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ABSTRACT

Cellular automata comprise a family of discretemodels with locality constrains.The concept
was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while
they were contemporaries at Los Alamos National Laboratory. While studied by some
throughout the 1950s and 1960s, it was not until the 1970s and Conway’s Game of Life,
a two-dimensional cellular automaton, that interest in the subject expanded beyond aca-
demia, coinciding with the rise in computer processing power and accessibility. There
are several applications of CA in simulating natural microcosms, chemical systems or the
spread of viruses and forest fires.

The simplest type of cellular automaton is a binary, nearest-neighbour, one-dimensional
automaton. Such automata were called “elementary cellular automata” by S. Wolfram,
who has extensively studied their amazing properties. In two dimensions, the best-known
cellular automaton is Conway’s game of life, discovered by J. H. Conway in 1970 and
popularized in Martin Gardner’s Scientific American columns.

In this thesis we study some novel applications of cellular automata in the field of com-
puter graphics, especially in generating three-dimensional polygon meshes. Emphasis will
be given on formations found in nature, but examples of artificial and abstract forms are
also included. We discuss ways to effectively use the generative product of automata in a
real-time graphics application context and compare it with other popular methods for mesh
generation. We populate virtual worlds with foliage and props, organically placed by auto-
mata that simulate its growth and spread. A versatile image generator was created and
dissected to reach certain conclusions for the complicated behaviour that cellular auto-
mata exhibit. Lastly we introduce ways to compress given structures to simple CA rules
using a genetic algorithm. For all the above, a software application was developed and
implemented taking advantage of modern computational techniques on the GPU.

SUBJECT AREA: Cellular Automata

KEYWORDS: cellular automaton, computer graphics, object modelling, procedural
generation, procedural texturing, genetic algorithm



ΠΕΡΙΛΗΨΗ

Τα κυψελικά ή κυτταρικά αυτόματα αποτελούν μια οικογένεια διακριτών προτύπων με
τοπικούς περιορισμούς. Η έννοια ανακαλύφθηκε την δεκαετία του 1940 από τον Stan-
islaw Ulam και John von Neumann, συνεργάτες στο Los Alamos National Laboratory.
Ενώ μελετήθηκε από αρκετούς καθ’ όλη τη δεκαετία του 1950 και του 1960, δεν ήταν
μέχρι τη δεκαετία του 1970 και το παίγνιο της Ζωής του Conway, ένα διδιάστατο κυψελικό
αυτόματο, όπου το ενδιαφέρον για το θέμα επεκτάθηκε πέρα από την ακαδημαϊκή κοινότητα,
συμπίπτοντας με την άνοδο επεξεργαστικής ισχύος και προσβασιμότητας των υπολογιστών.
Υπάρχουν πολλές εφαρμογές των ΚΑστην προσομοίωση φυσικών μικροκόσμων, χημικών
συστημάτων ή την εξάπλωση ιών και πυρκαγιών.

Ο απλούστερος τύπος κυψελικού αυτομάτου είναι ένα δυαδικό, πλησιέστερου γείτονα,
μονοδιάστατο αυτόματο. Τέτοια αυτόματα ονομάστηκαν “στοιχειώδη” ΚΑ από τον S.Wolfram,
ο οποίος έχει μελετήσει εκτενώς τις εκπληκτικές ιδιότητές τους. Σε δύο διαστάσεις, το πιο
γνωστό κυψελικό αυτόματο είναι το παίγνιο της ζωής, όπου ανακαλύφθηκε από τον J. H.
Conway το 1970 και διαδόθηκε από τις στήλες τουMartin Gardner στο Scientific American.

Στην εργασία αυτή μελετούμε κάποιες νέες εφαρμογές κυψελικών αυτομάτων στον τομέα
των γραφικών, ειδικώς στην παραγωγή τριδιάστατων αντικειμένων. Έμφαση δίνεται σε
σχηματισμούς πουπαρατηρούνται στη φύση, αλλάπεριλαμβάνονται επίσης παραδείγματα
τεχνητών και αφηρημένων δομών. Συζητάμε τρόπους για την αποτελεσματική χρήση του
προϊόντος των ΚΑσταπλαίσια εφαρμογών γραφικώνπραγματικού χρόνου και τους συγκρί-
νουμε με άλλες δημοφιλείς μεθόδους για παραγωγή πολυγωνικών προτύπων. Οικούμε
δυνάμει κόσμους με χλωρίδα οργανικώς τοποθετημένη από αυτόματα πουπροσομοιώνουν
την ανάπτυξη και εξάπλωσή της. Δημιουργούμε και αναλύουμε μία ευέλικτη γεννήτρια
εικόνων, ώστε να φτάσουμε σε ορισμένα συμπεράσματα για την περιπλεγμένη συμπερι-
φορά που εμφανίζουν τα ΚΑ. Τέλος, παρουσιάζουμε τρόπους για την συμπίεση δομών
σε απλούς κανόνες ΚΑ χρησιμοποιώντας γενετικούς αλγορίθμους. Για όλα τα παραπάνω,
αναπτύχθηκε και υλοποιήθηκε μια γραφική εφαρμογή, αξιοποιώντας σύγχρονες υπολογι-
στικές τεχνικές στην κάρτα γραφικών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κυψελικά ή Κυτταρικά Αυτόματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κυψελικό ή κυτταρικό αυτόματον, γραφική Η/Υ, προτύπωση
αντικειμένων, διαδικαστική γένεση, διαδικαστική ύφανση, γενετικοί
αλγόριθμοι
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1. PRELIMINARIES
1.1 Cellular automaton
A cellular automaton, or CA for short, is comprised of a lattice with a regular grid of cells.
Each cell is assigned one of a finite number of states. In every iteration the cells change
state synchronously as a function of their current state and that of their neighbours. Com-
monly, the cell state is represented as an integer or boolean value. The grid can be of any
finite dimension, but wemostly delve into three-dimensional automata, as they have imme-
diate application in computer graphics. The neighbourhood of a cell in a one-dimensional
grid is illustrated in Figure 1. Cells in the immediate neighbourhood are shown in green,
the ones in yellow and red constitute the extended neighbourhood in radius 2 and 3 from
the cell.

Figure 1: Neighbourhood of the grey cell in a one dimensional grid.

In each iteration of the automaton, a rule is synchronously evaluated for each cell, chan-
ging the grid states accordingly. The behaviour of a simple rule is shown in Figure 2. A
finite one-dimensional grid is initialized with a single grey cell (state 1) in the middle. For
each iteration, a cell becomes grey if one or two grey cells exist in its immediate neigh-
bourhood. Otherwise, it turns or remains white (state 0). Note that the cell being evaluated
is included in the neighbourhood.

Figure 2: Four iterations of an elementary cellular automaton rule on a one-dimensional grid.

Expanding this concept to two or three dimensions presents more choices for the selection
of the neighbourhood. The most common are the von Neumann and Moore neighbour-
hoods and their extensions, illustrated in Figures 3 and 4.

For the purpose of this thesis we consider the immediate Moore neighbourhood, consist-
ing of 26 cells (including diagonals) and its extensions. The number of cells in an exten-
ded Moore neighbourhood of radius r in d dimensions is (2× radius)d − 1. In fact, radius
represents the Chebyshev or chessboard distance, meaning all neighbouring cells in po-
sitions np, of cell in position cp, where max(|npi− cpi|) <= radius, are included in the rule
evaluation.
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Figure 3: Neighbourhoods in a two-dimensional grid. Left: von Neumann, right: Moore. The
immediate neighbourhood is shown in blue and the extended in green.

Figure 4: Three-dimensional neighbourhoods of the green cell shown in red. From left to right: von
Neumann, Moore, Moore extended.

CA rules may take into account both the number of neighbours in a certain state and the
specific states of each neighbour. The types of constrains we set for expressing rules in
this thesis can be grouped in the following categories:

1.1.1 Totalistic cellular automata
Totalistic cellular automata are one of the simplest and most extensively studied automata
[22]. As the name implies, the cells of these automata consider a summation (or average)
of the neighbouring cell values to decide on their future state. Commonly they have two
possible states, alive or dead (0,1) and the rules are stated as such:

1,2,3/2,5
Numbers before the slash denote the count of alive neighbours for which an alive cell may
survive, while the ones after, the count for triggering a dead cell to be born. In the above
case, an alive cell survives if it has 1, 2 or 3 alive neighbours, while a dead one is born
if it has 2 or 5 alive neighbours. In any other case the cell dies, or remains dead. The
behaviour of the totalistic rule 1/1 is shown in Figure 5.

Figure 5: The first three iterations of the totalistic automaton rule 1/1, starting from a single alive
cell. Dead cells are not rendered.
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A cellular automaton (CA) is Life-like (in the sense of being similar to Conway’s Game of
Life [4]) if it meets the following criteria:

• The array of cells of the automaton has two dimensions.
• Each cell of the automaton has two states (conventionally referred to as “alive” and
“dead”, or alternatively “on” and “off”)

• The neighbourhood of each cell is the Moore neighbourhood; it consists of the eight
adjacent cells to the one under consideration and (possibly) the cell itself.

• In each time step of the automaton, the new state of a cell can be expressed as a
function of the number of adjacent cells that are in the alive state and of the cell’s
own state; that is, the rule is outer totalistic (sometimes called semi-totalistic).

