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Probabilistic Approaches for describing Neural Population Density

Abstract

Probabilistic approaches model neural population density directly and bypass
direct simulations of individual neurons. In this Dissertation, we will review Fokker-
Planck equations that describe population density dynamics and summarize the flow
and dispersion of states.

These can be derived by grouping together single units into statistically similar
populations. A statistical description of each population is given by a probability
density function that expresses the distribution of neuronal states (i.e., membrane
potential) over the population. In general, neurons with the same state V(t) at a
given time t have a different history because of random fluctuations in the input
current I(t). Starting from a spiking model that describe the activity of individual
cells, we first derive the time evolution of the population density. Depending on our
assumptions, we derive a different equation.

In chapter 2, where we have made the assumption that the arrival times of synaptic
inputs are Poisson distributed, we derive the Fokker-Planck equation. In chapter
3 , we introduce more assupmtions and derive different equations. We then use
this equation to introduce mean field models that describe ensemble responses and
discuss their application in describing neuronal interactions at the mesoscopic scale.
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Chapter 1

Basic Biology

In order to understand the equations describing the population density approach,
we first need to know what a neuron is. In this chapter we will briefly describe the
structure of a neuron and its electrical properties.

1.1 Neurons

Neurons are the basic signaling units of the nervous system. Neurons communicate
with each other at synapses. There are approximately 10'! neurons in the human
brain and 10*® synapses.

The structure of a neuron can be divided into three parts :

1. The dendrites : The dendrites form the “input lines” of the cell. Neurons
usually have several dendrites and they often branch out in a tree-like fashion,
that can be very large. In many cases, the majority of the surface area of the
cell is taken up by the dendrites. Neurons usually have some sort of general
orientation. Dendrites that lie at the top of the neuron are called apical den-
drites and those that lie at the base are called basal dendrites.
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Figure 1.1: Different types of dendrites. Figure from wikimedia.org.
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2. The soma : The soma plays the role of integrating all of the inputs of the
cell to produce some output.

3. The axon : The axon forms the “output line”. It typically leaves the soma
as a single thin process but then branches out in order to connect to other cells.

The axon is the major conducting unit of the neuron. It can convey information
great distances by propagating a transient electrical signal, the action potential.
Large axons are surrounded by a fatty insulating sheath called myelin. This is es-
sential for high-speed conduction of action potentials. The sheath is interrupted at
regular intervals by nodes of Ranvier. The action potential represents a change in
the neuron’s membrane potential. Neurons maintain a potential difference of about
65mV across their external membrane and this resting potential can be altered and
can, therefore, serve as a signaling mechanism.

Nucleus

!

Dendrite Schwann cell

(Myelin Sheath)

Axon

A

Nodes of
Ranvier

Axon
Terminals

Figure 1.2: Typical structure of a neuron. Figure from wikimedia.org.

The action potential corresponds to a change in resting potential that propa-
gates along the axon and is initiated when the membrane potential reaches some
threshold. Once this threshold is reached, the signal propagates in an all-or-none
fashion, i.e. the amplidute and the duration of the signal is always the same, no
matter how it is generated. After each action potential, there is a period during
which a second impulse cannot be initiated, the refractory period.
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The synapse: Neurons communicate with each other at synapses. The cell
sending the signal is called the presynaptic cell and the cell receiving it is called the
postsynaptic cell. Synapses can be either electrical or chemical.

o 7 T\

g
~ Neurotransmitter

Figure 1.3: A chemical synapse. Figure from wikimedia.org.

In chemical synapses there is a space, called the synaptic cleft, separating the
presynaptic from the postsynaptic cell. Most presynaptic neurons terminate near
the dendrites of the postsynaptic cell , where they release chemicals, called neuro-
transmitters. Neurotransmitters diffuse across the synaptic cleft causing changes in
the membrane potential , which may either increase or decrease relative to its resting
potential. Depending on the nature of the neurotransmitter and the type of receptor
it binds to, the membrane potential may become less negative (depolarization) and
the synapse is called excitatory, or more negative (hyperpolarization) in which case
the synapse is called inhibitory. For example, a positively charged ion, such as Na™,
entering the cell will raise the membrane potential, which means that it will bring
it closer to zero, and the cell is depolarized, while a positively charged ion, such as
K™, leaving the cell or a negatively charged ion, such as C1~, entering the cell will
hyperpolarize it.

8 Chapter 1 Maltsi Anieza
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1.2 Electrical properties of neurons

The cell membrane is a lipid bilayer 3 to 4nm thick that is impermeable to most
charged molecules. This makes the cell membrane act as a capacitor by separating
the charges lying along its interior and exterior surfaces.

Numerous ion-conducting channels embedded in the cell membrane lower the
membrane resistance for ion flow. The resulting membrane conductance depends on
the density and types of ion channels, many of which are highly selective, allowing
only a single type of ion to pass through. The channels capacity for conducting
ions across the membrane can be modified by many factors, such as the membrane
potential, the internal concentration of various intracellular messengers or the ex-
tracellular concentration of neurotransmitters.

In addition to ion channels, the membrane also contains selective pumps that
expend energy to maintain differences in the concentration of ions inside and outside
the cell. For example, Na™ is much more concentrated outside a neuron than inside
it, and K concentation is higher inside than outside. When a neuron is inactive it
has a resting potential, as we mentioned before and this potential is an equilibrium
point at which the flow of ions into the cell matches that out of the cell. The po-
tential can change if the balance of ion flow is changed by the opening or closing of
ion channels.

The fact that there is typically an excess negative charge on the inside surface of
the cell membrane and a balancing positive charge on its outside surface, makes the
cell membrane to create a capacitance, C,, , so the voltage across the membrane |,
V', and the amount of this excess charge, (), are related by the equation for capacitor :

Q=CV. (1.1)

The membrane capacitance is proportional to the surface area of the cell, A, and
this constant of proportionality, called the specific membrane capacitance, is the
capacitance per unit area of the membrane (C,, = ¢,, A).

The capacitance of a neuron determines how much current is required to make
the membrane potential change at a given rate. To hold the membrane potential
steady at a level different from its resting value also requires current, but this cur-
rent is determined by the membrane resistance. For example, if we inject a small
constant current, /., into a neuron through an electrode, the membrane capacitance
shifts from its resting value by an amount AV given by Ohm’s law :

AV = LR, (1.2)

where R,, is the membrane resistance. Since Ohm’s law assumes that R,, is constant
over the range AV, we have to restrict to small currents and small AV,

The membrane resistance is the inverse of the membrane conductance, which is
proportional to the cell’s surface area. The constant of proportionality is the mem-
brane conductance per unit area, which we write as %, where r,, is the specific
membrane resistance, (R, = ™).
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The product of the membrane capacitance and the membrane resistance is called
membrane time constant, 1,, = R,,C,, = rmcn, and sets the basic time scale for
changes in the membrane potential.

