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1 

Introduction



Category learning is a faculty instrumental for survival that enables human and nonhuman 

animals “dissect” and thus comprehend the world. The ability to classify stimuli contributes 

to the development of a broad range of capacities, from language learning (e.g., Lively, 

Logan, & Pisoni, 1993) to visual object understanding (e.g., Palmeri & Gauthier, 2004). 

Learning to categorize also supports the functioning and development of higher-level 

cognition, as it has been argued to form the basis of abstract thought (Goldstone & 

Hendrickson, 2010; Sloutsky, 2010). 

The study of categorization is therefore an endeavor that may help elucidate the 

principles and cognitive processes of learning that are instrumental in cognitive 

development. To be more specific, the studies presented here suggest experimental 

manipulations capable of boosting learning. Indeed, to foreshadow the main conclusions of 

the present dissertation, an important finding is that verbal labels both for the 

categorization items and also for the formed categories were found to facilitate learning. 

Although these results were obtained in laboratory settings with adult participants, they 

could form the basis for educational research programs incorporating interventions. Thus, 

the research presented here may be said to be “basic,” but the reported findings arguably 

have applications in education.  

In the present dissertation I sought to investigate the interplay between the 

language faculty and category learning. Notwithstanding the fact that human and non-

human categorization behavior is in some cases comparable (Smith, Minda, & Washborn, 

2004), human categorizers may be strongly influenced by the language faculty (Lupyan, 

Rakison, & McClelland, 2007). I investigated the notion that language penetrates learning 

processes and modulates the learning of categories, with a specific focus on verbal labels. 

To this end, I utilized the methodology of studying the learning of artificial categories (Ashby 

& Maddox, 2005) and experimentally explored what verbal labels do when present at the 

two ends of the categorization spectrum. In particular, I explored (a) the effect of verbal 

labels for the features of categorization items, and (b) the effect of verbal labels for the 

formed categories. 

Verbal Labels for the Stimuli

The first line of research was inspired by dual-systems theories of category learning. 

According to these theories the learning of categories is mediated by two distinct systems. A 



verbal, declarative, or explicit system is thought to underlie the learning of rule-defined 

categories, whereas a nonverbal, procedural, or implicit system is thought to be engaged in 

the learning of information-integration (or similarity-based) categories (Ashby, Alfonso-

Reese, Turken, & Waldron, 1998; Minda & Miles, 2010). Computational models 

implementing the assumption of distinct systems have been successful in accounting for 

human behavior (e.g., the COVIS model, Ashby et al., 1998, or the ATRIUM model, Erickson 

& Krushke, 1998, but see e.g., Newell, Dunn, & Kalish, 2011, for opposing accounts). One of 

the key assumptions of dual-systems theories is that the two purported systems operate in 

parallel, and that the most successful system (in terms of correct classification decisions) 

assumes response delivery (e.g., Ashby et al., 1998, Shohamy, Myers, Kalanithi, & Gluck, 

2008). My research question did not examine any aspect of the interaction or competition 

between distinct systems of category learning, it was rather inspired by the functional 

characteristics of the declarative system of categorization and the corresponding categorical 

structures.  

Based on the description of rule-defined categories as being characterized by verbal 

rules of category membership (e.g., Gluck, Shohamy, & Myers, 2002; Minda & Miles, 2010), 

it was reasoned that verbal labels for the categorization items, or for the items' diagnostic 

features should boost explicit processes of rule discovery. In simpler words, it was assumed 

that participants would benefit in discovering and applying verbal rules of category 

membership when categorization stimuli are readily nameable compared to when the to-

be-categorized material is hard-to-name. 

The idea of rule-discovery facilitation due to names was initially examined using an 

auditory version of the weather prediction task (Knowlton et al., 1994), as detailed in 

Chapter 2. Learning in this task has been argued to be mediated by explicit processes of rule 

discovery, at least for young healthy participants (Shohamy et al., 2008). Moreover, 

boosting explicit processes has been shown to be accompanied by higher categorization 

accuracy (Price, 2009). To manipulate the availability of names for the stimuli I used hard-to-

name auditory tones and trained separate groups of participants for three consecutive days 

to associate the cues to pseudowords or to hard-to-name ideograms. A third group was 

trained to associate stimulus intensity to color, and a fourth group remained unexposed to 

the cues. On the fourth day all participants were administered the same version of the 

weather prediction task utilizing the trained toned as cues. Results revealed group-level 



differences in post-training categorization accuracy, and—critically—higher categorization 

accuracy of the label compared to the ideogram group, suggesting that names for the cues 

facilitate explicit processes of category learning. These results are—to the best of my 

knowledge—the first evidence suggesting that human categorizers might benefit from 

names for the to-be-categorized material.

I sought to further test the idea of rule-discovery facilitation due to names, as 

detailed in Chapter 3.  The manipulation of nameability in this experiment concerned the 

categorized items' features, using an experimental paradigm in the visual rather than the 

auditory modality, and with a deterministic rather than probabilistic category structure. In 

particular, I used the Type II category structure (Shepard et al., 1961) which is characterized 

by a verbal rule of category membership (Minda, Desroches, & Church, 2008). Facilitating 

explicit processes has been shown to lead to higher accuracy in the task (Minda et al., 2008). 

Categorization items in this experiment were composed of hard-to-name shapes 

(Vanderplas & Garvin, 1959) and similarly to Chapter 1 the availability of names for the 

values of the shape dimension was manipulated through training. Separate groups of 

participants were trained for two consecutive days to associate the shapes to pseudowords 

or to hard-to-name ideograms, whereas a control group received mock training and 

remained unexposed to the shapes. Results, contrary to the predictions, revealed no group-

level differences in categorization accuracy.  

In contrast to the results presented in Chapter 2, the assumption of a verbal 

facilitation in explicit processes of category learning was not supported in Chapter 3.The 

discrepancy of results across Chapters 2 and 3 (taking into account some relevant results 

from Chapter 4) is taken up in more detail in General Discussion. 

Verbal Labels for the Formed Categories

The second line of research of the present dissertation investigated the effect of 

verbal labels for the formed categories, and it was inspired by the label-feedback hypothesis 

(Lupyan 2012a; 2012b). Lupyan's theory postulated a labels-dependent mechanism of 

selective activation of category-diagnostic perceptual features. This mechanism has been 

argued to offer a label advantage during learning and also have long-term effects on 

attention. 



In Chapter 4 I examined the purported label advantage during learning to categorize, 

by using a within-subjects experimental design and by manipulating linguistic activity 

through the graded nameability of the categories' labels. Additionally, I examined long-term 

effects of learning to categorize under verbal labels on attention (Tolins & Colunga, 2015). 

Based on previous reports of stable perceptual learning (e.g., Goldstone, 1994), learned 

attention following category learning (Goldstone & Styevers, 2001; Krushke, 1996), or the 

effect of learned labels for categories (Lupyan, 2012a), it was reasoned that stimuli that had 

previously been predictive of label categories would capture attention to a greater extent 

compared to stimuli that had previously been predictive of hard-to-name categories.  To 

examine the sustained effects of category labels on attention mechanisms, the category-

diagnostic perceptual features were used in posttraining test tasks, specifically in Type II 

categorization tasks (Experiment 2), and in a visual discrimination task, using eye tracking 

(Experiment 3). Finally, to test if the effects of labels—both initial and sustained—are 

specific to categorization, the learning of categories was contrasted with the learning of 

associations. Control groups of participants in Experiments 2 and 3 learned named and 

hard-to-name associations instead of categories. With respect to an initial effect of labels, it 

was reasoned that a label advantage during learning to categorize should be above any 

advantage during learning to associate. With respect to a sustained effect of labels on 

attention it was reasoned that a label effect should be specific to category training. It was 

therefore assumed that posttraining processing of stimuli that had previously been paired 

with labels would be comparable to the processing of stimuli that had previously been 

paired with hard-to-name symbols. Results showed that named categories were consistently 

learned more accurately than hard-to-name categories, replicating the label advantage 

during learning to categorize (Lupyan et al., 2007). Moreover, the label advantage during 

learning to categorize was found to be greater than during learning to associate, suggesting 

that the categorization-specific mechanism of selective activation might complement a 

general advantage due to the processing of verbal stimuli. With respect to the sustained 

effects of category labels on attention, in both Experiment 2 and 3  results suggested that 

the shapes that had previously been diagnostic of named categories captured attention to a 

greater extent compared to shapes that had been diagnostic of hard-to-name categories. 

These sustained effects of labels on attention were found to be categorization-specific, in 

that following associative learning there was no evidence of differential processing of 



diagnostic features of named compared to hard-to-name associations.  Collectively, the 

results of three experiments described in Chapter 4 seem to provide support to the label-

feedback hypothesis (Lupyan, 2012a; 2012b), and the assumption of the warping of 

perceptual space due to categorization (Goldstone, 1994).

The present studies are grounded on two different subfields of category learning 

research: the dual-systems theories (e.g., Ashby et al., 1998) and the examination of the 

interplay between perceptual and learning processes (Goldstone, 1994; Lupyan, 2012a). By 

combining these two research traditions, I was arguably able to assess the effect of 

language on category learning processes more broadly. The current research may be said to 

contribute to the more general question of the interplay between language and presumably 

non-linguistic cognitive faculties, such as learning and perception (for more on the language 

and thought debate, see Gleitman & Papafragou, 2013).
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The effect of newly trained verbal and nonverbal labels for the cues in 

probabilistic category learning

This chapter has been published as:

Fotiadis, F. A., & Protopapas, A. (2014). The effect of newly trained verbal and 

nonverbal labels for the cues in probabilistic category learning. Memory and 

Cognition 42(1): 112–125   



Abstract

Learning in a well-established paradigm of probabilistic category learning, the weather 

prediction task, has been assumed to be mediated by a variety of strategies reflecting 

explicit learning processes, such as hypothesis testing, when administered to young healthy 

participants. Higher categorization accuracy has been observed in the task when explicit 

processes are facilitated. We hypothesized that furnishing verbal labels for the cues would 

boost the formation, testing, and application of verbal rules, leading to higher categorization 

accuracy. We manipulated the availability of cue names by training separate groups of 

participants for three consecutive days to associate hard-to-name artificial auditory cues to 

pseudowords or hard-to-name ideograms; or to associate stimulus intensity to colors; a 

fourth group remained unexposed to the cues. Verbal labels, cue individuation, and 

exposure to the stimulus set each had an additive effect on categorization performance in a 

subsequent 200-trial session of the weather prediction task using these auditory cues. This 

study suggests that cue nameability, when controlled for cue individuation and cue 

familiarity, has an effect on hypothesis testing processes underlying category learning.



Introduction

Categorization is a fundamental aspect of cognition underlying a broad range of human 

behaviors and skills such as language acquisition, inference, concept formation, and decision 

making. The cognitive neuroscience of category learning has extensively tried to shed light 

on its mechanisms, representational contents, and neural substrates. Alternative 

approaches suggest that category learning is mediated either by qualitatively distinct 

systems (Ashby & Maddox, 2011; Poldrack & Foerde, 2008) or by a single learning 

mechanism (Newell, Dunn, & Kalish, 2011).

Explicit Hypotheses in Category Learning

Multiple systems theorists draw a distinction between a declarative, explicit, or verbal 

system or pathway and a procedural, implicit, or non-verbal system (Ashby & Maddox, 

2005, 2011; Minda & Miles, 2010; Poldrack & Foerde, 2008; Squire, 2004). The explicit 

system is thought to be engaged when hypothesis testing processes—such as the formation, 

testing, and application of a verbalizable rule or strategy—can lead to successful 

performance and the knowledge acquired is accompanied by awareness. The implicit 

system underlies performance when no verbalizable rules exist or can be easily applied, in 

which case integration of information across multiple trials occurs or perceptual learning 

processes are recruited. Knowledge acquired by the implicit system is considered 

unavailable to conscious recollection. The two systems have been suggested to compete 

(Ashby, Alonso-Reese, Turken, & Waldron, 1998; Poldrack et al., 2001) or operate in parallel 

(Dickerson, Li, & Delgado, 2011; Minda & Miles, 2010; Shohamy, Myers, Kalanithi, & Gluck, 

2008).

Single system theorists, on the other hand, have questioned the parsimony of multiple 

categorization systems (Newell et al., 2011) and the validity of methodologies (e.g., double 

dissociations) utilized in the past (Newell & Dunn, 2008; Newell, Dunn, & Kalish, 2010). 

Instead, they have suggested that human categorization is achieved through a single general 

learning mechanism (Newell, Lagnado, & Shanks, 2007) and is accompanied by high levels of 

awareness for the learned material (Lagnado, Newell, Kahan, & Shanks, 2006). The 

hypothesis of multiple memory systems or pathways remains a matter of current debate in 

the study of categorization (e.g., Ashby & Maddox, 2011; Newell et al., 2011). 



Regardless of the existence and functional independence of discrete categorization 

systems, few would argue against the notion that category learning employs—in at least 

some task structures—hypothesis testing processes (Ashby & Maddox, 2005), inner 

rehearsal (Lupyan, Rakison, & McClelland, 2007), or verbalizable strategies (Gluck, Shohamy, 

& Myers, 2002). Executive functioning mechanisms have been argued to contribute to 

category learning by means of formulation, testing, and application of verbal rules of 

category membership (Price, 2009). In particular, human category learning has been argued 

to be influenced by verbal processes (Minda & Miles, 2010) since “humans have the 

potential benefit of [verbal] labels” (Lupyan et al., 2007, p. 1077). 

Although language in general seems to play an important role in category learning, 

researchers have mainly manipulated the category structure (i.e., the availability of an easily 

verbalizable rule) to examine the effect of verbal processes on categorization (Ashby & 

Maddox, 2005; Miles & Minda, 2011). Recently, Lupyan (2006; Lupyan et al., 2007) studied 

the influence of category labels. He showed that verbal labels—as opposed to location cues

—facilitated categorization of artificial stimuli when paired with category classes. However, 

not much attention has been drawn to the existence of labels for the items to be 

categorized. It stands to reason that if the stimuli are accompanied by verbal labels then 

hypothesis testing or inner rehearsal processes will be facilitated, because participants 

would find it easier to form, test, and apply rules such as “respond 'rain' whenever the 

triangle card is present” (Gluck, Shohamy, & Myers, 2002, p. 416). In contrast, in the case of 

non-nameable stimuli it would not be so easy to explicitly state and apply rules concerning 

them.

In the present study we sought to test this idea using hard-to-name cues in the 

context of a prototypical probabilistic category learning task. Participants were first trained 

to learn novel nonsense verbal labels or other hard-to-name pairings for the cues. They 

were subsequently administered the category learning task using these cues, in order to 

explore the effects of cue nameability on learning to categorize.

The weather prediction task

The prototypical weather prediction task (WPT; Knowlton, Squire, & Gluck, 1994) is a 

perceptual categorization task based on a paradigm developed by Gluck and Bower (1988). 



Participants are asked to classify combinations (patterns) of four cards with geometric 

shapes (cues) into one of two possible outcomes, namely “sun” and “rain.” The task has a 

probabilistic structure in that each cue is associated with an outcome with a fixed 

probability. Two of the cues are highly predictive and the other two are less predictive of a 

specific outcome. Overall, throughout training a combination of cues may predict one 

outcome on some trials while on other trials the same combination may predict the 

alternative outcome  (see Method). Corrective feedback is provided after every trial. It is 

now well established that both healthy and brain damaged participants gradually improve in 

categorization accuracy in a variety of versions (i.e., visual stimuli serving as cues, and 

category classes) of this task (e.g., Hopkins, Myers, Shohamy, Grossman, & Gluck, 2004; 

Knowlton et al., 1994).

The WPT has been widely used by multiple systems theorists to assess the relative 

contribution of explicit (declarative) and implicit (procedural)1 learning processes to the 

acquisition of knowledge (Poldrack & Rodriguez, 2004). Early neuropsychological studies 

suggested that the task mainly taps procedural learning processes (Knowlton, Mangels, & 

Squire, 1996; Knowlton et al., 1994; Reber, Knowlton, & Squire, 1996). However, 

neuroimaging studies (Poldrack et al., 2001), mathematical modeling of healthy participants' 

behavior (Gluck et al., 2002), and re-examination of clinical populations' behavior (Hopkins 

et al., 2004; Shohamy, Myers, Onlaor, & Gluck, 2004) have indicated an engagement of both 

declarative and procedural processes, presumably at different periods in training. 

The mathematical modeling of young healthy participants' behavior has suggested 

that, early in the task, participants use sub-optimal verbalizable strategies (Gluck et al., 

2002; Meeter, Myers, Shohamy, Hopkins, & Gluck, 2006; Meeter, Radics, Myers, Gluck, & 

Hopkins, 2008) that can be said to be declarative (Shohamy et al., 2008). Later in training 

participants shift to optimal multicue strategies. These later strategies have also been 

suggested to be accompanied by high levels of self-insight (Lagnado et al., 2006) or 

awareness (Price, 2009) and thus can be said to reflect explicit processes as well. Newell et 

al. (2007) suggested that the task is mediated by a single explicit learning mechanism. 

1 The terms declarative and procedural have been used to denote memory systems (e.g., Squire, 2004) 
whereas the terms explicit and implicit learning denote processes assessed by direct or indirect experimental 
tests of knowledge (e.g., Reber & Johnson, 1994). Some researchers use declarative and explicit, as well as 
procedural and implicit, interchangeably (Price, 2009), in an effort to reconcile memory systems and learning 
processes approaches. 



Similarly, Poldrack and Foerde (2008) suggested that normal young adults may use 

declarative learning strategies to solve the task. Thus, although the WPT is a legacy of the 

multiple systems field, recent research suggests that young healthy participants' behaviour 

is mediated by explicit learning processes entailing hypothesis testing of verbal rules (Price, 

2009).

Researchers have experimentally manipulated the engagement of explicit processes 

during the WPT. Gluck et al. (2002) tested young healthy participants in two versions of the 

WPT. When the cue-outcome contingencies were less probabilistic (in their Experiment 2)—

a manipulation thought to encourage declarative mediation (Foerde, Knolwton, & Poldrack,  

2006)—performance measures increased throughout training, compared to a more 

probabilistic version (in their Experiment 1). Secondary task demands were introduced 

during WPT training to hamper explicit processes, resulting in impairment of WPT 

categorization performance throughout (Foerde, Poldrack, & Knowlton, 2007) or at the 

second half of training (Foerde et al., 2006; Newell et al., 2007), compared to single-task 

conditions. More recently, Price (2009; Experiment 2) reduced the time available for 

feedback processing, in order to impair explicit processes. Performance of participants in 

the long-feedback version was consistently greater than in the short-feedback version. Thus, 

empirical data suggest that experimental manipulations favoring explicit processes result in 

higher categorization accuracy. Consistent with this interpretation, reduction in WPT 

performance is also observed in special populations thought to be less efficient or impaired 

in their declarative encoding, and thus less able to form test and apply verbal rules, such as 

older healthy participants (Abu-Shaba, Myers, Shohamy, & Gluck, 2001) or hypoxic patients 

with MTL lesions (Hopkins et al., 2004), respectively. 

