

National and Kapodistrian

University of Athens
Faculty of Physics

Department of Electronics, Computers,

Telecommunications and Control

Master Thesis
Control and Computing

“Big Data Analytics for the Cloud”

Nikolaos Gkatzios

Student ID: 2015505

Supervisor

Assistant Professor Anna Tzanakaki

Athens, June 2017

2

Master Thesis in Control and Computing

Title: “Big Data Analytics for the Cloud”

Author: Nikolaos Gkatzios

Student ID: 2015505

Supervisor: Assistant Professor Anna Tzanakaki

Evaluation Committee: Assistant Professor Anna Tzanakaki,

 Associate Professor Dionysios I. Reisis,

 Associate Professor Hector E. Nistazakis

Master Thesis submitted June 2017

Key words: Big Data, Cloud, IoT, Clustering, Forecasting

ABSTRACT

This master thesis comprises three distinct parts. The first part includes an introduction to

the Big Data challenge, the description of the Big Data management problem as well as an

overview of existing architectures and algorithms addressing this problem. The second part

presents processing of a real dataset that is formed from measurements collected by sensors

installed on trains. A study of four different clustering algorithms, namely KMeans, Birch,

Mean Shift, DBSCAN, is conducted together with an investigation on the performance, of

two different Neural Networks (MLP, LSTM), on forecasting. The latter involves

implementation of a specific solution focusing on Big Data from IoT devices using Sitewhere,

an open source IoT platform.

3

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Anna Tzanakaki, my thesis

supervisor, for her guidance and encouragement. The door to Prof. Tzanakaki’s office was

always open whenever I had a question about my research or writing. She allowed this paper

to be my own work, while with her useful critiques steered me in the right direction.

I would also like to extend my thanks to Dr. Markos Anastasopoulos for his general

advices and his suggestions concerning the way I should approach certain aspects of this

research work.

Finally, I wish to thank my parents for their continuous support throughout the

process of researching and writing this thesis. This accomplishment would not have been

possible without them.

Author

Nikolaos Gkatzios

4

Table of Contents

Chapter 1 Introduction ... 10

Chapter 2 General, Multi-Purpose Solution for Big Data ... 12

Chapter 3 Theoretical Background – Literature Review .. 18

3.1 Cloud Computing .. 18

3.2 Big Data ... 21

3.2.1 Data Models .. 21

3.2.2 Processing Frameworks ... 24

3.2.3 Algorithms ... 33

Chapter 4 Clustering ... 36

4.1 Data Preparation for Clustering .. 36

4.2 Clustering Algorithms Results ... 39

4.2.1 KMeans .. 39

4.2.2 Birch ... 41

4.2.3 Mean Shift ... 43

4.2.4 DBSCAN ... 45

4.3 Results Comparison .. 45

4.3.1 Same Feature Vector, Different “route” Category .. 45

4.3.2 Same “route” Category, Different Feature Vector .. 50

4.3.3 Same Feature Vector, Same “route” Category ... 51

4.4 Discussion ... 52

Chapter 5 Forecasting .. 53

5.1 Neural Networks Introduction .. 53

5.2 Multilayer Perceptron Model ... 54

5

5.2.1 MLP Experiment Results .. 55

5.3 Long Short-Term Memory Network ... 60

5.3.1 LSTM Experiment Results .. 61

5.4 MLP and LSTM Results Comparison ... 65

Chapter 6 SiteWhere .. 68

6.1 Collection and Storage .. 68

6.2 Data Processing .. 70

6.2.1 Visualization .. 71

6.2.2 Clustering ... 72

6.2.3 Forecasting .. 76

Chapter 7 Conclusions .. 78

References ... 80

Appendix .. 87

6

List of Figures

Figure 1: SiteWhere Architecture Diagram. .. 13

Figure 2: Flowchart of events from SiteWhere-Device bidirectional communication. 15

Figure 3: Diagram that represents the core objects, in the SiteWhere model, and their

relationships. ... 16

Figure 4: NIST Working Definition of Cloud Computing [3]. ... 20

Figure 5: A multi-node Hadoop cluster [22]. ... 25

Figure 6: Spark Architecture visualization [24]. .. 26

Figure 7: Storm Architecture visualization [27]. ... 27

Figure 8: Stream processing with Esper engines [30]. .. 28

Figure 10: All different measurements across time for one day. ... 36

Figure 11: Station-Time plot. ... 37

Figure 12: Reims tramway plan [55]. .. 38

Figure 13: GPS coords plot for a route. ... 38

Figure 14: KMeans, Feature Vector: [T1, T2]. ... 40

Figure 15: KMeans, Feature Vector: [T1, T2, CO2], PCA reduced data 3D->2D. 40

Figure 16: KMeans, Feature Vector: [T1, T2, Velocity, CO2], PCA reduced data 4D->2D. 41

Figure 17: Birch, Feature Vector: [T1, T2]. .. 42

Figure 18: Birch, Feature Vector: [T1, T2, CO2], PCA reduced data 3D->2D......................... 42

Figure 19: Birch, Feature Vector: [T1, T2, Velocity, CO2], PCA reduced data 4D->2D. 43

Figure 20: Mean Shift, Feature Vector: [T1, T2]. ... 44

Figure 21: Mean Shift, Feature Vector: [T1, T2, CO2], PCA reduced data 3D->2D. 44

Figure 22: Mean Shift, Feature Vector: [T1, T2, Velocity, CO2], PCA reduced data 4D->2D. 44

Figure 23: 3D feature vector, Full route, all algorithms. ... 51

Figure 24: 3D feature vector, Up route, all algorithms. .. 51

Figure 25: 3D feature vector, Down route, all algorithms. ... 52

Figure 26: A regular MLP Neural Network with 2 hidden layers [58]. 54

Figure 27: Plot of RMSE against Epochs of training for MLP Network (1 hidden layer, 7

neurons, window = 1, batch size = 100). The green line corresponds to the RMSE of the

7

prediction on the training set while the red line corresponds to the RMSE of the prediction

on the test set.. 55

Figure 28: Plot of RMSE against Batch Size for MPL Network (1 hidden layer). 56

Figure 29: Plot of RMSE against Window Size for MLP Network (1 hidden layer). 57

Figure 30: Plot of RMSE against Number of Neurons for MLP Network (1 hidden layer). ... 58

Figure 31: An example of a random Recurrent Neural Network [60]. 60

Figure 32: The repeating module in a standard RNN [61]. ... 60

Figure 33: The repeating module in an LSTM [61]. ... 61

Figure 34: Plot of RMSE against Epochs of training for LSTM Network (1 hidden layer, 2

neurons, window = 1, batch size = 100). The green line corresponds to the RMSE of the

prediction on the training set while the red line corresponds to the RMSE of the prediction

on the test set.. 61

Figure 35: Plot of RMSE against Number of Neurons (LSTM, 1 hidden layer, stateless, non-

stationary input). ... 62

Figure 36: Plot of RMSE against Number of Neurons (LSTM, 1 hidden layer, stateless,

stationary input). ... 63

Figure 37: Plot of RMSE against Number of Neurons (LSTM, 1 hidden layer, stateful,

stationary input). ... 64

Figure 38: Lowest RMSE value for each NN Architecture (Forecasting CO2 Level). 66

Figure 39: Lowest RMSE value for each NN Architecture (Forecasting Velocity). 66

Figure 40: Configuration of a Socket Event Source (from the Administrative Application). 69

Figure 41: Device assignment (from the Administrative Application). 69

Figure 42: The measurements that were sent as HTTP request, have been successfully

parsed and stored. .. 70

Figure 43: Grafana's visual query editor for InfluxDB, and visualization of query’s results.

(query: SELECT T_ext1, T_ext2 FROM data7) .. 71

Figure 44: Plots for Velocity, Instant Power, External Temperature 1, External Temperature

2, Total Power, and CO2 Level for the duration of a single day. ... 72

8

Figure 45: Plot of KMeans results for 3 clusters on "Full Route". Feature Vector: [T1, T2]. 1st

(Top): Spark KMeans (seed=None). 2nd: Spark KMeans (seed=8). 3rd: Spark KMeans

(seed=0). 4th (Bottom): Scikit KMeans. .. 74

Figure 46: Feature Vector:[T1,T2], n=4, "Down Route". Up: Scikit KMeans. Down: Spark

KMeans (seed=0). .. 75

Figure 47: Forecasting CO2 Level with an MLP NN (1 layer, 4 Neurons). The blue line is the

actual measurements, while the orange line is the prediction on the training dataset, and

the green one on the testing dataset. The measurements are from the duration of a day. 76

Figure 48: Two different, zoomed in parts from the above figure, in order to distinguish

visually the real values from the predictions. The blue line is the actual measurements,

while the orange line is the prediction on the training dataset, and the green one on the

testing dataset. .. 77

9

List of Tables

Table 1: Main differences between SQL and NoSQL [6] .. 22

Table 2: Stream Processing Frameworks comparison. ... 32

Table 3: n=2, feature vector: [T1, T2], clustering results (KMeans, Birch)............................ 46

Table 4: n=3, feature vector: [T1, T2], clustering results (KMeans, Birch, Mean Shift). 46

Table 5: n=4, feature vector: [T1, T2], clustering results (KMeans, Birch, Mean Shift). 46

Table 6: n=2, feature vector: [T1, T2, CO2], clustering results (KMeans, Birch). 47

Table 7: n=3, feature vector: [T1, T2, CO2], clustering results (KMeans, Birch). 47

Table 8: n=4 or 5, feature vector: [T1, T2, CO2], clustering results (KMeans, Birch, Mean

Shift). ... 48

Table 9: n=2, feature vector: [T1, T2, Velocity, CO2], clustering results (KMeans, Birch). ... 48

Table 10: n=3, feature vector: [T1, T2, Velocity, CO2], clustering results (KMeans, Birch). . 49

Table 11: n=4 or 5, feature vector: [T1, T2, Velocity, CO2], clustering results (KMeans, Birch,

Mean Shift). ... 49

Table 12: MLP results for different Batch Sizes (1 hidden layer). ... 56

Table 13: MLP results for different Window Sizes (1 hidden layer). 57

Table 14: MLP results for different number of Neurons (1 hidden layer). 58

Table 15: MLP results for different number of Hidden Layers and Neurons. 59

Table 16: LSTM results for different number of Neurons (1 hidden layer, stateless, non-

stationary input). ... 62

Table 17: LSTM results for different number of Neurons (1 hidden layer, stateless,

stationary input). ... 63

Table 18: LSTM results for different number of Neurons (1 hidden layer, stateful, stationary

input). .. 64

Table 19: Clustering results from KMeans algorithm for 3 clusters on "Full Route", Feature

Vector: [T1, T2]. Spark implementation with seed=None, 0, 8 and Scikit implementation. 73

10

Chapter 1

Introduction

Big Data is a relatively new term used for datasets, so large or complex, that render

commonly used software tools and traditional data processing methodologies inadequate

to manage them. Therefore, in order to be able to extract useful information from these

large, diverse, and complex datasets, new mining techniques are required.

The work for this master thesis is divided into three parts. The first part focused on

the study and presentation of scalable solutions for data processing architectures for the Big

Data challenge. The second focuses on the processing of a dataset comprising

measurements that were collected by different sensors, which were installed on a train. The

last part focused on is the setup of a server of the open source IoT platform SiteWhere [1],

the dispatch of data to the server, the storage of the data to a NoSQL database and the

processing of these data in a Spark instance.

In Chapter 2, the architecture and the capabilities of SiteWhere as a holistic solution

for IoT management is presented. Chapter 3 introduces the basic notions of the terms “Big

Data” and “Cloud”. It also presents different solutions for the Big Data challenge along with

the scientific trends on this topic. In Chapter 4, a study of various Clustering algorithms

(KMeans, Birch, Mean Shift, DBSCAN), which are used to process the real dataset collected

from onboard train sensors, takes place. Chapter 5 introduces the notion of “time-series

forecasting” and investigates the behavior of two different types of Neural Networks (MLP,

LSTM) with respect to this notion. Chapter 6 presents the work that took place on the

SiteWhere platform. The chapter begins with the description of the dispatch of data to the

server and continues with the visualization, on Grafana, of the train data that were stored in

InfluxDB, a database that SiteWhere supports. Following this, the retrieval of the data from

the database and their processing (through KMeans Clustering and Forecasting with MLP)

on a Spark instance takes place and finally a comparison between that process and the one

11

on the local system is presented. Chapter 7 provides a summary and highlights some of the

conclusions that were derived and presented in the previous chapters.

It should be noted that the dataset that was processed, is part of a larger dataset,

which was available, with measurements from sensors installed on a train. This part of the

dataset comprises a single measurement per second, for the duration of a day, for the

following parameters:

i. External Temperature (measurement spot 1)

ii. External Temperature (measurement spot 2)

iii. Longitude

iv. Latitude

v. Velocity

vi. CO2 Level (inside the wagons)

vii. Total Power

12

Chapter 2

General, Multi-Purpose Solution for Big Data

Plenty of tools, for Big Data management, have been reported in the last years, and

many more, new ones, are being developed. The first processing frameworks, like Hadoop

for example, were designed to work on a physical distributed system. Only big organizations

and companies could afford to have their own infrastructures to process Big Data, and even

they had to overcome the issue of scalability.

More recently a massive turn to the Cloud can be observed. This happened for two

main reasons. Firstly, the number of technologies that allow processing of data in the Cloud,

has increased. Secondly, the cost of scaling through the allocation of new virtual machines

is much lower than buying and maintaining physical machines. It is becoming obvious that

nowadays, the most efficient way to manage Big Data is through the utilization of the Cloud.

