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Abbreviations and acronyms
AIDS Acquired Immunodeficiency syndrome

AMACS Athens Multicenter AIDS Cohort Study

CASCADE Concerted Action on SeroConversion to AIDS and Death in Europe

c.d.f. cumulative distribution function

COHERE Collaboration of Observational HIV Epidemiological Research Europe

df degrees of freedom

ECDC European Centre for Disease Prevention and Control

i.i.d. independent and identically distributed

HAART Hyper Active Antiretroviral Therapy

HCDCP Hellenic Centre for Disease Control and Prevention

MLE Maximum Likelihood Estimation

MPnLE Maximum Penalized Likelihood Estimation

NGO Non-governmental organization

p.d.f. probability density function

PVF Power Variance Function

PWID People Who Inject Drugs

WHO World Health Organisation



Definitions
β the fixed effects vector

Γ( . ) Gamma function

δij Failure indicator

f( . ) Density function

F( . ) Cumulative density function

g( . ) Density function for censoring times

G( . ) Cumulative density function for censoring times

λ( . ) Hazard function

Λ( . ) Cumulative hazard function

L( . ) Likelihood function

tij Event times

S( . ) Survival function

Zij Covariate vector

xij Survival times

ui Frailty term
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Chapter 1.

Introduction

1.1. HIV

The  Human  Immunodeficiency  Virus  (HIV)  is  a  lentivirus  that  belongs  to  the

subgroup of retroviruses and targets the immune system. Being a retrovirus means that in

order  to  replicate,  HIV  needs  to  synthesize  a  DNA  copy  of  its  RNA.  Acquired

Immunodeficiency Syndrome (AIDS) is the most progressed stage of the HIV infection with

a latency period of 2 to 15 years in the absence of antiretroviral therapy. 

HIV infects vital cells of the human immune system, which are called CD4+ cells

and are a type of  T  lymphocyte  cell  (T  cell),  causing its  progressive impairment.  The

infected organism then becomes vulnerable to  opportunistic  infections and even some

types of cancer that eventually lead to death since the weakened immune system is unable

to fight off these threats. 

HIV can be found in human bodily fluids including blood, semen, vaginal and anal

fluids as well  as breast  milk;  hence it  can be transmitted in  several  ways through the

exchange of these fluids. Having unprotected sexual intercourse may be the most common

way to become infected, however HIV can be also transmitted via sharing contaminated

syringes, receiving contaminated blood transfusions or between a mother and her child

during pregnancy, labor and breast feeding. Contrary to common beliefs in the previous

years, HIV cannot be transmitted through saliva, sweat or urine. (AVERT, 2015)
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The course of infection, described in a relatively simple way, is that once the virus

enters  the  body,  seeks  the  CD4+  cells  and  attaches  itself  to  their  surface.  The  viral

envelope then fuses with the cell membrane and the genome of the virus is released into

the cell.  Once inside the cell,  the genetic material  of HIV, which is called HIV RNA, is

transcribed into HIV DNA by the use of an enzyme called transcriptase, making the HIV

DNA able to combine with the DNA of the cell. This HIV stage is called provirus. Provirus

begins the production of new viruses by using the host cell's reproduction mechanism,

which will later infect other cells (NIH, 2015). 

By the end of 2014, the estimated number of people living with HIV globally was

36.9 [34.3 – 41.4] million, with approximately 2 [1.9 – 2.2] million of those people being

newly infected patients. In the same year, the accumulated number of deaths credited to

HIV and HIV related causes reached 34 million.

In Eastern Europe and Central Asia there were 140000 HIV infections diagnosed

within 2014, which consist  a 30% increase between 2000 and 2014. According to the

European Centre for Disease Prevention and Control (ECDC) this is the highest number of

new cases reported in one year since mandatory case reporting was implemented in 1980.

It is indicated by the WHO Regional Office for Europe that the outbreak of HIV is driven by

the growing trend in the eastern part of Europe where, the number of newly reported cases

has doubled.

According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), there

were 2.3 million people living with HIV in Western & Central Europe and North America by

the end of 2014. In the same year, 88000 new infection were reported, of them 29992 were

reported by the 31 EU/EEA countries. Sex between men remains the principal means of

transmission, accounting for 42% of all HIV infections that were diagnosed in 2014.

Moreover, in certain EU countries (Bulgaria, Czech Republic, Hungary and Malta)

there is a more than 200% increase in the rates of new diagnoses since 2005 whereas in

other members of the EU, rates present a downward trend of more than 25% (Austria,
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Estonia, the Netherlands, France).

1.2. HIV/AIDS in Greece

In Greece, Infectious Disease Units, AIDS Reference Centres and Hospitals must

report any new HIV infection to the Hellenic Center for Disease Control and Prevention

(HCDCP)  which  among other  things  is  in  charge  of  issuing  annual  reports  about  the

characteristics of the epidemic. The epidemic of HIV in Greece, like many other countries

in  the  European  Union,  is  considered  stable,  low-level  and  concentrated  in  key

populations, particularly in  men who have sex with men (MSM).  However, in the recent

years, along with the financial crisis that the country is experiencing since 2008, an on-

going  HIV  outbreak  has  been  observed.  Although  the  extent  to  which  the  crisis  has

affected the HIV outbreak is yet uncertain, the numbers and facts are indicative.

In 2012 for the first time in Greece, the incidence of HIV infected individuals among

people  who  inject  drugs  (PWID)  exceeded  the  new  cases  of  HIV  infections  reported

among MSM. In the span of only two years, a huge increase in the number of reported

new cases among PWID was observed, as in 2010 there were 16 new reports in 2011

there were 266 and finally in 2012 the number was as high as 551. 

Although there is a combination of several factors that explain why this outbreak

took place among PWID, the lack of preventive services seems to be the most significant.

Interventions like opioid treatment and needle/syringe programs, that were implemented by

the Greek authorities and NGOs in order to target the restraint of the outbreak seem to

have had effect. There has been a gradual reduction in the amount of new reported cases

among PWID from 2012 (n=522) to  2013 (n=262) and 2014 (n=106),  while  this  trend

seems to hold also during the first three quarters of 2015 (compared to those from the

previous  years).   This  shows  how  important  these  interventions  are  and  how  the
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withdrawal of HIV prevention program is related to the increase of HIV prevalence.

Nevertheless, the main route of HIV transmission in Greece remains the male to

male sex with a total  of  7003 (46,34%) reported cases between January 1,  1981 and

October 31,2015. Men are seen to be more affected by the epidemic with 82,41% of the

total  cases being credited to them. In addition the most affected age group is the one

between 30-35 years old, having 20,5% of all the reported cases by the end of 2014.

As far as AIDS is concerned, case reporting was implemented in 1984 and by the

end of 2014 there were 3661 reported cases, meaning that up to this point, 25.36% of the

total  14434 HIV-positive individuals had developed AIDS. Of these, 3042 (84,2%) were

males and the remaining 579 (15.8%) were females.  By the end of 2014, when the most

recent  accumulated  data  are  available,  the  age  group  between  30  and  49  was  the

predominant group in developing AIDS.

The  need  of  reporting  both  AIDS and  HIV  cases,  which  is  a  key  factor  in  the

epidemiological  surveillance,  arose  especially  after  the  implementation  of  antiretroviral

therapies (ART) because the use of ART delayed the onset of AIDS. As far as Greece is

concerned, HIV reporting started in 1998, 14 years after AIDS started being reported. 

Finally, since 1983 when the first death credited to AIDS was reported, there have

been reported 1862 deaths due to AIDS or AIDS related causes in total. Of these cases

1624 (87,2%) were males and 238 (12,8) females.

1.3. Hyper Active Antiretroviral Treatment

There  might  not  be  a  cure  for  HIV  yet,  however  there  are  effective  ways  of

controlling the virus thus allowing people living with it to enjoy a longer and healthier life.

Hyper Active Antiretroviral Treatment (HAART) consists of a combination of three or more

antiretroviral (ARV) drugs (WHO, 2015b).  Since 1995 when HAART was first introduced to

the public, it has been proven to be the most effective way to suppress the virus load.
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The significance of HAART is reflected on the gradual increase of the ART eligibility

criteria based on the WHO recommendations over the past years; patients now become

eligible at higher CD4+ cell counts than before. In order to achieve the Fast-track goals of

limiting the new HIV infections down to 200000 by the year 2030; goals that have been set

by the Joint United Nations Programme on HIV/AIDS (UNAIDS) and will eventually lead

the  epidemic  to  an  end  (UNAIDS (2014)).  Since 2002,  when  WHO published  its  first

guidelines on when to start ART, the eligibility limits have been increased from 200 CD4

cells per mm3  (WHO, 2002) to 500 CD4 cells per mm3  in 2013 (in adults and adolescents

regardless their HIV clinical stage). On September of 2015, an early release of revised

guidelines were publicized setting every human living with HIV eligible for initiating ART

regardless their CD4 cell count or their WHO clinical stage. 

In  addition,  HAART can  also  be  beneficial  when  used  as  part  of  a  prevention

strategy. In the study trial performed by Cohen M.S. et al (2011) it has been shown that a

nearly  96%  relative  reduction  in  the  number  of  linked  HIV-1  transmissions  between

serodiscordant  couples can be succeeded by the use of  early  antiretroviral  therapy. A

serodiscordant couple is when two people are in a continuing sexual relationship and one

of them is HIV positive while the other is not. As a result, is was recommended by WHO in

2013,  that  all  HIV  positive  partners  in  serodiscordant  couples  should  be  offered ART

regardless of their CD4 cell count (WHO, 2013). 

Furthermore, HAART is also used as part of the strategy for preventing mother-to-

child HIV transmission (PMTCT) since vertical or mother-to-child transmission (MTCT) is

the main source of child infection. In the 2013 WHO guidelines it was recommended that

all child bearing and breastfeeding HIV infected women should initiate ART regardless of

their clinical eligibility criteria, while in the 2015 WHO it was added that ART provision

should be carried on even after the cessation of breastfeeding. 

According to WHO, as of March 2015, among the approximately 37 million people

who live with HIV, 15.8 million people were receiving HAART, representing almost 42% of
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those in need. The corresponding estimated percentage in the Western/Central Europe &

North America is 51% of all people living with HIV.

1.4. AMACS

The  Athens  Multicenter  AIDS Cohort  study  (AMACS)  is  an  ongoing  population

cohort  study initiated  in  1996 (the  following  year  after  HAART availability)  in  order  to

establish a large database of HIV-1 positive individuals in Greece.

The  main  objectives  of  the  AMACS are  to  evaluate  the  long-term efficiency  of

HAART, to describe any potential trends in the prevalence or frequency of AIDS defining

events and related deaths as well as to locate any association between risk factors and

virologic or immunologic response to HAART.

The AMACS is comprised by the 11 largest HIV-1 clinics based in Athens along with

two  recently  added  clinics,  one  in  southern  and  one  in  northern  Greece,  Rio  and

Alexandroupolis  respectively.  According to  the data of  the Hellenic  Centre for  Disease

Control  and  Prevention,  between  January  1,  1984  and  October  31,  2015,  15109

individuals have been reported to be infected by HIV. Out of these people,  7849 are or

have been monitored by the clinics that participate in the AMACS.

The  criteria  for  inclusion  in  the  AMACS  of  an  HIV  positive  individual  that  is

monitored in the participating clinics were to be alive on January 1, 1996 and also to be

monitored for  at  least  one year  in  the same clinic.  Apart  from the socio demographic

characteristics and medical history of the participants that is collected upon the enrolment

in the cohort, additional prospective data are collected during the following visits in the

clinics.  Such  data  can  be  the  CD4  and  CD8  count,  viral  load,  antiretroviral  therapy

(including reasons for change or  serious adverse events),  other  relative infections that

might occur, the clinical stage of AIDS, HIV seroconversion, results from laboratory tests
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(biochemical, blood, urinal) and many other. The AMACS study has been approved by the

Athens University IRB, the HCIDC IRB, the National Organization for Medicines and the

National Ethics Committee. In accordance to the study ethics and data protection policy,

data are provided by the conducting clinics to AMACS anonymously.

Finally,  AMACS  participates  in  the  Collaboration  of  Observational  HIV

Epidemiological Research Europe (COHERE) as well as also in the Concerted Action on

SeroConversion to AIDS and Death in Europe (CASCADE). COHERE is a collaboration

that was formed in order to harmonize existing longitudinal data on HIV-positive persons

collected across Europe to answer key research questions that could not be addressed

adequately  by  individual  cohorts.  CASCADE  is  also  a  collaboration  between  the

investigators of 29 cohorts of patients with well-estimated dates of HIV seroconversion

across Europe, Australia, Canada, and Africa. 
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Chapter 2.

Survival Analysis

In this introductory chapter we try to clarify some of the basic concepts of survival

analysis and the notation that we are going to use as basis for the presentation of the

random-effect models, that we are going to call frailty models from now on.

2.1. Survival Data

Survival data is another way to refer to time-to-event data, where we measure the

time  until  an  event  occurs.  As  Kalbfleisch  and  Prentice  (2002)  explain,  it  is  of  high

importance to have a strict definition of time origin and what constitutes an event or end-

point. In many cases, death is considered as the event of interest hence the term Survival

analysis.  Survival  analysis  can  be  applied  in  many  disciplines  such  as  economics,

engineering, sociology, biology and medicine. In this thesis we focus on the application of

survival analysis methods to medicine.

In the medical setting, the term survival analysis normally refers to the modelling of

time to death (since death is usually regarded as the event). However, there are many

occasions where an event can be considered to be the occurrence of a disease or the

recurrence of a symptom, such as epileptic seizures; in other words, event is the transition

from a state to another (Hougaard, 2000). In the example of death, the transition is from

the state of being alive to the state of being dead and in the example of the occurrence of a

disease, the transition is from the state of being healthy to the state of being unhealthy.

But why do we have to develop special  techniques for assessing these types of
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data? The main reason is that we observe something that develops dynamically over time,

the survival time. Additionally, the event of interest might not occur within the observational

interval and so the information that we have is limited and is called censored. Therefore,

standard statistical approaches are not suitable and we need a special statistical theory.

For the observational time, we consider a non-negative random variable T that represents

the period from a well defined time origin until the occurrence of the event of interest or

until censorship. 

2.2.  Basic notation

2.2.1.Density and Cumulative Distribution function

As we  mentioned  before,  let  T  be  a  non-negative  random variable  from a  continuous

distribution. Then we denote the probability density function (p.d.f.) which defines the distribution of

T uniquely and completely by f :

f (t )= lim
Δt →0

1
Δ t

Pr (t ⩽ T ⩽ t+Δ t ) (2.2.1)

and the corresponding cumulative distribution function (c.d.f.) by F:

F (t )=P (T ⩽t )=∫
0

t

f (u )du (2.2.2)

2.2.2.Survival function

In survival analysis the survival function S(t) is of more interest than the cumulative

distribution  function  and  that  is  because  the  main  concern  here  is  to  calculate  the

probability of an observational unit “surviving” beyond time t. So we define the survival
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function as

S (t )=1−F (t )=P (T >t )=∫
t

∞

f (u)du (2.2.3)

And so we get :

f (t )=− ∂ S (t )
∂ t

(2.2.4)

2.2.3.Hazard function

Another  quantity  in  which  one  is  more  interested  when  discussing  the  survival

analysis setting is the hazard function. Depending on the discipline that it is applied to, the

hazard  function  gets  different  names such as  mortality  rate  in  demography,  failure  or

incidence rate in epidemiology or the inverse of Mill's ratio in economics. In our case we

will refer to the hazard function as the instantaneous failure rate or simply hazard rate. The

hazard rate is defined by the conditional probability of failure within the interval (t, t + Δt]

given the fact that the event has not occurred yet. The expression through which we obtain

the rate is the limit of this conditional probability divided by the time interval Δt, where Δt

tends to zero (Duchateau, 2008).

λ(t )= lim
Δt →0

Pr (t ⩽ T ⩽t +Δt ∨ T ⩾t )
Δt

=
f (t )
S (t )

(2.2.5)

At this point we can also define the cumulative hazard function Λ(t) which is related

to the hazard rate and it is used to derive: 
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Λ (t )=∫
0

t

λ(u )du (2.2.6)

from (2.5) we derive:

λ(t )=
f (t )
S (t )

=−
∂ log[S (t )]

∂ t
(2.2.7)

and so expression (2.6) by using that S(0)=1, becomes:

Λ (t )=−∫
0

t ∂ log[S (u )]
∂ u

du=− log[S (t )]+log [S (0)]=−log [S (t )] (2.2.8)

finally we get another useful expression:

S (t )=e− Λ(t )
=e

−(∫
0

t

λ(u )du) (2.2.9)

2.3. Censoring and Truncation

Survival data are often censored, truncated or even both in certain cases and as we

mentioned before, that creates some implications in handling such data. Censoring and

truncation give partial  information about  the observational  time (Hosmer & Lemeshow,

2008), therefore, typical statistical methodology is not appropriate for this type of data; in

the presence of censoring and/or truncation the form of the likelihood function becomes

more complex.  Thereby, we need to take into consideration the nature of our data in order

to avoid mistakes in the form of the likelihood that we are going to use as a foundation for

our inference.

Censoring comes in three schemes: left, right and interval which is a combination of

right and left censoring.  Left censoring arises when the only information we have is that

the event of interest occurred at some point prior to the start of study, right censoring when
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the event of interest has not occurred by the end of the study period and finally,  interval

censoring, when all is known is that the event occurred within some interval. 

We will focus on the right censoring scheme since it is the one that is present in

almost  every case that  survival  data is  involved.  The most  common reason for  partial

information about an observation is that the observational unit has not failed until the end

of the follow up period. For instance, in a longitudinal study of coronary heart disease, if a

given participant of the study population has not developed the disease at the end of the

study then his survival time is considered censored. 

Apart  from the  termination  of  the  study there  are  also  other  reasons where  an

observation is considered censored (Kleinbaum & Klein, 2006) as in the case of right

censoring. It generally occurs due to three main reasons:

 Withdrawal for the study. A person can withdraw from the study for many reasons,

such as adverse side effects from the treatment or not receiving satisfying results

from treatment.

 Loss to follow-up. The researchers may lose contact with some of the participants of

a study and then these people are considered lost to follow up and their survival

times censored.

 Competing  risks.  We are  not  able  to  observe  the  failure  of  an  individual  since

another event occurred before. In our example of the coronary heart disease study,

where heart failure is the event of interest, if one dies by traffic accident, which is

not related to the outcome of interest, then his survival time is considered censored.

At this point, we need to mention that the cause of censoring should not be related to the

event of interest otherwise this can introduce bias into the estimation of survival times.

However,  it  is  difficult  to  be  certain  whether  censoring  and  the  event  of  interest  are

independent or not. Likewise, we often need to assume this independence, meaning that

censoring is assumed to be independent when the failure rates that we observe in the
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presence of censoring would be the same as if there wasn't any censoring (Kalbfleisch &

Prentice,  2002). For instance,  in the last  example with  the traffic accident,  the person

involved might have had a heart incident that led to the accident. Therefore, great attention

should be given to the assumption to avoid introducing bias to our inferences.

In the figure 2.1 that follows, the survival time of 6 patients of a longitudinal study

are illustrated.  The time scale that is used is the calendar time that represents the actual

moment that every patient joined the study. Patients 3, 4 & 5 experienced the event of

interest during the study with patients 4 & 5 being part of the study from the beginning

while patient 3 entered the study later. Patients 1, 2 & 6 have censored survival times, with

patients 1 and 6 being still alive at the end of the study while patient 2 was lost to follow-

up. 

Figure  2.1: Example  of  event  and  censoring  times  in  a  hypothetical  longitudinal  study

(Calendar time)
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There is also another way to represent censoring and event times by rescaling the time to

the time values that participants spent on the study as seen in Figure 2.2.

In  paragraph  2.1  we  denoted  with  T  the  non-negative  random  variable  that

represents  the  observational  time.  Now,  let  X1,X2,...,Xn  be  independent  and  identically

distributed (i.i.d.) survival times and C1,C2,...,Cn be i.i.d. censoring times of n individuals

under observation with cumulative distribution function F and G respectively, which are

also continuous. If Ti = min{ Xi  , Ci  }, then in the case of right censored data, we can only

observe (T1,Δ1),(T2,Δ2),...,(Tn,Δn) where Δi is the failure indicator for subject i, i=1,...,n. For

the failure indicator we have :

Δi={ 1if X i ≤C i    ,T i  is not Censored
0 ifX i>C i    , T i  is Right Censored

Figure 2.2: Rescaling the event and survival times of the figure 2.1 (Time on study)
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As mentioned above, a major assumption that we need to make throughout this thesis is

that the survival times X1,X2,...,Xn  are independent from the censoring times C1,C2,...,Cn.

Therefore, if we denote by H the distribution function of the observational time T i  following

the notation by Wienke (2010), we have:

H (t )=P (min {T *,C }⩽ t )
   =1− P (min {T *,C }>t )

=1− P (T *
>t ,C>t )

If now, we assume independence between censoring and event times, we have:

H (t )=1− P (T *>t )P (C>t )

   =1− (1−P (T *⩽ t ))(1− P (C ⩽ t ))

=1− (1−F (t ))(1−G (t ))

It should also be mentioned, that this is the so called Type I right censoring mechanism;

furthermore, Type II right censoring occurs when the study terminates after a specific and

predetermined  number  of  failures  k,  where  k<n  and  is  mostly  encountered  in  the

engineering field, in order to check equipment's life.

Finally, truncation,  which  is  commonly  confused  with  censoring, comes  in  two

schemes: left and right. We will mainly focus on left truncation which is encountered more

frequently in the medical field. Generally, truncated data arise when we only observe event

times which lie in an interval (YL , YR). This must not be confused with the interval (Li , Ri) of

interval censoring since in that case there is partial information in contrast to truncation

where no information outside the interval is available.

Right truncation occurs when the entire population of the study has experienced the
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event of interest.  Klein and Moeschberger (2003) use the example of an AIDS related

study to illustrate that. The sample included only patients that had already developed AIDS

after being infected by contaminated blood transfusion, when the registry was sampled,

thus patients that had not yet developed AIDS where excluded from the study.

Left truncation occurs when the individuals under observation are already in risk

before entering the study, subsequently those who have already experienced the event of

interest are not observed. Therefore, under truncation, the distribution of the survival times

is conditional to T > τ*, with τ* being the non-random truncation time. Additionally, in left

truncation, the upper limit of the interval is infinite or equal to the censoring time Δ.

2.4. Constructing the likelihood

While constructing the likelihood we always have to keep in mind that the form of

the expression should represent all the information that is observed (Hougaard, 2000). We

will show the way to construct the likelihood expression in the presence of right censored

data  with  random  censoring.  As  we  mentioned  before,  the  form  of  the  likelihood  is

determined by the data that we have and in that case we have two possible outcomes, first

that the observation unit fails and second that it is censored. We will see these two cases

separately and then we will combine them for the final form of the likelihood (Duchateau &

Janssen, 2008).

 An event time (yi = ti , δi=1)  contributes to the likelihood:

lim
ε→ 0

1
2ε

P (y i − ε<Y ι<y i+ε ,δ i=1)
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   = lim
ε→ 0

1
2ε

P (y i − ε<Y ι<y i+ε ,T i ⩽C i )

   = lim
ε→ 0

1
2ε

∫
y i −ε

y i +ε

∫
t

∞

dG (c )dF (t ) ( due to independence )

   = lim
ε→ 0

1
2ε

∫
y i −ε

y i +ε

(1−G (t ))dF (t )

   =(1− G(y i )) f (y i ) (2.4.1)

 A right censored observation (yi = ci , δi=0) contributes to the likelihood:

lim
ε→ 0

1
2ε

P (y i − ε<Y ι<y i+ε ,δ i=0)

   = lim
ε→ 0

1
2ε

P (y i − ε<C i<y i+ε , T i>C i )

   =(1− F (y i ))g (y i) (2.4.2)

By combining (2.4.1) and (2.4.2) we get the likelihood form:

L=∏
i=1

n

[(1−G (y i))f (y i )]
δ i

[(1− F (y i))g (y i )]
1 −δ i

(2.4.3)

The expression of the likelihood (2.4.3) based on the assumption of non-informative 
censoring can be rewritten as:

L=∏
i=1

n

[f (y i )]
δ i

[S(y i )]
1− δ i

(2.4.4)

Non-informative censoring means,  given the people at risk at  a specific time,  that  the
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likelihood for the censored observations does not depend on the parameters of interest,

thus  it  does  not  contain  any  information  about  them.  So the  factors (1−G ( y i))
δi and

(g ( y i))
1−δ i can be ruled out of the likelihood expression (Fleming & Harrington, 2011).

