Harris (Harris Accelerator) xou tnv emxowvemvio
(Xillybus IP Cores). Autd mou mapotneeiton eivon 6Tl 10 x60TOC EMXOWVWVING O TOPOUE Elval

ivoxag 2: Xuyvotnta Acttoupylog xat Yerion ToOpwmY ToU GUC THUNTOS AVUAVOVTIS T OTNV ETUXOLV-
ovio Xillybus xau tnv vhonoinon touv Harris.

Harris Accelerator Xillybus IP Cores
XC7Z020 PL Resources Available Used  Utilization Used  Utilization

LUTs 53200 11922 22% 2768 5%

DFFs 106400 14038 13% 2656 2%

BRAMs 140 52 37% 1 1%

DSPs 220 54 25% 0 0%

Max. Operating Freq. 300 Mhz 100 Mhz

OYETWXE YoUNAG o€ GyEoT UE To x60T0¢ LhoToinong tou Harris.

Yy Ewéva 8 aneixoviletan 0 yéoog ypdvog extéreons tou akyoplduov Harris oto PL xou o
MECOC YPOVOC ETLXOVLVING PS/PL ywx NV eMECEPY UG UG ELXOVOS (OC GUVERTNOT TG CUY VOTNTOG
Aertoupyiag tou Harris. O ypdvog emxovmviog avodbetar o€ 500 UEET), TOV YEOVO ETUXOWVOVING Yid
TOV EAEYYO X0 TOV YPOVO Emixovwviag Yo To dedoueva. H emixovwvia eAéyyou avagepeton 6T
xenon tou muprva Xillybus-Lite IP nou yenowonoteltar yio T UETABOOT TV ONUATWY EAEYYOU,
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— @& —Control Conmuni cation Tine
—® —Data Communi cation Tine
'Y —4-Harris Detector Processing Tine

N —w¥—Harris Detector Processing + Total Communication Tine
12 =

Average Processing Tine per Franme (nsec)

200 150 200 250 300
Harris Detector Operating Frequency in PL (Miz)

Figure 8: Xpdvog extéleong e@apuoyfc cuvapTrhosel Tng ouyvotnTag Aettouvpylog tou Harris oto
PL.

eve 1) emxovevior dedopévwy urtodnimvel tov tuprva Xillybus IP yia tn yetagpopd dedopévemy.
LNUELOVETUL OTL O GUVORXOS YEOVOC ETOVGVING elvon oYEdOY oTalepdc 68 OAEC TIC CLUYVOTNTES
Aertoupyiog Tou Harris. Autéd mpoxdntel amd To YeYovog 6T ) emxovemvio Baciletar oTtoug Tuphveg
Xillybus IP twv omolwv 1 Aertovpyia eivon otodepr| ota 100 Mhz. And tnv dhkn mhevpd, o ypdvoc
extéheong tou Harris peidvetan xodog awédvetar 1 ouyvotnta Tou poloylol. Aaufdvovtag unégn
Vv Eixéva 8 autd mou mopatnpeiton ival 6TL To TOGOGTO TOL GUVOALXOU YeOVou eNEEepyaciog Tou
damavdtal oTNY Emxowmvia augdveton xomeg auvgdvel 1 ouyvotnta Aettoupyloc tou Harris. I'
nopddetypa, oto 100 Mhz to mocootéd tou ypdvo mou danavdton oty emxowvevia eivon 8% Ttou
ouvoAxol ypbvou enelepyaotac, eve oto 300 MHz avZdver oto 25%.

Y1y Eéva 9 mopouctdleton 1 xatovdAnmaon oy 00¢ ToU GUC THUNTOS WS GUVAETNGCT TNE CLUYVOTY-
T Aertoupylag tou Harris. Metpridnxe yweiotd n xatavdiwon toyvoc oto PL, ato PS (poli pe
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Ewéva 9: Koatavdhwon woybog cuvapthoel Tng cuyvotntog Asttoupyiog tou Harris oto PL.

v uviun DDR) %o to nepupepetond tne mhaxétac xatd tny enclepyaocio evog ueydrou oprduod
ewévov. ITupovotdleton eniong n ouvohxt| xatavdiwon wyboc tne mhaxétog (PS, PL xa I/0)
OE XUTAC TAOT) AVUUOVAS Xt EXTEAEOTC TNG EQapupoyic. AuZdvovtag Tr) cuyvoTNTa AetToupyiog Tou
Harris mopatneeiton 611 1 xotavdiwon 1oy bog avgdvel yoouuxd oto PL eve oto PS undpyet uévo
wor TOAD Wixpt| UeTofolr) Tou ogeiletar oty adénon Tou aprduol TwV XANCEWY GUCTHUATOS TOU
meEnel va e€unneetnioly oo Blo ypovixd ddotnua. H uixer adénon e woyboc mou mopatnpei-
ToL 6TV TO GUOTNUA EVOL OE XATACTACT) AVOUOVH S EEVAL ATOTEAEOUN TNG OTATIXNG XATUVIAWOTG
woyvog oo PL. Enfong napatneeiton otL 1 xotavdhwon oy 0og omd to 1/0 TNG CUOXEUNC XL TX
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Ewdéva 10: Katavdhwon evépyelag cuvapthoetl Tng ouyvotntag Asttoupylog tou Harris oto PL.

TEPLPERELd TNG ThaxETag Topapevel otadepn, xadwg dev yernowonoteitar xdnowo and autd 6To
oVoTnua mou avartUyUnxe. A&iler vo onueiwdel 6T, axduo xon oy T0 GOCTNUA XATAVUADVEL TEPLO-
ootepn oyh oe uPnhdTERESC cLUYVOTNTES Aettovpyiag Tou Harris, elvan evepyetond mo amodotixd
oTic LPNAéc cuyvoTNTES Yo Tov (Blo pdpTo epyacioc, dnAudY otav exteheitan 1 eapuoyr. Ot
ueTenoelg Tng evépyetlag mou divovton oty Ewdva 10 emBeforcdyvouy auth Ty ooy,

[o vor amodeyVel 1 amoTEAEGUATIXOTNTA TOU GUCTHUNTOS Tou avamtiydnxe, 660 apopd To
YEOVO EXTENEONG, TNV XATAVAIAWOT| oY VOC XL EVEQYELNS, TEUYUXTOTOWUNXE CUYXEIOT UE EVOA-
hoetixée mhatpopueg enedepyasiac. H Ewmodva 11 napoustdler ) olyxpion TV EMBOCEDY TNG
vhoroinone oe SoC FPGA e vhonowoeic xodapd ot hoylouxd mou exteAolvTon o€ eneCepYao TN
ARM Cortex-A9 (uévo PS) xou enelepyaot Intel i5-4590. Me Bdomn auTé TIC UETPHOEIC OTOV
Hivoxa 3 mopouoidlovtar tar x€pdrn o anédoon tou cucsthpatog o SoC FPGA évavti twv 600
evolhox Ty Thatgopuoy. Mropel va gavel xadopd 6Tt 1 SoC uhonolnon elvon avotepn omod
drodm anddoone/watt. Enuerdveton 6Tt av xou 1 vhonoinan oe ARM (XC7Z020 PS) xatavohmvet
Ay oTepn oy ¥ 1 vhomoinon Tou cucthuatog ot SoC FPGA elvar mio evepyetaxd amodotux).

ivaxac 3: Képdog ambddoone tne vhonoinone SoC FPGA ue evoddoxtinéc mhatpopues enelep-
yaotag

XC7Z020 PS Intel i5-4590

Execution Time 71.6 % 2.5%
Power Consumption 0.56 x 41.6x XC77020 PS+PL
Energy Consumption 40.4x 104 %

[ v ohoxnpelet 1 atohdynon), 1o cUCTNHN SOXACTNXE OE VA TRUYUTIXG GEVIELO OOV
T0 oLOTNUA ToEOXOAOLYOUCE EVa OTUTIXG aVTIXEWEVO opfoywviou oyfuatog xo mpootodoloe
vo euduypopuioet Ty xduepa ue to avtixeipevo. O oxomdc auTol Tou TEWRdUATOS HToy Vo BelCeL
TGO %ok TO TEMXO GVOTNUA EXTEAEL TN AEtTovpYiol TOU LAOTIOLWYTOS TN pot enclepyaoiog Tou
TopouctdoTxE vopitepa. o 1o oxomd autd ye Ty xducpa eAfpinoay 1000 ddoyxes ebdveg
TEOXEWEVOU VOl TpOPodoTHooLY To clotnua enelepyaoiac. To mpwto pétpo alloAdynong Ytav
vo petenldel o opriudc Twv emdvey oTIC omoleg To cloTnua HTay o Yéon vo avayvwploel To
avtixeipevo. Tautdypova, 6tay To choTnua ftay o VEom var avary vwploel To avTIXE{UEVO OE TEEIC
OLUDOYIXES ELXOVES TO UTOTEAEOUA EQUNVELOTAY G ETUTUYNC EVDUYEAUUULOT UE TO aVTIXELUEVO Xou
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Ewoéva 11: Xdyxplon twv emddéoewy g viomoinong SoC FPGA pe evahhoxtinée mhatqpopueg
eneéepyaoiag

xotarypapotay eniong. Me Bdon autée Tic peTpEr|oElg, 1 TodTNTA TwV akyopliuny atoloyRinxe
UE TOV UTOAOYIOUO TOU TOGOGTOU emTUY®OY eVJuypouploswy, dnhadh TOCEC OuddES TV TELOVY
OLBOYIXWY EMOVWY UETERUNXAY amtd TO UEYIOTO BLUVATO TwV 333.