A complete solution for Big Data management should rely on scalable platforms that

can be deployed at the Cloud and can implement the following functions. First, they should

have the ability to collect data. This can be achieved via the remote connection of the

platform with physical devices that produce the data, for example IoT devices, or through

the remote connection with other computers. A second function should be the storage of

the data, which have been collected, to a database for future or further analysis. Another

capability should be the retrieval of the collected data from the database and their

processing. An additional service that should be provided is the processing of the collected

data at the same time that they are collected (real time analysis). In the case of IoT, one

more, desirable function should be the control of the devices connected to the platform.

There are several platforms that have been developed and meet the requirements

discussed above. The one, that has been identified as the most suitable to be used and

experiment with, for this master thesis, is SiteWhere [1], an open source IoT platform. The

13

following figure presents the general architecture of an earlier version of the SiteWhere

server.

Figure 1: SiteWhere Architecture Diagram.

The SiteWhere server is the main application that coordinates every other SiteWhere

component. It is deployed as a Web Application Archive (WAR) file and it uses Apache

Tomcat as the core server. SiteWhere combines different systems and technologies, that

have already been tested and allow the data management, without the need to develop

from scratch all functionalities needed for the requires data collection and processing.

In the third paragraph of this chapter, the necessary functions for a platform that

could be considered as a solution for Big Data management were introduced. The rest of

this chapter is dedicated to a brief description of how SiteWhere implements those

functionalities.

As stated above, the first essential function for systems that process data is the

collection of these data. SiteWhere can be “fed” with data in many different ways. One

option is the usage of REST services. Any authenticated user can perform various operations

14

like create or update data on every entity that he/she has permission and it is registered into

the system. An alternative approach is to get data directly from the IoT devices. By default,

every connected device can send events (measurements, location, alerts, etc.) to the server

through a connection with an MQTT (Message Queue Telemetry Transport) broker, such as

HiveMQ or Mosquitto. AMQP (Advanced Message Queuing Protocol) can be used instead of

MQTT with some configuration changes. Last, but not least, SiteWhere provides the option

to accept HTTP requests. This function allows the server to get data from external platforms.

The HTTP payload can be parsed by a Groovy script and finally stored in the database like a

device event, independently from the format of the external data.

The necessity of storage is achieved by one of the three data storage technologies

that are currently supported by SiteWhere. The first one is MongoDB, a NoSQL database.

The second is the Apache HBase, another distributed NoSQL database. The last one is a time

series database relying on a hybrid approach including MongoDB and InfluxDB. This allows

the usage of Grafana, an open source platform for monitoring time series analytics.

Since the data have been stored, one could retrieve and store these locally and then

process them. SiteWhere, allows sending the data into Spark, where the whole data analysis

can take place, through the integration of a cluster-computing framework known an Apache

Spark. However, the events are streamed via Hazelcast, an open source in-memory datagrid.

Every SiteWhere Server also acts as a Hazelcast instance, by default. The event stream can

be processed initially by Spark Streaming and then used as input to Spark. Spark has available

libraries for Machine Learning algorithms (MLlib) and Graph processing (GraphX). In the case

where the hybrid approach of data storage is selected, Grafana can also be used for

visualization of data and deeper understanding of the events.

Last, but not least, SiteWhere provides interaction with the connected devices via the

MQTT broker, through REST (REpresentational State Transfer) services. Moreover, the

integration with openHAB, an open source software that allows building automation rules,

gives SiteWhere the opportunity to control directly every openHAB connected device.

15

Furthermore, SiteWhere provides more functionality through the support of Android

Development Kit, Arduino Development Kit and Java Agent. The development of android

applications that can connect with the server, via an MQTT broker, and send data from the

device’s sensor is possible. The notification of an important event could also be sent form

the server to the android device since their connection is bidirectional. Arduino devices

could also easily connect with a SiteWhere instance and interact with it. The Java Agent that

is provided enables the connection with any device, which can run Java. For example,

Raspberry Pi platforms could connect with the server to send data or even to receive

commands. Moreover, Node-RED integration, a software for wiring together hardware

devices, makes the development of device flows easier, since it eliminates the need for

coding.

Figure 2: Flowchart of events from SiteWhere-Device bidirectional communication.

Finally, the integration of Mule AnyPoint, an ESB (Enterprise Service Bus) platform,

broadens even more the capabilities of the platform as far as IoT is concerned. The

communication between different protocols becomes much easier. In addition to this, Mule

gives the option of using event processing flows, instead of writing code, through a graphical

16

environment. This leads to an easier way to design complex interactions, triggered by event

data.

SiteWhere constitutes an excellent solution for the problem that this master thesis is

concerned with. Measurements of different quantities, like temperature, power, CO2 levels,

velocity, coordinates, and many more are taken by devices installed on trains. These

measurements can be collected automatically from a SiteWhere instance and stored to a

database. The real-time visualization of the data that have been collected can be realized

with the help of Grafana, in many different ways. Furthermore, part of the data processing

can be performed directly by Apache Spark, since the volume of the data is quite large.

Figure 3: Diagram that represents the core objects, in the SiteWhere model, and their relationships.

In conclusion, SiteWhere imprints the relationship between interconnected IoT

devices through precisely modeling the concepts related to tracking device data. The usage

of this model facilitates the development and deployment of a complete IoT platform, which

addresses the various aspects of the Big Data Challenge spanning across all functionalities

involved from data collection to the data processing. However, the main advantage of

SiteWhere is still considered that it is open source, and anyone could expand its abilities to

the direction needed to solve the task at hand.

17

In the following chapter, a more thorough investigation about a great number of

existing options for Big Data management will be presented, along with their pros and cons.

In addition, an overview of the algorithms that are used for Big Data analysis will be

introduced as this is also a part where this master thesis focuses on.

18

Chapter 3

Theoretical Background – Literature Review

In this chapter, some important concepts linked with the terms “Cloud Computing”

and “Big Data” will be introduced in order to provide a clearer and more complete

understanding of this work. Moreover, the trends presented by the scientific community

related to Big Data Challenge will be presented. The first section focuses on Cloud

Computing, while the second section analyzes the new infrastructures and algorithms that

are used for the management of Big Data.

3.1 Cloud Computing

Cloud Computing is a term with over 20 definitions. The National Institute of

Standards and Technology (NIST) gave the following.

“Cloud Computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management

effort or service provider interaction. [2]”

So, Cloud grands a variety of computing resources such as servers, storage, or even

applications (e-mail, backup, multimedia services, etc.) and allows hosting of these services

in an expandable, scalable, flexible, and readily accessible manner. According to NIST, Cloud

model is composed of five essential characteristics, three service models, and four

deployment models [2].

1. Essential Characteristics:

i. On-demand self-service.

19

Automatically and without human interaction, computing capabilities can

be provisioned unilaterally by the consumer.

ii. Broad network access.

Capabilities are available over the network and accesses through a variety

of client platforms (e.g., mobile phones, tablets, laptops, and workstations).

iii. Resource pooling.

The provider’s computing resources are pooled. According to consumers

demand those resources are dynamically allocated. The customer may know

the location of provisioned resources at a higher level (e.g. country, state, or

datacenter) but not the exact location.

iv. Rapid elasticity.

In order to be able to scale rapidly in proportion with demand, capabilities

can be elastically provisioned and released.

v. Measured service.

Due to the different nature of Cloud services, and the dynamic assignment

of resources, a metering capability is needed at a level of abstraction suitable

to the type of service. Transparency of the utilized service for both the

consumer and provider is guaranteed because resource usage can be

monitored, controlled, and reported.

2. Service Models:

i. Software as a Service (SaaS).

It allows multiple consumers to use simultaneously the provider’s

applications, which are accessible from various client devices, running on a

cloud infrastructure.

ii. Platform as a Service (PaaS).

It provides the hosting of applications, as well as programming languages,

libraries, services, and tools for their development.

iii. Infrastructure as a Service (IaaS).

20

It grands access to computing resources, such as processing, storage,

networks, etc., where the consumer is able to deploy and run arbitrary

software.

3. Deployment Models:

i. Private cloud.

A single organization, consisted of multiple consumers, uses solely the

cloud infrastructure. It may exist on or off premises of the cloud provider.

ii. Community cloud.

A specific community of consumers, usually with shared concerns, uses

exclusively the cloud infrastructure. It may exist on or off premises of the

cloud provider.

iii. Public cloud.

The cloud infrastructure is provisioned for open use by the general public.

It exists on the premises of the cloud provider.

iv. Hybrid cloud.

The cloud infrastructure is a synthesis of two or more distinct cloud

infrastructures (private, community, or public).

Figure 4: NIST Working Definition of Cloud Computing [3].

21

3.2 Big Data

As mentioned in the previous chapters, the traditional analysis approach of Big Data

has been proved insufficient, and new processing methodologies and architectures are

required. It should be mentioned that the term “Big Data” although it tries to capture the

fact that an enormous amount of data are daily produced, it could be misleading when it

comes to the information management challenge, as one could wrongfully focus only on the

volume of the data. The updated 3Vs definition came in the foreground from Gartner in

2012.

“Big Data is high volume, high velocity, and/or high variety information

assets that require new forms of processing to enable enhanced decision

making, insight discovery and process optimization. [4]”

The 3Vs have been expanded nowadays with Variability and Veracity into 5Vs.

The development of a scalable solution to cope with Big Data is not trivial. It would

be helpful to divide the whole management into 3 different main sections. The first one is

about data storage. “Where”, “How”, and “In what form” are the main questions that have

to be addressed. This section will be referred to as Data Model. The second section is the

Processing Frameworks in which the processing of the data will take place. The last section

refers to the Algorithms that will be used to process the data. It should be mentioned that

an optimal solution for every problem is not possible.

3.2.1 Data Models

The volume of the data is growing larger year by year. The higher velocity required

for processing Big Data with the need to be able to store heterogeneous and unstructured

data were the causes of the recent increase of NoSQL Databases (currently more than 255

[5]). There are many groups of NoSQL databases. The main differences between SQL and

NoSQL Databases are presented at the table 1 and as pointed in [6] the better choice

depends on the specific use case under consideration.

22

Table 1: Main differences between SQL and NoSQL [6]

The main representatives of relational database management systems (RDBMSs) are

Oracle Database, MySQL and Microsoft SQL Server. The Kyoto Encyclopedia of Genes and

Genomes (KEGG) is consisting of 15 main databases, all of them maintained in an Oracle

Database [7].

The two most popular Document Databases are MongoDB and CouchDB both with

many prominent users. They are quite similar but MongoDB has a wider variety of indexing

than CouchDB and it can also handle event streaming [8]. MongoDB is used in various kinds

of “problems” such as storing recorded video data for live video streaming [9], finding

frequent routes of taxi trip events [10], or storing heterogeneous IoT data [11].

Neo4j is the most known Graph Database and it is considered as the most efficient

solution for storing and querying graph data. The main contribution of a novel framework

for scalable Network-based learning methods, presented in [12], is the local implementation

23

of the methods by using Neo4j. Neo4j made possible the whole analysis without the

restriction of having the entire network in the main memory. It must be noticed that when

the Louvain method is implemented on top of a graph, OrientDB seems like the best solution

[13].

Riak and Oracle NoSQL belong to Key-value store databases. They provide almost the

same features, apart from the improved support for streaming in the case of Oracle NoSQL

[8]. Oracle NoSQL database can be enhanced with OWL-NOSQL, a semantic reasoner, which

will add functionality such as uncover hidden relationships in the data [14].

Another big group of NoSQL databases is the Wide Column Store. Two of the main

representatives of this group are Cassandra and HBase. Both fault tolerant and with their

data distributed across several servers. Cassandra has been tested and used extensively

these last years. There are a few noteworthy “extensions” of Cassandra. One of them is the

implementation of join operation [15], which is not supported on this kind of NoSQL

databases. Another one is the extension of Cassandra query language in such a way that

preserves the native syntax while it provides the addition of spatial queries [16]. HBase has

also been widely used. Due to the growth of devices that are equipped with GPS (Global

Positioning System), an issue for fixed networks have arisen as far as location based services

are concerned. This issue is about the update of all devices on real time, everywhere inside

a fixed network and the ability to ensure appropriate response time for queries. A novel

solution is presented in [17], where HBase has been used.

With the huge growth of IoT and the need for forecasting and time series analysis,

InfluxDB and kdb+ have been developed and are characterized as Time Series / Streaming

Databases, optimized for Big Data analysis. Kdb+ is being used by many Wall Street’s trading

engines. Historic data can help a lot with real time analysis, on this particular field, but there

is an issue due to the lack of compatibility with SQL. An interesting approach to bridge the

gap is presented in [18].

Evaluation of even a small number of NoSQL databases, of different categories,

through benchmarking is a difficult task and there are not many relevant studies. The only

24

benchmark so far is the Yahoo Cloud Serving Benchmark (YCSB). There is no such thing as an

optimal NoSQL database but the “winner” depends mainly on the use case under

consideration [19], [20].

3.2.2 Processing Frameworks

The first part of this subsection will serve as a presentation and description of the

inner architecture of some popular, state of the art, big data processing frameworks. The

second part has been dedicated to the comparison of variety of frameworks.

3.2.2.1 Frameworks Presentation

HADOOP

Hadoop is an open-source, Java-based programming framework that process large

data sets, through a distributed computer environment. At the core of Apache Hadoop there

is a storage part, known as Hadoop Distributed File System (HDFS), and a processing part,

which is a MapReduce programming model [21].

Every Hadoop cluster includes a master node and multiple worker nodes. The master

node oversees the storage of the data at HDFS, through the Name Node, and the execution

of parallel computations on these data using MapReduce, through the Job Tracker. Worker

nodes are the VMs and their job is to store data and execute the computations. Every worker

node runs a data node service, under the Name Node, and a task tracker service, under the

Job Tracker, which communicates with master nodes to take orders. Figure 5 depicts a

Hadoop cluster.

In large Hadoop clusters, in order to prevent potential loss of data and file system

corruption a setup of two Name Nodes to manage HDFS nodes is introduced. One Name

Node server host the file system index, while the other generate snapshots of the Name

Node’s memory structures [22].