Another way to express (2.4.4) is by using the hazard function and more specifically

the expressions (2.2.7) and (2.2.9) described before

      L=∏
i=1

n

[λ(y i )S (y i )]
δ i

[S (y i)]
1− δ i

=∏
i=1

n

[λ(y i )]
δ i S (y i)

=∏
i=1

n

[λ(y i )]
δ i e

−(∫0
yi

λ (u)du) (2.4.5)

2.5. Non parametric techniques in survival analysis

In this section, we focus on the simple non parametric techniques used to model the

survival function. The “Non-parametric” term is used in order to emphasize that we do not

need to make any assumption for the distribution of the survival times and we just rely on

our  data to  make an inference.  Of course this  choice comes with  a price,  since non-

parametric techniques usually require bigger samples to derive to reasonable inferences

and  the  estimation  of  the  hazard  function  cannot  be  carried  out  since  the  estimated

distribution is discrete (Hougaard, 2000). 

2.5.1.Kaplan Meier estimator

The Kaplan-Meier estimator is probably the most common approach to estimate the

survival function when dealing with right censored data. It was proposed by Kaplan and
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Meier (1958) and it is also called Product-Limit estimator.

Let's suppose that y1  < y2 < … < yk are the observed failure times of a n-sized

sample  from  a  homogeneous  population.  Let  S  also  be  the  survivor  function  of  the

population. If dj individuals fail at time yj and mj   individuals are right censored within the

interval [ yj , yj+1 ) at times y j1 , ... , y jm j , j=0,...,k, where y0 = 0 and yk+1=∞. Additionally, let

n j=(m j+d j )+...+(mk +d k)=∑
i= j

k

(m i+d i)

denote the risk set of the sample population just before the j-th failure. Then the probability

of a failure at the time yj  is:

P (T =y j)=S (y j
−)−S (y j )

so the contribution of an individual to the likelihood who failed at the time y j  is assumed to

be:

f (y j )=−
∂ S (y )

∂ y |
y=y j

while the contribution of an individual that is censored at time y ij is: 

P (T >y jl )=S(y jl )
Accordingly, the likelihood of the data is:

L=∏
j =0

k

{[S (y j
−)−S (y j )]

d j

∏
l =1

m j

S (y jl)} (2.5.1)

Then  we  denote  with  Ŝ  the  estimation  for  the  survival  function  that  maximizes  the

likelihood function and is called maximum likelihood estimation (MLE). The estimation of

the survival function is discrete (Kalbfleisch & Prentice, 2002), with hazard components

λ̂1 , ... , λ̂k at t1 , … , tk respectively. Consequently we can use for the survival function the

expressions:
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Ŝ (y j )=∏
l=1

j

(1−λ̂l ) (2.5.2)

Ŝ (y j
−)=∏

l=1

j −1

(1− λ̂l ) (2.5.3)

So if we want to express the likelihood as a function of  λ=(λ1, λ2, ..., λκ),  by using the

expressions (2.5.2) and (2.5.3) we have:

L (λ) =∏
j =1

k

{λ j
d j ∏

i=1

j − 1

(1−λi )
d j

∏
i=1

j

(1− λi )
m j}

=∏
j =1

k

{ λ j
d j

(1−λ j )
d j

×∏
i=1

j

(1− λi )
d j+m j}

=∏
j =1

k

{ λ j
d j

(1−λ j )
d j }×∏

j=1

k

∏
i=1

j

{(1−λi )
d j +m j}

=∏
j =1

k

{ λ j
d j

(1−λ j )
d j }×(1−λ1)

(d1+m1)+...+(d k+mk )×(1−λ2)
(d 2+m 2)+...+(dk+m k )×(1− λ3)

(d3+m3)+...+(d k+mk )×...

=∏
j =1

k

{ λ j
d j

(1−λ j )
d j }×∏

j=1

k {(1− λi )
∑
i= j

k

(d i +mi)}

=∏
j =1

k

{λ j
d j(1−λ j )

n j −d j}

It can be easily shown that the MLE of the  λj   is λ̂ j=d j /n j where (j = 1, … , k), so the

estimator  proposed by Kaplan and Meier is: 
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Ŝ (t )= ∏
j ∨ y j ⩽ t

n j − d j

n j

(2.5.4)

The Kaplan-Meier  estimator  is  a  step  function  and  it  changes only  when an  event  is

observed, therefore if we have censored times bigger than or equal to the last event time

the estimator does not reach 0. In cases like this the estimator cannot be defined.

2.6. Regression Models

Till  now, we  only mentioned non parametric  techniques to  estimate the survival

function  by  using  independent  identically  distributed  data  that  imply  a  homogeneous

population (Wienke, 2010). In this section we will  present the way to model the hazard

function, since in survival analysis one is more interested in the rate or hazard of failure at

any given time after the start of the study period. When we want to compare two groups

that are similar other than the treatment arm that they belong to as an exception, then

nonparametric methods mentioned above can be used. But what happens when a number

of explanatory variables and risk factors are recorded for each  individual under study as

applies in most practical applications  that  the population is not homogeneous?  In such

cases we need to implement other techniques such as regression models.

2.6.1.Proportional hazards model

The proportional hazards model is probably the most popular model used in survival

analysis. Let λ(t|z) be the hazard function of an individual at time t and zT = (z1 , z2 , … , zp )

the covariate vector. The proportional hazards model assumes that:
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λ(t|z )=λ0 (t )ψ (z , β ) (2.6.1)

where the λ0(t) is an arbitrary baseline hazard rate and ψ(z,β) is a non-negative function

that depends on the covariates. In most of the cases, the function that is used for ψ(.) is

the exponential  ψ(ζ, β)=exp(zTβ),  with z being the vector of covariates and  β  being the

corresponding vector of regression parameters which is defined as β=(β1 , β2 , ..., βp ) .

λ(t|z )=λ0 (t )exp(zT β) (2.6.2)

As its name implies, the model assumes that the hazard between two groups is

proportional. For instance, if we have two individuals that they differ in a specific element,

let's say smoking habits, then we denote the hazards of the smoker xs and non-smoker xNS

as λS(t|z) and λNS(t|z) respectively. In this case, there is a single dichotomous covariate Z

in the model, where Z = 1 marks that one smokes and Z = 0 contrariwise. So the hazard

ratio would be:

HR (t , x S ,x NS)=
λS (t|z )

λNS (t|z )
=

λ0 (t )exp(β )

λ
0 (t )

=exp (β) (2.6.3)

In the final expression, time is not included, which implies that the hazard ratio does not

change over time; this is the essence of the separation of the time and the observed

covariates.

What is more, we observe that the baseline hazard λ0(t) is ruled out from the final

expression. But one could wonder what does this term means. A simple answer to this

question is that the baseline hazard is a term that describes the dependance of the hazard

function on time t. Another answer would be that the baseline hazard is the hazard when

all the other covariates have a value of 0.
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There  are  two  approaches  to  the  baseline  hazard  in  the  proportional  hazards

model. The first one is the parametric approach where it is assumed that the baseline

hazard follows a specific distribution. The second one is when the baseline hazard is left

unspecified and in this case we call it semiparametric proportional hazards model.

2.6.2.Semiparametric proportional hazards model

This approach is called semiparametric since the covariates of the model have a

parametric  nature  while  there  is  not  a  parametric  specification  of  the  baseline  hazard

function. Its biggest advantage is the one implied in the previous section. The simplicity of

the interpretation of the result in (2.6.2) which can be regarded as a relative risk ratio.  The

model was introduced by Cox in his seminal paper (1972) where he suggested a partial

likelihood approach. 

As we showed in expression (2.4.5) of the likelihood, the form contains the hazard

function. Under the proportional hazards model, the likelihood contains the unspecified

hazard function along with  the covariate function. As a result,  we can now rewrite the

likelihood (2.4.5) as:

L=∏
i=1

n

[λ0(t i )exp(β Z i)]
δ i exp −(∫

0

t i

λ
0(u )exp(β Z i )du)

L=∏
i=1

n

[λ0(t i )exp(β Z i)]
δ i exp −(Λ0(t i )exp(β Z i )) (2.6.4)

However, this expression remains problematic since it contains the baseline hazard

λ0(t).  In  order  to  explain  the  partial  likelihood  approach  we  need  to  introduce  a  new

notation. Assuming that there are no ties, we have the ordered event times y (1) < y(2) < … <

y(r) with r=d (meaning that r is the number of events) and corresponding covariates z (1), … ,

z(r). So now we rewrite once again the likelihood as:
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L=∏
i=1

r

[λ0(y ( i))exp(β z (i )
t )]×∏

j =1

n

exp −(Λ0(y j )exp(β z j
t)) (2.6.5)

Additionally  we  assume  the  discrete  version  of  cumulative  baseline  hazard  since  the

baseline hazard function is equal to 0 apart from the times that we observe an event.

Accordingly we have:

Λ0
DIS(y j )= ∑

y
(i )

⩽ y j

λ0(y (i )) (2.6.6)

Combining the two last expressions (2.22) and (2.23) we get the survival likelihood:

L(λ(1), ... ,λ(r )∨ β) =∏
i=1

r

[λ0(y ( i ))exp(β z (i)
t )]×∏

j =1

n

exp −(Λ0(y j )exp(β z j
t))

=∏
i=1

r

[λ0(y
( i))exp(β z

(i)
t )]×∏

j =1

n

exp{− ∑
i ∨ y (i )⩽ y j

λ0(y
( i))exp(β z j

t)}
=∏

i=1

r

[λ0(y ( i))exp(β z (i)
t )]×exp{− λ0(y (1)) ∑

j ∨ y j ⩾ y (1)

exp(β z j
t )− ...−λ0(y ( r )) ∑

j ∨ y j ⩾y (r )

exp(β z j
t )}

=∏
i=1

r

[λ0(y
( i))exp(β z

(i)
t )]×exp{−∑

i=1

r

λ0(y (i )) ∑
j ∈ R (y (i ))

exp(β z j
t)} (2.6.7)

We will  now take the partial  derivatives of the likelihood (2.6.6) with respect to  λ0(y(i)),

i=1,...,r , set all the equations to 0 and then by solving for λ0(y(i)) we get:

λ0(y (i ))= 1

∑ exp(z j
t β )

, i=1,... , r (2.6.8)

Finally if we replace in the likelihood expression (2.6.6) the result we got above then we

reach to the partial likelihood expression of Cox that doesn't contain any of the parameters

or the factor e-d
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L (β )=∏
i =1

r exp(z ( i )
t β )

∑ exp(z j
t β )

(2.27)

The expression (2.6.8) is called partial likelihood and it is used to estimate β through the

well  known  maximization  process.  The  justification  along  with  the  properties  of  Cox's

partial likelihood approach are well documented (Gill, 1984; Fleming & Harrington, 1991).
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Chapter 3.

Frailty Models

Frailty  models  were  developed  in  an  attempt  to  account  for  the  effect  of

unmeasured variables that might affect the hazard function. The origin of the term frailty

derives from gerontology, but there is no broadly accepted definition (Rockwood, 1999). A

definition  that  has been promoted is  that  of  Fried  et  al.  (2001)  which  focuses on the

physical frailty and considers it as a clinical syndrome assessed by the presence of three

indicators: unintentional  weight loss,  exhaustion and low physical  activity.  Vaupel  et  al.

(1979) introduced the term in the context of demography. In this paper,  the  population is

considered  heterogeneous  and  the  frailty  term is  used  to  represent  the  heterogeneity

among the groups in the analysis of mortality rates. 

The frailty models are random-effect models that present two types of variation. The

source of the first type is the random variation on the individual level which is described by

the hazard function, and the second, is the group variation which is described by the frailty

term. Frailty Models can be used in both univariate and multivariate survival analysis. 

3.1. Univariate Frailty Models

In this section we are going to focus on the analysis of univariate data by the use of

frailty models. The term univariate refers to the fact that the survival times are assumed to

be independent, as the work of Vaupel et al. The basic assumption of this approach is that

the population is homogeneous up to a point, however there are a number of explanatory

variables and risk factors that make people differ greatly. Additionally, we would like to
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emphasize that it is impossible to quantify and measure all the factors that may affect the

survival of a subject in a study.

The  univariate  frailty  models  are  used  since  they  can  be  more  flexible  than  a

standard regression model and also to describe the overdispersion in relation to the typical

random variation (Klein et al., 2013).

Extending the model described in the expression (2.6.3) by including the frailty term we get

λ(t|u ,z )=λ
0(t )u i exp(z i

T β), i=1,2,. ..,n (3.1.1)

where zi
T=(z1i,  z2i,  … ,  zni)  is  the  vector  of  covariates  and  β the  respective regression

parameters of the i-th subject. In the univariate case, one can easily see that this is a
generalization of the proportional hazards model 

3.2. Multivariate Frailty Models

The term multivariate survival data implies that the assumption of independence

between  survival  times  is  no  longer  valid  (Hougaard,  2000)  Multivariate  data  are

encountered when individuals form groups by sharing a common feature thus their survival

times are correlated in some way. These groups arise in situations where individuals are

related, such as family members, matched pairs of twins like the study on adult Danish

twins (Hougaard et al., 1992) where the twins share a common childhood environment,

especially during the pre-birth period. In cases like these, frailty is used in order to model

the genetic effect. 

In the multivariate analysis, frailty models are used to account for the heterogeneity

between  groups  of  subjects.  This  between-groups  variability  is  accountable  for  the

difference presented in the risks of the groups. The between-groups variability, in its turn,

appears as dependence between the members of the groups who share common risks,

which is why frailty models are used in the multivariate analysis.
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We introduce  the  frailty  term  for  each  group  so  as  to  induce  the  dependence

between the units within a cluster. The models processing this type of data are also called

shared frailty models, since all the units within a cluster share a common factor, the frailty.

Frailty is assumed to be responsible for the dependence mentioned above and its value is

constant over time and common for all members of the cluster. When treating data from

recurrent events, one should interpret the term “shared” as shared over time since every

cluster is constituted by a single individual.

The biggest advantage of the frailty term being shared among different subjects is

that it models the dependence between the survival times. In addition given the frailty, the

time  variables  are  conditionally  independent,  meaning  that  the  observed  times  are

independent if the frailty is integrated out. For instance, in the example of the twins study

that was mentioned before, when the common genes are accounted for then the survival

times of the twins are assumed to be conditionally independent. Generally the genes are

unknown so their effect has to be integrated out but if we have some partial knowledge

about the common genes then we can include them in the model as fixed effects.

3.2.1.Gamma Frailty Model

The  frailty  is  a  random-effect  factor  and  in  that  sense,  we  need  to  specify  a

distribution for it (Duchateau & Janssen, 2008).  Many different distributions have been

proposed including the Gamma distribution, the positive stable, the inverse Gaussian and

the compound Poisson; all these distributions belong to the power variance function (PVF)

family.  Even though in most of the cases the standard assumption is that the frailty follows

a gamma distribution, there is no actual biological evidence supporting this choice but

rather a mathematical reason which makes it appealing to the conductors of the studies.

The frailty factor which is apparent in the conditional likelihood can be integrated out of the
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expression and then by relying on the classical likelihood maximization techniques we are

able to obtain the estimates for the parameters of interest from the marginal likelihood and

evaluate the distribution of the survival times.

The model  assumes that  there is  independence between the groups but  in  the

same time dependence between the times of the members of every group. That implies

that if the frailty term presents no variation then the survival times are independent. 

Therefore, we assume that the frailties uι  are  i.i.d from a Gamma distribution with

mean 1 and unknown variance

u i ∼Γ (1
θ

, 1
θ ) with E (u i)=1 and Var (u i )=θ

and thus the probability density function is:

f (u)=u (1/θ −1)exp {− u /θ }
Γ (1/θ )θ 1/θ (3.2.1)

Based on the hazard function (3.1.1) and on the same technique that we used to derive 

the likelihood expression (2.6.4), the conditional likelihood for the i-th cluster is given by

Li (ξ , β|u i )=∏
j =1

n i

[λ0(t i j)u i exp(β z ij
t)]

δ i j

exp −(Λ0(t i j )u i exp(β z ij
t )) (3.2.2)

Where ξ contains the baseline hazard parameters.

The marginal likelihood  Lmarg, I (ζ)  for the i-th cluster is given by

Lmarg,i (ζ )=∫
0

∞

∏
j=1

n
i

[λ0(t i j )u exp(β z ij
t)]

δi j

exp−(Λ0(t i j)uexp(β z ij
t)) u1/θ −1

θ1 /θ Γ (1 /θ )
exp(−u /θ )du (3.2.3)
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with ζ=(ξ,θ,β)

There is a closed form expression for this integral (Duchateau, 2008) and we can rewrite
this marginal likelihood as

Lmarg ,i (ζ )=
∏
j=1

n i

(λ0(t i j )exp(β z ij
t))

δ i j

w 1/θ+d i θ1/θΓ (1/θ )
∫
0

∞

(wu)
1/θ+d i − 1

exp(−wu )d (wu ) (3.2.4)

by using the expression

w=1/θ+∑
j=1

n i

Λ0(t i j )exp(β z ij
t )

Now, if we work out the integral, we get

Lmarg ,i (ζ )=
Γ (d i+1/θ)∏

j =1

n i

(λ0(t i j )exp(β z ij
t ))

δ i j

(1/θ+∑
j =1

n i

Λ0(t i j )exp(β z ij
t))

1/θ+d i

θ1 /θ Γ (1/θ )
(3.2.5)

where d i=∑
j=1

ni

δ ij is the number of observed events in cluster i (i=1,...,n).

Klein (1992) showed how one gets the marginal loglikelihood lmarg(ζ) by taking the logarithm

and summing over the s clusters. The expression is given by

lmarg (ζ )=∑
i =1

s

[d i logθ − logΓ (1/θ )+logΓ (1/θ+d i )

−(1/θ+d i) log(1+θ∑
j=1

n i

Λ0(t i j )exp(β z ij
t))+∑j=1

ni

δ i j(β z ij
t
+ logλ0(t i j ))] (3.2.6)
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By maximising this log-likelihood, maximum likelihood estimators for ξ, θ and β can be 
derived.

3.2.2.Semiparametric frailty model

On a  previous  chapter  we  referred  to  the  semiparametric  proportional  hazards

model.  This  chapter,  discusses the extension  of  the  model,  the  semiparametric  frailty

model which constitutes a standard tool to handle multivariate survival data. As mentioned

before, the hazard function of a semiparametric frailty model is a product of an unspecified

baseline hazard and a parametric function of the covariates that include also the frailty

term as a factor. However the direct maximisation of the marginal likelihood (3.2.3) is not

possible as in the parametric case, therefore we need to implement a different process in

order to get the estimators for ξ, θ and β.

In  most  of  the  cases,  the Expectation–Maximisation algorithm (EM algorithm) is

used as an estimation process in the Frailty models. The EM algorithm approaches the

frailty term ui as missing data (Therneau & Grambsch, 2000) and it involves a repeating

combination of  two steps,  the step of  estimation and the  step of  maximisation.  In  the

beginning, the algorithm obtains the expected values of the frailties, conditional on the

observed information and new estimates of the parameters are subsequently obtained,

based  on  the  likelihood,  given  those  expected  values  (Duchateau  &  Janssen,  2008).

Finally the algorithm continues by performing these two steps iteratively. The drawback of

this procedure is that the direct estimation of the hazard function is not possible since the

produced distribution estimator is discrete (Rondeau, 2003). 
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3.3. Computational methods of estimations

A comprehensive presentation of the EM algorithm, as described by Duchateau and

Janssen (2008) is described bellow. The algorithm uses the full data loglikelihood which is

given by

l full (λ0(.),θ ,β )=logf (z ,u|λ0(.),θ ,β )
logf (z|λ0 (. ),β ,u)+logf (u|θ )=logfull ,1(λ0 (.),β )+l full , 2(θ ) (3.4.1)

where the conditional on the frailties loglikelihood of z, is lfull ,1 (λ0 (.) , β )  given by

l full ,1(λ0 (.),β )=∑
i =1

s

∑
j=1

n i

[δ ij log(λ0(y ij )u i exp(x ij
t β))− Λ0(y ij )u i exp(x ij

t β)]
(3.4.2)

One  can  see  that  the  conditional  loglikelihood  is  only  a  function  of  the  β  and  the

unspecified baseline hazard function. Finally the second part of the expression (3.4.1) is

given by:

l full ,2(θ )=∑
i=1

s

log f u(u i ) (3.4.3)

The  maximisation step  uses the first  part lfull ,1 (λ0 (.) , β ) and the second part  of

lfull ,2 (θ)  the expression in order to estimate β and θ respectively. Then, the initial form of

the expression is profiled to a partial loglikelihood by regarding the frailty term as a fixed

offset. So we get:

lpart , 1(β )=∑
i =1

s

∑
j=1

n i

δ ij[logu i+x ij
t β −log( ∑

qw ∈ R (y ij)
uq exp(x qw

t β ))] (3.4.4)
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The next step (as every next iteration step k) is for the u i's and their logarithms to be

replaced by the current expected values E(k)  (Ui) and E(k)  ( log Ui ) resulting to the form

(3.4.5), which is used so as the new estimates of β(κ) can be obtained.

lpart , 1(β )=∑
i =1

s

∑
j=1

n i

δ ij[E (k )(logU i )+x ij
t β − log( ∑

qw ∈ R (y ij )
E (k )Uq exp(x qw

t β ))] (3.4.5)

Once the estimates of β(k) are obtained, estimates for the θ(κ) follow immediately after

by implementing the lfull ,2 (θ) where the ui's and log ui's are also replaced once again by

the current expected values of iteration step k, as in the expression (3.4.5). The  current

values of β(k) are then used so that the Nelson – Aalen estimator of the cumulative baseline

hazard and baseline hazard with the frailties are derived 

Λ0
(k )(t )=∑

y
(l )

⩽ t
λ0l

(k ) (3.4.6)

and

λ
0l
(k )

=
N (l )

∑ E
(k )(Uq)exp(x qw

t β(k ))
(3.4.7)

So finally we get

Λ
0
(k )(t )=∑

y( l )⩽ t

N (l )

∑ E (k )(U q)exp(x qw
t β(k ))

(3.4.8)

where y (1)<...< y (r ) are the times of the events and N(l) is the number of events at time y(l), 

l=1,...,r.
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In addition, R(y(l)) is the risk set of subjects at time y(l).

The expression (3.4.8) is then used in the expectation step. An assumption is made, that

the current estimates at iteration step k are given by ζ (k )=(λ0(k) (.) ,θ(k ) , β (k)) , which in its turn

is  implemented  so  that  the  expectation E(k+1) (U i)=E(ζ ) (U i|z) is  obtained.  However,  the

conditional distribution of fU(ui |  z) is also needed in this process. Therefore, we take the

conditional likelihood for the i-th cluster L i  (ξ,β | ui) (3.a) and the marginal likelihood  Lmarg, I

(ζ)  for  the  i-th  cluster  (3.2.2)  and  based  on  the  Bayes  theorem,  we  can  write  this

conditional distribution of the frailties as

        f U (u i|z )=
Li (λ0 (.), β|u i )f U(u i )
Lmarg, i (λ0(.),θ ,β )

ud i+1/θ −1exp(−u i(1/θ+Ηχ i ,c (y i )))(1 /θ+Η χ i ,c (y i))
d i +1/θ

Γ (d i +1/θ)
(3.4.9)

Where Η χ i , c ( y i )=∑ H x ij ,c ( y ij) corresponds to a gamma density with parameters (di + 1/θ)

and (1/θ+H χ i ,c ( y i)) . Hence the expected value E(k+1) (U i) is given by 

E (k +1)(U i)=
(d i+1/θ(κ ))

1 /θ(κ )
+H χ i ,c

(k ) (y i )

(3.4.10)

Following the same process and since the conditional distribution of log U i  is a loggamma, 

the expected value of the log Ui is given by 

E (k +1)(logU i )=ψ(d i+1/θ(κ ))−log(1/θ(κ )
+H χ i ,c

(k ) (y i)) (3.4.11)

with ψ denoting the second derivative of the logarithm of the gamma function.

The summary of the E-M algorithm follows
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 On the initial step, the algorithm uses a standard Cox regression model to obtain the

initial estimates of β and Λ0 from the expressions (3.4.5) and (3.4.8) respectively, by

setting the frailty term equal to 1 (i.e., θ=0)

 Then by using the current values of  θ(k-1),  β(k-1) and  Λ0
(k-1) we obtain the expected

values E(k)(Ui) and E(k)(log Ui) 

 The next step is to maximize the lpart,1 (β) (3.4.5) and lfull,2(θ) (3.4.3) in order to update

the current values θ(k-1), β(k-1) and obtain the values θ(k), β(κ)

 Next, the algorithm iterates between these two previous steps.

 At the final iteration step k, the current values of ζ(k)=(λ0
(k)( . ),  θ(k), β(k))  and Λ0  are

inserted in the marginal log-likelihood

lmarg (ζ )=∑
i =1

s

[d i logθ −logΓ (1/θ )+logΓ (1/θ+d i )

−(1/θ+d i) log(1+θ∑
j=1

n i

Λ0(t i j )exp(β z ij
t))+∑j=1

ni

δ i j(β z ij
t
+ logλ0(t i j ))]

to obtain its value at iteration level k.

