
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Implementation of Constructive Negation in Extensional
Higher-Order Logic Programming

Ergys A. Dona

Supervisors: Panos Rondogiannis, NKUA Professor
Angelos Charalambidis, N.C.S.R. “Demokritos” Researcher

ATHENS

JUNE 2017

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Κατασκευαστικής Άρνησης σε Εκτατικό
Λογικό Προγραμματισμό Υψηλής Τάξης

Ergys A. Dona

Επιβλέποντες: Πάνος Ροντογιάννης, Καθηγητής ΕΚΠΑ
Άγγελος Χαραλαμπίδης, Ερευνητής ΕΚΕΦΕ «Δημόκριτος»

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2017

BSc THESIS

Implementation of Constructive Negation in Extensional Higher-Order Logic
Programming

Ergys A. Dona
S.N.: 1115200900148

SUPERVISORS: Panos Rondogiannis, NKUA Professor
Angelos Charalambidis, N.C.S.R. “Demokritos” Researcher

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση Κατασκευαστικής Άρνησης σε Εκτατικό Λογικό Προγραμματισμό Υψηλής
Τάξης

Ergys A. Dona
Α.Μ.: 1115200900148

ΕΠΙΒΛΕΠΟΝΤΕΣ: Πάνος Ροντογιάννης, Καθηγητής ΕΚΠΑ
Άγγελος Χαραλαμπίδης, Ερευνητής ΕΚΕΦΕ «Δημόκριτος»

ABSTRACT

Constructive negation is a logic programming negation method that allows the handling of
non-ground negative literals. Logic programming systems which are enhanced with con-
structive negation may produce not only equalities (assignments or unifications of vari-
ables), but also inequalities, that, roughly speaking, restrict variables to be different from
some value.

Extensional higher-order logic programming is a logic programming paradigm that ex-
tends classical (first-order) logic programming by introducing higher-order terms, while
preserving all the well-known properties of the former. These higher-order terms (vari-
ables) represent sets, which contain elements for which the former succeed.

An extensional higher-order logic programming language called HOPES (H) has been re-
cently proposed. H has been enhanced with constructive negation to createHcn (HOPES
with constructive negation).

While the foundations ofHcn are based on strong and well-defined semantics, implement-
ing a logic programming system (interpreter) for it proved to be a real challenge. The
reason is that the enhanced definition of the Hcn proof procedure does not define any
particular method for selecting the next subgoal to be satisfied. We show that, while the
language definition guarantees that there exist paths in the proof tree that lead to correct
answers, if a naive selection policy (e.g. always selecting the left-most literal, like PRO-
LOG does) is adopted, then one has to take extra measures in order to avoid following
paths that will never lead to correct solutions.

The contribution of this thesis consists of the redefinition of some of the rules in the Hcn
proof procedure. We show that the redefined proof procedure allows the implementation of
an interpreter forHcn, which follows the left-most derivation rule of PROLOG and behaves
correctly (only gives correct answers) for any given query.

SUBJECT AREA: Logic Programming

KEYWORDS: logic, programming, negation, high-order, extensional

ΠΕΡΙΛΗΨΗ

Η κατασκευαστική άρνηση είναι μια μέθοδος άρνησης στον λογικό προγραμματισμό, η
οποία επιτρέπει το χειρισμό μη-συγκεκριμενοποιημένων αρνητικών προτάσεων. Τα συ-
στήματα λογικού προγραμματισμού τα οποία είναι επαυξημένα με κατασκευαστική άρνηση
μπορούν δυνητικά να παράγουν όχι μόνο ισότητες (αναθέσεις ή ενοποιήσεις μεταβλητών),
αλλά και ανισότητες, οι οποίες, γενικά μιλώντας, περιορίζουν τις μεταβλητές έτσι ώστε να
είναι διαφορετικές από κάποια τιμή.

Ο εκτατικός λογικός προγραμματισμός υψηλής τάξης είναι ένα παράδειγμα λογικού προ-
γραμματισμού που επεκτείνει τον κλασικό (πρώτης τάξης) λογικό προγραμματισμό εισά-
γοντας όρους υψηλής τάξης, ενώ παράλληλα διατηρεί τις καλά ορισμένες ιδιότητες του
προηγούμενου. Αυτοί οι υψηλής τάξης όροι αναπαριστούν σύνολα, τα οποία περιλαμβά-
νουν στοιχεία για τα οποία οι προηγούμενοι είναι αληθείς.

Μια γλώσσα λογικού προγραμματισμού υψηλής τάξης με όνομα HOPES (H) έχει προταθεί
πρόσφατα. Η γλώσσα αυτή έχει επαυξηθεί με κατασκευαστική άρνηση για να διαμορφωθεί
η γλώσσα Hcn (HOPES with constructive negation).

Ενώ η σημασιολογία της Hcn είναι καλά ορισμένη, η υλοποίηση ενός συστήματος λογικού
προγραμματισμού (διερμηνευτή) για την τελευταία αποδείχθηκε δυσκολότερη υπόθεση
απ'ότι αναμενόταν. Ο λόγος είναι πως η διαδικασία απόδειξης της Hcn δεν υποδεικνύει
κανέναν συγκεκριμένο τρόπο επιλογής του επόμενου στόχου για ικανοποίηση. Δείχνουμε
πως, ενώ ορισμός της γλώσσας εγγυάται την ύπαρξη μονοπατιών στο δέντρο απόδειξης,
τα οποία οδηγούν σε σωστές λύσεις, εάν μια απλοϊκή πολιτική επιλογής (π.χ. η επιλογή
πάντα του αριστερότερου υποστόχου, όπως κάνει η PROLOG) έχει υιοθετηθεί, τότε πρέπει
να παρθούν επιπλέον μέτρα έτσι ώστε η υλοποίηση να αποφύγει μονοπάτια τα οποία δεν
θα οδηγήσουν ποτέ σε σωστές λύσεις.

Η συνεισφορά αυτής της πτυχιακής έγκειται στον επαναορισμό κάποιων εκ των κανόνων
της διαδικασίας απόδειξης της Hcn. Δείχνουμε ότι η νέα διαδικασία απόδειξης επιτρέπει
την υλοποίηση ενός διερμηνευτή για τηνHcn, o οποίος ακολουθεί τον κανόνα της PROLOG
για επιλογή του πάντα αριστερότερου υποστόχου και παράλληλα συμπεριφέρεται σωστά
(δίνει σωστές λύσεις μόνο) για κάθε επερώτηση.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Λογικός Προγραμματισμός

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: λογική, προγραμματισμός, άρνηση, υψηλή τάξη, εκτατικός

Absence of evidence is not evidence of absence.

ACKNOWLEDGEMENTS

I would like to deeply thank NCSR “Demokritos” associate Angelos Charalambidis for
his guidance and overall support during the writing of this thesis. His inputs were of vital
importance and the working methodology we followed helped me develop many important
research skills and maintain a solid workflow.

I would also like to thank NKUA professor Panos Rondogiannis, for always being in line
in order to help me and support my efforts. His way of teaching and his courses that I
attended have sparkled my interest in the theoretical elements of computer science. This
thesis is the result of that sparkle and I am very grateful to him.

CONTENTS

1 INTRODUCTION 12
1.1 Objective . 12

1.2 Motivation . 12

1.3 Overview . 14

1.4 Thesis Structure . 14

2 BACKGROUND 15
2.1 Negation as Failure . 15

2.2 Constructive Negation . 16

2.3 Extensional Higher-Order Logic Programming 18

3 THE HIGHER-ORDER LANGUAGE Hcn 20
3.1 Preliminaries . 20

3.2 Basic Definitions . 20

3.3 Examples . 22

4 THE PROOF PROCEDURE 24
4.1 The procedure . 24

4.2 Extending constructive negation for H . 27

4.3 Identifying the Problem . 28

5 THE PROPOSED APPROACH 35
5.1 Tweaking the proof procedure . 35

5.2 Why the approach works . 37

5.3 Solving generate and test problems . 42

5.4 Limitations . 44

5.5 Implementation . 45

6 CONCLUSIONS AND FUTURE WORK 46
6.1 Conclusions . 46

6.2 Future work . 46

ABBREVIATIONS - ACRONYMS 47

REFERENCES 48

LIST OF FIGURES

4.1 The (simplified) computation tree of the current implementation 34

PREFACE

This thesis constitutes my final step towards completing the undergraduate degree pro-
gramme in the Department of Informatics and Telecommunications of the National and
Kapodistrian University of Athens. It was carried out while working full-time in CERN,
which added to the challenge.

During the process of selecting and taking up a thesis subject, I encountered many inter-
esting topics and had discussions with many professors. I would like to thank them all for
their patience, cooperation and tips.

The reason for selecting the current subject was that it was fascinating at first sight. I was
no stranger to classical logic programming or high-order programming paradigms (e.g.
Haskell), however it was the first time I encountered a combination of them.

Hcn is a really expressive language. Its higher-order semantics allow one to write even
some of the most complex predicates in a very elegant fashion. Of course the main prop-
erty that enables such elegance is constructive negation, which is the principal feature of
Hcn.

Hcn borrows the semantics of constructive negation as defined by David Chan for the first-
order case. It adapts them to the higher-order semantics of itself and does so perfectly in
a theoretical level. However, implementing Hcn turned out to be a more challenging task
than anticipated. The motivation behind this thesis is the identification and redefinition
of those characteristics of the higher-order language Hcn that make it difficult for it to be
implemented correctly.

A correct implementation ofHcn shall enable a whole world of applications to demonstrate
themselves in solving interesting problems and this is what we want to achieve via this
thesis.

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

1. INTRODUCTION

1.1 Objective

Hcn is a extensional, higher-order, logic programming language with costructive negation
[4]. All the terms in the previous sentence will be explained later on. An implementation
of this language has been attempted and can be found at the following GitHub repository:
https://github.com/acharal/hopes.

While the aforementioned implementation works fine for positive first and higher-order
terms, as well as for negative first-order terms, when it comes to negative higher-order
terms, it falls short to deliver the intended results.

The objective of this thesis is, initially, the identification of the rules in the proof procedure of
Hcn that are problematic and contribute to the impractical behaviour of the implementation.
Thereinafter, the various ways to fix the unwanted behaviour shall be considered and a
solution to the problem shall be given.

1.2 Motivation

Some problems (i.e. predicates) can be expressed better andmore elegantly via negation.
Giving the programmer the ability to write such programs, makes the language a very
powerful tool.

Example 1.1. Consider the following higher-order logic program:
subset(P, Q) :- not(non_subset(P, Q)).
non_subset(P, Q) :- P(X), not(Q(X)).

The above program contains two rules to define the subset relation:

• P is a subset of Q if it does not hold that P is not a subset of Q.