25

Figure 5: A multi-node Hadoop cluster [22].

SPARK

Apache Spark is an open-source cluster-computing framework. There is an

abstraction in the core of Spark, the Resilient Distributed Dataset (RDD). RDD is an interface

for data transformation and refers to the data stored either in persisted store or in cache or

in another RDD. Spark supports two kinds of operations, transformations and actions, while

the main and only tool for data manipulation is the RDD [23].

The system currently supports three cluster managers. A standalone, a simple

manager cluster included in Spark, Apache Mesos, a general cluster manager that can also

run Hadoop MapReduce and service applications, and Hadoop YARN, the resource manager

in Hadoop 2.

A Spark cluster consists of a Driver (main) program and Executors. Driver translates

RDD into the execution graph, schedules tasks and controls their execution. It is also the

place where SparkContext is created. Executors read, write, store data and perform all the

data processing. The Spark Architecture is visualized in figure 6.

SparkContext object is the coordinator of all Spark applications, which run on a

cluster as independent processes. Once connected to cluster manager, Spark acquires

26

executors on nodes in the cluster, sends the application code to them and after that the tasks

that they have to run.

Figure 6: Spark Architecture visualization [24].

Each application gets its own executor processes, which run tasks in multiple threads

and are “killed” only after the application has finished its job. This has the advantage of

isolating applications from each other, which leads to easier parallelization, but it also means

that there is no communication between Spark applications, which constrains us to use an

external storage system in case we want to share data across different Spark applications.

The driver program schedules tasks on the cluster and for that reason it must

communicate with its executors during the whole time it takes to finish the job, and it would

be preferred to run close to the worker nodes, if possible even on the same local area

network.

It should also be pointed out that Spark is agnostic to the underlying cluster manager.

That means Spark could run even on a cluster manager that also supports other applications

with the condition that it could acquire executor processes, which would be able to

communicate with each other [24].

27

STORM

Apache Storm is a distributed real-time computation system for processing large

volumes of high-velocity data [25]. The core unit of data for Storm is the tuple, an immutable

set of Key/Value pairs, and an unbounded sequence of tuples form a stream. Spout wrap a

streaming data source and emits tuples while Bolt receives tuples, performs arbitrary

computations, reads/writes data, and optionally emits additional tuples. Storm executes

spouts and bolts as individual tasks that run in parallel on multiple machines.

A Storm application is designed as a topology, a network of spouts and bolts, in the

shape of a directed acyclic graph (DAG) representing the data flow and streaming

computation. Graph vertices are spouts or bolts while graph edges are streams [26].

A Storm cluster has two types of nodes Nimbus (master node) and Supervisor (worker

node). Nimbus is responsible for uploading computations for execution, assign tasks to

worker nodes, and monitoring failures. Each Supervisor follows instructions given by the

Nimbus and runs one or more worker processes, which are separate JVM processes, on its

node. Each worker process runs one or more tasks parallel (spouts/bolts) and executes a

subset of topology.

Figure 7: Storm Architecture visualization [27].

28

Apache Storm is stateless in nature and for that reason Apache ZooKeeper is used to

monitor the working node status and manage the cluster state. Coordination between

Nimbus and the Supervisors is achieved through ZooKeeper. This enables Storm to restart a

failed Nimbus, which will continue its work from where it has stopped, and that is the reason

why Storm can process real-time data in the best possible and quickest way [28]. Figure 7

illustrates the Storm Architecture.

ESPER

Esper is an open-source, Java-based software product (recently has been ported to

the C# programming language) for Complex event processing (CEP) and event series analysis.

CEP is trying to identify relevant relationships, patterns or even data abstractions included

in phenomenally unrelated events and fire an immediate response [29].

Figure 8: Stream processing with Esper engines [30].

Esper introduces Event Processing Language (EPL) by which someone could

implement Event-driven programming. EPL also provides pattern semantics, which help with

the expression of causality relating to time between events. Esper was designed to address

the issue of using classical database architectures to query a huge amount of events, with

29

considerable correlation between them, which were impossible to store [30]. The general

architecture of Esper is illustrated in figure 8.

It should be noticed that Esper could be combined with Storm and run inside a Storm

bolt, instead of running on a single machine, and that gives Esper the benefit of increased

scalability.

3.2.2.2 Frameworks Comparison

Batch processing and Stream processing are the two main categories in which

processing models of Big Data are being classified. Different frameworks are used for each

processing model. The most widely used frameworks are going to be presented along with

their pros and cons.

BATCH PROCESSING

Hadoop is one of the most known programming frameworks for batch processing. It

has the ability to handle huge datasets, offers scalability, and due to the high usage of hard

disks, and not memory, low cost. However, the usage of hard disks makes Hadoop fairly slow

and because HDFS was designed for mostly immutable files it is not very suitable for systems

requiring concurrent write operations.

An interesting implementation of Hadoop framework is presented in the following

work [31], which gives a significant boost on Hadoop timings. Classic Hadoop

implementations perform shuffle only by running the reduce task. iShuffle separates the

shuffle from reduce task and by that it lessens the time for a job to complete.

The performance of Hadoop depends a lot on data locality since to transfer data

through a network takes a lot of time. The main approaches to address this issue are the

Hadoop default scheduler (HDS) and the state-of-the-art balance-reduce scheduler (BAR). A

new methodology is proposed, the heuristic bandwidth-aware scheduling (BASS), in order

to combine Hadoop with Software-defined networking (SDN) [32].

30

Apache Spark is another framework for batch processing. Spark executes batch

processing jobs about 10 to 100 times faster than Hadoop, offers scalability and also ensures

lower latency computations through the high utilization of memory of the spark cluster. It

also makes possible to perform on the same cluster except of batch processing different

tasks like streaming processing, through the extension Spark Streaming, and machine

learning.

A very recent use of Apache Spark, in the back-end, was for filtering large datasets of

combustion engines and the scalability evaluation for Spark has shown greater benefits of

higher number of workers for big size files [33].

Spark was also used for speeding up deep learning in mobile data analytics. Through

MapReduce iterations, a distributed version of deep learning, on many Spark workers, were

achieved. Each worker, was learning a part of the model, and all together built the final deep

model [34].

STREAM PROCESSING [35], [36], [37]

Apache Storm is a distributed real-time computation system for stream processing.

It handles data with very low latency and that is why it is suited for real-time processing.

Storm is expanded through an abstraction called Trident, which leads to more flexibility but

higher latencies.

Scalability has an important role on every big data processing platform. The default

implementation for scaling in Storm has some drawbacks. An interesting approach of how

to deal with an overloaded topology is presented at [38] where the procedure is, when

needed, automatically launched.

Another issue of stream processing platforms is the change of volume or even

velocity of the input stream. Because of this variance, it would be desirable from the

platform to react on real time and change its size. Storm does not provide this functionality

by default. A tool has been developed for monitoring key elements of the structure and

31

based on the information that it gathers decides whether the structure has to grow or shrink

[39].

The capability of Storm to act as a real time streaming processor is highlighted in this

study [40] where a hybrid real time intrusion detection system is developed with the aid of

two neural networks (CC4 instantaneous NN and Multi-Layer Perceptron NN).

Storm and Esper have been used in a study that has been conducted on real data

from traffic monitoring of bus traces in the city of Dublin. The approach of this study has

shown interesting results that outperforms state-of-the-art techniques with regards to the

amount of tuples that could be processed [41].

Apache Samza is another framework for stream processing. Tightly tied to Kafka, it

is able to provide fault tolerance and state storage. The use of Yarn compels Samza to run

on a Hadoop cluster.

Multi-stream joining is becoming an important task for Internet companies. There

are two models to join streams, All-In-One and Step-By-Step. Both have their pros and cons.

A study for the trade-off of these models has been conducted using Samza [42].

When dealing with large volumes of data the quality has a major role. The challenge

of detecting and fixing in real time any issues regarding the consistency of data is addressed

in [43]. A different model for Samza is proposed which leads to the optimization of the

deployment and as a result to a reduced cost.

Apache Flink is a native streaming system but it can also handle batch processing

using the abstraction that everything is a stream. As a result, a batch can be considered as a

special case of stream.

The heterogeneity, and the complex relationship between data, give graph analytics

an improved role in the Big Data era. Flink was used for the implementation of the Extended

Property Graph Model [44], which achieved, on social network data, scalability up to 11

billion edges.

32

Machine learning algorithms have started to be the basis of optimization in industry.

A great challenge is the processing of the data to take place as close to the data sources. An

OpenTOSCA-based toolchain is presented in [45], which can be deployed very close to the

data sources and uses Apache Flink for processing.

Spark Streaming is an extension of Apache Spark capable for stream processing. It

comes with all the advantages of Spark but it is only capable for mini batch processing.

A study about Smart Cities uses Apache Spark Streaming instead of hierarchical Smart

Grid. It is stated that with Spark it could be achieved a monitor and reaction system for water

flows, self-powered through water turbines [46].

SPARK STREAMING STORM SAMZA FLINK

Main Scope Streaming Streaming Streaming Streaming

Processing
Model

mini batches
event at a time,
[mini batches

(Trident)]

event at a
time

event at a
time

Latency seconds
tens of millis,
(seconds with

Trident)

hundreds
of millis

hundreds of
millis

State
Management

stateful
stateless

[stateful (Trident)]
stateful stateful

Fault
Tolerance

Exactly Once
At Least Once,
[Exactly once

(Trident)]

At Least
Once

Exactly Once

Table 2: Stream Processing Frameworks comparison.

There is a different behaviour of these systems depending a lot at the processing

method as can be seen from these experiments [47], [48]. Each platform has a lot of tuning

options and with the right tuning for the task at hand it could lead to noteworthy changes

of the performance.

33

3.2.3 Algorithms

Algorithms not only have to solve a problem, but also solving it in a reasonable time,

and with reasonable computational resource usage. Big Data, primarily due to their large

volume, have led to the development of new algorithms. Machine learning algorithms are

widely used for Big Data analysis.

DATA PRE-PROCESSING/PREPARATION

The first step, and a very important one, in designing a machine learning task is the

representation of each pattern in the computer. The encoding of related information that

inhabit in the unprocessed (raw) data is achieved through the pre-processing stage [49].

Pre-processing of data is a necessity because real word data are generally

incomplete, noisy and inconsistent. There are numerous tasks in data pre-processing

splitting into two main categories, data preparation and data reduction techniques [50].

Due to imperfection of data, it is common to require a cleaning task responsible to

fill in missing values or even ignore some of the data. Noise is another important issue and

is being addressed using data polishing methods or noise filters.

The volume of data can cause problems, as too much data may lead to the “curse of

dimensionality” problem. This problem is addressed by various techniques such as feature

selection, space transformation, instance reduction/selection/generation or discretization.

Finally yet importantly, in supervised learning, if there is a significant imbalance in

the number of representatives for each class, it is going to lead on a classifier biased towards

the majority class/classes. For that reason, a resampling of the data is required to bring

balance [51].

34

DATA PROCESSING

i. Correlation

In large collections of data, there is a high probability that values are

somehow correlated. For data streams, in particular, we have two different cases of

correlation. The first case involves correlations across different streams (cross-

correlation) and the second involves correlations across time at the same stream

(auto-correlation). The first one provides information on any hidden variable across

different data streams while the latter discovers any regular pattern or any

periodicity in time series streams [52].

ii. Regression

The regression task is basically a curve fitting problem (supervised learning).

From a set of training points we proceed to the estimation of a function f, whose

graph should fit the data. With that function available, we can predict the output

value of every unknown input. A handful number of problems can be considered as

regression problems [49].

iii. Forecasting

Machine learning is all about prediction. When problems involve time, the

term used is “Forecasting”. Time series forecasting is not time series analysis. In the

former, the goal is to predict (forecast) future values of a time series by using

information from that series, while in the latter the goal is to understand the

underlying causes by developing models that describe accurately this time series. The

main issues that should be addressed for a time series forecasting are the volume of

available data for training, the time window of a valid prediction, the possibility to

update the forecast and the frequency of the forecasts. Supervised learning

techniques and Neural Networks can be used for forecasting. A major challenge with

forecasting is that it fails to give good predictions over a long time horizons [53], [54].

35

iv. Classification

In classification, there is a number of known classes and the purpose is to

determine in which one of these classes, an unknown pattern should be placed on

(supervised learning). The first step to create a classifier is to create a training set and

then, based on those training data, to design a function f, which has to predict the

output label, for any given input. This function f is the classifier and from the moment

it has been trained, is capable to make predictions.

v. Clustering

Clustering, or unsupervised learning, is used when there are no labels for the

training data. The task of clustering is to assign points into a number of clusters

(groups). Points on the same cluster should be more similar between them, than

points belonging to different clusters. For some clustering algorithms the number of

clusters should be provided, while for others the number of clusters is considered to

be a free parameter recovered from the data. There is a small number of different

metrics, which quantifies similarity. Each metric may result in different clustering.

Due to the nature of the problem, an optimal clustering is an NP-hard task and for

that reason, any clustering algorithm uses approximations, which lead to a

suboptimal solution.

36

Chapter 4

Clustering

The dataset contains information on the route of the Reims tramway. Since many

factors change throughout a day, for some specific processing one may first group the routes

followed under the same conditions, and then advance with processing.

4.1 Data Preparation for Clustering

As a first step, different plots were produced for the various quantity measurements

over time. This step was taken in order to visualize the measurements throughout a day, and

to detect the starting and ending time of each tram route.

Figure 9: All different measurements across time for one day.

37

There are two ways to interpret the concept of “route”. Both interpretations were

taken into consideration and for that reason three different categories of “routes” were

created. One route was formed considering the trip of the tram from the first station to the

last station (Up Route). An alternative route was formed from the last station to the first

station (Down Route). A third route was formed combining both routes in a round trip from

the first station to the last station and back, as a single route (Full Route).