Design and rationale of the present study

In the present study we employed a cue-response trial-and-error training paradigm 

modeled on the WPT. We used computer-generated auditory tones as cues because the 

majority of people do not possess pre-established labels for tones (Galizio & Baron, 1976). 

Prior to the WPT procedure, two groups of participants received extensive training to 

associate four novel auditory cues to pseudowords (label training condition) or hard-to-

name ideograms (ideogram training condition). A third group of participants were exposed 

to the same stimuli over the same number of trials but learned to associate sound intensity 



to hard-to-name colors (intensity training condition), disregarding cue identity. A fourth 

group remained unexposed to the auditory cues (no-training condition). All groups were 

subsequently administered an auditory version of the WPT (Fotiadis, Protopapas, & Vatakis, 

2011) utilizing these cues.

The main hypothesis and motivation underlying our study is as follows: if verbal labels 

facilitate the formation, testing, and application of verbalizable rule-based strategies, and if 

facilitating explicit learning processes is accompanied by higher categorization accuracy 

(Price, 2009), then the label training group should outperform the ideogram training group 

in the WPT. However, the availability of verbal labels is not the sole potential facilitator of 

category learning, as it presupposes both familiarization and individuation, which may be 

partially responsible for any observed learning benefits. Cue-response training requires the 

formation of individuated representations for the cues, potentially causing participants to 

develop perceptual anchors (Ahissar, 2007). Such individuated representations may help 

stabilize representations in working memory and facilitate executive functions such as 

hypothesis testing. If this is the case, then participants in the ideogram training condition 

ought to have an advantage in WPT categorization accuracy compared to the intensity 

training group in which cue identity was instructed to be unattended and varied 

orthogonally to the intensity task. Finally, mere exposure to the stimulus features has been 

shown to affect subsequent categorization performance (Folstein, Palmeri, & Gauthier, 

2010). We thus predicted that participants in the intensity training group would outperform 

the no-training group. 

Method

Participants

Eighty five undergraduate and graduate students (19 male, Mage = 25.8, SD = 4.05) of 

the Philosophy and History of Science Department, University of Athens, Greece, were 

randomly assigned to one of the three training conditions, receiving course credit for 

participation, or volunteered. Due to technical failures in collecting the training data or 

participants' errors in following instructions, 10 participants were excluded from analysis. 

Thus, there were data from 23 participants (7 male, Mage = 27.7, SD = 4.47) in the label 

training condition, 22 participants (6 male, Mage = 24.3, SD = 2.55) in the ideogram training 

condition, and 30 participants (5 male, Mage = 25.6, SD = 4.35) in the intensity training 



condition. In addition, twenty graduate students (2 male, Mage = 20.3, SD = 3.5) from the 

Psychology Department, Panteion University, Athens, Greece, were administered only the 

WPT (no-training group). All participants reported normal hearing and normal or corrected-

to-normal vision, no history of neurological illness, and no dyslexia diagnosis.2 

Materials

Cues. Four 300-ms long frequency-modulated tones, similar to those used by Holt 

and Lotto (2006), served as cues. The tones were created in Carnegie Mellon University 

using parameters listed in Table 1. A pilot study employing a 2AFC intensity discrimination 

task indicated that high-pitched tones were perceived as louder compared to low-pitched 

tones. Because of the need to be used in intensity training, the four tones were perceptually 

equated in intensity. Perceptual equation (outlined in the online supplement) resulted in 

the tones' adjusted intensity levels, subsequently used in the training procedure. 

Four intensity levels were additionally created for each tone: the highest intensity 

corresponded to the tone's adjusted level, while the high, low, and lowest levels were 

created by decrements of 3, 6, and 9 dB down from the adjusted level, respectively. The 3 

dB step was determined in pilot experiments aiming to equate—to the extent possible—

training performance in the 3 conditions.

In the WPT the original (unadjusted) tones were used with all 4 groups.

Table 1

Carrier and Modulation Frequency of the Four Tones that Served as Cues 

Tone Carrier frequency (Hz) Modulation frequency (Hz)
1 790 360
2 1060 360
3 790 198
4 1060 198

2 Dyslexia was a concern because it has been linked with impaired learning of audio-visual pairing (Hulme, 
Goetz, Gooch, Adams, & Snowling, 2007).



Pseudowords. Four Greek pseudowords were created to serve as new names for the 

tones, namely σάβης (/'savis/), λίμης (/'limis/), ρήτης (/'ritis/), and δόθης (/'ðoθis/). They 

were equal in number of letters, syllables, phonemes, stress position, and orthographic 

typicality (mean orthographic Levenshtein distance of the 20 nearest neighbors—OLD20—

was 2.00 for all cues, taking stress into account, and between 2.15–2.85, ignoring stress; 

Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012; Yarkoni, Balota, & Yap, 2008). 

Ideograms. Four Chinese characters were selected, based on (a) number of strokes 

and (b) structure (a single component; Yan, Qiu, Zhu, & Tong, 2010): 豸(U+8C78), 赤 

(U+8D64),  辛 (U+8F9B), and  辰 (U+8FB0). To equate perceptual salience, the first 

character was rotated to the right by 20 degrees. A stroke was erased from the fourth 

character, resulting in 7 strokes for each of the final stimuli, shown in Fig. 1.A.

Colors. Three “hard-to-name” colors (RGB: 0x649EA7, 0x583232, 0xBFBC8F) were 

sampled from the on-line version of a study used to assess the involvement of language 

processing brain regions in a perceptual decision task (Tan et al., 2008; not implying that our 

stimuli were identical to those used in their study, due to lack of chromatic calibration). A 

fourth color (0xFEAD5C) was selected, subjectively judged to be hard-to-name. All color 

stimuli are shown in Fig. 1.B.

Procedure

Participants in the training conditions received instructions, a set of headphones, 

and a questionnaire (in the ideogram and intensity training conditions) on or before the first 

day of training. Moreover, each participants' computer volume was calibrated (see the 

online supplement for details). Training took place unsupervised at home for three 

consecutive days. Compliance was monitored daily by email or phone and by inspection of 

the data. On the fourth day, the WPT was administered at the university lab. Participants 

used headphones during the tasks.

Training. The training tasks and all following procedures were programmed in DMDX 

display software (Forster & Forster, 2003). Trial randomization was done with Mix (Van 

Casteren & Davis, 2006).



Verbal label training. There were 192 trials in each training session. Each cue was 

presented 12 times in each of 4 intensity levels. Participants heard one tone in each trial. 

They were instructed to guess at first, gradually learning the correct response for each tone 

through corrective feedback. They were explicitly told that the purpose of the task was to 

learn “a name for each tone” and not just make the correct response. On the first day of 

training they were asked to read aloud the word before responding. The correspondence 

between sounds and pseudowords was randomly selected for each participant.

Trial structure is shown in Fig. 1.C. A cross appeared on the center of the screen for 

500 ms. A tone lasting 300 ms followed, simultaneous with the 4 response options 

(pseudowords) presented on screen in a vertical configuration. On the first day of training 

there was an additional latency period of 500 ms after the presentation of the tone, during 

which participants were to pronounce the word. Pseudowords remained on screen for up to 

5 s, until a mouse click on one of them. Response feedback was provided for 500 ms 

(“correct,” “wrong,” or “no response”). The intertrial interval was 1 s. 

Trial order was pseudorandom, fixed for all participants, but different for each day of 

training. Randomization constraints precluded (a) the same configuration of response cues 

on two consecutive trials, (b) a distance between trials with the same tone (regardless of 

intensity) less than 2, and (c) a distance between trials with the same intensity less than 1. 

There was a short break halfway through the procedure. Training lasted on average 18 

minutes on the first day and 15 minutes on the second and third day. Training tasks were 

conducted online using DMDX remote testing mode.

Figure 1. Training procedure and stimuli. (A) Symbols used as response cues for the 

ideogram-training condition. (B) Colors used in the intensity-training condition. (C) 

Sequence of events in a training trial. Response 1, 2, 3 and 4 are used here to depict the four 

available response options and were replaced with pseudowords, stimuli depicted in (A), 

and stimuli depicted in (B) in the label, ideogram, and intensity training conditions 

respectively. The symbol   was never presented. ♪



Ideogram training. Ideogram training was identical to verbal label training except that 

(a) 4 ideograms (randomly paired with tones for each participant) replaced the 4 

pseudowords, (b) participants were instructed to learn the ideogram that corresponded to 

each of the tones, and (c) there was no delay to pronounce the labels on the first training 

day. Participants were instructed to fill in the sealed questionnaire received at the initial 

meeting on completion of the third day's training. In this questionnaire the four ideograms 

were printed and participants were asked to name them using only one word.

Intensity training. Participants in intensity training heard the same stimuli as in the 

other training conditions but were asked to learn the color that matched each intensity 

level. They were explicitly instructed to ignore the identity of the tones and only pay 

attention to intensity. Intensity-color correspondence was randomized across participants. 

All other aspects of the procedure were the same as in the ideogram training condition. 

Following third day's training participants were asked to fill in a questionnaire asking for the 

names of the four colors using one word (as in Sturges & Whitfield, 1995).

WPT. Participants were told that they would take part in a learning experiment and 

would be asked questions about it at the end. They were not informed of the probabilistic 

nature of the task. For those in the training conditions it was noted that this was neither a 

continuation nor a test of their training. Written instructions were presented on the screen 

(adopted from Lagnado et al., 2006). Five practice trials were given before the actual 

experiment, for familiarization and sound volume adjustment, using animal sounds as cues.

The probabilistic structure of this auditory version of the WPT followed that of Gluck 

et al. (2002, Experiment 2). As already noted, each cue is independently associated with an 

outcome with a fixed probability. This probability can be calculated from Table 2 (as 

described by Shohamy et al., 2004). For example, Cue 1 is present in patterns H to N, which 

appear in 100 out of 200 trials of the experiment. In these 100 trials the outcome of sun 

occurs 20 times and the outcome of rain occurs 80 times. Thus, Cue 1 is associated with sun 

with probability 20 ÷ 100 = .2 and with rain with probability .8. Likewise, it can be calculated 

that cues 2, 3, and 4 predict sun with probabilities .4, .6, and .8 respectively. Cue 1 and Cue 

2 are therefore predictive of sun, Cue 3 and Cue 4 are predictive of rain, and the highly 

predictive cues of the task are Cue 1 and Cue 4 for sun and rain respectively. The assignment 

of tone (Tone 1, Tone 2, etc.) to associative strength (Cue 1, Cue 2, etc.) was 



counterbalanced across participants, and the relative position of a tone within a pattern was 

held constant for a given pattern and a given participant. 

Table 2

Pattern and Outcome Frequencies of the Weather Prediction Task

Cue Present
Pattern 1 2 3 4 Sun Rain Total

A 0 0 0 1 17 2 19
B 0 0 1 0 7 2 9
C 0 0 1 1 24 2 26
D 0 1 0 0 2 7 9
E 0 1 0 1 10 2 12
F 0 1 1 0 3 3 6
G 0 1 1 1 17 2 19
H 1 0 0 0 2 17 19
I 1 0 0 1 3 3 6
J 1 0 1 0 2 10 12
K 1 0 1 1 5 4 9
L 1 1 0 0 2 24 26
M 1 1 0 1 4 5 9
N 1 1 1 0 2 17 19

Total 100 100 200

Note. 1 = cue present, 0 = cue absent.

In each trial a series of tones forming a cue pattern were delivered through the 

headphones sequentially, with an intercue interval of 1 s. Hence, the duration of each 

pattern ranged from 0.3 s (1-cue pattern) to 2.9 s (3-cue pattern). Following an additional 

interval of 1 s, two icons representing the outcomes (a sun and a raining cloud) appeared on 

the screen for the participant to respond by pressing the corresponding key on the 

keyboard. At registration of a response, the correct outcome was presented on screen for 2 

s along with feedback: a happy smiley and a high tone (frequency: 1000 Hz, duration: 0.1 s) 

for correct selection, or a frowning smiley and a low tone (frequency: 500 Hz, duration: 0.1 

s) when incorrect. If the participant did not respond within 2 s, a “Please respond now” 

prompt appeared on the bottom of the screen. The trial was terminated if no response was 

registered within 5 s total, counting as “incorrect” for the purpose of analysis. Following 

Knowlton et al. (1994), a yellow bar on the right side of the screen provided a rough 



estimate of performance. The intertrial interval was 500 ms. Short breaks were given every 

50 trials. The complete sequence of events in a 2-cue auditory pattern trial is shown in Fig. 

2. The duration of the categorization task was 35 minutes on average. 

Figure 2. Sequence of events in a 2-cue auditory pattern trial of the WPT, yielding the “rain” 

outcome, along with the two possible types of feedback. A “Please respond now!” prompt 

appeared on screen if the participant did not respond within 2 s of the presentation of the 

possible outcomes. The icon  was never presented.♪

Cue naming. Immediately after the WPT, participants were asked to write down which 

single cue they considered most likely for each outcome (the precise formulation of the 

questions was based on Reber et al., 1996). Participants in the three training conditions 

were also presented with the four tones again, and were asked to denote which tone 

corresponded to their two previous responses. 

Data Analysis.

Analyses reported below (except for cue naming) employed generalized mixed-effects 

logistic regression models for binomial distributions (Dixon, 2008) via a logit transformation 

(Jaeger, 2008), with participants and stimuli (or patterns of auditory stimuli for WPT) as 

random factors (Baayen, Davidson, & Bates, 2008), fitted with restricted maximum-

likelihood estimation using package lme4 (Bates & Sarkar, 2007) in R (R Development Core 

Team, 2011). Effect sizes (β) are estimated log odds regression coefficients, with zero 

corresponding to no effect.

Training. Training data were analyzed in terms of correct or erroneous responses.

WPT. Following standard procedure, participants' categorization performance was 

measured in terms of optimal responding (Knowlton et al., 1994). A response was marked 

correct if it corresponded to the most likely outcome given task contingencies, regardless of 

the actual feedback presented to the participant on that particular trial. For example, 



throughout the task trials incorporating pattern A were marked as correct if and only if the 

response was “Sun.” As can be seen in Table 2, patterns F and I are equally associated to 

both outcomes, hence no optimal response can be defined for them. Responses to these 

patterns (12 trials overall for each participant) were not included in the analysis.

Cue naming. Answers were scored with 1 if participants responded with the tone that 

was highly predictive of the stated outcome, with 0.75 for the less predictive tone, 0.50 and 

0.25 for the tones predictive of the opposite outcome, weakly or strongly, respectively, and 

0 for no answering. Cue selection performance was the sum of the two outcomes, ranging 

from 0 to 2. 

Results

Training

Performance increased throughout and across the three days of training, but not all 

participants exhibited high performance at the end of the third day. To ensure that 

subsequent categorization performance (on the WPT) would be subject to the trained cue 

associations, we excluded participants exhibiting low performance (45% or less) in the 

second half of the third day of training. This included two “non-learners” in label training, 

two in ideogram, and seven in intensity. Moreover, to equate sample size across conditions, 

we randomly excluded one participant from the label condition and three from intensity 

(see Fig. S1 in the online supplement). Data shown and analyzed henceforth correspond to 

the following sample: 20 participants (6 male, Mage = 26.8, SD = 3.47) in the label training 

condition, 20 participants (6 male, Mage = 24.4, SD = 2.62) in ideogram training, and 20 

participants (4 male, Mage = 25.7, SD = 3.92) in intensity training.
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Figure 3. Mean accuracy of 60 participants (20 in each training condition) in cue-response 

training. Error bars show between-subjects standard error of the means. 

Mean performance in training per condition and day is shown in Fig. 3. Participants’ 

responses were analyzed with a model including fixed effects of trial, training condition, and 

day of training, as well as their interactions, and random effects of participants and of 

stimuli (four tones by four intensity levels, i.e., 16 distinct stimuli). In R notation, one such 

model was specified as: 

accuracy ~ trial * condition * day + (1+trial|participant) + 

(1|stimulus)

with two levels of accuracy (“correct” and “wrong”) regressed onto 192 trials, three levels of 

condition (“intensity,” “ideogram,” and  “label”), and three levels of day. By-participant 

random slopes of trial were included to model participants' individual learning rates; by-

stimulus random slopes of trial did not improve model fit and were excluded. Quadratic 

effects of trial were not significant and were therefore excluded from the models.

The main purpose of the analysis was to assess whether training resulted in 

comparable knowledge—by the end of the third day of training—of the cue-response 



pairings across the three groups. Therefore, the model's intercept was set at the end of 

training (i.e., the levels of the day predictor were ordered as “day3” “day2” and “day1,” and 

trial was specified numerically as −191, −190, ..., −1, 0). The simple effect of condition 

indicated that the odds of correct responding at the end of Day 3 of training were 

comparable between the label and ideogram training conditions whereas both of these 

groups outperformed the intensity training group (label vs. ideogram: β = −.180 , ɀ = −0.700, 

p = .484; label vs. intensity: β =.667 , ɀ = 2.633, p = 0.009; ideogram vs. intensity: β = .847, ɀ 

= 3.332, p < .001; the last two estimates survived Bonferroni correction for three pairwise 

comparisons). There was a marginal interaction of trial by condition, indicating that change 

in correct responding as trials progressed in Day 3 was marginally different between the 

label and ideogram conditions but comparable between the other conditions (label vs. 

intensity β = −.001 , ɀ = −1.241, p = .215; ideogram vs. intensity: β = .001 , ɀ = 1.086, p = .

278; label vs. ideogram: β = −.002 , I = −2.185, p = .029, not surviving Bonferroni correction 

for three comparisons). No three-way interaction survived Bonferroni correction for 

multiple comparisons.3

Written responses on the post-training questionnaire assessing ideograms' names 

confirmed that the symbols used were hard-to-name and did not invoke common 

associations. Names given were mainly idiosyncratic (such as “air” or “sunset”). Α few (6 out 

of 20) participants named the ideograms after the sounds they had been paired to (i.e., they 

gave names such as “bass” or “shrill”). 

In contrast, questionnaire responses regarding colors revealed participants' 

tendency to give common names to Color 1 (“light blue”—a single word in Greek—by 10 

participants, “blue” by 7), Color 2 (“brown” by 10), Color 3 (“beige” by 8, “grey” by 7), and 

Color 4 (“orange” by 15). 

WPT

Participants' performance is shown in Fig. 4 in blocks of 10 trials. Participants averaged 

74.9% (SD = 8.7%) optimal responses over all 200 trials in the label training condition, 71.7% 

3 Analysis of data at the end of Day 1 indicated increased accuracy of the ideogram training condition 
compared to the intensity condition, but comparable accuracy among the other conditions. Analysis of data at 
the end of Day 2 indicated higher accuracy of the label training condition compared to the intensity condition 
but comparable accuracy among the other conditions. All analyses are available from the authors upon 
request.