O Ilivaxoc 4 mapouctdlel Ti¢ PETPNOE Tou EAAPUNCAY OTOY 1) XAUEQO UETAXLVOUVTOY GTOV
TELOOLAO TAUTO XUQTECLAVE Y (PO XL EMUTEETOTAY 1) OYL VO TEPLO TEEPETUL YUPW ATO TOV OTTIXO TN
dCova. ‘Omeg umopel vo gavel amd Tov Tivaxo, OTaY 1) XUEEN EMITEETOTAY VoL TEQLO TRUPEL oL O
alyoprduog k-means yenowlonololTay Yo T cLCTAdOTOMON TWV YwViwY Tou £Bptoxe o Harris,
HOVO GE €val TOAD o aptdud exdvwy, 10 GUCTNUA ATV OE VECT VO aVoyVWEIoEL XL VoL EU-
Yuypauuo el pe to avTxeluevo, €yovtog nocooto emttuyiog wovo 5%. Amd tnv dAAN mAevpd,
otav yenotponotinxe o alydpriuoc DBSCAN 10 moc0o16 emituylog Tou cusTAUATOC £QTAOE TO
75%. Auté o tepdoTIo Ydoua umopel vo dixoohoynlel and to yeyovoc 6t o k-means Sev pmopet
va Staxplver petad YopBou (outliers) xou yprowwy BeBOUEVWY, Eva YopaxTNEOTXG Tou elvor
EVOWUATWHPEVO TNV hoyixy) Tou alyopiduov DBSCAN. Téhog 6tav 6ev emTpeNOTAY TEQIGTEOPN
NG XGPEPOC TEPL TOV OTTIXG dZova, o k-means Beltinoe onuovTixd Ty oxp(Beiol TOU CUG THUO-
T0C, UAAG Oyl apxeTd KoTe Vo Yewpniel we Wior xah) ETAOYT Yo YEHOT aXOUn) XL YLo QUTH TNV
e mepintwon. Xe avtideon pe tnv Bertinon tou k-means, o olyoéprduoc DBSCAN alénoe to
1060076 emtuyioc Tou ~2%.
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[Tivacag 4: Iowdtnto adyoplduwy VAOTONUEVOU CUCTALAUTOC.

Processing pipeline Processing pipeline

with k-means with DBSCAN
Dataset 1 Dataset 2 Dataset 1 Dataset 2
Rotation v X v X
Num. of recognition 127 623 832 863
Successful alignment 17 175 250 256
Succes rate 5.1% 52.8% 75.1% 76.9%
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Chapter 1

Introduction

1.1 Image Processing in Embedded Systems

Image processing is a rapidly growing area of computer science. Its growth has been fueled by
technological advances in digital imaging, computer processors and mass storage devices. Fields
which traditionally used analog imaging are now switching to digital systems, for their flexibility
and affordability. Important examples are medicine, film and video production, photography,
remote sensing and security monitoring. These and other sources produce huge volumes of
digital image data every day, more than could ever be examined manually.

Image processing can be defined as the manipulation of an image for the purpose of either
extracting information from the image or producing an alternative representation of the image.
These operations can be grouped according to the type of data that they process as presented
in Figure 1.1.

At the lowest level of the image processing pyramid are those operations which deal directly
with the raw pixel values and can be though as prepossessing steps. Such operations includes
distortion correction, contrast enhancement and filtering for noise reduction or edge detection
etc. At the middle are those algorithms which utilize results obtained from the low level
processing. Operations at this level can be grouped in two main classes named Segmentation and
Classification. Segmentation operations such as thresholding, color detection, region growing
and connected components labeling occur at the boundary between the low and intermediate
levels. The purpose of segmentation is to detect objects or regions in an image, which have some
common property. Classification operations use features of each region to identify objects or
parts of objects, or to classify an object into one of several predefined categories. Classification
transforms the data from regions to features, and then to labels. The data is no longer image

Objects Recognition
Classification
Features Intermediate Level
Segmentation
Pixels Low Level Preprocessing

Figure 1.1: Image processing pyramid.
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(a) Point operation. (b) Local neighborhood operation.

(c) Global operation.

Figure 1.2: Various types of image operations.

based, but position information may be contained within the features, or be associated with
the labels. At the highest level are those methods which attempt to extract semantic meaning
from the information provided by the lower levels.

Figure 1.2 presents another way to categorize image processing operations based on how
many input data must be processed to obtain a result or in other words the computational
overhead associated with a given operation. These categories are

e Point operations : The output value at a specific coordinate depends only on the input
value at that same coordinate. These operations have constant computation time as they
just apply a simple transformation to the input data (Figure 1.2a).

e Local neighborhood operations : The output value at a specific coordinate depends not
only on the input value of that specific coordinate, but also on the values on the neigh-
borhood of that same coordinate. These operations have computation time proportional
to the size of the region being processed (Figure 1.2b).

e Global operations : The output value at a specific coordinate depends on all the values
in the input image. These operations have computation time proportional to the size of
the image being processed (Figure 1.2¢).

An embedded system is a computational unit embedded in electronic devices combining
computer hardware and software. They are getting more and more common in cars, cameras,
and even on washing machines and fridges. Some examples are auto-focus cameras, battery
chargers, cell phones, temperature controllers etc. They are specifically designed and optimized
for a particular function or a range of functions, to achieve shorter startup times, higher pro-
cessing speed, greater reliability, low cost, low power consumption and/or some other property
that a general-purpose computing system may not fulfill.

Embedded systems are particularly well suited to process data streams at high speeds with
fairly small programs, that is why recent years have witnessed a dramatic increase in the use
of embedded systems to run image processing applications. Other than on CPUs, data can be
processed in a highly parallel fashion, with high speeds and low power requirements.

1.2 FPGAs in Image Processing

An FPGA based design is inherently parallel in nature. Different algorithm sequences will be
mapped to different hardware modules in a FPGA, which operates concurrently. The main
reasons for choosing FPGA as an embedded image processing platform are given below:
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1. Parallel operation : FPGAs is a collection of logic elements which can be electrically
re-wired. FPGAs implement an application by developing separate hardware for each
functionality and hence such designs are inherently parallel. Each instruction that the
programmer enters will be mapped into a separate hardware component. Thus, such a
design is suitable in those image processing algorithms, which has significant amount of
parallelism in them.

2. Execution speed : Due to parallel nature of FPGA’s, the execution speed will be con-
siderably increased. In practical applications, the image will be partitioned into different
sub-blocks and then each block will be processed in parallel.

3. Flexibility : An FPGA based system provides full programming flexibility. Current
FPGASs have sufficient logic resources to implement even complex applications in a single
chip. Modern FPGA based systems will adaptively reconfigure according to the different
operating environments. Hence FPGA based systems are inherently flexible.

4. Low power design : An FPGA based circuit implements several operations in one
clock cycle simultaneously. This allow clock speed to be lowered significantly. In fact
there will be a reduction in clock speed over a serial processor of the magnitude of 2 or
more. Reduction in clock speed corresponds to reduction in dynamic power consumption
of the system. Thus FPGA based design facilitates a low power design.