• P is not a subset of Q if there exists an X, such that X is in P, but not in Q.

Therefore, if there exists a predicate q that is true for atoms 0, 1 and 2, then the query:
?- subset(P, q).

would return in P all subsets of the set {0,1,2}.
What makes the above program powerful, is the ability to write the first rule, which makes
use of constructive negation, in order to obtain answers by negating the very simple
second rule. The second rule itself is not very useful in the sense that it states some-
thing very trivial.

If we try and think of how we would write the same program in a positive logic, then we
would normally have to check whether every element of P also exists in Q. Namely, for
all X ∈ P, is Q(X) true? This is considerably harder to express, if possible at all (in Horn
logic), because it involves iterating through P (in some way). However, the problem is
way more easy to express in a negative logic: P is a subset ofQ if there doesn’t exist any
X, such that X is in P but not in Q. Therefore, negation adds to the expressivity of the

E. Dona 12

https://github.com/acharal/hopes

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

language, i.e. there are programs using negation that cannot be rephrased as positive
ones.

The most common logic approach when it comes to negation in logic programming is
negation as failure. Unfortunately, due to its nature, negation as failure does not provide
variable bindings for a negated query. In SLDNF (the basic negation as failure proof
procedure) only “allowed” programs (a subclass of all programs) can be proved. If the
program is not allowed, then the correctness theorem for SLDNF does not hold. The real
issue for higher-order logic programming is that there are many programs which are not
allowed at all. Constructive negation alleviates both the above restrictions by introducing
inequalities and the “not in” property for higher-order (set) variables. In the example above,
notice that if the not(non_subset(P,q)) subgoal could not provide variable bindings, it
would be impossible to answer the subset(P,q) query.

The above example lays solid ground for solving generate and test type of problems.
Suppose that we have a collection of objects that we want to test against some property.
The subset predicate could serve as the generator of sets of objects that we want to
test and will prove of special importance in the rest of the thesis. What we want, is to
successfully implement the proof procedure that will give the expected answers to queries
in programs like the one in example 1.1.

Preference-based queries

The above paradigm can be applied to another interesting class of applications. An inter-
preter that supports higher-order predicates in conjunction with constructive negation is a
system that can potentially answer preference-based queries.

In [5], Charalambidis et al. propose the use of higher-order logic programming as a logical
framework that handles preference-based queries. The aforementioned framework sup-
ports both preferences over tuples, as well as preferences over sets. It is shown that while
the former can be easily expressed in first-order logic as well, preferences over tuples are
more complex and could be better approached by using a higher-order logic programming
language that supports existential higher-order variables. The extensional approach that
is presented in [5], is a natural candidate for implementing preferences over sets since the
binding for higher-order variables are essentially sets.

In extensional languages, two sets that contain the same elements are considered equal.
Working with sets in an extensional way is one of the main motivating points that led to
the creation of H. Working with and stating set preferences is one of the main motivating
points that led to the creation of Hcn.

To give a flavour of the preferences over sets paradigm, imagine that there is a collection of
books of various genres. Imagine that you have decided that you want to buy three books
for your summer holidays and you really want them to be detective novels. However, you
can only spend a limited time reading books and you get bored easily (it is summer after
all), so you want them to have as few pages as possible.

Notice the order of preferences above. The first is the genre. You absolutely enjoy reading
detective novels while on the beach. Even if a book of another genre contains fewer
pages, you still prefer detective novels. This order of preferences may, depending on the
collection of books, force you to buy less than three books (in case there are not enough,
i.e. less than three, books of the selected genre in the collection).

E. Dona 13

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

The above problem can be reduced to the selection of the subsets of a collection of books
that satisfy the imposed preferences. Those preferences over sets can be expressedmore
elegantly and more efficiently in an extensional higher-order language with constructive
negation [5].

1.3 Overview

To get a taste of where and how the current approach fails, consider a higher-order logic
program containing the rules of example 1.1. The problematic point, which will be fully
elaborated later, is the way that the current implementation constructs the higher-order
variable values (sets).

Given the query:
?- subset(P, q).

Then, the naive approach which is currently employed and involves the selection of the
left-most subgoal (exactly like PROLOG does), will answer:

yes
P = { 0 } ;

yes
P = { 0, 0 } ;

yes
P = { 0, 0, 0 } ;

...

The problem comes down to the way the next candidate value to include inP is considered.
The naive approach takes no information into account from the context (namely, the values
already in P) and leads to the above result. The problem is two-fold: not only the returned
answers contain duplicates, but also the procedure gets “stuck”, i.e. some correct answers
will never be returned (e.g. in the above, the implementation will continue returning “sets”
that only contain zeroes, for ever).

The proposed approach involves the introduction of restrictions (constraints), so that the
answer set which represents P will only contain the expected members. This will in turn
enable the implementation to avoid getting into a loop of returning meaningless answers,
like above.

1.4 Thesis Structure

The rest of this thesis is organised as follows. Chapter 2 provides some background on
the essential terms of negation as failure, constructive negation and higher-order logic
programming. In chapter 3 the higher-order logic programming language Hcn is defined.
In chapter 4 the rules that make up the proof procedure ofHcn are outlined and the problem
that makes the implementation challenging is identified and presented. Chapter 5 shows
the proposed approach to overcome the problem and outlines possible limitations. Finally,
chapter 6 concludes the thesis and outlines the various possibilities for future work.

E. Dona 14

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

2. BACKGROUND

2.1 Negation as Failure

Negation as failure [6] is the most widely used approach for handling negation in logic
programming systems. The simplicity in its implementation as well as its efficiency make
it a really attractive option to employ.

These two advantages of negation as failure originate from the simplicity of its operational
semantics: If P cannot be proved based on the facts of the knowledge base (of the pro-
gram), then assume that P is false. The previous statement is also know as the closed
world assumption rule. This is an extremely simple approach that greatly simplifies the
handling of negative literals. Given a negative literal, e.g. not(p), all one has to do is run
the positive version of it, i.e. p. If it succeeds, then fail. If it fails, then succeed.

This behaviour can be easily demonstrated if we consider the usual negation as failure
implementation in Prolog, using cut and fail:

not(Goal) :- call(Goal), !, fail.
not(Goal).

A closer look at the above implementation immediately reveals the basic restriction of
negation as failure. Note that nowhere in the above description variable bindings are
discussed. This is because negation as failure can only be used as a test against program
facts and cannot produce any variable bindings. This means that it can only handle ground
literals (that is, literals that only contain ground atoms or, put otherwise, literals containing
no variables).

Example 2.1. Consider the following logic program:
p(X) :- not(q(X)).
q(X) :- not(r(X)).

r(1).
r(2).

and the query:
?- p(X).

Negation as failure will indeed confirm that p(X) is true by answering yes, but it will be
unable to provide any bindings for X. This is due to the fail in the implementation, which
causes any bindings that may have been produced by the call meta-predicate call to be
lost.

Another problem with negation as failure is that its implementation is unsound.

Example 2.2. Consider the following logic program:
p(X) :- not(q(X)), r(X).

q(a).
r(b).

Considering the semantics of negation as failure, the predicate p(X) seems to succeed
for X = b and to fail for X = a. Indeed, that is the case:

E. Dona 15

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

?- p(a).
no

?- p(b).
yes

Therefore, if a query that asks for all X, such that p(X) is true is posed, the answer X = b
is expected. However, this is not the case because, as already stated, negation as failure
cannot handle non-ground negative literals in a sound manner:

?- p(X).
no

2.2 Constructive Negation

The concept of Constructive Negation was first introduced by Chan [1] as an alternative to
negation as failure. Constructive negation promises the handling of negative non-ground
literals, by returning not only variable equalities (bindings) but also inequalities.

The idea behind constructive negation is simple: if a negated query, e.g. ¬Q is given, we
run the positive version of it, i.e. Q, and obtain the answers as a disjunction. Then, we
return the negation of answers to Q as an answer to ¬Q.

Example 2.3. Suppose that we have the following very simple knowledge base:
p(a).
p(b).
p(c).

and the query:
?- not(p(X)).

We first run the positive version of the query, i.e. p(X) and obtain the answer the disjunc-
tion: X = a ∨X = b ∨X = c. Then, we return the negated disjunction as an answer to the
original query: X ̸= a ∧X ̸= b ∧X ̸= c.
Example 2.4. Consider the following logic program:

p(X) :- not(q(X)).

q(a).
q(b).

then, for the query p(X) the answer will be:
?- p(X).
yes
X /= a, X /= b

In the above example, notice how inequalities can be generated at any point of the com-
putation where a negative literal is encountered. This resembles the constraint logic pro-
gramming scheme, however simpler, because the restrictions here are only inequalities
(̸=) and not e.g. ≤ or ≥.

E. Dona 16

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

Please note that the above examples are fairly simple, in order to demonstrate the idea
of constructive negation. In reality, a more complex formula is used in order to negate
the answers to the positive version of the negated query. Furthermore, in both examples,
notice how the positive version of the negated query returns a finite number of answers.
How does constructive negation handle the negation of a disjunction of infinite answers?
This issue is addressed in [2], where the constructive negation rule is extended to support
the negation of infinite answers.

We will not analyse the techniques that are used in [1] and [2] in order to apply the con-
structive negation rule in first-order logic programming. The reader is encouraged to refer
to the respective texts. However, we will outline an important equivalence, that the con-
structive negation scheme makes use of when it encounters equalities, in order to negate
the answers. This equivalence is of special importance to us, because it is the one that
gets extended in order to apply the constructive negation rule to higher-order variables.

Let the goal list be A = A1, . . . ,An and the selected expression be Ai, where Ai is X = s.
Also, let A′ be the rest of the goal list except Ai, i.e. A′ = A1, . . . ,Ai−1,Ai+1, . . . ,An. Then,
the negation formula is the following:

∀X
(
¬∃Y, Z

(X = s ∧A′) ≡ ¬∃Y (X = s) ∨ ∃Y(X = s ∧ ¬∃Z A′)) (2.1)

where Y are the variables in s and the free variables in A′ are contained in Y and Z.
The above formula is implied by the equality theory and is the mathematical formalisa-
tion of taking each component from the goal list A, negating it and then recombining the
components. We will later extend the above formula to apply to higher-order terms.

To better understand why the above formula works, consider the following:

¬ (A ∧B) ⇔ ¬A ∨ ¬B
⇔ true ∧ (¬A ∨ ¬B) (true ∧ P ⇔ P)

⇔ (¬A ∨A) ∧ (¬A ∨ ¬B) (P ∨ ¬P ⇔ true)
⇔ ¬A ∨ (A ∧ ¬B) (rev. distributive law)

The reason why Chan decides to use the above formula in [1] when negating equalities
is that the X = s equality in the second term of the right-hand side of the equivalence
may generate some interesting variable bindings that may lead to some extra welcome
answers.