(SD = 8.8%) in the ideogram condition, 68.5% (SD = 12.0) in the intensity condition, and 

63.6% (SD = 9.0) in the no-training condition. 

Responses were analyzed with a model including fixed effects of target (optimal) 

response, trial, and training condition, as well as their interactions, and random effects of 

participants and of patterns of auditory cues. In R notation, the model was specified as:

response ~ target * trial * condition + (1+trial|participant) 

+ (1|pattern)

with two types of response (“Sun” and “Rain”) regressed onto two types of target (“Sun” 

and “Rain”), 188 trials (centered, thus specified numerically as, -99.5, -98.5,..., 98.5, 99.5, 

excluding trials presenting patterns “F” and “I”), and four types of condition (“no-training”, 

“intensity”, “ideogram”, and “label”); there were also twelve types of pattern (“A”...“N”, 

excluding patterns “F” and “I”). By-participant random slopes of trial were included to 

model participants' individual learning rates.
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Figure 4. Post-training categorization performance of the four training conditions in blocks 

of 10 trials. The dotted line denotes chance performance (50%). Error bars show between-

subjects standard error of the means. 

In this model, learning effects would be evident as a significant interaction of trial by 

target, insofar as increases in trial would increase the probability of responding correctly. 

This interaction was significant (β = .010, ɀ = 7.830, p < .001). A triple interaction including 

condition would indicate differential learning effects across training conditions, however 

this interaction was not significant for any pair of conditions (all β < .002, p > .3). 

There were significant interactions of condition by target, indicating significant 

performance differences between conditions, in the following order: label > ideogram > 

intensity > no-training. Successive pairwise differences survived Bonferroni correction for 

three comparisons and were all highly significant (label vs. ideogram: β = .351, ɀ = 3.205, p = 

.001; ideogram vs. intensity: β = .341, ɀ = 3.247, p = .001; intensity vs. no-training:  β = 

0.451, ɀ = 4.441, p < .001)4. 

Cue naming 

In response to the post-categorization questionnaire most participants provided 

verbal descriptions of the tones related to their acoustical features, such as “the high-

pitched one” or “the bass sound.” In the label condition, 11 out of 20 participants used the 

trained pseudowords. In the ideogram condition, 4 participants gave descriptions related to 

the visual features of the ideograms, such as “the F” or “antenna.”  None of the participants 

in the intensity training condition used a color name to describe the tones. 

Mean cue selection scores were 1.79 (SD = 0.26) in the label condition, 1.76 (SD = 

0.25) in the ideogram condition, and 1.58 (SD = 0.47) in the intensity condition. An oneway 

ANOVA revealed no effect of condition, F(2, 57) = 2.328, η2 = 0.076, p = .107, suggesting that 

4 Analysis of all learner participants' data (N = 84) revealed qualitatively the same results, namely significant 
performance differences in the order: label > ideogram > intensity > no training (all three pairwise comparisons 
survived Bonferroni correction). Analysis of both learner and non-learner data (N = 95) revealed a similar—but 
not identical—gradation in performance across conditions: label > ideogram = intensity > no-training 
(significant differences surviving Bonferroni correction for three comparisons). This discrepancy may be 
attributed to the possibility that some of the seven non-learner participants in the intensity training condition 
were unable to disregard tone identity (as suggested by their informal reports). Thus, including non-learner 
data fails to test for the effect of cue individuation when exposure to stimuli is controlled.



participants' explicit knowledge of the highly predictive cues did not differ among training 

conditions. 

To assess whether WPT accuracy was affected by explicit knowledge of the newly-

trained names for the cues as inspected through the post-categorization questionnaire, we 

analyzed categorization data from the label training group only. A modified version of the 

mixed-effects model included a categorical fixed effect (with two levels, “No” and “Yes”) 

reflecting whether participants used the trained verbal labels in responding to the post-

categorization questionnaire. This factor was not significant (β = −. 012, ɀ = −.086, p = .932) 

and did not interact with the other predictors (all |β| < .003, p > .130).

Correlation between training and categorization performance 

Inspection of individual data revealed participants with high performance during 

training but low performance in the WPT, and vice versa. To investigate the possibility that 

cue training was predictive of subsequent categorization we regressed WPT performance 

onto average performance in the second half of Day 3 of training, potentially interacting 

with training condition. There was no significant effect of either condition or training 

performance and no significant interaction (all p > .4). Fig. 5 shows the scatter plot and the 

regression lines for the three training conditions as well as the regression line for data 

pooled from all three conditions. To explore the possibility that training performance was 

predictive of WPT performance depending on the number of cues forming a pattern, we 

separately calculated average WPT performance on 1-cue, 2-cue, and 3-cue trials. We 

regressed each performance measure onto average training performance in the second half 

of Day3, possibly interacting with training condition, and again there were no effects neither 

interactions for any of these analyses (all p > .2). 
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Figure 5. Scatter plot of WPT categorization performance versus training performance on 

the second half of Day 3. Lines correspond to linear regression parameter estimates. 

 



Discussion

In this study, participants performed the WPT, a probabilistic category learning task, 

using hard-to-name auditory cues. In a training phase preceding the WPT, groups of 

participants learned to associate the cues to verbal labels or hard-to-name ideograms, or 

were exposed to the cues in an intensity task orthogonal to cue identity; there was also a 

group of participants receiving no training. Categorization performance in the WPT was 

significantly affected: the label training group outperformed the ideogram group, the 

ideogram training group outperformed the intensity training group, and the intensity 

training group outperformed the no-training group. Since all groups were administered the 

same auditory version of the WPT, the differences in performance can only be attributed to 

training. Therefore, (a) availability of verbal labels, (b) cue individuation, and (c) exposure to 

stimuli conferred independent benefits in the category learning task.

Verbal labels

We assumed that the availability of cue names would favor the formation, testing, and 

application of verbalizable strategies by participants in the label training condition because 

these participants would have easily accessible names for the cues of the categorization 

task. To ensure that availability of names was not confounded with categorical training, 

verbal label training was contrasted with ideogram training differing in the nonverbal nature 

of the associations. The advantage of the label training group suggests that cue names 

specifically enhanced explicit processes mediating WPT performance. The lack of significant 

differences in learning slopes between conditions further suggests that the naming 

advantage was not limited to early stages in WPT learning, perhaps serving simply as initial 

anchors, but extended throughout training. Also, participants' identification of the highly 

predictive cues, although a poor measure of awareness (see Lagnado et al., 2006, for a trial-

by-trial assessment of task knowledge and self insight) suggests that awareness for the 

learned material was comparable among the training conditions, and thus precludes a 

potential explanation of the present results on the grounds of differential mediation of 

distinct memory systems in each condition.

Participants in the ideogram training group might have developed labels for the cues 

due to the extended exposure (cf. Galizio & Baron, 1976; Lupyan et al., 2007). Care was 

taken so that ideograms would be hard-to-name and that potential labels for the cues 

would not originate in them. Indeed, the post-training questionnaire confirmed the 



unavailability of easily accessible names for the ideograms, and the post-categorization 

questionnaire showed that very few participants in the ideogram training condition (4 out of 

20) gave descriptions of the tones corresponding to ideograms' features. In contrast, in the 

label training condition, 11 out of 20 participants used the trained pseudowords to describe 

the tones, a significantly larger proportion (χ2 = 3.84, df = 1, p = .05). Even if labels were 

developed under ideogram training, the finding that the label group outperformed the 

ideogram group in the WPT—given equal performance at the end of training—suggests that 

these purported labels were largely idiosyncratic and ineffective. 

It is conceivable that the advantage in categorization of the label group compared to 

the ideogram group might be due to more efficient encoding of the tones under label 

training. The difference in encoding efficiency might have resulted in a memory benefit 

(easier retrieval) when categorizing the tones. Identification of auditory warning sounds has 

shown more robust learning using verbal labels compared to “graphic” labels (Edworthy & 

Hards, 1999; though in some of the sounds graphic labels worked better and there were 

further confounds in that study). However, there is little reason to assume that auditory-

verbal pairings resulted in an encoding advantage in our study, given our finding of equal 

training performance between the label and ideogram training groups at the end of training.

Another possible interpretation of the categorization advantage under label training 

would be increased perceptual discrimination of the cues (hypothesis of the “acquired 

distinctiveness of cues,” Miller & Dollard, 1941, as cited by Galizio & Baron, 1976). However, 

equal performance at the end of training in the label and ideogram conditions again argues 

against such an interpretation. Galizio and Baron (1976) suggested that acquired 

distinctiveness might be manifested with label training only when task conditions make cues 

difficult to discriminate. We have no reason to assume that the sequential presentation of 

the tones—with an interstimulus interval of 1 s—during the WPT imposes perceptual 

difficulty. Therefore the acquisition of perceptual features under label training does not 

seem to offer a strong explanation for our results. 

It could be argued that label and ideogram group training differed in ways other than 

verbal labels. For example, the Chinese characters may be characterized by greater visual 

complexity than the printed pseudowords. This difference might not affect training but only 

manifest itself in a demanding task such as WPT. The present design cannot preclude this 

possibility, which must be explored in further research. 



To explore the mechanisms that contributed to the difference in performance 

between the label and ideogram training groups we considered the possibility that WPT 

performance was driven by partial cue knowledge5. Given differences in training 

performance across participants and tones (e.g., not all participants were equally successful 

in learning the cue-response pairings for each of the four tones) we calculated each 

participant's individual cue knowledge, that is, the average performance for each of the four 

tones at the second half of the third day of training. Subsequently we constructed a 

measure of “partial cue knowledge” for each pattern and each participant in the WPT by 

averaging the participant's cue knowledge for the tones appearing in the pattern. This was 

only possible for participants in the label and ideogram training groups (because 

participants in intensity training did not classify tones by their identity). Data from the two 

conditions were re-analyzed with a modified mixed-effects model including partial cue 

knowledge (centered) as a fixed effect, along with its interactions. There was a four-way 

interaction involving target, trial, condition, and partial cue knowledge (β = −.034, ɀ = 

−3.124, p = .002), hence data from the two conditions were separately analyzed. For the 

label training group there was a positive effect of partial cue knowledge on optimal 

responding (interaction of partial cue knowledge by target: β = 1.722, ɀ = 3.313, p < .001), 

not interacting with trial (interaction of partial cue knowledge by trial and target: β = -0.004, 

ɀ = -0.511, p = .609), consistent with a constant influence throughout the WPT. For the 

ideogram training group there was an interaction of partial cue knowledge by trial and 

target (β = .030, ɀ = 4.480, p < .001) suggesting a variable effect of partial cue knowledge. 

Models with alternative trial centering revealed that partial cue knowledge had a negative 

effect in the first half of the procedure (e.g., at Trial 50, β = −2.365, ɀ = −3.124, p = .002; at 

Trial = 100, β = −.851, ɀ = −2.191, p = .029), no effect later on (at Trial = 150, β = .633, p = .

229), and a positive effect at the end (β = 2.144, ɀ = 2.709, p = .007). 

This post-hoc analysis suggests that participants' categorization accuracy in the label 

training group was driven throughout the procedure by partial knowledge of the tone-label 

pairings. Participants performed better on those WPT trials that employed cues for which 

labels were better learned during training. This is consistent with the hypothesis that explicit 

hypothesis testing processes, mediated by the availability of verbal labels, are recruited 

5 We thank an anonymous reviewer for suggesting this analysis.



during the WPT. Having names for the cues may have facilitated verbal working memory 

processes that contribute to category learning (Miles & Minda, 2011). In contrast, 

knowledge of tone-ideogram pairing seems to have interfered with WPT performance in the 

first half of the procedure. Perhaps the visual complexity of the ideograms distracted 

participants in the demanding WPT, impeding the formation of verbal, explicit rules. Further 

empirical investigation is needed to study this issue with planned comparisons in an 

appropriate design.

Cue individuation

The advantage in WPT performance of the ideogram training group compared to the 

intensity group may be attributed to the individuated representations formed for the tones 

during ideogram training. These representations, possibly akin to “perceptual anchors” 

(Ahissar, 2007), may have rendered the tones less abstract in working memory, thus 

facilitating the use of strategies when solving the WPT. In contrast, participants in intensity 

training could perform successfully disregarding tone identity, so task demands may not 

have caused the formation of individuated, concrete representations of the tones. 

However, the ideogram and intensity training groups also differed in training 

performance, prior to WPT, leaving the WPT difference open to alternative interpretations 

that cannot be confidently rejected. For example, participants in the intensity training group 

may have recruited fewer or less efficient cognitive resources during training. The lower rate 

of successful performance produced diminished reinforcement—through positive feedback

—and may have led to less efficient processing of the auditory tones. Further research with 

an easier training task is required to empirically assess this possibility. 

The finding that cue individuation alone, in the absence of verbal labels, was beneficial 

to category learning in the WPT is important to the extent that the latter is primarily 

mediated by explicit processes, as it highlights the potential of individuated representations 

to participate flexibly in novel learning tasks. Previous research has suggested that cue 

characteristics are immaterial to WPT performance as long as there is an isomorphic 

probabilistic structure (Hopkins et al., 2004, Knowlton et al., 1994). In contrast, cue 

individuation seems to affect categorization performance, necessitating an explanation from 

memory systems approaches. 



Prior exposure

Participants trained to associate sound intensity to colors exhibited greater 

categorization performance in the WPT compared to participants receiving no training at all. 

Notably, the intensity group was able to benefit from training explicitly requiring that the 

relevant dimension for later categorization (cue identity) be disregarded. The critical 

manipulation in this condition required participants to form intensity “categories” 

orthogonal to cue identity. Our pilot experiments showed that cue identity interfered with 

intensity judgments, so there is reason to hypothesize that cue identity and cue intensity are 

“integral” dimensions (Goldstone, 1994). On that account, it is possible that sensitization 

occurred along both dimensions during training and, thus, that intensity training enhanced 

discriminability among the cues (Goldstone, 1994). That this manipulation led to increased 

WPT performance compared to no training therefore suggests that (a) discriminability of the 

cues may be crucial for their effectiveness in probabilistic category learning and (b) 

exposure to stimuli is in itself beneficial for subsequent processing of these stimuli.

The beneficial effect of intensity training was especially apparent early in the WPT 

since participants in the no training condition exhibited near-chance performance in the first 

two blocks of 10 trials (see Fig. 4), reflecting perhaps an initial difficulty to identify the four 

tones. Generally, familiarity with the stimulus set is known to affect subsequent 

performance (e.g., Goldstone & Steyvers, 2001). More specifically, Folstein et al. (2010) 

exposed participants to artificial stimuli prior to a categorization task utilizing categorizing 

stimuli that were novel but had similar configuration as exposure stimuli. Even when the 

dimensions of exposure stimuli were uncorrelated and thus provided no diagnostic value for 

later categorization, there was a clear advantage in categorization performance compared 

to a group that remained unexposed to the stimuli. Perhaps participants were able to learn 

the structure of the stimuli and thus had an advantage in hypothesis testing or resource 

allocation. In our experiment participants received feedback for associating sound intensity 

to colors. However, the relevant dimension for training was absent in later categorization, 

similar to Folstein et al., allowing  an explanation of the beneficial effect of exposure to 

stimuli in later categorization performance along the same lines.



Concerns and limitations

It is notable that average performance on the second half of Day 3 of training was not 

correlated to average WPT categorization performance for any of the training conditions. 

This may be interpreted as supporting the existence of discrete learning systems: training 

required gradual acquisition of cue-response pairings, whereas the WPT presumably 

required explicit hypothesis testing. At the moment, differences in task demands between 

the training and categorization task in our study do not allow us to draw firm conclusions in 

this matter (cf. Dunn & Kirsner, 2003). On the other hand, a more refined, by-cue measure 

of training performance was found to be predictive of between-trials differences in WPT 

performance . Partial knowledge of the cue-label pairings acquired during training was 

found to facilitate post-training categorization, whereas partial knowledge of the cue-

ideogram pairings initially interfered with and later facilitated categorization. This 

connection between training and categorization provides no evidence in favor of a multiple 

systems account.

Observed differences in training performance between groups may cause some 

concern regarding the interpretations. Verbal label and ideogram training performance did 

not differ at the end of training, yet participants in the label training group probably 

achieved plateau performance (as evidenced by a lack of an effect of trial on Day 3) earlier 

compared to the ideogram training group (which kept on learning the cue-response pairings 

during Day 3, as evidenced by an effect of trial). We believe that this discrepancy between 

the two conditions does not pose a significant limitation on the interpretation of our results 

insofar as both groups' knowledge of the cue-response pairings was comparable at the end 

of the training procedure. 

Another concern stems from the fact that the ideogram group outperformed the 

intensity group in training performance. Although similar performance in all three training 

conditions was desirable, the intensity training condition was primarily designed to equate 

exposure to the stimulus set and recruitment of attentional resources. The design constraint 

that tone identity be disregarded led to a significant difference in training performance at 

the end of training, leaving our results regarding individuation open to alternative 

interpretations.  

Finally, we acknowledge that care should taken when interpreting the difference in 

WPT performance between the intensity and no-training groups. Participants in these 



conditions were—due to recruiting difficulties—sampled from different pools, hence no 

strong inferences can be made. This confound does not undermine the comparison of prime 

interest in our study, that is, between label and ideogram training. 

Implications and conclusion

This is the first detailed report of 

gradual learning in an auditory version of the WPT. There are two procedural discrepancies 

between this version and the prototypical task (Knowlton et al., 1994), imposed by the 

auditory nature of the cues: First, the cues were presented sequentially, and second, 

feedback was delivered in the absence of the cues. There is evidence that both of these 

factors modulate the involvement of distinct memory systems during visual category 

learning (Foerde & Shohamy, 2011; Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005; 

Worthy, Markman, & Maddox, 2013; but see Dunn, Newell, & Kalish, 2012 for an alternative 

interpretation). However, it has been demonstrated that, for learning to take place, the 

appropriate mode of presentation for auditory stimuli is sequential and not concurrent, like 

in the visual modality (Conway & Christiansen, 2009; Saffran, 2002). Further research is 

required to examine if sequential presentation resulted in different memory system 

involvement compared to the prototypical WPT. Importantly, all our participants were 

administered the exact same version of the WPT. Therefore, procedural discrepancies 

between this auditory version and the prototypical WPT does not undermine the between-

groups comparison that supports the idea that verbal labels facilitate explicit hypothesis 

testing.

 The WPT has been extensively used as a tool by multiple systems (e.g., Knowlton et 

al., 1996; Poldrack and Foerde, 2008) and single system theorists (e.g., Newell et al., 2011) 

to assess the existence and relative contribution of discrete memory systems during 

categorization learning. It has been suggested that the majority of young healthy 

participants (Gluck et al., 2002; Poldrack & Foerde, 2008) initially approach the task by sub-

optimal strategies that can be said to be declarative (Shohamy et al., 2008) but later on they 

engage multiple-cue (or integrative) strategies. These later strategies may be mediated by 

the procedural system (Shohamy et al., 2008) or they may be supported by declarative 

learning processes since they are accompanied by high levels of awareness (Price, 2009) or 

self-insight (Lagnado et al., 2006; Newell et al., 2007). Our results are consistent with the 



latter assumption. If the WPT is mediated by a procedural system and not by explicit 

hypothesis testing later in training, then having names for the cues should not affect later 

categorization performance. The fact that the label training group outperformed the 

ideogram training group throughout the task suggests that the declarative-procedural 

distinction does not explain healthy participants' behavior in the WPT. Instead, a general 

learning mechanism may support performance throughout the task (Newell et al., 2007). 