1.3 Thesis Goals and Organization

Nowadays the ever-increasing advancements in technology has led to the deployment of more
complex and computationally intensive image processing algorithms. Many of these algorithms
have been adopted in present-day embedded systems targeting a variety of applications such as
automotive, 3D navigation, surveillance, etc. However in real-time embedded systems, where
latency and power play an important role, software-oriented implementations running on gen-
eral purpose CPUs may not offer satisfactory solutions. This stems from the fact that CPUs
have limited parallel processing capabilities to support the performance requirements of these
applications and consume considerable power. In order to overcome these downsides and in-
crease the performance/watt, various approaches have been proposed where dedicated hardware
is deployed alongside the CPU to accelerate the critical parts of the task or even the entire
algorithm. These approaches base on various system-level combinations, such as CPU-DSP,
CPU-GPU and CPU-FPGA. However, these kind of systems suffer from performance overhead
arising from the increased communication delays between the different components. Another
alternative solution is the fabrication of custom ASIC. However, this approach is considered
inefficient in terms of time-to-market and development cost.

The primary goal of this thesis it to design and implement an image processing system for
embedded applications and its deployment on a System-on-Chip (SoC) platform, specifically
a SoC FPGA. As a case study the identification and tracking of a rectangular shaped object
is selected. More precisely the system must be able to process images coming from a camera,
recognize the predefined shape of the object and inform the user how to move the camera in
order to keep tracking the object until it has focused in predefined matter. A key element of
this thesis is the study of the image processing steps and the identification of critical steps that
significantly affect the processing time. By applying hardware/software codesign methodologies
individual parts are implemented as hardware components described using VHDL and the rest
developed as software components using the C programming language. At the same time this
thesis can be considered as a set of codesign guidelines, which aim to mitigate the development
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process, increase productivity and decrease time-to-market when deploying image processing
applications on SoC FPGA. More specifically:

1.

3.

It exhibits the benefits of using an open-source operating system on the embedded pro-
Cessor.

Describes the employment of ready-to-use communication approaches between the HW
and SW components.

Presents synchronization techniques that guarantee the correct operation of the system.

Finally the system is evaluated based on measuring the success rate of the overall opera-
tion and on measurements related to the platform used, such as power consumption, resource
utilization, execution time etc. The remainder of this thesis is organized as follows:

Chapter 2 presents SoC FPGAs, as well as the SoC FPGA platform used in this thesis.

Chapter 3 presents the image processing steps used in the system and how these steps
are mapped to hardware and software. Also presents some theoretical and technical
background on key features of the system.

Chapter 4 discusses and compares different software environments for developing appli-
cations running on the CPU of the SoC platform.

Chapter 5 discusses synchronization techniques that can be applied for the correct inte-
gration of the different components of the system and presents the solution adopted in
this thesis.

Chapter 6 presents the evaluation of the developed system .

Chapter 7 concludes this thesis giving an overview of this thesis as well as future work
that can be done.
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Chapter 2

Hardware Platform

2.1 FPGAs

Invented back in the 1980’s an FPGA device is comprised of reprogrammable hardware. Con-
ventional microchips and Central Processing Units (CPUs) are static and their internal struc-
ture cannot be changed. They are specifically manufactured to process software as efficient and
fast as possible, but always one single instruction at a time. An FPGA on the other hand, con-
tains many Configurable Logic Blocks (CLBs) that can be connected to each other in different
ways as defined by an HDL description of the desirable operation. This gives the freedom to
process many input data in parallel with the possibility of speeding up computation time by
orders of magnitude. If the architecture is faulty or outdated, it can simply be reprogrammed,
while a static chip such as an Application Specific Integrated Circuit (ASIC) would have to be

replaced completely.
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Figure 2.1: General FPGA architecture alternative.

The internals of an FPGA are made up of many instances of a couple of logic units such
as multiplexers, Flip-Flops (FFs), Look-Up Tables (LUTS), and memory blocks called BRAM.

20




In later years Digital Signal Processors (DSPs) where added that can assist in floating point
operations. The HDL languages (e.g. VHDL, Verilog) provide a way for the user to specify
the behavior of the system. The code is then used to synthesize an actual digital circuit that
is implemented using FPGA resources to determine which of its resources are connected to
which. Figure 2.1 shows the general layout of an FPGA, where FFs, LUTs and multiplexers
are grouped together to form the Configurable Logic Blocks(CLBs).

2.2 SoC FPGAs

In the past, the term System-on-Chip (SoC) has usually referred to an Application Specific
Integrated Circuit (ASIC), which can include digital, analogue and radio frequency components,
together with mixed signal blocks for implementing analogue-to-digital and digital-to-analogue
converters (ADCs and DACs). Around 2010 Xilinx presented the Zyng-7000 All Programmable
SoC family of devices, the first SoC device that combined the features of a Dual-Core ARM
Cortex A9 Processing System (PS subsystem) with Programmable Logic (PL subsystem), or
in other words a dual-core processor with an FPGA core. Although dedicated processors have
been coupled with FPGAs before, it has never been quite the same proposition.

In Zynqg, the ARM Cortex-A9 is an application grade processor, capable of running full
operating systems such as Linux, while the programmable logic is based on Xilinx 7-series
FPGA architecture. The integration of an ARM-based processor with an FPGA in a single
device offers developers the capability of applying a hardware/software unified approach to
embedded system designs and allows levels of performance that two-chip solutions (e.g. CPU
externally connected with an FPGA) cannot match due to their limited I/O bandwidth, latency
and power consumption. Xilinx has adopted the AMBA bus with AXI protocol/interface as
the primary means of communication between the PS and the modules implemented in PL as
shown in Figure 2.2 where the architecture of the Zynq SoC devices is presented.
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Figure 2.2: Zynq SoC architecture.

The AMBA AXI Protocol

AXI is a protocol belonging to the ARM AMBA family of microcontroller buses. The AMBA
protocol is an open standard on-chip interconnect specification, allowing the connection and
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management of many controllers and peripherals in a multi-master design. Much like the
requirements for the rest of the AMBA family it is targeted at high-performance, high-frequency
system designs. The AXI protocol is optimised for FPGA implementation through coordinated
development with Xilinx and is used as a means of communication between IP cores of an
FPGA design. The AXI protocol in particular exhibits the following key features|axi spec.]:

address/control phases are separate from data phases

byte strobes enable unaligned data transfers

burst-based transactions possible with only start address issued

read and write data channels are separate allowing low-cost Direct Memory Access (DMA)
multiple outstanding addresses can be issued

transactions can be completed out-of-order

The AXI protocol features burst-based transactions, with each containing address and con-
trol information on the address channel. Several AXI masters can be connected to several AXI
slaves through an AXI interconnect. The master issues all the commands and control signals
and the slave must respond accordingly. The AXI protocol specification defines five different
channels: 1. Write address 2. Write data 3. Write response 4. Read address and 5. Read data.
Figures 2.3 demonstrates communication between an AXI master and slave.

Write address channel
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and
control
>
Write data channel
Master Write Write Write Write Slave
interface data data data data interface
A A A A
Ll » » »
Write response channel
Write
response
«—

(a) Write interface.
Read address channel

Address

and
control
Master | ——>» Slave
interface Read data channel interface
Read Read Read Read
data data data data

(b) Read interface.

Figure 2.3: AXI4 channels architecture.

There exists three types of AXI interface, each suited to a different nature of application[14]:

e AXI4 (or AXI4-Full): The high-performance interface, suited for memory mapped
communication allowing bursts of up to 256 data transfer cycles per address issued

o AXI4-Lite: A light-weight variant of the interface, used for memory mapped single
transactions. This variant has the benefit of a smaller logic footprint with a simplified
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interface. This variation does not support burst data and so only provides a single data
transfer per transaction

e AXI4-Stream: No address phase means this is not memory mapped and allows for an
unlimited data burst size. A single channel is defined for the transmission of streaming
data, modeled after the Write data channel in Figure 2.3a but allowing bursts of an
unlimited amount of data. Connection is from master to slave only, so if bidirectional
transfers are required both peripherals must be of type master/slave.