Finally,  the  algorithm  reaches  convergence  when  the  absolute  difference  between

lmarg (λ0(k− 1) (.) ,θ(k−1 ) , β (k− 1)) and lmarg(λ0(k )(. ) ,θ(k) , β(k ))  is  smaller  than  a  preset  value  ε.

Consequently  the  observed  information  matrix,  I,  for θ̂  and β̂ is  obtained  by

calculation based on the observable log-likelihood using the joint distribution of ( Y ij , Iij  )

(Klein, 1992).

The drawback of this procedure is that the direct estimation of the hazard function is

not  possible  since the produced distribution estimator is discrete (Rondeau, 2003).  An

alternative approach to the EM algorithm is the Penalised Partial  Likelihood Estimation

(PPL). In addition, PPL converges normally faster than EM while producing both point and

variance estimates for the parameters of interest (Hanagal, 2011). However, Duchateau &
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Janssen (2008) showed that, in the context of the semiparametric gamma frailty model,

EM algorithm yields the same results as PPL.

3.4. Multiple events per subject

Multiple  event-time  data  are  gaining  more  and  more  attention  in  the  survival

analysis during the recent years. Multiple events can be classified according to whether

they are different types of events or recurrences of the same types of events. According to

this classification we refer to the multiple events as competing risks or recurrent events

respectively. We will focus on the latter case where subjects present the event of interest

more than one time while being under observation.

The main interest  in this case is whether there is a correlation of  the recurrent

events within a subject. There are two main approaches to modeling this correlation that

have gathered a lot of attention and both of the approaches comprise extensions of the

proportional hazards models. 

The  first  approach  is  the  Variance-corrected  models  which  do  not  include  the

dependence  of  event  time,  but  instead  they  adjust  for  the  additional  correlation  by

implementing the covariance matrix of the estimators. The term Variance-corrected models

emanates  from  the  fact  that  the  standard  variance  estimate  is  replaced  by  another

corrected estimate that accounts for possible correlations.

The Variance-corrected models are extensions of the ordinary Cox model, where

the estimate of variance for the vector of coefficients treats every observation independent.

However,  in  multiple  event-time  data  this  assumption  is  not  valid  since  subjects  may

contribute more than one observation. Therefore, we need a corrected variance estimator

that  treat  observations in  their  clustered form.  Lin  and Wei  (1989)  proposed a  robust

correction for the naive estimator of the ordinary cox model
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I− 1=− ∂ 2 logL (β)/∂ β ∂ β '

The proposed robust or sandwich estimator is given by

f (t )= lim
Δt →0

1
Δt

Pr (t <T⩽t+Δt )

where U is a n x p matrix of efficient score residuals and D is the n x p vector of leverage

residuals that are taken from the differences of the estimated  β  if each observation i is

taken out of the data set. When observations are clustered in m independent clusters (G 1,

G2,  …  ,  Gm) and  not  independent  as  the  above  formula  assumes,  then  the  robust

covariance matrix is given by 

V=I− 1G ' G I−1

where G is a m x p matrix of the cluster efficient score residuals.

The second approach is the shared frailty models where this correlation is modeled

by a  random effect  that  is  assumed to  be independent  conditional  on  the  per-subject

coefficient. We will extend to the shared frailty models in the chapter that follows.

Another  classification,  which  may  overlap  on  some  level  with  the  previous

classification and is commonly used for the multiple events per-subject data, is according

to whether events have a natural order of occurring or not. If events have a natural order

then we refer to them as Ordered failure events and if not, Unordered failure events. 

In most of the cases, unordered failure events include different events by the same

subject which are called competing risks and subjects can be under risk for multiple events

simultaneously. Same type of events can be treated as unordered failure events, such as

in  the  case of  paired  data  where  two organs of  the  same subject,  like  eyes,  can  be

assigned to two different arms of treatment for the same risk. However, this is not common

since we are restricting the events to have no order,  even though in reality there is a

natural order. 

Ordered events are most commonly used for the same type of events. The same
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approaches that are used for the correlation of the events which were mentioned before

can also be used for the assessment of these events. Different timescales can be used as

well as counting process formation to notate this natural order.

3.4.1.Shared frailty models for recurrent events

As noted above, in the context of recurrent events, the term 'shared' refers to a

single individual and denotes the fact that is shared over time, meaning that there is only

one individual sharing each value of the random effect (Hougaard, 2000). Therefore what

used to be group variation, now is variation between individuals described by the random

variable (frailty term) and the variation that is described by the hazard function is now the

within-subject variation.

In addition to the assumption of all times being independent given the values of the

frailties, it is also assumed that the individuals are independent. It should also be clear that

whenever there is a single type of event, as it is in our case, then the event times are

ordered with 0 < T1 < T2 < …, meaning that there is no possibility that two succeeding

events  within  a  subject  coincide,  hence  there  are  no  ties.  In  that  sense,  we  need to

implement a more complex structure when describing recurrent event data, in order to

keep track of the event order within every subject.

3.5. Time-scales for recurrent events

In chapter (2.3) we mentioned the different time-scales that can be used in order to

represent the data. Likewise, recurrent event data can be represented in different ways

based  on  a  different  time-scale  each  time.  Kelly  and  Lim (2000) used  three  different

timescales in the five predominant Cox-based models for recurrent events (Andersen and



48

Gill (AG), Prentice Williams and Peterson gap time (PWP-GT) and elapsed time (PWP-CP,

CP denotes the counting process form of the data), Lee, Wei and Amato (LWA), and Wei,

Lin and Weissfeld (WLW)). Their application included the gap, the calendar and the total-

time timescales. A visual representation of the timescales that were used can be seen in

figure 3.1. As far as the total-time timescale is concerned, one can see that it has limited

appeal since subjects would be at risk for all of their events at the initiation of monitoring

even though some events need previous events in order to take place. Therefore, we won’t

refer to it for the remainder of this thesis.

Kelly  and Lim (2000) argued that  adopting  a different  timescale  determines the

nature of the model that is used. In the Gap timescale setting, the  model is conditional

since the individual  under observation is at  risk for  the k th event  if  only the (k-1)th  has

already occurred, while in the total time-scale the model is marginal since being at risk for

the kth  event does not depend on the previous events. They  showed that these models,

which depend on robust variance estimate to adjust for misclassifications, do not account

adequately  for  the potential  correlation  that  occurs  in  situations  where  a  subject  has

multiple events, the so called within-subject correlation. In order to face this problem, they

proposed the  use of  the  frailty  models,  where  this  correlation  is  modelled  by  using  a

random effect. 

The timescale that is most commonly used in the context of frailty models is the gap

timescale where the subject starts again at time 0 after an event and the time at risk for a

subject corresponds to the time it takes for the next event to occur. In other words, the

clock restarts after every event. Under the total time, the time at risk is measured for every

event  from time 0 (entry  to the study) till the occurrence of the event regardless if other

events have occurred meanwhile.

Let  us  now  clarify  how  we  define  the  different  time-scales  by  introducing  the

concept of risk intervals. A risk interval is the period that an individual is at risk of having



49

the event of interest. Every risk interval is interrupted either by an event or by a period that

the subject was not under observation. For every interval there is a starting and an end

point.  The starting point  can be the entry  to  the study,  the moment after  an event  or

censoring  has occurred and the end point is the time of event occurrence or the time of

censoring.

Duchateau et al. (2003) extend the previous work by implementing frailty models to

account for the within-subject correlation in a study of recurrent asthma attacks by also

taking into account the time that an asthma attack lasts. Taking into account how much an

asthma attack (or generally the event of interest) lasts introduce an accessory problem to

the analysis since a way must be found to address the issue of what should be done with

the time that the subject was not at risk either due to the duration of the event or because

of censoring.

Adopting one of these timescales determines the hazard function differently. So,

let's assume that there are N subjects in total (i=1,2,...,N) and that for every subject i there

are ri  risk intervals. This time the risk intervals differ from the definition of Kelly and Lim

since the time that an event or censoring last is taken into account.  Consequently,  for

every ri risk interval there is a ti j1 starting point of the j-th risk period and t i j2 end of the j-th

period. In the Calendar time the risk interval for a specific event is the time from the end of

the previous event to the start of the next event.

This way, under the Calendar timescale model the complete information that we

have for the i-th subject can be summarised by the ri triplets 

((t i 11 , t i 12 ,δ i 1), ...,(t i r i 1
, t i r i 2

,δ i r i)) (3.3.1)

so the hazard function is given by
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λi (t )={λ0(t )U i exp(β z i )for t ij 1≤t ≤ t ij 2 , j=1, ... , r i

0otherwise
(3.3.2)

Then the corresponding likelihood is given by

L (β )=∏
i =1

N

∏
j =1

r i

λi (t ij 2)
δ i j exp− Λ i (t i j 1 , t i j 2) (3.3.3)

with the cumulative hazard given by 

Λ i (t i j 1 , t i j 2)=∫
t i j 1

t i j 2

λi (t )dt (3.4.3)

Under the gap timescale the information that we have can be summarised in the triplets 

((t i 12 −t i 11,δ i 1), ... ,(t i r i 2
− t i r i 1

, δ i r i)) (3.3.5)

so the hazard function becomes

λi (t )={λ0(t − t ij 1)U i exp(−β z i )for t ij 1≤t ≤ t ij 2 , j=1, ... , r i

0otherwise
(3.3.6)

The likelihood function is the same as in the calendar timescale setting but now the

interpretation of the hazard function λi(.) is different as in the gap timescale the ordering of

events is ignored. This is succeeded by resetting the start of risk period j at time 0 while

using  the  gap  timescale,  whereas  in  the  calendar  timescale  the  start  of  risk  period  j
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corresponds to the actual time since the subject entered the study. However, in both cases,

the length of each risk period remains the same.

These two timescales can be adopted in  the case of  the  semiparametric  frailty

model where we get two different expressions for the likelihood function in respect to the

risk sets that are used. The partial likelihood function under the Calendar timescale can be

written as:

L (β )=∏
i =1

N

∏
j =0

r i

{
U i exp(β z i)

∑
k=1

N

Y k (t i j 2)U k exp(β zk )}
δ i j

(3.3.7)

where Yk (ti j2) is an indicator for the k-th subject being (or not) at risk, given by

Y k (t i j 2)={1if k −th subject is at risk at time t i j 2

0otherwise
(3.3.8)

Following the same notation, the partial  likelihood function under the Gap timescale is

given by

L (β )=∏
i =1

N

∏
j =0

r i

{
U i exp(β z i )

∑
k=1

N

∑
l=0

r k

Y k l (t i j 2)U k exp(β z k)}
δ i j

(3.3.9)

with the indicator for the risk being Yk l (ti j2)

Y k l (t i j 2)={1if t k l 2−t k l 1≥t i j 2−t i j 1

0otherwise
(3.3.10)
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Figure 3.1: Illustration of (i) Event history along with (ii) total time (iii) Calendar time and (iv)

Gap time of 3 patients with recurrent events ( g denotes events and  O censoring)
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Something that  comes into question though,  is  the reasoning to  use a different

timescale in the first place. Each time we adopt a different timescale, we get an answer to

a different research question and every question brings out a different aspect of the data.

In the Calendar timescale model our main concern is the evolution of how often the event

of interest occurs since the entry to the study while in the Gap timescale model  what

seems to be more interesting is the effect that an event has on the rate of the occurrence

of a subsequent event.

In addition, we can often evaluate the need for using different timescales prior to the

analysis. If  we have a basic idea about the evolution of the event of interest and how

susceptible its rate is to change over time, we can decide if we need to implement more

timescales. That is, if we do not expect a radical change in the rate of the recurrent event

then we can simply use the gap timescale. In reverse, if we do expect a radical change

then it is better to fit more models (Duchateau, 2003). 

3.6. Variance-corrected Models for recurrent events

The  concept  of  an  event  occurring  to  a  subject  more  than  once  during  the

observational period is an extension of the single event model. In this chapter we are going

to present in more details the AG, PWP-CP and PWP-GT models that we mentioned in a

previous chapter,  and how different timescales can be used.  In the variance-corrected

model approach, the correlation of event times is not included in the model as it does in

frailty models; instead the covariance matrix of the estimators is adjusted to account for the

additional dependence.

The simplest modeling approach based on the Variance corrected models is the AG

model, proposed by Andersen & Gill (1982). In this model, all subjects are at risk for each

event at all times. This implies that all subjects share a common baseline rate function.
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Having a common baseline function for all events can be succeeded by using counting

process in the definition of the risk intervals.

The PWP-CP and PWP-GT models are also called conditional models. The models

are conditional in the sense that a subject cannot be at risk for a second event until the first

event has occurred and so on. Contrary to the AG model, conditional models stratify data

according to each event, this way, they allow baseline hazards to vary with each event.

However,  the  PWP-CP model  is  essentially  an  AG model  with  event-specific  baseline

hazards  by  stratification.  The  PWP-GT  model  is  a  little  different  as  it  uses  the  gap

timescale instead of counting process.

Even though two different timescales can be used, let us clarify that, both of these

“different”  models focus on the survival  time between two gaps.  The difference of  the

models comes up in the definition of the risk sets. In the gap-timescale, the clock resets at

time 0 after each event as we have mentioned before, while in the calendar time, uses the

actual times from study entry. The hazard function under the PWP-GT model for the i th

subject and kth event, under the assumption that all the covariates at the start of the study

are fixed, is given by:

λ(k )(t ; Z i
(k ))=λ

0
(k )(t )exp(Z i

(k )β )

The corresponding hazard function under the PWP-CP is given by:

λ(k )(t ; Z i
(k ))=λ

0
(k )(t k − t k −1)exp(Z i

(k ) β)

We should also make clear that the conditional model with the gap timescale takes

into account the natural order of the recurrent event contrary to the simple frailty model

where the order is ignored while using the gap timescale. In order to succeed that,  a
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variable with the ascending number of the event is included to the dataset and is used to

stratify the data, as we mentioned before.

Suppose now that  we have a  study with  n  patients  that  lasted 20 months  that

focuses on multiple subsequent infections. Each patient after having experienced the event

of interest (e.g. infection), is treated for it and returns to the study once being healed. While

being treated, subjects are assumed not to be at risk, therefore after each event there is a

risk-free  period  for  every  subject.  Out  of  these  n  patients  we  will  focus  on  three

independent patients for the illustration of the dataset for the variance corrected models.

The first patient experienced the event of interest twice, one at month 5 and the other at

month 9 and after that he was followed for 7 additional months till the study ended and he

was censored. After his first event, he was treated for 2 months before he returned to being

at risk while after his second event the healing period, hence the risk-free period, lasted 4

months. The second patient experienced the event three times, at 8, 16 and 19 month

respectively  and  never  returned  for  follow-up  observation  after  the  last  infection.  His

healing process lasted 3 months after event one and 1 month after the second event.

Finally, the third patient experienced the event once at month 4 and returned for follow up

at month 9 until he was censored.

In table 3.1 we see the data layout of the three hypothetical subjects for the three

variance-corrected models. One can see that there is no difference in the risk periods for

each of the three hypothetical patients since each patient is at  risk for the same time,

however there are differences in the risk sets. Let us take now the risk set for the second

event for instance. We notice that under the calendar timescale the first patient enters the

risk set at month 7 and exits at month 9, the second patient enters at 11 and exits at 16,

while the third patient enters at 9 and exits at 20 when the study ends and contributes to

the partial likelihood a censored survival time. Under the gap timescale all three patients

enter  at  time 0 and they are all  present  until  4  when patient  3  exits.  Additionally,  the
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duration of healing which takes place immediately after each event, is incorporated since

each subject is not at risk for the next event immediately after the preceding event but it

becomes at risk at the end of the healing process. 

3.7. The conditional shared frailty model

Till  now  we  have  mentioned  the  simple  frailty  model  which  incorporates  the

heterogeneity of the subjects in the frailty term. This model, like the AG model, does not

allow the  baseline  hazard  rate  to  vary  by  the  event  number.  On  the  other  hand,  the

variance corrected models that allow for different baseline hazards, do not incorporate the

heterogeneity  into  the  estimates  themselves,  instead they  rely  on  the  robust  standard

errors to assess the heterogeneity and this is why they remain biased (Box-Steffensmeier

& De Boef, 2006).

Even though shared frailty models perform well in assessing the heterogeneity of

the subjects by the use of the frailty term, they lack in reducing the possible biases due to

the dependency of recurrent events. An attempt to incorporate both heterogeneity of the

Patient 1 Patient 2 Patient 3
time time time

Model interval Event Stratum interval Event Stratum interval Event Stratum
(0,5] 1 1 (2,8] 1 1 (0,4] 1 1

AG (7,9] 1 1 (11,16] 1 1 (9,20] 0 1
(13,20] 0 1 (17,19] 1 1
(0,5] 1 1 (2,8] 1 1 (0,4] 1 1

PWP-CP (7,9] 1 2 (11,16] 1 2 (9,20] 0 2
(13,20] 0 3 (17,19] 1 3
(0,5] 1 1 (0,6] 1 1 (0,4] 1 1

PWP-GT (0,2] 1 2 (0,5] 1 2 (0,11] 0 2
(0,7] 0 3 (0,2] 1 3

Table 3.1: Variance-corrected models for recurrent events, data layout for three 
hypothetical patients
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subjects and dependency of the events was made by Cook and Lawless (2007). Their

attempt involved a mixture of semiparametric shared gamma-frailty model with Poisson

counting process where the subject specific function was given by:

λi (t |H i (t ))= lim
Δt →0

P {ΔN i (t )=1 |H i (t )}
Δt

=u i ρi (t )

where ui  are the random effects and given those effects and covariates, { N i (t), 0 ≤ t } is a

Poisson process with rate ui ρi (t).

The mixture of the semiparametric shared frailty model with the counting process

expressed by the stratification by the event is what we are going to simply call conditional

frailty model. It combines the incorporation of unobserved heterogeneity by the frailty term

and the incorporation of dependency due to recurrent events by stratification. The hazard

function for the jth subject and the kth event is given by:

λ j
(k )(t )=λ0

(k )(t k −t k− 1)u j exp Z j
(k ) β

The corresponding partial likelihood for this model, given the frailties, is given by:

L (β )=∏
j=1

n

∏
k=1

K

{
U j exp(β Z i

(K ))

∑
j=1

n

∑
k=1

K

Y j k u j exp(β Z j
(k ))}

δ j
(k )

where δ is the censoring indicator which is equal to 1 if the k th event is observed for the jth

subject and 0 otherwise, while Y is the risk indicator, which takes value 1 if the subject is at

risk for the kth event and 0 if not.
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3.8. Martingale Residuals

After fitting the model, its adequacy needs to be assessed and that is crucial in the

modeling  process.  Using  the  martingale  residuals  is  a  well  established  method  for

checking the adequacy of the fitted model as it gives us the ability to decide whether the

model's prediction of the number of observed events is right (Mazroui, 2016). However, in

the presence of censored survival times, visual inspection of the model fitting becomes

somehow more complicated than the  methods used in  the  linear  regression  modeling

(Collett, 2003) where errors are assumed to be normally distributed. 

Martingale residuals are based on methods known as martingale methods, hence

their name. These residuals comprise a refinement of the modified Cox-Snell residuals and

can be calculated by using the counting process formulation. Therefore, the basis for the

Martingale residuals are the difference between the counting process and the integrated

intensity function (Andersen et al, 2012)

M i (t )=N i (t )−∫
o

t

Y i (s )exp(β Z i (s ))d Λ0 (s)
(3.5.1)

If we denote β̂ the estimator of  β  by the maximum partial likelihood then the Breslow

(1974) estimate of the cumulative hazard is given by

Λ̂0(t )=∫
0

t ∑d N i (s )

∑Y j (s )exp(β̂ Ζ j (s ))
(3.5.2)

By implementing this expression in (3.5.1), we define the martingale residual as (Therneau
et al. 1990)
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M̂ i (t )=N i (t )−∫
o

t

Y i (s )exp(β̂ Z i (s ))d Λ̂0 (s)
(3.5.3)

A simplified form of expression 3.5.3 for the simple semiparametric proportional hazards 
model is 

M̂ i=δ i − Λ̂0(x i)exp(β̂ Z i ) (3.5.4)

where  δi is the failure indicator and xi is the observational time. The residual Mi can be

interpreted as the difference between the observed number of events (0 or 1) for subject i

between time 0 and Ti  , and the expected numbers based on the fitted model. Barlow &

Prentice  (1988)  suggested  a  graphical  use  of  these  residuals  in  order  to  assess  the

goodness-of-fit. It was also suggested that it is often sufficient that residuals are centered

about zero with a known scaling.

3.9. Akaike information criterion

Akaike information criterion is  one of  the  most  commonly used measure of  the

relative quality when it comes to survival models and in that sense it provides a means for

model selection. It  was first introduced by Hirotugu Akaike in 1973. Its general form is

given by:

AIC=−2 log(maximized likelihood )+2p  

where p is the number of parameters of the model.

The criterion combines the goodness of fit of the model via the computation of its

likelihood with the trade-off of the complexity of the model which is penalized by double the
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number of parameters of the model. It is called criterion and not a test since it does not

provide a testing of some null hypothesis but rather an information criterion in the form of a

relative estimate of the information lost.

Using the  AIC as  a process of  model  selection  is  a  common practice  in  many

occasions. In the framework of recurrent event analysis it has also been used extensively.

More specifically, Duchateau et al. (2003) used AIC to select the most appropriate model

between fits of different timescales. Additionally, the same process was later used by Ullah

et al. (2012) while analyzing recurrent sport injuries in order to evaluate the goodness-of-fit

of their fitted models. 



61

Chapter 4.

Setting

In this chapter we set the foundation for our analysis, present some of the terms that

we are going to use later in the actual analysis and finally declare and provide justification

for the assumptions undertaken later on.

4.1. Adherence to the treatment and gap definition

In this thesis, we are trying to estimate the gaps in the treatment, and deductively

the response to the treatment, among HIV-positive patients in Greece. For this reason, we

are trying to investigate if there is any correlation between the occurrence of consecutive

gaps in the clinical visits of these patients.

The individuals that are included in the AMACS, along with being monitored, are

also undergoing a variety of medical and biochemical examinations as well as receiving

treatment for HIV and other possible coinfections. The attendance on those visits is crucial,

since the clinical state of a patient can be reevaluated with each appointment he attends

and  a  better  course  of  action  concerning  their  health  improvement  can  be  adapted.

Therefore,  patient  attrition  pose  a  great  threat  to  the  success  of  antiretroviral  therapy

programs and the fight against the epidemic.

With that been said, we need to define what constitutes a gap in attendance to

monitoring and treatment appointments,  or simply gap in care/treatment,  and therefore
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what is considered event or failure to our analysis. 

A patient is categorized as “active” if he returns to a clinic for monitoring within a

year since his last clinic encounter; in reverse, a patient is categorized as “non-active” if a

year has passed since his last clinic encounter. However being categorized as non-active

means  that  the  only  information  we  have  is  that  the  gap  in  care/treatment  occurred

somewhere within this one year interval. Hence this definition implies that our data are

interval  censored  which  makes  the  construction  of  the  likelihood,  where  we base  our

inferences, more complex. A way to overcome this drawback is by assuming a specific

moment that each patient “decided” not to attend his next appointment for monitoring or

care, within the year of his absence. 

A problem arises while trying to define the moment of incidence since there is no

consensus in the definition of gap in care. The work of Chi et. al. (2011) is based on the

need of setting a standard for studies like ours.  Working with a substantially large study

population of HIV positive people from more than 100 health facilities, they recommend a

threshold of 180 days since the last clinic encounter as a universal definition for gap in

care/treatment. Taking in to account this recommendation we define the median (182.625

days) of the one year interval as the moment when the event occurred.

After having defined what constitutes event of interest for our study, the next step is

to clarify the at-risk and risk-free periods for the subjects according to what was mentioned

in the previous chapter. Under the calendar timescale, a subject’s at-risk period for the first

event begins at the initiation of monitoring. Then we run through all  registered visits of

each patient until a year long gap (or longer) is found. After having identified the date of

the last visit before the gap, we add 182.625 days to this date to signify the end of the at-

risk period. If a patient has a subsequent visit, then his next at-risk period spans from this

visit until he is either censored or committing a second gap. Subsequently, the risk-free

period is signified by the in-between time. This process continues till there are no more
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visits to check. 

4.2. Definition of study endpoint / censoring

As  mentioned  before,  one  of  the  most  crucial  concepts  in  Survival  analysis  is

censoring.  Therefore  we need to  define  the  study endpoint  which  is  the  moment  that

patients who are still monitored, will be right censored.

Since AMACS is an ongoing study, data on HIV-positive patients are still collected

as  the  moment  we  speak,  therefore  there  is  no  actual  endpoint  of  data  collection.