To conclude, we have showed that newly trained verbal labels for the cues provide an 

advantage in probabilistic category learning performance. We based our hypothesis on the 

assumption that explicit hypothesis testing of verbal rules would be facilitated when having 

names for the cues, as opposed to associating the cues to difficult-to-name ideograms. The 

present results extend recent studies suggesting that language is not just for talking 

(Lupyan, 2008; Lupyan et al., 2007) and that verbal processes are important for 

categorization (Ashby & Maddox, 2005; Miles & Minda, 2011). Future research should 

examine in more detail the intuitive (but perhaps simplistic, see Newell et al., 2011) notion 

that humans may benefit from linguistic faculties during categorization with a new focus on 

verbal labels for categorizing items. 
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Supplementary Methods

Perceptual Equation of Tones

Each of the four tones were preprocessed in Praat (Boersma & Weenink, 2012), set 

to a reference intensity level, namely 10 dB below maximum. Ten participants (4 male, Mage 

= 31.6, SD = 2.72) who did not take part in the experimental conditions were administered 

30 adjustment trials using PsychoPy (Peirce, 2009). In each trial two sounds were presented 

with an interstimulus interval of 500 ms. The first sound was always tone s1 in its reference 

intensity. The second sound was one of the three remaining tones presented in a 

pseudorandom intensity, half the times greater than the tone's reference intensity. 

Participants modified the intensity of the second sound in steps of 0.5 dB using two keys on 

the keyboard until they felt that the two sounds were equal in intensity. The three tones 

were adjusted 10 times each. 

Points of subjective equality were calculated at +0.43 dB, +1.53 dB, and +3.00 dB for 

tones s2, s3, and s4, respectively. These intensity levels were called adjusted levels and were 

used in the training procedure for the 3 training groups.

Volume Calibration

Each participant heard the four tones at the 4 intensity levels (highest, high, low, and 

lowest, see Method), presented self-paced in random order, and adjusted the volume of 

their computer to a comfortable level. Subsequently, a 2AFC intensity discrimination task 

was administered, using 12 pairs of tones at different intensity levels with an interstimulus 

interval of 300 ms, presented at a pseudorandom order. Participants denoted the higher-

intensity sound within 5 s. This procedure (volume adjustment and intensity discrimination) 

was repeated up to three times if necessary, to a criterion of no more than 3 discrimination 

errors (with a few exceptions). The computer's resulting volume setting was noted and 

participants were instructed to set the volume carefully before each training session. The 

procedure was programmed in DMDX (Forster & Forster, 2003).
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Figure S1. Average training performance on the last 96 trials of Day 3. Sample sizes on the 

graph denote the full number of participants in each condition. Bars enclose the middle 50% 

of individual performance, the median is marked with a thick line, and error bars extend to 

the full range of performance. Non-learner performance (below 45% correct, an arbitrary 

learning criterion) is marked with filled circles (N = 2 in label, N = 2 in ideogram, and N = 7 in 

intensity training condition). Open circles (N = 1 in label training, N = 3 in intensity training) 

depict performance of participants that were randomly excluded to form equal-sized 

samples (N = 20) in each condition. 
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Abstract

Category learning is thought to be mediated—in at least some category structures—by 

hypothesis-testing processes. Verbal labels for the stimuli and stimulus individuation have 

been shown to facilitate the formation, testing, and application of rules of category 

membership (Fotiadis & Protopapas, 2014). We sought to replicate the phenomenon of 

facilitation due to verbal names for the stimuli by training participants for two consecutive 

days to either learn new names for abstract shapes, or learn shape-ideogram pairings; a 

third group was unexposed to the shapes. After training, participants were given a Type II 

categorization task—thought to be mediated by verbal processes of rule discovery—utilizing 

the trained shapes. We hypothesized that verbal labels for the shapes and shape 

individuation would provide facilitative effects in learning to categorize. Results revealed no 

effect of training on categorization performance. This study suggests that caution should be 

taken when generalizing findings across perceptual modalities or different experimental 

paradigms.



Introduction

The ability to categorize spans a broad range of human capacities and behaviors. 

Researchers have examined the cognitive processes (Ashby & Maddox, 2005) and neural 

substrates (Poldrack et al., 2001) of category learning and have utilized computational 

modeling techniques in an effort to shed light on the nature of the underlying 

representations (Anderson, 1991). 

The Multiple Memory Systems (MMS) hypothesis argues that human category 

learning is mediated by distinct learning systems (Ashby & Maddox, 2005; Poldrack & 

Foerde, 2008). A declarative, explicit, or verbal system is thought to be engaged in the 

learning of categories that can be characterized by a verbal rule. Hypothesis testing 

processes are thought to be recruited, and the knowledge acquired is thought to be 

available to consciousness. On the other hand, the learning of categories that defy a simple 

verbal description is thought to be accomplished through a procedural, implicit, or non-

verbal system. Pre-decisional perceptual processes underlie learning, and the learned 

material is thought to be unavailable to consciousness. An on-going debate exists between 

the MMS theorists and single-system theorists arguing that a single, general learning 

mechanism suffices to account for behavioral data (e.g., Newell, Dunn, & Kalish, 2011).

In the context of this debate, growing empirical evidence suggests that verbal 

processes are important in the learning of rule-described categories. Ashby and colleagues 

(Ashby, Alonso-Reese, Turken, & Waldron, 1998) developed a computational theory 

suggesting that the verbal system mediates rule-based category learning. Verbal working 

memory interference has been found to impair the learning of rule-described categories 

(Miles & Minda, 2011), whereas experimental manipulations, such as using difficult-to-name 

stimuli (Kurtz, Levering, Stanton, Romero, & Morris, 2013), or verbal rehearsal of stimulus 

dimensions prior to learning (Minda, Desroches, & Church, 2008), have been shown to 

affect category learning. 

Verbal Labels in Hypothesis Testing

Recently, Fotiadis and Protopapas (2014) provided evidence in favor of the 

hypothesis that verbal labels for the to-be-categorized stimuli facilitate hypothesis-testing 

processes underlying category learning. The authors utilized hard-to-name auditory stimuli 

and manipulated the availability of stimulus names by training separate groups of 



participants for three consecutive days to associate the auditory tones with pseudowords 

(label training condition) or with hard-to-name ideograms (ideogram training condition); or 

to associate tone intensity with colors (intensity training condition); a fourth group 

remained unexposed to the tones (no-training condition). On the fourth day all participants 

were administered the same auditory version of the Weather Prediction Task (Knowlton, 

Squire, & Gluck, 1994) utilizing the trained tones as cues. Results revealed a gradation in 

categorization performance in the order: label > ideogram > intensity > no-training. Thus, it 

was concluded that verbal labels, cue individuation, and exposure to the stimulus set each 

facilitated explicit hypothesis-testing processes underlying category learning.

The Shepard et al. (1961) Tasks

In their seminal paper, Shepard, Hovland and Jenkins (1961) revolutionized the study 

of category learning. They created six category tasks (Type I to Type VI) by manipulating 

category structure (categorization rule) while utilizing the same stimuli in each task and the 

same number of exemplars in each category. In the most common implementation of the 

paradigm (Minda & Miles, 2010) categorization stimuli are comprised of three binary valued 

dimensions: Shape (square vs. triangle), color (black vs. white), and size (big vs. small).

The basic finding of the Shepard et al. (1961) study was that the order of difficulty of the six 

types (as assessed by participants' performance) cannot be accounted for by a simple 

stimulus-generalization theory. The key finding was that participants found it easier to learn 

Type II categories compared to Type IV categories, despite the reduced within-category 

similarity of the former (compared to the latter) category structure. The authors suggested 

that this Type II over Type IV advantage necessitates considering the mediation of executive 

attention mechanisms and the formulation and application of rules during category 

learning. 

The Type II Task and Rule-Discovery Learning

The Type II task has a two-dimensional rule structure. Two out of the three 

dimensions are diagnostic of category membership , in an exclusive-or fashion. A simple 

verbal rule seems to be able to define category membership6 (e.g., “black triangles and 

6 Depending on which dimensions are diagnostic, there can be three Type II subtypes: Shape-irrelevant, size-
irrelevant, and color-irrelevant. See Love and Markman (2003) for evidence suggesting that performance 
varies systematically across these subtypes.



white squares are category A”). Thus, the structures' processing demands are thought to be 

best met by explicit rule-learning processes (Minda & Miles, 2010). 

This claim seems to be supported by empirical evidence. Minda et al. (2008) utilized 

the first four prototypical Shepard et al. (1961) category structures in an effort to examine 

rule-selection executive functions of children and adults. In their Experiment 2, Minda et al. 

assessed the effect of a concurrent verbal and a concurrent non-verbal task on 

categorization performance. The verbal secondary task—thought to occupy resources 

recruited by verbal processes of rule discovery—did impair performance in the Type II 

structure (compared to a control, no-task condition, and also compared to the non-verbal 

task condition). These results suggest that the Type II structure recruited the explicit system. 

Smith, Minda and Washburn (2004) studied category learning processes of human and non-

human animals using the Shepard et al. tasks. Their results provided evidence in favor of the 

engagement of rule-discovery mechanisms in learning the Type II category structure. The 

evidence (“all-or-none learning”) was only present for human subjects, whereas for non-

human animals, lacking the faculty of language, there was no sign of rule discovery. This 

may be considered as evidence in favor of the engagement of rule-learning mechanisms in 

the Type II task.

Thus, theoretical reasons (Minda & Miles, 2010; Shepard et al., 1961) as well as 

empirical evidence (Minda et al., 2008; Smith et al., 2004) suggest that learning to 

categorize in the Type II category task is mediated by hypothesis testing processes of verbal 

rules.

Rationale of the Present Study

The purpose of the present study was to further test the hypothesis that verbal 

labels for the to-be-categorized stimuli facilitate hypothesis testing processes recruited 

during category learning (Fotiadis & Protopapas, 2014). We specifically wanted to test our 

training manipulation in the visual modality, since there are reasons to suggest that learning 

across modalities is not governed by the same mechanisms (Conway & Christiansen, 2005). 

Moreover, given that in the Weather Prediction Task category membership is 

probabilistically defined (Knowlton et al., 1994) we sought to examine the effect of names 

for the stimuli in a task with a deterministic structure.



To manipulate the availability of names, separate groups of participants were trained 

for two consecutive days to associate abstract shapes with pseudowords (label training 

condition) or with hard-to-name ideograms (ideogram training). A third—control—group of 

participants remained unexposed to the shapes, and was trained to associate ideograms 

with pseudowords (mock training condition). On the second day, all participants were given 

the Type II categorization task. In this task, the two values in the shape dimension were the 

same shapes that were used in the training procedure. The category-diagnostic dimensions 

were shape and color, whereas size was non-diagnostic (see Fig. 1). 

Figure 1. Design of the present study.

We reasoned that verbal labels for the shapes would facilitate verbal hypothesis-

testing processes of rule formation, testing, and application. Therefore we predicted that 

participants in the label training condition would find it easier to discover the categorization 

rule, compared to the ideogram training group. We also hypothesized that familiarity with 

the stimuli and learning to associate the shapes to visual stimuli (ideograms) would help 

create individuated perceptual representations of the shapes and therefore facilitate 



categorization. We therefore predicted that the ideogram training group would have an 

advantage in rule discovery compared to the mock training group.

Methods

Participants

Seventy-two students (16 male) of the University of Athens took part in the study 

and were randomly assigned (in groups of 24) to each training condition. Their mean age 

was 25.8 years (SD = 7.0). All were native speakers of Greek, reported normal or corrected-

to-normal vision, no history of neurological illness, and no diagnosis of dyslexia.

Materials

Shapes. Two abstract shapes of low association value were selected from the 

collection of Vanderplas and Garvin (1959). The shapes have been previously used in 

experimental research and are considered to be hard to name (e.g., Hulme, Goetz, Gooch, 

Adams, & Snowling, 2007). The shapes were equated in size in a pilot experiment using the 

method of adjustment. Twelve participants took part in this psychophysical procedure, 

which was implemented in PsychoPy (Peirce, 2007), and the results provided the Points of 

Subjective Equality (P.S.E.s). For the training session, empty shapes with a black margin 

were created, with size corresponding to 75% of the P.S.E.s, whereas for the categorization 

session the shapes were filled with red or blue color. The categorization stimuli necessitated 

two levels of size for the stimuli, so for the “big” shapes the size corresponded to the P.S.E.s, 

and the “small” shapes were created by a 50% reduction in size.

Pseudowords. Ten pseudowords were created, equated in number of letters, 

syllables, phonemes, and stress position. They were also roughly equated in orthographic 

and phonological typicality using Levenstein distance of the 20 nearest neighbors 

(Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012; Yarkoni, Balota, & Yap, 2008). To 

avoid name assignment biasing toward particular shapes, we administered an online 

questionnaire to 107 native speakers of Greek showing randomly one of the two abstract 

shapes along with the ten candidate pseudowords. Participants were simply asked to 

“choose a name” for the shape. We selected the two pseudowords that were selected as 

names for both shapes with roughly equal frequency, namely δέκλαμο (/'ðεklamo) and 

κίμνελο (/'kimnεlo).



Ideograms. Two Chinese characters were selected. These ideograms have been 

previously used and have been shown to resist a simple verbal description (Fotiadis & 

Protopapas, 2014): 辛 (U+8F9B), and 辰 (U+8FB0). To equate for number of strokes (and, 

thus, for perceptual complexity), a stroke was erased from the second character.

Procedure

Training comprised two sessions, administered on two consecutive days. On the 

second day, following training, the categorization task was administered. All following 

procedures were implemented in the DMDX display software (Forster & Forster, 2003).

Training.  There were two training sessions, administered on consecutive days, 

aimed to allow overnight consolidation. Participants were given 160 trials in each training 

session, arranged in four blocks of 40 trials. At the beginning of a Label Training trial a 

fixation cross was presented for 500 ms at the center of the screen. Following that, one of 

the two shapes was randomly selected and presented for 2000 ms, and then the two 

pseudowords appeared in a vertical configuration. Participants were asked to respond by 

clicking on one of the two alternative responses (pseudowords). Upon response, feedback 

was provided (the word “Correct” or “Wrong”) for 500 ms. The permutation of the two 

pseudowords was counterbalanced across trials, and each shape was presented equally 

often within a block of trials. On the first day of training, participants in the Label training 

condition were asked to read aloud the pseudoword of their choice before clicking on it, 

because we reasoned that learning a name necessitates the formation of an effective 

phonological component. This reading-aloud instruction was omitted on the second day, to 

equate task demands across training conditions as much as possible. 

For the Ideogram Training condition pseudowords were replaced with ideograms. In 

the Mock Training condition participants were asked to learn to associate ideograms to 

pseudowords, so shapes were replaced by ideograms. No reading aloud took place in either 

the Ideogram or the Mock training conditions. Stimulus-response pairings (e.g., shape-

pseudoword or shape-ideogram pairings) were counterbalanced across participants within a 

training condition. Each training session lasted approximately 20 minutes.

Categorization.  In the Categorization session, which followed immediately after the 

second training session, participants were told that they would learn to classify stimuli into 

two categories, namely X and Y. They received a maximum number of 28 blocks of eight 



trials. In a categorization block each of the eight categorization stimuli was presented once. 

The beginning of a trial was signaled by the presentation of the stimulus at the center of the 

screen along with the category labels X and Y. The category labels were presented around 

the stimulus either horizontally or vertically in both permutations (i.e., X - Y or Y - X), 

providing four possible configurations. Participants responded by clicking on a category 

label. Following each response a smiling face was presented if correct or a frowning face if 

incorrect, for 1500 ms. If a participant did not respond within 10000 ms the trial was 

terminated and a prompt appeared on screen. The training session ended upon completion 

of all blocks, or upon two consecutive errorless blocks (following Mathy, Haladjian, Laurent, 

& Goldstone, 2013). The order of trials was pseudorandomized with MIX (VanCasteren & 

Davis, 2006) and was identical for all participants. Randomization constraints precluded (a) 

presentation of the same categorization stimulus on two consecutive trials, and (b) a lag 

between trials with the same configuration of category labels less than two. The assignment 

of category label (X-Y) to values of the diagnostic dimensions was counterbalanced across 

participants. A short break was provided every 56 trials. The maximum duration of the 

categorization session was 25 minutes.

Results

Training

Participants in all three training conditions mastered the training task by the third 

block of Day 1 and exhibited ceiling performance on Day 2. Across both training sessions, 

participants averaged 98.33% correct responses (SD = 1.16) in the label training condition, 

97.33% (SD = 2.64) in the ideogram training condition, and 97.87% (SD= 2.29) in the mock 

training condition. The average performance per training condition and day, in blocks of 40 

trials, is shown in Fig. 2. 



Figure 2. Learning curves in the three training conditions in blocks of 40 trials

The purpose of the analysis was to test if participants were equally successful in learning the 

shape-label and shape-ideogram pairings. Therefore, we only analyzed data from the label 

and ideogram training conditions on the second day of training. Participants’ responses 

were analyzed in R (R Development Core Team, 2014) with a linear mixed-effects model 

including fixed effects of trial and training condition, as well as their interaction, and random 

effects of participants. By-participant random slopes of trial were included to model 

participants’ individual learning rates (Baayen, Davidson, & Bates, 2008). In R notation, the 

model was specified as

accuracy ~ trial*condition+(1+trial|participant).

There was no simple effect of trial (β = .387, ɀ = 1.317, p = .188), a result consistent with 

participants' ceiling performance on Day 2. There was also no interaction of trial by 

condition (β = −.031, ɀ = −.113, p = .910) and—most importantly—no effect of condition (β = 

.369, ɀ = .692, p = .489).



Categorization

Out of 72 participants in all training conditions, 44 (61.11%) managed to achieve two 

consecutive errorless blocks of trials, thus providing unequivocal evidence of having 

discovered the categorization rule. We refer to these participants as “learners.” There were 

14 learners (58.33%) in the label training condition, 14 learners (58.33%) in the ideogram 

training conditions, and 16 learners (66.67%) in the mock training condition. A chi square 

test revealed that the percentage of learners in the categorization task did not differ 

significantly between training conditions (χ2 = .468, df = 2, N = 72, p = .792).