ZedBoard developmnet board

In this thesis the Zedboard developemnt boad was used to develop the image processing system.
The ZedBoard is a low cost, community-based board which features the XC7Z020 Zynq device.
It is a joint venture between Xilinx, Avnet and Digilent. The XC7Z020 Zynq device is one of
the smaller devices in the Zyng-7000 family and it is based on the Artix-7 logic fabric, with a
capacity of 13,300 logic slices, 220 DSP48E1s and 140 BlockRAMs. The device also contains
an XADC hard IP block, although it does not feature high-speed transceivers or PCIExpress
blocks. ZedBoard features a variety of peripherals such as:

General purpose 1/0 (9 leds, 8 switches, 7 push buttons)

Audio codec (supports line in, line out, microphone and headphone)
Video (VGA and/or HDMI)

OLED display

PMOD interfaces (5 total)

Ethernet

USB-OTG for connecting USB peripherals(ex. keyboard, mouse, camera)
USB-JTAG for programming purposes and debugging

USB-UART for serial communication with a host computer

SD card slot

FMC interface

XADC header

Xilinx JTAG header

In addition the Zynq device interfaces to a 256Mbit flash memory and 512MB DDR3 mem-
ory, both of which are found on the board. There are also two oscillator clock sources, one
at 100MHz connected to the PL subsystem, and the other at 33.3333MHz connected to the
PS subsystem. The block diagram of Zedboard is shown in Figure 2.4 and the board itself in
Figure 2.5
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Chapter 3

System Description

3.1 Processing Flow

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Capture | Find | Cluster _| Recognize | Align
Image Corners Corners Object Camera

Figure 3.1: Processing flow of the developed system.

The implementation of the system is based on a six stage processing pipeline as shown in
Figure 3.1. The stages are described below:

The 1% stage refers to image capturing by means of a camera connected to the platform.
The image is temporally stored in a frame buffer allocated in the main memory of the
system ready to be processed.

The 2°¢ stage is the processing of the image to find corners, using the well know Harris
Corner Detector algorithm. Here, the stored image becomes input to Harris, which in
turns outputs the corners found by means of pixel coordinates and the strength (“cor-
nerners”) of the corner response. The results from this stage is stored in their own buffer
in memory.

The 3'9 stage is where the results obtained from the processing stage (Stage 2) are pro-
cessed by a clustering algorithm. The output of this stage is a number of clusters (groups).
At the end of this stage each corner found is categorized into one of this clusters and a
representative point (centroid) is computing for each cluster. For this stage two clustering
algorithms are tested, namely k-means and DBSCAN, which will be discussed later.

The 4'" stage computes object’s geometry based on the centroids computed in Stage 3
and compares it with a predefined abstract model of the object being tracked.

Finally during the 5" stage if the detection of the object is successful, the system com-
mands how to move the camera in order to be aligned with the object.

3.2 Hardware/Software Codesign

Hardware/software codesign refers to the simultaneous design of both software and hardware
in a system. Software is usually executed in processing elements, such as, Central Processing
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Units (CPU) and Digital Signal Processors (DSP). Hardware logic is commonly implemented
in Application-Specific Integration Circuit (ASIC) or FPGA. Since software and hardware sys-
tems have different characteristics, a combined system has the potential to take the best of
both worlds. In [13] the author analyzes the major properties of the hardware/software code-
sign: coordination, concurrency, correctness, and complexity. Hardware/software codesign has
largely evolved since the first time it was used in electric systems. In the first generation of
codesign, partitioning was the main issue to be solved. Two approaches were proposed:

e Start with a hardware-only system and move functionality to software, with respect to
system constraints, and end up with a codesigned system [7].

e Start from a pure software implementation of the system and then migrate software
functions to hardware blocks in order to meet systems constraints [5].

In the second generation, multicore and multiprocessor have been utilized and thus, instead
of a single thread, multithreads were used. Thread scheduling became one of the main challenges
for the area. Moreover, hardware/software interface and communication are critical since they
dramatically affect system performance and design space. According to Teich [13], the codesign
is now in its third generation, where the time-to-market cycles are shortened by optimizing the
hardware/software development flow (Figure 3.2).

Requirements

v

Specification

v

Algorithm
Design

v

System Design
=+
HW/SW Partitioning

| |
v v

Hardware Hardware/Software Software
Development «—>{ Integrationand [« Development
and Testing Testing and Testing
\ 4 v
System
Integration and
Testing

Figure 3.2: The modern approach on hardware/software codesign.

Moreover, languages for hardware/software codesign are necessary. The ideal language
would be suitable for both hardware and software development. It seems though that neither
Hardware Description Languages (HDLs) nor programming languages (e.g. C/C++, Python
etc) can replace the other, even though a lot of time invested on designing new tools and
frameworks to mitigate development effort and combine the two different approaches. A good
example of these efforts are the High-Level Synthesis Framework (HLS) [3] based on C program-
ming language and model based design framework such as MATLAB Simulink. Unfortunately,
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there are significant differences between hardware and software that pose significant challenges
to describing a hardware implementation using a software language. Although both of these
frameworks can be used to get a first evaluation of the processing algorithm.

In hardware/software codesign the application is initially modeled in an abstract form, with-
out committing tasks to either software or hardware. This enables the designer to concentrate
on algorithmic development rather than implementation details. Higher degrees of abstraction
enable models to be developed and simulated more quickly. Common to all modeling methods
is the process of refinement from abstract behavioral model to implementation, during which
the system must be partitioned and each part assigned to either hardware or software. In
codesign, the initial modeling of inter-task communication is abstract. It is advantageous if
abstraction can be retained during task implementation. This reduces the effort of swapping
tasks between hardware and software at late stages of the design cycle.

As mentioned, a significant design task in codesign is the partitioning of the application
into software and hardware. In simple applications manual partitioning may be sufficient. In
more complex systems, the amount of design space exploration possible would be limited, and
the results unlikely to be optimal. For the developed system, after profiling the processing
steps mentioned earlier, the manual partitioning approach is adopted due to the low number
of processing steps used in the system.

3.2.1 System Partitioning

In table 3.1 the results obtained from profiling the different processing steps after implementing
the whole processing flow as software components are given.

Table 3.1: Profiling results for the processing steps of the developed system

Find Corners Cluster Corners . ) .
Capture Image (Harris) means T DBSCAN Recognize Object | Align Camera
< 1 msec ~ 430 msec | < 1 msec | < 1 msec < 1 msec < 1 msec

e Capture Image: Capturing images is performed using a USB camera, which is connected
to the system using the PS I/0O interface. Using this approach for image capturing makes
this task more easy to implement on software as there is a plethora of libraries that can be
used to speed up the development. On the other hand if the capturing was implemented
on hardware, extra IP cores should have been used as well as software drivers to control
these IPs. This second approach adds extra delay and development effort to the process.
Based on these observations and the results from Table 3.1 this functionality will be
implemented in software.

e Find Corners: The process of finding corners has to process all the pixels in the input
image in order to return the results needed. Many of the processing steps operates on
a number of pixels to produce a single result. This constraint renders software solutions
ineffective and time consuming. On the other hand developing a hardware accelerator
not only provides solution to parallelize many of the internal computations but also will
speed up the overall computation time. Moreover by applying a pipeline approach to the
processing, system’s throughput can also be increased. In addition taking into account
Table 3.1 a hardware accelerated version of Harris Corner Detector algorithm will be
used.

e Cluster Corners: Clustering in general can be quite expensive, especially when the
dataset used is large, because a relation between all possible data combinations has to be
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evaluated. The way clustering is used in the developed system and the number of data
that are processed (a small subset of the number of pixels) makes it better candidate for
implementation on software, which can also be supported from the results presented in
Table 3.1.

e Recognize Object: In order to recognize the object a simplified geometric model of the
object is used. The matching between the model used and the one computed needs only to
perform some comparisons taking into account some variations from the predefined model
in the form of an error associated with the model. The overall operation is computational
inexpensive so it is implemented in software.

e Align Camera: In this step simple comparisons between some predefined properties and
the ones computed during object recognition is done in order to decide how the camera
must be moved and aligned with the object being tracked. This task is quite simple and
computational inexpensive, so it is implemented on software.

Based on the analysis presented previously, Figure 3.3 presents the partition to software
and hardware components used in the final system.

Software

Implemantation |

Capture
Image

Cluster
Corners

.| Recognize

Object

Align
Camera

Hardware \ Find

Implemantation | Corners

Figure 3.3: Hardware/software partitioning of the implemented system.

3.3 The Harris Corner Detector

3.3.1 Feature Detection

In computer vision and image processing the concept of feature detection refers to methods that
aim at computing abstractions of image information and making local decisions at every image
point whether there is an image feature of a given type at that point or not. The resulting
features will be subsets of the image domain, often in the form of isolated points, continuous
curves or connected regions. In addition to such attribute information, the feature detection
step by itself may also provide complementary attributes, such as the edge orientation and
gradient magnitude in edge detection and the polarity and the strength of the blob in blob
detection. Features can be categorized as follows

e Edges : Edges are points where there is a boundary between two image regions. In
general, an edge can be of almost arbitrary shape, and may include junctions. In practice,
edges are usually defined as sets of points in the image. Edges have a one-dimensional
structure.

e Corners : The terms corners or interest points refer to point-like features in an image,
which have a local two dimensional structure.

e Blobs : Blobs provide a complementary description of image structures in terms of
regions, as opposed to corners that are more point-like.
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e Ridges : From a practical viewpoint, a ridge can be thought of as a one-dimensional
curve that represents an axis of symmetry, and in addition has an attribute of local ridge
width associated with each ridge point.