Example 2.5. Consider the following logic program that defines the even predicate:
even(0).
even(s(X)) :- not(even(X)).

The above program defines a negation-based rule for the even property of natural num-
bers, which are encoded in the following notation:

sn(0) = n, n ≥ 0
When asked the query:

?- even(X).

then using constructive negation, the implementation will answer:

E. Dona 17

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

yes
X = 0 ;

yes
X = s(V2)
V2 /= 0
V2 /= s(*V5) ;

yes
X = s(s(0)) ;

yes
X = s(s(s(V10)))
V10 /= 0
V10 /= s(*V14) ;

yes
X = s(s(s(s(0)))) ;

...

The second and the fourth answers above give a format for X along with some restrictions
for some variables and they result from the constructive negation rule in equation 2.1. For
example, the second answer says that X is of the form s(V2), but V2 is neither 0 nor s(V5),
for all V5 (the star universally quantifies the following variable).

2.3 Extensional Higher-Order Logic Programming

Extensional higher-order logic programmingwas originally introduced byWilliamW.Wadge
[8] with Charalambidis et al. having also worked on that idea recently [3]. The paragim is
essentially an extension of classical, first-order logic programming and its principal idea is
that program predicates denote sets of objects and one can reason about such sets, i.e.
use them in rules and facts. By looking at the name of this paradigm, we can see that it is
made up of two terms: extensional and higher-order.

The term higher-order refers to the capability of applying and passing around predicates
and predicate variables as parameters. This is the most popular feature of higher-order
logic programming languages like HiLog and allows for the sets-based reasoning that was
mentioned above.

The term extensional refers to the way program predicates can be passed and used, or
otherwise, to what makes up a predicate or what a predicate really is. In an extensional
language, two predicates are considered to be equal (i.e. the same) if they are true for
the same set of arguments. The opposite of this term is intentional and in languages
belonging to this category (e.g. HiLog), predicates are more than just a set of arguments
for which they are true (e.g. they are also discriminated by their name).

The difference between intensionality and extensionality is a fundamental one and, while
at first sight intensionality may seem more natural for real world relations, extensionality
better materialises our mathematical definition of what a relation is. To better understand
the above, consider the following example from [3].

Example 2.6. Consider the predicate all_members(L, P), which is true if all elements of
a list L have property P:

E. Dona 18

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

all_members([], P).
all_members([H|T], P) :- P(H), all_members(T, P).

If there exist two predicates p and q in our program that are true for exactly the same terms,
e.g. the terms a, b and c, then we would expect both the following queries to succeed:

?- all_members([a,b,c], p).
yes

?- all_members([a,b,c], q).
yes

However, this is not guaranteed under the context of an intensional language.

The notions of extensional higher-order logic programming and constructive negation
proved to be very compatible and, based on that observation, the Hcn language was cre-
ated [4].

E. Dona 19

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

3. THE HIGHER-ORDER LANGUAGE Hcn

3.1 Preliminaries

The reader is presumed to be familiar with the basic concepts and definitions of classical
Logic Programming [6]. For example, the concepts term, formula, atom, (program)
clause and goal are defined as in classical Logic Programming, with slight extensions on
their definitions where necessary.

3.2 Basic Definitions

We describe the language by giving some definitions from the text where Hcn is defined
[4], for the readers’ convenience. These definitions are crucial to the understanding of the
rest of the text.

Definition 1. Types
The type system of Hcn is based on two base types: o, the type of the boolean domain
and ι, the type of the individuals (data objects). For example, every classical logic pro-
gramming term is of type ι.

The types of Hcn are defined as follows:

σ := ι | (ι→ σ) (functional)
ρ := ι | π (argument)
π := o | (ρ→ π) (predicate)

The argument type ρ consists of the following subtypes:

µ := ι | κ (existential)
κ := ι→ o | (ι→ κ) (set)

The operator→ is right-associative.

Therefore, a functional type that is different from ι can also be written as ιn → ι, n ≥ 1.
Similarly, a set type can also be written in the form ιn → o, n ≥ 1. Finally, every predicate
type π can be written in the form ρ1 → · · · → ρn → o, n ≥ 0 (for n = 0 we assume that
π = o).

Definition 2. Alphabet
The alphabet of Hcn consists of:

1. Predicate variables of every predicate type π.

2. Predicate constants of every predicate type π.

3. Individual variables of type ι.

4. Individual constants of type ι.

5. Function symbols of every functional type σ ̸= ι.

E. Dona 20

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

6. The following logical constant symbols:

(a) the propositional constants false and true of type o;
(b) the equality constant ≈ of type ι→ ι→ o;
(c) the generalised disjunction and conjunction constants

∨
π and

∧
π of type π →

π → π, for every predicate type π;
(d) the equivalence constants↔π of type π → π → o, for every predicate type π;
(e) the existential quantifiers ∃µ of type (µ→ o), for every existential type µ;
(f) the negation constant ∼ of type o→ o.

7. The abstractor λ and the parentheses “(” and “)”.

We define the set consisting of the predicate variables and the individual variables of Hcn,
as the argument variables of Hcn.

Definition 3. Body expressions
The set of body expressions of Hcn is recursively defined as follows:

1. (a) Every predicate variable (respectively, predicate constant) of type π is a body
expression of type π;

(b) Every individual variable (respectively, individual constant) of type ι is a body
expression of type ι;

(c) The propositional constants false and true are body expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are body expressions of type ι, then
(f E1 · · · En) is a body expression of type ι.

3. If E1 is a body expression of type ρ→ π and E2 is a body expression of type ρ, then
(E1 E2) is a body expression of type π.

4. If V is an argument variable of type ρ and E is a body expression of type π, then
(λV.E) is a body expression of type ρ→ π.

5. If E1,E2 are body expressions of type π, then (E1
∧

π E2) and (E1
∨

π E2) are body
expressions of type π.

6. If E1,E2 are body expressions of type ι, then (E1 ≈ E2) is a body expression of type
o.

7. If E is a body expression of type o and V is an existential variable of type µ, then
(∃µV E) is a body expression of type o.

8. If E is a body expression of type o, then (∼ E) is a body expression of type o.

The notions of free and bound variables are defined as usual. A body expression is called
closed if it does not contain any free variables.

In the following, we will write Â to denote a (possibly empty) sequence ⟨A1, . . . ,An⟩.

A body expression of the form (E1 ≈ E2)will be called an equality, while a body expression
of the form ∼ ∃V̂ (E1 ≈ E2) will be called an inequality; in the latter case V̂ may be empty,
in which case the inequality is of the form ∼ (E1 ≈ E2).

E. Dona 21

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

Let Ê and Ê′, where all Ei, E′
i are of type ι. We will write

(
Ê ≈ Ê′

)
to denote the expression

(E1 ≈ E′
1) ∧ · · · ∧ (En ≈ E′

n); if n = 0, then the conjunction is the constant true.
Definition 4. Clausal expressions
The set of clausal expressions of Hcn is defined as follows:

1. If p is a predicate constant of type π and E is a closed body expression of type π,
then p←π E is a clausal expression of Hcn, also called a program clause.

2. if E is a body expression of type o and each free variable in E is of type µ (existential),
then false←o E (or ←o E, or just ← E is a clausal expression of Hcn, also called a
goal clause.

3. If p is a predicate constant of type π and E is a closed body expression of type π,
then p↔π E is a clausal expression of Hcn, also called a completion expression.

All clausal expressions of Hcn have type o.

Definition 5. Program
A program of Hcn is a finite set of program clauses of Hcn.

Definition 6. Completed definition of predicate

Let P be a program and let p be a predicate constant of type π. Then, the completed
definition for p with respect to P is obtained as follows:

• if there exist exactly k > 0 program clauses of the form p←π Ei, where i ∈ {1, . . . , k}
for p in P, then the completed definition for p is the expression p↔π E, where
E = E1

∨
π · · ·

∨
π Ek.

• if there are no program clauses for p in P, then the completed definition for p is the
expression p↔π E, where E is of type π and E = λX̂.false.

The expression E on the right-hand side of the completed definition of p will be called the
completed expression for p with respect to P.
Definition 7. Completion of program

Let P be a program. Then, the completion comp(P) of P is the set consisting of all the
completed definitions for all predicate constants that appear in P.

3.3 Examples

The following examples consist valid higher-order logic programs with respect to Hcn.

Example 3.1. Consider the following program:
p(Q) :- Q(a), Q(b).

When taking into account that p represents a set, we can read the above rule as: “p is a
predicate that is true for all relations that contain, at least, a and b”.

Therefore, given the query:

E. Dona 22

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

?- p(R).

the implementation is expected to answer something of the form:
yes
R = { a, b } ∪ L

Following Hcn syntax, the above rule would be written as:
p ← λQ.((Q a) ∧ (Q b))

In the above notation, notice how the parameter list of the definition of p is placed on the
right hand side (because of p being defined as a lambda expression).

Example 3.2. Consider the following higher-order logic program:
band(B) :- singer(S), B(S), guitarist(G), B(G).

The above rule states that B is a band if it contains at least one singer and one guitarist.
Notice how S and G are first-order variables, while B is a higher-order (to be exact, second-
order) one.

One interesting thing to notice here, is how B is constructed. Subgoal singer{G} will
enumerate all possible singers, while subgoal guitarist{G} will enumerate all possible
guitarists. Finally, subgoal B{X} “associates” (includes) the respective X element to the
answer set.

Therefore, given a knowledge base consisting of singers and guitartists, the query:
?- band(B).

will return in B all the combinations of the singers and guitartists that may consist a band
(with respect to the definition given by the program).

Following Hcn syntax, the above rule would be written as:
band ← λB.∃S,G((singer S) ∧ (B S) ∧ (guitarist G) ∧ (B G))

and the query, would be written as:
← band B

As explained in [4], Hcn operates under the assumption that free variables in a query are
the ones for which the proof procedure will attempt to find bindings in order for the goal to
be satisfied. That is why variable B above is not existentially quantified.

E. Dona 23

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

4. THE PROOF PROCEDURE

The proof procedure of Hcn incorporates and adapts the constructive negation rules, as
described by David Chan in [2], to the higher-order case.

Before outlining the procedure itself, we give the following definition, which categorises
the various inequalities based on the expressions on their left and right hand side ([1],
[4]).

Definition 8. An inequality ∼ ∃V̂ (E1 ≈ E2) is considered:

• valid if E1 and E2 cannot be unified;

• unsatisfiable if is there is a substitution θ that unifies E1 and E2 and contains only
bindings of variables in V̂;

• satisfiable if it is not unsatisfiable.

Also an inequality will be called primitive if it is satisfiable, non-valid and either E1 or E2 is
a variable.