Additionally, AMACS collaborates with 13 clinics and hospitals scattered in Greece, making

the universal definition of study endpoint ever more complex. 

Taking these facts into account, we defined thirteen distinct endpoints instead of a

universal  definition of our study endpoint.  Each clinic or hospital  that  collaborates with

AMACS has a different endpoint that was defined by the latest date that they provided data

of their patients; thereby, each patient, depending on the clinic or hospital that they attend,

got his censoring time due to administrative censoring.

However, following this process, led to another problem since many of the patients

have visited more than one clinic or hospital  within their  observational time interval. In

order to deal with this problem, we used as the reference clinic or hospital the one that the

subject has visited most times.

In the second chapter of the thesis we referred to the main possible sources of right

censoring, which are withdrawal from the study, loss to follow up and competing risks.

However, since the event of interest in our analysis is the gap in the attendance and not

death, we have to redefine the censoring reasons. Consequently, in our data, there are two

reasons that a subject is censored. The first is when the database closes (administrative

censoring) and the second is if a patient dies, indifferent to the cause of death.
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4.3. Longitudinal measurements

In studies like ours,  one is interested in estimating the evolution of an outcome

variable  adjusted  for  a  set  of  explanatory  variables.  These  variables  can  be  either

qualitative like arm of treatment, sex and origin or quantitative like age, virus load or CD4

count. Many models proposed in literature include these variables in the univariate form,

where the values of the measurements are determined at the moment that a subject enters

the study. However, in a longitudinal study like ours, it is irrational to assume that variables

related to disease progression (like CD4 counts and viral load) stay constant throughout

the whole period of observation, especially since there are subjects that are monitored for

almost  two decades.  Thereby,  the  hazard  function  is  more  depended  on  the  updated

values of those time-depended covariates rather than on their value at the initiation of

observation.

While it is rational to include covariates in the model that are time depended, we

need to take into account the nature of these covariates before doing so, since the model

may become more complicated.  In  addition,  model  over-fitting is  another  problem that

arises when time-depended covariates are included in a model. On the other hand, some

variables, such as the subject’s age, that conceptually makes sense to treat them as time-

depended covariates, including them as such would not affect their estimated coefficients

since the  evolution of  the  subject's  age is  absorbed into  the baseline  hazard function

(Hosmer & Lemeshow, 2008). As long as age is included into the model in linear form and

not in a more complex way such as quadratic form or spline, the effect remains the same

(Therneau  &  Grambsch,  2000)  irrespectively  if  it  is  treated  as  time-constant  or  time-

dependent. The reason the estimated coefficients are the same in both cases is that the

internal computations which are used for the models depend only on hazard ratios. Let us

take for instance the age at enrollment and current age for the illustration of the previous

sentence. Additionally, let us examine the hazard ratio at time t for two subjects, subject “a”
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and subject “b”. Their age at enrollment would be agea and ageb while their current age at

time t would be agea + t and  ageb + t respectively. Their hazard ratio is given by:

HR=
λ

0
(t )exp(β (agea+ t ))

λ0 (t )exp(β (ageb+t ))
=

exp(β agea)
exp(β ageb)

To  generalize  the  simple  Cox  model  hazard  function  (2.6.2) by  including  time-

depended covariates is not difficult and is given by

λ(t ,z (t ),β )=λ0(t )exp(z 1
T (t )β1+z 2

T β2) (4.1)

 

It is very important though, to realize that this is no longer a proportional hazards

model as it would be if we only included constant covariates. However the proportionality

could be implied. Supposing that we had a model including the measurement of the CD4

cell  count  at  time  t  (which  is  time-depended  covariate)  and  sex  (which  is  constant

covariate).  If  we would denote z1(t)  and z2,  cd4 count and sex respectively the hazard

function of the model would be given by

 

λ(t ,z (t ),β )=λ0(t )exp(z 1(t )β1+z 2β2)

Consequently, the hazard ratio for sex would be given by

HR (t ,z 2=1,z 1=0|z1 (t ))=
λ0(t )exp(z 1(t )β 1+β2)

λ0 (t )exp(z1 (t )β1)
=exp(β 2)

 

One can see that this hazard ratio does not depend on time. In that sense we can still call
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it proportional to a function of time (Hosmer & Lemeshow, 2008).

Likewise with (4.1), the generalized form of the frailty model hazard function (3.1) with

time-depended covariates (Huang, 2010), is given by 

λi (t )=λ0(t )u i exp(z1i (t )
T

β1+z2 i
T β2) (4.2)

4.3.1.Martingale Residuals per subject

In the previous section we referred to the multiple observations for a subject due to

time-depended covariates. In the framework of shared frailty models, where we also get

multiple observations per subject since every patient comprises a “group”, the subject of

how to calculate martingale residuals arises. It seems rational that martingale residuals

should  also  be grouped on the  level  of  every  patient.  This  grouping,  as  Commenges

(2000) explains, implies a way of smoothing the graph of residuals by summing them up

for every group.

Suppose that we have n subjects in our dataset. If we now denote m the count of

observations, we have m > n observations. Most of the statistical programs will return m

residuals, one per observation. According with what was said in the previous paragraph,

the per-subject residual for a subject i, would be the sum of the residuals for his multiple

observations.

Once the summed martingale residuals are calculated, one per subject and totally

n, we can plot them versus the linear predictor or any of the individual covariates. Plotting

these residuals however is complicated by the fact that we have m observations and n

residuals. To resolve this problem, one can use a constant covariate that is measured at

the enrollment of the subject to plot the residuals against it.
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Chapter 5.

Application in simulated data

In this chapter we apply the frailty models based on the methods we mentioned in

the previous chapters in simulated data and present the results.

5.1. Simulated data

We use simulated data so that we can compare the conditional frailty model with the

other Variance-corrected models as well with the simple semiparametric Cox model and its

extension the semiparametric  gamma frailty  model.  We apply the fits  in  both gap and

calendar timescales.

For that reason, we generated in R, two pairs of 1000 data sets for recurrent events

for two corresponding scenarios as seen below:

 Scenario A: Heterogeneity among the subjects

 Scenario B: No heterogeneity

The first scenario includes observations of subjects that are heterogeneous in the

sense of some subjects being more prone than others to the (re)occurrence of the event of

interest for some unknown or unmeasured reason. In the second scenario the groups of

observations by each subject is assumed to be homogeneous, meaning that there is no
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heterogeneity between subjects. In all cases the size of the simulated sample is N=1000.

The data for each subject j are simulated by following the multiplicative intensity

function described by Andersen & Gill (1982). More specifically, the intensity process that

is used for the generation of data is given by

Y j (t )λ0 (t )u j exp(βX j )

where Yj (t) is a predictable process which is equal to 1 when subject j is under risk. Within-

subject correlation (or between subject heterogeneity) is induced to the data by the frailty

term u which follows a gamma distribution with E(u)=1 and V(u) =  θ.  Censoring times

follow a Uniform distribution in the interval (0,10) (time in years).

Disjointed risk intervals are included in the simulated data, since a subject can be at

no risk after the (re)occurrence of an event.  The risk free period of a subject follow a

uniform distribution in the interval of (0.5 , 0.8). The specific values were chosen in order to

resemble our real life data that we are going to analyze in the next chapter.

We assume that the heterogeneity between subjects are quite large and for that

reason we picked θ = 0.7, as the value for the variance of the frailty term. In addition, we

included an explanatory covariate that follows a Binomial distribution, with the probability

p=0.4 for the covariate x being equal to one.  We assume that the effect of the covariate is

also quite  large so we pick  β =  0.8 for  the true covariate effect  that  we are going to

compare to the results of the models. Since x is a boolean variable with values 0 and 1, we

assume that  it  represents smoking status of the subject,  with  0 corresponding to non-

smoker.
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5.2. Results of simulated data

We estimated all models in R, by the use of the COXPH procedure in the package

'survival'. In the cases when a model did not converge because of the imbalance in the

groups, the loop algorithm repeated the specific step until convergence was succeeded. 

Table 5.1 shows the distribution of the estimated variance θ for the 1000 simulated

data under both timescales,  both scenarios and finally both models (simple frailty  and

conditional frailty) as well. In all  cases, it  seems that the simple frailty model performs

more adequately in assessing the frailty term. In scenario A where the variance of the

frailty  term  is  set  to  0.7,  we  observe  that  under  both  timescales  the  frailty  fit  never

estimated a no-frailty model whereas the conditional frailty fit estimated 40.6% and 80.2%

of the time no-frailty model under the gap and calendar timescale respectively. Additionally,

the estimated frailty variance by the simple frailty fit is far more closely clustered around

the true value of θ=0.7

 Scenario A (Heterogeneity)

As been said before, heterogeneity among subjects means that some subjects are

more frail to present the event of interest compared to the rest. That will result the risk sets

for the larger number of events to be dominated by more frail subjects than the risk sets of

the earlier events while using the models that are stratified by the natural order of events.

The simple Cox models performed quite  fairly  in  both timescales as evaluated by the

coverage rate of the estimated β, which was 88% (table 5.2). However coverage improved

in the marginal  models since the confidence intervals  are computed using the Robust

estimate of the standard error, and thus were wider. This comes natural since variance

corrected models, correct for the unobserved heterogeneity through those robust estimates

and not during the estimation of the coefficients as frailty and conditional frailty models do.
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However,  the  good  performance  of  the  AG  model  should  be  mostly  credited  to  the

limitation of the simulation method as the simulated datasets were generated using the

Andersen & Gill’s multiplicative intensity function.

As for the conditional models, both PWP-GT and PWP-CP seem to underestimate

the effect of the covariate in the (re)occurrence of the event.  In both cases, the mean

estimated effect of the covariate was approximately 0.67 while the true effect was set equal

to 0.8.  In addition, in both timescales, these models had the lowest coverage rate of the

true coefficient by the estimated 95% CI’s along with the conditional frailty model in the

calendar timescale. 

The simple frailty  models seem to perform better  in  both  timescales  while  they

produce more accurate estimates as well.  The coverage rate of true β by the estimated

CI’s, is the largest compared to the other models since in both cases approaches the 95%

of the cases. Additionally, in both timescales, the rejection rate of the estimated  θ  (the

cases where the model results in non statistically significant estimate for the frailty term) is

less than 4% and specifically under the calendar timescale where only 1.3% of the cases θ

is rejected as seen in table 5.2. 

As far as the conditional frailty model is concerned, one can see that the results

between the two timescales vary a lot in respect of the mean estimated θ, coverage rate of

true β and rejection rate of θ as well. However these differences between the two fits do

not exactly mean that one performs better than the other, since both perform poor in all

categories mentioned before. Indicative of the poor accuracy for these models is the fact

that under both timescales the rejection rate of the variance θ is high. More specifically, in

only 20% of the cases under the calendar timescale, θ seems to be playing a significant

role in assessing the unobserved heterogeneity. The difference between the rates of the

models could be that the conditional frailty model under the calendar timescale is over

fitted since both timescale and stratification account for the natural order of the events. 
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 Scenario B (No heterogeneity)

In  scenario  B,  where  no  heterogeneity  among  subjects  is  incorporated  in  the

simulation process, we observe that all models under both timescales are performing very

well with respect to the estimation of the true covariate effect. In all cases the coverage

rate is approximating 90%, while the simple frailty models had the highest coverage rate

with values close to 95%. Only the two conditional models seem to overestimate the effect

of the covariate, however the extent of the overestimation remains low and should probably

be credited to the cases where θ is not rejected by the analysis. 

Simple shared frailty models seem to be rejecting correctly the variance of the frailty

term in  all  simulations  giving  a  very  satisfying  rate  equal  to  one.  On  the  other  hand

conditional frailty models falsely do not reject the variance of the frailty term in 6% and 8%

of the cases, under the gap and calendar time respectively. 

Figure 5.1 displays the densities of the estimated coefficients by the models. The

curves that correspond to the PWP-GT, PWP-CP and both conditional frailty models for the

two timescales are shifted to the left indicative of their poor performance in estimating the

true β which is also reflected in table 5.2. Once again both simple frailty models seem to

be practically unbiased.

Based in all previous comments, the simple frailty model is recommended in both

cases where heterogeneity is present which is what is of more interest. In addition, the

frailty model under the calendar timescale seems to perform better with regard to rejection

rate since it rejects falsely  θ  in less cases compared to the same model under the gap

timescale.  Therefore,  if  the  researcher  has  no  particular  interest  in  studying  how  the

hazard rate of the recurrent event evolves after an event has taken place then the analysis

can be solely based on the calendar timescale.

As mentioned before data was simulated by following the multiplicative intensity

model as described by Andersen and Gill which does not allow differences in the baseline
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hazard of the different events. Additionally,  as the number of subjects is decreased in the

higher ranks of events, the conditional frailty models and the conditional risk set models

(PWP-GT and PWP-CP) as well are not able to obtain stable estimates (Lim et al, 2007).

Therefore, for a more thorough evaluation of the conditional frailty model, one should draw

the simulated data  sets  from a hazard function  that  allows for  event  specific  baseline

hazards, so that the effect of event dependence would be induced. However, having in

mind that within-subject correlation, discontinuous risk intervals and event dependence are

really difficult situations to handle especially when one is trying to simulate data, more

complex techniques are needed.
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Table 5.1: Distribution of the estimated θ in the 1000 simulations 

(Scenario A: Heterogeneity)

Gap timescale Calendar timescale

Frailty Conditional frailty Frailty Conditional frailty

θ ( , ] Freq (%) Freq (%) Freq (%) Freq (%)

0 – 0.1 0 (0) 406 (40.6) 0 (0) 802 (80.2)

0.1 – 0.35 15 (1,5) 64 (6.4) 7 (0.7) 19 (1.9)

0.35 – 0.65 404 (40.4) 196 (19.6) 374 (37.4) 41 (4.1)

0.65 - 0.75 235 (23.5) 47 (4.7) 269 (26.9) 6 (0.6)

0.75 - 1 298 (29.8) 116 (11.6) 330 (33.3) 28 (2.8)

1+ 48 (4.8) 171 (17.1) 20 (2) 104 (10.4)

total 1000 (100) 1000 (100) 1000 (100) 1000 (100)

(Scenario B: NO Heterogeneity)

Gap timescale Calendar timescale

Frailty Conditional frailty Frailty Conditional frailty

θ ( , ] Freq (%) Freq (%) Freq (%) Freq (%)
0 – 0.1 893 (89.3) 867 (86.7) 924 (92.4) 898 (89.8)

0.1 – 0.35 107 (10.7) 62 (6.2) 76 (7.6) 12 (1.2)

0.35 – 0.65 0 (0) 55 (5.5) 0 (0) 60 (6)

0.65 - 0.75 0 (0) 9 (0.9) 0 (0) 10 (1)

0.75 - 1 0 (0) 6 (0.6) 0 (0) 10 (1)

1+ 0 (0) 1 (0.1) 0 (0) 10 (1)

total 1000 (100) 1000 (100) 1000 (100) 1000 (100)
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Table 5.2: Simulation results for N=1000, β = 0.8, θ = 0.7 

Timescale Bias

Scenario A: Heterogeneity

Gap

Cox 0.741 0.092 0.059 0.881
Marginal 0.741 0.101 0.059 0.913
PWP-GT 0.671 0.093 0.129 0.706
Frailty 0.8 0.109 >0.001 0.947 0.69 0.044
conditional frailty 0.762 0.104 0.038 0.827 0.51 0.466

Calendar

Cox 0.769 0.091 0.031 0.904
AG 0.769 0.106 0.031 0.936
PWP-CP 0.667 0.093 0.132 0.694
Frailty 0.8 0.108 >0.001 0.945 0.69 0.023
conditional frailty 0.71 0.098 0.09 0.729 0.22 0.809

Scenario B: No heterogeneity

Gap

Cox 0.799 0.09 0.0015 0.957
Marginal 0.799 0.09 0.0015 0.959
PWP-GT 0.799 0.091 >0.001 0.953
Frailty 0.8 0.09 >0.001 0.955 0.02 1
conditional frailty 0.814 0.093 0.013 0.939 0.06 0.937

Calendar

Cox 0.798 0.089 0.0014 0.953
AG 0.798 0.089 0.0014 0.954
PWP-CP 0.799 0.091 >0.001 0.952
Frailty 0.799 0.089 >0.001 0.953 0.01 1
conditional frailty 0.816 0.093 >0.001 0.923 0.07 0.92

Mean 
est. β 

Mean 
standard 

error

Coverage 
rate

Mean est. 
θ 

Rejection 
rate θ
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Figure 5.1: Densities of the estimated β (Scenario A: Heterogeneity) Gap and Calendar timescales
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Chapter 6.

Application in real life data

In this chapter we present the aspects and measurements of our study population
for  the  illustration  of  all  models  mentioned in  the  previous chapters  and foremost  the
Shared Frailty Models as well as the results of the analysis.

6.1. Patient Characteristics

For the illustration of the models, we used the data provided by the AMACS. As

mentioned before, AMACS within the twenty years of its existence, has monitored over

7000 patients. More specifically, our initial dataset included 7038 HIV-positive patients that

had  232037  visits,  in  total,  in  the  clinical  sites  spanning  from  1  January  1985  to  10

December 2014. On average, every patient had attended the clinical sites 32 times, with

the median number of visits being 23.

For our analysis, we focused on patients that had at least one follow-up visit to the

clinical site after their first appearance. Therefore, out of the 7038 patients, we excluded 66

patients who had just one visit and never returned to care either because they were loss to

follow up or because their visit date was too close to the closure of the dataset, so we were

left  with 6972 patients who had at least two visits.  In addition, 13 more patients were

excluded as they were doubts about the accuracy of their entries since appointments were

documented after their designated date of death. Furthermore, we excluded 4 patients that

had undergone change of sex operation since we had not enough people to form a group

with this characteristic and 92 patients that were not adults yet during their first visit in the

clinical care since we wanted to limit our study to the patients who were of legal age.
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Finally, 31 more patients were excluded since there were missing data in key components

for our analysis, such as age, CD4 count or virus load; leaving us with 6832 HIV-positive

patients that were included in the analysis. 

Table  6.1  presents  the  descriptive  statistics  of  our  study  population.  The  vast

majority of our study population  is male 5726 (83.8%) whereas  there are 1106 (16.2%)

females. The study population is representative of the people who live with HIV in Greece

since according to  KEELPNO, the corresponding percentages are 82% for  males and

17.8% for females.  As mentioned above, patients who were at least 18 years of age at the

initiation of monitoring were included in the analysis, providing a median baseline age of

33.7 years at enrolment, with inter-quartile range equal to (28 – 41) years.

As far as the CD4 cell count is concerned, we used both the original form of the

variable and the well documented (Fitzmaurice et al. (2012), Yu et al. (1997), Malaza et al.

(2013)) natural logarithm transformation for including this variable in our model. The model

with the logarithm included produced a lower value in the AIC, therefore we decided to

keep the transformed variable. Additionally, another reason for doing so is justified by the

fact that the variable in its raw form may not reflect its actual effect on the outcome. For

instance,  the  effect  of  a  difference  of  100  cells  between  a  subject  that  has  50  cd4

cells/mm3 and a subject that has 150 cd4 cells/mm3 is far greater than it would be if the

subjects had 650 and 750 cd4 cells/mm3, respectively. Furthermore, the basic advantage

of log transformation is that the interpretation of the transformed variable remains relatively

simple. Naturally there were some missing values, so we needed a way to replace them.

Therefore, whenever we came across a visit with missing value on the CD4 count, the

closest existing measurement was used to replace it.  The only restriction was that the

replacement measurement should have been registered within a year from the visit. If there

was no measurement within a year then no change was made and the missing value

remained as missing.
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In the case of virus RNA load we followed a similar procedure. First, we applied the

analysis on the original form of variable, then the natural logarithm transformation and

finally the base 10 logarithmic transformation. Based on the AIC we decided to include the

virus load in its base 10 logarithmic transformation. This transformation is also a common

practice, as we see in Quinn’s work (Quinn et al. (2000)). As done in CD4 count variable,

the threshold of a year since each patient's visit was used for replacing missing values. In

cases where viral load was below assay’s detection limit, viral load was assumed to be

equal to the half of the detection limit value.

Another  major  threat  for  the condition of  an HIV-positive person is  the  possible

coinfections.  Apart  from  turbeculosis  which  is  the  most  prevalent  coinfection  with

approximately  1/3  of  the  HIV-infected people  being  also  infected by  it  (Lancet,  2013),

people who live with HIV also report high prevalence of Hepatitis B (HBV) or Hepatitis C

(HCV) due to the fact that these viruses share common routes of transmission. According

to Alter (2006), an estimated 2-4 million people have chronic HBV coinfection. As of March

2016, an estimated 2.3 million people living with  HIV are also infected by Hepatitis  C

based on the study of Platt et al. (2016). The same study, concluded that people who live

with  HIV  are  on average  six  times  more  prone to  HCV infection  than  HIV  uninfected

people.   However  the  total  incidence of  TB cases among people  with  HIV in  Greece

through the years is estimated to 16 by UNAIDS, therefore, we focused on the HBV and

HCV coinfections.  We assumed that a person has developed one or both of the above-

mentioned coinfections if they were tested positive within the first year of observation or

had only positive results on the tests throughout the whole observational period.

Our main concern on this thesis is the gaps in care/monitoring. As seen in table 6.2,

out of the 6832 subjects of our study 2713 (39.7%) were regularly monitored and treated

hence  they had no gaps in their care, providing a total observational time of 6,954,489

days until they were censored due to the administrative censoring or due to death. The
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remaining 4119 (60.3%) subjects had at least one gap in care with the vast majority 4044

(59.1%) having up to 4 gaps in care. 

Table 6.1: Demographical characteristics of study population at initiation of monitoring (N=6832)

Patient characteristics at initiation of monitoring Descriptive statistic1

Age in years 33.7 (28-41)

Males 5726 (83.8)

Origin

Europe 5908 (86.5)

Africa 333 (4.9)

Asia & Australia 127 (1.9)

Americas 95 (1.4)

Level of education

None/ Primary Education 175 (2.6)

Secondary Education 1348 (19.7)

Higher / Vocational Education 325 (4.8)

Academical Education 786 (11.5)

Possible source of infection

Homosexual / Bisexual Contact 3479 (50.9)

PWID 606 (8.9)

Blood Transfusion 104 (1.5)

Heterosexual Contact 1704 (24.9)

HAARTreatment 5193 (76)

Coinfections2 1033 (15.1)

Virus Load (copies/ml) 21700 (3179-89422)

CD4 cell count (cells/μL) 349 (164-548)
1for the continuous characteristics we used median (IQR - Inter-quartile Range), whereas for the 
categorical we used n (%)
2If a patient developed a coinfection (Hepatitis C or B) either within the 1st year of follow-up or has 
only positive tests throughout his/her observation period
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Patients with gaps provided either censored observational time in their last entry due to

closure of database or death in the case that they returned to care after their last gap or an

event time  (i.e. missing visit) if they did not return to care after their last gap. The fairly

small  count  of  events per  subject  classified  the dependence of  event  times as  event-

related dependence (Hougaard, 2000). This dependence can both be negative or positive

for  the  possibility  of  future  events.  In  Table  6.2,  the  number  of  gaps  per  subject  is

summarized. 

Table 6.2: Number of gaps during monitoring/treatment

Number of gaps Patients (%)

No gaps 2713 (39.7)

1 2718 (39.7)

2 870 (12.7)

3 313 (4.6)

4 143 (2.1)

5 43 (0.6)

6 24 (0.3)

7 7 (0.1)

8 1 (0.01)

The year with the most enrollments in AMACS is the initiation year (1996) with 930

people  starting  being monitored and this  is  equal  to  13,6% of  all  patients  ever  being

monitored. In the following years, the count of newly enrolled patients is rather stable with

approximately 280 patients being enrolled every year  until  2003.  Starting from 2004 a

gradual increase in new enrollments is observed till this increase peaks during 2011 and

2012. This is partly justified by the increase of newly infected people among PWID that

was mentioned in the introduction of this thesis, as a result of the financial crisis in Greece.