The interest on this thesis is on corner detection. The corner detection, or interest point
detection, is a useful method that used of an image to extract the feature or infer the context.
It is predominantly applied in many aspects such as image mosaicing, tracking and recognizing,
ete.

In image processing, a point can be considered as a corner if there is a intersection of two
edges. A good indicator that determines the quality of a corner detection algorithm is to see
if it can detect the same corner under multiple circumstances, in other words, different similar
pictures that had done some other image processing such as rotation, darken, etc. The most
frequently used algorithm for corner detection is proposed by Harris and Stephens [8], which is
a further work on a method developed by Moravec [12] and was first published in 1988. In this
thesis, the Harris Corner Detector is chosen and implemented as an accelerator.

3.3.2 Theoretical Background

The Harris Corner Detector is based on the thoughts of Moravec [12], which are explained
briefly. Assuming a 2-dimensional image, whose intensity is denoted as I, Moravec starts with
a window W centered at the pixel p(z,y) and moves (shifts) this window in the neighborhood
of p. If the movement is (u,v) the changes of the intensity are measured with the help of the
auto-correlation function as

E(u,v) :Zw(x,y)[[(:v+u,y+v) — I(x,y)]? (3.1)

z,Y

where :
e w(z,y) a window function equal to 1 inside the window W and 0 outside
e [(z+wu,y+wv) the shifted intensity, where the shifts are (u,v) = (1,0),(1,1),(0,1),(—=1,1)
e [(x,y) the intensity of the image at position (x,y)

Moravec claims that small changes will appear in all directions for a constant intensity in
the neighborhood of p(z,y), which means there is a flat region (Figure 3.4a). Small changes
in only one direction can be found for an edge (Figure 3.4b) whereas the direction of nearly
no changes resembles the direction of the edge and finally big changes in all directions will be
observed for a corner (Figure 3.4c).

Harris and Stephens [8] improved upon Moravec’s corner detector by considering the differ-
ential of the corner score with respect to direction directly, instead of using shifts. To eliminate
Moravec’s algorithm shortcomings, which were noisy response due to the binary window func-
tion and anisotropic response due to the shifts used, first they applied a Gaussian window
function

_ (r2+y2>)

w(x,y) = e( 207 (3.2)

and secondly they approximated I(x + u,y + v), by a Taylor expansion to consider all small
shifts, as

Iz +u,y+v) = I(z,y) + L(z,y)u+ I,(z,y)v (3.3)
where I, I, partial derivatives of I. Based on this approximation the expression 3.1 becomes
E(u,v) = Y w(@,y) Lz, y)u+ I (x,y)v]? (3.4)

.,y
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(a) (b) (c)

Figure 3.4: An example of (a) a flat region, (b) an edge and (c) a corner.

or

E(u,v) ~ [u v| A m (3.5)

where A is a 2x2 matrix computed from the image derivatives

2
L Ix]y] (3.6)

T,y 7y Y

The eigenvalues A; and Ay of this matrix describe the changes inside the window similar
to the moving window of Moravec. The way to compute the exact value of eigenvalues is
computationally expensive and complex, in which the calculation of square root is needed,
so Harris and Stephens developed another approach to “measure” the eigenvalues or in other
words the corner response (“cornerness”) by means of the function

R =det A — k(Tr A)? (3.7)

where det A = A\ Ao, Tr A = \; + Xy and k = 0.04 — 0.06. Based on the value of R the following
cases are considered:

e when |R| is small, which happens when \; and A, are small, the region is flat.
e when R < 0, which happens when A\; > A, or vice versa, the region is an edge.
e when R is large, which happens when \;, Ay are large and Ay ~ ), the region is a corner.

Figure 3.5 shows a visual representation of the classification of image points into corners,
edges and flat regions based on Harris Corner Detector.

3.3.3 Hardware Implementation

As presented earlier, from an algorithmic point of view, for each pixel, Harris calculates a
“cornerness” strength according to the formula 312 — (I,I,)* — 0.04- (I +I2)2, where I3, I and
I,I, denote the Gaussian-smoothed products of the image derivatives, which are themselves
computed via a Sobel operator. Cornerness values that exceed a given threshold and the
corresponding values of the remaining 3x3 neighborhood of the pixel under examination (i.e.,
they constitute a local maximum), designate corners on the image. These corners are refined

with subpixel accuracy by fitting a quadratic surface on the aforementioned 3x3 region.
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Figure 3.5: Classification of image points based on their corner response.
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Figure 3.6: Harris Corner Detector block diagram.

On FPGA, Harris is accelerated according to the deeply pipelined architecture shown in
Figure 3.6, which was coded in VHDL. The image pixels are loaded to the “Image Memory”,
which feeds the “Derivatives Convolution” module with two successive bursts of the image (1
pixel per cycle) to output the image derivatives dx and dy. The derivatives are squared and then
temporarily stored in distinct memory blocks. Each block of dz?, dy* and dxdy is forwarded
individually to the “Bluring Convolution” in a pixel-by-pixel fashion to produce individually
the 12, Iz and I,I, blocks (the resulting values overwrite the old derivatives in the memory).
The three I blocks are then forwarded in parallel to the “Cornerness Calculator” (1 triplet
(12, Iz, I,I,) per cycle) to evaluate the aforementioned formula for each pixel (one cornerness
per cycle, overwrites its [ triplet in the memory). The cornerness values are forwarded in a burst
mode (one per cycle) to the final module to be non-maximally suppressed and interpolated.

Because the image size is too large to fit into the FPGA memory resources of XC7Z020
device, the image is divided into multiple smaller bands in order to be processed consecutively
by reusing the same FPGA resources. The bands overlap each other in a specific way so the
operation of the accelerator is functional equivalent to the original Harris Corner Detector.
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3.4 Data Clustering

Data clustering is a process of assigning a set of records into subsets, called clusters, such that
records in the same cluster are similar and records in different clusters are quite distinct [10].
Data clustering is often confused with classification, in which objects are assigned to predefined
classes. In data clustering, the classes are also to be defined. A typical clustering process
involves the following five steps:

1. Pattern representation : The number and type of the attributes which will be used
are determined.

2. Dissimilarity measure definition : A distance measure appropriate to the data domain
is defined. Various distance measures have been developed and used in data clustering.
The most common one among them is the Euclidean distance.

3. Clustering : Here a clustering algorithm is used to group a set of records (data) into a
number of meaningful clusters.

4. Data abstraction : One or more prototypes (representatives) of a cluster is extracted
so that the clustering results are easy to comprehend. For example, a cluster can be
represented by a centroid.

5. Assessment of output : In this final step the output of a clustering algorithm is assessed.
There are three types of assessments [9]: external, internal, relative. In an external
assessment, the recovered structure of the data is compared to the a priori structure.
In an internal assessment, one tries to determine whether the structure is inherently
appropriate to the data. In a relative assessment, a test is performed to compare two
structures and measure their relative quality.

A cluster is defined as a group of data points satisfying various plausible criteria such as:

e Share the same or closely related properties.

e Show small mutual distances.

e Have “relations” with at least one other data point in the group.

e Can be clearly distinguishable from the rest of the data points in the dataset.

In this thesis two clustering algorithms are employed and evaluated as to how well they
perform their role in the image processing flow presented earlier. These algorithms are the
k-means and DBSCAN and a brief description is given next.