4.1 The procedure

In this section, we define the proof procedure, as proposed by Charalambidis et al. in [4].
The procedure consists of three definitions. We explain each definition in its own section.

Definition 9. Single-step derivation

Let P be a program and let Gk and Gk+1 be goal clauses.

Let Gk be a conjunction← A1 ∧ · · · ∧ An, where each Ai is a body expression of type o.

Let Ai be one of A1, . . . ,An and let us call it the selected expression.

Let A′ = A1 ∧ · · · ∧ Ai−1 ∧Ai+1 ∧ · · · ∧ An.

We say that Gk+1 is derived in one step from Gk using θ, if one of the following conditions
applies:

1. if Ai is true and n > 1, then Gk+1 =← A′ is derived from Gk using θ = ϵ;

2. if Ai is (E1 ∨ E2), then Gk+1 =← A1 ∧ · · · ∧ Ej ∧ · · · ∧ An is derived from Gk using
θ = ϵ, where j ∈ {1,2};

3. if Ai is (∃V E), then Gk+1 =← A1 ∧ · · · ∧ E ∧ · · · ∧ An is derived from Gk using θ = ϵ;

4. if Ai ⇝ A′
i, namely Ai is reduced to A′

i, then Gk+1 =← A1 ∧ · · · ∧ A′
i ∧ · · · ∧ An is de-

rived from Gk using θ = ϵ;

5. if Ai is (E1 ≈ E2), then Gk+1 =← A′θ is derived from Gk using θ = mgu (E1,E2);

6. if Ai is
(
R Ê

)
and R is a predicate variable of type κ then Gk+1 =← A′θ is derived

from Gk using θ =
{
R
/(

λX̂.
(
X̂ ≈ Ê

)∨
κR′

)}
, where R′ is a fresh predicate vari-

able of type κ;

E. Dona 24

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

7. if Ai is ∼ ∃V̂ E and Ai is negatively-reduced to A′
i,

then Gk+1 =← A1 ∧ · · · ∧ A′
i ∧ · · · ∧ An is derived from Gk using θ = ϵ;

8. if Ai is ∼ ∃V̂
(
R Ê

)
and R is a predicate variable of type κ and R ̸∈ V̂,

then Gk+1 =← A′θ is derived from Gk using θ =
{
R
/(

λX̂. ∼ ∃V̂
(
X̂ ≈ Ê

)∧
κR′

)}
,

where R′ is a fresh predicate variable of type κ;

9. is Ai is ∼ ∃V̂ ∼
(
R Ê

)
and R is a predicate variable of type κ and R ̸∈ V̂,

then Gk+1 =← A′θ is derived from Gk using θ =
{
R
/(

λX̂. ∃V̂
(
X̂ ≈ Ê

)∨
κR′

)}
.

Definition 9 defines the single-step derivation of goals and is actually an extension of
single-step derivation of classical logic programming to support higher-order terms and
constructive negation. This definition is the most general of the three, in the sense that it
delegates the handling of more “special” or complex subgoals to the other two definitions.

Definition 10. Reduction
Let P be a program and E, E′ be body expressions of type o.

We say that E is reduced (with respect to P) to E′ (denoted as E⇝ E′) if one of following
conditions applies:

1. p Â⇝ E Â, where E is the completed expression for p with respect to P;
2. (λX.E)B Â⇝ E {X/B} Â;

3. (E1
∨

π E2) Â⇝
(
E1 Â

)
∨o

(
E2 Â

)
;

4. (E1
∧

π E2) Â⇝
(
E1 Â

)
∧o

(
E2 Â

)
.

Definition 10 is the simplest definition among the three. It corresponds to simple operations
on a subgoal, in order to advance the its evaluation. More specifically, definition 10.1
replaces a predicate constant by its defined expressions within the program. Definition
10.2 corresponds to a β-reduction for a lambda expression, whereas definitions 10.3 and
10.4 “transform” the generalised disjunction and conjunction predicate constants

∨
π and∧

π to the normal boolean operators ∨ and ∧, respectively.

Definition 11. Negative reduction

Let P be a program and B, B′ be body expressions where B =∼ ∃Û (A1 ∧ · · · ∧ An) and
each Ai is a body expression except for conjunction.

Let Ai be the selected expression and A′ = A1 ∧ · · · ∧ Ai−1 ∧Ai+1 ∧ · · · ∧ An.

Then, we say that B is negatively-reduced to B′ if one of the following conditions applies:

1. if Ai is false, then B′ = true;
2. if Ai is true and n = 1, then B′ = false, else B′ =∼ ∃Û A′;

3. if Ai is (E1 ∨ E2), then B′ = B′
1 ∧B′

2,
where B′

j =∼ ∃Û (A1 ∧ · · · ∧ Ej ∧ · · · ∧ An), for j ∈ {1,2};
E. Dona 25

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

4. if Ai is (∃V E), then B′ =∼ ∃ÛV (A1 ∧ · · · ∧ E ∧ · · · ∧ An);

5. if Ai ⇝ A′
i, namely Ai is reduced to A′

i, then B′ =∼ ∃Û (A1 ∧ · · · ∧ A′
i ∧ · · · ∧ An

)
;

6. if Ai is (E1 ≈ E2), then:

(a) if ∼ ∃Û (E1 ≈ E2) is valid, then B′ = true;
(b) if ∼ ∃Û (E1 ≈ E2) is non-valid and neither E1 nor E2 is a variable,

then B′ =∼ ∃Û
(
A1 ∧ · · · ∧ Ai−1 ∧

(
X̂ ≈ X̂θ

)
∧Ai+1 ∧ · · · ∧ An

)
,

where θ = unify (E1,E2) and X̂ = dom (θ);

(c) if ∼ ∃Û (E1 ≈ E2) is unsatisfiable and either E1 or E2 is a variable in Û,
then B′ =∼ ∃Û (A′θ), where θ = {X/E} and X is the one expression that is a
variable in Û and E is the other;

(d) if ∼ ∃Û (E1 ≈ E2) is primitive and n > 1,
thenB′ =∼ ∃Û1 Ai ∨ ∃Û1

(
Ai ∧ ∼ ∃Û2 A′

)
, where Û1 are the variables in Û that

are free in Ai and Û2 are the variables in Û not in Û1;

7. if Ai is
(
R Ê

)
and R is a predicate variable, then:

(a) ifR ∈ Û, thenB′ =∼ ∃Û′ (A′θ), where substitution θ = {R/(λX. (X ≈ E)∨κR′)},
R′ is a predicate variable of the same type as R and Û′ is the same as Û, except
that variable R has been replaced with R′;

(b) if R ̸∈ Û and n > 1, then B′ =∼ ∃Û1 Ai ∨ ∃Û1
(
Ai ∧ ∼ ∃Û2 A′

)
∧B, where Û1

are the variables in Û that are free in Ai and Û2 are the variables in Û not in Û1;

8. if Ai is ∼ ∃V̂ E and Ai is negatively-reduced to A′
i,

then B′ =∼ ∃Û (A1 ∧ · · · ∧ A′
i ∧ · · · ∧ An

)
;

9. if Ai is a primitive inequality ∼ ∃V̂ (E1 ≈ E2), then:

(a) if Ai contains free variables in Û and A′ is a conjunction of primitive inequalities,
then B′ =∼ ∃Û A′;

(b) ifAi does not contain any free variables in Û, thenB′ = ∃V̂ (E1 ≈ E2)∨ ∼ ∃Û A′;

10. if Ai is ∼ ∃V̂
(
R Ê

)
and R ̸∈ V̂ is a predicate variable, then:

(a) if R ∈ Û, then B′ =∼ ∃Û′ (A′θ), where substitution
θ =

{
R
/(

λX. ∼ ∃V̂ (X ≈ E)∧κR′
)}

, R′ is a predicate variable of the same

type κ as R and Û′ is the same as Û, except that variable R has been replaced
with R′;

(b) if R ̸∈ Û and n > 1, then B′ =∼ ∃Û1 Ai ∨ ∃Û1
(
Ai ∧ ∼ ∃Û2 A′

)
∧B, where Û1

are the variables in Û that are free in Ai and Û2 are the variables in Û not in Û1;

(c) if R ̸∈ Û, n = 1 and V̂ is non-empty,
then B′ = ∃V̂ ∼ ∃Û

(
∼

(
R Ê

)
∧ ∼ ∃V̂′

(
R Ê′

))
;

E. Dona 26

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

11. if Ai is ∼ ∃V̂ ∼
(
R Ê

)
and R is a predicate variable and R ̸∈ V̂, then:

(a) if R ∈ Û, then B′ =∼ ∃Û′ (A′θ), where substitution
θ =

{
R
/(

λX.∃V̂ (X ≈ E)∨κR′
)}

, R′ is a predicate variable of the same type

κ as R and Û′ is the same as Û, except that variable R has been replaced with
R′;

(b) if R ̸∈ Û and n > 1, then B′ =∼ ∃Û1 Ai ∨ ∃Û1
(
Ai ∧ ∼ ∃Û2 A′

)
∧B;

(c) if R ̸∈ Û, n = 1 and V̂ is non-empty,
then B′ = ∃V̂ ∼ ∃Û

((
R Ê

)
∧ ∼ ∃V̂′ ∼

(
R Ê′

))
.

Definition 11 is the most complex of the three definitions that make up the proof procedure.
The reason is that it handles negative subgoals. In order to achieve that, it has to employ
the constructive negation paradigm as defined by Chan [2], however extended in order to
support higher order terms. These higher-order terms are in essence set variables, there-
fore the procedure in our case shall not only return “equality” relations, but also “belongs
to” relations.

4.2 Extending constructive negation for H

Recall that predicates in H represent sets. In H, a set is constructed via the
∨

π operator,
(of type π → π → π) which is a primitive and generalised version of the set union operator
(∪).

Example 4.1. Lets assume that a predicate P in a program is true for the atoms a, b and
c. Therefore, it represents the following set that contains (at least) a, b and c:

P = {a,b, c} ∪ L

The above bracket-notion is just a short (or pretty-print) version of the following:

P = {a} ∨
π {b}

∨
π {c}

∨
π L

In order to extend the constructive negation rule for the higher-order logic programming
language H, we have to keep in mind that we are also dealing with higher-order (set)
variables like in the example above.

Recall equation 2.1, which outlines the rule that is applied in constructive negation, when
negating equality subgoals. This rule works well when first order literals (equalities or
inequalities) are selected and is employed in rule 6(d) of definition 11. We now want to
extend this rule to support higher-order predicate variables. The reason why we extend
the aforementioned rule is because it is the rule that handles equalities. In the higher-order
case, the analogous of an equality, is an element belonging to a set.