Ions pass through channel pores due to electrical forces and diffusion. Voltage
differences between the exterior and the interior of the cell produce forces on ions.
Negative membrane potentials attract positive ions into the cell and repel negative
ions. In addition, ions diffuse through channels due to concentration differences
inside and outside the neuron. These differences are maintained by the ion pumps
within the cell membrane.

It is convenient to characterize the current flow due to diffusion in terms of an
equilibrium potential, which is defined as the membrane potential at which current
flow due to electric forces cancels the diffusive flow. The potential differences across
the membrane biases the flow of ions into or out of a neuron.

A conductance with equilibrium (or reversal) potential E tends to move the mem-
brane potential of the neuron toward the value £. When V > E this means that
positive current will flow outward, and when V' < FE positive current will flow inward.

The total current flowing across the membrane through all of its channels is
called the membrane current of the neuron. The total current is determined by
summing currents due to all of the different types of channels within the cell mem-
brane, including voltage-dependent and synaptic currents. In order to compare
neurons of different sizes, it is convenient to use the membrane current per unit area
of cell membrane, 7,,, and then the total membrane current is obtained by I, = i,, A

We label the different types of channels in a cell membrane with an index ¢. The
current carried by a set of channels of type ¢ with reversal potential FE;, vanishes
when V' = F;. For many types of channels, the current increases or decreases ap-
proximately linearly when the membrane potential deviates from this value. The
difference V' — F; is called the driving force, and the membrane current per unit area
due to the type i channels is g;(V — E;), where g; is the conductance per unit area
due to these channels.

Summing over the different types of channels, we obtain the total membrane
current :
im=>_g:(V — E). (1.3)

The currents carried by ion pumps that maintain the concentration gradients that
make equilibrium potentials non zero are called leakage current. These pumps are
assumed to work at steady rates, so the currents they generate can be included in a
time-independent leakage conductance.
All of the time-independent contributions to the membrane current can be expressed
in a single leakage term : g, (V — Ep).

10 Chapter 1 Maltsi Anieza
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1.3 Integrate-and-Fire Models

In the integrate-and-fire model the state of the neuron is characterized by its mem-
brane potential. This model is a point neuron (single compartment) model in which
the spatial structure of the neuron associated with the dendrites is neglected.

The general model of an integrate and fire neuron is :

PO V= B+ G0V — B+ GtV — B) = 0. (1.4)

where 7 = C'/g, is the membrane time constant, C is the membrane capacitance,
Gesi(t) is the time varying excitatory/inhibitory conductance, g, is a fixed resting
conductance and Ge;(t) = ge/i(t)/gr-

When the conductances are non-zero, they draw the voltage toward their respective
equilibrium potentials.

The voltage is V(t) < vy, and the threshold (which is fixed) is between :
E,. <wvy < Ee.

‘/out

1/ge(t) 1/gi(t) 1/g,

Vi

Figure 1.4: Equivalent circuit of an integrate and fire neuron

The neuron fires a spike, when the voltage reaches vy,. After each spike, the
voltage is reset to V,eser. The output of a neuron is the set of times at which the
neuron spikes. The inputs to a neuron are the times of excitatory and inhibitory
synaptic inputs, which determine the synaptic conductances, g.(t) and g;(t).

When the neuron is at rest, the synaptic conductances are zero, while when it
receives synaptic inputs the synaptic conductance increases.
An excitatory or inhibitory synaptic input at time Tek/i will produce a conductance

change similar to a delta function of magnitude :

A = / Gt (1)t (1.5)
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where (Alf/z(t) is the change in Ge/(t) due to the synaptic input at time 75,
Under this approximation, the voltage jumps when a neuron receives an input. If
we solve equation (3.7) for the time interval from immediately preceding to imme-
diately following the synaptic input (7’ f/;, T f/j), we get :

Av = (1 - e‘r'-i’/i> [E/ — V(T (1.6)

where Av = V(Tek/j) — V(Tek/;) is the jump size and I'¥, = AF /7.

Indeed, suppose there is an excitatory synaptic input in the time interval (T, T)
and we want to solve equation (3.7) in this interval :

% AV G.(t)
_l’_

TE—FGe(t)(V—Ee):OiE . V= ——
(V(t) exp (/0 G€T<S)d3)>, - GeT(t)E6 exp (/0 G€T<S)ds) =
V(T*) exp (/0 GeT(S)ds) — V(T )exp (/0 7 GeT(S)ds) =

_ / " Gj_(t)Eeexp( /0 t Gefs)ds)dt:»

V(T")exp ( / Gels)

0 T

:EE/T+ <exp(/0tGeT(s)ds))/dt:>

ds) —V(T7)exp (/0 7 Ge—(s)ds) —

T

V(T+)=V(T—)exp(—/ Ge(s)

Bex (- /T+ Ge(s>d5) [exp (/OT+ GeT(S)ds) — exp (/OT Ge(s>d8)} =

ds)+

V(T+) =V(T )exp(— /T+ GeT(S)ds) + E, [1 —exp (- /T+ GeT@ds)] N

Av=V(T")=V(I")=V(T")exp(-I) = V(I") + E.(1 — exp(-T)) =

Av = [1—exp(-D)|[E. — V(T7)].
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We see that the size of the voltage jump is proportional to

FZ% =1- 671“5/1.’ (1.7)

which depends on the size of the conductance change.
We also see that for very large synaptic conductance change we have F’; ;00 and

Ik =1, 50 V(TIE) = Eepie

In our model we have two sources of randomness : the arrival times of synap-
tic inputs and the size of synaptic conductance changes. The synaptic input rates,
ve(t) and v;(t) are specified (in general, they are determined by the firing rates of
presynaptic neurons).
The arrival times of the synaptic inputs, T f/w are assumed to be given by a Poisson
process with mean rate v,/;(t). The size of the synaptic conductance changes , F’;’ Ji
are assumed to be random numbers with some given distribution. This means that
the F:’/“Z are also random numbers with a distribution determined by that of I'* /i
We define :

Fp:/i<l’> = P( :/z > ZE), (18)

which is the complementary cumulative distribution for I'} /i

In the next chapter, we will only use the assumption that the arrival times of
the synaptic inputs are Poisson distributed and we will show that the Ornstein-
Uhlenbeck process can be used to describe the time course of the membrane poten-
tial. Then, is the last chapter, we will see how we can model the neuron if we add
more assupmtions.

Deterministic Input: For a fixed threshold and constant injected current I,
ignoring the synaptic current, equation (1.4) becomes :

dv(t)
dt
We see that for I = 0 the membrane potential decays exponentially to V = Ej,
with time constant 7. Thus, E} is the resting potential of the cell.