3.4.1 k-means Algorithm

The k-means algorithm for clustering [15] is the most widely used partitional clustering al-
gorithm. It starts by choosing k representative points as the initial centroids. Each point is
then assigned to the closest centroid based on a particular distance measure chosen. Once the
clusters are formed, the centroids for each cluster are updated. The algorithm then iteratively
repeats these two steps until the centroids do not change or any other alternative relaxed con-
vergence criterion is met. k-means clustering is a greedy algorithm which is guaranteed to
converge to a local minimum. Typically, the convergence condition is relaxed and a weaker
condition may be used. Algorithm 1 provides an outline of the basic k-means algorithm.
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Algorithm 1: k-means Algorithm

Input : D = {p1,p2,...,pa} (set of points to be clustered)
k (number of clusters)

Output: C = {cy,ca,..., ¢} (set of cluster centroids)
L={l,ly,...,1,} (set of cluster labels for points in D)

Randomly select k£ points as initial centroids;

repeat
Form k clusters by assigning each point p; to its closest centroid c¢;;
Recompute the centroid ¢; of each cluster;

until convergence criterion is met;

A wide range of distance measures can be used within k-means algorithm while computing
the closest centroid. The choice can significantly affect the centroid assignment and the quality
of the final solution. The different kinds of measures which can be used here are Manhattan
distance, Euclidean distance, Cosine similarity etc. In general, for the k-means clustering,
Euclidean distance metric is the most popular choice. As one of the most often used clustering
algorithms, the k-means algorithm has some important properties :

It is efficient in clustering large data sets

It often terminates at a local optimum

The clusters have convex shapes

It works on numerical data

The performance is dependent on the initialization of the centers

3.4.2 DBSCAN Algorithm

DBSCAN [6] estimates the density by counting the number of points in a fixed-radius neigh-
borhood and considers two points as connected if they lie within each other’s neighborhood. A
point is called core point if the neighborhood of radius eps contains at least minPts points, i.e.,
the density in the neighborhood has to exceed some threshold. A point ¢ is directly density-
reachable from a core point p if ¢ is within the eps-neighborhood of p, and density-reachability
is given by the transitive closure of direct density-reachability. Two points p and q are called
density-connected if there is a third point o from which both p and ¢ are density-reachable.
A cluster is then a set of density-connected points which is maximal with respect to density-
reachability. Border points are defined as the points in the dataset that contains less than
minPts data points in their eps-neighborhood, but are reachable from some core point, while
noise is defined as the set of points in the dataset not belonging to any of its clusters. The task
of density-based clustering is to find all clusters with respect to parameters eps and minPts in
a given dataset. Algorithm 2 provides an outline of the DBSCAN algorithm.
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Algorithm 2: DBSCAN Algorithm

Input : D ={p1,p2,...,pn} (set of points to be clustered)

eps (maximum distance between points)

minPts (minimum number of points required to form a dense region)
Output: C = {c,co,...,c,} (set of cluster centroids)

L=A{l,ls,...,1,} (set of cluster labels for points in D)

repeat
Arbitrary select a point p;;
Retrieve all points density-reachable from p; w.r.t. eps and minPts;
If p; is a core point, a cluster is formed;
If p; is a border point, no points are density-reachable from p;;
Visit the next point on the dataset;
until all the points have been processed,

One limitation of DBSCAN is that it is sensitive to the choice of eps, in particular if clusters
have different densities. If eps is too small, sparser clusters will be categorized as noise. If eps
is too large, denser clusters may be merged together. In other words, if there are clusters with
different local densities, then a single eps value may not suffice.
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Chapter 4

Software Environment

4.1 Bare-metal Environment

A bare metal environment, is a development environment that aims to provide a very low-level of
software modules that the system can use to access processor-specific functions. Regarding the
Zynq platform specifically, Xilinx provides a standalone OS platform that provides functions
such as configuring caches, setting up interrupts and exceptions and other hardware related
functions. The standalone platform is used whenever an application requires to access processor
features directly. For applications with low complexity this leads to more lightweight solutions
and lot of resources can be saved. A standalone OS also enables close control over code execution
but is fairly limited in terms of functionality, so it should only be used for applications where
the software functions are straightforward and repetitive. The number of tasks being carried
out by a standalone OS should be relatively small, as adding further tasks can increase the task
management required by the standalone rapidly.

However the development of bare-metal applications is an arduous and time-consuming
procedure due to limited availability of function libraries and low-level programming of the
various hardware components and the drivers for specific devices. Another drawback is that
the software in a bare metal environment is limited to be executed in a single thread. Moreover
testing and debugging can be performed through cross-compilation.

4.2 QOperating System

The alternative solution is to use an open-source OS which offers a plethora of benefits. The
most important of these benefits are summarized below:

e Provides a high level of abstraction of the system through a variety of libraries for the
underlying hardware. Hence, the developer can focus on the main functionality of the
application without worrying about low-level details.

e Provides ready-to-use drivers for a wide range of peripherals.
e Enables multithreading for parallel processing.

e Offers code safety by confining the application in its private space in memory and adds
protection against illegal accesses to the hardware.

The aforementioned benefits can reduce development time significantly and offer a more
convenient environment for embedded programming. Several open-source OS can be found
available for ARM-based SoC FPGAs (e.g., Xilinx’s Petalinux, Linaro Ubuntu etc.). In this

35



thesis we use Xillinux [1], which also suits well with the PS-PL communication solution de-
scribed later.

4.2.1 Xillinux OS

Xillinux is a Linux distribution based on Ubuntu LTS 12.04 for ARM which can be immediately
deployed on ZedBoard. Xillinux is intended as a platform for rapid development of mixed
hardware/software systems that embeds the infrastructure for communication between the
PS and PL subsystems. Moreover Xillinux offers a Graphical User Interface (GUI) that is
convenient when developing image processing algorithms because real time visualization of the
results can help identify possible problems with the processing.

The biggest advantage of using Xillinux is the native compilation of user applications and
kernel modules on the development board used without the need, as mentioned earlier, of a
cross-compiler. Overall Xillinux roughly supports the same capabilities as a personal desktop
computer running Linux.
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Chapter 5

System Integration

5.1 Hardware/Software Communication

Image processing requires high throughput rates and low latency data transfers between the
CPU and the hardware accelerator. Considering these requirements a streaming protocol is
the most appropriate solution for such applications. In a streaming protocol handshake mech-
anisms are limited only at the start of the data movement between the CPU and the hardware
accelerator and then, valid data can be transferred for processing at every consecutive cycle.
The realization of an efficient streaming communication should rely on a Direct Memory Access
(DMA) mechanism.

Direct Memory Access (DMA) allows external devices to gain access to the main bus linking
the processor and the system memory; it moves data directly between the main memory and
some other part of the system. The goal is an increase in data throughput and a decrease in the
CPU load, which can reduce power requirements and enable more application work to be done.
The need to handle more data at higher rates means DMA controller is now an integrated
part of hardware and software design. Many embedded systems have internal and external
interfaces, which produce and consume data. Usually, the main processor requires the data to
be present in the main memory for performing any operation on it. A simple way of moving
data between the peripheral device and main memory is to use the main processor to perform
load or store operations for each byte or word of data to be moved. This method is time
consuming and eats away precious CPU computation time. The alternative is to set up a DMA
transfer that does the job of moving the data from source to destination. Once the processor
has set up the transfer it can do something else while the transfer is in progress or it can wait
to be notified when the transfer is completed via a status register or an interrupt. This method
saves precious CPU cycles leading to a considerable boost in overall system performance and
also increasing the data throughput.

In ARM-based SoC FPGAs a widely used streaming protocol is the AXI4-Stream which rely
on the well established AXI4 protocol presented in Section ?7. Although, the implementation
of AXI4-Stream is a major design challenge due to the considerable amount of time spend for
the customization of the accelerator interface according to this protocol and the validation of
its proper operation and integration in the system. Regrading the control signals transfers of
the accelerator (e.g., start, enable, complete, setup options etc.) as well as the initialization of
the DMA, simpler communication protocols are being employed. Such protocols are based on a
straightforward hand-shaking mechanism. An extensively used approach for ARM based SoC
FPGAs is the AXI4-Lite protocol. Figure 5.1 presents the general architecture of an AXI based
hardware accelerator, where the AXI-Stream interfaces are used for sending and receiving data
and the AXI-Slave interface is used for controlling the accelerator.

However in this thesis in order to ease the implementation of the communication between
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Figure 5.1: General architecture of an AXI based accelerator.

the CPU and the hardware accelerator an off-the-shelf, generic solution is utilized, which can
be deployed relatively fast and additionally, can be adjusted to meet the specific application
needs. This solution still communicates based on AXI protocol with the CPU, but on the PL
side it presents a simpler more generic interface.

5.1.1 Data Streaming : Xillybus IP Core

full
Application wr_en
FIFO data
ARM
to application Xillybus “ processor
logic IP core m core
empty (PS)
| Application rd_en i
R FIFO data

Figure 5.2: Xillybus IP core interface to PS and PL on Zynq.