When considering the higher-order terms of H, then a more sophisticated version of that
formula is required. The reason is that higher-order terms are not “flat”. To understand
what that means, let us consider the principal difference between first and higher-order
logic programming: the latter allows the usage of uninstantiated predicate variables, which
denote sets. Since they denote sets, we would like to express two properties:

E. Dona 27

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

• that an element belongs to a set.

• that an element does not belong to a set.

The first point is implemented via positive computation logic, while the second point re-
quires negative computation logic. Furthermore, the first point may also be the result of
the application of double negation.

What the implementation is supposed to do when it encounters a higher-order (predicate)
variable, is to perform a systematic enumeration of the possible values that variable can
take. The variable itself represents a set, therefore the implementation must be able to
generate multiple values that “belong” to the set that the variable represents.

Suppose that a negated expression (goal list) B contains the subgoal (R E), where R is a
predicate variable and E is an expression. The way R will be constructed is by first adding
variables to it and then producing bindings for those variables. It is clear that the formula
in equation 2.1 is not enough to add multiple values to R, because the two terms of the
conjunction will argue about whether E, and only E, belongs or not to the set.

What we would like to do is to continue arguing about more variables, i.e. try to satisfy
the rest of the goal list if R contained more variables. In essence, what we want to do is,
after having argued about R containing E, to argue about R not containing anything else
or R containing one more element. If in every step we repeat this process, we can argue
about R containing as many elements as it can.

The above idea translates to appending B (the negated expression) itself in conjunction
with the second term of the disjunction in rule 2.1. This is the approach thatHcn takes and
is reflected in rules 11.7 (b), 11.10 (b) and 11.11 (b). Notice however, that this approach
automatically makes the rule (i.e. the procedure) recursive. And, as we know, for a recurs-
ive procedure to stop at some point, there has to be some condition that, when satisfied,
stops it. The above procedure seems to have none. We analyse this issue further in the
next section.

Notice however that, theoretically, the above procedure is perfectly fine, because the rules
do not make any assumption about the expression selection policy. There exist paths
in the computation tree that “escape” from the infinite recursion and a non-deterministic
policy may follow these paths. The problem is that when it comes to implementing things
(writing algorithms), we cannot employ non-deterministic strategies.

4.3 Identifying the Problem

While being theoretically correct, the above approach does not work if implemented in
a naive way (for example, selecting the left-most reducable literal in every step of the
derivation). The reason is the repeated subgoal B. As discussed earlier, when a higher-
order variable R is encountered, B is re-added to the goal list in order to explore whether
R can contain extra elements. However, notice that B is repeated exactly “as is”, without
any care being taken in order to restrict the new values that are to be added to R.
If we now look at this procedure from an implementation point of view, it is only logical that
exactly the same computation steps will be repeated, because B is exactly the same as
before. It seems inevitable that the new goal will produce exactly the same bindings as
the previous one. And this is actually the case, which is easily demonstrable if we look at
the proof procedure computation steps of an example.

E. Dona 28

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

Example 4.2. Because program predicates represent sets, the most typical example we
can investigate and which also shows off the problem pretty well, is the subset predicate,
which was first presented in example 1.1.

This time we make sure that our program also contains some facts, so that we can run
subset against the facts’ predicate. So, consider the following higher-order logic program:

subset(P, Q) :- not(non_subset(P, Q)).
non_subset(P, Q) :- P(X), not(Q(X)).

q(0).
q(1).
q(2).

and the query:
?- subset(P, q).

which asks for all subsets of q. Since q represents the set {0,1,2}, normally, 8 answers
are expected and their order does not matter. Let us see what happens if we run the query
by hand, highlighting the rules of the proof procedure that are applied at each step. In each
step, we will show the pending goal list, as well as the unifications that are produced at
that point of the computation.

The steps shown next are the steps that the current implementation follows, when given
the above program and query. Please note that a left to right derivation order, just like in
PROLOG, is followed. Also note that, following PROLOG notation, a comma (,) repres-
ents a logical AND, while a semicolon (;) represents a logical OR.

Step 1: The first step is just the expansion of the subset query:
λ P Q. ∼(non_subset(P, Q))(P, q) ?

Step 2: By applying reduction rule 10.2, we get:
∼(non_subset(P, q)) ?

Step 3: Next, the non_subset predicate is expanded:
∼(λ P Q. (∃X P(X), ∼Q(X))(P, q)) ?

Step 4: By applying reduction rule 10.2, we get:
∼(∃V4 P(V4), ∼q(V4)) ?

Notice that in this step that, while variable X is renamed to V4, the query variable
P is left intact.

Step 5: This is the first interesting step of the example. We are inside the scope of a neg-
ated expression, therefore one of the negative reduction (definition 11) rules will
be applied. Notice that, with respect to the aforementioned definition, Û = ⟨V4⟩.
Since the selected literal is P(V4), rule 11.7 matches, with R = P and Ê = ⟨V4⟩.
Since R ̸∈ Û and n = 2, we follow case (b):
∼(∃V4 P(V4));
(∃V4 P(V4), ∼(∼q(V4))), ∼(∃V4 P(V4), ∼q(V4)) ?

E. Dona 29

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

The above is an application of the extended constructive negation rule for higher-
order predicate variables, as proposed in [4].

Step 6: We now have two paths to follow (logical OR). Rule 9.2 is applied and, initially,
the first path is followed:
∼(∃V4 P(V4)) ?

Step 7: Rule 9.8 is applied and substitution θ = {P/ (λX. ∼ ∃V4(X = V4)
∧

κ P')} is pro-
duced. What this substitution says is that there doesn’t exist any variable in P, i.e.
P is the empty set. The goal list is now empty, and the first answer is returned:

yes
P = { }

So far so good, the empty set is a subset every possible set.

Step 8: At this point, the implementation backtracks and the second path of step 5 is
followed. Notice that in the goal list there are two mathematical contexts, as
suggested by the parentheses and the variable quantifications.

(∃V4 P(V4), ∼(∼q(V4))), ∼(∃V4 P(V4), ∼q(V4)) ?

Step 9: The selected expression is (∃V4 P(V4), ∼(∼q(V4))), which matches with rule
9.3, where V = V4 and E = P(V4), ∼(∼q(V4)).

P(V5), ∼(∼q(V5)), ∼(∃V4 P(V4), ∼q(V4)) ?

Notice that the ∃V4 quantification is removed and a fresh variable is used.

Step 10: The selected expression is now P(V5), which matches rule 9.6, where R = P and
Ê = ⟨V5⟩. Therefore, substitution θ = {P/ (λX.(X = V5)

∨
κ V8)} is produced and

the goal list becomes:
∼(∼q(V5)), ∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

Step 11: The selected expression is now ∼(∼q(V5)). Since q is a predicate constant, it
will be replaced by the completed definition for q with respect to the input program
(definition 6). That is, q↔π E, whereE = (λX.X = 0)∨κ(λX.X = 1)∨κ(λX.X = 2).
∼(∼((λX.X=0) ∨κ (λX.X=1) ∨κ (λX.X=2))(V5)),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

Step 12: After reducing the completed expression with V5 according to definition 10 and
applying the distributive law for the inner negation (∼), we end up with the follow-
ing goal list:
∼(∼((λX.X=0)(V5)), ∼((λX.X=1)(V5)), ∼((λX.X=2)(V5))),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

And after reducing the first expression of the completed definition, we get:
∼(∼(V5=0), ∼((λX.X=1)(V5)), ∼((λX.X=2)(V5))),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

E. Dona 30

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

Step 13: We are inside the scope of a negated expression where Û is empty and the se-
lected expression is ∼(V5=0), which is a primitive inequality (definition 8). Rule
11.9 (b) matches and the resulting goal list is:

V5=0; ∼(∼((λX.X=1)(V5)), ∼((λX.X=2)(V5))),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

The logical OR takes precedence and creates two possible paths. Initially, the
first one is followed:

V5=0, ∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

The selected expression is V5=0, which is a simple unification. Rule 9.5 is applied,
which gives:
∼(∃V4 ((λX.X=0) ∨κ V8)(V4), ∼q(V4)) ?

Here the situation becomes interesting, because we are now ready to compute
the . . . ∧B part of the constructive negation rule (definition 11.7 (b)).

Step 14: We are oncemore inside the scope of a negated expression where Û = ⟨V4⟩. The
selected expression is ((λX.X=0) ∨κ V8)(V4) and after applying the reduction
rule 3 from definition 10, we get:
∼(∃V4 (λX.X=0)(V4); V8(V4), ∼q(V4)) ?

Now, the logical OR again takes precedence, thus the selected expression is
(λX.X=0)(V4); V8(V4). This means that rule 11.3 is applied and the resulting
goal list is:
∼(∃V4 (λX.X=0)(V4), ∼q(V4)), ∼(∃V4 V8(V4), ∼q(V4)) ?

Which after reducing the lambda expression (rule 10.2), becomes:
∼(∃V4 V4=0, ∼q(V4)), ∼(∃V4 V8(V4), ∼q(V4)) ?

And after applying the unification, gives:
∼(∃V4 ∼q(0)), ∼(∃V4 V8(V4), ∼q(V4)) ?

Step 15: We have to substitute the completed definition of q in place of the predicate con-
stant q. After substituting, reducing and distributing the negation constant, as we
previously did in steps 11 and 12, we get:
∼(∃V4 ∼((λX.X=0)(0)), ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

Furthermore, we reduce the first lambda expression of the completed expression:
∼(∃V4 ∼(0=0), ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

Step 16: The selected expression is now ∼(0=0), which is a negated expression. There-
fore, the have to “descend” one level down (inside the negated expression) and
the selected expression becomes 0=0. Rule 11.6 (b) is applied and the resulting
expression is true. Therefore, the goal list becomes:

E. Dona 31

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

∼(∃V4 ∼(true), ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

Equivalently, after applying rule 11.1:
∼(∃V4 false, ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

The first negated expression is now a conjunction of expressions, the first of which
is false, therefore the whole expression is true (rule 11.1 again), thus the remain-
ing goal list is:
∼(∃V4 V8(V4), ∼q(V4)) ?

There is one important observation to make at this point. The above goal list is
exactly the same as the goal list in step 4, except for one difference: instead of
predicate variable P we now have V8.
Recall that, from step 10, predicate variable P is bound to (λX.(X=V5)

∨
κ V8)

and, from step 13, variable V5 is bound to 0. Therefore, P = 0
∨

κ V8.
This should give more clear view of how the extended constructive negation rule
for higher-order predicates works. Higher-order variable V8 occured from step 9
and acts as the “tail” of P. However, should the rule not contain the · · · ∧B part,
it would never have a chance to be computed.