— E, -V +RI. (1.9)

T

Now, the solution of equation (1.9) is :

t

—;) (1.10)
Suppose that at time ¢ = 0, the neuron has just fired a spike and is thus at the

reset potential, so that V(0) = Vj.cset-

The next action potential will occur when the membrane potential reaches the

threshold, say at time t = t;,;, when :

V(t) = EL + RI + (V(O) - EL - R[) exp(

tisi
V(tzsz) = ‘/th = EL + R[ + (‘/;"eset — EL — RI) eXp(—T) (111)

Chapter 1 Maltsi Anieza 13



Probabilistic Approaches for describing Neural Population Density

If we solve this for t¢;,;, we can determine the interspike interval for constant
current I, or equivalently its inverse,called the interspike interval firing rate of the
neuron :

| RI+ Ep — Vyesur\1-!
== — [ ( )] , 1.12
. [T "\"RILE,—V, (1.12)

For sufficiently large values of I, we can use the linear approximation of the
logarithm, (In(1 + z) ~ z, for small z):

Erp — Vi + R[}
T(‘/;th - ‘/reset) ’

Tisiﬁ[

which shows that the firing rate grows linearly with [ for large I.

14 Chapter 1 Maltsi Anieza



Chapter 2

Ornstein-Uhlenbeck Process

2.1 Fokker-Planck Equation

In this section we will begin with the Langevin equation :

dX
dt
where 6 > 0 and A(¢) a Langevin force,
and we will prove that the transition probability function of X (¢) :

= 07X + A1),

0
@, tlzo) = 5 PLX(t) < 2[X(0) = 2o},
is the solution of the Fokker-Planck equation :
af o

Y p1 o9
o ~ ozl rh+

that satisfies the initial condition :

%g% [z, t|zo) = d(z — x).

(2.1)

(2.2)

(2.4)

After doing so, we will show that the Ornstein-Uhlenbeck process, i.e. the pro-
cess described by eq.(2.1), can be used to describe the time course of the neuron’s
membrane potential, under the assumption that the arrival times of the synaptic

inputs are Poisson distributed.

15



Probabilistic Approaches for describing Neural Population Density

2.1.1 Differential form of the Chapman-Kolmogorov equa-
tion

Suppose we have a Markov process with a continuum of state values in continuous
time.Then we have the Chapman-Kolmogorov equation:

[zt + Atlag, to) = /f(fﬁ,tJr Atly, t) f(y, t]zo, to)dy, (2.5)
with X(t + At) =z, X(t) =y, X(to) =
If we substract from both sides f(z,t|xo,ty) we get:

f(z, t + At|zo, to) — f(x, t|zo,to) = /f(x,t—|—At|y,t)f(y,t|x0,to)dy—f(x,t|x0,t0).

(2.6)
Let g(x) be a smooth function with compact support.
We multiply both sides of (2.6) with g ) and integrate over the state space to get :

g(:v)f<x’ t + At|xo, 1235 — f(z, t|zo, to)

= [ [ £ Ayt o)dyds = ;[ g(@)ste o, )
(2.7)

dr =

If we substitute in the first integral of the right hand side of eq.(2.7) the Taylor
expansion around y for g(x):

+Z dy x;! o (28)

n=1

and we take the limit as At — 0 we obtain:

0
[o@Par= ym 2 / o)tz 0)dy [ Jlot-+ Mly. o

1 n
Z o [ {EE 1w thao. o) Jim, 5 [ = fGot+ Al )}y
) 1
- Al%l_l}lo A g(x) f(z, t|zo, to)dx. (2.9)

Now, after using the condition :

/f(m,t + At|y, t)dx =1, (2.10)
and setting :
1
An(et) = Jim [ (0= 0" (0.t + Aty 2.11)
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we get:

/ Zn,/ dl,n x, t|xo, to) Ap(z, t)dz. (2.12)

An integration by parts gives us :

D st dnt 0 = (17" [ gt [Ante 011l )]
" oz
(2.13)
where we have used the fact that g(x) and its derivatives vanish at the ends of the
integration interval.

So, equation (2.12) finally becomes :

/g( ){z{ i (_1)n%[An(m,t)f(:r,ﬂxo,to)]}dm 0. (2.14)

n!

Since g(x) was arbitrary we get :

af Z n' o [ (x,t)f(x,ﬂl‘o,to)] dx, (2_15)

which is the differential form of equation (2.5).

The functions A, (z,t) are called infinitesimal moments of the process.
If the process is stationary, then the transition probability density function depends
only on the difference between the present time and the initial value:

fly,t+ Atfz,t) = f(y, At|z,0). (2.16)
This means that the infinitesimal moments do not depend on time.

If we set y —x = X(t + At) — X(t) = Az we get:

An(a,t) = lim <(A$)n)|§(t> =) (2.17)

Next, we will see that for the Ornstein-Uhlenbeck process, A,, vanish for n > 3, and
then (2.15) will give as the Fokker-Planck equation.

Chapter 2 Maltsi Anieza 17
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2.1.2 The Langevin Equation for one variable

The general Langevin equation for one variable is :

% = A(y,t) + B(y, t)A(1), (2.18)

where A(?) is a Langevin force, i.e. is a Gaussian process with statistical properties:

(AB)Y =0 and (A(t)A(t2)) = 2D8(t, — ts). (2.19)

The terms A(y,t), B(y,t) are called drift and diffusion terms, respectively.
Equation (2.18) is a first order differential equation, so each sample function of A()
determines y(t) uniquely when y(¢y) is given. Due to the delta-correlated nature
of A(t), the values of A(t) at previous times, say t' < ty, cannot influence the con-
ditional probabilities at times ¢ > t;. This makes the solution of the Langevin
equation a Markovian process. Because of the presence of A(t), equation (2.18) is
a stochastic differential equation and solving it means determining the statistical
properties of y(t).

The higher-order moments of A(t) are obtained from the second ones, by assuming
relations like those of the multivariate Gaussian case, i.e. (from Wick’s formula) all
odd moments vanish and :
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). (2.20)

LAt t+At

where y stands for the initial value y(t).