In Table 6.3, new enrollments by possible route of infection are presented.
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Table 6.3: Count of new enrolments in AMACS per year by possible source of infection1

Year of 
enrollment

Homosexual /
Bisexual contact

IDUs Blood  transfusion Heterosexual
contact

N (%) N (%) N (%) N (%)

1996 494 (7.2) 19 (0.3) 75 (1.1) 244 (3.6)

1997 188 (2.7) 10 (0.15) 4 (0.06) 107 (1.6)

1998 146 (2.1) 10 (0.15) 2 (0.03) 62 (0.9)

1999 135 (2) 11 (0.16) 6 (0.09) 100 (1.5)

2000 113 (1.6) 14 (0.2) 3 (0.04) 89 (1.3)

2001 138 (2) 10 (0.15) 1 (0.01) 88 (1.3)

2002 144 (2.1) 10 (0.15) 0 (0) 83 (1.2)

2003 107 (1.6) 7 (0.1) 2 (0.03) 93 (1.3)

2004 166 (2.4) 14 (0.2) 0 (0) 93 (1.3)

2005 219 (3.2) 5 (0.07) 2 (0.03) 105 (1.5)

2006 188 (2.7) 12 (0.18) 3 (0.04) 76 (1.1)

2007 214 (3.1) 10 (0.15) 1 (0.01) 78 (1.1)

2008 204 (3) 13 (0.19) 2 (0.03) 92 (1.3)

2009 221 (3.2) 15 (0.22) 1 (0.01) 77 (1.1)

2010 255 (3.7) 24 (0.35) 0 (0) 84 (1.2)

2011 202 (3) 117 (1.7) 1 (0.01) 92 (1.3)

2012 173 (2.5) 169 (2.5) 0 (0) 72 (1.1)

2013 140 (2) 105 (1.5) 1 (0.01) 44 (0.6)

2014 32 (0.5) 31 (0.4) 0 (0) 25 (0.35)
1Based on the reports of patients
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6.2. Results

In both timescales, the estimates are obtained in R. COXPH, was the procedure that

was used. This procedure practically, fits shared frailty models as a penalized Cox model

with penalty function

p (w )=(1/θ )∑ [w i −exp(w i )]
where the wi are distributed as the logs of iid gamma random variables and their variance

is θ. 

In  many  cases,  the  quantities  of  interest  are  the  estimations  of  the  regression

coefficients  and the  dependence of  the event  times is  just  a  nuisance parameter  that

should be nonetheless assessed, in order to reduce the variance of those estimations.

Likewise, in our case, one is more interested in the dependence by itself,  however, we

need  to  include  explanatory  variables  in  order  to  reduce  the  variation  owing  to  the

unobserved covariates that comprise the frailty term.

Two simple semiparametric Cox models (Model I and Model VI) were fitted for both

timescales. The ordinary Cox model treat each observation as independent in order to

estimate the variance of β̂ .  It is obvious that in the case of multivariate analysis, this

assumption can be easily violated. Both of these models were fitted in order to compare

the results with the ones from the frailty models and assess the effect of the frailty terms.

Consequently, two more cox models were fitted, the marginal model under the gap

timescale and the marginal model under the calendar timescale that correspond to the AG

model mentioned in chapter 4. These models produced similar estimates of the covariates’

coefficients as the simple Cox models. What makes them differ though from the simple

case is the assessment of the heterogeneity of subjects through the robust SE estimates.

Under the gap timescale, standard errors and robust standard errors remain practically the
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same, while under the calendar timescale robust standard errors are doubled. That leads

to wider confidence intervals, since we use the robust estimates to calculate CI, which

means  that  there  is  a  loss  in  precision.  Nevertheless,  what  seems  to  be  of  more

importance between these two cases, is that robust estimates under the gap timescale fail

to control for possible heterogeneity between subjects. That could also mean that under

the gap timescale there is no significant heterogeneity.

The two conditional models that were fitted for the two timescales (PWP-GT Model

III and PWP-CP Model VIII), as we have mentioned before, take into account the natural

order of the recurrent events by incorporating event-based baseline hazards. That is the

main difference between the two previously fitted models for the gap timescale (Model I

and Model II) and the latter one (PWP-GT). Under the gap timescale the estimated HR’s

remain virtually the same, however there is a big change in the AIC value which is actually

the lowest  value that  we get  among the models that  were fitted under  gap timescale.

Similarly, under the calendar timescale we do not observe big changes in the estimated

HR’s, which are actually even smaller compared to the changes in the gap timescale. In

addition, under the calendar timescale, AIC is smaller than the ones from the simple Cox

and A-G models, making PWP-CP more appropriate for our dataset.

Next,  the  two  simple  frailty  models  were  fitted.  Under  the  gap  timescale,  the

inclusion of the frailty term does not affect the estimated HR’s. This is also justified by the

almost absent variance θ of the frailty term, which is not significantly different from zero (p-

value=0.4  in  the  corresponding Wald  test).  In  that  sense,  even the  simple Cox model

seems to be appropriate to model our data in the gap timescale especially if we consider

the complexity of the gamma frailty model. 

On the other hand, under the calendar timescale, the inclusion of the frailty term

seems  to  account  for  the  variability  between  subjects.  The  estimated  covariates’

coefficients differed from those obtained from the previous models without the frailty term
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while the variance of the θ is estimated to be 0.6051, corresponding to 2393 degrees of

freedom. In addition, the standard errors of the coefficients reported by the frailty model

were  closer  to  the  ones  that  were  reported  in  the  marginal  model  with  the  robust

correction. The approximate Wald test for the frailty is a chi-square test with a value 3618.2

resulting  to  a  p-value<0.001  implying  that  controlling  for  the  within-subject  correlation

makes sense. This model, is actually an AG model, as described earlier, with a gamma

frailty accounting for the correlation of the event times. Therefore, it treats event times, in

our  case the gaps in care, as ordered outcomes while  data is  set  up in the counting

process form. In  particular,  by exponentiating the standard deviation of  0.7779 we get

2.177, meaning that patients with a frailty of one standard deviation above the mean, are

117.7% more frail (have greater risk) to commit a gap than a patient with frailty equal to

mean frailty and the same observed covariate values. A likelihood ratio test (LR test) was

performed for  the frailty  term. This test  is twice the difference between the log partial

likelihood with the frailty terms integrated out (indicated as I-likelihood on the R printout)

and the  likelihood of  a  no-frailty  model  (ordinary Cox Model).   The test  is  equal  to  2

(49821.41-49456.7)=729.42, which is chi-square with 1 df. The corresponding p-value is

<0.0001 implying that the frailty term is significantly related to the time to recurrence of a

gap.

The LR test given on the printout of the R-procedure for the frailty model is a test for

the model as a whole and it is the difference between the unpenalized log-partial likelihood

at the final iteration and at the initial values of the full set of parameters. One can easily

see that with the values at the initial step set β=0 and u=0 the likelihood reduces to the one

of the no-frailty model (Cox) when β values are also equal to 0. Gray (1992) showed that

the actual distribution of this test is a weighted sum of chi squares. Therefore the test for

the regression parameters equal to zero is rejected with chi-square 6810 for 2404 df and p-

value<0.0001.
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The conditional frailty models were also fitted. These models allow for the possibility

that both heterogeneity of subjects and dependence of the events play a significant role in

the subjects risk for a particular (re)occurrence since it incorporates a random effect and

an event-specific baseline hazard as well. Once again the natural order of the events is

taken into account,  this time by incorporating event-based stratification. We notice that

under the gap timescale, the effect estimates of the covariates, their standard errors and

the  corresponding  CI’s  are  virtually  unchanged  compared  to  the  simple  shared  frailty

model. The variance θ, for this model, is practically equal to 0, meaning that the inclusion

of the frailty term does not account for any unobserved variability. On the other hand, in

Model X (Conditional shared frailty model) we observe that the variance θ of frailty term is

0.7059, which is a little larger than the corresponding one derived from the simple frailty

model  under  the  calendar  timescale  (Model  IX).  Once  again,  by  exponentiating  the

standard deviation of 0.8402 (the square root of variance θ=0.7059) we get 2.31, meaning

that patients with a frailty of one standard deviation above the mean, are 131% more frail

to commit a gap than a patient with frailty equal to mean frailty and the same observed

covariate values. 

Accounting for the dependence of the events by stratification does not seem to alter

drastically the results of the simple frailty model and the conditional frailty model in the two

timescales respectively, apart from the slight increase of the variance  θ  in the calendar

timescale, as the estimated HR’s and SE’s of the conditional frailty models are essentially

the same as those of the simple frailty fits when compared under the same timescale.

However the conditional frailty model (Model X) produces the lowest AIC value compared

to all other models in both timescales making it the most appropriate model for our dataset.

In figure 6.1 the Martingale residuals for each model are presented. As mentioned

in chapter 3, the Martingale residuals are plotted against the variable representing age at

initiation of monitoring, which is a time-constant variable. The advantages of plotting them
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against such variable are also mentioned in chapter 4. However, since it is just a visual

evaluation,  we should interpret  it  as a simple indication of  the goodness of  fit.  These

residuals can be viewed as the difference between the observed number of fails for each

subject and the expected number of fails, based on the fitted models. The two models that

perform better according to the AIC (i.e., model VIII and model X) perform better also when

we evaluate their fit through also seem to be performing better with regard to the residuals

as well. Both PWP-CP and conditional frailty model under the calendar timescale have

their residuals centered about zero. However, the residuals of the PWP-CP present higher

values hence larger differences between the observed and the expected number of fails.

Therefore,  based on the Martingale residuals,  the conditional  frailty  model  is the most

appropriate for our dataset.

Based on all the above, we conclude that the best model to describe our data is the

conditional frailty model under the calendar timescale thus we will extend into interpreting

its estimated coefficients.

As we mentioned before, there are two sources of correlation for the event times of

recurrent events. One is the heterogeneity of the individuals which implies a correlation of

event times on an individual level and the other is the event correlation itself, where the

occurrence  of  an  event  affects  the  possibility  of  a  future  event.  The  first  source  of

correlation is assessed by the frailty term whereas the second source is assessed by the

event based stratification.

 Under the gap timescale,  we are trying to assess the effect of a recurrent gap in

care on the recurrent event rate of the subsequent gap. The fits of the models indicate that

heterogeneity of the subjects plays no significant role in the evolution of the event rate,

which is measured by the interval between two subsequent gaps. This is justified by the

almost zero estimated variance of the frailty term, meaning that frailty models under the

gap timescale do not identify subjects more frail  to commit gaps in care. On the other
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hand, the results of the PWP-GT model, point to the existence of event correlation as it

allows for event based baseline hazards.

Under the calendar timescale, we are trying to assess the effect of a recurrent gap

on the event rate as a function of time since the initiation of monitoring. The conditional

frailty model indicates that in our data both sources of correlation are present. The frailty

term indicates that some subjects are more or less prone to commit a gap and this is a

function  of  time since initiation of  monitoring,  meaning that  the longer  someone stays

under observation the more his behavior against committing or not a gap is affected. Event

correlation is also apparent in our data, indicating that the natural order of the gaps plays

also a significant role in the event rate since initiation of monitoring.

The factor  with  the  most  impact  in  treatment  retention and subsequently  in  the

recurrent  event rate seems to be the one indicating if  patient  receives HAART or not.

People who do not receive HAART tend to commit gaps more often compared to people

who receive  treatment.  Specifically,  people  who  receive  HAART have a  55% reduced

hazard of committing a gap compared to those who do not receive HAART holding all

other covariates stable at a given time t. Women are classified as more punctual than men

since  according  to  the  model  results  as  the  rate  of  recurrence  among  them  is

approximately 0.92 times the rate among men, holding all other covariates stable at any

given time t. The origin of the subject also seems to be important for the outcome since

people coming from Europe are the less frail people among the study population. People

coming from Africa could be identified as the most endangered group of origin to commit

recurrent gaps as they face an increased hazard rate of 1,6 times the hazard Europeans

face, holding all other covariates stable.

One would think that having a coinfection would make someone more punctual to

his appointments,  however results point to the opposite  direction. Having a coinfection

increases the hazard rate of recurrent event by almost 14% compared to the hazard of the
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subjects that do not have a coinfection. One possible reason for that, could be the fact that

almost  half  of  the  people  with  a  coinfection  (48%),  are  people  who  also  inject  drugs

(PWID). Those people are also more frail compared to those infected by other routes when

compared to the reference group that reported heterosexual contact as the possible means

of  transmission.  More  specifically  they  present  a  16%  increase  in  their  hazard  rate

compared to people who indicate heterosexual contact as the most possible means of

infection, holding all other covariates stable at time t.

Age at initiation of monitoring also affects the recurrent event rate meaning that the

older someone starts to be monitored the less frail is to commit recurrent gaps. Although

there is an almost 2% decrease in the hazard rate for an increase of a year in the age of

the subject, often a one-year change is not of clinical importance. For instance, let us see

what happens in a five year change in age. For every five year increase in the age of the

subject an increase of 7% (0.985^5) in the hazard rate is observed and it is independent of

the age at which the increase is calculated.



Table 6.4: Results of Cox, Marginal and PWP-GT models under the Gap Timescale

Covariates Cox Model I Marginal Cox Model II PWP-GT Model III

HR SE 95% CI HR robust SE 95% CI* HR robust SE 95% CI*
Age (years) 0.988 0.001 (0.985,0.99) 0.988 0.001 (0.985,0.99) 0.990 0.001 (0.987,0.992)
Sex 0.936 0.039 (0.865,1.013) 0.936 0.041 (0.862,1.017) 0.947 0.039 (0.876,1.023)
Origin

Europe 1 1 1
Africa 1.32 0.079 (1.181,1.475) 1.32 0.074 (1.189,1.466) 1.339 0.071 (1.213,1.479)
Asia & Australia 1.253 0.128 (1.045,1.503) 1.253 0.123 (1.051,1.493) 1.288 0.118 (1.092,1.52)
Americas 1.03 0.141 (0.813,1.306) 1.03 0.139 (0.815,1.302) 1.081 0.139 (0.864,1.354)
Not specified 1.088 0.065 (0.973,1.216) 1.088 0.070 (0.966,1.225) 1.115 0.067 (0.998,1.246)

Education
None / Primary education 1 1 1
Secondary Education 0.855 0.075 (0.73,1.002) 0.855 0.076 (0.728,1.004) 0.863 0.072 (0.742,1.004)
Higher / Vocational Educati 0.876 0.093 (0.725,1.059) 0.876 0.095 (0.723,1.063) 0.893 0.09 (0.746,1.07)
Academical Education 0.903 0.083 (0.765,1.066) 0.903 0.086 (0.761,1.072) 0.908 0.081 (0.774,1.066)
Not specified 1.027 0.085 (0.884,1.194) 1.027 0.086 (0.883,1.195) 1.041 0.081 (0.902,1.2)

Possible source of Infection
Heterosexual contact 1 1 1
Homosexual/Bisexual conta 0.825 0.033 (0.766,0.889) 0.825 0.035 (0.763,0.893) 0.840 0.033 (0.781,0.904)
PWID 1.078 0.075 (0.948,1.225) 1.078 0.077 (0.945,1.229) 1.112 0.074 (0.983,1.257)
Blood transfusion 0.557 0.074 (0.442,0.701) 0.557 0.094 (0.418,0.741) 0.578 0.092 (0.441,0.758)
Not specified 0.972 0.045 (0.892,1.06) 0.972 0.046 (0.889,1.063) 0.990 0.044 (0.911,1.076)

Haart 0.581 0.019 (0.546,0.619) 0.581 0.018 (0.548,0.617) 0.557 0.017 (0.526,0.59)
Coinfections 1.104 0.050 (1.014,1.202) 1.104 0.057 (1.003,1.216) 1.090 0.052 (0.997,1.191)

0.963 0.010 (0.945,0.982) 0.963 0.010 (0.944,0.983) 0.987 0.01 (0.968,1.006)
0.997 0.013 (0.973,1.022) 0.997 0.013 (0.973,1.022) 0.999 0.012 (0.976,1.023)

logLikelihood -54388.850 -54388.85 -47883.11

 AIC 108813.7 108813.7 95802.22
* Confidence intervals based on the Robust SE

Virus load (copies/ml)
CD4 count (cells/μL)



Table 6.5 : Results of Frailty and Conditional Frailty models under the Gap timescale

Covariates Frailty Model IV Conditional frailty Model V
HR SE 95% CI* HR SE 95% CI*

Age (years) 0.988 0.002 (0.986,0.991) 0.990 0.002 (0.988,0.993)
Sex 0.942 0.04 (0.87,1.02) 0.952 0.040 (0.879,1.03)
Origin

Europe 1 1
Africa 1.33 0.08 (1.19,1.486) 1.348 0.081 (1.207,1.506)
Asia & Australia 1.264 0.129 (1.054,1.517) 1.299 0.132 (1.083,1.558)
Americas 1.038 0.142 (0.818,1.316) 1.089 0.149 (0.859,1.381)
Not specified 1.094 0.066 (0.979,1.223) 1.121 0.067 (1.003,1.253)

Education
None / Primary education 1 1
Secondary Education 0.857 0.075 (0.731,1.004) 0.865 0.076 (0.738,1.014)
Higher / Vocational Education 0.877 0.094 (0.726,1.061) 0.894 0.095 (0.74,1.081)
Academical Education 0.902 0.083 (0.763,1.065) 0.907 0.084 (0.768,1.071)
Not specified 1.027 0.085 (0.883,1.194) 1.039 0.086 (0.894,1.208)

Possible source of Infection
Heterosexual contact 1 1
Homosexual/Bisexual contact 0.825 0.033 (0.766,0.889) 0.840 0.034 (0.78,0.906)
PWID 1.085 0.076 (0.954,1.234) 1.118 0.078 (0.984,1.271)
Blood transfusion 0.561 0.074 (0.445,0.706) 0.583 0.077 (0.463,0.734)
Not specified 0.974 0.045 (0.893,1.062) 0.991 0.046 (0.909,1.081)

Haart 0.58 0.019 (0.545,0.618) 0.557 0.019 (0.523,0.594)
Coinfections 1.103 0.05 (1.013,1.201) 1.089 0.049 (1.001,1.185)

0.964 0.01 (0.946,0.983) 0.987 0.010 (0.968,1.007)
0.995 0.013 (0.971,1.02) 0.997 0.013 (0.973,1.022)

Variance of θ 0.003 <0.001
logLikelihood -54541.72 -48058.06
AIC 109085.4 96118.11

*Confidence intervals were computed under the assumption that the variance of θ was fixed

Virus load (copies/ml)
CD4 count (cells/μL)



Table 6.6: Results of Cox, Marginal and PWP-CP models under the Calendar Timescale

Covariates Cox Model VI A-G (Marginal Cox) Model VII PWP-CP Model VIII

HR SE 95% CI HR robust SE 95% CI* HR robust SE 95% CI*
Age (years) 0.986 0.001 (0.983,0.988) 0.986 0.002 (0.982,0.989) 0.989 0.002 (0.985,0.992)
Sex 0.904 0.038 (0.835,0.978) 0.904 0.049 (0.816,1.001) 0.914 0.046 (0.832,1.004)
Origin

Europe 1 1 1
Africa 1.512 0.090 (1.354,1.688) 1.512 0.112 (1.32,1.732) 1.512 0.103 (1.333,1.714)
Asia & Australia 1.386 0.141 (1.156,1.663) 1.386 0.179 (1.107,1.736) 1.436 0.17 (1.166,1.769)
Americas 1.226 0.168 (0.967,1.555) 1.226 0.203 (0.927,1.623) 1.318 0.206 (1.009,1.721)
Not specified 1.06 0.064 (0.947,1.186) 1.06 0.088 (0.911,1.233) 1.070 0.079 (0.935,1.225)

Education
None / Primary education 1 1 1
Secondary Education 0.82 0.071 (0.7,0.96) 0.82 0.092 (0.672,1) 0.848 0.084 (0.71,1.013)
Higher / Vocational Education 0.867 0.092 (0.718,1.048) 0.867 0.117 (0.686,1.096) 0.915 0.109 (0.741,1.128)
Academical Education 0.887 0.082 (0.751,1.047) 0.887 0.107 (0.717,1.096) 0.915 0.097 (0.758,1.105)
Not specified 1.04 0.086 (0.894,1.209) 1.04 0.111 (0.86,1.257) 1.081 0.103 (0.912,1.282)

Possible source of Infection
Heterosexual contact 1 1 1
Homosexual/Bisexual contact 0.812 0.032 (0.754,0.875) 0.812 0.042 (0.737,0.894) 0.835 0.039 (0.765,0.911)
PWID 1.319 0.093 (1.158,1.501) 1.319 0.121 (1.117,1.557) 1.350 0.111 (1.162,1.568)
Blood transfusion 0.468 0.062 (0.372,0.59) 0.468 0.092 (0.338,0.649) 0.515 0.094 (0.38,0.699)
Not specified 0.95 0.044 (0.871,1.037) 0.95 0.057 (0.851,1.062) 0.985 0.053 (0.891,1.089)

Haart 0.474 0.015 (0.445,0.504) 0.474 0.018 (0.439,0.51) 0.455 0.017 (0.424,0.488)
Coinfections 1.154 0.052 (1.06,1.256) 1.154 0.074 (1.025,1.299) 1.129 0.063 (1.017,1.253)

0.963 0.010 (0.944,0.982) 0.963 0.012 (0.939,0.987) 0.998 0.012 (0.975,1.022)
1.007 0.013 (0.982,1.032) 1.007 0.015 (0.977,1.037) 1.010 0.014 (0.982,1.038)

logLikelihood -49821.41 -49821.41 -43328.95

 AIC 99678.82 99678.82 86693.89
* Confidence intervals based on the Robust SE

Virus load (copies/ml)
CD4 count (cells/μL)



Table 6.7 : Results of Frailty and Conditional Frailty models under the Calendar timescale

Covariates
Frailty Model IX

HR SE 95% CI* HR SE 95% CI*
Age (years) 0.986 0.002 (0.983,0.989) 0.985 0.002 (0.982,0.989)
Sex 0.925 0.054 (0.83,1.03) 0.918 0.056 (0.821,1.027)
Origin

Europe 1 1
Africa 1.624 0.141 (1.388,1.901) 1.616 0.147 (1.372,1.904)
Asia & Australia 1.507 0.216 (1.177,1.93) 1.499 0.224 (1.16,1.938)
Americas 1.253 0.227 (0.925,1.698) 1.236 0.231 (0.904,1.689)
Not specified 1.092 0.094 (0.935,1.276) 1.077 0.096 (0.917,1.265)

Education
None / Primary education 1 1
Secondary Education 0.793 0.098 (0.638,0.986) 0.786 0.102 (0.627,0.986)
Higher / Vocational Education 0.841 0.125 (0.651,1.086) 0.835 0.130 (0.64,1.09)
Academical Education 0.879 0.114 (0.7,1.103) 0.863 0.117 (0.682,1.093)
Not specified 1.053 0.124 (0.855,1.296) 1.050 0.129 (0.846,1.303)

Possible source of Infection
Heterosexual contact 1 1
Homosexual/Bisexual contact 0.783 0.042 (0.708,0.866) 0.775 0.043 (0.698,0.86)
PWID 1.227 0.117 (1.034,1.456) 1.160 0.115 (0.972,1.385)
Blood transfusion 0.422 0.074 (0.313,0.568) 0.423 0.078 (0.311,0.575)
Not specified 0.968 0.062 (0.86,1.09) 0.974 0.065 (0.862,1.101)

Haart 0.439 0.019 (0.404,0.477) 0.446 0.020 (0.409,0.486)
Coinfections 1.146 0.071 (1.022,1.285) 1.134 0.073 (1.007,1.277)

0.961 0.012 (0.938,0.984) 0.950 0.013 (0.926,0.975)
1.013 0.017 (0.982,1.046) 1.018 0.017 (0.985,1.051)

Variance of θ 0.6051 0.7059
logLikelihood -47004.51 40400.14
AIC 94010.18 80801.38

*Confidence intervals were computed under the assumption that the variance of θ was fixed

Frailty stratified by order of 
events Model X

Virus load (copies/ml)
CD4 count (cells/μL)



Table 6.8 : Bootstrapping Results of Frailty and Conditional Frailty models under the Gap and Calendar timescale

Covariates
Frailty Model IV Conditional frailty Model V Frailty Model IX Conditional frailty Model X

HR SE HR SE HR SE HR SE
Age (years) 0.988 0.003 0.990 0.003 0.959 0.003 0.985 0.003
Sex 0.916 0.115 0.969 0.116 0.942 0.113 0.934 0.112
Origin

Europe 1 1 1 1
Africa 1.342 0.237 1.363 0.241 1.62 0.286 1.625 0.287
Asia & Australia 1.24 0.406 1.272 0.416 1.455 0.467 1.445 0.473
Americas 1.022 0.489 1.066 0.511 1.224 0.586 1.215 0.582
Not specified 1.096 0.195 1.115 0.199 1.094 0.195 1.067 0.190

Education
None / Primary education 1 1 1 1
Secondary Education 0.863 0.243 0.865 0.244 0.797 0.225 0.798 0.224
Higher / Vocational Education 0.887 0.31 0.892 0.312 0.843 0.295 0.085 0.296
Academical Education 0.936 0.278 0.931 0.277 0.913 0.271 0.905 0.269
Not specified 1.048 0.277 1.048 0.277 0.931 0.246 0.928 0.245

Possible source of Infection
Heterosexual contact 1 1 1 1
Homosexual/Bisexual contact 0.834 0.094 0.843 0.095 0.791 0.089 0.783 0.088
PWID 1.08 0.226 1.108 0.231 1.201 0.251 1.155 0.241
Blood transfusion 0.519 0.252 0.539 0.262 0.399 0.194 0.398 0.193
Not specified 0.99 0.131 1.008 0.013 0.989 0.131 0.996 0.131

Haart 0.579 0.053 0.557 0.051 0.444 0.041 0.450 0.041
Coinfections 1.106 0.146 1.101 0.142 0.162 0.149 1.148 0.148

0.972 0.025 0.994 0.026 0.969 0.259 0.962 0.025
1 0.034 1.002 0.034 1.018 0.035 1.023 0.035

Variance of θ 0.0222 <0.001 0.5694 0.6344

Virus load (copies/ml)
CD4 count (cells/μL)
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As we notice in the tables above, the standard error for the coefficients and the

corresponding CI’s were computed under the assumption that the variance  θ  was fixed.