Step 17: At this point, the constructive negation rule (definition 11.7 (b)) is applied again:
∼(∃V4 V8(V4));
(∃V4 V8(V4), ∼(∼q(V4))), ∼(∃V4 V8(V4), ∼q(V4)) ?

As in step 6, the first path is followed:
∼(∃V4 V8(V4)) ?

true ?

and the second answer is returned:
yes
P = { 0 }

The computation continues with the second path:
(∃V4 V8(V4), ∼(∼q(V4))), ∼(∃V4 V8(V4), ∼q(V4)) ?

Since the rules that are applied are identical as before, in the following we omit
detailed explanation of every rule application.

Step 18: Rule 9.3 is applied and a fresh variable is introduced in place of V8 in the previ-
ously quantified context:

V8(V12), ∼(∼q(V12)), ∼(∃V4 V8(V4), ∼q(V4)) ?

Step 19: The selected literal is now V8(V12), therefore rule 9.6 is applied and substitution
θ = {V8/ (λX.(X = V12)

∨
κ V15)} is produced.

∼(∼q(V12)), ∼(∃V4 ((λX.X = V12) ∨κ V15)(V4), ∼q(V4)) ?

E. Dona 32

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

Step 20: As before, the completed definition of predicate q is replaced in place of predicate
constant q.
∼(∼((λX.X=0) ∨κ (λX.X=1) ∨κ (λX.X=2))(V12)),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

which, as before, becomes:
∼(∼((λX.X=0)(V12)), ∼((λX.X=1)(V12)), ∼((λX.X=2)(V12))),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

And after reducing the first expression of the completed definition, we get:
∼(∼(V12=0), ∼((λX.X=1)(V12)), ∼((λX.X=2)(V12))),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

Application of rule 11.9 (b) gives:
V12=0; ∼(∼((λX.X=1)(V12)), ∼((λX.X=2)(V12))),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

Which gives:
V12=0, ∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

Recall that the composition of unifiers up to this point have bounded P to be P =
0 ∨κ (λX.(X=V12) ∨κ V15). After applying the unification and reducing, we get:
∼(∃V4 (λX.X=0)(V4); V15(V4), ∼q(V4)) ?

So P becomes: P = 0 ∨κ 0 ∨κ V15.

Step 21: Skipping some rule applications identical to previous steps, the goal list becomes:
∼(∃V4 V15(V4), ∼q(V4)) ?

The constructive negation rule (definition 11.7 (b)) is applied at this point and the
goal list becomes:
∼(∃V4 V15(V4));
(∃V4 V15(V4), ∼(∼q(V4))), ∼(∃V4 V15(V4), ∼q(V4)) ?

The first path is followed, which leads to true and the third answer is returned:
yes
P = { 0, 0 }

Steps 17 through 21 will repeat for ever, adding only zeroes to the returned answers. In the
absence of restrictions for the next selected expression, the implementation will always
add the first choice it finds. Furthermore, the rest of paths that would occur from selecting
alternative expressions will never be followed.

If we consider the computation tree (show in figure 4.1 below), the above process would
correspond to following the leftmost branch every time, thus ending up at the bottom left
of the tree (which is of course of infinite depth assuming that the machine it runs on has
infinite memory).

E. Dona 33

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

P = X1
∨

κ X2

P = 0∨κ X2
∨

κ X3

P = 0∨κ 0
∨

κ X3
∨

κ X4

P = 0∨κ 0
∨

κ 0
∨

κ X4
∨

κ X5

X4 = 0
. . .

X3 = 0

. . .

X3 = 1

. . .

X3 = 2

X2 = 0

. . .

X2 = 1

. . .

X2 = 2

X1 = 0

. . .

X1 = 1

. . .

X1 = 2

Figure 4.1: The (simplified) computation tree of the current implementation

E. Dona 34

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

5. THE PROPOSED APPROACH

5.1 Tweaking the proof procedure

Based on the previous chapter, it is obvious that any implementation of Hcn has to take
measures in order to make sure that the sets that are constructed via the constructive
negation rule do not contain duplicate members. Therefore, some kind of restriction has
to be put in place before the proof procedure continues with the computation of the “next”
element.

This is the approach that we take. We introduce restrictions in the format of (in)equalities,
when the constructive negation rule is applied. These (in)equalities have to be introduced
in such a way, that will cause the computation to fail when an expression is to be “inserted”
for the second time in a set and they will allow it to proceed otherwise.

Based on the above description, an obvious observation can be made. As the number
of elements in a set increases, so does the number of the restrictive inequalities. This is
normal, as we need an inequality per element currently in the set.

In this section we will define the modified proof procedure. In the next section we will
present how and explain why the proposed approach works. Before outlining the modified
versions of the rules of negative reduction (definition 11), we need to define the trimmed
substitution operator.

Definition 12. Trimmed substitution operator

Let L be a lambda expression and P be a predicate variable of type κ.

The trimmed substitution operator S− is defined as follows:

1. S− (L∨
κP) = P;

2. S− (L∧
κP) = P.

Namely, given an expression that matches one of the above, S− drops the lambda ex-
pression L and only returns the predicate variable P, i.e. it trims the expression to only
contain P.

In the following, wewill write
(
Ê ≈∨ Ê′

)
to denote the expression (E1 ≈ E′

1) ∨ · · · ∨ (En ≈ E′
n);

if n = 0, then the disjunction is the constant false.
We can now give the modified negative reduction definition. Notice that we only need to
tweak the rules that correspond to the constructive negation application for higher-order
expressions, namely rules 7 (b), 10 (b) and 11 (b) of definition 11.

Definition 13. Negative reduction (tweaked)

Let P be a program and B, B′ be body expressions where B =∼ ∃Û (A1 ∧ · · · ∧ An) and
each Ai is a body expression except for conjunction.

Let Ai be the selected expression and A′ = A1 ∧ · · · ∧ Ai−1 ∧Ai+1 ∧ · · · ∧ An.

Then, we say that B is negatively-reduced to B′ if one of the conditions of definition 11,
overriden by the following rules where indicated, applies:

E. Dona 35

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

7. if Ai is
(
R Ê

)
and R is a predicate variable, then:

(b) if R ̸∈ Û and n > 1, then B′ =∼ ∃Û1 Ai ∨ ∃Û1
(
Ai ∧ ∼ ∃Û2 A′ ∧B1

)
,

where B1 =∼ ∃Û′
((

S− (R) Ê′
)
∧
(
A′′ ∨

(
Ê ≈∨ Ê′

)))
,

Û1 are the variables in Û that are free in Ai, Û2 are the variables in Û not in Û1,
Û′ and Ê′ are renamed versions of variables in Û and Ê respectively and A′′

is the same as A′, except that all occurrencies of R have been replaced with
S−(R).

10. if Ai is ∼ ∃V̂
(
R Ê

)
and R ̸∈ V̂ is a predicate variable, then:

(b) if R ̸∈ Û and n > 1, then B′ =∼ ∃Û1 Ai ∨ ∃Û1
(
Ai ∧ ∼ ∃Û2 A′ ∧B1

)
,

where B1 =∼ ∃Û′
((

S− (R) Ê′
)
∧
(
A′′ ∨

(
Ê ≈∨ Ê′

)))
,

Û1 are the variables in Û that are free in Ai, Û2 are the variables in Û not in Û1,
Û′ and Ê′ are renamed versions of variables in Û and Ê respectively and A′′

is the same as A′, except that all occurrencies of R have been replaced with
S−(R).

11. if Ai is ∼ ∃V̂ ∼
(
R Ê

)
and R is a predicate variable and R ̸∈ V̂, then:

(b) if R ̸∈ Û and n > 1, then B′ =∼ ∃Û1 Ai ∨ ∃Û1
(
Ai ∧ ∼ ∃Û2 A′ ∧B1

)
,

where B1 =∼ ∃Û′
((

S− (R) Ê′
)
∧
(
A′′ ∨

(
Ê ≈∨ Ê′

)))
,

Û1 are the variables in Û that are free in Ai, Û2 are the variables in Û not in Û1,
Û′ and Ê′ are renamed versions of variables in Û and Ê respectively and A′′

is the same as A′, except that all occurrencies of R have been replaced with
S−(R).

In order to introduce a restriction among the variables in the selected expression Ai and
the ones in the repeated expression B, the latter needs to be within the scope of the quan-
tification of Û1. That’s why B was moved inside the aforementioned scope, in conjunction
with the other subgoals and renamed to B1 for the needs of the definition.

The first thing to observe here is that we have not introduced inequalities, but equalities!
The reason is that these equalities are inside a negated expression and upon its evaluation
they will turn into inequalities. Another interesting point is that the restrictive inequalities
have been introduced in disjunction with the rest of the goal (A′).

The detailed reasons for the above choices will become evident in the next section. Intuit-
ively however, think again of expressionB1, which is a negated expression. If we distribute
the negation (after evaluating S− (R) Ê′, which causes the constructive negation rule for
higher-order expressions to be applied again), the disjunction will become a conjunction
and its expressions will become negated.

E. Dona 36

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

5.2 Why the approach works

It may be initially unclear why the proposed approach works and the truth is that it is not
so obvious. It took a “reverse engineering” methodology in order to come up with it and
once we delve into it, everything will become more clear.

First of all, let us consider the computation point that does not exhibit the desired beha-
viour. Look at step 20 of example 4.2. At that step, the implementation computes the
second value of P, which is variable V12. There are three choices for V12: 0, 1 or 2. The
computation procedure is obliged to check all of them. When it picks the first value (V12 =
0), there has to be something in the goal list that will cause the path that is currently being
followed to fail.

To help us with the task, we consider a simplified snapshot of the computation procedure
for the subset query. A trace that goes up to the second returned answer is sufficient in
order to demonstrate the desired points:

?- subset(P, q).

(1) ∼(non_subset(P, q)) ?

(2) ∼(∃V4 P(V4), ∼q(V4)) ?

(3) ∼(∃V4 P(V4));
(∃V4 P(V4), ∼(∼q(V4))), ∼(∃V4 P(V4), ∼q(V4)) ?

(4) ∼(∃V4 P(V4)) ?

(5) true ?

yes
P = { }

(6) (∃V4 P(V4), ∼(∼q(V4))), ∼(∃V4 P(V4), ∼q(V4)) ?

(7) P(V5), ∼(∼q(V5)), ∼(∃V4 P(V4), ∼q(V4)) ?

(8) ∼(∼q(V5)), ∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

...

(9) ∼(∼((λX.X=0)(V5)), ∼((λX.X=1)(V5)), ∼((λX.X=2)(V5))),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

(10) ∼(∼(V5 = 0), ∼((λX.X=1)(V5)), ∼((λX.X=2)(V5))),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

(11) V5 = 0; ∼(∼((λX.X=1)(V5)), ∼((λX.X=2)(V5))),
∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

(12) V5 = 0, ∼(∃V4 ((λX.X=V5) ∨κ V8)(V4), ∼q(V4)) ?