Expanding A(y,t), B(y,t) around y:

Aly(t), 1] = Ay, t1) + A'(y, t)[y(tr) —yl + ...,
(2.22)

Bly(t1),t1] = B(y,t1) + B'(y, t)[y(t1) =yl + ...,

where the prime denotes the partial derivative with respect to y at the initial value,
we get:

t+At t+At
y(t+ At) —y = / Ay, t1)dt; + / Ay, t)[y(t) — yldt, + . ..
t t

AL t+At
+ /t B(y, t1)A(t1)dt; + /t B'(y,t1)[y(t1) — y]A(t1)dt, + ...
(2.23)
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If we write y(t1) — y in the form (2.21) we get:

t+At t+At t1
v s —y= [ Awrin+ [ ) [ A s

t t t
t+At t1

+/ A’(y,tl)/ By, ta)A(ts)dtodt, . . .
t t
t+At t+At t1

+/ B(y,tl)A(tl)dtl—i-/ B/(y,tl)A<t1)/ A(y,tg)dtgdt1+
t t t

+ /t+At B'(y,t1)A(ty) /tl B(y, t2)A(te)dtadty . .. (2.24)

We repeat this until only Langevin forces and the functions A(y, t), B(y,t) and their
derivatives appear on the right side of (2.24).

Taking the average of this equation for a fixed y = y(¢) and using (2.19) we get:

t+At t+At t1
(y(t + At) —y) = / Aly, t)dts + / Ay, 1) / Aly, t2)dtadt +
t t t

t+AL 4
42D / By, 1) / Bly, t:)(ts — t1)dtsdtr ..., (2.25)
t t

and using the fact that :
t1 1
[ st~ it = 5 pte),
to 2

we get:

t1 1
/ B(y,t1)0(te — t1)dty = §B(y,t1).
t

Now we can find :

1
Ai(y.t) = lim = (y(t + At) —y)

0B(y,t)

= A(y,t) + DB(y,t) Dy

(2.26)
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The integrals not written down do not contribute in the limit At — 0:
Each Langevin term is accompanied by an integral, the lowest-order terms are writ-
ten down in (2.25) while the higher-order terms are of two types:

e Integrals of the form:

t+AL t+ty t4to -t
( / L A(h)dh / At / o A(t)dts / At
t t t t

which, due to (2.20), will only give a contribution proportional to (At)?

e Integrals with no Langevin force, which are proportional to (At)", with n be-
ing the number of simple integrals

Both types will vanish when we devide by At and take the limit At — 0.
Using the same arguments, we find :

As(y 1) = Jim {((t 4+ A1) — )?)

t+At t+At
AI%IEO E ) B(y, tl) /t B(y, t2)2D5<t1 — tg)dtgdtl
= 2DB?*(y, 1), (2.27)

and A,,(y,t) =0, for m > 3.

We finally get, from (2.15) :

af 0 0B(y,t) 0* .,

— =——1A(y,t) + DB(y,t D—|B*(y,t 2.28
5 = "oy VAW + DB B} + DSBS, (228)
which is the Fokker-Planck equation for the Ornstein-Uhlenbeck process defined by
(2.18)
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2.2 The Ornstein-Uhlenbeck process for a model
neuron

In this section, we will see that the Ornstein-Uhlenbeck process can be used to de-
scribe the time course of the neuron’s membrane potential.

Consider a neuron with p + ¢ dendrites, a firing threshond S and zero resting
potential. We assume that each dendrite carries point like excitatory or inhibitory
signals that are Poisson distributed in time.

Let ar, (k=1,2,...,p), by (¢{=1,2,...,q) be the rates at which excitatory and
inhibitory inputs travel along the synaptic pathways and let e, > 0 (k =1,2,...,p),
ip <0 (¢ =1,2,...,q) be the excitatory and inhibitory postsynaptic potentials.

Now, if at a certain time we have a membrane potential z, then the arrival at

that time of an excitatory input through the k-th pathway will change the mem-
brane potential through :

r — T+ e, (2.29)

And the arrival of an inhibitory input at the [-th pathway will change it as :

T — T+ iy, (2.30)

We also assume that in the absence of inputs, the membrane potential decays
exponentially toward its resting value, with a time constant #. This means that
X(t) has a continuum of states and it’s also a Markov process. So its transition
probability density function satisfies the Chapman-Kolmogorov equation :

Flat + Atlao) :/_OO Fa, A2 (2 o) d. (2.31)

We want to find an expression for f(z, At|z). From equations (2.29), (2.30) and
the Poisson assumption we have:

fla, Al]2) = {1 _ At[zp:ak v Xq: bk} }5(33 (- z%))

& At
+ AtZaké[a: — (2 —2— +ep)]

0
k=1
q
A
+ ALY bl — (2 — 27’5 +ix)]. (2.32)
k=1

If we put equation (2.32) in (2.31) we have :
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f(x,t—l—At|;E0):/_oo {{1—At[2ak+z ]}5(93—(2’—2’%))%-

o0 k=1 k=1

P At
+ At adlr — (2 — 2— + ep )|+
> ol = (=5 o)

+ At Z bpd[r — (2 — z% + zk)]}f(a;, At|2) f(z,t|xg)dz
k=1

=(14+—)[1- At(z ay + Zbk)]f(x + %x,t\xo)jL

(14 20 theo) = Fla+ S, theo)

14+ 8 o) = fa+ S e, (2.33)

+Athk SL’—Zk 0 0

In the calculations we have used :

e J[o(y)] = Té},’g‘), where ¢ is monotonic and ¢(3) = 0.

22 Chapter 2 Maltsi Anieza



Probabilistic Approaches for describing Neural Population Density

From equation (2.33) we have :

9 _ i [z, t+ Atlxg) — f(x,t]xo)
ot A0 At B
T 89 (e B ) — S, theo)
=l [ +
At o A A
1+ D (= )1+ 50 He0) — o+ o, )+
k=1
: A A
+ 0B = )1+ ) thao) = S+ G tha))]| =
k=1
089S+ B tha) — f(o,theo)
=l [ |+

+ Zak(f(x — ex, t|lwo) — flx,t|xo))+
k=1

+ D b(f (@ — ik, o) — (2, t]20))] =

T gx,tx — flx, t|z, A

:Ahtr_% [(f( + 3 |A(;) f( | ) +%(f(x+7t:c7t|xo)]+
+ Zak(f(x — ek,t’.%’o) - f(x,t|l’0))+

k=1
+ Z bk(f(x — ik,t|$0) - f(x,t|x0))] =

k=1
_ [ htfae) — flatleo)) 1
_ }115% [5 A7 ] + gf(xvﬂxo)—'—
+ Zak(f(:l: — ek,t]:co) — f(x + t|£l?0))+

k=1
+ bk(f(.l' — Z'k,t’SCo) - f(xatlx(]))] =

k=1
_ %W(f’gjw + %f(x,ﬂxo)—i—

+ Zak(f(a: — ek, two) — f(z,t|z0))+
k=1

) bk(f (= g tlag) = fx,t|2))] =

-l > anlf(o = euntlon) = Sl thol)+
3 b(f (= i theo) — fa,to))] (2.34)
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Now, expanding the functions f(x — eg,t|zo), f(z — ix, t|zo) as Taylor series
about z we get :

f(x —ep,tlxo) — fa,t|z) = ;:1 n! kz?:r” (2.35)
and :
. Ny
— i, t|wo) — f(x,t|we) = D n__ 2.
f(l’ Lk, |$0) f(l‘7 |£L‘0) ot n! L 9xm f7 ( 36)

so equation (2.34) becomes :

of 80 f - " [N~ n N~pon
R : +Z n' axn[;ak€k+;bklk)f], (2.37)

n=1

and by setting:
Al = ——+ m, (238)