With the aid of the plots Station-Time and Velocity-Time the number of daily routes

were discovered along with their starting and ending time. The daily number of the routes

is 11 and it is the same for all three different “route” categories.

Figure 10: Station-Time plot.

Since the starting and ending time of the routes were identified, and with the usage

of latitude and longitude measurements, a plot with the coordinates of the train, along with

the duration of the route, were made. A comparison with the official route plan is presented

in the following figures.

0

5

10

15

20

25

30

5:45:36 8:09:36 10:33:36 12:57:36 15:21:36 17:45:36 20:09:36

Station - Time

38

Figure 11: Reims tramway plan [55].

Figure 12: GPS coords plot for a route.

39

4.2 Clustering Algorithms Results

To be able to group routes that are similar, requires each route to be represented by

a feature vector in the same n-dimensional space. For each route the mean values of

external Temperatures (T1 and T2), Velocity, and CO2 Level were computed. Three different

feature vectors ([T1, T2], [T1, T2, CO2], [T1, T2, Velocity, CO2]) were used as inputs into four

different clustering Algorithms (KMeans, Birch, Mean Shift, DBSCAN).

4.2.1 KMeans

KMeans is a general-purpose clustering algorithm and it is usually considered as the

best. KMeans needs to be given the number of clusters. As experimentation, it was decided

to run three different scenarios. One for 2 clusters, another one for 3, and lastly, one for 4

clusters.

The results produced from this algorithm are presented in the forthcoming figures.

As one of the feature vectors includes four attributes and a 4-dimensional space cannot be

visualized, Principal Component Analysis (PCA) was used, for dimensionality reduction, so a

visualization of the clustering could be possible.

The results of the clustering may be different before and after the appliance of PCA

at the data. This is expected as dimensionality reduction leads to information loss. This loss

due to the very low dimension of feature vectors with high probability can be important.

40

Figure 13: KMeans, Feature Vector: [T1, T2].

Figure 14: KMeans, Feature Vector: [T1, T2, CO2], PCA reduced data 3D->2D.

41

Figure 15: KMeans, Feature Vector: [T1, T2, Velocity, CO2], PCA reduced data 4D->2D.

4.2.2 Birch

Birch was the second clustering algorithm that was chosen to experiment with. It has

been proven to be scalable and although slower than KMeans, it is faster than almost any

other clustering algorithm [56].

As the Birch algorithm can be fed with the number of clusters, the same methodology

as the one for Kmeans was used. The plots of the clustering results with Birch algorithm, for

each different “route” category, are presented at the following figures.

42

Figure 16: Birch, Feature Vector: [T1, T2].

Figure 17: Birch, Feature Vector: [T1, T2, CO2], PCA reduced data 3D->2D.

43

Figure 18: Birch, Feature Vector: [T1, T2, Velocity, CO2], PCA reduced data 4D->2D.

4.2.3 Mean Shift

Mean shift was the next clustering algorithm used. The main difference from KMeans

and Birch is that the number of clusters is not provided to the algorithm. On the contrary,

the number of clusters has to be discovered, by the algorithm. For that reason, the

experiments with Mean Shift algorithm were restricted only to different feature vectors and

different route categories. The results are shown in the next figures.

44

Figure 19: Mean Shift, Feature Vector: [T1, T2].

Figure 20: Mean Shift, Feature Vector: [T1, T2, CO2], PCA reduced data 3D->2D.

Figure 21: Mean Shift, Feature Vector: [T1, T2, Velocity, CO2], PCA reduced data 4D->2D.

45

4.2.4 DBSCAN

Due to the small amount of data DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) algorithm did not work. The algorithm did not find areas with high

density and marked all points (routes) as noise.

4.3 Results Comparison

At the previous section the results of each clustering algorithm, for each feature

vector, and for each route category were introduced. Now, a comparison between the

algorithms is going to be presented. There are various ways to compare the results of each

algorithm. Three of them will be addressed. The first will be to keep the same feature vector

and compare the results for each “route” category while the second will be the exact

opposite, keep the same “route” category and compare the results for each feature vector.

The last one will make a comparison of the algorithms for the same feature vector and route

category at the same time.

4.3.1 Same Feature Vector, Different “route” Category

The presentation of results will be categorized by the number of clusters, so a better

comparison can be achieved. For every table presented, each cell contains the id of a route.

That way the comparison about the results of different algorithms is easily perceived.

Feature Vector: [T1, T2] (2D)

As can be seen from table 1, KMeans (KM) and Birch (BI), when the number of

clusters is n=2, gives exactly the same results for Up and Down routes while there is a small

difference when it comes to Full route. When n=3, KMeans and Birch produce slightly

different results for Full routes while for Down routes they both provide exactly the same.

When it comes to Up routes, a complete match between KMeans, Birch and Mean Shift (MS)

is noticed (table 2). For n=4, all three algorithms, Mean Shift (MS) too, give the same results

for Full and Down routes. When it comes to Up route a significant difference between

KMeans and Birch is recorded (table 3).

46

2 CLUSTERS (FULL) 2 CLUSTERS (UP) 2 CLUSTERS (DOWN)

CLUSTER A CLUSTER B CLUSTER A CLUSTER B CLUSTER A CLUSTER B

KM BI KM BI KM BI KM BI KM BI KM BI

1 1 3 1 1 4 4 1 1 3 3

2 2 4 4 2 2 5 5 2 2 4 4
 3 5 5 3 3 6 6 10 10 5 5
 9 6 6 10 10 7 7 11 11 6 6

10 10 7 7 11 11 8 8 7 7

11 11 8 8 9 9 8 8

 9 9 9

Table 3: n=2, feature vector: [T1, T2], clustering results (KMeans, Birch).

3 CLUSTERS (FULL) 3 CLUSTERS (UP) 3 CLUSTERS (DOWN)

CLUSTER
A

CLUSTER
B

CLUSTER
C

CLUSTER A CLUSTER B CLUSTER C
CLUSTER

A
CLUSTER

B
CLUSTER

C

KM BI KM BI KM BI KM BI MS KM BI MS KM BI MS KM BI KM BI KM BI

1 4 4 1 1 1 1 2 2 2 4 4 4 1 1 4 4 3 3

2 2 5 5 3 3 3 3 5 5 5 2 2 5 5 9 9

 3 6 6 9 10 10 10 6 6 6 10 10 6 6

 9 7 7 10 11 11 11 7 7 7 11 11 7 7
 10 8 8 8 8 8 8 8

11 11 9 9 9

Table 4: n=3, feature vector: [T1, T2], clustering results (KMeans, Birch, Mean Shift).

4 CLUSTERS (FULL)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D

KM BI MS KM BI MS KM BI MS KM BI MS

1 1 1 2 2 2 3 3 3 4 4 4

 10 10 10 9 9 9 5 5 5

 11 11 11 6 6 6

 7 7 7

 8 8 8

4 CLUSTERS (UP)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D

KM BI MS KM BI MS KM BI MS KM BI MS

1 1 - 2 2 - 4 4 - 3 -

 3 5 5 7

 10 6 6 8

 11 11 7 10

 8

 9 9

4 CLUSTERS (DOWN)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D

KM BI MS KM BI MS KM BI MS KM BI MS

1 1 1 2 2 2 3 3 3 4 4 4

 10 10 10 9 9 9 5 5 5

 11 11 11 6 6 6

 7 7 7

 8 8 8

Table 5: n=4, feature vector: [T1, T2], clustering results (KMeans, Birch, Mean Shift).

47

Feature Vector: [T1, T2, CO2] (3D)

KMeans and Birch for all n (2, 3, and 4) gave practically the same results. Mean Shift

on the other hand divided the routes to 5 clusters. Even so, the distribution of the routes is

very similar with the ones produced from KMeans and Birch. The results for all clustering

experiments are presented in the tables below.

2 CLUSTERS (FULL) 2 CLUSTERS (UP) 2 CLUSTERS (DOWN)

CLUSTER A CLUSTER B CLUSTER A CLUSTER B CLUSTER A CLUSTER B

KM BI KM BI KM BI KM BI KM BI KM BI

1 1 5 5 1 1 2 2 1 1 4

2 2 7 7 3 3 5 5 2 2 5 5

3 3 8 8 4 4 6 6 3 3 7 7

4 4 9 9 10 10 7 7 4 8 8

6 6 11 11 8 8 6 6 9 9

10 10 9 9 10 10

11 11 11 11

Table 6: n=2, feature vector: [T1, T2, CO2], clustering results (KMeans, Birch).

3 CLUSTERS (FULL) 3 CLUSTERS (UP) 3 CLUSTERS (DOWN)

CLUSTER
A

CLUSTER
B

CLUSTER
C

CLUSTER
A

CLUSTER
B

CLUSTER
C

CLUSTER
A

CLUSTER
B

CLUSTER
C

KM BI KM BI KM BI KM BI KM BI KM BI KM BI KM BI KM BI

1 1 2 2 5 5 1 1 2 2 3 3 1 1 5 5 4 4

10 3 3 7 7 4 4 5 5 2 2 7 7 6 6

 4 4 8 8 10 10 6 6 11 11 3 3 8 8 10

 6 6 9 9 7 7 10 9 9 11 11

 10 8 8

 11 11 9 9

Table 7: n=3, feature vector: [T1, T2, CO2], clustering results (KMeans, Birch).

48

4-5 CLUSTERS (FULL)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D CLUSTER E

KM BI MS KM BI MS KM BI MS KM BI MS KM BI MS

1 1 1 2 2 2 7 7 7 5 5 5 - - 9

 3 3 3 9 9 6

 4 4 4 8 8 8

 6 6

 10 10 10

 11 11 11

4-5 CLUSTERS (UP)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D CLUSTER E

KM BI MS KM BI MS KM BI MS KM BI MS KM BI MS

1 1 2 2 2 7 7 7 3 3 3 - - 1

4 4 4 5 5 5 9 9 9 11 11 11

10 10 10 6 6 6

 8 8 8

4-5 CLUSTERS (DOWN)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D CLUSTER E

KM BI MS KM BI MS KM BI MS KM BI MS KM BI MS

1 1 1 4 4 4 7 7 7 5 5 5 - - 6

2 2 2 6 6 8 8 8 10

3 3 3 10 9 9 9

10 11 11 11

Table 8: n=4 or 5, feature vector: [T1, T2, CO2], clustering results (KMeans, Birch, Mean Shift).

Feature Vector: [T1, T2, Velocity, CO2] (4D)

The behavior of all algorithms for the 4D feature vector was similar to the one for the

3D one. Mean Shift, splits also the routes into 5 clusters but the allocation of clusters does

not deviate a lot from the results of the other algorithms. The tables below show the results

for the 4-dimensional feature vector.

2 CLUSTERS (FULL) 2 CLUSTERS (UP) 2 CLUSTERS (DOWN)

CLUSTER A CLUSTER B CLUSTER A CLUSTER B CLUSTER A CLUSTER B

KM BI KM BI KM BI KM BI KM BI KM BI

1 1 5 5 1 1 2 2 1 1 4

2 2 7 7 3 3 5 5 2 2 5 5

3 3 8 8 4 4 6 6 3 3 7 7

4 4 9 9 10 10 7 7 4 8 8

6 6 11 11 8 8 6 6 9 9

10 10 9 9 10 10

11 11 11 11

Table 9: n=2, feature vector: [T1, T2, Velocity, CO2], clustering results (KMeans, Birch).

49

3 CLUSTERS (FULL) 3 CLUSTERS (UP) 3 CLUSTERS (DOWN)

CLUSTER
A

CLUSTER
B

CLUSTER
C

CLUSTER
A

CLUSTER
B

CLUSTER
C

CLUSTER
A

CLUSTER
B

CLUSTER
C

KM BI KM BI KM BI KM BI KM BI KM BI KM BI KM BI KM BI

1 1 2 2 5 5 1 1 2 2 1 1 5 5 4 4

 3 3 7 7 4 4 5 3 3 2 2 7 7 6 6

 4 4 8 8 10 10 6 6 5 3 3 8 8 10

 6 6 9 9 11 7 7 11 10 9 9 11 11

 10 10 8 8

 11 11 9 9

Table 10: n=3, feature vector: [T1, T2, Velocity, CO2], clustering results (KMeans, Birch).

4-5 CLUSTERS (FULL)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D CLUSTER E

KM BI MS KM BI MS KM BI MS KM BI MS KM BI MS

1 1 1 2 2 2 7 7 7 5 5 5 - - 9

 3 3 3 9 9 6 6

 4 4 4 8 8 8

 6

 10 10 10

 11 11 11

4-5 CLUSTERS (UP)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D CLUSTER E

KM BI MS KM BI MS KM BI MS KM BI MS KM BI MS

1 1 2 2 2 7 7 7 3 3 3 - - 1

4 4 4 5 5 5 9 9 9 11 11 11

10 10 10 6 6 6

 8 8 8

4-5 CLUSTERS (DOWN)

CLUSTER A CLUSTER B CLUSTER C CLUSTER D CLUSTER E

KM BI MS KM BI MS KM BI MS KM BI MS KM BI MS

1 1 1 4 4 4 7 7 7 5 5 5 - - 6

2 2 2 6 8 8 8 10

3 3 3 10 9 9 9

6 11 11 11

10

Table 11: n=4 or 5, feature vector: [T1, T2, Velocity, CO2], clustering results (KMeans, Birch, Mean Shift).

50

4.3.2 Same “route” Category, Different Feature Vector

From the tables introduced at subsection 4.3.1 one could derive information on how

similar the clustering results are for the same route category and different feature vectors

as input.

2D vs 3D

For n=2, Up route results are identical while Full route and Down route results show

a significant deviation for both KMeans and Birch. For n=3, all route categories had very

different outcome for KMeans and Birch. For n=4 each route category gave entirely different

results.