(13) ∼(∃V4 ((λX.X=0) ∨κ V8)(V4), ∼q(V4)) ?

(14) ∼(∃V4 ((λX.X=0)(V4); V8(V4), ∼q(V4)) ?

(15) ∼(∃V4 ((λX.X=0)(V4), ∼q(V4)), ∼(∃V4 V8(V4), ∼q(V4)) ?

E. Dona 37

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

(16) ∼(∃V4 V4 = 0, ∼q(V4)), ∼(∃V4 V8(V4), ∼q(V4)) ?

(17) ∼(∃V4 ∼q(0)), ∼(∃V4 V8(V4), ∼q(V4)) ?

...

(18) ∼(∃V4 ∼((λX.X=0)(0)), ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

(19) ∼(∃V4 ∼(0 = 0), ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

(20) ∼(∃V4 ∼(true), ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

(21) ∼(∃V4 false, ∼((λX.X=1)(0)), ∼((λX.X=2)(0))),
∼(∃V4 V8(V4), ∼q(V4)) ?

(22) ∼(∃V4 V8(V4), ∼q(V4)) ?

(23) ∼(∃V4 V8(V4));
(∃V4 P(V4), ∼(∼q(V4))), ∼(∃V4 V8(V4), ∼q(V4)) ?

(24) ∼(∃V4 V8(V4)) ?

(25) true ?

yes
P = { 0 }

(26) (∃V4 V8(V4) ∼(∼q(V4))), ∼(∃V4 V8(V4), ∼q(V4)) ?

(27) V8(V12), ∼(∼q(V12)), ∼(∃V4 V8(V4), ∼q(V4)) ?

(28) ∼(∼q(V12)), ∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

...

(29) ∼(∼((λX.X=0)(V12)), ∼((λX.X=1)(V12)), ∼((λX.X=2)(V12))),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

(30) ∼(∼(V12 = 0), ∼((λX.X=1)(V12)), ∼((λX.X=2)(V12))),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

(31) V12 = 0; ∼(∼((λX.X=1)(V12)), ∼((λX.X=2)(V12))),
∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

(32) V12 = 0, ∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

(33) ∼(∃V4 ((λX.X=0) ∨κ V15)(V4), ∼q(V4)) ?

(34) ∼(∃V4 (λX.X=0)(V4); V15(V4), ∼q(V4)) ?

(35) ∼(∃V4 (λX.X=0)(V4), ∼q(V4)), ∼(∃V4 V15(V4), ∼q(V4)) ?

...

(36) ∼(∃V4 V15(V4), ∼q(V4)) ?

(37) ∼(∃V4 V15(V4));

E. Dona 38

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

(∃V4 V15(V4), ∼(∼q(V4))), ∼(∃V4 V15(V4), ∼q(V4)) ?

(38) ∼(∃V4 V15(V4)) ?

(39) true ?

yes
P = { 0, 0 }
...

By carefully looking at the trace above, we notice two things:

• Look that the expression ((λX.X=0) ∨κ V15) at step 28.
This expression occurs from the substitution of variable V8 at step 27. The path
that is due to the lambda expression within the above expression (that is, the first
context in step 35) contributes nothing to the computation. This is because in step
32, V12 is being assigned a value from the completed definition of q and then the
aforementioned path essentially asks whether the resulting expression is true for
q (look at steps 15-21 for a detailed sequence of steps). Of course, that is always
true. We utilise this property in our modified procedure (we essentially trim that path,
recall definition 12 – trimmed substitution).
The reason for trimming the aforementioned path is because, along with our in-
troduced restrictions, it caused our modified procedure to fail. Since it contribues
nothing to the computation, we can safely trim it.

• Now look at the second context of step 35, whose computation commences at step
36. Since its first expression is a higher-order expression, the constructive negation
rule will be applied, leading to step 37. By then, it is too late to apply any restriction,
because step 38 always succeeds. Therefore, we need to add our restriction in such
a way, so that in step 32 there is another subgoal that disproves the V12=0 equality,
namely:

(32) V12 = 0, ∼(V12 = 0), ∼(∃V4 ((λX.X=V12) ∨κ V15)(V4), ∼q(V4)) ?

Pay close attention to the variables that we want to restrict: variable V12 will be the second
variable to be added to P and we want to find an acceptable value for it. We want that value
to be different from the value of the variable already in P. This means that any restriction
has to be put into place while we still have access to the first variable of P (namely, V5 from
step 7).

Our modified definition adds the restriction upon the first application of the constructive
negation rule, that is step 3. At that point, we do not yet know what value of the first
variable will be, but we surely know that we want its value to be different from the value of
the second variable.

Let us now show how the modified proof procedure works. The first step that changes is
step 3. Instead of appending B to the goal list, we insert it into the context of the quantified
V4 variable and also include an equality in disjunction with A′:

(3) ∼(∃V4 P(V4));
(∃V4 P(V4), ∼(∼q(V4)), ∼(∃V5 S-(P)(V5), (∼q(V5); V4 = V5))) ?

The first expression in the disjunction remains the same, so it leads to the first answer
being returned, as before.

E. Dona 39

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

(4) ∼(∃V4 P(V4)) ?

(5) true ?

yes
P = { }

The computation now continues with the second path:
(6) (∃V4 P(V4), ∼(∼q(V4)), ∼(∃V5 S-(P)(V5), (∼q(V5); V4 = V5))) ?

Notice that now, the ∃V4 quantification is over the whole goal list, therefore every V4 vari-
able gets renamed to V6.

(7) P(V6), ∼(∼q(V6)), ∼(∃V5 S-(P)(V5), (∼q(V5); V6 = V5)) ?

(8) ∼(∼q(V6)), ∼(∃V5 S-((λX.X=V6) ∨κ V9)(V5), (∼q(V5); V6 = V5)) ?

...

(9) ∼(∼((λX.X=0)(V6)), ∼((λX.X=1)(V6)), ∼((λX.X=2)(V6))),
∼(∃V5 S-((λX.X=V6) ∨κ V9)(V5), (∼q(V5); V6 = V5)) ?

(10) ∼(∼(V6 = 0), ∼((λX.X=1)(V6)), ∼((λX.X=2)(V6))),
∼(∃V5 S-((λX.X=V6) ∨κ V9)(V5), (∼q(V5); V6 = V5)) ?

(11) V6 = 0; ∼(∼((λX.X=1)(V6)), ∼((λX.X=2)(V6))),
∼(∃V5 S-((λX.X=V6) ∨κ V9)(V5), (∼q(V5); V6 = V5)) ?

(12) V6 = 0, ∼(∃V5 S-((λX.X=V6) ∨κ V9)(V5), (∼q(V5); V6 = V5)) ?

(13) ∼(∃V5 S-((λX.X=0) ∨κ V9)(V5), (∼q(V5); 0 = V5)) ?

The first variable that has been inserted to P (that is V6) has gotten the value 0. At step 13
the implementation has to apply the trimmed substitution operator, which trims the lambda
expression and returns only predicate variable V9:

(14) ∼(∃V5 V9(V5), (∼q(V5); 0 = V5)) ?

At this point, the extended constructive negation rule is applied again and another restric-
tion is introduced. The purpose of this restriction is to prevent the third variable that may
later be added to P of being equal to the first or the second one.

(15) ∼(∃V5 V9(V5));
(∃V5 V9(V5), ∼(∼q(V5); 0 = V5),
∼(∃V13 S-(V9)(V13), (∼q(V13); 0 = V13; V5 = V13))) ?

In the above step 15, V13 is the next (third) variable to be inserted to P, 0 = V13 restricts it
be different than the first one and V5 = V13 restricts it to be different than the second one.

Continuing with the computation, the first branch of step 15 leads to the second answer
being returned:

(16) ∼(∃V5 V9(V5)) ?

(17) true ?

yes
P = { 0 }

E. Dona 40

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

And the second branch does its magic as follows:
(18) (∃V5 V9(V5), ∼(∼q(V5); 0 = V5),

∼(∃V13 S-(V9)(V13), (∼q(V13); 0 = V13; V5 = V13))) ?

(19) V9(V14), ∼(∼q(V14); 0 = V14),
∼(∃V13 S-(V9)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(20) ∼(∼q(V14); 0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(21) ∼(∼q(V14)), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

Notice how at step 21 above, due to the negation, the equality in disjunction became an
inequality in conjunction. The computation continues by replacing the completed definition
of q and selecting the first possible value (V14=0).

(21) ∼(∼q(V14)), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

...

(22) ∼(∼((λX.X=0)(V14)), ∼((λX.X=1)(V14)), ∼((λX.X=2)(V14))), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(23) ∼(∼(V14 = 0), ∼((λX.X=1)(V14)), ∼((λX.X=2)(V14))), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(24) V14 = 0; ∼(∼((λX.X=1)(V14)), ∼((λX.X=2)(V14))), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(25) V14 = 0, not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

The goal list in step 25 above contains everything that we have been fighting for. Obviously
the first two expressions form a contradiction and will cause this path to fail.

(26) not(0 = 0),
∼(∃V13 S-((λX.X=0) ∨κ V17)(V13), (∼q(V13); 0 = V13; 0 = V13)) ?

(27) not(true),
∼(∃V13 S-((λX.X=0) ∨κ V17)(V13), (∼q(V13); 0 = V13; 0 = V13)) ?

(28) false,
∼(∃V13 S-((λX.X=0) ∨κ V17)(V13), (∼q(V13); 0 = V13; 0 = V13)) ?

At this point the implementation will backtrack to step 24 and select the other path:
(25) ∼(∼((λX.X=1)(V14)), ∼((λX.X=2)(V14))), not(0 = V14),

∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(26) ∼(∼(V14 = 1), ∼((λX.X=2)(V14))), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(27) V14 = 1; ∼(∼((λX.X=2)(V14))), not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

(28) V14 = 1, not(0 = V14),
∼(∃V13 S-((λX.X=V14) ∨κ V17)(V13), (∼q(V13); 0 = V13; V14 = V13)) ?

E. Dona 41

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

(29) not(0 = 1),
∼(∃V13 S-((λX.X=1) ∨κ V17)(V13), (∼q(V13); 0 = V13; 1 = V13)) ?

At step 29 above, rule 11.6 is applied. The inequality not(0 = 1) is valid, therefore the
first expression evaluates to true.

(30) true,
∼(∃V13 S-((λX.X=1) ∨κ V17)(V13), (∼q(V13); 0 = V13; 1 = V13)) ?

(31) ∼(∃V13 S-((λX.X=1) ∨κ V17)(V13), (∼q(V13); 0 = V13; 1 = V13)) ?