However, using the percentage of participants reaching the learning criterion as a 

dependent variable has the disadvantage of disregarding the ease or difficulty with which 

participants in each training condition learned the rule. We therefore analyzed the number 

of blocks to reach criterion, for learner participants only7 (see Fig. 3). An one-way analysis of 

variance revealed that there was no effect of training condition on the number of blocks to 

reach the learning criterion, F(2, 42) = 1.777, η2 = .080, p = .182. 

7 The exclusion of “non-learner” data is common practice in the categorization literature when analyzing 
number of blocks to reach criterion (e.g., Mathy & Feldman, 2009). The rationale is that a value of 28 
corresponding to a non-learner, perhaps responding at chance, and a value of 28 corresponding to a 
participant mastering the task at the last two blocks reflect qualitatively different behaviors that should not be 
aggregated.  



Figure 3. Number of blocks to reach learning criterion in the categorization task, per training 

condition. Data from learner participants only. Boxes denote interquartile range; thick lines 

mark the median; error bars extend to the full range; N denotes sample size.

Alternatively, categorization performance can be analyzed using accuracy as the 

dependent variable. This allows inclusion of all participants, under the assumption of 

errorless performance after the learning criterion is reached (e.g., Kurtz et al., 2013). A 

linear mixed-effects model with the same formula as above revealed an effect of trial (β = 

4.878, ɀ = 5.33, p < .001), reflecting an increase in accuracy as trials progressed, comparable 

learning rates among conditions (all βs < 1.35, p > .14), and—most importantly—no effect of 

condition on categorization accuracy (all βs < .13, p > .32).

Discussion

In this study we trained participants for two consecutive days to learn new names 

for shapes, or learn to associate shapes with hard-to-name ideograms. A third group of 

participants remained unexposed to the shapes. In a categorization task, administered 



immediately after training, we used the trained shapes to create the categorization stimuli. 

We predicted that names and familiarity with the shapes would each facilitate rule 

discovery in the categorization task. Our results revealed no effect of training condition of 

categorization, in contrast to previous findings (Fotiadis & Protopapas, 2014).

This discrepancy raises concerns about assuming that an effect manifesting itself in 

one modality would also be present in another modality. One purpose of the experiment 

was to replicate the effect of facilitation in learning to categorize due to names for the 

stimuli in the visual modality. The lack of an effect may be attributed to the change in 

modality per se, since there is reason to assume that learning processes may differ between 

modalities. Saffran (2002) showed that, for learning to take place, the temporal mode of 

presentation of stimuli in the visual and auditory modality should be different (concurrent 

vs. sequential respectively). Also, Conway and Christiansen (2005) implemented the same 

learning paradigm in different modalities and provided evidence in favor of a learning 

advantage in the auditory modality compared to the visual modality. Further empirical 

investigation is needed to assess whether learning to categorize in the auditory and the 

visual modality is mediated by the same processes.

Participants’ ceiling performance during training complicates interpretation, insofar 

as potential differences between learning the shape-label and shape-ideogram pairings may 

be masked by the ease of the task. Thus, we cannot preclude the possibility that 

performance in the categorization task is affected by differences in training. 

Alternatively, the lack of an effect of verbal labels in category learning may stem 

from methodological discrepancies between the present and our previous study, such as the 

structure of the categorization task used to reveal hypothesis learning processes. The 

Weather Prediction Task, previously shown to be affected by names for the stimuli, has a 

probabilistic structure, whereas the Type II task used in the present study has a 

deterministic structure. It remains to be investigated whether performance in a probabilistic 

category structure may be more easily affected by experimental manipulations, perhaps due 

to the uncertainty that is inherent in the task.

Further concerns stemming from the results of the present study are related to 

whether changing the surface structure of a paradigm affects the processing demands of a 

task. The result of no difference in categorization performance between the label and 

ideogram training groups might suggest that names for the stimuli do not facilitate rule 



discovery. An alternative explanation, however, may be related to the fact that our 

implementation of the Type II task utilized two abstract shapes whereas the canonical 

version uses two geometric shapes. It may be that the Type II task is learned through verbal 

processes of rule discovery only when the values of the diagnostic dimensions are highly 

familiar to participants. Mathy et al. (2013), who also used abstract shapes in implementing 

the Type II task, provided evidence in favor of the engagement of similarity-based processes 

(thought to reflect learning mediated by the implicit rather than the rule-based system) in 

learning to categorize. Thus, although the Type II task has been used to examine explicit 

processes (e.g., Minda & Miles, 2010), our version of the task may have recruited implicit 

processes that are not affected by verbal labels for the stimuli. 

A final concern may be of representational nature. The finding that familiarity with 

the stimuli also failed to affect performance in the categorization task seems rather 

puzzling, given previous findings and current understanding in the field. For example, 

Folstein, Gaultier, and Palmeri (2010) provided evidence suggesting that mere exposure to 

the stimulus configuration may facilitate subsequent categorization performance. Our 

finding of no significant difference in performance between the ideogram and mock training 

conditions may be taken to indicate that learning processes involved in learning to 

categorize our version of the Type II task did not recruit the representations of the shapes 

that were presumably acquired during training. Indeed, informal reports of participants' 

strategies in debriefing revealed that participants mainly paid attention to the corners of the 

shapes and not to the shape forms in their entirety. Therefore, a plausible explanation for 

our findings is that the participants learned names for the entire shapes and formed 

individuated representations of them but then only used parts of the shapes in the 

categorization task. The representational mismatch undermined the potential of the verbal 

labels and the familiarity with the shapes to facilitate learning in the categorization task.

To conclude, we sought to replicate the effect of facilitation in learning a verbal rule 

of category membership caused by having names for the stimuli. The results suggest that 

learning processes may operate differently across modalities or across categorization 

paradigms and that task processing demands may be significantly altered if the surface 

structure of a categorization paradigm is modified.
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Category labels facilitate learning and affect subsequent processing  of 

category-diagnostic perceptual features

This chapter has been submitted for publication



Introduction

Category learning is instrumental for survival and ubiquitous in everyday life. Human and 

nonhuman animals (Smith, Minda, & Washborn, 2004) form categories from a very early age 

(Waxman and Markow, 1995) and researchers have used a variety of techniques, such as 

mathematical modeling (Nosofsky, 1986), fMRI (Poldrack et al., 2001) and eye tracking 

(Rehder & Hoffman, 2005a; 2005b), to investigate the mechanisms and cognitive processes 

underlying the learning of categories.

Language has been suggested to play a formative role in human cognition and not 

just serve communicative purposes (for a review see, e.g., Gleitman & Papafragou, 2013). In 

particular, in the field of category learning, verbal labels for the learned categories have 

been argued to influence categorization processes. Evidence to support this link originates 

in developmental psychology, where it has been shown that children’s formation of 

categories is affected by correlated linguistic cues (Landau, Smith, & Jones, 1988; Yoshida & 

Smith, 2005). Likewise, children benefit in categorization when categories are accompanied 

by verbal labels (Waxman & Markow, 1995) and this benefit is associated with verbal labels 

but not other cues (such as tones; Fulkerson & Waxman, 2007). 

The facilitative effect of verbal labels for the categories is also evident in adults with 

fully developed linguistic capacities. Specifically, Lupyan, Rakison and McClelland (2007) 

trained participants to classify figures of alien creatures in two categories. Following each 

categorization decision a redundant verbal label was presented. Results suggested that 

verbal labels (either visual or auditory) for the categories facilitated learning, compared to 

non-verbal (location) cues or to the absence of cues. Thus, accumulating evidence suggests 

that categorization processes are affected by language, and in particular by verbal labels for 

the categories.

The Label-Feedback Hypothesis

The label-feedback hypothesis was postulated by Lupyan (2012a; 2012b) to explain 

phenomena of categorical grouping on the processing of categorization items. According to 

this theory, perceptual, categorical, and linguistic representations are not encapsulated but, 

rather, interact. Building on Goldstone’s (1994) work on the warping of perceptual space 

due to category learning, Lupyan suggested that labels for the categories exert an influence 

on perceptual representations of categorization items by selectively activating perceptual 



features that are diagnostic for categorization. This influence results in more “prototypical” 

(Lupyan, 2012b) or “categorical” (Lupyan, 2012a) perceptual representations, in the sense 

that perceptual differences that are important for categorization are emphasized whereas 

unimportant differences are deemphasized. 

The activation of diagnostic features due to labels is not an all-or-none phenomenon 

but, rather, depends on the level of activation of the verbal labels. Lupyan (2012a; 2012b) 

suggested that the effect of labels may be manipulated through the up- or down-regulation 

of participants’ linguistic activity. For example, an up-regulating manipulation may be the 

overt presentation of labels for well-practiced categories (“concepts”) at the beginning of an 

experiment (Lupyan & Spivey, 2008) or at the beginning of each experimental trial (Lupyan 

& Thompson-Schill, 2012). Conversely, linguistic activity may be down-regulated through 

transcranial direct current stimulation (tDCS) over Wernicke’s area (Perry & Lupyan, 2014) 

or through verbal interference (Lupyan, 2009; see Perry & Lupyan, 2013, for a critical review 

of such methodologies). Thus the effect of category labels on shaping perceptual 

representations was assumed to be both pervasive and dynamically controlled.

The label-feedback hypothesis has received support from studies assessing the effect 

of labels for well known (“overlearned;” Lupyan & Spivey, 2010b) categories using visual 

search tasks (Lupyan & Spivey, 2008), same–different discrimination (Lupyan, 2008b; 

Lupyan, Thompson-Schill, & Swingley, 2010), picture verification (Edmiston & Lupyan, 2015; 

Lupyan & Thompson-Schill, 2012), probe detection (Lupyan & Spivey, 2010b),“odd-one-out” 

procedures (Lupyan, 2009), object detection (Lupyan & Spivey,2010a; Lupyan & Ward, 

2013), and object recognition (Lupyan, 2008a). This research program has mainly recruited 

adult healthy participants (but also aphasic patients; Lupyan & Mirman, 2013). Experimental 

methodologies have also included eye tracking (Edmiston & Lupyan, 2015), tDCS (Perry & 

Lupyan, 2014), and electroencephalography (Boutonnet & Lupyan, 2015). Thus, the effect of 

verbal labels for overlearned concepts might be said to be well supported. But what about 

learning novel artificial categories?

The Label Advantage During The Learning Of Novel Categories

According to the label-feedback hypothesis, participants in the label conditions of 

the Lupyan et al. (2007) study outperformed those in the control conditions because of 

perceptual space warping over the course of learning, as labels selectively activate 



diagnostic perceptual features (Lupyan, 2012a). However, a review of the literature on label 

advantages during category learning suggests that the phenomenon is not ubiquitous. 

Brojde, Porter and Colunga (2011) found no facilitation in the label condition of Lupyan et 

al. (2007) after changing the diagnostic dimensions to shape or texture and shape/hue or 

brightness. In one case they found slowing down of category learning instead. Using a 

similar procedure, Tolins and Colunga (2015) found no label advantage during learning to 

categorize. Perry & Lupyan (2014) found no effect of up-regulation (through overt 

redundant labels) or down-regulation (through tDCS) of linguistic activity on categorization 

performance. Finally, Lupyan and Casasanto (2015) contrasted the effects of different 

redundant verbal labels on categorization performance. They found an advantage from 

redundant real words, compared to the no-label condition, as well as from pseudowords, 

but only when they were selected to activate the same class of perceptual features as the 

words. 

In sum, the facilitative effect of labels during learning novel categories (Lupyan et al., 

2007) has been shown to be absent (Brojde et al., 2011; Perry & Lupyan, 2014; Tolins & 

Colunga, 2015), reversed (Brojde et al.), or replicable only under special selection of 

experimental materials (Lupyan & Casasanto, 2015). This constitutes a challenge for the 

label-feedback hypothesis and warrants further examination of the replicability of the 

phenomenon, which we undertake in Experiment 1. 

Long-Lasting Effects

An important question concerns whether learning novel categories under verbal 

labels has long-term effects on subsequent tasks (Tolins & Colunga, 2015). There are several 

reasons to expect such sustained effects. The first line of evidence comes from perceptual 

learning. Goldstone (1994) showed that the learning of categories results in the warping of 

perceptual space; most notably, the category-diagnostic perceptual dimension is sensitized. 

This has been documented in tasks immediately following categorization training (Folstein, 

Gauthier, & Palmeri, 2012; Folstein, Palmeri, & Gauthier, 2013; Folstein, Palmeri, & 

Gauthier, 2014; Goldstone, 1994; Goldstone & Steyvers, 2001; Van Gulick & Gauthier, 2014) 

or administered after several days (Folstein, Palmeri, Van Gulick, & Gauthier, 2015). Thus, 

the evidence supports the notion of “stable dimension modulation,” that is, a long-lasting 

effect of perceptual space warping due to category learning (Folstein et al., 2015). 



Therefore, if labels for the categories result in selective activation or sensitization of their 

diagnostic features, this could have lasting effects: The diagnostic features of named 

categories should be activated to a greater extent than the diagnostic features of hard-to-

name categories in tasks following initial training, because this activation has been 

“learned.” Selective activation may result in increased saliency, which serves to capture 

attention. We therefore assumed that in postcategorization tasks the diagnostic features of 

categories linked to verbal labels should capture attention to a greater extent compared to 

the diagnostic features of categories linked to other types of cues.  

Converging evidence in favor of long-lasting category label effects come from studies 

of selective attention, thought to underlie the learning of categories (e.g., Nosofsky, 1986; 

Shepard, Hovland, & Jenkins, 1961). In a categorization task involving a change in the 

diagnosticity of perceptual dimensions, Kruschke (1996) found that participants learned to 

pay attention to the diagnostic dimensions early in training, and perseverated in subsequent 

processing. Similarly, Goldstone and Steyvers (2001) manipulated dimension diagnosticity 

and found that selective attention is shaped during the learning of categories and 

transferred to subsequent categorization tasks with either beneficial or detrimental effects 

on performance. 

These studies are relevant to the label-feedback hypothesis to the extent that labels 

for the categories have been shown to affect attention during learning. Brojde et al. (2011) 

and Perry and Lupyan (2014) suggested that, when the learning of categories may be based 

on more than one dimensions, redundant verbal labels shift attention to dimensions 

typically known to be predictive of category membership. Moreover, Perry and Lupyan 

(2016) suggested that selective attention may be thought of as the warping of perceptual 

space, influenced by verbal labels for the categories. Therefore, if labels affect attention 

during category learning (Brojde et al; Perry and Lupyan, 2014), then attention should be 

shifted to the features that are diagnostic of named categories to a greater extent 

compared to features that are diagnostic of hard-to-name categories. Based on research 

suggesting that attention is learned (Goldstone & Steyvers, 2001; Krushke, 1996), we 

assumed that this effect would be evident in posttraining tasks.



According to the label-feedback hypothesis (Lupyan, 2012a; 2012b) the learned labels are 

predicted to activate the diagnostic features of named categories to a greater extent 

compared to the diagnostic features of hard-to-name categories. This differential activation 

is again assumed to affect attention so that the diagnostic features of labeled categories will 

capture attention to a greater extent compared to the diagnostic features of hard-to-name 

categories. 

All three accounts—namely, perceptual learning, learned attention, and the label-

feedback hypothesis—lead to the expectation of long-term effects of category labels, 

despite their qualitative differences in the origin and nature of the predicted effect. Thus, 

inspired by the literature on category learning, we examined sustained effects of category 

labels on subsequent processing in Experiment 2, using post-training categorization (e.g., 

Goldstone & Styevers, 2001; Krushke, 1996), and in Experiment 3, using a visual 

discrimination task (e.g., Goldstone, 1994) while monitoring participants' eye movements.  

The Initial and Sustained Effects of Labels on Paired-Associate Learning

A question that has yet to be addressed is whether the selective activation of 

diagnostic features due to verbal labels is specific to categorization. The label-feedback 

hypothesis postulated an activation mechanism (Lupyan, 2012a; 2012b). This was not a 

general mechanism underlying learning under any condition but, rather, was specifically 

postulated to account for phenomena of categorical perception (Lupyan, 2012a) and the 

effect of conceptual grouping on visual and cognitive processing (Lupyan, 2008a; 2008b). 

Therefore, the effects of this mechanism (both initial and sustained) should be observed 

only when learning to categorize. This hypothesis was examined in Experiments 2 and 3 by 

comparison to control learning conditions, in which the initial training task required 

participants to form named and hard-to-name associations instead of categories, while the 

procedure and learning material remained largely the same.

Verbal stimuli have been argued to be processed more efficiently compared to hard-

to-name stimuli, since verbal labels may serve as material symbols (Tolins & Colunga, 2015) 

that stabilize ideas in working memory (Lupyan et al., 2007). Therefore, an initial effect of 

labels, namely a label advantage, may also appear when learning to associate, due to a 

general facilitation in processing verbal stimuli. On top of this general facilitation, the 

mechanism of selective activation of diagnostic features during learning to categorize is 



expected to provide additional facilitation, specific to category learning. Therefore the label 

advantage during learning to categorize was predicted to be greater compared to the label 

facilitation during learning to associate. 

With respect to the sustained effects of labels, no evidence neither a hypothesis has 

been offered regarding sustained effects of learning verbal compared to hard-to-name 

associations. Therefore, following paired-associate learning, no difference is expected in the 

posttraining processing of diagnostic features of named compared to hard-to-name 

associations.

Contrasting category and paired-associate learning has been utilized in the past by 

Poldrack et al. (2001) and has proven fruitful in illuminating categorization processes. 

However, there were important differences between category and paired-associate training 

in the Poldrack et al. study (e.g., response presentation and feedback delivery), which limit 

the generalizability of conclusions that can be drawn and necessitate a novel 

methodological approach with improved control over the features of the two training 

regimes. Contrasting the effect of labels on learning to categorize with the corresponding 

effects on learning to form associations is arguably a strict test of the label-feedback 

hypothesis (Lupyan, 2012a) that has not been previously implemented. Before embarking 

on this endeavor, however, it is instrumental to examine if the label advantage during 

learning to categorize (Lupyan et al., 2007) is replicable; this we undertake first in 

Experiment 1.





Figure 1. Design of Experiments 1, 2, and 3. (A) Participants in Experiment 1 learned four 

new artificial categories. Two of the categories were denoted by verbal labels, whereas the 

other two were denoted by hard-to-name visual symbols. (B) In the training phase of 

Experiment 2, a group of participants learned named and hard-to-name categories (in a 

procedure identical to Experiment 1). A separate group of participants learned named and 

hard-to-name associations. Following training there was a categorization session: Both 

groups were administered three category-learning tasks. The first (control) task utilized 

novel shapes and was meant to serve as a rule-discovery task. The last two tasks had the 

same formal structure as the control task (shape and color were the category-diagnostic 

dimensions) but utilized the shapes that had previously been predictive of either named or 

hard-to-name categories (or associations, depending on training condition). (C) Experiment 

3 had two phases: In the training session, separate groups of participants learned either 

named and hard-to-name categories or named and hard-to-name associations (in a 

procedure identical to the training session of Experiment 2). Following training all 

participants were administered an eyetracking visual discrimination task employing the 

previously trained shapes.