Xillybus is a family of IP cores, developed by Xillybus Ltd. [2], consisting of two cores
targeting different application needs. The first, named Xillybus IP core, presented in Figure 5.2,
is a DM A-based solution, that offers ready-to-use implementation of streaming communication
between the CPU and the hardware accelerator. It provides a number of features that makes
it a versatile solution and increases productivity. These features are summarized below:

e Flexibility regarding the number of the employed PL interfaces and customization of the
configuration settings for each distinct interface.

e Portable to different vendors FPGAs (e.g., Xilinx, Althera) and compatible with various
OS (e.g., Linux, Windows).

e Easy programming model, supporting diverse programming languages (e.g., C/C++,
Java, Python etc).

e Very simple interface model on the PL side, without requiring additional development
effort for the integration with the hardware accelerator.
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For each interface to PL the configuration settings are hardcoded to the IP and are retrieved
during system startup from its device driver, which in turn allocates DMA buffers in host main
memory. The hardware/software communication based on Xillybus can be realized through
a trivial programming model. In Listing 5.1 an example of Xillybus communication for both
reading and writing from/to an accelerator in PL is given. The write and read interfaces are
manipulated as single device files. It is worth mentioning that there is the capability of the
concurrent CPU processing between a write and read operation.

int write_ fd, read_ fd;
/x host application data buffer x/
unsigned char xbuffer;

/+ open Xillybus write interface x/
write_fd = open("/dev/xillybus_write_device" , O WRONLY) ;

/x write sizeof(buffer) number of bytes x/
write (write_ fd , buffer ,sizeof (buffer));

/x close Xillybus write interface x/
close (wrire_fd);

/+ open Xillybus read interface x/
read_fd = open("/dev/xillybus_read_device" ,O_RDONLY) ;

/x read sizeof(buffer) number of bytes x/
read (read_fd , buffer ,sizeof(buffer));

/x close Xillybus read interface x/
close (read_fd);

Listing 5.1: Xillybus programming example.

5.1.2 Control Communication : Xillybus-Lite IP Core

Processor Application
instance logic

user_* module

Xillybus || -~
Lite || il

IPcore ||

Top level module

Figure 5.3: Xillybus-Lite IP core in systems hierarchy.
The second core, named Xillybus-Lite IP core, provides an abstraction to the underlying

AXI4-Lite protocol, offering easy access to registers or memory modules implemented in PL.
Xillybus-Lite presents an illusion of a bare-metal environment to the software, and a trivial

39




interface of address, data and read/write-enable signals to the logic design. This core also
exposes an input signal which allows the application logic to send hardware interrupts to the
processor. Figure 5.3 shows where in the systems hierarchy Xillybus-Lite is residing.

Multiple instances of the core can be employed and its programming model is as simple as
Xillybus with some exceptions. Because Xillybus-Lite driver is based upon Linux’s User I/O
interface (UIO), which represents a peripheral as a device file, its physical address space must
be mapped to the user address space and the access to PL resources is performed using pointer
reading/writing. An example of Xillybus-Lite programming model is illustrated in Listing 5.2.

int xillybuslite_ fd;
void xmap_addr;

/x open Xillybus—Lite interface x/
xillybuslite fd = open("/dev/uio0" O RDWR) ;

/x creates user address space for mapping of Xillybus—Lite interfacing x/
map_addr = mmap(NULL, size ,PROT_READ | PROT WRITE,MAP SHARED, xillybuslite_ fd ,0);

volatile unsigned int *xpointer = map_addr;

/x write to address x/
xpointer = the_value_ to_ write;

/% read from address x/
the_value_read_from_register = xpointer;

/x deletes Xillybus—Lite mapping */
munmap (map_addr, size ) ;

/x close Xillybus—Lite interface x/
close (xillite_fd);

Listing 5.2: Xillybus-Lite programming example.

5.2 Synchronization Techniques for Hardware/Software
Integration

SoC FPGA systems include various clock domains that refer to the processing system (PS),
programmable logic (PL) and memory. Usually, the clock in PL is considered the same for
the hardware accelerator(s) and the inter-communication interfaces. The problem is that the
communication interfaces can operate reliably up to a specific frequency, and hence can hinder
the increased performance of an accelerator which can potentially work in higher clock rates. In
order to surpass this bottleneck various cross-clock domain techniques have been proposed [4].
When dealing with single bit signals a widely known technique based on the employment
of double flip-flops synchronizers can be used (Figure 5.4a). This technique is very simple
to design but requires the employment of additional constraints during the implementation
phase of the system and presents unreliable behavior for higher clock rates. Another solution
is to augment these double flip-flop synchronizers with a handshake mechanism in order to
reduce the probability of faulty data propagation at the expense of additional transmission
latency (Figure 5.4b). Although, this approach requires extra development effort and may lead
to inaccurate results when transmitting multi-bit signals due to transmission delay variation
presents each separate single-bit signal.
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Figure 5.4: Examples of clock domain crossing syncronizers.

An alternative approach to achieve synchronization is the employment of asynchronous dual
clock FIFO buffers. The main advantage of dual clock FIFOs is that provide asynchronous read
and write operations from different clock domains. Furthermore, this approach provides the
following benefits:

e All FPGA vendors provide ready-to-use customizable IP cores for asynchronous FIFOs
which are optimized for the target device and their employment requires minimal devel-
opment effort.

e When the accelerator processes a set of data the next set can be temporally buffered and
be ready immediately when needed.

e Asymmetric data widths can be used in FIFOs input and output interfaces. For instance
multiple data can be written in parallel from the host CPU and read serially from the
hardware accelerator.

Taking into account the above advantages, the system utilizes asynchronous FIFO buffers
between the Xillybus IP core and the accelerator for both the control and data transfers.
This approach ensures the synchronization of the system with negligible development effort.

5.3 Finalized Architecture

Closing this chapter the finalized architecture of the developed system is presented. Based on
the employment of all the proposed IP cores and techniques described in this section, the final
architecture of the system is depicted in Figures 5.5 and 5.6. Figure 5.5 shows the hardware
architecture of the system and how the hardware components are connected in the PL (Harris,
Xillybus) between themselves and with the PS, Figure 5.6a gives the execution flow of user
application, while Figure 5.6b shows how the user application communicates with the necessary
peripherals using drivers and libraries of the operating system.
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Chapter 6

System Evaluation

6.1 Experimental Results

This chapter centers on the performance exhibition of the system based on the employed tech-
niques presented earlier. The evaluation of the system is divided in two parts. The first part
deals with the modules that resides on the PL side of Zynq, namely Harris Corner Detector
and Xillybus IP Cores. The second part takes into account the full system implementation
(hardware and software) and explores how well the system performs its operation.

Hardware modules evaluation

For the sake of fairness, all the experiments presented next were conducted with the same
input data — images of size 512x384 — which are stored in system memory. The first step
was to evaluate the effective communication bandwidth of Xillybus. Based on the fact that
Xillybus performs better when a large number of data is send from PS to PL, the number
of bands processed by Harris has a significant impact on communication bandwidth. This
stems from the fact that the smaller the number of band is, the fewer system calls must
be performed to transfer them to the PL side. Moreover the band number also affects the
utilization of memory resources used by Harris in the PL. Figure 6.1 illustrates the trade-of
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Figure 6.1: System bandwidth and FPGA memory resource utilization for various number of
bands using a 16-bit Xillybus interface.

between the FPGA memory resource utilization and the communication bandwidth according
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to the number of bands. It should be mentioned that the write interface of Xillybus is set
to 16-bits, Xillybus operates at 100Mhz and Harris operates at 200Mhz. As can been seen
reducing the number of bands used to partition the input image, from 12 to 6 and then to 4,
communication bandwidth increases, but also the memory utilization increases and consumes
87% of the total BRAMs present in XC7Z020 device when 4 bands is used. An other aspect
that impacts the communication bandwidth is the data width of the Xillybus interface. In
order to have the best utilization of Xillybus 32-bit, interfacing for data transfers has to be
used. Using 32-bit interfacing will double the communication bandwidth which will be closer
to the theoretical bandwidth of ~2.4 Gbps that Xillybus can offer.

For the rest of the experiments not only the input data and Xillybus write interface was
the same, but also equivalent values for the configuration parameters of Harris algorithm where
used. Moreover, ensuring that the minimal number of tasks are running in PS the measurements
taken are free of random variations other than the ones introduced by running the software
of the image processing system. Given this assumptions, Table 6.1 shows the total resource
utilization and operating frequency of the system regarding the PL side and analyze this in
two parts: the implementation of Harris and the Xillybus communication. Notice that the

Table 6.1: Operating frequency and resource utilization of the system analyzed in Xillybus
communication and Harris implementation.