(32) ∼(∃V13 V17(V13), (∼q(V13); 0 = V13; 1 = V13)) ?

The extended constructive negation rule is applied again and the first path of the resulting
goal list will provide us with the third answer.

(33) ∼(∃V13 V17(V13));
(∃V13 V17(V13), ∼(∼q(V13); 0 = V13; 1 = V13),
∼(∃V30 V17(V30), (∼q(V30); 0 = V30; 1 = V30; V13 = V30))) ?

(34) ∼(∃V13 V17(V13)) ?

(35) true ?

yes
P = { 0, 1 }

...

In step 33 above, a third restriction is placed, in order to restrict the possible values for the
fourth member of P. Since the third member will be selected to be 2, there is no possible
value for the fourth member, so there will be no fourth member. The implementation
will backtrack and will try to find an alternative value for the second member, then try
to recompute a third element, etc.

The above procedure will continue until all possible combinations of valid values for the
members of P have been checked. It is also obvious that the above procedure terminates,
since the completed definition of q is finite and every value from the latter that is added to
P is different from the values added before it.

5.3 Solving generate and test problems

The modified proof procedure allows us to easily select elements from a collection of
objects. This enables us to solve generate and test problems fairly easily.

Example 5.1. Consider the following logic program:
twocolor(G, R) :- subset(R, vertex_set(G)),

not(non_twocolor(G, R)).

vertex_set(G)(X) :- G(X, _).
vertex_set(G)(X) :- G(_, X).

non_twocolor(G, R) :- G(X, Y), R(X), R(Y).
non_twocolor(G, R) :- G(X, Y), not(R(X)), not(R(Y)).

E. Dona 42

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

The above program defines the twocolor predicate, which is true if R is a subset of the
vertices of a graph G that can be painted with the same colour in a two-colouring of G. Note
that in order to exist a valid two-coloring for a graph, we must be able to paint each pair
of vertices consisting an edge with different colors.

The twocolor predicate first enumerates all subsets of vertices of G and then tests whether
they can be painted with the same colour. The vertex_set predicate returns a set with all
the vertices of G.

The non_twocolor predicate is interesting. It states that the set of vertices R of graph G
cannot be painted with the same colour, if there exist some vertices X and Y, such that X
and Y are adjacent in G and both X and Y are in R. Alternatively, vertices in R cannot be
painted with the same colour, if there exist some vertices X and Y, such that X and Y are
adjacent in G and neither of them is in R (because then there would not be enough colours
remaining to paint X and Y).

If we have the following simple definition for a (undirected) graph:
graph(a, b).
graph(b, c).

Then the answers to the following query shall be (not necessarily in the indicated order):
?- two_color(graph, R).

yes
R = { b } ;

yes
R = { a, c } ;

no

Example 5.2. Consider the following logic program:
clique(G, R) :- subset(R, vertex_set(G)),

not(non_clique(G, R)).

vertex_set(G)(X) :- graph(X, _).
vertex_set(G)(X) :- graph(_, X).

non_clique(G, R) :- R(X), R(Y), not(G(X, Y)), not(G(Y, X)).

The above program defines the clique predicate, which is true if R is a subset of the
vertices of a graph G that form a subgraph of G, which is a clique (every vertex is connected
to every other vertex in the set).

Notice that themain skeleton of the program is the same as in example 5.1. We only added
the non_clique predicate definition, which simply states that a subset of the vertices of
a graph G is not a clique if there exist two nodes X and Y in G, such that there is no edge
between them.

Suppose that we have the following simple definition for a (undirected) graph:
graph(a, b).
graph(b, c).
graph(c, a).

which is know as K3 (the complete graph with 3 vertices).

E. Dona 43

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

Then the answers to the following query shall be (not necessarily in the indicated order):
?- clique(graph, R).

yes
R = { a } ;

yes
R = { a, b } ;

yes
R = { b } ;

yes
R = { b, c } ;

yes
R = { c } ;

yes
R = { a, b, c } ;

no

5.4 Limitations

While the approach outlined in the previous sections fixes the problem of non-termination
when there exist higher-order negative expressions in the goal list, it stills produces du-
plicate answers, in the sense that it may return the same set more than once, with its
elements in different order. This would normally cause the queries in the examples 5.1
and 5.2 to return the same answer more than once. However, this is a different and more
fundamental problem, which is out of the scope of this thesis.

To understand why this problem exists, consider again the subset trace (example 4.2).
Every time that the negation rule is applied on the expression that extends P, normally
the definition of predicate q is inserted into the computation. The completed definition of
q is always the same and the implementation has to choose one of the possible values
(in example 4.2 the possible values are 0, 1 or 2). Our modified rule inserts inequalities
in order to restrict the new value to be different from any previous value.

This is however not enough, because when the computation backtracks, the inequalities
are lost (and aremeant to be lost, so that new subsets can be computed). The computation
finds itself in the following situation:

• AfterP = {0,1,2} has been computed, there is no other expression with whichP can
be extended and there is no other choice in place of the third member (2), therefore
the implementation backtracks in order to find an alternative choice in place of the
second member (1).

• Indeed, since there is only one restriction for the second member, namely to be
different that 0, there is one alternative expression: 2. Therefore, the following set
is computed: P = {0,2}.

• As the computation continues, it will attempt to find whether there is a third expres-
sion (from the completed definition of q) that can be “put” into P, that also satisfies

E. Dona 44

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

the restrictions of it being different than 0 and 2. There is such an expression: 1
is different than 0 and 2, so it is chosen and the following answer is computed:
P = {0,2,1}.

Clearly, another tweak is necessary in order to avoid the above behaviour. One idea would
be, instead of inequalities, to introduce “greater than” restrictions for the members of P.
However, for a complete set of answers to be computed, this would require the completed
expression of q to be “sorted”. When talking about numbers, sorting is obvious. However,
in the general case that is not true. Furthermore, it is not straight-forward neither how one
would sort the completed expression, nor how sorting would affect the performance of the
implementation.

5.5 Implementation

A prototype implementation of the above modified procedure can be found at the follow-
ing GitHub repository: https://github.com/errikos/hopes (branch cn_restrict). The
aforementioned implementation is in essence the same with Angelos Charalambidis’ im-
plementation, with minor changes to reflect the modified procedure and it is written in
Haskell.

E. Dona 45

https://github.com/errikos/hopes

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Wemodified the proof procedure ofHcn to make it more implementation-oriented. The new
proof procedure avoids the non-termination problem that the previous one encountered
when it had to deal with negated higher-order expressions.

We did so by introducing expressions that restrict the new elements of the respective
set when applying the constructive negation rule to higher-order predicate expressions.
These expressions are essentially inequalities which are handled by the proof procedure
itself and emulate an ∈ operator for the set constructed so far.

6.2 Future work

Avoiding multiple answers

While the modified proof procedure allows the implementation to find the correct paths
in the computation tree, there is still room for improvement. One issue that has to be
tackled is that the same answer may be returned multiple times, with its terms re-ordered
(see “Limitations” – section 5.4). This may require extra restrictions placed in the proof
procedure rules, as well as a different order of evaluation of program predicates.

Onemay argue that, since the arrangement of terms differs, the answers are not the same.
However, recall that in Hcn, predicates represent sets, which normally have no ordering.
Therefore, in order to be compatible with the language semantics, an implementation
ideally shall not return multiple answers.

Employing CLP techniques in Hcn

While looking for possible solutions to the problem that this paper tries to address, one
particular scheme kept coming forward. In every step made towards solving the problem,
there was always the thought that everything would possibly be simpler if constraint logic
programming (CLP) techniques were employed in order to restrict variable values.

Indeed, the concept of CLP seems to very compatible with the semantics of Hcn. This
is mainly due to the nature of constructive negation, which in addition to variable assign-
ments, also generates inequalities. Handling these inequalities the way a CLP language
does, could have multiple benefits for the implementation and this idea deserves further
investigation.

Warren Abstract Machine for Hcn

Recently, work has been done in extending the Warren Abstract Machine in order to im-
plement higher-order logic programming languages [7]. It would be really interesting to
use the extended WAM definition in order to implement Hcn and see how constructive
negation behaves in that case.

E. Dona 46

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

ABBREVIATIONS - ACRONYMS

HOPES (H) Higher Order Prolog with Extensional Semantics

Hcn HOPES with Constructive Negation

E. Dona 47

Implementation of Constructive Negation in Extensional Higher-Order Logic Programming

BIBLIOGRAPHY

[1] David Chan. Constructive negation based on the completed database. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, August 15-19, 1988
(2 Volumes), pages 111–125. MIT Press, 1988.

[2] David Chan. An extension of constructive negation and its application in coroutining.
In Ewing L. Lusk and Ross A. Overbeek, editors, Logic Programming, Proceedings of
the North American Conference 1989, Cleveland, Ohio, USA, October 16-20, 1989. 2
Volumes, pages 477–493. MIT Press, 1989.

[3] Angelos Charalambidis, Konstantinos Handjopoulos, Panagiotis Rondogiannis, and
WilliamW.Wadge. Extensional higher-order logic programming. ACM Trans. Comput.
Log., 14(3):21:1–21:40, 2013.

[4] Angelos Charalambidis and Panos Rondogiannis. Constructive negation in exten-
sional higher-order logic programming. In Chitta Baral, Giuseppe De Giacomo, and
Thomas Eiter, editors, Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July
20-24, 2014. AAAI Press, 2014.

[5] Angelos Charalambidis, Panos Rondogiannis, and Antonis Troumpoukis. Higher-
order logic programming: an expressive language for representing qualitative prefer-
ences. In James Cheney and Germán Vidal, editors, Proceedings of the 18th Interna-
tional Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, pages 24–37. ACM, 2016.

[6] J. W. Lloyd. Foundations of Logic Programming; (2nd Extended Ed.). Springer-Verlag
New York, Inc., New York, NY, USA, 1987.

[7] Alexandros Tasos. WAM extensions for implementing higher order logic languages,
2016.

[8] William W. Wadge. Higher-order horn logic programming. In Vijay A. Saraswat and
Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 International
Symposium, San Diego, California, USA, Oct. 28 - Nov 1, 1991, pages 289–303. MIT
Press, 1991.

E. Dona 48

	CONTENTS
	INTRODUCTION
	Objective
	Motivation
	Overview
	Thesis Structure

	BACKGROUND
	Negation as Failure
	Constructive Negation
	Extensional Higher-Order Logic Programming

	THE HIGHER-ORDER LANGUAGE Hcn
	Preliminaries
	Basic Definitions
	Examples

	THE PROOF PROCEDURE
	The procedure
	Extending constructive negation for H
	Identifying the Problem

	THE PROPOSED APPROACH
	Tweaking the proof procedure
	Why the approach works
	Solving generate and test problems
	Limitations
	Implementation

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