As for Mean Shift, a completely alterative outcome were reached for all route

categories. For Up route 2D input it created 3 clusters, while 3D input 5 clusters. As far as

Full route and Down route are concerned, 2D input led to 4 clusters, while 3D input 5

clusters.

2D vs 4D

For n=2 all route categories have identical results for both KMeans and Birch, while

for n=3 and n=4 are completely different. The same observation as before, 2D vs 3D, applies

for the Mean Shift algorithm.

3D vs 4D

For n=2 all route categories gave identical results for both KMeans and Birch. For n=3,

Full and Up routes gave almost the same results and Down routes had identical outcome.

When n=4 Birch gave the exact same results while KMeans produced identical results for Full

and Up routes, and practically the same results for Down route. Mean Shift on the other

hand, had a minor deviation for Full route while reached the exact same outcome for Up and

Down routes.

51

4.3.3 Same Feature Vector, Same “route” Category

The clear majority of the algorithms’ results are identical, or very similar. Although

for a few combinations, [n=3, 2D, Full], [n=3, 4D, Full], [n=3, 4D, Up], and [n=4, 2D, Up] there

are considerable divergences between the outcome of each algorithm. For the sake of

visualization, all plots for 3D feature vector are presented below.

Figure 22: 3D feature vector, Full route, all algorithms.

Figure 23: 3D feature vector, Up route, all algorithms.

52

Figure 24: 3D feature vector, Down route, all algorithms.

4.4 Discussion

As the number of the routes that have to be grouped is very small, no generic

conclusion, regarding the algorithm suitability for the task under consideration can be

reached. The results of all algorithms are identical in 40% of the cases, almost the same in

51% of the cases, and display important deviation in 9% of the cases. However, these

observations may be different if a larger number of the routes was available.

Another issue is the execution time of the algorithm. Even if an algorithm gives better

results than an alternative one, if the time required to run is too long, it may be better to

use the faster one with slighter worse results. Due to the small number of points that the

algorithms had to group, this important aspect was not possible to be evaluated. For this

feature to be evaluated a larger dataset has to be analyzed, in order to gather information

that will assist in assessing the result’s quality versus execution time.

53

Chapter 5

Forecasting

A time series is a collection of data points collected, commonly, at time intervals of

equal length. Time series modeling, and by extension time series forecasting, is more

complex than the analysis of any sequence not depending on time. There are two main

reasons for that. First of all, in the regression model, a main hypothesis is that the

observations are independent. This hypothesis does not hold true on time series since the

data are correlated. Secondly, time series usually tend to exhibit seasonality trends in

addition to any other trend.

Traditional forecasting method uses statistical models like ARIMA (AutoRegressive

Integrated Moving Average) for example. The approach of this master thesis will be the

design and the implementation of two different Neural Networks for the forecasting. The

first one will be an MLP (MultiLayer Perceptron), a Feedforward NN, and the second an LSTM

(Long Short-Term Memory), a Recurrent NN. The main difference between an FNN and an

RNN is that in the FNN, the output of a layer does not affect that same layer, in other words,

there is no feedback. On the other hand, in the RNN, loops are showing up, thus allowing

information to persist. That is the reason why it is told that an RNN has “memory”.

5.1 Neural Networks Introduction

The human brain could be characterized as a highly complex information-processing

system. The way that brain computes, presents many differences from the way a typical

computer does. Brain, also has the ability to develop, and this development depends highly

on the “experiences” each person has [57].

Artificial Neural Networks, usually referred as “Neural Networks”, were inspired by

human brain. They are composed from simple processing units, called artificial neurons, that

are massively interconnected. Their goal is to model the way in which the brain would carry

54

out a specific task. Through a learning process, a Neural Network can obtain knowledge. That

gained knowledge is stored to the interneuron connection strengths, which usually called

synaptic weights. The change of these weights is the conventional way for Neural Network

design. Nevertheless, the creation of a Neural Network that can alter even its own topology

is possible and that constitutes a second design method.

Neural Networks are not a new idea. Actually, they were introduced decades ago,

but the first results were not encouraging. The reason though, they have become a trend in

the last decade, is because they started to produce fine results. The main cause of this

change was Big Data. Neural Networks “learn” through training. Training involves the

feeding of a Neural Network with data, in order to acquire knowledge and achieve good

performance. In the Big Data era, an enormous volume of data exists. That made possible

the development of sufficiently trained Neural Networks, which can perform well.

5.2 Multilayer Perceptron Model

The standard linear perceptron could not distinguish data that are not linearly

separable. For that reason, a modification of the linear perceptron were developed, the

Multilayer Perceptron (MLP). MLPs are widely used and have three main features.

Figure 25: A regular MLP Neural Network with 2 hidden layers [58].

55

i. The network contains one or more layers between the input and the output nodes.

Those layers are called hidden layers.

ii. The interconnectivity of network’s neurons is high and its extension is decided by the

network’s weights.

iii. The activation function of each network’s neuron has to be nonlinear and

differentiable.

A sufficient number of experiments took place with the MLP model for forecasting

the levels of CO2 inside the cabins of the train. There are many different parameters, which

can be changed, to tune a neural network. In each series of the experiments, one parameter

was changed, while the others stayed constant, in order to achieve an evaluation of the

performance of the neural network.

5.2.1 MLP Experiment Results

The epochs of the training was the first parameter that was tested. That choice was

made for two reasons. The first one was, so that we could determine the range of the

number of training epochs that would not lead to underfitting or overfitting. The second was

to establish a baseline of the performance of the Neural Network.

Figure 26: Plot of RMSE against Epochs of training for MLP Network (1 hidden layer, 7 neurons, window = 1,
batch size = 100). The green line corresponds to the RMSE of the prediction on the training set while the red

line corresponds to the RMSE of the prediction on the test set.

56

After studying the above curve, a decision to set the number of epochs to 100 for the

rest of the experiments were made. The batch size was the second parameter that was

studied. Usually, the whole train set is not propagated to the Neural Network to train with

all at once, but instead, it is distributed in batches, which are used to train the Neural

Network. The number of the data, that every batch is composed from, is called batch size.

The results are presented at the following table. A batch size of 50 was selected for the rest

of the experiments.

NEURONS WINDOW BATCH EPOCHS RMSE

7 1 1 100 2.65
7 1 2 100 2.497
7 1 4 100 2.49
7 1 6 100 2.501
7 1 8 100 2.496
7 1 10 100 2.531
7 1 25 100 2.495
7 1 50 100 2.493
7 1 75 100 2.5
7 1 100 100 2.54
7 1 150 100 2.5
7 1 200 100 2.5
7 1 300 100 2.5
7 1 400 100 2.498
7 1 500 100 2.5

Table 12: MLP results for different Batch Sizes (1 hidden layer).

Figure 27: Plot of RMSE against Batch Size for MPL Network (1 hidden layer).

2.48

2.5

2.52

2.54

2.56

2.58

2.6

2.62

2.64

2.66

0 50 100 150 200 250 300 350 400 450 500

RMSE - BATCH SIZE (MLP)

57

The third parameter that was investigated was the window. Since the problem is the

forecasting of a time series, that term corresponds to the number of the previous data, from

a time instant, that are available to the Neural Network in order to forecast the value of that

particular time instant. It is observed that the better score is achieved when the MLP takes

into consideration only the previous value. That means that the value of CO2 Level depends

mostly from the exact previous value and that the older measurements act as noise.

NEURONS WINDOW BATCH EPOCHS RMSE

7 1 50 100 2.493

7 2 50 100 2.995

7 3 50 100 2.755

7 4 50 100 3.03

7 5 50 100 2.82

7 6 50 100 2.684

7 7 50 100 2.715

7 8 50 100 3.808

7 9 50 100 3.808

7 10 50 100 4.703

Table 13: MLP results for different Window Sizes (1 hidden layer).

Figure 28: Plot of RMSE against Window Size for MLP Network (1 hidden layer).

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

0 1 2 3 4 5 6 7 8 9 10

RMSE - WINDOW (MLP)

58

The number of neurons, on an MLP with a single hidden layer, was the fourth

parameter that was examined. The increase of the number of neurons, showed that there is

no rule as “the more the better”, and that the best suited number of neurons depends on

the nature of the quantity, which the Neural Network is trying to forecast.

NEURONS WINDOW BATCH EPOCHS RMSE

1 1 50 100 734.733
2 1 50 100 2.489
4 1 50 100 2.489
6 1 50 100 2.494
7 1 50 100 2.493
8 1 50 100 2.497

10 1 50 100 2.509
15 1 50 100 2.509
20 1 50 100 2.504
30 1 50 100 2.489
40 1 50 100 2.49
50 1 50 100 2.538
75 1 50 100 2.518

100 1 50 100 2.595

Table 14: MLP results for different number of Neurons (1 hidden layer).

Figure 29: Plot of RMSE against Number of Neurons for MLP Network (1 hidden layer).

2.48

2.49

2.5

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.6

0 10 20 30 40 50 60 70 80 90 100

RMSE - NEURONS (MLP)

59

The last parameter that was chosen to investigate was the number of the layers of

the MLP, and by extension the number of neurons for each layer. The multiple number of

hidden layers did not increased the performance of the MLP. On the contrary, when the

number of the hidden layers were more than 3, the performance presented a decrease,

which for some setups was significant. Some representative cases are presented in the

following table.

NEURONS WINDOW BATCH EPOCHS RMSE

4-4 1 50 100 2.498

4-6 1 50 100 2.526

4-7 1 50 100 2.499

4-8 1 50 100 2.541

7-7 1 50 100 2.616

7-14 1 50 100 2.602

30-30 1 50 100 2.521

30-60 1 50 100 2.93

4-4-4 1 50 100 3.061

7-14-28 1 50 100 4.39

7-7-14-14 1 50 100 2.821

7-14-14-28 1 50 100 2.932

7-14-28-56 1 50 100 2.759

10 Hidden Layers 1 50 100 7.013

Table 15: MLP results for different number of Hidden Layers and Neurons.

The performance of MLP, as far as the forecasting of CO2 Level is concerned, is

extremely good. The lowest value of RMSE (Root Mean Square Error) that MLP achieved was

2.489. Taking into account that the mean value of CO2 Level for the entire day is 710, the

error of forecasting values is about 0.35%. It should be mentioned that, despite our initial

expectations, the deep Neural Network architectures achieved either almost equal score, as

the 1 hidden layer MLP, or were outperformed.

Due to the good performance of the MLP to CO2 Level forecasting it was decided to

test that architecture for velocity forecasting too. The parameters were chosen intuitively.

After 20 different runs, the lowest RMSE value the MLP achieved was 1.3. Since the mean

velocity is 13.55 approximately, the lowest RMSE value is translated to 9.59% error on an

estimation, which is very high.

60

5.3 Long Short-Term Memory Network

As mentioned before the main advantage of an RNN is the “memory”. If the distance

of an important information from the place that it is required is relative small, an RNN, or

even an MLP with a sufficient “window” can learn to use that information. In the case where

the useful information is many steps behind an MLP with an enormous “window” would fail.

Although, theoretically, an RNN would be capable of using this information, in practice, it

does not [59].

Figure 30: An example of a random Recurrent Neural Network [60].

Long short-term memory (LSTM) is a Recurrent Neural Network architecture, which

can learn long-term dependencies. The design of the LSTM allows it to overcome the issue

of the long-term dependencies that has emerged from the standard RNN. Each RNN could

be considered as a chain of successively units of the same neural network. The standard

RNN’s module has a very simple structure while the LSTM’s module consists of four neural

network layers.

Figure 31: The repeating module in a standard RNN [61].

61

Figure 32: The repeating module in an LSTM [61].

5.3.1 LSTM Experiment Results

In this series of experiments, the results of an LSTM according to the number of

neurons were studied. Moreover, an investigation on the impact of the input, stationary or

non-stationary, and on the capability of the LSTM to save its state, to the NN’s performance

was conducted.

An LSTM network prediction is depending on the activation of the memory cell of the

previous time step. The stateless LSTM initiates the cell states and hidden states, usually to

zero, after each batch, while the stateful LSTM transfers the last cell and hidden states of a

training batch to the next one.

Like the MLP experiments, the initial parameter for LSTM testing was the epochs of

the training, for the same two reasons. To avoid the underfitting or the overfitting of the

network, and to establish a baseline for the performance of the LSTM.

Figure 33: Plot of RMSE against Epochs of training for LSTM Network (1 hidden layer, 2 neurons, window =
1, batch size = 100). The green line corresponds to the RMSE of the prediction on the training set while the

red line corresponds to the RMSE of the prediction on the test set.

62

The number of training epochs was decided to be 100 for each of the following

experiments. Since the LSTM uses as activation function the 𝑡𝑎𝑛ℎ, the scaling of the training

set between the values [-1, 1] was deemed necessary. All the experiments are going to

investigate the performance of an LSTM network, with 1 hidden layer, against the number

of neurons. The first network to be studied is a stateless LSTM, which receives as input the

scaled dataset.

NEURONS WINDOW BATCH EPOCHS RMSE

2 1 100 100 4.413

4 1 100 100 5.164

6 1 100 100 5.852

8 1 100 100 3.38

10 1 100 100 2.794

15 1 100 100 3.036

20 1 100 100 3.087

30 1 100 100 2.813

40 1 100 100 2.571

50 1 100 100 2.735

75 1 100 100 2.587

100 1 100 100 2.57

Table 16: LSTM results for different number of Neurons (1 hidden layer, stateless, non-stationary input).

Figure 34: Plot of RMSE against Number of Neurons (LSTM, 1 hidden layer, stateless, non-stationary input).

2

2.5

3

3.5

4

4.5

5

5.5

6

0 10 20 30 40 50 60 70 80 90 100

RSME - NEURONS (LSTM, Stateless, non-Stationary input)

63

The second one is a stateless LSTM also, but this time the input is a stationary

dataset. In order to make the dataset stationary the differencing method was used at the

original dataset. Then the scaling was applied to the differenced dataset.