This is a smoothing spline for the computation of the standard errors and while this can be

a correct  assumption  for  some models,  in  the  frailty  framework  it  is  not  (Therneau &

Grambsch,  2000).  In  order  to  check  the  accuracy  of  those  results,  we  performed  a

bootstrap methodology by creating 100 subsets of our data and computing once again

these SE’s and CI’s. The results of the bootstrapping are presented in table 6.8. 

One  can  see  that  the  bootstrapping  did  not  seriously  affected  effect  of  the

coefficients’  estimates compared to those derived from the main analyses (i.e.  prior  to

performing  the  bootstrap).  However,  in  all  cases  and  timescales  we  observe  that  the

standard  errors  have doubled and in  some cases have increased even more.  This  is

normal, as the bootstrapping involves re-sampling of the original dataset and it’s time the

sample is smaller than the complete dataset. As far as the variance of the frailty term is

concerned no change in the significance is observed under the gap timescale. However,

under the calendar timescale, the variance has been reduced from 0.706 to 0.63 and from

0.6 to 0.58 in the conditional frailty and the simple frailty models respectively.
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Figure 6.1 : Martingale residuals for fitted models

For all models apart Model I and Model VI (Simple Cox), summed Martingale residuals are 
presented
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6.3. Discussion

This thesis gave us the opportunity of getting familiar with very large datasets. The

most crucial part when analysing recurrent time to event data is getting data in the required

form for the analysis. Different models require different setting of the data and one should

be aware of the complications of a dataset of that size and also be able to resolve any

issues that arise. Therefore it is no surprise when many authors rely to the illustration of

the data layout when trying to explain the differences between all available models for the

analysis of recurrent events.

In our analysis apart from using different models for the assessment of gaps in

care/treatment,  we used two different timescales as well.  Additionally,  we implemented

discontinuous risk intervals,   where the subject is not at risk of another failure while a

previous one is ongoing. Both timescales, gap and calendar, are set so subjects that are

not under risk are excluded from the risk set. This was achieved by taking into account the

risk  free  period  of  each  subject,  meaning  that  if  someone  is  experiencing  a  gap  in

treatment / monitoring is not considered under risk for a subsequent gap. This subject re-

enters the risk set if only he or she returns to treatment / monitoring after this ongoing gap. 

It is important to understand that both timescales we used, model the same risk

period for each patient, as mentioned before. The difference between these two timescales

is in the definition of the origin of time and therefore in how the risk sets for each model are

comprised. Gap timescale measures the time between two subsequent events and every

time the clock resets at time zero, meaning that for one person that has for instance 3

gaps in  care,  his  corresponding contribution to  the risk set  of  time 0 is  three survival

periods, one for each event. This implies that the subject is considered to be at risk for all

three events  simultaneously.  Calendar  timescale  also  measures the  time between two

subsequent events but this time the clock is not reset at time 0 but instead time continues
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to run along the actual time since initiation of monitoring. Therefore the same person would

contribute just one survival time in the risk set of time 0, which  intuitively, seems more

rational. 

In  addition,  we  should  clarify  that  ignoring  the  natural  order  in  which  recurrent

events occur can produce misleading conclusions as not all the available information is

taken into account. Hence gap models that do not stratify the analysis by the natural order

of the events may lead to inefficient inferences. Moreover, by not stratifying and therefore

by assuming a common baseline hazard for each event implies that recurrent events are

unaffected by previous events which can also lead to inefficient  estimates when event

dependence is apparent. However, a problem that occurs by event based stratification is

that the number of subjects is limiting while the number of recurrence is increasing, leading

to unstable coefficient estimates. In our case though, where the highest rank of occurrence

is limited to the number 8, this problem did not seem to have affected the analysis, as in

cases where the frequency of the recurrences is small we may assume that the risk of

occurrence vary substantially between recurrences (Lim et al., 2007) 

Therefore,  event  based stratification is used in the conditional  risk set model  in

order to account for the natural order of events. By doing so, we adjust for the fact that an

occurrence may have been affected by the previous events. Hence, even though the PWP-

GT uses the gap configuration of the data, the order of events is induced to the model

contrary  to  the  other  gap  models,  so  that  the  hazard  functions  at  time  t  for  the  k-th

recurrence  are  conditional  on  the  k-1  previous  occurrences.  Once  again,  the  main

difference between PWP-GT and PWP-CP becomes more clear by the computational view

of the construction of the risk-sets. If the researcher suspects that survival times are also

correlated  within  a  subject  then  the  addition  of  the  frailty  approach  should  also  be

implemented as ignoring the frailty when it is present can lead to underestimated covariate

effects (Henderson & Oman, 1999). This approach was carried out by the implementation
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of the conditional frailty models.  The frailty term is incorporated for each subject, acting

multiplicatively  on  the  baseline  hazard  (Wienke,  2010)  to  adjust  for  unobserved  risk

factors, leading to variations in the baseline hazard from subject to subject (Lim et al.,

2007).

Another major but also subtle difference though, occurs during the interpretation of

the  estimated  coefficients.  Duchateau  and  Janssen  (2003)  explain  that  the  difference

between the two timescales is that the gap timescale investigates the effect of a recurrent

event on the event rate of the subsequent event, while calendar timescale investigates the

full course of evolution of the recurrent event rate since initiation of monitoring, while using

parametric and semiparametric frailty models.  In other words, under the gap timescale

after an event a new survival time begins which is independent of the previous survival

times, while under the calendar timescale, the risk of a recurrence at one point in time

depends  on  the  entire  path  of  the  attendance  behavior  of  a  subject  starting  at  the

beginning of the observation window. Hence, under the gap timescale we investigate how

the average length of the monitoring/treatment period depends on the given covariates

(Clement & Strawderman, 2009) while under the calendar timescale we investigate how

covariates  affect  the  full  course  of  the  recurrent  event  rate  since  initiation  of

monitoring/treatment.

However,  we  should  mention  that  this  interpretation  is  based  on  the  fact  that

coefficient estimates are conditional on the unobserved frailty. Thus the coefficients should

be interpreted as the effect of a risk factor on a typical subject, so if we have a boolean

covariate, then its effect is interpreted as the relative risk between two typical individuals of

the two different categories of the covariate. 

In our analysis we used a gamma distribution for the frailty term and even though

this is the standard assumption about the frailty, there are many disadvantages especially

in regression models. A basic disadvantage of the gamma frailty model is that the within
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subject correlation is modeled by a single parameter which is the variance of the frailty

distribution. Other  distributions  may  be  studied  to  avoid  these  shortcomings  such  as

positive  stable  distributions  (Hougaard,  2000).  By  making  the  assumption  of  gamma

distributed frailty,  we relied on the EM algorithm, which as mentioned before,  yields a

discrete estimator and does not allow direct estimation of the hazard function. PPL is an

alternative  procedure  that  is  widely  used for  assessing  this  problem.  Rondeau (2003)

proposed a procedure that penalizes the full likelihood instead of the frailties, as proposed

by Therneau and Grambsch (2000). 

In our example, data collection is an ongoing process that goes back twenty years,

so it is proper and very useful to consider covariates that change over time. The covariates

that change over time are called time-depended covariates. Time-dependent covariates

are divided into two categories, the internal and the external covariates. Internal covariates

are the ones that relate to the subject under observation itself, such as weight or CD4 cell

count and the external variables that do not depend on the physical observation of the

subject.

In addition, when analysing time to event data in a longitudinal study, covariates

which are recorded at the time of study entry are less likely to be influential than the more

recent values of those covariates. For that reason, we included the available internal time-

varying covariates (CD4 log and virus load) in our analysis.

Another term that should not be confused with the time-depended covariates is the

time-depended  coefficients.  In  order  to  distinguish  the  difference  between  these  two

extensions of the Cox model let us see how the hazard function becomes in the simplest

forms. In the presence of time-depended covariates the hazard function is given by:

λ(t )=λ0(t )exp(βZ (t ))

While in the presence of time-depended coefficients the hazard function becomes:



100

λ(t )=λ0(t )exp(β (t )Z )

The latter expression implies that the proportional hazards assumption no longer stands

since the basic assumption of proportional hazards is that the coefficient is time invariant

(β(t)=c).  As  we  mentioned  before,  the  first  expression  suggests  that  the  proportional

hazards assumption does not stand as well. However, proportional hazards assumption

can be implied since the hazard ratio does not depend on time. 

In our application, we made the assumption that the coefficients  of the variables

were constant over time. However, this may not be rational especially in studies where the

follow-up period is that long. Murphy and Sen (1990) included time-depended coefficients

in a Cox-type model by using a sieve estimation procedure (Grenander, 1981) to estimate

the coefficient.   Yu et al.  (2013) estimated time-dependent coefficients by implementing

penalized spline methods.

As  we  have  mentioned  before,  Duchateau  &  Janssen  (2002)  studied  different

timescales in the framework of parametric frailty models taking into account the duration of

the event.  Both their results and ours are pointing to the same direction of using both

timescales when no prior indication in favour of a specific timescale exists. As they also

mention, the decision of the timescale should be based on the scientific question to be

answered and the expectation of the researcher on how event rate changes as a function

of time since study entry or as a function of time since last failure.  

Box-Steffensmeier & De Boef (2006) considered also the conditional frailty model in

order to account for the event dependence and the heterogeneity among subjects however

their work did not include disjoint risk sets as the use of different timescales is not the main

subject of their analysis. However, their results do not fall far from ours as they recommend

the conditional  frailty  model  as well  when one wants  to  capture both  heterogeneity  of

subjects and event dependence.
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While retaining patients in monitoring and treatment has been shown to be linked

with improved health outcomes, data from developed and developing countries highlight

the difficulties of patient retention. In our study we found that PWID, people with lower

education,  immigrants  from  Asia  and  Africa  and  people  who  have  an  HCV  or  HBV

coinfection are more prone to present gaps in their treatment. In reverse, older patients,

EU citizens, MSM, women and people who receive HAART were related with lower risk of

presenting  gaps  in  care  or  monitoring.  Hence,  the  factors  who  seem  to  be  of  more

importance for patient retention our results are in line with the results of other studies that

were  performed  in  countries  that  resemble  both  characteristics  of  population  and

characteristics of the epidemic of our setting. Van Beckhoven et al. (2015), tried to explore

factors that affect patient retention to care in Belgium, in a cohort that included also a large

number  of  immigrants  from the  sub-saharan  Africa.  The  findings  of  another  study  for

assessing factors that lead to patient attrition that is based on the data of the Swiss HIV

Cohort Study (SHCS) (Thierfelder et al., 2012) are also in accordance with the findings of

our study.

These  results  point  out  the  groups  of  people  that  retention  policies  should  be

addressed to, in order to improve the effectiveness of the HIV programs which in its turn

will bring us a step closer to the realization of the goals set by UNAIDS for the termination

of the pandemic by the year 2030.
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Abstract

The current thesis has three aims. One is to provide the chance of getting familiar

with  the management of  large databases the second is  to determine the effect  of  the

timescale that is used in correlated event data and the third is to link factors to patient

attrition from HIV monitoring and treatment.  For that reason, two different timescales; gap

and calendar timescale and a handful of models are implemented, in order to determine

which timescale is more appropriate.

Data may be correlated due to multiple events of the same subject. In the case

where the study's subjects are experiencing the same type of event multiple times, we

refer to the data as recurrent event data. In the analysis of such data, correlation among

events  and  heterogeneity  of  subjects  may  present  simultaneously  in  many  situations.

Therefore we need to find a way to model the association within the observations of a

cluster  (subject)  as  well  the  variance  between  different  subjects  (clusters).  Variance

corrected and shared frailty models can be used for that reason. We also consider the

conditional shared frailty model in order to model both correlation and heterogeneity with

the use of event-based baseline hazards and random effect. All models were fitted to a

dataset of HIV-positive patients in Greece provided by AMACS.

Our simulations showed that the simple frailty models performed slightly better than

all  other  models that  were fitted as the conditional  frailty  models were quite  unstable.

However  the  fittings  on  the  empirical  data  pointed  to  the  opposite  direction,  as  the

conditional frailty model under the calendar timescale seemed to be the most appropriate

way to assess subject heterogeneity as well as event dependence.
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Appendix

The stata code

set more off

use "atomiko_anamnistiko_aee.dta"

rename AEEDate ExamDate

drop if ExamDate==.

drop if ExamDate<td(01jan1985)

gen Source=1

save "atomiko_anamnistiko_aee.dta", replace

clear

use "atomiko_anamnistiko_emfragma.dta"

rename EmfragmaDate ExamDate

drop if ExamDate==.

gen Source=2

save "atomiko_anamnistiko_emfragma.dta", replace

clear

use "clinic_visits.dta"

rename  DateOfVisit ExamDate

drop if ExamDate==.

replace ExamDate=td(13apr2013) if ExamDate==td(13apr2103)

replace ExamDate=td(01mar2002) if ExamDate==td(01mar2020)

replace ExamDate=td(23sep2014) if ExamDate==td(23sep2024)

replace ExamDate=td(21jul2008) if ExamDate==td(21jul0208)

replace ExamDate=td(17dec2008) if ExamDate==td(17dec0208)

replace ExamDate=td(16sep2008) if ExamDate==td(16sep0208)

replace ExamDate=td(05sep2012) if ExamDate==td(05sep0212)

replace ExamDate=td(30apr2001) if ExamDate==td(30apr0201)

drop if ExamDate==td(02jan1980)

drop if ExamDate==td(01jul1970)

encode Lipoatrofia, gen (Lip)

drop Lipoatrofia

rename Lip Lipoatrofia

rename Enapothesi E

encode E, gen(Enapothesi)
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drop E

gen Source=3

save "clinic_visits.dta", replace

clear

use "exams_aimatologikes.dta"

drop if ExamDate<td(01jan1985)

gen Source=4

save "exams_aimatologikes.dta", replace

clear

use "exams_anosologikes.dta" 

drop if ExamDate==.

replace ExamDate=td(17dec2008) if ExamDate==td(17dec0208)

drop if ExamDate<td(01jan1984)

drop if ExamDate>td(01jan2015)

gen Source=5

save "exams_anosologikes.dta", replace

clear

use "exams_bioximikes_new.dta"

drop if ExamDate==.

drop if ExamDate<td(01jan1985)

gen Source=6

save "exams_bioximikes_new.dta", replace

clear

use "exams_iologikes.dta"

drop if ExamDate==.

replace ExamDate=td(30apr2001) if ExamDate==td(30apr0201)

replace ExamDate=td(16sep2008) if ExamDate==td(16sep0208)

replace ExamDate=td(05sep2012) if ExamDate==td(05sep0212)

drop if ExamDate==td(22may1980)

replace ExamDate=td(23sep2014) if ExamDate==td(23sep2024)

replace ExamDate=td(13apr2013) if ExamDate==td(13apr2103)

gen Source=7
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save "exams_iologikes.dta", replace

clear

use "exams_orologikes.dta"

drop if ExamDate==.

drop if ExamDate<td(01jan1985)

gen Source=8

save "exams_orologikes.dta", replace

clear

use "exams_other.dta"

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=9

save "exams_other.dta", replace

clear

use "exams_ourwn.dta"

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=10

save "exams_ourwn.dta", replace

clear

use "hbv_iologikes.dta"

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=11

save "hbv_iologikes.dta", replace

clear
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use "hbv_istology.dta"

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=12

save "hbv_istology.dta", replace

clear

use "hcv_iologikes.dta"

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=13

save "hcv_iologikes.dta", replace

clear

use "hcv_istology.dta" 

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=14

save "hcv_istology.dta", replace

clear

use "hiv_resistance.dta" 

rename SampleDate ExamDate

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=15

save "hiv_resistance.dta", replace

clear

use "patient_neoplasma.dta"

rename NeoplasmaDate ExamDate
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drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

drop if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=16

save "patient_neoplasma.dta", replace

clear

use "patient_other_clinical_state.dta"

rename ClinicalStatusDate ExamDate

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

drop if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=17

save "patient_other_clinical_state.dta", replace

clear

use "patients_category_b.dta"

rename ClinicSymptomDate ExamDate

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=18

save "patients_category_b.dta", replace

clear

use "patients_category_c.dta"

rename NososSyndromDate ExamDate

drop if ExamDate==.

list PatientCode ExamDate if ExamDate<td(01jan1985)

list PatientCode ExamDate if ExamDate>td(01jan2015)

gen Source=19

save "patients_category_c.dta", replace

clear
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**********constructing the atomiko_anamnistiko_new file*******************

use "atomiko_anamnistiko.dta"

drop if HypertensionDate==. & StefaniaiaDate==. & DiabitisDate==. /// 

& YperlipidaimiaDate==. & LipoatrofiaDate==. & EnapothesiDate==.

save "atomiko_anamnistiko.dta", replace

clear

use "atomiko_anamnistiko.dta"

drop Stef* Diab* Yper* Lip* Enap*

rename HypertensionDate ExamDate

drop if ExamDate==.

save "atomiko_anamnistiko_hyp.dta"

clear

use "atomiko_anamnistiko.dta"

drop Hyp* Diab* Yper* Lip* Enap*

rename StefaniaiaDate ExamDate

drop if ExamDate==.

save "atomiko_anamnistiko_ste.dta"

clear

use "atomiko_anamnistiko.dta"

drop Hyp* Stef* Yper* Lip* Enap*

rename DiabitisDate ExamDate

drop if ExamDate==.

save "atomiko_anamnistiko_diab.dta"

clear

use "atomiko_anamnistiko.dta"

drop Hyp* Stef* Diab*  Lip* Enap*

rename YperlipidaimiaDate ExamDate

drop if ExamDate==.

save "atomiko_anamnistiko_yper.dta"

clear

use "atomiko_anamnistiko.dta"

drop Hyp* Stef* Diab* Yper* Enap*

rename LipoatrofiaDate ExamDate

drop if ExamDate==.

save "atomiko_anamnistiko_lipo.dta"

clear

use "atomiko_anamnistiko.dta"

drop Hyp* Stef* Diab* Yper* Lipo*
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rename EnapothesiDate ExamDate

drop if ExamDate==.

save "atomiko_anamnistiko_enap.dta"

clear

use "atomiko_anamnistiko_hyp.dta"

append using "atomiko_anamnistiko_ste.dta"  /// 

"atomiko_anamnistiko_diab.dta" /// 

"atomiko_anamnistiko_yper.dta" /// 

"atomiko_anamnistiko_lipo.dta" /// 

"atomiko_anamnistiko_enap.dta"

gen Source=20

save "atomiko_anamnistiko_new.dta"

***********constructing the overall file for visits**********

use "atomiko_anamnistiko_new.dta"

append using "atomiko_anamnistiko_aee.dta" 

"atomiko_anamnistiko_emfragma.dta" /// 

"clinic_visits.dta" "exams_aimatologikes.dta" "exams_anosologikes.dta" /// 

"exams_bioximikes_new.dta" "exams_iologikes.dta" "exams_orologikes.dta" /// 

"exams_other.dta" "exams_ourwn.dta" "hbv_iologikes.dta" /// 

"hbv_istology.dta" "hcv_iologikes.dta" "hcv_istology.dta" /// 

"hiv_resistance.dta" "patient_neoplasma.dta" /// 

"patient_other_clinical_state.dta" "patients_category_b.dta" /// 

"patients_category_c.dta"

label var Source "Origin of Data"

label define labSource ///

1 "atomiko_anamnistiko_aee" 2 "atomiko_anamnistiko_emfragma" ///

3 "clinic_visits" 4 "exams_aimatologikes" /// 

5 "exams_anosologikes" 6 "exams_bioximikes_new" /// 

7 "exams_iologikes" 8 "exams_orologikes" /// 

9 "exams_other" 10 "exams_ourwn" /// 

11 "hbv_iologikes" 12 "hbv_istology" /// 

13 "hcv_iologikes" 14 "hcv_istology" /// 

15 "hiv_resistance" 16 "patient_neoplasma" /// 

17 "patient_other_clinical_state" 18 "patients_category_b" /// 

19 "patients_category_c" 20 "atomiko anamnistiko"
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label values Source labSource

label var Enapothesi "Fat deposition"

label var Lipoatrofia "Lipoatrophy"

label var ExamDate "Date of visit"

label var Yperlipidaimia "Hyperlipidemia"

label var Diabitis "Diabetes"

label var Stefaniaia "Coronary artery disease"

drop if ExamDate<td(01jan1985)

save "visits_overall.dta",clear

************constructing the dateofdeath file**************

use "hospitalization.dta" 

keep if Ekbasi==1

*95 remaining observations

drop EntryDate Diagnosis Ekbasi

rename ExitDate DateofDeath

label var DateofDeath "Date of Death"

gen State=1

save "hospitalization_death.dta"

clear

use "last_state.dta"

drop LastState Lost2FollowUp LastKnownT NewClinic WithdrawalDate Immediate

Contributing1 Contributing2 Contributing3 Contributing4 Underlying Notes

gen State=1

drop if DeathDate==. & DateDeathKnown==.

*(6595 observations deleted) leaving 635 observations

gen D=DeathDate

format D %td

replace D=DateDeathKnown if D==.

label var D "Date of Death"

drop DeathDate DateDeathKnown

save "last_state_death.dta"

bysort PatientCode: gen sort=_n

keep if sort==1

*(43 observations deleted)

merge 1:1 PatientCode using "hospitalization_death.dta"

replace DateofDeath=D if DateofDeath==.
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li if DateofDeath<td(01jan1985)

drop if if DateofDeath<td(01jan1985)

*(1 observation deleted) leaving 593 observations

drop D sort _merge

label define lab 1 "dead"

label values State lab

rename fromCenter fromCenter_dod

save "dateofdeath.dta"

clear

*********merging dateofdeath file with demographic_data***************

use "demographic_data.dta"

merge 1:1 PatientCode using "dateofdeath.dta"

drop _merge

save "demographic_data.dta", replace

clear

*********merging visit_overall file with demographic_data***************

use "visits_overall.dta"

merge m:1 PatientCode using "demographic_data.dta"

**matched 1,983,108

drop _merge

label var PatientCode "Unique Patient Code"

label var ExamDate "Date of biochemical examination"

label var Code "Code of biochemical test"

label var Value "Result of biochemical test"

label var Lower "Lower limit of biochemical test"

label var Upper "Upper limit of biochemical test"

label var Unit "Measuring unit of biochemical test"

label var BirthDate "Date of Birth"

label var fromCenter "Code of Clinic"

save "complete_data.dta"

clear 

************************************************************************

use "complete_data.dta"

sort PatientCode ExamDate

gen sortgen=_n
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label var sortgen "sorted by Patient and Date of visit"

*generating ascending serial number of visit for every patient

bysort PatientCode ExamDate: gen sort=_n

by PatientCode: egen mode=mode(fromCenter)

label var mode "Most visited Clinic per patient"

*****removing multiple lines for the same visit

keep if sort==1

drop sort

sort PatientCode ExamDate

replace sortgen=_n

*generating variables for the beginning and end of follow-up period 

gen tstart=.

format tstart %td

gen tstop=.

format tstop %td

label var tstart "Begin of risk period"

label var tstop "End of risk period"

*generating new ascending serial number of visit for every patient

sort PatientCode ExamDate

by PatientCode: gen sort3=_n

label var sort3 "ascending serial number of visit per patient"

*generating descending serial number of visit for every patient

gen sort4=-sort3

label var sort4 "negative sorting of visits per patient"

sort PatientCode sort4

by PatientCode: gen desc_sort=_n

label var desc_sort "descending serial number of visit per patient"

by PatientCode: gen totvisits=_N

label var totvisits "Total number of visits"
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replace tstart=ExamDate

sort sortgen

replace tstop=ExamDate

bysort PatientCode: replace tstop=tstop[_n+1]

drop MELCode fromCenter 

rename BirthDate dateofbirth

merge m:1 PatientCode using "patients.dta" 

*taking the last known examination date by Center as the database closure

bysort fromCenter: egen Studyclosure=max(ExamDate)

gen d2=Studyclosure-ExamDate if desc_s==1

save "data4split.dta", replace

clear

************************************

***for those with one visit (#66)***

************************************

use  "data4split.dta"

keep if totvisits==1

*(231971 observations deleted) 66 remaining

replace tstop=DateofDeath if DateofDeath-ExamDate<365.25

*3 died within a year after their 1st visit  

replace tstop=Studyclosure if Studyclosure-ExamDate<365.25

*18 had a visit within a year before study close

gen gapyear=1 if Studyclosure-ExamDate>=365.25 & DateofDeath==.

replace tstop=ExamDate+182.625 if Studyclosure-ExamDate>=365.25 & DateofDeath==.