A =n (r==2,3...), (2.39)

p

Mo = Y axey + Zbkzk n=12..), (2.40)

k=1

we get :

of _~ (=1 0"
- = Anf). 241
P= 2 ) (2.41)
Next we perform a diffusion approximation such that :

n-=0 (r=3,4...),

while |7 < oo and 0 < 7y < 0.
This can be done by letting all ax’s and b;’s diverge, while making all postsynaptic
potentials infinitely small. To do so we suppose that p > ¢ and set:

ap=apd 2, by=0077 in=dd, ex=c, k=1,...,q,
ar =00, e =c, r=q+1,....p,

where d < 0, g, B >0, ¢y = —2% =1 ... ¢,

andc>0, r=q+1,...,p. ’
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With this approximation we get, for 6 — 0:

h = E QpCr,

r=q+1
: Br
=) A1+ ),
k=1

This way equation (2.41) becomes :
o __9 [( _
ot Ox

where n = 1, and 0% = n,.
Now, letting x — nf — = and z¢o — nf — xy we get the Fokker-Planck equation :

+0)f]+ 555 (2.42)

(9f_ 0 .z 0232]"
o = aslel) T 3

with the initial condition:

%i_{% f(z, t|zo) = d(z — x).
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2.2.1 First Passage Time

Let S > x and :
T =T(S,x0) = inf{t : X(t) > S|X(0) = x0}. (2.43)

be the first passage time of X (¢) through S with probability density function :

g(S,tlxg) = g(t) = %P{T < t}. (2.44)

In this section we will calculate the statistics of T'.
Let :

tn(S|zo) = /000 t"g(S,tlxg)dt  (n=1,2,...) (2.45)

be the n-th order moment of 7" and :
gr = gx(S|xo) = / e Mg(S, t|zy)dt (2.46)
0
be the Laplace transform of g.

If gy is known, we can express the moments as :
t0(S)z0) = (—1)"(@) . (2.47)
dA™ / x=0
Indeed :

_ @ Y _
v, e Mg(S,t|x)dt

oo dn
0
— (1) / 1M g(S. o), (2.48)
0

and for A = 0 we get (2.47).
From equation (2.47) we get the mean M and variance V' of the first passage time :

o M(Slwo) = (%) .

o V(Sleo) = (%2) _ ~[(%)_]

So, in order to determine mean and variance we need the Laplace transform of the
first passage time probability density function.
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We know that (Siegert, 1951) g, is the solution of:

(Lo = A)gx =0, (2.49)
with boundary conditions :
i)
lim g,(S|xo) =1, (2.50)
wo—)S
and
i)
lim g¢\(S|xo) =0, (2.51)
Tro——00
where : p L2
Lo=A —+ -Ay— 2.52
0 1($0)d:c0 3 2da?’ (252)
and Aj, Ay are given by equation (2.38) and (2.39) So , g, is the solution of :
o’ d’gy w0 dgx
A I Agy = 2.
2 dey O dwy 0 (2:53)
satisfying the conditions (2.50) and (2.51).
Now, if we set zg = —(029y)1/2 we get :
d dgy d 2y'/% d
S _ W4 _ 2 S (2.54)
dxg dy dxg V26 dy
and:
P9, _ a0 2912 Ay dy 2 dos Ay oy (2.55)
dz?  dy Vo20 dy ) dzy 020 dy 020 dy?’ '
so equation (2.53) becomes :
o’ d’gy w0 dgx
— —— = - Agp=0=
2 dl’o 0 dl’o A
0_2[1@ 4_yd2w] Vorhy'/2 (- 2y'/2 %) A =0 =
2 Lo20dy " 020 di? 0 Vo0 dy =
Ldgy 2ydPgy  2ydg,
209 L 2T 2TTIN o
Gdy "0 dr 0 dy TV
dQQ)\ dg)\ 1 A0
Az — 0, =0. 2.
dy2+dy<2 > g =10 (2:56)
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Now, setting g (y) = e*/?uy(y) , we have :

dgr — d( > ev/? y/2 dux
A = —uy +e¥?—= 2.
dy dy( ux(y) 5 U te dy’ (2.57)

and :

d*g» = i(eyﬂ + ey/2du’\> = ezﬂ@ T ey/Q% e’
d 2 dy

— 2.58
dy? dy?2 dy T (2.58)

and equation (2.56) becomes :

d? d v/2 v/2 d 1 .

dy? dy 4 2 dy / \2 2
d?uy duy vy 1 Y 1 duy duy M0
yd2+ d_+ZUA+ZUA_EUA Ed——yd——?uA—Oi

dPuy  1duy 1 y M
e A A 9.
dy? " 2d A(4 4 2) 0 (2.59)
Finally, setting y = % we get :
duy _ dwydz _1duy (2.60)
dy dz dy z dz
and :
d2U)\ 1 dUJ)\ 1 dQU)\
A Ay T 7 A 2.61
dy? 23 dz * 22 dz?’ (261)
and equation (2.59) becomes :
22 1 duy 1 d?uy 1 duy 1 22 )\
st e s 3)=0=
d?uy 1 22
— +u,\<—)\0+§—z) = 0. (2.62)

Equation (2.62) is known as the Weber equation and its general solution is a linear
combination of the two independent solutions D_yg(z) and D_yg(—z), where D, (z)
is the Parabolic Cylinder Function, :

U/\(Z) = AD_)\Q(Z) + BD_)\Q(_Z),

where A, B are arbitrary constants.
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Applying backward the transformations we get :

2

Lo V21, V2
sl 0w 2 50 ()]

Now, we can find A, B from the boundary conditions (2.50), (2.51), but for the
condition (2.51) we will first write :

llm g>\(8|l’0) = O,
$0—>—b

and then we will let b — co. We get :

L o [573] |
ol B

and :
o 1 |
pu() Lo, (s

b
bl
Now, by using the asymptotic expansions of the Parabolic Cylinder Function :

2

D_yo(z) = exp ( — %)x_’\e [1 + O(%)}v

and :

A — 20‘29
V25
D—AB( - 020)
and B = 0.
So the solution is :
D w(\@(ne — 900))
Slo) — x| (F0 = 10)* = (S —nb)*1 "~ Va0
9a(Slao) = exp | 2 | ,
200 V2(nd — )
Do (Y . )
o
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where we have set xg = 2o — nfl and S = S — nb.