Rule: Game of Life [4]
Output: newCellState
cellState← current cell state;
aliveCellCount← number of ALIVE cells in the immediate Moore neighbourhood;
if (cellState = ALIVE and aliveCellCount ∈ [2, 3])

or (cellState = DEAD and aliveCellCount = 3) then
return ALIVE;

else
return DEAD;

Life-like cellular automata exhibit bounded growth and have the ability to form a translating
oscillator, also referred to as “glider”. The glider is a pattern that travels across the board in
Conway’s Game of Life. A life-like rule once discovered only behaves as such on limited
initial structures. The following three-dimensional rules, discovered by Bayes [3] exhibit
this behaviour:

• 5,7/6
• 5,6,7/6
• 2,7/5
• 3,5/5
• 4,7/5

The full period of life-like rule 4,7/5 is illustrated in Figure 6.

Figure 6: The full period of rule B47/S5, indexed left to right, top to bottom.
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1.1.2 Life-based cellular automata
Life-based cellular automata are multi-state CA and a generalisation of the “Brain rules”
[20]. Let N be the count of possible states, N − 1 the alive state index and 0 the dead
state. All other states are not considered in a cell’s survival computation. A number of
cells are assigned the maximum state (alive) upon initialization, if a cell does not survive
an iteration their state gets reduced by 1.

These automata exhibit seemingly alive behaviour, thus are better observed in motion.
Brian Silverman’s “Brian’s Brain” ported to three dimensions is depicted in Figure 7. When
in motion, the structures glide and interact in complicated ways.

Figure 7: 50th iteration of Brian Silverman’s “Brian’s Brain” [20] 2D rule ported to three
dimensions. Each colour represents a cell state.

1.1.3 Cellular automata with memory
In cellular automata with memory [2], the current state is evaluated as a function of m
previous states, with some weight distribution.

Statei =

i∑
n=i−m

Staten × wn

i∑
n=i−m

wn

1.1.4 Cellular automata with directionality
Cellular automata with directionality are totalistic CA, but the evolution function has access
to directionality predicates when neighbour states are evaluated, e.g counting neighbour-
ing cells on the X-axis with state 1. As seen in Figure 8, the neighbourhood placement is
altered according to the automaton rule.

1.1.5 Stochastic cellular automata
In stochastic cellular automata [6], a cell may change state according to some probability
distribution.
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Figure 8: Automata with directionality. Top, around and bottom neighbourhoods of green cell in
radius 1, shown in red.

1.2 Conventions and methodology
Commonly, all cells are given a neutral initial state (dead, 0, air), while a small number
of them another (solid, 1, alive), to better discern the evolutionary process of the auto-
maton. Some automata rules are better observed when the initial states are random. For
some automata, different initial states result in different behaviour, while others always
converge to a certain form. In our case, grid states are carefully constructed for synthetic
and geometric shapes, while random initial volumes with controlled initial state distribution
will expand and contract to form organic shapes found in nature.

We handle cells on the edge by wrapping the neighbour search around the border of the
simulated configuration. This ensures the end result is tile-able on all axes, and interesting
behaviour can happen at the edges. The topology of the grid and connections between
the cells is illustrated in Figure 9.

Figure 9: A cellular space of 2× 2× 2. Cells form an interconnected toroidal network.

During the development of the ideas presented in this thesis, we found that relying on a
single rule to produce the desired structure doesn’t allow much creative freedom. Instead,
we provide means to successively apply multiple rules and perform boolean operations
between volumes of different states. A structure is described by its initial state, a list of
automata rules and the count of steps to apply them, and optionally a list of boolean oper-
ations. These operations are also expressed in simple CA rules but only need to run once
to produce the desired result.

Our investigation focused on simple, lightweight queries run on a cubic grid. A single rule
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is executed per time frame and affects the entirety of the cell grid. To meet our real-time
generation goals, all rule configurations obey the following requirements: A single rule
iteration should take place in a single frame of a real-time graphics application when run
on modern hardware. If multiple rules and iterations are required to produce the desired
result, we set a maximum duration of 15 seconds as if it runs during the pre-processing
stage of a level.

Cells change state synchronously, so there is a need for two buffers, one for the current
simulation state and one for the next. When a CA rule is evaluated the neighbour lookup
is done on the current buffer while the new cell state is saved in the next. Finally, the
buffers are swapped. Rule algorithms presented in the next chapters are run once per cell
to take advantage of the GPU architecture, but are not thoroughly optimized in exchange
for readability. Calculations independent of the current simulation state should be sent to
the GPU by the host application and expensive neighbourhood queries should be hidden
behind conditionals if they can be avoided.
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2. OBJECT GENERATION WITH CELLULAR AUTOMATA
2.1 Cave structures
Cellular automata are extensively used for the generation of cave levels [9]. Implement-
ations in recent games mostly focus on creating two-dimensional level layouts, efficient
in the context of that game. For this thesis, we will port the two-dimensional cave rule to
three dimensions and investigate ways to improve and parameterise it.

For this, we make use of a two-state automaton of solid(1) and air(0). According to this
automaton’s rule, every cell changes state based on the ratio of air and solid cells around
it, resulting in a clustering of same-state cells in space. The connectedness parameter
determines how substantial the ratio in favour of different states around the cell needs to
be, in order for it to change state. The default value is 0.5. The percentage of solid cells
in the primitive structure is referred to as density.

Rule: Cave structure
Parameters: connectedness, radius
Output: cell
cellCount← number of same state cells in radius;
ratio← cellCount / (2 · radius+ 1)3;
if ratio < connectedness then

cell← majority state;

Structures displayed in the next pages are not hollow on the inside. They simply need to
be inverted to act as intended. In case we wanted to extract a surface from this volume, the
final result would be the same. In Figure 10 and subsequent figures, we show the original
product of the cave rule for visibility.

Figure 10: The cave structure rule applied for 7 iterations to a sphere with 0.5 density of varying
resolution. Search radius set to 1 unit. From left to right, top to bottom: 32, 64, 128, 256 grid

resolution. The connectedness parameter is set to 0.5.
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We observe that increasing the simulation resolution results in the repetition of the cave
features, which is the desired behaviour in case we wished to expand our world while
retaining the same per-voxel resolution for the cave structures. There are of course ways
to scale the structures or increase the cave fidelity. We will look into some of those.

2.1.1 Iteration count
The cave structure rule needs a small number of iterations to produce the desired result,
in most cases 4 are enough. More iterations result in a smoother mass with less cave
connections.We observed that as the iteration count increases, successive iterations have
lesser effect on the volume. This behaviour is observed in Figure 11.

Figure 11: Selective iterations of the cave rule as applied to a 643 resolution sphere with density
0.5, radius 1, connectedness of 0.5. From left to right, top to bottom: 1,2,3,4,5,13,20,37 iterations.

2.1.2 Connectedness parameter
The smaller the connectedness value is, the more compact the volume generated, also,
the cave network is less prone to collapse under successive iterations. Values under 0.3
provide mostly unchanging structures while ones greater then 0.6 result in expanding uni-
form structures. The effect of connectedness is shown in Figure 12

Figure 12: Modifying the connectedness parameter of the cave rule as applied to a 643 resolution
sphere with density 0.5, radius 1 for 10 iterations. From left to right: 0.3, 0.4, 0.5, 0.6 connectedness.
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2.1.3 Initial density
The initial density is the solid to (air + solid) cells ratio inside the primitive structure upon
initialisation. This ratio greatly affects the end result, evident in Figure 13. If either state
significantly outnumbers the other, we will quickly see it dominating the simulation space
after some iterations. Therefore, the density values for our primitive must fall in the [0.45,
0.55] range.

Figure 13: The cave rule as applied to a 643 resolution sphere with varying density, 1 search radius,
for 2-7 iterations. From left to right: 0.45, 0.48, 0.52, 0.55 initial density.

2.1.4 Neighbourhood radius
Expanding the radius scales the features accordingly but demands a more expensive
computation. We saw that 4 iterations using a neighbourhood radius of 1 produce similar
results with these of two iterations by using a radius of 2. However, expanding the radius
allows the evolution of structures beyond that state they would otherwise become stable.
The results of radius expansion can be seen in Figure 14.

Figure 14: The cave rule as applied to a 1283 resolution sphere with 0.5 density, with varying
neighbourhood radius, for 4 iterations. From left to right: 1,2,3,5 search radius.

2.1.5 Augmenting the rule with life-based properties
Starting from a sphere with cell states 0 or N, equally distributed, if not enough cells of
state N exist in the neighbourhood subtract 1 from the current state. In this case, states
greater that 0 are considered solid. We observed that more states smooth and expand
the volume while less cause it to shrink and become coarse. The cave rule with life based
properties is shown in Figure 15.
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Figure 15: The modified cave rule as applied to a 643 sphere for 7 iterations. On the right we see a
visualization of the different states. All states with index > 0 are rendered as solid.

2.1.6 Generating the cave structure
Our goal was to create a small and usable level, with well-structured cave connections a
player could easily pass through and explore. We used a cube of 2563 cells and 0.49 initial
density, and applied the cave rule for 40 iterations, using a radius of 3 and connectedness
of 0.5. The resulting volume is shown in Figure 16. The surface was extracted using meth-
ods that will be discussed in Subsection 2.4.2.