*(45 real changes made)

replace gapyear=0 if gapyear==.

save "thosewith1visit.dta", replace

clear

************************************

**** #13 with postmortem visits ****

************************************

use "data4split.dta"

drop if totvisits==1
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*(66 observations deleted)

gen dif=DateofDeath-ExamDate if desc_s==1

label var dif "Difference between date of death and visit date"

keep if Pat==201319013 | Pat==3413| Pat==6061| Pat==4525|Pat==1242 /// 

|Pat==1065|Pat==7918|Pat==1943|Pat==202012907|Pat==200783461 /// 

|Pat==201678154|Pat==5067|Pat==202902092

save "ThoseWithPostmortemVisits13.dta", replace

clear

************************************

****** creating gap  variable ******

******  & filling last tstop  ******

************************************

use "data4split.dta"

sort PatientCode ExamDate

drop if totvisits==1

gen dif=DateofDeath-ExamDate if desc_s==1

label var dif "Difference between date of death and visit date"

drop if Pat==201319013 | Pat==3413| Pat==6061| Pat==4525|Pat==1242 /// 

|Pat==1065|Pat==7918|Pat==1943|Pat==202012907|Pat==200783461 /// 

|Pat==201678154|Pat==5067|Pat==202902092

replace tstop=DateofDeath if dif>0 & dif<365.25

gen gapyear=1 if dif>365.25 & dif!=.

replace tstop=ExamDate+182.625 if dif>365.25 & dif!=.

replace tstop=DateofDeath+1 if dif==0

*for those who have at least 2 visits totally and a visit within the year of

2014

replace tstop=Studyclosure if desc==1 & d2<365.25 & DateofDeath==.

*for those who have at least 2 visits totally but without a visit within the

year of 2014

replace gapyear=1 if desc==1 & d2>=365.25 & DateofDeath==.

replace tstop=ExamDate+182.625 if desc==1 & d2>=365.25 & DateofDeath==.

replace gapyear=1 if tstop-ExamDate>365.25

replace gapyear=0 if gapyear==.
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label define gapyearlab 0 "no" 1 "yes"

label values gapyear gapyearlab

drop if ExamDate<td(01jan1996)

*serial number of gaps by each patient

by PatientCode : generate num96=sum( gapyear ) if gapyear ==1

label var num96 "ascending serial number of gaps"

*total number of gaps per patient 1996-2014

egen totalnum=max(num96), by(PatientCode)

label var totalnum "total number of gaps 1996-2014"

replace totalnum=0 if totalnum==.

***First ever visit for every Patient after 96

sort PatientCode ExamDate

by PatientCode: gen sort6=_n

label var sort6 "ascending serial number of visit per patient after 96"

bysort PatientCode (sort6): gen firstvisit96=ExamDate if sort6==1

bysort PatientCode (sort6): carryforward firstvisit96,replace

format firstvisit96 %td

***First visit after every gap

forvalues i=1/8 {

bysort PatientCode (sort6): gen fvag`i'=ExamDate[_n+1] if num==`i' & desc_sort!

=1

bysort PatientCode (sort6): carryforward fvag`i',replace

format fvag`i' %td

}

label var fvag1 "First Visit After 1 Gap"

label var fvag2 "First Visit After 2 Gap"

label var fvag3 "First Visit After 3 Gap"

label var fvag4 "First Visit After 4 Gap"

label var fvag5 "First Visit After 5 Gap"

label var fvag6 "First Visit After 6 Gap"

label var fvag7 "First Visit After 7 Gap"

label var fvag8 "First Visit After 8 Gap"
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by PatientCode: gen totvisits1996_2014=_N

label var totvisits "Total number of visits 1996-2014"

save "1996-2014gaps.dta",replace

clear

************************************

****** those who have NO gaps ******

************* # 102306 **************

************************************

use "1996-2014gaps.dta"

keep if totalnum==0

sort sortgen

replace tstart=firstvisit96 if desc_sort==1

keep if desc_sort==1

save "ThoseWhoHave0gaps.dta",replace

clear

************************************

******* those who have 1 gap *******

************* # 79699 **************

************************************

use "1996-2014gaps.dta"

keep if totalnum==1

count if gapyear==desc_sort==1

codebook Pat if State!=.

***for those who had their gap at their last visit #1601

replace tstart=firstvisit96 if desc_sort==1 & num96==1 

***for those who had NOT their gap at their last visit #1167

replace tstart=firstvisit96 if desc_sort!=1 & num96==1

replace tstop=ExamDate+182.625 if desc_sort!=1 & num96==1

replace tstart=fvag1 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

replace tstop=DateofDeath if num96==. & desc_sort==1 & tstop==DateofDeath+1

replace  tstop=DateofDeath  if  num96==.  &  desc_sort==1  &  DateofDeath-

ExamDate<365.25 & DateofDeath-Studyclosure<0
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keep  if  (num==1  &  desc_sort!=1)  |  (num==.  &  desc_sort==1)  |  (num==1  &

desc_sort==1)

save "ThoseWhoHave1gap.dta",replace

clear

************************************

******* those who have 2 gap *******

************* # 26392 **************

************************************

use "1996-2014gaps.dta"

keep if totalnum==2

*for the 1st gap #898

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

***for those who had their 2nd gap at their last visit #524

replace tstart=fvag1 if num96==2 & desc_sort==1

***for those who had their 2nd gap BEFORE their last visit #374

replace tstart=fvag1 if num96==2 & desc_sort!=1

replace tstop=ExamDate+182.625 if num==2 & desc_sort!=1

replace tstart=fvag2 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

replace tstop=DateofDeath if num96==. & desc_sort==1 & tstop==DateofDeath+1

replace  tstop=DateofDeath  if  num96==.  &  desc_sort==1  &  DateofDeath-

ExamDate<365.25 & DateofDeath-Studyclosure<0

keep if (num96==1) | (num96==2 & desc_sort!=1) | (num96==. & desc_sort==1) |

(num96==2 & desc_sort==1)

save "ThoseWhoHave2gaps.dta",replace

clear

************************************
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******* those who have 3 gap *******

************* # 9578  **************

************************************

use "1996-2014gaps.dta"

keep if totalnum==3

*for the 1st gap #324

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

*for the 2d gap #324

replace tstart=fvag1 if num96==2

replace tstop=ExamDate+182.625 if num96==2

***for those who had their 3rd gap at their last visit #194

replace tstart=fvag2 if num96==3 & desc_sort==1

count if num96==3 & desc_sort==1 & tstop==ExamDate+182.625

***for those who had their 3rd gap BEFORE their last visit #130

replace tstart=fvag2 if num96==3 & desc_sort!=1

replace tstop=ExamDate+182.625 if num==3 & desc_sort!=1

replace tstart=fvag3 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

replace tstop=DateofDeath if num96==. & desc_sort==1 & tstop==DateofDeath+1

replace  tstop=DateofDeath  if  num96==.  &  desc_sort==1  &  DateofDeath-

ExamDate<365.25 & DateofDeath-Studyclosure<0

keep  if  (num96==1)  |(num96==2)  |  (num96==3  &  desc_sort!=1)  |  (num96==.  &

desc_sort==1) | (num96==3 & desc_sort==1)

save "ThoseWhoHave3gaps.dta",replace

clear

************************************

******* those who have 4 gap *******

************* # 4643  **************

************************************
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use "1996-2014gaps.dta"

keep if totalnum==4

*for the 1st gap #148

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

*for the 2nd gap #148

replace tstart=fvag1 if num96==2

replace tstop=ExamDate+182.625 if num96==2

*for the 3rd gap #148

replace tstart=fvag2 if num96==3

replace tstop=ExamDate+182.625 if num96==3

***for those who had their 4th gap at their last visit #90

replace tstart=fvag3 if num96==4 & desc_sort==1

***for those who had their 4th gap BEFORE their last visit #58

replace tstart=fvag3 if num96==4 & desc_sort!=1

replace tstop=ExamDate+182.625 if num==4 & desc_sort!=1

replace tstart=fvag4 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

replace  tstop=DateofDeath  if  num96==.  &  desc_sort==1  &  DateofDeath-

ExamDate<365.25 & DateofDeath-Studyclosure<0

keep  if  (num96==1)  |(num96==2)  |  (num96==3)  |(num96==4  &  desc_sort!=1)  |

(num96==. & desc_sort==1) | (num96==4 & desc_sort==1)

save "ThoseWhoHave4gaps.dta",replace

clear

************************************

******* those who have 5 gap *******

************* # 1419  **************

************************************

use "1996-2014gaps.dta"
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keep if totalnum==5

*for the 1st gap #

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

*for the 2nd gap #

replace tstart=fvag1 if num96==2

replace tstop=ExamDate+182.625 if num96==2

*for the 3rd gap #

replace tstart=fvag2 if num96==3

replace tstop=ExamDate+182.625 if num96==3

*for the 4th gap #

replace tstart=fvag3 if num96==4

replace tstop=ExamDate+182.625 if num96==4

***for those who had their 5th gap at their last visit #23

replace tstart=fvag4 if num96==5 & desc_sort==1

***for those who had their 5th gap BEFORE their last visit #23

replace tstart=fvag4 if num96==5 & desc_sort!=1

replace tstop=ExamDate+182.625 if num96==5 & desc_sort!=1

replace tstart=fvag5 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

replace  tstop=DateofDeath  if  num96==.  &  desc_sort==1  &  DateofDeath-

ExamDate<365.25 & DateofDeath-Studyclosure<0

keep if (num96==1) |(num96==2) | (num96==3) | (num96==4) |(num96==5 & desc_sort!

=1) | (num96==. & desc_sort==1) | (num96==5 & desc_sort==1)

save "ThoseWhoHave5gaps.dta",replace

clear

************************************

******* those who have 6 gap *******



121

*************  # 611  **************

************************************

use "1996-2014gaps.dta"

keep if totalnum==6

*for the 1st gap #

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

forvalues i=1/5 {

replace tstart=fvag`i' if num96==`i'+1

replace tstop=ExamDate+182.625 if num96==`i'+1

}

***for those who had their 6th gap at their last visit #16

replace tstart=fvag5 if num96==6 & desc_sort==1

***for those who had their 6th gap BEFORE their last visit #8

replace tstart=fvag5 if num96==6 & desc_sort!=1

replace tstop=ExamDate+182.625 if num96==6 & desc_sort!=1

replace tstart=fvag6 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

replace  tstop=DateofDeath  if  num96==.  &  desc_sort==1  &  DateofDeath-

ExamDate<365.25 & DateofDeath-Studyclosure<0

keep  if  (num96==1)  |  (num96==2)  |  (num96==3)  |  (num96==4)  |  (num96==5)  |

(num96==6  &  desc_sort!=1)  |  (num96==.  &  desc_sort==1)  |  (num96==6  &

desc_sort==1)

save "ThoseWhoHave6gaps.dta",replace

clear

************************************

******* those who have 7 gap *******

*************  # 214  **************

************************************

use "1996-2014gaps.dta"
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keep if totalnum==7

*for the 1st gap #

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

forvalues i=1/6 {

replace tstart=fvag`i' if num96==`i'+1

replace tstop=ExamDate+182.625 if num96==`i'+1

}

***for those who had their 7th gap at their last visit #4

replace tstart=fvag6 if num96==7 & desc_sort==1

count if num96==7 & desc_sort==1 & tstop==ExamDate+182.625

***for those who had their 7th gap BEFORE their last visit #8

replace tstart=fvag7 if num96==. & desc_sort==1

replace  tstop=Studyclosure  if  num96==.  &  desc_sort==1  &  Studyclosure-

ExamDate<365.25

keep  if  (num96==1)  |  (num96==2)  |  (num96==3)  |  (num96==4)  |  (num96==5)  |

(num96==6) | (num96==7 & desc_sort!=1) | (num96==. & desc_sort==1) | (num96==7 &

desc_sort==1)

save "ThoseWhoHave7gaps.dta",replace

clear

************************************

******* those who have 8 gap *******

*************  # 19  ***************

************************************

use "1996-2014gaps.dta"

keep if totalnum==8

*for the 1st gap #

replace tstart=firstvisit96 if num96==1

replace tstop=ExamDate+182.625 if num96==1

forvalues i=1/7 {



123

replace tstart=fvag`i' if num96==`i'+1

replace tstop=ExamDate+182.625 if num96==`i'+1

}

keep  if  (num96==1)  |  (num96==2)  |  (num96==3)  |  (num96==4)  |  (num96==5)  |

(num96==6) | (num96==7) | (num96==8)

save "ThoseWhoHave8gaps.dta",replace

clear

***********************************************************

*****************appending the datasets********************

***********************************************************

use "ThoseWhoHave0gaps.dta" 

append using "ThoseWhoHave1gap.dta"  ///

"ThoseWhoHave2gaps.dta" /// 

"ThoseWhoHave3gaps.dta" /// 

"ThoseWhoHave4gaps.dta" /// 

"ThoseWhoHave5gaps.dta" /// 

"ThoseWhoHave6gaps.dta" /// 

"ThoseWhoHave7gaps.dta" /// 

"ThoseWhoHave8gaps.dta"

drop  sort6  dif  d2  Studyclosure  _merge  totvisits  desc_sort  sort4  sort3

fromCenter_dod  OtherClinic  OtherDrugName  OtherDrugValue  PressureSystolic

PressureDiastolic  AbsoluteCD4  PercentCD4  AbsoluteCD8  PercentCD8  Name  Surname

CodeType Result Operator Units Method Type ExtraField ExtraValue

save "All_gaps.dta",replace 

clear

************************************************************

use "All_gaps.dta"

keep fvag1 fvag2 fvag3 fvag5 fvag4 fvag6 fvag7 fvag8 PatientCode ExamDate Source

EnrollDate Race Sex Education State DateofDeath mode tstart tstop fromCenter

gapyear num96 totalnum totvisits1996_2014 firstvisit96
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gen FUtime=tstop-tstart 

label var FUtime "Follow-up time"

replace tstop=tstop+1 if PatientCode==999540 & FUtime==0

replace FUtime=1 if FUtime==0

bysort PatientCode (ExamDate): gen sort7=_n

replace State=2 if State==.

label define Statelbl 1 "dead" 2 "alive"

label values State Statelbl

label var State "Is the patient dead or alive"

label var fromCenter "Reference Clinic"

label var gapyear "Failure indicator"

label var totvisits1996_2014 "total number of visits 1996-2014"

label var sort "ascending number of risk periods per patient"

save "All_gaps.dta",replace 

clear

*********************firstexamdate + tstart********************************

use "All_gaps.dta"

rename firstvisit96 firstexamdate

keep if sort7==1

keep Pat first

save "firstexamdate.dta" 

clear

use "All_gaps.dta"

keep PatientCode tstart sort7

save "tstart.dta" 

clear

*********************DateofBirth & age******************

use "patients.dta"

keep PatientCode BirthDate

rename BirthDate dob

label var dob "Date of Birth"

merge 1:1 PatientCode using "firstexamdate.dta"
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drop if _merge==1

drop _merge

gen age= firstexamdate-dob

drop if age==.

label var age "Age at first appearance"

replace age=age/365.25

save "dob_age.dta",replace 

clear

*******************origin*************************

use "demographic_data.dta"

gen origin=4 if Origin==0 | Origin==99 | Origin==255

replace origin=1 if Origin==10 | Origin==11 | Origin==12

replace origin=2 if Origin==20 | Origin==40 | Origin==60

replace origin=3 if Origin==50 | Origin==52 

replace origin=0 if Origin==70 | Origin==71 | Origin==72

label drop originlbl

label  define  originlbl  4  "Not  specified"  1"Africa"  2  "Asia  &  Australia"  3

"Americas" 0 "Europe"

label values origin originlbl

save  "origin.dta",replace

clear

 

*******************coinfections*******************

use "exams_orologikes.dta"

merge m:1 PatientCode using "firstexamdate.dta"

drop if ExamDate<td(01jan1996)

drop if _merge==1 |_merge==2

encode Type,gen(type)

keep if type==7 | type==11

sort Pat ExamDate

encode Result, gen(result)

recode result (2=0)

label drop result

label define resultlbl 0 "-" 1 "+"

label values result resultlbl

****HCV status for those who were tested positive within a year from their first
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exam date

by  PatientCode  (ExamDate):  egen  sumHCV=sum(result)  if  type==7  &

ExamDate<=firstexamdate+365.25

by  PatientCode  (ExamDate):  gen  sumHCV2=sum(result)  if  type==7  &

ExamDate<=firstexamdate+365.25

****HCV status for those who were tested positive after a year from their first

exam date but never tested negative throughout their follow up time

by  PatientCode  (ExamDate):  gen  hcvindicator=-100  if  result==0  &  type==7  &

ExamDate>firstexamdate+365.25

by  PatientCode  (ExamDate):  replace  hcvindicator=1  if  result==1  &  type==7  &

ExamDate>firstexamdate+365.25

by PatientCode (ExamDate): gen sumHCV3=sum(hcvindicator)

gen HCV=1 if sumHCV2!=0 & sumHCV2!=.

replace HCV=1 if sumHCV3>0 & sumHCV3!=.

****HBV status for those who were tested positive within a year from their first

exam date

by  PatientCode  (ExamDate):  gen  sumHBV=sum(result)  if  type==11  &

ExamDate<=firstexamdate+365.25

****HBV status for those who were tested positive after a year from their first

exam date but never tested negative throughout their follow up time

by  PatientCode  (ExamDate):  gen  hbvindicator=-100  if  result==0  &  type==11  &

ExamDate>firstexamdate+365.25

by PatientCode (ExamDate): replace hbvindicator=1 if result==1 & type==11 &

ExamDate>firstexamdate+365.25

by PatientCode (ExamDate): gen sumHBV2=sum(hbvindicator)

gen HBV=1 if sumHBV!=0 & sumHBV!=.

replace HBV=1 if sumHBV2>0 & sumHBV2!=.

bysort PatientCode (ExamDate): gen sort=_n

gen negsort=-sort

bysort PatientCode (negsort): carryforward HCV,gen(HCV2)

bysort PatientCode (negsort): carryforward HBV,gen(HBV2)
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keep if sort==1

keep if HCV2!=. | HBV2!=.

keep PatientCode HCV2 HBV2

rename HCV2 HCV

rename HBV2 HBV

replace HCV=0 if HCV==.

replace HBV=0 if HBV==.

save "coinfections.dta",replace

clear

********************virus load longitudinal********************

use "exams_iologikes.dta" 

sort PatientCode ExamDate

drop if ExamDate<td(01jan1996)

by PatientCode (ExamDate):gen sort=_n

encode Operator,gen(Oper)

recode Oper (1=-1)(2=0)(3=1)

label define Operlbl -1 "<" 0 "=" 1">"

label values Oper Operlbl

drop Operator

rename Oper hivRNAoperator

forvalues i=1/5 {

replace  Value=Value[_n+`i']  if  Value==0  &  PatientCode==PatientCode[_n+`i']  &

ExamDate[_n+`i']<ExamDate+365.25 & Value[_n+`i']!=0

replace  hivRNAoperator=hivRNAoperator[_n+`i']  if  Value==0  &

PatientCode==PatientCode[_n+`i']  &  ExamDate[_n+`i']<ExamDate+365.25  &

Value[_n+`i']!=0

}

replace  hivRNAoperator=hivRNAoperator[_n-1]  if  Value==0  &

PatientCode==PatientCode[_n-1] & ExamDate<ExamDate[_n-1]+365.25 & Value[_n-1]!=0

replace  Value=Value[_n-1]  if  Value==0  &  PatientCode==PatientCode[_n-1]  &

ExamDate<ExamDate[_n-1]+365.25 & Value[_n-1]!=0
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replace  hivRNAoperator=0  if  (PatientCode==5492  &  sort==1)  |

(PatientCode==203123632 & sort==1)

append using "tstart.dta"

replace ExamDate=tstart if tstart!=.

gen ts2=tstart

format ts2 %td

gen value=Value

**replace missing values with non missing within a window of 1 year 

forvalues x=1/8 {

forvalues i=1/10 {

bysort  Pat  (Exam  sort7):replace  hivRNAoperator=hivRNAoperator[_n+`i']  if

missing(value)  &  sort7==`x'  &  value[_n+`i']!=.  &  ExamDate<ts2+365.25  &

PatientCode==PatientCode[_n+`i']

bysort  Pat  (Exam  sort7):replace  value=value[_n+`i']  if  missing(value)  &

sort7==`x'  &  value[_n+`i']!=.  &  ExamDate<ts2+365.25  &

PatientCode==PatientCode[_n+`i']

}

}

forvalues x=1/8 {

replace  hivRNAoperator=hivRNAoperator[_n-1]  if  missing(value)  &  sort7==`x'  &

value[_n-1]!=. & ts2<ExamDate+365.25 & PatientCode==PatientCode[_n-1]

replace  value=value[_n-1]  if  missing(value)  &  sort7==`x'  &  value[_n-1]!=.  &

ts2<ExamDate+365.25 & PatientCode==PatientCode[_n-1]

}

drop if Pat==176 | Pat==836 | Pat==1047 | Pat==1425 | Pat==1590 | Pat==1812

keep if sort7!=. & value!=.

keep PatientCode value tstart hivRNAoperator sort7

replace value=value/2 if hivRNAoperator==-1

rename value virusload

label var virusload "Virus load"

keep PatientCode tstart sort7 virusload

gen logvirusload=log10(virusload)

label var logvirusload "base-10 logarithm of Virus Load"
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save "virusload_longitudinal.dta",replace

clear

************************CD4 count longitudinal********************************

use "exams_anosologikes.dta"

keep PatientCode ExamDate AbsoluteCD4

append using "tstart.dta"

sort Pat Exa

drop if Exam<td(01jan1996)

bysort Pat (Exam):gen sort=_n

replace ExamDate=tstart if tstart!=.

sort Pat Exam sort7

gen ts2=tstart

format ts2 %td

gen cd4=AbsoluteCD4

**change all the zero values to missing values

replace cd4=. if cd4==0

**replace missing values with non missing within a window of 1 year 

forvalues x=1/8 {

forvalues i=1/10 {

bysort Pat (Exam sort7):replace cd4=cd4[_n+`i'] if missing(cd4) & sort7==`x' &

cd4[_n+`i']!=. & ExamDate<ts2+365.25 & PatientCode==PatientCode[_n+`i']

}

}

forvalues x=1/8 {

replace  cd4=cd4[_n-1]  if  missing(cd4)  &  sort7==`x'  &  cd4[_n-1]!=.  &

ts2<ExamDate+365.25 & PatientCode==PatientCode[_n-1]

}

drop  if  Pat==999568  |  Pat==200313005  |  Pat==200904869  |  Pat==200914354  |

Pat==201054938  |  Pat==201060641  |  Pat==201153724  |  Pat==201250628  |

Pat==201315217| Pat==201395036| Pat==201446346| Pat==201486253| Pat==201605947 |

Pat==201896852  |  Pat==201986275  |  Pat==202100380  |  Pat==202115600  |
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Pat==202226169 | Pat==202235721 | Pat==202308329 | Pat==202310241 

keep if cd4!=. & sort7!=.

gen CD4log=log(cd4)

label var CD4log "longitudinal natural logarithm of CD4 count"

keep PatientCode tstart sort7 CD4log cd4

gen cd4cat=0 if cd4>=350

replace cd4cat=1 if cd4<350 & cd4>=200

replace cd4cat=2 if cd4<200

label define cd4catlab 0 "CD4>=350" 1 "CD4>=200 & <350" 2 "CD4<200"

save "CD4_longitudinal.dta",replace

clear

****************Possible source of infection********************

use "demographic_data.dta"

gen  psoi=4  if  PossibleSourceInfection==0  |  PossibleSourceInfection==8  |

PossibleSourceInfection==9

replace psoi=1 if PossibleSourceInfection==1 | PossibleSourceInfection==3

replace psoi=2 if PossibleSourceInfection==2 

replace  psoi=3  if  PossibleSourceInfection==4  |  PossibleSourceInfection==5  |

PossibleSourceInfection==6

replace psoi=0 if PossibleSourceInfection==7

label define psoilbl 4 "Not-specified" 1 "Homosexual/Bisexual contact" 2 "IDU" 3

"Blood transfusion" 0 "Heterosexual contact"

label values psoi psoilbl

label var psoi "Possible source of infection"

keep PatientCode psoi PossibleSourceInfection

save "possource.dta",replace

clear

*******************education***********************

use "demographic_data.dta"

encode Education, gen(edu)

gen education=0 if edu==1 | edu==5 | edu==10

replace education=1 if edu==6 | edu==7

replace education=2 if edu==3 | edu==4
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replace education=3 if edu==2 | edu==8

replace education=4 if edu==9 |edu==.

label define educationlbl 0 "None / Primary Education" 1 "Secondary Education" 2

"Higher / Vocational Education" 3 "Academical Education" 4 "Not Specified"

label values education educationlbl

keep PatientCode edu education

label var education "Level of Education"

save "education.dta",replace

clear

**********************HAART***********************

use "haart.dta"

gen Haart=0 if HAART==0

replace Haart=1 if HAART!=0

sort PatientCode StartDate

drop if StartDate<td(01jan1996)

bysort PatientCode (StartDate): gen sort=_n

gen Haartindicator=-1 if Haart==0

replace Haartindicator=100 if Haart==1

bysort PatientCode (StartDate): egen sumindicator2=sum(Haartindicator)

keep if sort==1

gen Haart=0 if sumindicator2<0

replace Haart=1 if sumindicator2>0

label define Haartlbl 0 "NO" 1 "YES"

label values Haart Haartlbl

label var Haart "Ever received HAART"

drop sumindicator Haartindicator Haart fromCenter Compliance Schema

save "Haart(ever).dta",replace

clear

*****************************************************

use "All_gaps.dta"

merge m:1 PatientCode using "Haart(ever).dta"

replace Haart=0 if Haart==.
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drop _merge

merge m:1 PatientCode using "education.dta"

drop if _merge==2

drop _merge

merge m:1 PatientCode using "possource.dta"

drop if _merge==2

drop _merge

merge m:1 PatientCode using "dob_age.dta"

drop if _merge==2

drop _merge

merge m:1 PatientCode using "origin.dta"

drop if _merge==2

drop _merge

merge m:1 PatientCode using "coinfections.dta"

replace HCV=0 if HCV==.

replace HBV=0 if HBV==.

gen hcvhbv=1 if HCV==1 | HBV==1

replace hcvhbv=0 if hcvhbv==.

drop _merge

merge 1:1 PatientCode tstart using "CD4_longitudinal.dta"

drop _merge

merge 1:1 PatientCode tstart using "virusload_longitudinal.dta"

drop _merge

gen sex=Sex if Sex!=3

recode sex (1=0)(2=1)

label drop sexlbl

label define sexlbl 0 "male" 1 "female"

label values sex sexlbl

gen gap=gapyear

save "Complete.dta",replace
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drop if sex==.

drop if age<18

keep PatientCode gap sex hcvhbv logvirusload CD4log  cd4 cd4cat  origin FUtime

Haart tstart tstop education psoi age

drop if CD4log==.

drop if logvirusload==.

drop if age==.

saveold "!!gia tin R.dta",replace

The R code
my.summary.coxph.penal <- 

  function (object, conf.int = 0.95, scale = 1, terms = FALSE, 

            maxlabel = 25, digits = max(options()$digits - 4, 3), ...) 