Now, using :
e[ T(1/2) v 1 2 z T(=1/2) /1 v 3 22
D) =2 ;52 ~ 51575) T e 2a 2 o))
we finally get :
A 1 (nf — xp)?
@ e .
9 (S|zo) = < 292 520 )
q)(&.l. 07‘)—5)2) _ 2<n9—5)r(@)¢(w+1.§. (779—5>2>
22" o020 720 20 2 727 o020
(3
(nf — xo)q)</\9 +13 (nf — 0)?
i 20 2 727 o2

. a2 (2 a2 ’
770025@()‘9; 1; g; 0700265) ) a %F<<A0;?> (I)<¥; %; (nQUZQS) )

and now from (2.47) we can find the mean and variance of the first passage time.
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Chapter 3

Populations of Neurons

We already described the time course of a neuron’s membrane potential under the
assumption that the arrival times of the synaptic inputs are Poisson distributed and
now we want to model populations of neurons if we add more assupmtions. In the
general case we have that the state of a neuron v is described by:

% = F(v)+ S(v,g(t)). (3.1)

For example, in the leaky integrate and fire model, we have :

av 1
2 = S(t) - =
Cdt S®) R

V=V, (3.2)
where C' is the capacitance, R the resistance and S(t) the current associated with
the neuron’s membrane.

In this chapter, we will assume that the arrival times of the synaptic inputs
are given by a Poisson process with mean rate v,/;(t) and also that the size of the
synaptic conductance changes , I'* /;» are random numbers with some given distribu-
tion. After deriving the evolution equation for the probability density function for
a single population, we will connect populations of neurons to derive the equations
for a network of neurons.

31



Probabilistic Approaches for describing Neural Population Density

3.1 The population density approach

We want to model the evolution of the probability density :

p(v,t)dv=P(V(t) € (v,v+dv)), E; <v <y, (3.3)

which for a population of many similar neurons can be interpreted as a population
density. So for a fixed time, the population density describes the distribution of
neurons over all possible states.

In order to do so we need to make some assumptions. First, we assume that there
are a large number of similar neurons in each population. By “similar” we mean
that they have the same biophysical properties, such as the capacitance, the resting
conductance and distribution of synaptic conductances. We also assume that each
neuron in the population receives excitatory and inhibitory synaptic input with the
same average rate (v (t) and v;(t)). Finally, we assume that the arrival times of
synaptic events are random variables given by a Poisson process.

Now, we want to derive the evolution equation for the probability density func-
tion for a single population when the synaptic input rates are given functions of
time. This is based on conservation of probability.

We have the probability contained in (a, b):
b
P{V(t) € (a,b)} :/ p(v' t)dv'.

This probability can change only through the flux of probability across the end-
points of the interval. By positive/negative flux at a point v we mean the probability
per unit time of crossing v from below/above. Letting J(v,t) = flux of probability
across v at time ¢, we have :

Tast) — J(bt) — %P{V(t) € (a,b)}

o b
= &/ p(v' t)dv'. (3.4)

If we let b = v and we differentiate by v we get :

32 Chapter 3 Maltsi Anieza



Probabilistic Approaches for describing Neural Population Density

a(J(a,t)a; Jwn) 2 (5 [ o) =

oJ 0
— %(v,t) = 8—12(1),15), E;, <v <y, (3.5)

When an integrate and fire neuron crosses vy, it fires a spike. Also, movement
of a neuron across a voltage corresponds to probability flux across that voltage. So,
the population firing rate is the flux across threshold :

r(t) = J(v, t).

After the spike the voltage is reset to vy..s;. This produces a source of probability
at Upeser- NOW, equation (3.5) becomes :
op oJ

g (v,t) = —%(U,t) + 0V = Vpeset) S (ven, t) By < v < vy, (3.6)

We now want to calculate an expression for the flux J(v,t). In order to do so,
we will use equation (1.4) and we will also break the flux into three components :

J(v,t) = Jo(v,t) + Je(v,t) + J;(v, 1), (3.7)

where J, is the leakage flux toward FE, due to the resting conductance, J. is the
excitation flux toward E. due to the excitatory conductance and J; is the inhibition
flux toward E; due to the inhibitory conductance.

1. Leakage flux

The voltage evolution due to leakage is obtain from equation (1.4) with G./; =
0:

av 1

—=—(V—-FE,). 3.8

Ve lvem) (35
This means that the voltage decays exponentially toward the resting poten-
tial, F,. This movement of the voltage corresponds to a leakage flux. If
V(t) € (E;, E,), then V(t) increases, creating a positive leakage flux across all
ve (B E.). IfV(t) € (E,,vy), then the voltage decreases creating a negative
flux.

Suppose that v € (F;, E,.), then the only movement of neurons across v is up-
ward and the leakage flux at v is the probability per unit time that a neuron
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E; v— Av v E,

Figure 3.1: Neurons cross a fixed voltage v from below

crosses v from below. We first look at the probability of a neuron crossing v
in some short time At. The voltage will cross v in the time interval (¢, ¢+ At)

if V(t) € (v — Av,v), where :

d
Av = d—‘t/At +O(AR). (3.9)

Indeed, if we expand V(¢ + At) as a Taylor series around ¢ and keep only a
few terms, we have:

V(t+ At) =V (t) + At% + O(AP?).

Now, by the moment ¢ + At the voltage will have already crossed v, so:

V(t+At) >v=

V(t)+ Atii—‘t/ + O(AP) > v =
V(t)>v— At% — O(AP).

Now, the probability of a neuron being in that interval is :

p(v,t)Av = p(v, t)%Av + O(At?). (3.10)

So the leakage flux, which is the probability per unit time that a neuron crosses
v, 18 :

p(v,t)Av

Jg(v,t) = At

+O(A?)

- p(v,t)% +O(AY). (3.11)

Letting At — 0 and using equation (3.8) we get :

Jo(v,t) = —%(v — E)p(v,t). (3.12)
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2. Excitation flux

When a neuron receives an excitatory input, the voltage will jump upward
because we modeled the conductance change as a delta function. This will
create a positive flux across the jumped voltages, the excitation flux.

positive flux

£|f v LU

Figure 3.2: Positive flux of probability across v, due to an excitatory input

To calculate the excitation flux across a voltage v, we first calculate the prob-
ability that a neuron with voltage V() = v, v < wv, will cross v , given that
it received an excitatory synaptic input.