NEURONS WINDOW BATCH EPOCHS RMSE

2 1 100 100 2.549

4 1 100 100 2.55

6 1 100 100 2.552

8 1 100 100 2.553

10 1 100 100 2.548

15 1 100 100 2.553

20 1 100 100 2.56

30 1 100 100 2.549

40 1 100 100 2.552

50 1 100 100 2.54

75 1 100 100 2.532

100 1 100 100 2.536

Table 17: LSTM results for different number of Neurons (1 hidden layer, stateless, stationary input).

Figure 35: Plot of RMSE against Number of Neurons (LSTM, 1 hidden layer, stateless, stationary input).

2.53

2.535

2.54

2.545

2.55

2.555

2.56

2.565

0 10 20 30 40 50 60 70 80 90 100

RSME - NEURONS (LSTM, Stateless, Stationary input)

64

In the last experiment, a stateful LSTM network is going to be investigated, which

receives as input the stationary dataset.

NEURONS WINDOW BATCH EPOCHS RMSE

1 1 100 100 2.491

2 1 100 100 2.491

4 1 100 100 2.488

6 1 100 100 2.49

8 1 100 100 2.489

10 1 100 100 2.488

15 1 100 100 2.49

20 1 100 100 2.489

30 1 100 100 2.501

40 1 100 100 2.489

50 1 100 100 2.489

75 1 100 100 2.488

100 1 100 100 2.488

Table 18: LSTM results for different number of Neurons (1 hidden layer, stateful, stationary input).

Figure 36: Plot of RMSE against Number of Neurons (LSTM, 1 hidden layer, stateful, stationary input).

2.486

2.488

2.49

2.492

2.494

2.496

2.498

2.5

2.502

0 10 20 30 40 50 60 70 80 90 100

RSME - NEURONS (LSTM, Statefull, Stationary input)

65

From the results of the first two experiments the basic conclusion is that the input

plays a significant role. The pre-processing of the data is of vital importance for the

performance of the Neural Network. The stateful LSTM shows better results from the

stateless LSTM for the same input. Although it has to be stressed out, that those differences

are not worthwhile.

Since some experiments with the forecasting of velocity took place about the MLP, it

was deemed proper to put into test LSTM too. Again the parameters were chosen intuitively.

The best RMSE scores for the stateful LSTM and the stateless LSTM were 0.7 and 0.202

correspondingly. That means that their performance on forecasting velocity is worse than

forecasting CO2 Level. The stateful LSTM score is translated to 5.17% error, which is not good

at all. The stateless LSTM error is corresponding to 1.49% error, which is nearly acceptable.

5.4 MLP and LSTM Results Comparison

The following diagrams illustrate the best scores achieved by each Neural Network

architecture that was evaluated in the framework of this master thesis. From the comparison

of these results, the following conclusions can be derived.

 The performance of a Neural Network is depending on the tuning of its parameters,

the pre-processing of the training set, and the nature of the problem.

 As far as the forecasting of CO2 Level is concerned, all the architectures that were

investigated had excellent performance.

 At the forecasting of Velocity, the stateless LSTM had a good performance while the

other architectures exhibit a poor performance.

 The stateful LSTM is worse than the stateless LSTM when each batch of training has

data that are uncorrelated between them.

66

Figure 37: Lowest RMSE value for each NN Architecture (Forecasting CO2 Level).

Figure 38: Lowest RMSE value for each NN Architecture (Forecasting Velocity).

2.489

0.35%
error

2.57

0.36%
error

2.532

0.36%
error 2.488

0.35%
error

MLP LSTM (STATELESS, NON-
STATIONARY INPUT)

LSTM (STATELESS,
STATIONARY INPUT)

LSTM (STATEFUL,
STATIONARY INPUT)

Best RMSE score for each NN Architecture (CO2 Level)

1.3

9.59% error

0.202

1.49% error

0.7

5.17% error

MLP LSTM (STATELESS, STATIONARY
INPUT)

LSTM (STATEFUL, STATIONARY INPUT)

Best RMSE score for each NN Architecture (Velocity)

67

The available dataset comprises 54758 measurements for each quantity and was split

into two parts. The first 40% of the measurements (21903) were the training set while the

other 60% (32855) were the test set.

In order to achieve reproducibility, since the initialization of the weights of a Neural

Network are randomly generated and that causes slights deviations on the results, the same

constant number where provided as seed on every experiment.

68

Chapter 6

SiteWhere

As it was already mentioned, SiteWhere is an open source IoT platform that has been

used for the completion of this work. This platform is open source and offers a wide

spectrum of capabilities. However, this work is focused on the collection and storage of data

and their processing, and not the implementation of the large variety of protocols available

in the platform.

6.1 Collection and Storage

The first step is the collection and storage of the data. A fundamental notion of the

platform is the event. Every inbound message is considered to be SiteWhere event. One type

of data that can be received by the platform and generate an event, after the necessary

processing of the payload, is the data of an HTTP request. In order, for SiteWhere, to be able

to accept HTTP requests, a socket event source has to be configured.

The whole idea is based on the principle of the connection between server and client

via a particular port. The socket event source creates a server socket that monitors a specific

port. The communication between server and client is managed by a socket interaction

handler, which returns a payload. That payload is forwarded to a specific decoder that is

defined by the user, in order to produce the SiteWhere event.

By using the Administrative Application of Sitewhere a socket event source were

created with Source Id = “http_test”, Port = 8585, and Number of Threads = 8. After the

configuration of the socket, the socket interaction handler had to be chosen. SiteWhere

provides the “HTTP Socket Interaction Handler Factory” for HTTP interactions. The last step

was to determine the decoder that will be used to parse the particular inbound HTTP payload

into a SiteWhere event. A Groovy script was created to play the role of the decoder.

69

Figure 39: Configuration of a Socket Event Source (from the Administrative Application).

SiteWhere can receive and record data, but in order to be able to do that a device,

along with an assignment should be generated. A gateway device was generated, with a

specific hardware id. Then a creation of an assignment for that gateway device followed, to

enable it to accept requests.

Figure 40: Device assignment (from the Administrative Application).

Testing was required to verify that the socket was operating as intended. The

construction of a Junit test was preferred, for the convenience it provides, to change it and

70

execute it dynamically from an IDE (IntelliJ IDEA was used). A sample JSON payload was

generated and was sent using the HTTP protocol. The payload of the HTTP request was

parsed from the Groovy script, which had the role of the decoder, and the wanted fields of

the JSON payload were extracted and recorded as SiteWhere event.

Figure 41: The measurements that were sent as HTTP request, have been successfully parsed and stored.

6.2 Data Processing

Since the collection and the data storage were successful, the next step was the

processing of the collected data. SiteWhere, by default stores the event data and the device

management data into MongoDB. Although, the option of using InlfuxDB to store the event

data is available. Those databases are both NoSQL databases. Queries in MongoDB are

entirely different from the standard SQL queries, while in InfluxDB, they have some

differences but they also present some similarities to SQL queries.

71

The processing of the data was divided into three parts. The first involves

visualization of the stored data with the help of Grafana, which has a build-in connectivity

with InfluxDB. The second part includes the extraction of the data from both databases and

the appliance of a clustering algorithm, while the third includes the forecasting with an MLP

Neural Network. The processing of the data from both second and third part is going to take

place on a Spark instance.

6.2.1 Visualization

Grafana is a data visualization tool. A local instance was installed that could be

accessed from a browser. A data source was created that connected Grafana with the

InfluxDB database that had the measurements. A new dashboard was created to represent

the stored data in a graphical way.

Figure 42: Grafana's visual query editor for InfluxDB, and visualization of query’s results. (query: SELECT
T_ext1, T_ext2 FROM data7)

72

Since an InfluxDB database was chosen as data source, Grafana allows the user to

query for data, using the InfluxQL, by a visual query editor. The results that are returned

from the query are visualized. A graphic plot for every quantity of the dataset was decided

to be made. It should be noticed that Grafana has a great number of options to customize

the visualization of the data.

Figure 43: Plots for Velocity, Instant Power, External Temperature 1, External Temperature 2, Total Power,
and CO2 Level for the duration of a single day.

6.2.2 Clustering

Since Spark is equipped with a library [62] that implements the KMeans algorithm, it

was decided to use that implementation for the clustering of the data. The KMeans that used

on the “local” process was an implementation from scikit-learn [56]. The scikit Kmeans runs

the clustering algorithm 10 times by default and chooses the best output in terms of inertia,

also known as the “within-cluster sum of squares criterion”. On the contrary, the Spark

Kmeans only runs the algorithm once.

73

Due to the different implementation of the algorithm, there were different results

for some experiments. Another issue is that Spark Kmeans takes as an argument a “seed”

which is equals “None” by default. But changing this “seed” alters the results of the

algorithm. In the table below a scenario where depending on the “seed” is presented, the

results of scikit Kmeans compared with the ones of Spark KMeans were identical (for

seed=0), very similar (for seed=None) or quite different (for seed=8).

ROUTES SPARK SPARK (0) SPARK (8) SCIKIT

1 2 2 1 2

2 2 2 2 2

3 1 1 0 1

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 1 1 0 1

10 2 1 2 1

11 2 2 2 2

Table 19: Clustering results from KMeans algorithm for 3 clusters on "Full Route", Feature Vector: [T1, T2].

Spark implementation with seed=None, 0, 8 and Scikit implementation.

74

Figure 44: Plot of KMeans results for 3 clusters on "Full Route". Feature Vector: [T1, T2]. 1st (Top): Spark
KMeans (seed=None). 2nd: Spark KMeans (seed=8). 3rd: Spark KMeans (seed=0). 4th (Bottom): Scikit

KMeans.

75

All the experiments that were conducted with the scikit KMeans for feature vector:

[T1, T2], were replicated with Spark KMeans with seed=0. The results for the “Up Route”

were identical for each number n of clusters (n=2, 3, 4). The “Full Route” had only 1

difference when n=2, was identical for n=3, but presented an important variation for n=4.

As far as the “Down Route” is concerned, it exhibited identical results for n=2 but serious

differences for n=3 and n=4.

Figure 45: Feature Vector:[T1,T2], n=4, "Down Route". Up: Scikit KMeans. Down: Spark KMeans (seed=0).

76

6.2.3 Forecasting

Since Spark does not have available a library for Forecasting the same code that was

used “locally” was loaded on a Spark instance and was executed there. The results were

identical, as expected, since the code was the same, and the random seed for the

initialization of the weights was the same as well.

Figure 46: Forecasting CO2 Level with an MLP NN (1 layer, 4 Neurons). The blue line is the actual
measurements, while the orange line is the prediction on the training dataset, and the green one on the

testing dataset. The measurements are from the duration of a day.

Due to the small error there is no distinction between the real values and the

forecasted ones when the plot has all the measurements from the duration of a day. For that

reason the figures below are plots within a much smaller window of time. It is observed that

despite the small error between the actual and the forecasted value, the trend of both real

measurements and forecasted ones is identical.

77

Figure 47: Two different, zoomed in parts from the above figure, in order to distinguish visually the real
values from the predictions. The blue line is the actual measurements, while the orange line is the

prediction on the training dataset, and the green one on the testing dataset.

78

Chapter 7

Conclusions

In this master thesis, a general solution focusing on the IoT management was

described along with the presentation of SiteWhere, an open-source IoT platform. This

report provided an introduction to the Cloud, including a short survey on platforms and

frameworks that are capable to address the Big Data Challenge. Following this the

processing of a dataset was performed, which was composed by measurements, of various

quantities, from sensors that were installed on a train.

The first part of the processing was the clustering with 4 different algorithms in order

to find the routes of the train that share similar conditions. Three different interpretations

of the “route” were considered (Up Route, Down Route, Full Route). One of the algorithms

(DBSCAN) did not work because of the small number of routes (11 routes). The other three

algorithms (KMeans, Birch, Mean Shift) had identical or very similar results on the 91% of

the cases. An experiment with a high number of routes should take place in order to derive

safer conclusions.

The second part was forecasting of 2 different quantities (CO2 Level, Velocity) with

the help of an MLP Neural Network and an LSTM Neural Network. Both NNs achieved the

same score when they had to forecast the CO2 Level. LSTM has been proven to be superior

to MLP (1.49% error against 9.59% error), when the quantity forecasted was Velocity. It was

also shown that the pre-processing of the data affects considerably the training of a Neural

Network and consequently its performance on forecasting.

Finally, the main functionality of SiteWhere, collection and storage of data as well as

retrieval and processing, was investigated. A case study of using http requests to “feed” the

server with data, of retrieving the data from the database and visualize them through

Grafana, as well as of processing those data on a Spark instance, was provided.

79

Spark provided a library with an implementation of KMeans. Since that

implementation was different from the one that was used locally (scikit library), the results

of the clustering were not always the same. On the other hand, since the code of the MLP

Neural Network was the same, the results on forecasting were identical.

80

References

[1] [Online]. Available: http://www.sitewhere.org/.

[2] NIST SP 800-145, “A NIST definition of cloud computing”.

[3] [Online]. Available: https://ornot.ca/2009/08/04/cloud-computing-paradigm-chart/.

[4] [Online]. Available: https://en.wikipedia.org/wiki/Big_data.

[5] [Online]. Available: http://www.nosql-database.org/.

[6] A. H. Al Hinai, "A Performance Comparison of SQL and NoSQL Databases for Large Scale

Analysis of Persistent Logs," Uppsala, 2016.

[7] M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi and M. Tanabe, "Data,

information, knowledge and principle: back to metabolism in KEGG," Nucleic Acids

Research, vol. 42, no. D1, p. D199, 2014.

[8] S. Sharma, "An Extended Classification and Comparison of NoSQL Big Data Models,"

CoRR, vol. abs/1509.08035, 2015.

[9] J. ZHENG, Y. YE, T. LIU, C. DAI and H. WANG, "Design of live video streaming,recording

and storage system based on Flex,Red5 and MongoDB," Journal of Computer

Applications, 2014.