Figure 16: Generated cave structure.

Texturing poses a challenge for CA and all procedural generated meshes for that matter.
Commonly, texture is mapped on a model through UV coordinates stored in each vertex
of the polygon mesh. This is generally a manual process, aided by unwrapping algorithms
and various tools.

For visualizing the cave structure’s interior, shown in Figure 17, we used a different tech-
nique: A diffuse texture was projected using triplanar mapping andmodulated by slope and
normal orientation. In triplanar mapping, the textures are sampled using the vertices’ world
space coordinates and then blended based on the vertex normals. Multiple textures can
be combined based on the projection axis. To provide further variation, the relative slope
of the polygon faces and height information was used to modulate the texture colour.
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Figure 17: Inside the cave structure after surface extraction and texture mapping.

2.2 Terrain
We will look into simple CA rules that elevate and shape a thin voxel volume, eventually
forming a natural looking terrain. To achieve a believable result we combinedmultiple rules
and boolean operations.

2.2.1 Elevation rule
The elevation rule, as the name implies, displaces the top voxels on the y axis while ex-
panding the ones under on the x and z. It aims to imitate the terrain elevation tool found in
game engines. We will apply the rule on a thin volume shaped by the cave rule, as shown
in Figure 18.

Rule: Elevation
Parameters: expandValue, radius
Output: cell
cell← current cell state;
if cell = Air then

bottomCell← cell state directly under the cell;
aroundCount← solid cell count in radius around the cell;
if bottomCell = Solid or aroundCount = expandValue then

cell← Solid;

2.2.2 Selective height displacement rule
The selective height displacement rule generates wide and sharp peaks. Unlike the elev-
ation rule, it does not require specific initial conditions to generate interesting results, as
it creates height variation from a flat volume. It may not produce realistic results by itself
but is the backbone of our mountain range generation method. As with the cave rule we
can scale the mountainous features across the landscape by extending the neighbour-
hood radius. The rule works by creating solid cells only when enough bottom cells exist
to support them. We can parameterise the overall displacement by changing the required
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Figure 18: From left to right, top to bottom: 0, 10, 20, 55 iterations of the Elevation Rule on a
256× 256× 10 voxel mass. Radius = 1, expandValue = 3

supporting cells count, relative to the maximum bottom neighbour count. The number of
neighbouring cells in radius r where heightneighbour < heightcell is r · (2r+ 1)2.

Rule: Selective height displacement
Parameters: threshold, radius
Output: cell
cell← current cell state;
bottomCell← cell directly under the cell;
if cell = Air and bottomCell = Solid then

bottomCount← solid cell count in radius under the cell;
if bottomCount > radius · (2 · radius+ 1)2 · threshold then

cell← Solid;

The initial volume density correlates with the number of displaced voxels and therefore
mountain peaks. When applied on a thin voxel mass with 0.5 density, the rule becomes
stable after about 50 iterations. When expanding the radius the threshold must be lowered
accordingly to prevent exaggerated displacement. This behaviour is illustrated in Figure
19.

Figure 19: The selective height displacement rule applied on a 256× 256× 10 voxel mass with 0.5
density for 50 iterations. From left to right: 1, 2, 3, 4 neighbourhood radius, 0.77, 0.65, 0.6, 0.575

threshold respectively.

Another interesting feature of the selective height displacement rule is the ability to com-
bine small and large features produced by the above configurations. We found that by
applying smaller features first, the resulting grid state prevents larger ones from seed-
ing. Therefore, we applied sequentially starting from the highest neighbourhood radius
going downwards. The behaviour of this combination resembles an addition of heights
rather than a maximum. When combining a small and a large feature configuration, high
frequency noise from the first appears intact where flat areas and valleys existed in the
second configuration. Where there are peaks and uneven terrain, the noise builds upon
them, extending the elevation but getting lost in the process. This is evident on the first
and last image of Figure 20.
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Figure 20: Different configurations of the selective height displacement rule, additively applied on
a 256× 256× 10 voxel mass with 0.5 density for 50 iterations each. From left to right: 1+3, 3+4,

2+3+4, 1+2+3+4.

2.2.3 Selective displacement rule variation
This variation generates wide, high altitude peaks and is more suited for alien terrain. It
shares all the features of the original rule discussed above, as seen in Figures 21 and 22.

Rule: Selective height displacement variation
Parameters: threshold, radius
Output: cell
cell← current cell state;
if cell = Air then

topCount← solid cell count in radius over the cell;
bottomCount← solid cell count in radius under the cell;
if bottomCount > topCount+ 2 · radius · (2 · radius+ 1)2 · threshold then

cell← Solid;

Figure 21: Variation of the selective height displacement rule as applied on a 256× 256× 10 voxel
mass with 0.5 density for 50 iterations. From left to right: 1, 2, 3, 4 neighbourhood radius, 0.278,

0.278, 0.265, 0.265 threshold respectively.

Figure 22: Variation of the selective height displacement rule as applied on a 256× 256× 10 voxel
mass with 0.5 density for 50 iterations each. From left to right: radius 3 0.278 threshold, radius 3

0.265 threshold, 4+2 radius, 4+2+1 radius.
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2.2.4 Sediment carry rule
This rule aims to simulate the effect of hydraulic erosion and sediment deposition on rock
formations. It is of course a very simplified model and the material is created rather than
displaced, but still manages to generate believable results. It is parameterised by the slope
threshold, an integer ranging from −3 to 3 that constrains the creation of solid cells based
on the slope of adjacent voxel groups. Expanding the neighbourhood radius alleviates the
harshness on the surface of the deposed material, but in most of the cases this is not a
desired effect. The behaviour of the rule is shown in detail in Figures 23 and 24.

Rule: Sediment carry
Parameters: slopeThreshold, radius
Output: cell
cell← current cell state;
bottomCell← cell state directly under the cell;
if cell = Air and bottomCell = Solid then

bottomCount← solid cell count in radius under the cell;
aroundCount← solid cell count in radius around the cell;
topCount← solid cell count in radius over the cell;
if bottomCount− aroundCount < topCount− slopeThreshold then

cell← Solid;

Figure 23: The sediment carry rule as applied on a 2563 volume generated by the mountain
variation rule. From left to right: initial, 35, 70 iterations. Slope threshold = 1, radius = 1.

Figure 24: The sediment carry rule as applied on a 128 voxel diameter hemisphere with 0.5 density,
neighbourhood radius of 1. From left to right: 1, 0, -1 slope threshold.

Using a different slopeThreshold in successive iterations allows us to control the slope,
peaks and base of our mountains. When a desired sequence of values is found, the pro-
cess can be automated, as different initial conditions provide similar results.
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2.2.5 Space colonization rule
This rule was inspired by growth patterns found in nature, and proved extremely versatile.
In order for a cell to grow, some solid neighbours are required to grow from, and enough
empty cells to grow to. Furthermore, by considering only the bottom neighbourhood when
evaluating this condition, the growth is guided towards the top of simulation. Applying this
rule on a thin volume with an extended neighbourhood radius results in the creation of
canyons consisting of stacked layers of solid cells, shown in Figure 25. The threshold and
limit values control the amount and size variation of these layers.

Rule: Space colonization
Parameters: threshold, limit, radius
Output: cell
cell← current cell state;
if cell = Air then

solidBottomCount← solid cell count in radius under the cell;
solidRatio← solidBottomCount / (radius · (2 · radius+ 1)2);
if solidRatio ∈ [threshold, limit] then

cell← Solid;

Figure 25: Voxel canyons generated with the Space colonization rule. Parameters from left to right:
(0.38, 0.46, 2)1283 resolution grid, (0.4, 0.48, 6)2563 resolution grid

If we were to consider the entire neighbourhood for the upper threshold calculation the
growth is more organic similar to underwater features, as seen in Figure 26.

Figure 26: Modified space colonization rule as applied on a 128 voxel diameter hemisphere of 0.5
density. Parameters from left to right: (0.2, 0.2, 3), (0.2, 0.13, 3)
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2.2.6 Forming a mountain range
We discovered several viable rule combinations that produce realistic mountain ranges.
The result shown in Figure 28 was achieved by sequentially applying the following rule
configurations:

• grid initialization with a thin voxel volume of 0.5 density.
• 40 iterations of the selective height displacement rule, threshold = 0.6, radius = 3.
• 30 iterations of the selective height displacement rule, threshold = 0.65, radius = 2.
• 4 iterations of the sediment carry rule, slopeThreshold = 0, radius = 1
• 30 iterations of the sediment carry rule, slopeThreshold = 1, radius = 1
• invert solid-air volume.

The steps are shown in Figure 27.

Figure 27: Step by step creation of a mountain range from a 256x256x16 thin voxel volume. From
left to right: displacement, sediment carry, inversion.

To reduce the voxel artefacts apparent in Figure 28, we could increase the simulation
resolution or use a polygonization algorithm that will be discussed in Subsection 2.4.2. A
higher resolution terrain is shown in Figure 29 rendered using a tessellation shader driven
by a heightmap. The extraction of heightmaps will be discussed in Subsection 2.4.1. The
second terrain was generated using the same steps, starting with a negative value for the
slopeThreshold.