Experiment 1

Participants in Experiment 1 were trained to learn four novel artificial categories. 

Two of the categories were denoted by verbal labels, whereas the other two categories 

were denoted by visual symbols (Chinese ideograms; see Figure 1A) that were previously 

found to resist a common verbal description (Fotiadis & Protopapas, 2014). We 

hypothesized that hard-to-name symbols would down-regulate linguistic activity (see also 

Kurtz, Levering, Romero, Stanton, & Morris, 2013, for a similar argument), leading to less 

efficient learning in the ideogram categories compared to the verbal label categories 

(Lupyan et al., 2007). Such a facilitative effects of labels can only be observed if the two 

shapes that are predictive of the label categories are activated to a greater extent compared 

to the two shapes that are predictive of the ideogram categories. This is consistent with 

previous research showing that categorization sensitizes a perceptual dimension selectively, 

facilitating the processing of specific values/instances, rather than generally (Goldstone, 

1994; Van Gulick & Gauthier, 2014; for more on this issue, see the General Discussion).  



Method

Participants.  Twenty-four students (two male) of the University of Athens took part 

in exchange for course credit, and their mean age was 19.7 (SD = 1.1) years. All participants 

reported normal or corrected-to-normal vision, Greek as their native language, and no 

diagnosis of dyslexia. 

Materials. 

Categorization items.  Four four-point abstract shapes of low association value (and 

thus considered hard-to-name; Hulme, Goetz, Gooch, Adams, & Snowling, 2007; MacLeod & 

Dunbar, 1988) from the Vanderplas and Garvin (1959) repository were perceptually equated 

in size, using the method of adjustment (implemented in PsychoPy; Peirce, 2007) to obtain 

points of subjective equality (PSEs). 288 categorization items were created—72 for each 

shape—by varying the size (randomly within 0.2–0.8 of the PSE) and border color (randomly 

selected hues) of the PSEs. 

Pseudowords.  Two pseudowords served as response cues for the label categories, 

namely σάβης (/'savis/) and ρήτης (/'ritis/), previously used by Fotiadis and Protopapas, 

(2014). The two pseudowords were equal in numbers of letters, syllables, and phonemes, 

stress position, and orthographic typicality (the mean orthographic Levenshtein distance of 

the 20 nearest neighbors—OLD20—was 2.00 for both pseudowords taking stress into 

account; Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012; Yarkoni, Balota, & Yap, 

2008).

Ideograms.  Response cues for the ideogram categories were two hard-to-name 

Chinese characters (previously used by Fotiadis & Protopapas, 2014), namely 辛 (U+8F9B) 

and 辰 (U+8FB0). One stroke was erased from the second character to equate number of 

strokes—and thus perceptual complexity.   

Procedure.  Participants were administered 288 training trials, organized in 12 blocks 

of 24 trials. Each shape was presented equally often within a block. Participants never saw a 

categorization item twice. 

Participants were told that they would be presented with four different shapes in 

varying size and color, and with four responses: two names and two ideograms. Their job 

was to learn which shape (disregarding color and size) corresponded to each response. 



At each trial a fixation cross was presented for 500 ms, followed by a categorization 

item presented for 2000 ms. The two pseudowords and the two ideograms appeared next in 

a random vertical arrangement for a maximum of 10000 ms. Participants responded by 

clicking on a response option and feedback—the words “correct” or “wrong” in Greek—was 

delivered for 500 ms. The procedure was programmed in DMDX display software (Forster & 

Forster, 2003). Participants were given eight practice trials in the beginning and a short 

break after every four blocks. The task lasted approximately 35 minutes. 

The order of categorization items and the permutation of response cues were 

pseudorandom (implemented with MIX; Van Casteren & Davis, 2006), with constrains 

precluding the same permutation of response cues in consecutive trials, and the same shape 

in more than two consecutive trials. All possible permutations of response cues were 

presented in each block. Participants received the same order of categorization items. 

Assignment of shapes to categories was counterbalanced across participants with the 

constraint that the shapes were paired, so that two shapes belonging to a pair were both 

predictive of either label or ideogram categories. This resulted in eight possible 

combinations of shape-response assignment, with three participants randomly assigned to 

each combination. 

Data Analysis.  Analyses were conducted in R version 3.3.3 (R Core Team, 2017), 

employing generalized additive mixed models (Wood, 2011) with binomial distributions 

(Dixon, 2008), via a logit tranformation (Jaeger, 2008), fitted with restricted maximum 

likelihood and marginal likelihood estimation using package mgcv (Wood, 2011). Model 

comparison and visualization of model estimates was done using package itsadug (Van Rij, 

Wieling, Baayen, & van Rijn, 2016). 

Results

Trials in which participants did not respond and trials with response latencies shorter 

than 250 ms were excluded from analyses (eleven trials total, 0.16 % of the data). 

Participants gradually improved in learning both the label and ideogram categories, 

averaging overall 81.9% (SD = 11.9) correct responses. Their accuracy was 83.0% (SD = 13.6) 

in the label categories and 80.8% (SD = 11.2) in the ideogram categories. Learning curves, in 

blocks of 24 trials, can be seen in Figure 2A. 



Figure 2. Results of Experiment 1. (A) Training accuracy of the label and ideogram categories 

in blocks of 24 trials. Error bars show between-subjects standard errors of the means. (B) 

Estimated difference in accuracy (in log odds) between the label and ideogram categories 

excluding random effects of participants. Error bands show 95% confidence intervals of the 

estimates.



Accuracy (a binomial variable) was regressed on condition (a within-subjects factor 

with levels “label” and “ideogram”) and trial (1–288, centered and scaled to SD = 1). Model 

comparison procedures led to the most parsimonious model with two smooth terms of trial 

(one for the label and one for the ideogram categories) and by-participants random smooth 

terms of trial to capture individual longitudinal variability. In R notation, the best-fitting 

model was:

acc ~ 1 + condition + s(trial, by = condition) + s(trial, 

subject, bs = "fs", m = 1), 

with s(trial, by = condition) denoting two smooth terms of trial, and s(trial, sbj, bs = "fs", m = 

1) denoting by-participant random smooth terms of trial.

The question of whether participants' performance in the two conditions differed, 

and if so at which trials, was addressed through visualization (Baayen, 2013). Figure 2B 

shows the 95% confidence interval of the model's estimate for the difference in accuracy (in 

log odds) between the label and ideogram categories, excluding random effects. 

Participants exhibited increased accuracy in learning the label compared to the ideogram 

categories for two periods in the task, in particular for values of trial in the range [10, 45] 

and also in the range [172, 190] (the values were back-transformed from the normalized 

values in the model). 

Discussion 

Experiment 1 provided support to the label-feedback hypothesis (Lupyan, 2012a; 

2012b) by revealing a label advantage during learning to categorize: Participants were more 

accurate in learning the label categories compared to the ideogram categories (Lupyan et 

al., 2007) for two periods in the task. To the best of our knowledge, this is the first time the 

label advantage is found in a within-subjects experiment, supporting the assumption that 

following category learning a perceptual dimension is selectively sensitized (Goldstone, 

1994).

Experiment 2

Experiment 2 was designed to examine the long-term effects of labels for newly-

learned categories on attention processes recruited during the processing of category-

diagnostic features. As detailed in the Introduction, we hypothesized that shapes that had 



previously been predictive of named categories (hereafter “label shapes”) would capture 

attention to a greater extent compared to shapes that had previously been predictive of 

hard-to-name categories (“ideogram shapes”) during posttraining test tasks. To test this, 

three Type II (Shepard et al., 1961) category learning tasks were administered immediately 

following the training session (see Figure 1B). 

Categorization items in the Type II category structure are composed of three binary-

valued perceptual dimensions. In the most common implementation (Minda & Miles, 2010) 

items are simple geometric stimuli differing in shape (e.g., triangles vs. squares), size (e.g., 

big vs. small), and color (e.g., black vs. white). Two of the dimensions are diagnostic of 

category membership in an exclusive-or fashion: For example, black triangles and white 

squares belong to category A. Participants learn to ignore the size dimension and pay 

attention to shape and color, therefore attention processes are considered instrumental in 

learning to solve to the Type II tasks (Krushke, 1992; 1996; Nosofsky, Palmeri, McKinley, & 

Glauthier, 1994; Nosofsky & Palmeri, 1996; Rehder & Hoffman, 2005a). 

In the second phase of our experiment, we manipulated the values of the shape 

dimension, using the label shapes in one Type II task (“label task”) and the ideogram shapes 

in the other Type II task (“ideogram task”) (see Figure 1B). We hypothesized that the label 

shapes would capture attention to a greater extent compared to the ideogram shapes, 

hindering deployment of attention to other dimensions. Therefore, paying attention to both 

shape and color, as was required for successfully solving the Type II tasks, was assumed to 

be more difficult in the label task compared to the ideogram task. Therefore, a sustained 

effect of labels for the categories is predicted to lead to differing accuracy in learning to 

categorize in the two Type II tasks, despite their identical formal structure.

To deter the involvement of rule-discovery processes in the two experimental—label 

and ideogram—tasks (Minda, Desroches, & Church, 2008; Minda & Miles, 2010), a control 

Type II (Shepard et al., 1961) task was administered first to each participant, before the two 

critical Type II tasks that involved the previously trained (label and ideogram) shapes. If 

participants have already learned, during this control task, that it is the shape and color of 

categorization items that define category membership in an exclusive-or fashion, they 

should be able to apply the same solution in the two subsequent tasks (see also Levine's, 

1975, transfer hypothesis). A learning criterion was therefore introduced in the control task, 

further examining the performance of only “learner” participants, to ensure that the 



functioning of attention (rather than rule-discovery) processes is contrasted during learning 

to categorize in the two experimental tasks.

A second issue was also addressed in Experiment 2, contrasting the effects of labels 

for categories—both initial and sustained—with the effects of labels for associations. 

Accordingly, a group of participants was administered paired-associate training instead of 

category learning in the first phase of the experiment, followed by the same three Type II 

(Shepard et al., 1961) tasks in the second phase (see Figure 1B). The mechanism of selective 

activation of diagnostic features due to verbal labels was assumed to be categorization-

specific. We therefore predicted that the initial effect of category labels, namely the label 

advantage during learning to categorize, would be of greater magnitude compared to a 

purported label advantage during learning to associate. With respect to the sustained 

effects of labels over the Type II tasks (in the second phase), we have no reason to assume 

that learning associations would cause attention to be differentially captured by shapes 

paired with either verbal or hard-to-name response cues. Thus, participants in the paired-

associate group were predicted to exhibit comparable accuracy in categorizing the label and 

ideogram Type II tasks.  

Method

The structure of the experimental design is shown in Figure 1B. Briefly, in the first 

phase two groups of participants learned to categorize, or to associate, pairs of shapes with 

either verbal labels or ideograms as response cues. In the second phase all participants had 

to solve three successive Type II tasks with the exact same structure. The last two of these 

involved the same shapes as the first-phase learning tasks, to test for the sustained effects 

of labels. 

The category-training task was identical to Experiment 1. Thus, only the paired-

associate-training task and the categorization session will be described here.

Participants.  Overall 88 students took part in Experiment 2, meeting the 

requirements for normal or corrected-to-normal vision, no diagnosis of dyslexia, and Greek 

being their native language. A sampling-with-replacement method was followed, to achieve 

the design counterbalancing with participants meeting the control-Type II-task learning 

criterion, so that data are reported below from 64 learner students, including 32 (five male) 



assigned to the category-training group (age M = 21.8 years, SD = 4.6) and 32 (12 male) 

assigned to the paired-associate-training group (M = 23.2, SD = 6.3). 

Materials.  

Paired-associate training.  Four association items were created, identical to the 

abstract shapes used in category training but with black margin and size corresponding to 

75% of the PSEs (see Figure 1B). The same pseudowords and ideograms used in category 

training were used as response cues, making this task a close parallel of Experiment 1 

category training, differing only in the number of different stimuli associated with each 

response cue (many in category training vs. one in paired-associate training). 

Categorization session.  An additional pair of four-point abstract shapes from 

Vanderplas and Garvin (1959) was used for the control Type II (Shepard et al., 1961) task 

(see Figure 1B). These novel shapes had also been equated in size along with the abstract 

shapes of Experiment 1. The size of the “big” categorization items corresponded to the PSEs, 

whereas “small” items were set to 60% of the PSE size. The color of categorization items in 

the control task was light blue and brown, whereas in the label and ideogram tasks color 

was either red and green, or blue and yellow. Overall, 40 categorization items were created 

(eight for the control task, 16 for the label task, and 16 for the ideogram task).

Procedure. 

Paired-associate training.  The paired-associate-training task was a modification of 

the category-training task in that (a) every categorization item was replaced with the 

corresponding association item, and (b) instructions made no reference to either shape or 

size. 

Categorization session.  The three Type II (Shepard et al., 1961) tasks only differed 

with respect to categorization items and category labels. To avoid effects unrelated to our 

hypothesis, dimension diagnosticity (shown to affect learning; Love & Markman, 2003) was 

not counterbalanced but, rather, shape and color were the two diagnostic dimensions in all 

three tasks for all participants. Color and task order for the label and ideogram tasks was 

counterbalanced across participants. 

Participants received a maximum of 32 blocks of eight trials in each task. In each 

block all eight categorization items were presented in random order. Unbeknownst to 

participants, the task ended upon completion of all trials or upon achievement of the 



learning criterion, that is, two consecutive errorless blocks of trials (following, e.g., Kurtz et 

al., 2013; Mathy, Haladjian, Laurent, & Goldstone, 2013). 

Before each task, participants were told that in each trial they would be presented 

with an item belonging to one of two categories. Their job was to find the categorization 

rule and make correct classification decisions. They were also informed that the stimuli 

would be in one of two shapes, one of two colors, and either big or small size, and they 

were instructed to be as accurate as possible.

A trial was initiated by the presentation of a categorization item along with the 

category labels (e.g., “1” and “2”) on its left and right side for a maximum of 20 s. 

Participants responded  by pressing one of two keys on the keyboard. Upon response, the 

categorization item disappeared and feedback was presented for 1500 ms, consisting of a 

smiley face and high-pitched tone for correct response, or a frowning face and low-pitched 

tone for incorrect. In case of no response, a prompt appeared urging participants to make a 

key press. The intertrial interval was 0 ms. As in Experiment 1, assignment of shape pairs to 

label or ideogram response cues was counterbalanced across participants. This resulted in 

32 combinations for each training group, to which participants were randomly assigned. 

Participants were given eight practice trials before each task and a short break every 7 

blocks. The maximum duration of the categorization session was approximately 75 minutes.

Data analysis.  To facilitate the analysis of categorization accuracy in the Type II tasks 

we followed the assumption of errorless performance after the learning criterion (Nosofsky 

et al., 1994; Nosofsky & Palmeri, 1996; see Kurtz et al., 2013, for experimental verification). 

Analyses were conducted with generalized additive mixed models using packages mgcv 

(Wood, 2011) and itsadug (Van Rij et al., 2016) in R version 3.3.3 (R Core Team, 2017).





Figure 3. Results of Experiment 2. (A) Training accuracy of the label and ideogram categories 

(left panel) and of the label and ideogram pairings (right panel) in blocks of 24 trials. Error 

bars show between-subjects standard errors of the means. (B) Estimated difference in 

accuracy (in log odds) between the label and ideogram categories and the label and 

ideogram pairings, excluding random effects of participants. Error bands show 95% 

confidence intervals of the estimates. (C) Categorization accuracy in the label, ideogram, 

and control Type II tasks, for the category-training group (left panel) and the paired-

associate-training group (right panel) in blocks of eight trials. Error bars show between-

subject standard errors of the means. (D) Estimated difference in categorization accuracy (in 

log odds) between the label and ideogram tasks for the category- and the paired-associate-

training groups excluding random effects of participants. Error bands show 95% confidence 

intervals of the estimates. 

Results

Training session.  No-response trials and trials with latency less than 250 ms were 

excluded from analyses (4 trials, comprising 0.04% of the data, from the category-training 

group, and 11 trials, comprising 0.12% of the data, from the paired-associate-training 

group).  Participants' accuracy in learning both the label and ideogram categories increased 



as trials progressed, averaging 88.2% (SD = 9.0) correct over all 288 trials in the category-

training group (M = 89.2%, SD = 9.3, in the label categories, and M = 87.2%, SD = 9.9, in the 

ideogram categories) and 86.6% (SD = 6.9) in the paired-associate-training group (M = 

87.5%, SD = 7.9, in the label pairings, and M = 85.6%, SD = 7.4, in the ideogram pairings). 

Figure 3A depicts average learning curves for the category- and the paired-associate-training 

group, in blocks of 24 trials. 

A dummy variable was defined to encode the interaction of training group by 

response cue (“igr”: Interaction of Group by Response) in four distinct levels, namely 

category-labels, category-ideograms, paired-labels, and paired-ideograms. Trial was 

normalized, as in Experiment 1. Model comparison procedures suggested that the most 

parsimonious model was the one with different smooth terms of trial for each level of the 

group×response interaction variable. Individual variation in performance was modeled with 

by-participants random smooth terms of trial. In R notation, the best-fitting model was:

acc ~ igr + s(trial, by = igr) + s(trial, sbj, bs = 

"fs", m=1),

with s(trial, by = igr) denoting four smooth terms of trial, and s(trial, sbj, bs = "fs", m = 1) 

denoting by-participant random smooth terms of trial. 

The purpose of this analysis was to assess if labels facilitated category learning more 

than associative learning. Figure 3B plots the model's estimates of the label facilitation in 

the category- and the paired-associate-training group, in log odds, excluding random effects. 

In category learning, accuracy was greater in learning the label compared to the ideogram 

categories for values of trial (back-transformed) in the range [44.31, 134.34] and also in the 

range [172.09, 227.26]. In comparison, in paired-associate learning, accuracy was greater in 

learning the label compared to the ideogram pairings for values of trial in the range [61.73, 

267.92]. Thus facilitation due to labels was revealed during the learning of both categories 

and associations. The 95% confidence intervals of the estimated facilitation in the two 

groups overlap throughout the task (see Figure 3B), so the label advantage was statistically 

indistinguishable across the learning of both categories and associations.  

Categorization session.  To facilitate analysis, accuracy was set to 1 in 

(nonadministered) trials following two consecutive errorless blocks. Three no-response trials 

were excluded from analyses (0.01% of the data, all from the paired-associate-training 

group). As shown in Table 1, participants in both groups exhibited increased accuracy in the 



two tasks following the initial control task. Figure 3C plots the learning curves for the 

category- and the paired-associate-training group in all three tasks, in blocks of eight trials. 

As noted, the control task was meant to serve as a rule-discovery task; therefore, data from 

this task were not analyzed further. 