[10] F. K. Putri, S. An, M. T. Purnaningtyas, H.-Y. Jeong and J. Kwon, "Finding Frequent Route

of Taxi Trip Events Based on MapReduce and MongoDB," KIPS Transactions on Software

and Data Engineering, vol. 4, no. 9, pp. 347-356, 2015.

[11] Y.-S. Kang, I.-H. Prak, J. Rhee and Y.-H. Lee, "MongoDB-Based Repository Design for IoT-

Generated RFID/Sensor Big Data," IEEE Sensors Journal, vol. 16, no. 2, pp. 485-597, 2016.

81

[12] M. Mesiti, M. Re and G. Valentini, "Scalable Network-based Learning Methods for

Automated Function Prediction based on the Neo4j Graph-database," Milano, 2013.

[13] S. Beis, S. Papadopoulos and Y. Kompatsiaris, "Benchmarking graph databases on the

problem of Community Detection," in New Trends in Database and Information Systems

II: Selected papers of the 18th East European Conference on Advances in Databases and

Information Systems and Associated Satellite Events, Springer International Publishing,

2015, pp. 3-14.

[14] J. Z. Pan, Y. Ren, G. Montiel and Z. Wu, "Fast In-Memory Reasoner for Oracle NoSQL

Database EE: Uncover Hidden Relationships that Exist in Your Enterprise Data," in

International Semantic Web Conference, 2014.

[15] H. Kondylakis, A. Fountouris and D. Plexousakis, "Efficient Implementation of Joins over

Cassandra DBs," in International Conference on Extending Database Technology

(EDBT/ICDT), Bordeaux, France, 2016.

[16] M. Ben Brahim, W. Drira, F. Filali and N. Hamdi, "Spatial data extension for Cassandra

NoSQL database," Journal of Big Data, vol. 3, no. 1, p. 11, 2016.

[17] Du N, Z. J., M. Zhao, X. D. and X. Y., "Spatio-Temporal Data Index Model of Moving

Objects on Fixed Networks Using HBase," in 2015 IEEE International Conference on

Computational Intelligence Communication Technology, 2015.

[18] L. Antova, R. Baldwin, D. Bryant, T. Cao, M. Duller, J. Eshleman, Z. Gu, E. Shen, M. A.

Soliman and F. M. Waas, "Datometry Hyper-Q: Bridging the Gap Between Real-Time and

Historical Analytics," in Proceedings of the 2016 International Conference on

Management of Data, San Francisco, California, USA, 2016.

[19] [Online]. Available: http://www.datastax.com/wp-content/themes/datastax-2014-

08/files/NoSQL_Benchmarks_EndPoint.pdf.

82

[20] [Online]. Available: https://docs.microsoft.com/en-us/azure/documentdb/documentdb-

nosql-vs-sql.

[21] E. Begoli, "A short survey on the state of the art in architectures and platforms for large

scale data analysis and knowledge discovery from data," in Proceedings of the

WICSA/ECSA 2012 Companion Volume, New York, NY, USA, 2012.

[22] [Online]. Available: https://en.wikipedia.org/wiki/Apache_Hadoop.

[23] [Online]. Available: https://en.wikipedia.org/wiki/Apache_Spark.

[24] [Online]. Available: https://spark.apache.org/docs/latest/cluster-overview.html.

[25] [Online]. Available: https://hortonworks.com/apache/storm/#section_2.

[26] [Online]. Available: https://en.wikipedia.org/wiki/Storm_(event_processor).

[27] [Online]. Available: https://www.linkedin.com/pulse/apache-storm-architecture-

overview-chandan-prakash.

[28] [Online]. Available:

https://www.tutorialspoint.com/apache_storm/apache_storm_cluster_architecture.htm.

[29] [Online]. Available: https://en.wikipedia.org/wiki/Esper_(software).

[30] [Online]. Available: http://www.espertech.com/esper/.

[31] Y. Guo, J. Rao, D. Cheng and X. Zhou, "iShuffle: Improving Hadoop Performance with

Shuffle-on-Write," IEEE Transactions on Parallel and Distributed Systems, vol. PP, pp. 1-1,

2016.

[32] P. Qin, B. Dai, B. Huang and G. Xu, "Bandwidth-Aware Scheduling With SDN in Hadoop: A

New Trend for Big Data," IEEE Systems Journal, vol. PP, no. 99, pp. 1-8, 2015.

83

[33] D. Pirozzi, V. Scarano, S. Begg, G. D. Sercey, A. Fish and A. Harvey, "Filter large-scale

engine data using apache spark," in 2016 IEEE 14th International Conference on Industrial

Informatics (INDIN), 2016.

[34] M. A. Alsheikh, D. Niyato, S. Lin, H. p. Tan and Z. Han, "Mobile big data analytics using

deep learning and apache spark," IEEE Network, vol. 30, no. 3, pp. 22-29, 2016.

[35] [Online]. Available: http://www.cakesolutions.net/teamblogs/comparison-of-apache-

stream-processing-frameworks-part-1.

[36] [Online]. Available: https://www.dezyre.com/article/spark-vs-hadoop-vs-storm/145.

[37] [Online]. Available: https://tech.zalando.com/blog/apache-showdown-flink-vs.-spark/.

[38] C.-K. Shieh, S.-W. Huang, L.-D. Sun, M.-F. Tsai and N. Chilamkurti, "A topology-based

scaling mechanism for Apache Storm," International Journal of Network Management,

2016.

[39] J. S. v. d. Veen, B. v. d. Waaij, E. Lazovik, W. Wijbrandi and R. J. Meijer, "Dynamically

Scaling Apache Storm for the Analysis of Streaming Data," in 2015 IEEE First International

Conference on Big Data Computing Service and Applications, 2015.

[40] G. Mylavarapu, J. Thomas and A. K. TK, "Real-Time Hybrid Intrusion Detection System

Using Apache Storm," in 2015 IEEE 17th International Conference on High Performance

Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace

Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software

and Systems, 2015.

[41] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou and D. Gunopulos, "Elastic

complex event processing exploiting prediction," in 2015 IEEE International Conference

on Big Data (Big Data), 2015.

84

[42] Z. Zhuang, T. Feng, Y. Pan, H. Ramachandra and B. Sridharan, "Effective Multi-stream

Joining in Apache Samza Framework," in 2016 IEEE International Congress on Big Data

(BigData Congress), 2016.

[43] T. Feng, Z. Zhuang, Y. Pan and H. Ramachandra, "A memory capacity model for high

performing data-filtering applications in Samza framework," in 2015 IEEE International

Conference on Big Data (Big Data), 2015.

[44] M. Junghanns, A. Petermann, N. Teichmann, K. Gomez and E. Rahm, "Analyzing Extended

Property Graphs with Apache Flink," in Proceedings of the 1st ACM SIGMOD Workshop on

Network Data Analytics, 2016.

[45] M. Falkenthal, U. Breitenbucher, K. Kepes, F. Leymann, M. Zimmermann, M. Christ, J.

Neuffer, N. Braun and A. W. Kempa-Liehr, "OpenTOSCA for the 4th Industrial Revolution:

Automating the Provisioning of Analytics Tools Based on Apache Flink," in Proceedings of

the 6th International Conference on the Internet of Things, 2016.

[46] W. F. Domoney, N. Ramli, S. Alarefi and S. D. Walker, "Smart city solutions to water

management using self-powered, low-cost, water sensors and apache spark data

aggregation," in 2015 3rd International Renewable and Sustainable Energy Conference

(IRSEC), 2015.

[47] [Online]. Available: https://yahooeng.tumblr.com/post/135321837876/benchmarking-

streaming-computation-engines-at.

[48] Y. Wang, "Stream Processing Systems Benchmark: StreamBench," Espoo, 2016.

[49] S. Theodoridis, Machine Learning A Bayesian and Optimization Perspective, Elsevier,

2015.

85

[50] S. García, J. Luengo and F. Herrera, "Tutorial on Practical Tips of the Most Influential Data

Preprocessing Algorithms in Data Mining," Knowledge-Based Systems, vol. 98, no. C, pp.

1-29, 2016.

[51] S. García, S. Ramírez-Gallego, J. Luengo, J. M. Benítez and F. Herrera, "Big data

preprocessing: methods and prospects," Big Data Analytics, vol. 1, no. 1, 2016.

[52] S. Papadimitriou, J. Sun, C. Faloutos and P. S. Yu, "Dimensionality Reduction and Filtering

on Time Series Sensor Streams," in Managing and Mining Sensor Data, C. C. Aggarwal,

Ed., Boston, MA, Springer US, 2013, pp. 103-141.

[53] [Online]. Available: http://machinelearningmastery.com/time-series-forecasting/.

[54] [Online]. Available: http://www.cardinalpath.com/forecasting-with-machine-learning-

techniques/.

[55] [Online]. Available: http://www.citura.fr/ftp/document/backlight-plan-tramway-armoire-

technique-500x1025-web.pdf.

[56] [Online]. Available: http://scikit-learn.org/stable/modules/clustering.html.

[57] S. Haykin, Neural Networks and Learning Machines, New York: Prentice Hall/Pearson,

2009.

[58] [Online]. Available: https://cs231n.github.io/convolutional-networks/.

[59] Y. Bengio, P. Simard and P. Frasconi, "Learning Long-term Dependencies with Gradient

Descent is Difficult," Trans. Neur. Netw., vol. 5, no. 2, pp. 157-166, March 1994.

[60] [Online]. Available: http://www.cs.iusb.edu/~danav/teach/c463/12_nn.html.

[61] [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

86

[62] [Online]. Available: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#.

[63] [Online]. Available: https://www.gartner.com/newsroom/id/1731916.

87

Appendix

A part of the total code that was used for this master thesis, but not every single line

that was written, is introduced below. It was decided to present the clustering procedure

with the usage of KMeans algorithm, the forecasting with both MLP and stateless LSTM

Neural Networks, and the code for running KMeans on a Spark instance.

Code 1: Program, which loads the info for each route from a csv file, performs a clustering with KMeans
algorithm for 3 different feature vectors as input, and writes the results in a csv file.

1. import pandas as pd
2. import numpy as np
3. import csv
4.
5. from sklearn.cluster import KMeans
6.
7. import logging
8. logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', le

vel=logging.INFO)
9.
10.
11. DELIMITER = '\t'
12. NUMBER_OF_CLUSTERS = 3
13. OUTPUT_FILE = 'Kmeans_4Clusters_Information_Down.csv'
14. ### UP AND DOWN TOGETHER
15. INPUT_FILE_2 = 'MeanValuesPerRouteFull.csv'
16. ### UP
17. INPUT_FILE_3 = 'MeanValuesPerRouteUp.csv'
18. ### DOWN
19. INPUT_FILE_4 = 'MeanValuesPerRouteDown.csv'
20.
21.
22. # (ROUTES) UNCOMMENT THE ONE YOU NEED
23. #df = pd.read_csv(INPUT_FILE_2, delimiter = DELIMITER)
24. #df = pd.read_csv(INPUT_FILE_3, delimiter = DELIMITER)
25. df = pd.read_csv(INPUT_FILE_4, delimiter = DELIMITER)
26.
27. NUMBER_OF_ROUTES = len(df.T1_mean)
28.
29. ############## MEAN VALUES CSV ##############
30. T1 = np.asarray(df.T1_mean)
31. T2 = np.asarray(df.T2_mean)
32. Velocity = np.asarray(df.Velocity_mean)
33. CO2 = np.asarray(df.CO2_mean)
34. Power_Sum = np.asarray(df.Power)
35.

88

36.
37. ############ KMEANS CLUSTERING ############
38. # 1) T1, T2 Clustering
39. Routes = [] # 2D array, row=route, col=features
40.
41. for i in range(NUMBER_OF_ROUTES):
42. feature_vec = []
43. feature_vec.append(T1[i])
44. feature_vec.append(T2[i])
45. Routes.append(feature_vec)
46.
47. data = np.asarray(Routes)
48. kmeans = KMeans(n_clusters=NUMBER_OF_CLUSTERS)
49. kmeans.fit(data)
50. predictions1 = kmeans.predict(data)
51.
52. #2) T1, T2, CO2 Clustering
53. Routes2 = [] # 2D array, row=route, col=features
54.
55. for i in range(NUMBER_OF_ROUTES):
56. feature_vec = []
57. feature_vec.append(T1[i])
58. feature_vec.append(T2[i])
59. feature_vec.append(CO2[i])
60. Routes2.append(feature_vec)
61. data2 = np.asarray(Routes2)
62. kmeans2 = KMeans(n_clusters=NUMBER_OF_CLUSTERS)
63. kmeans2.fit(data2)
64. predictions2 = kmeans2.predict(data2)
65.
66. #3) T1, T2, Velocity, CO2 Clustering
67. Routes3 = [] # 2D array, row=route, col=features
68.
69. for i in range(NUMBER_OF_ROUTES):
70. feature_vec = []
71. feature_vec.append(T1[i])
72. feature_vec.append(T2[i])
73. feature_vec.append(Velocity[i])
74. feature_vec.append(CO2[i])
75. Routes3.append(feature_vec)
76.
77. data3 = np.asarray(Routes3)
78. kmeans3 = KMeans(n_clusters=NUMBER_OF_CLUSTERS)
79. kmeans3.fit(data3)
80. predictions3 = kmeans3.predict(data3)
81.
82.
83. ############## CSV CREATION ##############
84. with open(OUTPUT_FILE, 'w', newline='') as csv_f:
85. writer=csv.writer(csv_f, delimiter='\t')
86. writer.writerow(['Route', 'Cluster', 'Cluster2', 'Cluster3'])
87. for i in range(NUMBER_OF_ROUTES):
88. writer.writerow([i, predictions1[i], predictions2[i], predictions3

[i]])

89

Code 2: Program, which loads the data from a csv file, creates an MLP Neural Network, trains it, and
measures its performance on forecasting.