Creating terrain with the above means has certain advantages. In each rerun of the gen-
eration process using the same settings, the features are similar but visually distinctive
enough to be placed in a nearby location. The final voxel structure is tile-able enabling our
terrain to seamlessly repeat, infinitely or otherwise. Rule parameter values and the shape
of the generated features are correlated: We control the scale of our landscape through
the selective height displacement radius relative to the simulation space, initial density
translates to the ratio of mountains to plateaus, and the height is affected by the threshold
parameter. The mountains are shaped by the sediment carry parameter slopeThreshold
and the number of iterations. Although this relationship could prove complicated for the
end user, a program acting as the middle man using real world units as input could further
simplify the process.
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Figure 28: A mountain range generated from a combination of the rules discussed in this chapter
with snow/rock colour applied based on slope steepness. Rendered in Unreal Engine 4.

Figure 29: An alien terrain featuring an impact crater generated using a similar technique,
colourization applied by height using a lookup table (LUT). Rendered in Unreal Engine 4.

2.3 Cave interior
Common cave interior features include stalagmites, stalactites and large supporting columns.
These proved a challenge to generate in the same simulation space as they demand dif-
ferent levels of detail. Previously we focused on generating low resolution large scale
structures, granting that high frequency detail would be provided by other means. There
exist many ways to achieve this, either through textures that guide surface tessellation and
normals or superimposed objects. Thus, we used two automata rules, one for the gener-
ation of the large cave interior, and another for the stalagmite growth and rock surface.

2.3.1 Large scale features
A significant obstacle when studying three-dimensional automata is the inability of com-
plete visualization. Many times interesting behaviour unfolds behind the rendered surface,
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with no practical way to visualize it. Thus, in the process of evaluating the significance of a
discovered rule we used a number of boolean operations and simple rules that discarded
surface -or otherwise unimportant- cells to reveal the behaviour underneath. One of these
operations, expressed as an automaton rule is the following:

Rule: Cull
Parameters: cullThreshold, radius
Output: cell
solidCount← solid cell count in radius;
if solidCount > cullThreshold then

cell← current cell state;
else

cell← Air;

The process we used for generating the cave interior is:

• initialize the grid with a thin volume of 0.5 density.
• apply 20 iterations of the selective displacement rule, radius = 3, threshold = 0.6.
• apply the cull rule for a single iteration, cullThreshold = 26

The final result could benefit from the application of additional rules to smooth or further
diversify the cave features. Another approach would be the space colonization rule, al-
though the surface generated is rather aggressive and would require post processing in a
3D application for practical usage. The two are shown in Figure 30.

Figure 30: Left: voxel cave interior generated by the height displacement and cull rule, on a 2563
simulation space. Right: top down view of a voxel cave interior generated with the space

colonization rule on a 2563 simulation space (threshold = 0.4, limit = 0.6, radius = 2)

2.3.2 Polygon Meshes
The space colonization rule is ideal for stalagmite and stalactite generation. Experiment-
ing with different configurations allows us to create multiple visually distinctive formations.
Starting with threshold = 0.4, limit = 0.57, radius = 2, structures raise from the voxel
volume. To stop the stalagmite growth prematurely, we lower the limit accordingly (in this
case to 0.55) after some iterations. This allows us to control the height of the formation.
Modifying the initial density enables greater size variation in the stalagmites. The gener-
ated voxel structures are shown in Figure 31. In case we wanted to dynamically populate
our world, this procedure, as with all the rules discussed previously, is predictable in each
repetition. Once the desired parameter values have been found, there is no need for su-
pervising the generative process.
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Figure 31: Stalagmites generated with the space colonization rule on a 2563 simulation space.
(density, threshold, limit, radius) parameters, from left to right:

(0.6, 0.4,0.57, 2), (0.45, 0.4, 0.57, 2), (0.5, 0.4,0.59, 2), (0.5, 0.33, 0.44, 2)

As seen in Figure 31 the structures wrap around the simulation borders. Generally, there
is no need for organic meshes to be tile-able, as intersections are hardly noticeable and
sometimes encouraged to create new structures from a limited asset pool. Therefore, a
disc or planar volume that doesn’t reach the borders, is better suited for initialization. An-
other method, is to regard all cells outside the simulation border as solid or air, depending
on the desired behaviour. The cells in the bottom can be discarded by clipping based on
height, if we wished to attach the stalagmites on a different surface.

Processing the generated voxels depends on the usage. For real-time graphics applic-
ations, we propose hand-picking interesting stalagmite structures in a 3D package and
discard other polygons. A high resolution mesh used for baking additional maps (normal,
ambient occlusion) is produced by subdividing and relaxing the extracted surface. This is
only needed in low resolution simulations as it alleviates any underlying voxelization or
surface extraction artefacts. Afterwards, the mesh is decimated, unwrapped and textured
through traditional means. For use in offline rendering, the surface could be rendered as
exported from the CA simulation, providing a high resolution was set (>= 256). For a game
using real-time procedural generation, we could extract the surface using a lower resolu-
tion polygonization grid. We tested all the above scenarios with positive results. Some of
the steps are shown in Figure 32.

Figure 32: Left: original stalagmite extracted surface, right: hand-picked and simplified meshes.
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2.3.3 Surface detail
Using triplanar mapping, we can project a texture on the cave walls that allows us to create
and displace polygons through tessellation, and thus provide much higher resolution struc-
tures. Again, using the space colonization rule with different threshold values, resulted in
some interesting texture maps for displacement or bump. The selective height displace-
ment variation rule also proved effective. The maps shown in Figure 33 were created using
the heightmap extraction method discussed in Subsection 2.4.1.

Figure 33: Volume (top row) and extracted height map (bottom row). Rules applied on a 2563 thick
plane, left to right, space colonization rule (threshold : 0.4, limit : 0.46, radius : 6), space colonization

rule (threshold : 0.38, limit : 0.46, radius : 3), combination of selective height displacement rule
configurations.
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2.4 Surface extraction
2.4.1 Heightmaps
The most prominent method of storing terrain data in computer graphics is through a
heightmap or heightfield. Heightmaps are single-channel textures with each pixel’s value
representing the relative elevation of the target terrain. Black values represent the min-
imum height and white ones the maximum. A plane equally subdivided with as many ver-
tices as the heightmap pixels is conformed accordingly to produce the terrain mesh.

This technique although practical and fast to render has some drawbacks, the most obvi-
ous being the inability to represent overhangs and caves. Also for an 8-bit image only 256
height levels can be stored in a single channel, so 16-bit images or using the green, blue
and alpha channels in addition, are common practices.

The way to convert our generated voxel terrain to polygon meshes is straightforward. First
we measure the highest and lowest voxel. Then, iterating from the top of each column in
our simulation we record the height of the first solid voxel encountered. The following
formula is used to calculate the corresponding pixel’s luminance:

heightmapx,z =
voxelHeightx,z −minHeight
maxHeight−minHeight

× 255

Note that we remap the voxel height to cover the full 256 range the 8-bit image supports,
but if our grid dimensions are under 256 it would not make a difference. In case we needed
a higher resolution terrain than our voxel grid width, a Gaussian blur after rescaling the
heightmap should provide an acceptable result.

2.4.2 Polygonization
There is a vast body of literature on the efficient rendering of volumetric structures, much
richer in properties than the discrete-state voxels generated in our simulations. Data struc-
tures used for storing and raycasting the voxel data, like sparse voxel octrees [11] could
replace the toroidal network we use for accessing the neighbourhood of a cell.

We also explored some of the most popular surface extraction algorithms, namely march-
ing cubes [13] and Dual Contouring [10], both of which greatly benefit from parallel pro-
cessing on the GPU. A concept these two techniques share is the density function. This
function takes a point in 3D space as input and returns a value representing the signed
distance from that point to the surface, with positive values signifying that the point lies
inside the volume. By means introduced by these methods, vertex positions are selected
and properly connected to form the polygon surface. Also, normal vectors are calculated
by sampling the density function on the polygonization grid and calculating a gradient.
Here lies a problem, as we cannot provide an accurate floating point density function, or
it would be impractical and time consuming to do so while simulating the automaton. This
results in faceted, jaggy surfaces with intersection artefacts in low density volumes. Calcu-
lating smooth normals for each vertex from the normalized cross product of the adjacent
faces, alleviates the faceted appearance of the generated mesh, but does not improve the
fidelity.

Simulations in this thesis sometimes involve close to a billion of cells, changing state al-
most every frame. Extracting a smooth isosurface from binary volumes of comparable size
was investigated by Lempitsky [12] showing great results, but certain compromises on the
real-time generation frequency of the surfaces are needed, depending on the usage.
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2.5 2D Noise generation
2.5.1 Widely used methods
To measure the viability of CA techniques to produce terrains seen in modern CGI, a
comparison is drawn with common two and three-dimensional noise generation methods.

Perlin noise [19] is a proven method for fractal terrain generation. Efficient for cave struc-
tures and is commonly applied on terrains at a medium/high frequency. A visual compar-
ison between CA-generated noise and Perlin noise is shown in Figure 34.

Figure 34: Left: 5 octaves of perlin noise with 0.3 persistence. Right: perlin-like noise generated
with the height displacement and cluster rule.

Worley noise [23], is used to simulate the texture of waves and stone crevices. It is ap-
plied on a lower frequency to form mountain ranges and other large features. A visual
comparison between CA-generated noise and Worley noise can be seen in Figure 35.