After receiving an excitatory input, the neuron that had initial voltage V' (t) =
v" will jump to the voltage ¥, where (from equation (1.6)) :

v=1v+TiE. — ). (3.13)

Now, if ¥ > v, then the excitatory input will cause the neuron to cross the
voltage v, creating positive flux at v. This condition is equivalent to :

/
vV—
s>

. 3.14
> (314

I'* is a random variable, so the probability of meating this condition is :

- v —1
F( ) 3.15
re E.—v ( )

So, expression (3.15) is the probability that a neuron with voltage V(t) =
v, v < v, will cross v, given that it received an excitatory synaptic input.
The excitatory synaptic input rate , v,.(t), is the probability per unit time that
a neuron will receive excitatory input. Since the random input times are given
by a Poisson process and are independent of I}, the probability per unit time

that a neuron with voltage v will cross v is :

ve(t) Fr ( 2;_“;) . (3.16)

In order for a neuron to cross v from ', the neuron must start with V(¢) = ¢/
and the probability of V(t) € (v/,v" + dv') is p(¢/,t)dv’. So the total flux of
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probability from V (t) € (v/,v" + dv’) across v is :

- v —1 , ,
ve(t) Frs (E - v)p(v )dv'. (3.17)

sy

E; o' € (Ei,v) D

Figure 3.3: A neuron could cross v from any voltage v € (E;,v)

Any neuron with voltage in the interval (E;, v) could contribute to the flux, if
it received enough excitatory input. So the total excitation flux at v is :

v

T.(v,1) = vo(t) / Fr, ( il ) P, )dv'. (3.18)

E, E,—v

3. Inhibition flux

For the calculation of the inhibiton flux, there are two differences. First, a
neuron can cross v only if its voltage is in the interval (v,vy,). Second, the
flux is negative, since neurons cross v by moving to lower voltages. So, the
total inhibition flux is:

Ji(v,1) = —i(t) / " (2= v (o, ) (3.19)

negative flux

v = (’U,Uth) Vih

Figure 3.4: Negative flux of probability across v, inhibition flux.
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3.2 Network equations

In this section we will model networks of neurons. In order to do this, we only need
two more steps. First, we will group neurons into many populations and create a
population density for each group. Then, we will connect these populations via their
firing rates to form networks of population densities.

In order to group neurons into populations, we must choose groups that satisfy
the assumptions of the previous section. We must have similar neurons, so that
they can be described by one population density, and the populations must be large
enough.

Now, we form a population density for each group of neurons: p*(v,t), k =
1,2,..., N, where N is the number of populations. Each population has a firing
rate, r*(¢), and each population evolves according to the population density model
equations.

The difference between network equations and the single population equations
is that the synaptic input rates for each population in the network are not given
function. They are determined by the firing rates of the presynaptic populations
as well as any external input rate. To calculate these input rates we thus need the
connectivity of the network, Wy, j,k=1,2,...,N.

Wi, is the number of presynaptic neurons from population j that project to each
postsynaptic neuron in population k.

Each population is either excitatory or inhibitory. We denote by Ag/; the
set of excitatory/inhibitory indices, i.e. {p"(v,t)|k € A/} is the set of excita-
tory/inhibitory populations.

If the excitatory/inhibitory external input rates to population k are I/f/i ,(t), then
the total input rates to population £ are : 7

k _ k > NG / /

(0 = O+ 3 W [ttt (3.20)

JEAE)T

where «;(t') is the distribution of latencies of synapses from population j to popu-
lation k.
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So, the equations of the population density approach with populations k =

1,2,..., N are :

op* oJ*
%(’Uﬂf) = _%(Uat) + 6(” - Ureset)Jk(vthat>7

T, 1) = T (0,8) + JE (v, ) + JF (v, 1),

JE(0,1) = — (0 — E,)p*(w,1),

T

v

Jf(v,t):uf(t)/ F

E;

Uth _
Jl.k(v, t) = —l/f(t)/ FF;‘ < U' v )pk(vl, t)dv',

VEi) = b+ S Wi / )P (t — ¢)dr.

00
0

JEAR/T

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

38 Chapter 3

Maltsi Anieza



Probabilistic Approaches for describing Neural Population Density

3.3 Diffusion Approximation

We can make a diffusion approximation to the previous equations, that will give us
a diffusion equation that can be solved more quickly. In order to do so, we make the
assumption that the synaptic inputs are small, which means that the voltage jumps
due to synaptic inputs are also small.

We assume that p is sufficiently smooth, so that we can approximate the value
of p(v',t) with the first two terms of a Taylor series centered around v:

W o
2 ov?

/

p(v',t) =p(v,t) + (v —v 8p<

)% Uat) +

(&,1), (3.28)

where £ is between v" and v. If we neglect the third term we make an error that is
less than :

M((v' —v)?,
where :
1 0*p
M = 5 max|55(0,0)

Now, substituting the first two terms of equation (3.28) into equation (3.24) we
get the diffusion approximation for the excitation flux :

1wt = 00) [ P (5 )ot0t )

= ) [Coeo)pl0,1) = Coel0) 22,1, (3.29)

where:
Che(v) = /E Fr ( E”gi”;,>dv’, (3.30)
Coc(v) = /Ei Fr- (Eve__v;/> (v —0")d', (3.31)
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while for the inhibition flux we get :

dp

Ji(v,t) = —v;(t) [Cri(v)p(v, t) — C’Qi(v)%(v, t)], (3.32)

where:
Cui(v) = / " Fr (é;_i/)dv’, (3.33)
Cai(v) = /vvm FF: (;:i/) (v —0")dv'. (3.34)

Under this approximation, we get the following diffusion equation:

X (gt gt =
= —%< S :_Erp + v(t) [C1e(v)p(v, t) — CQe(U)%(U7 t)] —
() [Cul)plo, 1) — Co0) 0, 1)]) =
= D 0 + ) o] +
4 () ) + 1)) 2], (3.35)
with firing rate :
rlt) = vl lom) 5 (v ), (3.30)

where we used the fact that p(vy,, t) = 0 and Cy;(vy) = 0.

Now, the error in the approximation for the excitation flux is less than:

Y= v—1 / 27,/
ve(t)M /EZ Fr. <Ee — U/) (v —v)*dv, (3.37)
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and changing the variables to v = =7, we get :
()M (B P/éiﬁ<> L
Ve e — U * <
0 re (1 =) !
1 2
< v ()M(E, — E;)® / Fr.(7) dy, (3.38)
0 (1—=")

since F; < v < E,.

We denote the integral by I, and we will simplify it through integration by parts:

1 72
[ = F * —d
/(; Fe<7)<1 _7)4 Y

- w—g; vy,

1—7)3
_[7 (1-7) 2 —1)°+7°
_[FF?(W( 3(1— /87 te 3(1—7)3 e
Z——+/O Jr )3;;373 g
) +49% 1
= [ e[ - gl
- | metzrn (339)
where :
i () = = s (7). (3.40)
e a,y

In the calculation of the boundary term we used the fact that :

Fr-(0) =1,

and the assumption :

I FF; (7) o
11m =
y=1- (1 —=7)3
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Note that, from (3.40), we have :

1
/O fr:(v)dy =1,

since 0 < I < 1.