Table 1

Participants' Accuracy (Percent Correct) in the three Type II Tasks

Control task Label task Ideogram task 
Training Group M SD M SD M SD
Category 88.8 7.2 97.4 2.6 97.9 2.4
Paired-associate 85.3 8.5 94.9 4.9 94.6 6.7

In analyzing categorization accuracy we created a dummy variable (“igt”) coding the 

interaction of training group by task (label vs. ideogram). The resulting factor had four 

levels: category-label, category-ideogram, paired-label, and paired-ideogram. Trial was 

normalized as in Experiment 1. Model comparison procedures suggested that the most 

parsimonious model was the one with a single smooth term, irrespectively of the level of 

the interaction factor, and with individual variation modeled by by-participant random 

smooth terms of trial. In particular, inclusion of separate smooth terms of trial (by igt) led to 

an increase in both fREML score (by 226.9) and estimated degrees of freedom (by 6). Thus, 

in R notation, the best-fitting model was:

acc ~ 1 + igt + s(trial) +  s(trial, sbj, bs = "fs", m = 

1)

with s(trial) denoting a smooth term of trial, and s(trial, sbj, bs = "fs", m = 1) denoting by-

participant random smooth terms of trial.

Figure 3D plots the model's estimates for the difference in accuracy between the 

label and ideogram tasks for the category- and the paired-associate-training group. 

Participants in the category-training group were less accurate in the label compared to the 

ideogram task over the entire range of trials. No difference was observed following learning 

to associate: Participants in the paired-associate training group were equally accurate in 

solving the label and ideogram task. 



Discussion 

Experiment 2 revealed a label advantage during learning to categorize, similarly to 

Experiment 1. A label advantage—importantly, of similar magnitude—was also revealed 

during learning to form associations. These results are consistent with an account of a 

general facilitation in processing verbal compared to hard-to-name stimuli (e.g., Tolins and 

Colunga, 2015) and do not provide support to the label-feedback hypothesis positing a 

categorization-specific mechanism (Lupyan, 2012a; 2012b). 

In contrast, with respect to the sustained effects of labels for categories on 

attention, there was evidence suggesting that shapes that had previously been diagnostic of 

named categories captured attention to a greater extent, compared to shapes that had 

previously been predictive of hard-to-name categories. Specifically, Phase 1 category 

training was followed by lower accuracy in the label compared to the ideogram task in 

Phase 2, in accordance with our prediction. This sustained effect of labels on attention was 

found to be specific to the learning of categories: Following learning to associate in Phase 1 

there was no evidence of differential processing of the trained shapes in Phase 2. These 

results argue in favor of a categorization-specific mechanism affecting the processing of 

diagnostic features in the long term.

Experiment 3

Experiment 2 provided evidence suggesting that labels for the categories have 

sustained effects on attention mechanisms recruited during categorization test tasks. Given 

the novelty of our results and also previous reports of absence of such effects (Tolins & 

Colunga, 2015), we sought to further examine the finding of sustained effects of category 

labels on attention. We therefore designed a different post-training test task, which 

involved the simultaneous presentation of the label and ideogram shapes and the 

monitoring of participants’ eye movements. In this way, we hoped to examine the capture 

of attention more directly and provide a methodologically independent verification of our 

hypothesis.  

In Experiment 3, participants were first administered either category or paired-

associate training in a session identical to that of Experiment 2 (see Figure 1C). As before, 

the mechanism of selective activation of diagnostic features due to labels was assumed to 

be specific to the learning of categories, therefore the label advantage during learning to 



categorize was predicted to exceed a purported label advantage during learning to 

associate. 

Following training, participants performed a visual discrimination task on the trained 

shapes, while their eye movements were monitored (cf. Farrell, 1985; Belke & Meyer, 2002). 

Based on the findings of Rehder and Hoffman (2005a; 2005b), fixation durations were 

treated as measures of attention during learning. We further applied this rationale to 

posttraining tasks: Insofar as the shapes that had previously been predictive of named 

categories would capture attention to a greater extent, compared to the shapes that had 

previously been predictive of hard-to-name categories, participants should spend more time 

fixating the label shapes than the ideogram shapes in trials presenting one label and one 

ideogram shape. In contrast, attention was assumed to be equally captured by shapes that 

had previously been associatively paired with either named or hard-to-name response cues. 

Therefore, participants in the paired-associate-training group were predicted to spend 

comparable amounts of time fixating the label and ideogram shapes.   

Method

In a first phase, participants in Experiment 3 were administered either category or 

paired-associate training. In a second phase immediately following the training session, they 

were asked to perform a visual discrimination task, employing the previously trained shapes 

(see Figure 1C), while their eye movements were monitored. 

Materials, procedure, and data analysis of the training session were identical to 

those described in Experiment 2. Thus, only the method of the visual discrimination task will 

be described here. 

Participants.  Overall 69 students of the University of Athens participated in 

exchange for course credit, meeting the requirements of normal or corrected-to-normal 

vision, no diagnosis of dyslexia, and Greek being their native language. The data from 21 

participants were discarded prior to any data analysis due to technical failures of the eye 

tracker or reduced accuracy caused by eye glasses or contact lenses. Thus, results reported 

here correspond to a sample of 48 students. Twenty four (four male) of them were 

randomly assigned to the categorization training group (age M = 20.3 years; SD = 1.5) and 24 

(three male) to the paired-associate-training group (age M = 22.5 years, SD = 5.9).



Materials. 

Discrimination session.  The association items used in the paired-associate training 

task were presented as stimuli for the visual discrimination task. All four stimuli subtended a 

rectangle of roughly 2.5 cm horizontally by 6 cm vertically (or 1.8° × 4.4° of visual angle), 

presented on a 20-inch flat LCD monitor with a 1600 × 900 resolution at 60 Hz. Stimuli were 

placed 13.6 cm (or 10° of visual angle) to the left and right of center, to minimize the 

effectiveness of peripheral vision (cf. Belke & Meyer, 2002) and encourage eye movements. 

Random jitter—both horizontally and vertically—of maximum ±20 pixels (0.4°of visual 

angle) for both stimuli introduced a slight uncertainty about exact position to prevent 

iconic-memory strategies from dominating performance and—again—encourage eye 

movements. 

Procedure. 

Discrimination session.  Participants were administered four blocks of 24 trials, 

programmed in Experiment Builder software (SR Research Ltd.). Each stimulus was 

presented equally often within a block. Half of the trials were different, that is, presented 

two different stimuli on the screen, and the other half were same, that is, presented the 

same stimulus on both locations. All possible permutations of stimuli were included within a 

block. In pilot testing participants were found not to fixate a stimulus if it had just been 

presented on the same side of the screen. Thus, the pseudorandom trial order was 

constrained to preclude presentation of the same stimulus on consecutive trials (following 

Belke & Meyer, 2002).   

A discrimination trial started with a drift check, followed by a fixation cross—

subtending a square with a side of 1° of visual angle—presented for a minimum of 500 ms. 

Presentation of the two shapes was triggered by the participants' gaze recorded within the 

fixation cross for 150 ms, and lasted for 3000 ms. Participants were required to press one of 

two keys on the keyboard—as fast and accurately as possible—to denote whether the two 

shapes were different or the same.

An Eyelink 1000 Plus eyetracker sampling monocularly at 2000 Hz recorded the eye 

providing the best calibration accuracy. A head and chin rest was used, and calibration took 

place on average every two blocks, or more often if required. Participants were given a 

block of practice trials, there was a short break in the middle of the procedure, and the task 

lasted on average 20 minutes. 



Data preprocessing and analysis.  

Discrimination session.  Analyses of participants' eye movements focused on fixation 

duration and only included data from trials presenting one label and one ideogram shape (8 

trials within each block). The online parser of SR Research Ltd was used for fixation 

detection. Two rectangular areas of interest (AOIs) were defined prior to data collection, 

each subtending a square exceeding each stimulus by a margin of 5.5° of visual angle (7.5 

cm). This margin was defined as the sum of the equipment’s nominal accuracy (0.5° of visual 

angle) and a rough measure of the span of peripheral vision (5° of visual angle). Because of 

the substantial eccentricity of stimulus placement near the screen edges, the AOIs were not 

symmetric (only 100 pixels, amounting to 2.78 cm, or 2° of visual angle, for the distal 

margins). Duration of fixations within an AOI was determined using the Data Viewer 

software (SR Research Ltd.). 

Following Henderson, Weeks, and Hollingworth (1999; Võ & Henderson, 2009), 

fixations with duration less than 90 ms or greater than 1000 ms were excluded from 

analysis. The sum of durations of fixations landing within an AOI (hereafter “dwell time”) 

was calculated for each participant and trial. Next, average dwell time by block was 

calculated by averaging fixation duration over trials within a block for each participant and 

block, aiming to account for temporal order effects (such as increasing familiarity; cf. Lupyan 

& Spivey, 2008, Supplementary Materials). Average dwell time was analyzed using the ez 

package (Lawrence, 2015) for ANOVA and the multcomp package (Hothorn, Bretz, & 

Westfall, 2008) for post-hoc multiple comparisons. All analyses were conducted in R version 

3.3.3 (R Core Team, 2017). 





Figure 4. Results of Experiment 3. (A) Training accuracy of the label and ideogram categories 

(left panel) and of the label and ideogram pairings (right panel) in blocks of 24 trials. Error 

bars show between-subjects standard errors of the means. (B) Estimated difference in 

accuracy (in log odds) between the label and ideogram categories and the label and 

ideogram pairings, excluding random effects of participants. Error bands show 95% 

confidence intervals of the estimates. (C) Discrimination task, average dwell time in the 

labels and ideogram shapes for the category-training group (left panel) and the paired-

associate-training group (right panel) in blocks of eight trials. Error bars show between-

subjects standard errors of the means. 

Results

Training session.  No-response trials (3 from the category-training group and 4 from 

the paired-associate-training group, comprising 0.05% of the data) and trials with response 

latencies less than 250 ms (5, from paired-associate-training only; 0.03%) were excluded 

from analyses. Participants' accuracy increased as trials progressed in learning both the label 

and ideogram categories, averaging 88.8% (SD = 5.8) correct in category learning and 88.3% 

(SD = 5.6) in paired-associate learning (label categories: M = 90.5%, SD = 5.7; ideogram 

categories: M = 87.1%, SD = 6.8; label pairings: M = 87.9%, SD = 6.5; ideogram pairings: M = 

88.4%, SD = 6.6). Figure 4A depicts participants' learning curves for the category- and the 

paired-associate-training group in blocks of 24 trials. 

As in Experiment 2, accuracy was analyzed using generalized additive mixed models 

with a normalized trial predictor and a dummy variable (“igr”) coding the interaction of 

group by response cue. The most parsimonious model included a single smooth term of 

trial, accounting for all training group and response cue combinations, in addition to by-

participant random smooth terms of trial. In particular, inclusion of separate smooth terms 

of trial for each level of the igr factor led to an increase in both the fREML score (by 108.1) 

and the estimated degrees of freedom (by 6). In R notation, the best-fit model was specified 



as:

acc ~ igr + s(trial) + s(trial, sbj, bs = "fs", m=1)

with s(trial) denoting a smooth term of trial, and s(trial, sbj, bs = "fs", m=1) denoting by-

participant random smooth terms of trial. 

Figure 4B plots the model's estimate of the facilitation due to labels in the category-

and the paired-associate-training group, in log odds, excluding random effects of 

participants. Labels facilitated category learning throughout the training procedure. There 

was no label facilitation in the paired-associate group: Participants were equally accurate in 

learning the label and ideogram pairings throughout the task.

Discrimination session. 

Accuracy.  No-response trials (11 from the category-training group and 5 from the 

paired-associate-training group, totaling 0.34% of the data) were excluded from analysis. 

Both groups were highly accurate in the task: Taking all trials into account, participants 

averaged 98.1 % (SD = 1.9) correct responses in the category-training group and 98.3 % (SD 

= 1.6) in the paired-associate group. A Welch's t-test for independent samples suggested 

that the two groups did not differ in accuracy, t(44.08) = −.28, p = .783. To examine the 

differences between same and different trials we conducted a two-way ANOVA on average 

accuracy, with group as the between-subjects factor, and type of trial (same vs. different) as 

the within-subjects factor. Results revealed no interaction of group by type, F(1, 46) = 1.392, 

η2 = .014, p = .244, and no effect of group, F(1, 46) = .075, η2 = .0008, p = .785. There was an 

effect of trial type, F(1, 46) = 6.769, η2 = .066, p = .013, suggesting higher accuracy in 

different than in same trials, consistent with previous findings (Farell, 1985). Further 

analyses revealed no effect of response cues on either accuracy or response latency 

(analyses available upon request). 

Average dwell time.  This analysis included only critical trials, that is, “different” 

trials displaying one label shape and one ideogram shape (8 per block). Participants in the 

category-training group spent on average 668.28 ms (SD = 213.09) fixating the label shapes 

and 683.82 ms (SD = 220.49) fixating the ideogram shapes. Participants in the paired-

associate-training group spent on average 726.59 ms (SD = 225.21) fixating the labels shapes 

and 727.52 ms (SD = 205.96) fixating the ideogram shapes.

Figure 4C plots average dwell time on the label and ideogram shapes, for the 

category- and the paired-associate-training group, per block of trials. A three-way repeated 



measures ANOVA was conducted on dwell time with group as the between-subjects factor, 

and shape (label vs. ideogram) and block (1, 2, 3, 4) as within-subject factors. There was a 

three-way interaction, F(3,138) = 3.611, η2 = .008, p = .002, therefore we analyzed data from 

each group separately. In a two-way ANOVA for the category-training group with shape and 

block as within-subjects factors there was no effect of shape, F(1, 23) = 0.311, η2 = .0006, p = 

.582,  or of block of trials, F(3, 69) = 1.055, η2 = .009, p = 0.374, but—importantly—there was 

an interaction of shape by block, F(3, 96) = 7.269, η2 = .024, p = .0003. Multiple comparisons 

per block—with adjusted p values—showed that participants spent more time fixating the 

label (Μ = 704.31, SD = 236.99) compared to the ideogram shapes (M = 584.57, SD = 235.75) 

for the first block of trials, β = 118.27,  = 2.684, ɀ p = .025. There was no difference in 

average dwell time for subsequent blocks (second: β = −45.58,  = −0.825, ɀ p = .807; third: β 

= −83.12,  = −1.505, ɀ p = .348; fourth: β = −44.26,  = −1.004, ɀ p = .6857). A similar analysis 

for the paired-associate training group revealed no interaction of shape by block, F(3, 69) = 

1.287, η2 = .008, p = .286, and no main effect of either block, F(3, 69) = 2.500, η2 = .015, p = .

067, or—importantly—shape, F(1, 23) = 0.005, η2 = .00002, p = .942. 

Discussion 

Similarly to Experiments 1 and 2, a label advantage was found during learning to 

categorize. Contrary to Experiment 2, the label advantage was found to be specific to the 

learning of categories: There was no facilitation due to labels during learning to associate. 

Overall, these results are supportive of the assumption of a categorization-specific 

mechanism offering facilitation due to labels (Lupyan 2012a; 2012b). The discrepancy 

between training results across Experiments 2 and 3 is taken up in more detail in the 

General Discussion.  

Experiment 3 also examined the sustained effect of category labels on attention, 

contrasted with the sustained effects of labels for associations. Results suggested that early 

in the task (in the first block of trials) shapes that had previously been predictive of named 

categories captured attention to a greater extent compared to shapes that had previously 

been predictive of hard-to-name categories. No effect was found later in the task, 

suggesting that the sustained effects of labels may be subject to participants' adaptation to 

the task, an issue considered further in the General Discussion. Importantly, the sustained 

effects of labels were specific to the learning of categories: Attention was equally captured 



by shapes that had previously been paired with either labels or hard-to-name symbols in 

paired-associate training. Therefore, the results of Experiment 3—similarly to the results of 

Experiment 2 —are consistent with the hypothesis of sustained effects of category labels, 

contrary to previous research (Tolins & Colunga, 2015).

General Discussion

In a series of three experiments, we tested the label-feedback hypothesis using a 

within-subjects design to examine whether the label advantage and its sustained effects are 

specific to categorization or apply to associations as well. 

Label Advantage During Learning

A label advantage was consistently observed in learning to categorize, over all 3 

experiments, which cannot be attributed to special selection of experimental material (cf. 

Lupyan & Casasanto, 2015), given our counterbalanced materials and procedures. A label 

advantage was also observed in paired-associate learning in Experiment 2 but not in 

Experiment 3. 

Figure 5. Analysis of pooled data from the training sessions of Experiment 2 and Experiment 

3. Estimated difference in accuracy (in log odds) between the label and ideogram categories 

and the label and ideogram pairings, excluding random effects of participants. Error bands 

show 95% confidence intervals of the estimates.



Pooling the Phase 1 data from Experiments 2 and 3 (see Figure 5) suggests that the 

label advantage was greater during learning to categorize than during learning to associate 

(detailed analyses available from the authors). This suggests that the mechanism of selective 

activation of diagnostic features (Lupyan, 2012a; 2012b) may be complementary to a more 

general account of verbal labels serving as material symbols (Brojde et al., 2011; Lupyan et 

al., 2007; Tolins and Colunga, 2015). That is, labels may facilitate cognitive processing in 

general, as suggested by the observed label advantage during associative learning. In 

addition, selective activation provides further facilitation during learning to categorize. 

Whether the label advantage during learning to associate and categorize stem from 

overlapping or entirely distinct mechanisms, our results are consistent with a categorization-

specific mechanism, thus supporting the label-feedback hypothesis (Lupyan, 2012a; 2012b).

Long-term Effects Of Labels On Attention

To examine the long-term effects of category labels on attention, participants in 

Experiment 2 were administered Type II (Shepard et al., 1961) categorization tasks using the 

shapes previously associated with, or categorized by, label and ideogram response cues. 

Results from the category-training group showed that participants were less accurate in the 

label compared to ideogram task, consistent with the assumption of long-term effects of 

category labels on attention. Importantly, these effects were found to be categorization-

specific: Participants administered paired-associate learning were subsequently equally 

accurate in the label and ideogram tasks. Results from Experiment 2 are—to the best of our 

knowledge—the first evidence suggesting long-term effects of category labels (but not of 

labels for the associations) on attention mechanisms.   

In Experiment 3, we contrasted the sustained effect of labels for the categories with 

those for the associations by measuring participants' fixation durations on shapes that had 

previously been predictive of named categories compared to shapes that had been 

predictive of hard-to-name categories. The results showed that, following learning to 

categorize, participants spent greater time fixating the label compared to the ideogram 

shapes for the first block of the visual discrimination task. This difference disappeared in 

subsequent blocks, suggesting that the effect of category labels on attention was transient 

and did not survive the accumulation of experience within the discrimination task. This 

comes as no surprise given previous explorations of the idea that visual processing—



affected by labels of overlearned categories—might depend on experimental trial (Lupyan & 

Spivey, 2008), or the finding that the effect of overtly presenting labels of categories is time-

dependent (Lupyan & Spivey, 2010b). Moreover, analysis of response latencies in the 

discrimination task revealed that participants' speed of responding increased as trials 

progressed. Given the tight coupling of behavioral and eye-movement measures (Rehder & 

Hoffman, 2005a; 2006b) it seems plausible to also expect practice effects in fixation 

durations. In contrast, participants in the paired-associate group spent equal time fixating 

the shapes that had previously been paired with names compared to stimuli that had 

previously been paired with hard-to-name symbols. Thus, similarly to Experiment 2, the 

sustained effect of labels on attention were only found after learning to categorize, not after 

learning to associate. 