Figure 35: Left: Worley noise. Right: Worley-like noise generated with the height displacement rule
(threshold : 0.77, radius : 2).

Of course the CA-based technique is lacking both in speed and scalability. This compar-
ison mostly aims to establish 3D CA as a viable framework for producing interesting two-
dimensional noise for texturing and polygon mesh manipulation. Imitating the algorithms
used for Perlin andWorley noise generation with a CA or hybrid method could be possible,
but we are mostly interested in the emergence of such structures from simple rules.
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2.5.2 CA generated noise and patterns
In Figure 36 we see show some interesting examples of CA generated noise patterns.

Figure 36: 3D CA generated noise.
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2.6 Abstract results

Figure 37: Some abstract results.

P. Mikedakis 37



Two and Three-Dimensional Cellular Automata for the Generation of Objects in Computer Graphics

Figure 38: More abstract results.
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3. POPULATING THE WORLD WITH CELLULAR AUTOMATA
3.1 Goals and requirements
In this chapter we discuss simple automata rules that populate our generated worlds with
additional objects and surface materials. Although these methods are inspired by natural
processes, our goal is not to produce accurate physical models but to generate interesting
and believable patterns with easily parameterized behaviour for practical usage in game
levels.

A prerequisite of this process is that all existing objects in our level are either in the form
of voxels having an integer coordinate vector and discrete state, or a preprocessing stage
partitioned space in evenly sized cells containing the necessary data on the enclosed
models. These rules affect only empty cells, leaving underline voxels intact.

3.2 Population rules
3.2.1 Moss spread
This rule guides the spreading of moss on a variety of surfaces. Could be used for highly
detailed voxel structures or entire terrains. This is a texture effect, thus we are not inter-
ested in the placing of themoss voxels on the y axis. For another CAmethod that simulates
the propagation of green patina on copper see [8]. Themoss spread rule in action is shown
in Figure 39.

Rule: Moss spread
Parameters: spreadFactor
Output: cell
cell← current cell state;
bottomCell← cell state directly under the cell;
topCell← cell state directly over the cell;
bottomSolidCount← Solid cell count under the cell;
topSolidCount← Solid cell count over the cell;
// has solid under it and room to grow
if topCell = Air and bottomCell = Solid and bottomSolidCount > 6 and
topSolidCount < 6 then
return Moss;

// otherwise, spread as if by neighbouring moss influence
mossSpread← Moss cell count around the cell;
aroundAirCount← Air cell count around the cell;
if mossSpread > 2 and aroundAirCount < spreadFactor then

return Moss;
return cell;

3.2.2 Forest spread
In this simple model, trees grow by means of wind carrying the seeds from afar, and seeds
falling from nearby trees. Since we would like to apply this process on a volume with no
inherent randomness in density or elevation, a stochastic process was used uniformly dis-
tributing the seeds over the simulation space. The environment conditions are evaluated
(not enough soil, too many trees competing for resources) aiding the growth or premature
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Figure 39: Moss spread rule applied on a 2563 plane, spreadFactor = 5. From top to bottom, left to
right: 0, 1, 5, 10, 15, 20 iterations.

death of a tree. Multiple foliage species are supported with controlled spacial diversity.
Note, these conditions aim to produce a forest usable in a game level, with variation in
density and large patches of terrain unaffected by the rule, separating the different forest
sections.

Some information on the rule parameters:

• treeVariations is the count of unique foliage species.
• blendFactor is a floating point value ∈ [0,1] that affects the separation of the tree
variations.

• windSeedProbability ∈ [0, 1], affects the number of seeds placed by the wind in
proportion to the simulation space. Can be set to zero after a tree group is formed.

• limit denotes the maximum allowed count of trees in a single neighbourhood.
• soilThreshold is the number of Soil cells in the neighbourhood required for a tree
to grow. A low soilThreshold enables tree growth on uneven terrains and mountain
peaks.

Immediate Moore neighbourhood was used, and each cell has the capacity for a single
tree. All foliage variations have cell state indices≥ Tree, where Air = 0,Soil = 1,Tree = 2.

The effect of each parameter in the forest spread rule is shown in Figures 40, 41 and 42.
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Rule: Forest spread
Parameters: treeVariations,blendFactor,windSeedProbability, limit, soilThreshold
Output: cell
cell← current state;
neighbouringTrees← tree count in neighbourhood;
// prune lone trees or trees in overcrowded patches
if state ≥ Tree and neighbouringTrees /∈ [1, limit] then

return Air;
bottomCell← cell state directly under the cell;
topCell← cell state directly over the cell;
soilCount← count of soil cells in neighbourhood;
// ideal growing conditions are met
if cell = Air and topCell = Air and bottomCell = Soil and soilCount ≥ soilThreshold then

// seed carried by wind
if uniform random ∈ [0, 1] < windSeedProbability then

return Tree+ uniform random ∈ [0, treeVariations− 1];
// seed by nearby trees
if neighbouringTrees = 3 then

if uniform random ∈ [0, 1] < blendFactor then
return a random Tree variation from the neighbourhood;

else
return most common Tree variation in neighbourhood;

return cell;

Figure 40: Select iterations of the forest spread rule applied on a 2562 plane,
treeVariations = 1,windSeedProbability = 0.001, limit = 7.
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Figure 41: Forest spread rule run to completion on a 2562 plane,
treeVariations = 8,windSeedProbability = 0.001, limit = 7. Each species is assigned a different colour.

blendFactor from left to right: 0.0, 0.5,1.

Figure 42: Forest spread rule applied on a 2563 terrain shaped by the height displacement and
sediment rules, treeVariations = 1,windSeedProb = 0.001, limit = 7. Left: soilThreshold = 7, right:

soilThreshold = 4.

3.2.3 Stalagmites and stalactites
This rule populates a cave interior (like the ones discussed in Sections 2.1, 2.3.) with
stalactite and stalagmite meshes. It is a simplified model of the natural process: Stalac-
tites grow on the cave ceiling, when there’s enough rock cells to support them and empty
space underneath. Stalagmites obey the same condition with the added requirement that
a stalactite should exist in searchDistance over the cell. Expanding the searchDistance
parameter is computationally inexpensive, as the search is constrained to a single-cell
column above the potential stalagmite. As seen in Figure 43, by using the right paramet-
ers the cave is thinly populated with no randomness in the rule.

Figure 43: Cave interior population, stalactites coloured purple, stalagmites cyan.
rockThreshold = 9, spaceLimit = 0, radius = 25
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Rule: Stalgmite/stalactite spread
Parameters: rockThreshold, spaceLimit, searchDistance
Output: cell
state← current state;
bottomCell← cell state directly under the cell;
topCell← cell state directly over the cell;
if cell = Air then

bottomRockCount← Rock cells under the cell;
topRockCount← Rock cells over the cell;
// create stalactite
if topCell = Rock and bottomCell = Air then

aroundRockCount← Rock cells around the cell;
if topRockCount >= rockThreshold and aroundRockCount <= spaceLimit and
bottomRockCount = 0 then
return Stalactite;

// create stalagmite
if topCell = Air and bottomCell = Rock then

overStalactiteCount← Stalactite cell count in searchDistance over the cell;
if overStalactiteCount >= 1 then

return Stalagmite;

return cell;

3.3 Usage in graphics engines
The game level is populated by spawning the respective objects on the cells designated
by the resulting CA grid. A problem arises when the grid resolution is small and the spawn
points do not lie on the surface. In most cases we can cast a ray from the center of the
spawned cell, parallel to the -y axis and snap our mesh to the first surface encountered.
Depending on the desired mesh orientation and available physics tools, we could raycast
upwards or using sphere overlap detection, to identify the closest surface. Afterwards, the
mesh is rotated so the model’s up axis aligns with the surface normal, if appropriate.

Figure 44: Simulation shown in Figure 42 imported in Unreal Engine 4. Tree species were
differentiated with a hue shift. The CA generated terrain was exported as a heightmap.

An efficient way to use the grid data in conjunction with heightmap represented terrains, is
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through a single channel texture mask called the splatmap. Each discrete x, z coordinate
vector in our world corresponds to a splatmap pixel. If a cell is inhabited that pixel is
white, black otherwise. We may use additional channels to represent multiple meshes.
In this case, the mesh spawn point can be deduced from the corresponding heightmap
value, while the orientation is a function of the relative difference in luminance with the
neighbouring pixels. Finally, because the vertex height information and the splatmap share
the same UV space, we can also affect the terrain texture using the splatmap information.

A technique that applies to all procedural placing methods, is assigning a small random
offset to the final object position, effectively erasing the influence of the spawn grid. De-
pending on the mesh in question, we may introduce scale, rotation and colour variation,
resulting in a more natural-looking landscape.

The mountain in Figure 44 was populated with trees using the techniques discussed
above.
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4. TEXTURE GENERATION WITH CELLULAR AUTOMATA
4.1 Goals and usage
In this chapter we detail the creation of a cellular automata based texture generator. This
tool aims to capture organic growth commonly seen in reaction-diffusion models, stray-
ing from the artificial, nested and repeating geometric patterns produced by conventional
automata. There are of course automata able to generate colourful patterns like cyclic
cellular automata [7] and stochastic cellular automata to name but a few. For a summary
of beautiful CA generated artworks see [1].