  {

    if (!is.null(object$call)) {

      cat("Call:\n")

      dput(object$call)

      cat("\n")

    }

    if (!is.null(object$fail)) {

      cat(" Coxreg failed.", object$fail, "\n")

      return()

    }

    savedig <- options(digits = digits)

    on.exit(options(savedig))

    omit <- object$na.action

    if (length(omit)) 

      cat("  n=", object$n, " (", naprint(omit), ")\n", sep = "")

    else cat("  n=", object$n, "\n")

    coef <- object$coef

    if (length(coef) == 0 && length(object$frail) == 0) 

      stop("Penalized summary function can't be used for a null model")

    if (length(coef) > 0) {

      nacoef <- !(is.na(coef))

      coef2 <- coef[nacoef]

      if (is.null(coef) | is.null(object$var)) 

        stop("Input is not valid")
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      se <- sqrt(diag(object$var))

    }

    pterms <- object$pterms

    nterms <- length(pterms)

    npenal <- sum(pterms > 0)

    print.map <- rep(0, nterms)

    if (!is.null(object$printfun)) {

      temp <- unlist(lapply(object$printfun, is.null))

      print.map[pterms > 0] <- (1:npenal) * (!temp)

    }

    print1 <- NULL

    pname1 <- NULL

    if (is.null(object$assign2)) 

      alist <- object$assign[-1]

    else alist <- object$assign2

    print2 <- NULL

    for (i in 1:nterms) {

      kk <- alist[[i]]

      if (print.map[i] > 0) {

        j <- print.map[i]

        if (pterms[i] == 2) 

          temp <- (object$printfun[[j]])(object$frail, 

                                         object$fvar, , object$df[i], 

object$history[[j]])

        else temp <- (object$printfun[[j]])(coef[kk], object$var[kk, 

                                                                 kk], 

object$var2[kk, kk], object$df[i], object$history[[j]])

        print1 <- rbind(print1, temp$coef)

        if (is.matrix(temp$coef)) {

          xx <- dimnames(temp$coef)[[1]]

          if (is.null(xx)) 

            xx <- rep(names(pterms)[i], nrow(temp$coef))

          else xx <- paste(names(pterms)[i], xx, sep = ", ")

          pname1 <- c(pname1, xx)

        }

        else pname1 <- c(pname1, names(pterms)[i])

        print2 <- c(print2, temp$history)

      }

      else if (terms && length(kk) > 1) {
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        pname1 <- c(pname1, names(pterms)[i])

        temp <- coxph.wtest(object$var[kk, kk], coef[kk])$test

        print1 <- rbind(print1, c(NA, NA, NA, temp, object$df[i], 

                                  1 - pchisq(temp, 1)))

      }

      else {

        pname1 <- c(pname1, names(coef)[kk])

        tempe <- (diag(object$var))[kk]

        temp <- coef[kk]^2/tempe

        print1 <- rbind(print1, cbind(coef[kk], sqrt(tempe), 

                                      sqrt((diag(object$var2))[kk]), temp, 1, 1 

- pchisq(temp, 

                                                                                

1)))

      }

    }

    temp <- cbind(format(print1[, 1]), format(print1[, 2]), format(print1[, 

                                                                          3]), 

format(round(print1[, 4], 2)), format(round(print1[, 

                                                                                

5], 2)), format(signif(print1[, 6], 2)))

    temp <- ifelse(is.na(print1), "", temp)

    dimnames(temp) <- list(substring(pname1, 1, maxlabel), c("coef", 

                                                             "se(coef)", "se2", 

"Chisq", "DF", "p"))

    prmatrix(temp, quote = FALSE)

    if (conf.int & length(coef) > 0) {

      z <- qnorm((1 + conf.int)/2, 0, 1)

      coef <- coef * scale

      se <- se * scale

      tmp <- cbind(exp(coef), exp(-coef), exp(coef - z * se), 

                   exp(coef + z * se))

      dimnames(tmp) <- list(substring(names(coef), 1, maxlabel), 

                            c("exp(coef)", "exp(-coef)", paste("lower .", 

round(100 * 

                                                                                

conf.int, 2), sep = ""), paste("upper .", round(100 * 

                                                                                

conf.int, 2), sep = "")))
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      cat("\n")

      prmatrix(tmp)

    }

    logtest <- -2 * (object$loglik[1] - object$loglik[2])

    sctest <- object$score

    cat("\nIterations:", object$iter[1], "outer,", object$iter[2], 

        "Newton-Raphson\n")

    if (length(print2)) {

      for (i in 1:length(print2)) cat("    ", print2[i], "\n")

    }

    if (is.null(object$df)) 

      df <- sum(!is.na(coef))

    else df <- round(sum(object$df), 2)

    cat("Degrees of freedom for terms=", format(round(object$df, 

                                                      1)), "\n")

    cat("Rsquare=", format(round(1 - exp(-logtest/object$n), 

                                 3)), "  (max possible=", format(round(1 - exp(2

* object$loglik[1]/object$n), 

                                                                       3)), 

")\n")

    cat("Likelihood ratio test= ", format(round(logtest, 2)), 

        "  on ", df, " df,", "   p=", format(1 - pchisq(logtest, 

                                                        df)), "\n", sep = "")

    if (!is.null(object$wald.test)) 

      cat("Wald test            = ", format(round(object$wald.test, 

                                                  2)), "  on ", df, " df,   p=",

format(1 - pchisq(object$wald.test, 

                                                                                

df)), sep = "")

    if (!is.null(object$score)) 

      cat("\nScore (logrank) test = ", format(round(sctest, 

                                                    2)), "  on ", df, " df,", " 

p=", format(1 - pchisq(sctest, 

                                                                                

df)), sep = "")

    if (is.null(object$rscore)) 

      cat("\n")

    else cat(",   Robust = ", format(round(object$rscore, 2)), 

             "  p=", format(1 - pchisq(object$rscore, df)), "\n", 
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             sep = "")

    invisible(return(list(temp = temp, tmp = tmp)))

  }

N         = 1000          # number of subjects

fu.min    = 1              # min follow up time of 1 year

fu.max    = 10             # max follow up time of 10 years

cens.prob = 0.4           # censoring probability

dist.x    = "binomial"     # distribution of the covariate

par.x     = list(0.4)         # parameter of the covariate binomial dist

beta      = 0.8            # regression coefficient

dist.z    = "gamma"       # distribution of the frailty term

par.z     = 0.7           # variance θ of the frailty term

dist.rec  = "weibull"      # form of the baseline hazard

par.rec   = c(0.07,1)         # parameters for the distribution of event

pfree     = 1             # probability of being risk free

dfree     = runif(1,0.5,0.8)  # length of risk free interval

nboot     =   1000      # number of iterations

modnames  <-  

c("cox.I","Marginal.II","PWP.GT.III","frailty.IV","fr.1st.V","Strat.fr.VI","cox.

VII","AG.VIII","PWP.CT.IX","frailty.X","fr.1st.XI","Strat.fr.XII")

coef.m    =   matrix(0,nboot,12,dimnames = list(names(nboot),modnames))

se.m      =   matrix(0,nboot,12,dimnames = list(names(nboot),modnames))

theta.m    =   matrix(0,nboot,12,dimnames = list(names(nboot),modnames))

p.m        =   matrix(0,nboot,12,dimnames = list(names(nboot),modnames))

lb1.m      =   matrix(0,nboot,12,dimnames = list(names(nboot),modnames))

ub1.m      =   matrix(0,nboot,12,dimnames = list(names(nboot),modnames))

my.data1   =   list()

a      <- 1:nboot

b      <- rep(NA,100)

i      <- 1
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warn <- function(w) {

  if(grepl("Inner loop failed to coverge",

           as.character(w))) {aa <<- aa+1}

}

while (i <= nboot){

  

  b[i] <- a[i]

  aa  <- 0

  

  my.data1[[i]] <- simrec(N, fu.min, fu.max, cens.prob, dist.x, par.x, beta, 

dist.z, par.z,dist.rec, par.rec, pfree, dfree)

  my.data1[[i]]$sort <- ave(my.data1[[i]]$start,my.data1[[i]]$id  ,FUN = 

seq_along)

  my.data1[[i]]$tstart<-my.data1[[i]]$start*365.25

  my.data1[[i]]$tstop<-my.data1[[i]]$stop*365.25

  my.data1[[i]]$FUtime<-my.data1[[i]]$tstop-my.data1[[i]]$tstart

  ### Model I - Simple Cox ###

  tryCatch(fitI<-coxph(formula = Surv(FUtime, status) ~ x , data 

=my.data1[[i]]), warning = warn)

  coef.m[i,1]   <-fitI$coef[1]

  se.m[i,1]     <-sqrt(fitI$var[1])

  lb1.m[i,1]     <-fitI$coef[1]-qnorm(0.975)*sqrt(fitI$var[1])

  ub1.m[i,1]     <-fitI$coef[1]+qnorm(0.975)*sqrt(fitI$var[1])

  ### Model II - Marginal Cox ###

  tryCatch(fitII<-coxph(formula = Surv(FUtime, status) ~ x +cluster(id), data 

=my.data1[[i]]), warning = warn)

  coef.m[i,2]   <-fitII$coef[1]

  se.m[i,2]     <-sqrt(fitII$var[1])

  lb1.m[i,2]     <-fitII$coef[1]-qnorm(0.975)*sqrt(fitII$var[1])

  ub1.m[i,2]     <-fitII$coef[1]+qnorm(0.975)*sqrt(fitII$var[1])

  ### Model III - PWP-GT ###

  tryCatch(fitIII<-coxph(formula = Surv(FUtime, status) ~ x +cluster(id)

+strata(sort), data =my.data1[[i]]), warning = warn)

  coef.m[i,3]   <-fitIII$coef[1]

  se.m[i,3]     <-sqrt(fitIII$var[1])

  lb1.m[i,3]     <-fitIII$coef[1]-qnorm(0.975)*sqrt(fitIII$var[1])

  ub1.m[i,3]     <-fitIII$coef[1]+qnorm(0.975)*sqrt(fitIII$var[1])

  ### Model IV - Frailty ###
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  tryCatch(fitIV<-coxph(formula = Surv(FUtime, status) ~ x +frailty(id), data 

=my.data1[[i]], method = "em"), warning = warn)

  coef.m[i,4]   <-fitIV$coef[1]

  se.m[i,4]     <-sqrt(fitIV$var[1])

  theta.m[i,4]  <-fitIV$history[[1]]$theta

  lb1.m[i,4]     <-fitIV$coef[1]-qnorm(0.975)*sqrt(fitIV$var[1])

  ub1.m[i,4]     <-fitIV$coef[1]+qnorm(0.975)*sqrt(fitIV$var[1])

  yo.iv<-my.summary.coxph.penal(fitIV)

  p.m[i,4]      <-yo.iv$temp[grepl("frailty",dimnames(yo.iv$temp)[[1]]),"p"]

  

  ### Model VI - Conditional Frailty ###

  tryCatch(fitVI<-coxph(formula = Surv(FUtime, status) ~ x +frailty(id)

+strata(sort), data =my.data1[[i]],method="em"), warning = warn)

  coef.m[i,6]   <-fitVI$coef[1]

  se.m[i,6]     <-sqrt(fitVI$var[1])

  theta.m[i,6]  <-fitVI$history[[1]]$theta

  lb1.m[i,6]    <-fitVI$coef[1]-qnorm(0.975)*sqrt(fitVI$var[1])

  ub1.m[i,6]    <-fitVI$coef[1]+qnorm(0.975)*sqrt(fitVI$var[1])

  yo.vi          <-my.summary.coxph.penal(fitVI)

  p.m[i,6]      <-yo.vi$temp[grepl("frailty",dimnames(yo.vi$temp)[[1]]),"p"]

  

  ### Model VII - Simple Cox ###

  tryCatch(fitVII<-coxph(formula = Surv(tstart,tstop, status) ~ x , data 

=my.data1[[i]]), warning = warn)

  coef.m[i,7]   <-fitVII$coef[1]

  se.m[i,7]     <-sqrt(fitVII$var[1])

  lb1.m[i,7]    <-fitVII$coef[1]-qnorm(0.975)*sqrt(fitVII$var[1])

  ub1.m[i,7]    <-fitVII$coef[1]+qnorm(0.975)*sqrt(fitVII$var[1])

  ### Model VIII - Marginal Cox ###

  tryCatch(fitVIII<-coxph(formula = Surv(tstart,tstop, status) ~ x +cluster(id),

data =my.data1[[i]]), warning = warn)

  coef.m[i,8]   <-fitVIII$coef[1]

  se.m[i,8]     <-sqrt(fitVIII$var[1])

  lb1.m[i,8]    <-fitVIII$coef[1]-qnorm(0.975)*sqrt(fitVIII$var[1])

  ub1.m[i,8]    <-fitVIII$coef[1]+qnorm(0.975)*sqrt(fitVIII$var[1])

  ### Model IX - PWP-CT ###

  tryCatch(fitIX<-coxph(formula = Surv(tstart,tstop, status) ~ x +cluster(id)
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+strata(sort), data =my.data1[[i]]), warning = warn,error=function(e) e)

  cc<-tryCatch(fitIX<-coxph(formula = Surv(tstart,tstop, status) ~ x 

+cluster(id)+strata(sort), data =my.data1[[i]]), warning = 

warn,error=function(e) e)

  coef.m[i,9]   <-fitIX$coef[1]

  se.m[i,9]     <-sqrt(fitIX$var[1])

  lb1.m[i,9]    <-fitIX$coef[1]-qnorm(0.975)*sqrt(fitIX$var[1])

  ub1.m[i,9]    <-fitIX$coef[1]+qnorm(0.975)*sqrt(fitIX$var[1])

  ### Model X - Frailty ###

  tryCatch(fitX<-coxph(formula = Surv(tstart,tstop, status) ~ x +frailty(id), 

data =my.data1[[i]],method="em"), warning = warn)

  coef.m[i,10]  <-fitX$coef[1]

  se.m[i,10]    <-sqrt(fitX$var[1])

  theta.m[i,10] <-fitX$history[[1]]$theta

  lb1.m[i,10]    <-fitX$coef[1]-qnorm(0.975)*sqrt(fitX$var[1])

  ub1.m[i,10]    <-fitX$coef[1]+qnorm(0.975)*sqrt(fitX$var[1])

  yo.x          <-my.summary.coxph.penal(fitX)

  p.m[i,10]      <-yo.x$temp[grepl("frailty",dimnames(yo.x$temp)[[1]]),"p"]

  

  

  ### Model XII - Conditional Frailty ###

  tryCatch(fitXII<-coxph(formula = Surv(tstart,tstop, status) ~ x +frailty(id)

+strata(sort), data =my.data1[[i]],method="em"), warning = warn)

  coef.m[i,12]  <-fitXII$coef[1]

  se.m[i,12]    <-sqrt(fitXII$var[1])

  theta.m[i,12] <-fitXII$history[[1]]$theta

  lb1.m[i,12]    <-fitXII$coef[1]-qnorm(0.975)*sqrt(fitXII$var[1])

  ub1.m[i,12]    <-fitXII$coef[1]+qnorm(0.975)*sqrt(fitXII$var[1])

  yo.xii          <-my.summary.coxph.penal(fitXII)

  p.m[i,12]      <-yo.xii$temp[grepl("frailty",dimnames(yo.xii$temp)[[1]]),"p"]

  

  

  

  if (aa==0 & length(cc$message)==0 ){

    i <- i+1

    

  }else{
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    bb<-aa

    print(paste("Repeating i =", i))

    

  }

}

mean.coef1  = matrix(0,12,1,dimnames=list(modnames))

mean.se1    = matrix(0,12,1,dimnames=list(modnames))

mean.theta  = matrix(0,12,1,dimnames=list(modnames))

cov.m1      = matrix(0,12,1,dimnames=list(modnames))

cov.m3      = matrix(0,12,1,dimnames=list(modnames))

temp=p.m

reject=matrix(0,nboot,12)

for(i in 1:nboot){

  for(j in 1:12){

    reject[i,j]<-as.numeric(temp[i,j])

  }

}   

for (i in 1:length(reject))

  if (reject[[i]]<0.05){

    reject[[i]]<-0

  }else{

    reject[[i]]<-1

  }

rej.rate    = matrix(0,12,1,dimnames=list(modnames))

for (i in 1:12){

  mean.coef1[i]  <- mean(coef.m[,i])

  mean.se1[i]    <- mean(se.m[,i])

  mean.theta[i]  <- mean(theta.m[,i])

  cov.m1[i]      <- mean(lb1.m[,i]<=0.8 & ub1.m[,i]>=0.8)

  rej.rate[i]    <- mean(reject[,i])

}

library(haven)
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library(frailtypack)

library(foreign)

h<-read.dta("!!gia tin R.dta",convert.dates = TRUE)

save(h, file="h2.rda")

h<-NULL

load("h2.rda")

h2$start <- as.POSIXct(h2$tstart, format="%d/%m/%Y")

h2$start <- as.numeric(h2$start)

h2$stop <- as.POSIXct(h2$tstop, format="%d/%m/%Y")

h2$stop <- as.numeric(h2$stop)

setwd("G:/! DATA/final")

####Gap Timescale#####

### Model I - Cox ###

coxgap<-coxph(formula = Surv(FUtime, gap) ~ age + sex + origin + education + 

psoi + Haart + hcvhbv + logvirusload + CD4log , data = h2)

summary(coxgap)

coxgap$loglik

### Model II - Marginal Cox ###

coxgapmarg<-coxph(formula = Surv(FUtime, gap) ~ age + sex + origin + education +

psoi + Haart + hcvhbv + logvirusload + CD4log +cluster(PatientCode) , data = h2)

summary(coxgapmarg)

coxgapmarg$loglik

### Model III - PWP-GT ###

pwpgt<-coxph(formula = Surv(FUtime, gap) ~ age + sex + origin + education + psoi

+ Haart + hcvhbv + logvirusload + CD4log +cluster(PatientCode)+strata(sort), 

data = h2)

summary(pwpgt)

pwpgt$loglik

### Model IV - Frailty ###

fgap<-coxph(formula = Surv(FUtime, gap) ~ age + sex + origin + education + psoi 

+ Haart + hcvhbv + logvirusload + CD4log +frailty(PatientCode), data = h2, 

method = "em")
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summary(fgap)

fgap$loglik

### Model V - Frailty strat ###

fgapstrat<-coxph(formula = Surv(FUtime, gap) ~ age + sex + origin + education + 

psoi + Haart + hcvhbv + logvirusload + CD4log +frailty(PatientCode)

+strata(sort), data = h2, method = "em")

summary(fgapstrat)

fgapstrat$loglik

####Calendar Timescale#####

### Model VI - Simple Cox ###

coxcal<-coxph(formula = Surv(start,stop, gap) ~ age + sex + origin + education +

psoi + Haart + hcvhbv + logvirusload + CD4log , data = h2)

summary(coxcal)

coxcal$loglik

### Model VII - AG ###

coxcalcluster<-coxph(formula = Surv(start,stop, gap) ~ age + sex + origin + 

education + psoi + Haart + hcvhbv + logvirusload + CD4log 

+cluster(PatientCode) , data = h2)

summary(coxcalcluster)

coxcalcluster$loglik

### Model VIII - PWP-GT ###

pwpct<-coxph(formula = Surv(start,stop, gap) ~ age + sex + origin + education + 

psoi + Haart + hcvhbv + logvirusload + CD4log +cluster(PatientCode)

+strata(sort), data = h2)

summary(pwpct)

pwpct$loglik

### Model IX - Frailty ###

fcal<-coxph(formula = Surv(start,stop, gap) ~ age + sex + origin + education + 

psoi + Haart + hcvhbv + logvirusload + CD4log +frailty(PatientCode), data = h2, 

method = "em")

summary(fcal)



144

fcal$loglik

### Model XII - Frailty strat ###

fcalstrat<-coxph(formula = Surv(start,stop, gap) ~ age + sex + origin + 

education + psoi + Haart + hcvhbv + logvirusload + CD4log +frailty(PatientCode)

+strata(sort), data = h2, method = "em")

summary(fcalstrat)

fcalstrat$loglik

resII<-resid(coxgapmarg,type="martingale",collapse = h2$PatientCode)

resIII<-resid(pwpgt,type="martingale",collapse = h2$PatientCode)

resIV<-resid(fgap,type="martingale",collapse = h2$PatientCode)

resV<-resid(fgapstrat,type="martingale",collapse = h2$PatientCode)

resVII<-resid(coxcalcluster,type="martingale",collapse = h2$PatientCode)

resVIII<-resid(pwpct,type="martingale",collapse = h2$PatientCode)

resIX<-resid(fcal,type="martingale",collapse = h2$PatientCode)

resX<-resid(fcalstrat,type="martingale",collapse = h2$PatientCode)

age<-aggregate(h2$age,by=list(h2$PatientCode), FUN=mean)

par(mfrow=c(4,3))

p1<-plot(h2$age,coxgap$residuals,main = "Model I - Cox",ylab="Martingale 

residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p2<-plot(age$x,resII,main = "Model II - Marginal Cox",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p3<-plot(age$x,resIII,main = "Model III - PWP-GT",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p4<-plot(age$x,resIV,main = "Model IV - Frailty",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p5<-plot(age$x,resV,main = "Model V - Conditional Frailty",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p6<-plot(h2$age,coxcal$residuals,main = "Model VI - Cox",ylab="Martingale 

residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")
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p7<-plot(age$x,resVII,main = "Model VII - AG",sub = "(years)",ylab="Martingale 

residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p8<-plot(age$x,resVIII,main = "Model VIII - PWP-CT",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p9<-plot(age$x,resIX,main = "Model IX - Frailty",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")

p10<-plot(age$x,resX,main = "Model X - Conditional Frailty",sub = 

"(years)",ylab="Martingale residuals",xlab = "Age at initiation of monitoring")

abline(h=0,col="red")
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