So, we finally have that the error is less than :

O (B~ B [ o) (3.41)

If the excitatory synaptic conductances are small, then fr«(7) is almost zero
except for small 7, so the integral in (3.41) is the third moment of I'} to smallest
order in 7.

So the error is proportional to the third moment of I’
synaptic conductances are small.

*

. which is small when the

In the same way, we can find that the error for the inhibition flux is less than:

ult) - om =B [ fr ()

with fr«(vy) being the probability density function for I';.
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Appendix A

Probabilities

Let X be a random variable with a probability distribution f(x). The probability
distribution is a non-negative function, f(z) > 0, with f(z)dz being the probability
that = € (z,z + dz), and it is normalised in the sense [ f(x)dx = 1, where the
integral extends over the whole range of X.

e Averages and Moments

The average of a function g(X) is defined as :

and the moments of X correspond to the special case g(x) = 2™ :

um—<Xm>—/xmf(:U)d:U, m=1,2,...

e Characteristic function

The characteristic function is defined as :
G(k) = (e**) = /e““”f(a:)da:.

By expanding the exponential and interchanging the order of the series and
the integral, we get :

G(k) = Z (27];_)'1% /xmf(w)dm = Z (Zk)mum

m!
—0

m=0
From this we can see that :

o O™
M = (—Z) %—mG(k)‘ )

k=o0

which is why G(k) is the moment generating function.
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e Cumulants

The cumulants, k,,, are defined as :

InG(k) = i k)",

From this we get that the first n cumulants can be expressed by the first n
moments.For the first four cumulants we have:

— k1=

— ky = pp —

— k3 = 3 — pgpn + 2413

— ky = pug — dpspn — 3p3 + 12003 — 641

We see that the first cumulant is equal to the first moment, and the second
cumulant is equal to the variance.

e The Gaussian Distribution

The Gaussian distribution is defined as :

1 [ (z — u)Q}
exp | — ,

V2mo? 202

and with characteristic function :

fz) =

Gk) = expliph — %a%?).

The logarithm of this function has terms up to quadratic in k only, so all the
cumulants after the second one vanish, which is a characteristic property of
the Gaussian distribution.

Once we define a stochastic variable X, we can define quantities Y as functions of

X by :
Y(t) = h(X, 1),

which are called stochastic processes. A stochastic process is called:

e stationary when the moments are not affected by a shift in time, i.e.:

(Yt +7), Yt +7)) = (Y(t), ..., Y (t)).

e Gaussian if, for all t; < --- <, the n-vector (Y (¢1),...,Y (t,)) is multivari-
ate normally distributed

e Markovian if, for all t; < --- <, :

P(ynatn|y17tla cee ayn—htn—l) - P(yn7tn|yn—17tn—1)-
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For every Markov process we have the Chapman-Kolmogorov equation :

£, o, to) = / £ (@, ty, 7) £ (g, 70, to).

Novikov Theorem and Wick formula: For a multivariate Gaussian distribution

with zero mean :
[det A 1 .
})<I)<— (g;jg-exp <'— 53&4$>7

the Novikov theorem says that the averages of the type (x;f(x)) can be obtained as

(st (@) = im0,

m
X

0T,

If we set f(z) = xjz,x; and use the fact that = 0;m We get :

(vixjrRp7)) = Z(xixm)@jmxkxl + 2 0pm@1 + T;Tk00m)

m

= (ix;)(zpar) + (wizw)(viz) + (vix) (vj28),

which is Wick’s formula.

The Poisson Process

Definition 1. A random process {N(t),t € [0,00)} is said to be a counting process
if N(t) is the number of events that occured from time 0 up to time t. For a counting
Process, we assume:

1. N(0) =0,
2. N(t) € {0,1,2,...}, for allt € [0,00),

3. for 0 < s < t, N(t) — N(s) shows the number of events that occur in the
interval (s,t].

Definition 2. Let {X(t),t € [0,00)} be a continuous-time random process. We say
that X (t) has independent increments if, for all 0 < t; < ty < t3 < -+ < t,, the
random variables X (t3) — X (t1), X (t3) — X (t2), ..., X (tn) — X (tn—1) are independent.

Definition 3. A discrete random variable X s said to be a Poisson random variable
with parameter p, X ~ Poisson(u), if its range is Rx = {0,1,2,3,...} and:

e‘”uk
k!l 0
Px(k) =

0, otherwise.

if k€ Ry,
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For a Poisson variable we also know that :
1. If X ~ Poisson(u) then E(X) = p and Var(X) = p.
2. If X; ~ Poisson(u;), for i =1,2,...,n and the X;’s are independent, then

X1+ Xo+ ..., X, ~ Poisson(py + o + -+ + fin).

3. The Poisson distrinution can be viewed as the limit of binomial distribution.

Definition 4. Let A > 0 be fized. The counting process {N(t),t € [0,00)} is called
a Poisson process with rate X if :

1. N(0) =0.
2. N(t) has independent increments.

3. The number of arrivals in any interval of length T > 0 has Poisson(\t) dis-
tribution.

A second definition for a Poisson process is :

Definition 5. Let A > 0 be fized. The counting process {N(t),t € [0,00)} is called
a Poisson process with rate X if :

1. N(0) =0.
2. N(t) has independent and stationary increments.

3. We have that :

P(N(A)=0) =1- XA +o0(A),
P(N(A)=1) = MA +o(A),
P(N(A) >2) = o(A).
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Appendix B

Weber Equation

The Weber equation is defined as :

1
u"(z)+ (v + 5 Zz)u(z) =0. (B.1)
The solutions of equation (1) are called parabolic cylinder functions, D, (z). The

two independent solutions are given by u; = D, (2) and uy = D,_1(iz), where :

|
<

v 1 22
2o = B.2
( 27272)7 ( )

where Wy, ,,(2) is the Whittaker Function and Ul(a, b, z) is a confluent Function of
the first kind.

For v a nonnegative integer, the solution D, reduces to :

)

— e TH, (2), (B.3)

v

D,(x) = 2_56_%[']”(

Sl

where H,(x) is a Hermite polynomial and H,, is a modified Hermite polynomial.

The parabolic cylinder functions D, satisfy the recurrence relations :

D,1(2) — 2D, (2) +vD,_1(2) = 0. (B.4)
D%d+§D4@—uDWﬂ@:O. (B.5)

For v real we have :

/OOO [D,(t)] dt = w2273 e : (B.6)

where I'(z) is the Gamma function and ¢q is the polygamma function of order 0.
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