Finding the right balance between automatic procedural generation and user guided cre-
ation is no easy task. In the case of CA it’s a near impossible endeavour since the patterns
they generate are fairly complex and seemingly random. Some research has been done
on predicting and classifying the behaviour of automata [22], but not from an art generation
standpoint.

Our goal for this tool is to find a middle ground between the chaotic or seemingly random
generative behaviour and the end users intuition. To achieve this, a meaningful paramet-
rization of the simulation is supported and the resulting behaviour is impervious to initial
conditions. Strategically placed initial states might guide the formation of structures but
the overall pattern development and colourization is strictly depended on the automaton
rule configuration. In its current form the generator is fairly versatile in the sense that it
is able to produce a variety of organic patterns and geometric shapes. Although it’s use
would be impractical in a professional computer graphics creation pipeline, it could serve
a purpose in recreational computing and games that are somewhat abstract in nature.

4.2 Generative process
Our algorithm draws inspiration from image kernels [14] and automata with memory. A
three-dimensional multi-state totalistic automaton evolves in an orthogonal grid, with as
many cells on the x and z axis as the desired texture dimensions. The height should be at
least 3, with each horizontal layer representing a colour component. The cells consider the
Moore extended neighbourhood horizontally with each neighbour assigned a floating point
multiplier. The multiplier matrix varies per height to introduce further variation. Vertically,
cells are able to communicate with every other cell with the same x, z coordinates. The
vertical neighbourhood states are again multiplied by a symmetric matrix that denotes the
influence cells on different heights have on one another. The new cell state becomes the
weighted average of the new and previous cell states. Finally, the structure is flattened to
produce a colour for the corresponding pixels on the screen.

For each horizontal layer a number of possible states is picked between 100 to 1600. We
found that using discrete states instead of continuous values aids in increasing the various
classes of behaviour. When rules are evaluated, floating point numbers are rounded to the
largest previous integer on every occasion. This ensures that edge conditions are met by
a small number of cells, further separating their paths of evolution.

The state calculation of the horizontal neighbourhood at height h with neighbourhood ra-
dius r in pixel coordinates x, y is:

neighbHorizontalhxy =

r∑
i=−r

(
r∑

j=−r
cellhij · kernelHorizontalhij)

(2 · r+ 1)2
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Let H be the grid height. Thematrix kernelVerticalwhere kernelVerticalch ∈ [0..1], kernelVerticalch =

kernelVerticalhc and
H∑

h=0
kernelVertch = 1, represents the influence of cell with height c on

h. The final neighbourhood calculation:

neighbhxy =
H∑

c=0

(neighbHorizontalhxy · kernelVerticalch)

SinceCA should be locally constrained a small value for the grid height or the kernelVertical
size is appropriate (3 - 20).

Let Sh be the maximum state for cell with height h, M the memory size with∑M
m=1memWeightm = 1. We compute the future state n+ 1:

statehxyn+1 =
n−1∑
m=0

(statem ·memWeightm) + (neighbhxy mod Sh) ·memWeightn

A Hue Saturation Value vector is constructed by selecting three height layers, which is
then converted to RGB:

RGBxy = HSLToRGB(state1xy, state2xy, state3xy)

Although more elaborate cell colour evaluations are possible, we found that it is more
intuitive to cycle through height layers for the states, than combine them into a single
vector with possible loss of information. Underline structures of disregarded layers, can
be discerned through their influence on those taking part in the colour calculation.

4.3 Results
In the following pages we list some images produced with the above method. These were
hand-picked due to their visual interest or significant complexity rarely seen in conven-
tional automata. To produce these figures we use a wide array of horizontal and vertical
neighbourhood multipliers, memory weights and initialization methods.

In most cases, multiplier values are random, the output of some trigonometric function or
expressed as a function of the neighbour radius. Note, multipliers for each neighbourhood
should add up to more than one in order to advance the cell states.

The memory weight array is populated with random descending values that add up to one,
with the greater being the weight for the current state.

To initialize the automaton, starting from all zero cells, we set a small number of cells in
the center of the simulation to a uniformly random value, or simply randomize the entirety
of the grid. Traces of the first initialization method are evident in Figure 45, where the
simulation was stopped before the change propagated to the texture borders.
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Figure 45: Texture Generator outputs, small number of iterations.
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Figure 46: Texture Generator outputs.
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Figure 47: Texture Generator outputs
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Figure 48: Texture Generator outputs

P. Mikedakis 50



Two and Three-Dimensional Cellular Automata for the Generation of Objects in Computer Graphics

Figure 49: Texture Generator outputs
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Figure 50: Texture Generator output, iteration no. 100 and 200.

4.4 Texturing landscapes
An interesting use-case of the generator is texturing procedural landscapes. By feeding
the complementary data from the landscape mesh like height, ambient occlusion and
curvature maps as layer initialization states in the generator, the resulting colour values
conform to the landscape structure in meaningful ways. We stop the simulation after a
small number of iterations to avoid over-saturation. To control the generated colours, we
remap the resulting value vectors using a 3D lookup table with a desired colour palette.
Results of this method are shown in Figures 51, 52, 53 and 54.

Figure 51: Original landscape, height, curvature, ambient occlusion maps and the colour palette.
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Figure 52: Left: generated texture, right: textured landscape.

Figure 53: Original landscape, height, curvature, ambient occlusion maps and the colour palette.

Figure 54: Left: generated texture, right: textured landscape.
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5. DISCOVERING RULES THAT PRODUCE GIVEN STRUCTURES
5.1 About the procedure
Given an initial voxel structure we have to find a rule that when applied several times pro-
duces a close representation of a desired structure. The goal structure could be made
by hand, procedurally generated or -optimally- a result of a cellular automaton. The auto-
maton used has two states, alive or dead. The rules are limited to conventional totalistic
automata rules. For our purpose, alive cells represent the solid voxels that our goal struc-
ture is comprised of.

Rule genome ×n
Initial Structure→→→→→→→→ Goal Structure

If we unfold the 3D structures to a 1D array of ones and zeros, our goal is to minimize the
Hamming metric of the End and Goal structures. Alternatively, the count of all integer 3D
coordinate vectors in the simulation bounding box, whose corresponding Initial and Goal
Structure cell states differ. An example calculation of the Hamming metric between two
binary strings is shown in Figure 55.

Figure 55: Hamming metric calculation between two binary strings.

Possible applications of the above procedure include: compressing huge organic voxel
data to a single number when a certain amount of loss is tolerated, searching for life-
like rules, reverse engineering cellular automata, as well as finding equal rules for given
structures and cryptography.

5.2 The genetic algorithm
A genetic algorithm mimics real life evolution to efficiently solve an optimization problem.
An initial set of candidate solutions are evolved and altered towards better ones. A solu-
tion is defined by a string of properties (in our case the automaton rule) called genome.
The evolution is an iterative process, every step of which is called a generation. In every
generation the candidate solutions (later referred to as individuals) have their genomes
altered and recombined through the process of mutation and crossover. Lastly their ability
to solve the problem (fitness) is measured with an objective function. The fittest individu-
als are then selected through various means and are carried to the next generation. The
algorithm terminates after a maximum number of iterations or -ideally- when a desired
fitness value is reached for an individual in the population.

5.2.1 Genome
The genome is a binary representation of our rule-solution. All two-state totalistic auto-
mata rules with 26 neighbours can be represented with a binary string of 2× 26 length:

01000010010001000111011101 00101101011000000011000110

The space separates the survival and birth requirements. A “1” bit in position i where
i < 26, denotes that an alive cell may survive with i + 1 alive neighbours, while a bit
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in position j where j > 26, denotes birth when neighbour count equals j + 1. Using this
representation we only need 52 bits per genome, that fit in a 64 bit integer. Note that the
possible combinations are 252, making it impossible to exhaust the search space with a
greedy algorithm.

If we wished to take into account all possible neighbour state combinations and not just
their count, we would need to store a genome of 227 bits. In the evaluation process the
state lookup would return a 27 bit binary, and the corresponding integer would serve as
an index to the genome binary array that denotes whether the cell is alive or dead in the
next step. Not only it is computationally implausible, but the rule of thumb in population
size is at least twice the genome length, so we would quickly run out of space.

5.2.2 Initialization
We used a population size of 2× 52 with random genomes. The genome randomization
was biased towards “0”, with a probability of 0.7, as conventional automata rules are rarely
described with more than 6 alive neighbour counts.

5.2.3 Fitness evaluation
The Hamming distance method described above, misleads the population towards locally
optimal rules that produce all solid/dead cells. e.g. if the desired structure is a singe solid
cell a quick solution will come up that kills every cell of the initial structure resulting in a
Hamming distance of 1, but 100 % error when solid cells are concerned. Instead, we will
make use of a formula that takes into account the proportion of solid and air states in the
goal structure:

fitness = hitssolid ×
1

Psolid
+ hitsair ×

1
Pair

For each individual in the population, a cellular automaton is evolved several times from
its genome. For every step of the automaton, the state of the grid is compared against
the goal structure. A secondary fitness value is checked when two genomes have equal
fitness:

1.0
AutomataStepsToSolution+ 1

+
1.0

CountOfOnesInGenome+ 1

to ensure that the shortest solution is found. The automaton stops after maxIterations
(about 10 in our tests) iterations and the maximum fitness is returned.