1. import numpy as np
2. import pandas as pd
3. import math
4.
5. from keras.models import Sequential
6. from keras.layers import Dense
7.
8. import logging
9. logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', le

vel=logging.INFO)
10.
11.
12. ### FUNCTION -> Create the NN input ###
13. def create_NN_input(dataset, steps_back=1):
14. dataX, dataY = [], []
15. for i in range(len(dataset)-steps_back-1):
16. temp = dataset[i:(i+steps_back),0]
17. dataX.append(temp)
18. dataY.append(dataset[i+steps_back, 0])
19. return np.array(dataX), np.array(dataY)
20. ###
21.
22.
23. # Fix random seed for reproducibility
24. np.random.seed(8)
25.
26. # Configurations
27. TRAIN_SET_SIZE = 0.4
28. NEURONS = 4
29. NEURONS_2 = 6
30. BATCH_SIZE = 100
31. EPOCHS = 100
32. CSV_START = 1050
33. CSV_END = 55810
34. STEPS_BACK = 1
35. DELIMITER = ','
36. INPUT_FILE = 'nn_csv_input.csv'
37.
38. # usecols -> the column with the data I want
39. # 8-> Velocity, 9-> CO2, 11-> Instant_Power
40. df = pd.read_csv(INPUT_FILE, delimiter = DELIMITER, usecols=[9])
41. temp = df.values
42. temp = temp.astype('float32')
43. dataset = temp[CSV_START:CSV_END]
44.
45. # Split into TRAIN set and TEST set
46. train_set_size = int(len(dataset)*TRAIN_SET_SIZE)
47. test_set_size = len(dataset) - train_set_size
48. train_set = dataset[0:train_set_size,:]
49. test_set = dataset[train_set_size:len(dataset),:]
50.
51. # Create the Training and Testing Dataset
52. trainX, trainY = create_NN_input(train_set, STEPS_BACK)
53. testX, testY = create_NN_input(test_set, STEPS_BACK)

90

54.
55. # Create and Fit the Multilayer Perceptron model
56. model = Sequential()
57. model.add(Dense(NEURONS, input_dim=STEPS_BACK, activation='relu'))
58. #model.add(Dense(NEURONS_2, input_dim=STEPS_BACK, activation='relu'))
59. model.add(Dense(1))
60. model.compile(loss='mean_squared_error', optimizer='adam')
61. model.fit(trainX, trainY, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=0)

62.
63. # Estimate model performance
64. trainScore = model.evaluate(trainX, trainY, verbose=0)
65. print('Train Score: %.5f MSE (%.5f RMSE)' % (trainScore, math.sqrt(trainSc

ore)))
66. testScore = model.evaluate(testX, testY, verbose=0)
67. print('Test Score: %.5f MSE (%.5f RMSE)' % (testScore, math.sqrt(testScore

)))
68.
69. # Predictions
70. trainPredict = model.predict(trainX)
71. testPredict = model.predict(testX)
72.
73. # Shift train predictions for plotting
74. trainPredictPlot = np.empty_like(dataset)
75. trainPredictPlot[:, :] = np.nan
76. trainPredictPlot[STEPS_BACK:len(trainPredict)+STEPS_BACK, :] = trainPredic

t
77.
78. # Shift test predictions for plotting
79. testPredictPlot = np.empty_like(dataset)
80. testPredictPlot[:, :] = np.nan
81. testPredictPlot[len(trainPredict)+(STEPS_BACK*2)+1:len(dataset)-

1, :] = testPredict
82.
83. # plot real data and predictions
84. plt.plot(dataset)
85. plt.plot(trainPredictPlot)
86. plt.plot(testPredictPlot)
87. plt.show()

91

Code 3: Program, which loads the data from a csv file, creates an LSTM Neural Network, trains it, and
measures its performance on forecasting.

1. import numpy as np
2. import pandas as pd
3. import math
4.
5. from keras.models import Sequential
6. from keras.layers import Dense
7. from keras.layers import LSTM
8. from sklearn.preprocessing import MinMaxScaler
9. from sklearn.metrics import mean_squared_error
10.
11. import logging
12. logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', le

vel=logging.INFO)
13.
14.
15. ### FUNCTION -> Create the NN input ###
16. def create_NN_input(dataset, steps_back=1):
17. dataX, dataY = [], []
18. for i in range(len(dataset)-steps_back-1):
19. temp = dataset[i:(i+steps_back),0]
20. dataX.append(temp)
21. dataY.append(dataset[i+steps_back, 0])
22. return np.array(dataX), np.array(dataY)
23.
24.
25. ### FUNCTION -> Create the differenced series ###
26. def create_differenced_series(dataset, interval=1):
27. diff_series = []
28. for i in range(interval, len(dataset)):
29. value = dataset[i] - dataset[i - interval]
30. diff_series.append(value)
31. return diff_series
32.
33.
34. ### FUNCTION -> Invert the differenced series ###
35. def invert_differenced_series(dataset, diff_series):
36. inverted_diff_series = []
37. for i in range(len(diff_series)):
38. value = dataset[i] + diff_series[i]
39. inverted_diff_series.append(value)
40. return np.array(inverted_diff_series)
41.
42.
43. ### FUNCTION -> Transform trainY
44. def transform_Y_for_plot(dataset):
45. tranformed_dataset = []
46. tranformed_dataset.append(dataset)
47. return np.array(tranformed_dataset)
48. ###
49.
50.
51. # Fix random seed for reproducibility
52. np.random.seed(8)
53.

92

54. INTERVAL = 1
55. TRAIN_SET_SIZE = 0.4
56. NEURONS = 10
57. BATCH_SIZE = 100
58. EPOCHS = 100
59. CSV_START = 1053
60. CSV_END = 55810
61. STEPS_BACK = 1
62. DELIMITER = ','
63. INPUT_FILE = 'nn_csv_input.csv'
64.
65. # usecols -> the column with the data I want
66. # 8-> Velocity, 9-> CO2, 11-> Instant_Power
67. df = pd.read_csv(INPUT_FILE, delimiter = DELIMITER, usecols=[8])
68. temp = df.values
69. temp = temp.astype('float32')
70. dataset = temp[CSV_START:CSV_END]
71.
72. # Transform the data to stationary
73. dataset_diff = create_differenced_series(dataset, INTERVAL)
74.
75. # Scale the dataset
76. normalizer = MinMaxScaler(feature_range=(-1,1))
77. dataset_scaled = normalizer.fit_transform(dataset_diff)
78.
79. # Split into TRAIN set and TEST set
80. train_set_size = int(len(dataset_scaled)*TRAIN_SET_SIZE)
81. test_set_size = len(dataset_scaled) - train_set_size
82. train_set = dataset_scaled[0:train_set_size,:]
83. test_set = dataset_scaled[train_set_size:len(dataset_scaled),:]
84.
85. train_set_initial = dataset[0:train_set_size,:]
86. test_set_initial = dataset[train_set_size:len(dataset),:]
87.
88.
89. # Create the Training and Testing Dataset
90. trainX, trainY = create_NN_input(train_set, STEPS_BACK)
91. testX, testY = create_NN_input(test_set, STEPS_BACK)
92.
93. trainX_initial, trainY_initial = create_NN_input(train_set_initial, STEPS_

BACK)
94. testX_initial, testY_initial = create_NN_input(test_set_initial, STEPS_BAC

K)
95.
96. # Reshape input to [samples, time steps, features]
97. trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
98. testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
99.
100. # Create and Fit the LSTM Neural Network
101. model = Sequential()
102. model.add(LSTM(NEURONS, input_shape=(1, STEPS_BACK)))
103. model.add(Dense(1))
104. model.compile(loss='mean_squared_error', optimizer='adam')
105. model.fit(trainX, trainY, epochs=EPOCHS, batch_size=BATCH_SIZE, ver

bose=0)
106.
107.

93

108. # Predictions
109. trainPredict = model.predict(trainX, batch_size=BATCH_SIZE)
110. testPredict = model.predict(testX, batch_size=BATCH_SIZE)
111.
112. # Invert scaling for the predictions
113. trainPredict = normalizer.inverse_transform(trainPredict)
114. testPredict = normalizer.inverse_transform(testPredict)
115.
116. # Invert the initial transformation (revert the difference)
117. trainPredict = invert_differenced_series(trainX_initial, trainPredi

ct)
118. testPredict = invert_differenced_series(testX_initial, testPredict)

119.
120. # Prepare trainY and testY fot testing
121. trainY_initial = transform_Y_for_plot(trainY_initial)
122. testY_initial = transform_Y_for_plot(testY_initial)
123.
124.
125. # Estimate model performance
126. trainScore = mean_squared_error(trainY_initial[0], trainPredict[:,0

])
127. print('Train Score: %.5f MSE (%.5f RMSE)' % (trainScore, math.sqrt(

trainScore)))
128. testScore = mean_squared_error(testY_initial[0,:-

1], testPredict[:,0])
129. print('Test Score: %.5f MSE (%.5f RMSE)' % (testScore, math.sqrt(te

stScore)))

94

Code 4: Program, which connects to an InfluxDB database, sends a query and collects the data. Loads extra
information about the routes from a csv file and runs KMeans algorithm on a Spark instance. At the end, it

exports the results in a csv file and plots the clusters.

1. from pyspark import SparkConf, SparkContext
2. from pyspark.sql import SparkSession
3.
4. from pyspark.ml.linalg import Vectors
5. from pyspark.ml.clustering import KMeans
6.
7. import pandas as pd
8. import numpy as np
9. import matplotlib.pyplot as plt
10. import csv
11. from influxdb import InfluxDBClient
12.
13. MASTER = "local[8]"
14. APP_NAME = "pyspark_test"
15.
16. NUMBER_OF_CLUSTERS = 4
17. KMEANS_ITERATIONS = 100
18.
19. DELIMITER = '\t'
20. NUMBER_OF_ROUTES = 11
21. INPUT_FILE = 'half_routes_down.xlsx'
22. INPUT_FILE_2 = 'half_routes_up.xlsx'
23. INPUT_FILE_3 = 'routes.xlsx'
24. OUTPUT_FILE = 'Kmeans_S_4_D.csv'
25.
26. HOST = "localhost"
27. PORT = 8086
28. USER = "root"
29. PASSWORD = "root"
30. DBNAME = "test1"
31.
32.
33. def main(sc):
34.
35. # Load data from database
36. client = InfluxDBClient(HOST, PORT, USER, PASSWORD, DBNAME)
37.
38. query = 'SELECT T_ext1, T_ext2 FROM data7'
39. print("QUERY:", query)
40. result = client.query(query)
41.
42. T_ext1 = []
43. T_ext2 = []
44. points = list(result.get_points(measurement='data7'))
45. for point in points:
46. T_ext1.append(point['T_ext1'])
47. T_ext2.append(point['T_ext2'])
48.
49. # Load routes starting-ending time
50. df = pd.read_excel(io=INPUT_FILE)
51. Route_Start = np.asarray(df.Start)
52. Route_Duration = np.asarray(df.Duration)
53.

95

54. # Calculate Mean Values
55. T1_mean = []
56. T2_mean = []
57. for i in range(NUMBER_OF_ROUTES): # for each route
58. T1 = 0
59. T2 = 0
60. for j in range(Route_Duration[i]): # for every measurement in each

 route
61. T1 = T1 + T_ext1[Route_Start[i]+j]
62. T2 = T2 + T_ext2[Route_Start[i]+j]
63. T1_mean.append(T1/Route_Duration[i])
64. T2_mean.append(T2/Route_Duration[i])
65.
66. # SPARK KMeans
67. data = []
68. for i in range(NUMBER_OF_ROUTES):
69. data.append((Vectors.dense(T1_mean[i], T2_mean[i]),))
70.
71. spark = SparkSession(sc)
72. df_s = spark.createDataFrame(data, ["features"])
73. kmeans = KMeans(k=NUMBER_OF_CLUSTERS, maxIter=KMEANS_ITERATIONS, seed=

0)
74. model = kmeans.fit(df_s)
75. centroids = model.clusterCenters()
76. transformed = model.transform(df_s).select("features", "prediction")
77. rows = transformed.collect()
78.
79.
80. ############## CSV CREATION ##############
81. with open(OUTPUT_FILE, 'w', newline='') as csv_f:
82. writer=csv.writer(csv_f, delimiter=DELIMITER)
83. writer.writerow(['Route', 'Cluster'])
84. for i in range(NUMBER_OF_ROUTES):
85. writer.writerow([i, rows[i].prediction])
86.
87.
88. ############## PLOT ##############
89. fig, ax = plt.subplots()
90. ax.set_title("KMeans, Feature Vector: [T1, T2] (X marks centroids), Do

wn Route")
91. ax.set_xlabel('T1')
92. ax.set_ylabel('T2')
93.
94. for i in range(NUMBER_OF_CLUSTERS):
95. ax.scatter(centroids[i][0], centroids[i][1], marker='x', s=100, li

newidths=15, color='black', zorder=10)
96.
97. for i in range(NUMBER_OF_ROUTES):
98. if rows[i].prediction == 0:
99. ax.scatter(T1_mean[i], T2_mean[i], s=40, c='red')
100. elif rows[i].prediction == 1:
101. ax.scatter(T1_mean[i], T2_mean[i], s=40, c='purple')
102. elif rows[i].prediction == 2:
103. ax.scatter(T1_mean[i], T2_mean[i], s=40, c='cyan')
104. else:
105. ax.scatter(T1_mean[i], T2_mean[i], s=40, c='green')
106.

96

107. plt.show()
108.
109.
110. ###############################
111.
112. if __name__ == "__main__":
113. # Configure Spark
114. conf = SparkConf().setAppName(APP_NAME).setMaster(MASTER)
115. sc = SparkContext(conf=conf)
116.
117. main(sc)