Harris Accelerator Xillybus IP Cores
XC772020 PL Resources Available Used Utilization Used Utilization

LUTs 53200 11922 22% 2768 5%

DFFs 106400 14038 13% 2656 2%

BRAMs 140 52 37% 1 1%

DSPs 220 54 25% 0 0%

Max. Operating Freq. 300 Mhz 100 Mhz

communication cost is relatively low in contrast to Harris implementation. The maximum
achievable frequency for Harris that ensured correct data was 300 Mhz, while for Xillybus a
150 Mhz frequency where tested but the system showed wrong data transfers.

Figure 6.2 illustrates the average execution time of Harris in PL and the average PS/PL
communication time for the processing of an image as a function of the operating frequency
of Harris. The communication time is analyzed into two parts, the control and the data.
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Figure 6.2: Execution time vs PL clock frequency.

Control communication refers to Xillybus-Lite IP that is used for the transmission of the control
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signals while data communication denotes the Xillybus IP, which streams data to the PL. Note
that the total communication time is almost stable over all the Harris operating frequencies.
This results from the fact that the communication based on Xillybus IP cores operates at 100
Mhz. On the other hand, the execution time of Harris decreases as the clock rate increases.
Considering Figure 6.2 one can observe that the percentage of the total processing time spend
in the communication is increasing as the clock of Harris is boosted. For instance, at 100 Mhz
clock rate the amount of time spend in communication is 8% of the total processing time, while
at 300 Mhz clock rate increments to 25%.

In Figure 6.3 the power consumption of the system for the corresponding operating frequency
of Harris is depicted. One of the ARM cores is responsible for monitoring the power controllers
while the second one is dedicated to the application. Separate measurements were taken for PL
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Figure 6.3: Power Consumption vs PL clock frequency.

and PS together with DDR and the peripherals on the board during the processing of a large
set of input images. Also the total power consumption of the board (PS, PL and I0s) in idle
and active state is shown. As the clock rate of Harris is boosted the power is linearly increases
in PL while in PS there is only a very small alteration due to increased number of system calls
that have to be served in the same amount of time. The small increase of power occurring
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Figure 6.4: Energy Consumption vs PL clock frequency.
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when the system is in idle state is a result of the static power consumption in PL. Notice that
the power consumed by the device IOs and the peripherals of the board remains stable as they
are not used in the system, as mentioned earlier. It is worth mentioning that even though
the system consumes more power in higher operating frequencies of Harris, it is more energy
efficient for the same workload when it is in active state. The energy measurements illustrated
in Figure 6.4 confirms this principle.

In order to demonstrate the efficiency of the system in terms of execution time, power
and energy consumption of Harris, a comparison with alternative processing platforms were
performed. Figure 6.5 exhibits the performance comparison of the SoC implementation with
software-oriented approaches running on an ARM Cortex-A9 (PS only) and an Intel i5-4590

CPU.

Intel i5-4590 N 15
£
5 xc72020 PS W 430
s
8
= |
xc7z020 PS+PL 6
T T T T T T T T T 1
0 50 100 150 200 250 300 350 400 450 500
Time (msec)
Intel i5-4590 N 84
£
5 xc7z020 PS [§1.14
ks
= |
xc7z020 PS+PL N 2.02
T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90
Power Consumption (Watt)
Intel i5-4590 Y 1.26
g xc72020 PS \ 0.4902
k=]
8
= |
xc7z020 PS+PL 0.01212
T T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Energy Consumption (Joule)

Figure 6.5: Performance comparison of SoC FPGA implementation with alternative processing
platforms.

Based on these measurements in Table 6.2 the performance gain of the implemented system
over the two alternative platforms are presented. It can be clearly seen that the SoC imple-
mentation is superior over the rest from the performance/watt aspect. Note that although the
ARM approach (XC7Z020 PS) consumes less power the implemented system is more energy
efficient.
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Table 6.2: Performance gain of SoC FPGA implementation versus alternative processing plat-
forms.

XC7Z020 PS Intel i5-4590

Execution Time 71.6 % 2.5%
Power Consumption 0.56x 41.6% XC77Z020 PS+PL
Energy Consumption 40.4 % 104 %

Complete System Evaluation

To complete the evaluation, the system was tested in a real life scenario where a static target
with rectangular shape was tracked. The purpose of this experiment was to see how well
the overall processing flow performs its operation by processing 1000 frames captured by the
camera. The first measure was to count the number of frames in which the system was able to
recognize the object. At the same time when the system was able to recognize the object in
three consecutive frames the result was interpreted as successful alignment with the object and
it was also counted. Based on these measurements the quality of the algorithms was evaluated
by computing the success rate, namely how many groups of three consecutive frames were
counted out of the possible maximum of 333.

Table 6.3 presents the results obtained when the camera was allowed to move in the 3D
cartesian space and could or couldn’t rotate around its optical axis. As can be seen from the

Table 6.3: Algorithm quality of the implemented system

Processing pipeline Processing pipeline

with k-means with DBSCAN
Dataset 1 Dataset 2 Dataset 1 Dataset 2
Rotation v X v X
Num. of recognition 127 623 832 863
Successful alignment 17 175 250 256
Succes rate 5.1% 52.8% 75.1% 76.9%

table, when rotation of the camera was allowed and k-means algorithm was used to cluster
the corners found by Harris only in a very small number of frames the system was able to
recognize and align with the object, achieving a success rate of only 5%. On the other hand
when DBSCAN was used the success rate of the system peaked at 75%. This huge gap can be
justified by the fact that k-means can’t distinguish between noise (outliers) and useful data, a
property that is embedded in DBSCAN algorithm.

Finally when rotation was prohibited, k-means improved significantly the accuracy of the
system but not enough to be considered as a good option for use even for this special case.
Contrary to the improvement of k-means, DBSCAN improved slightly.
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Chapter 7

Conclusions

7.1 Thesis Summary

Image processing is a very demanding field, where both scientific community and industries try
to provide new clever solutions to efficiently deploy image processing algorithms. Especially
when targeting embedded systems the strict restrictions that these systems impose make the
development of embedded image processing applications even more challenging.

This thesis dealt with image processing from a practical point of view. The main goal was
to design and implement an image processing system and deploy it to a SoC FPGA platform.
To demonstrate the process of such a task a case study was chosen. The system must be
able to track an object, align itself with the object until it has focused on it. Based on this
specification an image processing flow was designed. This flow consisted from algorithms with
various degrees of complexity that led to applying a hardware/software codesign methodology to
partition the system to hardware and software components. Having decided what components
will be mapped to hardware and which to software, next a comparison of software environments
led to selection of an open-source OS (Xillinux) as the platform to develop the software part
of the system. This step concluded the design decisions that had to be made considering the
system as distinct components without interaction. Next the intercommunication approach
that glues together the hardware and software components where discussed and the finalized
architecture of the system were presented. Up to this point the design flow was also meant to
be viewed as guidelines for the development of image processing systems with SoC FPGAs that
focus on increasing the productivity and decreasing time-to-market.

At the end an evaluation of the system was conducted. The experiments showed that
the system can achieve a bandwidth of 0.7 Gbps (12 bands) up to 1.1 Gbps (4 bands) with
constant write interface of 16-bits for Xillybus. Using 32-bits write interface the bandwidth can
be doubled. Regarding its performance the system outperformed pure software implementations
running on ARM and Intel processors achieving speedup of 71.6 and 2.5 respectively. Also it
was proved by the experiments that it was more efficient from the performance/watt aspect,
compared to the other two platforms.

For the recognition and tracking of the object the system worked poorly when k-means was
used for clustering with a peak in accuracy of ~53% when the camera was not allowed to rotate,
while when DBSCAN was used its accuracy peaked at ~75% in both cases. By applying

1. a more sophisticated clustering algorithm or using an adaptive DBSCAN w.r.t eps and
minPts.

2. improve the model of the object used.

the accuracy of the system will be able to increase significantly, even beyond 90%.
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7.2 Future Work

Future work that could be done on this project would be to use color images. Even though
grayscale images has all the necessary attributes needed for a demonstration, in real life many
image processing systems process color images. Another extension could be the addition of more
image processing algorithms to the system architecture (e.g. feature description). While the
addition of more image processing algorithms does not complicate the system architecture, it
can help to demonstrate the full potential of SoC FPGAs with a more complex and demanding
application and at the same time explore more thoroughly Xillybus capabilities and limitations.

Also a very useful addition for the future would be the explicit use of the NEON engine
present in Zynq devices in order to complement the hardware accelerators during processing
and offload the CPU even more. Finally to exploit software parallelism multi-threading can
also be used. Multi-threading can also be utilized during communication with the hardware
accelerator to decouple the send/receive operations.
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