The fitness function could be modified to support multi state life-based automata. In this
automata a cell doesn’t immediately die but loses one life point and isn’t considered alive
any more. A naive implementation of finding an initial life amount that explains the goal
structure would takeMaxLifeSearchedmore time. Although starting from a single life point
going upwards, if the relative fitness of two consecutive iterations is negative we could
safely stop.

5.2.4 Selection
For the selection process we used a combination of elitism and fitness proportionate se-
lection. This ensured that the fittest genomes were carried through each generation and
that low fitness genomes with possibly useful segments persevered. Ensuring genetic di-
versity is paramount to reaching an optimal solution. Due to the nature of the problem,
rule genomes a single bit away from an optimal solution may have very low fitness. Gen-
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omes with high fitness, although admissible on their own, may become stagnant. In fitness
proportionate selection the probability of each individual being selected is

pi =
fi∑N
j=1 fj

where N denotes the population size and fi the fitness of individual i in the population.

The probability function we used for individual selection had a denser distribution around
1.0. Although unconventional, it proved extremely efficient. Lastly, the elite 0.5% remain
intact after the crossover process, in fear of losing them to an unfortunate pairing and
boosting their chances of survival in the mutation process.

5.2.5 Crossover
The selected individuals are then bred using the crossover genetic operator. The cros-
sover operator combines the genomes of two or three parents, generally by swapping
random bit segments. A meaningful way to produce an offspring in the context of our prob-
lem, is to have it inherit the survival rule bits from the first parent and the birth bits from
the second parent. We tested several crossover methods and this proved more effective,
although slightly. The probability to crossover was set to 0.8. The remaining individuals
are copied as they are.

5.2.6 Mutation
Themutation operator used, when applied to a genome, may transform each bit from 0 to
1, or 1 to 0 with a 10% and 20% probability respectively. The greater probability of 1 to 0 bit
mutation, again serves as a guide to shorter rules. A probability of 0.9× averageFitness
was used to select an individual for mutation. The mutation probability is proportionate
to the average fitness of the population, to counteract elites with stagnant genomes in
highly evolved generations. The remaining individuals are copied as they are to the next
generation, along with the ones mutated.

5.3 Results
The above process typically converges to an optimal solution in less than 100 generations,
with fitness values reaching 1.0 (100% likeness) for automata produced structures that are
not life-like. The solution almost always is the shortest rule used for the production of the
goal structure. For life-like automata with long periods (> 5) the process doesn’t work so
well, missing an exact solution half of the time. When the desired structure was made by
hand or generated by other means, the algorithm aims to minimize the distance between
the goal structure. In intricate shapes, the divergence goes up to 10%, which has a large
visual impact, although distances as low as 0.5% were achieved in large organic masses.
This method was used to find conventional notation for abstract rules. For example the
simple rule

∑26
i=1 statei
26 > c, 1

2 < c < 2
3 used for clustering alive cells in 3D space, resulted in

the following genome:

00000000000001111111111111 00000000000001111111111111

Information provided for each generation by the command line application we developed
is shown in Figure 56.
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Figure 56: Generation 75 statistics. Genomes are sorted by ascending fitness.

5.4 Time, Complexity, Benchmarks
The time complexity is:

Generations× Population× CAStepsSearched× CASpaceSize× FitnessEval
Cores

The fitness evaluation runs exclusively on the graphics card and takes about 1 second to
complete per generation for the settings described above and a 1003 goal structure. The
C++ implementation although viable for small values, doesn’t scale well with simulation
size.

The space complexity scales with population size only.
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6. FRACTAL CELLULAR AUTOMATA
In this section we investigate the relationship between CA and fractals and discuss some
CA-based methods that are able to generate them. A fractal is a set that exhibits a re-
peating pattern when observed at every scale. The capacity of CA to generate fractals
was examined by Wolfram [22], Culik and Dube [5], Willson [21] and Martin [16]. A more
formal definition from Mandelbrot as presented by Martin is the following.

A setX is called a fractal provided itsHausdorff dimension h(X) is not an integer. Intuitively,
h(X) measures the growth of the number of sets of diameter ε needed to cover X when
ε → O. More precisely, if X ⊂ Rm, let N(ε) be the minimum number ofm-dimensional balls
of diameter ε needed to cover X. Then, if N(ε) increases like N(ε) → ε−d as ε → 0, one
says that X has Hausdorff dimension d.

Most of the investigation for fractal generation by CA was centered around linear cellular
automata (LCA). LCA as defined by Wilson: We denote by Pn the set of all configura-
tions of a Q-state’s n-dimensional cellular automaton. Thus, Pn = QZn . We define a global
dynamics G on Pn as follows.

A global transition function G on the set of all the configurations Pn is a map G : Pn → Pn

such that

• there exists a quiescent state
• there exist m neighbours (Vi)i=1,...,m ∈ Zn and a map g : Qm → Q such that ∀v ∈
Zn∀ω ∈ Pn,

G(ω(V)) = g(ω(v+ v1), ...,ω(v+ vm)).

Then, the transition rule G on Pn is linear provided its generating function g is linear or,
equivalently, provided

G(ω + τ) = G(ω) +G(τ).

Culik et al. [5] have shown that the regular evolution of linear cellular automata on simple
initial configurations generates a pattern that might be fractal or self-similar. The patterns
they obtain are often similar to Pascal’s triangle, like the ones shown in the next section.

6.1 Self similarity in simple rules
There are examples of simple one-dimensional CA rules that present self similarity in
a given interval, when visualized with time as an added dimension. One-dimensional
automaton rule 90, shown in Figure 58, has this property. This rule generates the fam-
ous Sierpiński triangle when the grid is initialized with a single alive (state 1) cell. Its
rule table, seen in Figure 57, corresponds to the binary number 010110102 = 90 in
Wolfram rule notation [22]. We observe that rule 90 is easily computable using the for-
mula (Neighbourleft + Neihgbourright) mod 2 which is also the XOR operation.

Figure 57: The rule table of one-dimensional CA rule 90.

With the initialisation of the grid treated as the first iteration, we obtain n+1 levels of detail
for the triangle pattern for every 2n iterations of the rule. This behaviour is shown in detail
in Figure 59. 1 (20), 2 (21), 4(22), 8 (23), 16 (24), 32 (25) iterations generate 1, 2, 3, 4, 5
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Figure 58: On the left, 511 iterations of one-dimensional CA rule 90 starting from a single alive cell.
The pattern enclosed in the red rectangle is shown, enlarged, on the right.

and 6 levels of detail respectively. The cells reside in a triangular grid and are scaled to fill
the same amount of space.

Figure 59: Sierpiński triangle construction with rule 90 in a triangular grid. From left to right, 1, 2, 4,
8, 16, 32 iterations.

Sierpiński-like structures are very common in one-dimensional automata. As seen in Fig-
ure 60 rules 102 and 182, among many others, are capable of forming such structures.

Figure 60: One-dimensional CA rules that generate a Sierpiński triangle. Left: rule 102, right: rule
182.

Culik et al. [5] provided proof that for any arbitrary radius r, the CA with XOR rule always
generates a regular pattern, namely when started on a string ω whose length n is a power
of 2 (any arbitrary initial finite string can be made to have a length which is a power of 2
by appending appropriate number of 0s), after n time steps the configuration is ω2r+1. The
XOR code for radius r is 2(4r+1 − 1)/3. The following lemma by Culik [5], which can be
proved by induction, explains why XOR CA generate perfect fractal patterns on an initial
seed containing a single l.

Let f be the XOR CA rule for radius r. Then, when started on the configuration consisting of
a single 1, for any n where n is a power of 2, we obtain after n time steps the configuration
which is 2r + 1 repetitions of the string formed by a 1 followed by n − 1 0s, i.e., Gn

f (1) =
(10n−1)2r+1.

Culik [5] also came to the important conclusion that this regular evolution allows one to
compute the value of a cell after arbitrary number of time steps in a more efficient way
than to actually run the CA.
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6.2 Generation of a Cantor set
Martin [16], defines the behaviour of a one-dimensional cellular automaton that embeds a
Cantor set in the closed interval H = [0, 1] of R. The definition proceeds as follows.

Let A = (Q, δ) be a one-dimensional cellular automaton with states Q = {a, 1, q} (where
q denotes the quiescent state) and some other auxiliary states. Let δ be the local trans-
ition function (or generating function) for the cellular automaton. The process consists of
steps starting from the initial configuration 010, or equivalently from the “white-black-white”
configuration. The steps follow and are depicted in Figure 61.

1. Copy the configuration once to the right.
2. Copy the configuration a second time at the right end and paint the first copy in black.
3. Update the configuration and return to step 1.

Martin concluded that such a cellular automaton may be constructed. The duplication of
a finite configuration can be done using a shift transition function as described in detail in
[16].

Hence, by iterating that process and embedding the restriction to {0, 1} of a subsequence
of the configurations, we get the geometrical construction of a Cantor set. The total time
between two “embeddable” configurations is thus (7 × length(finite configuration)) − 2
plus the time to come back, which is length(new finite configuration). These configurations
occur at times given by the exponential sequence 1, 28, 278, ..., or t0 = 1, tn+1 = 10tn−2.

The “drawing” of the Cantor set is then obtained by replacing in the subsequence all the
occurrences of “0” by a segment and all the occurrences of “1” by a hole, then resizing
the configurations in [0, 1]. The Cantor set is then the set of sites with symbol “0”. This
behaviour is illustrated in Figure 61.

Martin [16] showed that the process defined above can be generalized to higher-dimensional
cellular spaces. In order to do that we first notice that the unidimensional cellular auto-
maton described in the previous section can be modified as follows: instead of twice copy-
ing the initial configuration at the right end, it is also possible to copy it once at the left end
and once at the right end. In other words, use the neighbourhood vector of the cellular
automaton to identify the part that is copied and has to be painted in black. With that
modification, the cellular automaton expands to the left and to the right, without changing
the continuous representation of the configuration. The point of interest of this definition
is that the copies are made by using the neighbourhood vector and might be generalized
by means of this strategy.

6.3 Sierpiński carpet
Martin [16] explains that in the case of the Moore neighbourhood, it suffices to synchronize
a line before copying (see Figure 62). As en example he synchronizes the left edge of the
square. The synchronizing process then allows the synchronized line of cells to behave
as if it were a unique cell in a unidimensional cellular automaton. Then, he applies the
process depicted in Figure 62, which twice copies the initial finite configuration; in this
case, however, we do not paint black (that is, rename the remaining 0s of the middle
third in 1s) the middle third sub-configuration. In the case of a cellular automaton that,
for instance, emits the values of a line, it does not matter whether the crossing lines are
synchronized. In the case of Martin’s process, we just have to obtain the first quiescent line
and stop as soon as it is encountered, then copy one line into one of the directions of the
neighbourhood. The return signal can be sent only (to the general) for the synchronization
process. We then synchronize again in the other direction- that is, on the largest square-
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Figure 61: The two steps of behaviour: time-space states diagram and time-space diagram, from
Martin [16].

and likewise copy twice the configuration with the layer containing the square to be painted
black. Finally, when the copying process is over, the corners send two signals, one of slope
1 at half speed and one of slope 1/2 at full speed, in order to choose which square has
to be painted black. The black colour of the layer then enters the main state and paints
black the middle third sub-configuration. Figure 63 depicts this action.

To summarize Martin’s process:

1. synchronize the configuration over the x axis.
2. apply the copying process twice along the y axis.
3. synchronize along the y axis.
4. apply the copying process twice along the x axis.
5. identify the four corners of the new configuration.
6. identify the middle third sub-square and “paint it black”.
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Figure 62: Copying the squares nine times: time-space diagram, from Martin [16].

Figure 63: The signals emitted for identifying the middle third, from Martin [16].
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In the case of the Moore neighbourhood, we get the promised Sierpiński carpet when
embedding the configurations at exponential units of time. Martin gave justification for the
computation of the Hausdorff dimension in discrete space for the two-dimensional cellular
automaton that computes the Sierpiński carpet depicted. The process for drawing the
Sierpiński carpet on the mesh is the one suggested in Section 5.2. He then presents the
following theorem and it’s proof.

Theorem 1. The number of white points of the configuration of the two-dimensional cellu-
lar automaton with the Moore neighbourhood corresponds exactly to the minimal covering
of the Cantor set for balls of a diameter that corresponds to the homothetical factor. Fur-
thermore, the Hausdorff dimension of its embedding is that of a Sierpiński carpet, namely
log8/log3.

Proof 1. The covering of the initial configuration of the cellular automaton gives in H2 =
[0, 1]× [0, 1] a number of balls N(ε) = 8 with diameter ε = 3−1, and in the configuration 8
white points with an homothetical ratio of 1/3, which corresponds to the situation in H2 and
starts the induction. For the induction step, assume we have covered the nth configuration
with 8n balls having the same number of white points in the configuration. The area of the
(n+1)th configuration is clearly (3n+1)2, and contains (because of the duplications) 8×8n
white points with the same number of balls in its embedding, that is, 8n+1 balls. The rest
of the nonquiescent part of the configuration is painted black.

Because Nn(ε) = 8n and εn = 3−n, we get the equality 8n = (3−n)d, which gives the
dimension d of the theorem.

6.4 Sierpiński-Menger sponge
Martin [16] also showed that this process is analogous for a three-dimensional cellular
automaton with the generalization of the Moore neighbourhood, where we obtain the well-
known Sierpiński-Menger sponge depicted in Figure 64. Also the usual theorem holds for
three-dimensional cellular automata.

Figure 64: The Sierpiński-Menger sponge, from Martin [16].
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Theorem 2. The number of white points of the configuration of the cellular automaton
corresponds exactly to the minimal covering of the Sierpiński-Menger sponge for balls
that correspond to the homothetical factor. Furthermore, the Hausdorff dimension of its
embedding is that of the Sierpiński-Menger sponge, log 26/ log 3.

One can also determine the dynamical system that counts the proportion of black points
of the non quiescent part of the configuration, which is

∏•
n =

26
27

∏•
n−1+

1
27 . The proportion

of white points is denoted by
∏

n = 1−
∏•

n.

6.5 CA-generated fractal noise
For more practical use-cases, a common procedure for producing fractal noise for use
in landscape formation or texturing, is scaling and rotating a noise texture and blending
it together. We used the height displacement rule discussed in Section 2.1 as a source
for the noise pattern. Afterwards, we blend the pixels of each variation using the formula
a · (1− b) + b · (1− a), where a and b is the luminance of the two pixels. The successive
blends can be seen in Figure 65 and the final result in Figure 66.

Figure 65: Successive blending of grey-scale patterns to produce fractal noise.

Figure 66: Top-down render of the final heightmap in Figure 65 inside Unreal Engine 4.
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7. CONCLUSIONS
The purpose of this thesis is to serve as a comprehensive introduction to 3D cellular auto-
mata techniques aiding the creation of real-time computer graphics and game levels. The
ones presented in Chapter 2, to the best of our knowledge, are new approaches to proced-
ural generation, which is not surprising given the inherent limitations and unpredictability of
CA. By focusing our investigation on simple rules we discovered quite a few useful config-
urations with the capacity to generate believable mountainous formations, cave systems,
stalagmites and other intricate natural or physical structures, while being easily paramet-
erised and combined. We also discussed techniques for effectively using the generative
product of automata in a graphics engine.

Although the processing overhead and fidelity attained is satisfactory in a real-time graph-
ics application context, given the alternatives, mainly noise functions and lightweight phys-
ics simulations, that allow greater flexibility and resolution, there is not much incentive for
adopting these techniques yet. Our work in this chapter was not to no effect, as we showed
that simple 3D automata rules are capable of producing a variety of structures some of
which require a large stack of noise functions to reproduce, if at all. Additionally, we presen-
ted examples where 3D automata generated fairly complicated noise textures for use in
texturing and particle effects. By extending our investigation to more complicated rules or
hybrid CA and noise techniques for greater control over the generated voxels we could
possibly cover structures that fractal noise cannot generate.

The CA based procedural placement algorithms presented in Section 3.2 can be imple-
mented in a straightforward way inside a game engine. The foliage spread model along
with artist authored guides, should be a useful tool for organically populating procedural
landscapes. Furthermore, the cave structure generation method discussed in Section 2.1
provides a believable base mesh for the authoring of realistic cave levels.

The CA texture generator is an experimental tool that showcases the diverse images CA
are capable of producing and aids in the procedural texturing of landscapes. Using high
quality maps as seeds and artist authored colour pallets, it yields interesting results for
stylized and realistic terrains.

Lastly, we introduced a genetic algorithm that searches for an automaton rule that con-
nects two given structures. When evaluating the discovered rule on the initial structure, the
relative Hamming distance ranges from 0% to 10%, with no loss of information achieved
with totalistic automata produced structures that are not life-like.
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ABBREVIATIONS
CA Cellular Automaton/a
GUI Graphical User Interface
API Application Programming Interface
CPU Central Processing Unit
GPU Graphics Processing Unit
CGI Computer-Generated Imagery
LUT Lookup Table
HSV Hue Saturation Value
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APPENDIX I: THE CA TOOLKIT
Several applications were developed for the purpose of this thesis. The most compre-
hensive being the “CA Toolkit”, which generated and rendered most of what depicted in
previous figures. The applications capabilities include:

• Multiple primitive initialization functions with variable state count and distribution.
• Real time rendering of millions of voxels with multiple visualization modes.
• Real time surface extraction of CA data.
• Real time 3D automaton rule evaluation through scripting or graphical interface.
• Multiple volume boolean operations.
• Export simulation state in OBJ, native or heightmap format.
• Generate and export population data in a native format or splatmaps.

The CA Toolkit was developed on C++, OpenGL 4.3 and runs almost entirely on the GPU.
As a result, all processing logic is written in compute shaders. The compute shader is dis-
patched through each cell, evaluating the new states, culling of adjacent voxels, material
indices, and prepares an optimal buffer for the new voxels. The CPU handles input and
initializations and makes a single instancing drawcall for the voxels or binds the vertex
array for the polygon data.

In Figure 67, we see the rendering performance per voxels in the simulation. Engine over-
head is included in the measurement. In Figure 68, we show the compute time per frame
using the Cave rule from Subsection 2.1. With our compute method, processing time in-
creases linearly in relation to the voxel count. Evaluating the future state of a billion voxels
with a search radius of 1, requires half a second of processing time.

Figure 67: Time consumed on rendering each frame.

Figure 68: Time consumed on computing each frame.
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