We take the findings of Experiments 2 and 3 to be supportive of the label-feedback 

hypothesis, positing a categorization-specific mechanism inducing sustained effects on 

attention processes recruited during visual processing of the diagnostic features. However, 

previous exploration of long-term effects of category labels by Tolins and Colunga (2015) 

revealed that attention processes were not affected by redundant labels. A possible 

reconciliation of our findings with those results may be based on the degree of learning the 

labels. Specifically, Lupyan (2006) suggested that it is the efficient learning of labels—rather 

than their mere presence—that affects learning (see also Brojde & Colunga, 2011 for results 

supporting this argument). Thus, if participants in the Tolins and Colunga study did not learn 

the labels sufficiently well, it is to be expected that neither initial effects on categorization 

accuracy nor sustained effects on attention were revealed. In contrast, in our experiments 

labels were not redundant; rather, they were the only available response cues and could not 

have been ignored by participants. Thus, both initial and sustained effects were revealed. 

We submit that further investigation of the label-feedback hypothesis should include an 

assessment of the degree to which participants have learned the labels prior to examination 

of label effects on learning.

Dimensions versus Features in Learning to Categorize 

An important implication of the present results concerns the distinction between 

perceptual dimensions and perceptual features in learning to categorize. The majority of 

experimental research examining category-learning processes and systems has utilized 



between-subjects manipulations and corresponding comparisons (e.g., Ashby & Maddox, 

2005). Although this approach has proven fruitful in advancing our understanding of 

category learning, it does not help elucidate whether it is entire perceptual dimensions or, 

rather, specific perceptual features that are important for categorization. A perceptual 

dimension encompasses all possible values within it; therefore, even if it is the features of 

specific values that capture attention during learning to categorize, a between-subjects 

design is—in principle—not diagnostic of the distinction and can only attest in favor of 

dimensional sensitization or activation. 

Surprisingly few studies have addressed the dimension vs. features distinction. As 

noted, Goldstone (1994) showed that perceptual sensitization following learning to 

categorize is a localized phenomenon (i.e., it is greater for values of a diagnostic dimension 

that cross a category boundary compared to values that belong to the same category), and 

this result was replicated by Van Gulick and Gauthier (2014). In related research, Aha and 

Goldstone (1992) provided evidence suggesting that, following learning to categorize, 

different values of a perceptual dimension may be selectively attended to (see also Blair, 

Watson, Walshe, & Maj, 2009).  

With respect to the label-feedback hypothesis, Lupyan (2012b) explicitly posited that 

it is specific perceptual features that are selectively activated by verbal labels, rather than 

general perceptual dimensions. However, the studies examining the initial and sustained 

effects of category labels (Brodje et al., 2011; Lupyan & Casasanto, 2015; Lupyan et al., 

2007; Perry & Lupyan, 2014; Tolins & Colunga, 2015) have all used between-subjects 

manipulations and—naturally—concluded that labels result in the increased capturing of 

attention by perceptual dimensions. In contrast, in our experiments the varying nameabilty 

of formed categories was a within-subjects manipulation. All participants learned both 

named and hard-to-name categories in a single training procedure. If labels activate the 

diagnostic perceptual dimension as a whole, rather than the features of specific diagnostic 

values linked to labels (i.e., the dimension of shape rather than the label shapes specifically), 

then we should have observed no difference in accuracy between label and ideogram 

category training, as well as no difference in the posttraining processing of label and 

ideogram shapes, in any of our experiments. We may therefore conclude that labels for the 

categories result in increased capturing of attention (both during and following learning) by 

diagnostic perceptual features, rather than dimensions, in accordance with Goldstone’s 



(1994) suggestion that perceptual space is locally warped as a result of learning to 

categorize. We also suggest that within-subjects manipulations can be a useful 

methodological approach in allowing the examination of hypotheses that are not falsifiable 

in typical between-subjects designs.    

Limitations, Concerns, And Directions For Future Research

In examining the label-feedback hypothesis (Lupyan, 2012a; 2012b) we manipulated 

linguistic activity by using names vs. hard-to-name symbols, rather than by using redundant 

labels vs. the absence of labels (e.g., Brojde et al., 2011; Lupyan et al., 2007; Tolins & 

Colunga, 2015). This manipulation took the effect of correlated cues out of the equation (cf. 

Lupyan et al.) but introduced a possible limitation. Verbal labels and ideograms were 

equated in size but arguably placed different demands on, e.g., memory or perception, 

potentially leaving the results open to alternative interpretations. Similar asymmetries are 

seen in previous studies (for example, between geometric and resistant-to-verbalization 

stimulus features, Kurtz et al., 2013, or between verbal labels and location cues, Lupyan et 

al., 2017), as it is not always clear what should be equated and by which criteria. Further 

theoretical and experimental work should address criteria and procedures for equating 

verbal and hard-to-name stimuli. 

A second limitation of our study might arise from using shape as the category-

diagnostic dimension, as the effect of category labels can be moderated by the choice of 

dimension (Brojde et al., 2011). Additionally, it has been shown that labels shift attention to 

dimensions that are historically predictive of category membership (e.g., to shape rather 

than hue, Brodje et al., or to frequency rather than orientation, Perry & Lupyan, 2014, see 

also Perry & Lupyan, 2016, for related research). Thus, it is possible that the effects of labels 

are specific to the perceptual dimensions that are category-diagnostic in real-world 

situations. Participants in our experiments also relied on shape (which has a special status 

for categorization; e.g., Landau, Smith, & Jones, 1988) to learn categories or associations. A 

more stringent test of the label-feedback hypothesis would entail examining the initial and 

sustained effects of category labels when learning is based on historically non-predictive 

dimensions, such as, e.g., color or orientation.   

An intriguing discrepancy between Experiment 2 and 3 concerns the temporal 

duration of the observed sustained effects of category labels on attention mechanisms. In 



Experiment 2 participants administered category training were subsequently found to be 

less accurate in the label compared to the ideogram task for the entire range of trials. In 

contrast, the category-training group of Experiment 3 spent more time fixating the label 

compared to the ideogram shapes only at the beginning of the discrimination task (for only 

the first out of totally four blocks of trials). Learning to solve the Type II task and performing 

a visual discrimination task arguably pose different processing demands, therefore 

observing a different temporal pattern of an effect across these tasks does not seem 

troublesome, at least in this preliminary research. Nevertheless, future studies should 

examine in more detail the factors influencing the longevity of the sustained effects of labels 

on attention. 

Our results suggest that verbal labels for the categories, but not for associations, 

have long-term effects on attention processes. This effect was predicted on the basis of 

converging evidence from perceptual learning (Folstein et al., 2015; Goldstone, 1994), 

learned attention (Goldstone & Steyvers, 2001; Krushke, 1996), and the label-feedback 

hypothesis (Lupyan, 2012a; 2012b). Our experiments were not designed to distinguish 

between these accounts, and thus the origin of the effect remains unclear. We argue that 

the perceptual-learning and the learned-attention accounts are complementary, in that a 

cognitive system (be it perceptual or attentional) is shaped during learning and keeps on 

exerting an influence following learning. Attesting to this assumption, in the study of 

category learning, attention and perception are not clearly distinguished, so what is called 

“learned attention” may suggest “perceptual warping” and vice versa. For example, 

Goldstone (1994) interpreted findings of perceptual warping as indicating competition for 

attention, and Folstein et al. (2015) considered findings of learned attention as suggesting 

perceptual modulation. 

There is, however, a critical difference between these two accounts—namely, 

perceptual learning and learned attention—and the label-feedback hypothesis, in that 

according to the latter hypothesis the sustained effects of labels are attributed to the self-

activation of learned labels (Lupyan, 2012a). Suppressing participants' linguistic activity 

during a posttraining task (see Perry & Lupyan, 2013, for manipulations other than the 

commonly used verbal interference) might elucidate the origin of the observed sustained 

effects. If the effects survive the down-regulation of participants' linguistic activity, they may 

be attributed to either the perceptual learning or the learned attention account. In the 



opposite case, the sustained effects of category labels may be attributed to the labels-

dependent mechanism of selective activation of diagnostic features, supporting the label-

feedback hypothesis, an issue left open for future research. 

Finally, an intriguing result of Experiment 2 concerns the emergence of differences in 

posttraining categorization despite similar accuracy during initial learning. A two-way 

ANOVA on categorization accuracy in the three Type II tasks, with group (category vs. 

paired-associate training) as the between-subjects factor, and task (control, label, ideogram) 

as the within-subjects factor, revealed no interaction of group by task, F(2, 124) = 0.348, η2 = 

.003, p = .707. There was a main effect of task, F(2, 124) = 68.329, η2 = .384, p < .001, 

reflecting participants' greater difficulty with “solving” the first compared to the following 

two tasks. Interestingly, there was also a main effect of group, F(1, 62) = 4.911, η2 = .037, p = 

.031, suggesting that the category-training group was more accurate than the paired-

associate-training group in all three Type II tasks. This cannot be accounted for by group-

level differences in general learning capacities, because a oneway ANOVA on training 

accuracy revealed no effect of group, F(1,62) = 0.701, η2 = .011, p = .406. No other 

posttraining group differences were found in any analyses of Experiment 3. Perhaps the 

discrimination task was too easy (recall that participants were all highly accurate in 

discriminating stimuli) for an effect of training regime (category vs. paired-associate) to 

manifest itself. It remains to be seen if different effects on posttraining performance may 

emerge in more demanding learning tasks.

Conclusions 

In the present study we sought to test the label-feedback hypothesis (Lupyan, 2012a; 

2012b) by investigating the effect of labels for the categories during initial learning and in 

posttraining test tasks. In a series of three experiments, we found that participants were 

more accurate in learning named compared to hard-to-name categories. It was also 

revealed that the label advantage during learning to categorize was of greater magnitude, 

compared to a label advantage during learning to associate, precluding explanation by a 

general theory of facilitation in processing verbal stimuli. In contrast to previous research 

(Tolins & Colunga, 2015), there was evidence of sustained effects of category labels on 

attention mechanisms recruited in two test tasks: a modified version of the Type II (Shepard 



et al. 1961) task, and an eyetracking visual discrimination task. These sustained effects were 

specific to categorization, in that no effects emerged following learning to associate.

The present research contributes to the category-learning literature by suggesting 

that linguistic representations are not isolated entities restricted to encapsulated language 

modules (e.g., Fodor, 1985) but, rather, interact with perceptual or attention processes 

recruited both during and also after learning to categorize (Lupyan, 2012a; 2012b). Our 

results have challenging implications for current theories of learning, and also for the 

language and thought debate (e.g., Gleitman & Papafragou, 2013; Regier, Kay, Gilbert, & 

Ivry, 2010), helping elucidate the more general question regarding the interplay between 

the language faculty and learning processes.
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5  

General Discussion



In the present dissertation I sought to investigate the interplay between the language 

faculty and category-learning processes. In particular, I investigated the effect of verbal 

labels for (a) the to-be-categorized material, and (b) the formed categories. To this end, 

theories and findings from two different subfields within the study of category learning 

were combined, namely the dual-systems theories (Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998; Poldrack & Foerde, 2008) and the perceptual learning account (Goldstone, 

1994; Lupyan, 2012a; Lupyan, Rakison, & McClelland, 2007). In a series of experiments—

detailed in Chapters 2,3, and 4—I assessed the effect of verbal labels on learning to 

categorize through novel training procedures that allowed me to contrast labels with hard-

to-name visual symbols. Finally, in examining the effect of verbal labels I employed both 

typical response-latency studies and also eye tracking methodology.

The main findings of the experiments presented here may be summarized as follows: 

(a) Verbal labels for the auditory cues of a probabilistic categorization task were found to 

facilitate explicit hypothesis-testing processes of category learning (Chapter 2).  In contrast, 

verbal labels for the features of categorization items in a visual deterministic category 

learning task were found to leave categorization processes unaffected (Chapter 3). This 

discrepancy is discussed in the next section. (b) Verbal labels for the formed categories were 

found to facilitate learning, and also affect subsequent processing of the category-diagnostic 

perceptual features (Chapter 4). Thus, the present dissertation may be said to support the 

notion that language interacts with category-learning processes, as evident both during the 

learning tasks and also in subsequent test tasks.   

Limitations, Open Questions, and Directions for Future Research



control condition). In particular, the control group learned to associate shapes to verbal 

labels and to hard-to-name cues, in a within-subjects design. Results suggested that there 

was no difference in categorization accuracy between the Type II task utilizing the shapes 

associated with names and the task utilizing the shapes associated with hard-to-name 

symbols. Thus, the finding that names for the features of the categorized items did not 

affect learning during the solving of Type II category structure was consistently obtained 

across two experiments, one employing a between- (Chapter 3) and one a within-subjects 

design (Chapter4). To conclude, names for the categorized items were found to facilitate 

explicit category-learning processes, in Chapter 2, and to leave categorization performance 

unaffected, in Chapters 3 and 4.

It could be argued that the finding of hypothesis-testing facilitation due to names for 

the stimuli, as described in Chapter 2, was a false-positive result. This possibility may only be 

addressed empirically, so future research should examine the replicability of the finding of 

hypothesis-testing facilitation due to names for the auditory cues of the WPT.

Another possibility is that the discrepancy of results across Chapter 2 and Chapters 3 

and 4 may be attributed to the differences across the studies. One important difference 

concerns the formal structure of the learning paradigms used to examine explicit learning 

processes. The WPT (Chapter 2) is characterized by a probabilistic structure, i.e., a 

combination of cues may predict different outcomes on different trials. In contrast, the Type 

II task (Chapters 3 and 4) has a deterministic structure, i.e., a categorization item 

consistently belongs to a specific category throughout the task. Research has not suggested 

that tasks characterized by probabilistic vs. deterministic structure recruit fundamentally 

different learning processes or systems. For example, the same manipulations have been 

utilized across probabilistic and deterministic structures to modulate learning system 

involvement (Foerde, Poldrack, & Knolwotn, 2007, and Zeithamova & Maddox, 2006). 

Nevertheless, an explanation on the basis of formal category structure cannot be precluded. 

Further empirical investigation should assess the possibility that the effect of names for 

categorization items (or their features) is structure-dependent. Another important 

difference across the studies of Chapter 2 and Chapters 3 and 4 concerns the learning 

modality. I utilized auditory cues in the WPT, and visual categorization items in the Type II 

tasks. It could be that names for the categorized items facilitate explicit learning processes 

in the auditory, but not in the visual modality. Indeed, research investigating the cognitive 



processes of statistical learning attests to this assumption by revealing differences in 

learning processes across modalities (Conway & Christiansen, 2009; Saffran, 2002). Further 

empirical investigation should examine the possibility that the effect of names for the 

stimuli on learning to categorize is modality-dependent. 

Alternatively, the fact that there was no evidence suggesting rule-discovery 

facilitation due to names during the solving of Type II tasks may be attributed to a 

representational mismatch. As already noted in Chapter 3, informal reports suggested that 

during the solving of the Type II task participants based their categorization judgments on 

specific features of categorization items (i.e., the stimuli's corners) rather than on the 

shapes whose nameability had been manipulated. It stands to reason that if the 

representations of shapes were immaterial in solving the Type II tasks then names for the 

shapes will have no effect on category learning processes. 

Finally, the discrepancy of results across the two training paradigms (the WPT and 

the Type II task) may be attributed to the nature of category learning processes recruited 

during the solving of the Type II tasks. Dual systems theorists have assumed that learning in 

the canonical version of the Type II task (i.e., the version employing highly familiar 

geometric stimuli) is mediated by explicit processes or rule discovery (e.g., Minda, 

Desroches, & Church, 2008; Minda & Miles, 2010; Smith, Minda, & Washburn, 2004). It has 

also been assumed that learning in the Type II tasks is mediated by similarity-based learning 

processes (Krushke, 1992; Nosofsky, Palmeri, McKinley, & Glauthier, 1994; Nosofsky & 

Palmeri, 1996) that may be thought to reflect the functioning of the implicit system (Ashby 

et al., 1998). Thus, it seems that depending on the researchers' theoretical commitments, 

the same learning paradigm has been argued to engage either explicit or implicit processes 

(see also Rehder & Hoffman, 2005, for suggesting that both explicit and implicit processes 

are recruited during the task). A modified version of the Type II task was created for the 

experiments presented here, by utilizing novel and arguably hard-to-name—rather than 

highly familiar—shapes. There was no evidence suggesting that names for the categorized 

items facilitate explicit processes of rule-discovery in Chapters 3 and 4. This result may be 

taken to suggest that the modified version of the Type II task does not recruit explicit rule-

discovery learning processes. That is, names for the stimuli may indeed facilitate explicit 

category learning processes, but this effect was not observed in the solving of the modified 

version of the Type II category structure because learning was mediated by the implicit 



system. The experiments presented here were not designed to specifically examine the 

nature of learning processes (explicit vs. implicit) recruited during the modified version of 

the Type II task, and only further research with planned comparisons might elucidate this 

issue. 

To conclude, it may be argued that changing the surface structure of a learning 

paradigm (in particular replacing familiar/nameable with novel/hard-to-name shapes) might 

severely affect learning processes in terms of representations or learning processes 

involvement, and care should be taken when generalizing assumptions across different 

versions of a learning paradigm.  

Multiple plausible explanations were offered for the inability to replicate rule-

discovery facilitation due to names for the categorization items (or their features) across 

learning paradigms and learning modalities. My experience though with investigating 

category learning, and in particular with using hard-to-name stimuli, is that the choice of 

perceptual modality is of great importance. Pilot experiments and participants' informal 

reports showed that participants faced less difficulty with naming visual stimuli (e.g., novel 

shapes or hard-to-name colors) compared to artificial tones. There seems to be a natural 

tendency to name visual—but not auditory—stimuli, thus naming manipulations might be 

less effective in the visual compared to the auditory modality. It could therefore be  argued 

that re-examining the effect of names for the stimuli on auditory category learning might be 

proven a worthy endeavor. Maddox, Chandrasekaran, Smayda, & Yi (2013) recently 

provided a deterministic rule-based category structure in the auditory modality employing 

stimuli composed of four binary-valued dimensions (an analogue of the Type II task, see 

Figure 1A). I suggest applying the training manipulation presented here on the Maddox et al. 

structure and re-examining the effect of names for the features of auditory categorization 

items. In particular, I suggest using artificial hard-to-name tones instead of vowels and using 

stimulus identity as a category-diagnostic dimension (see Figure 1). Different groups of 

participants will be trained to associate the stimuli's sound identity with either verbal labels 

or hard-to-name ideograms. It may be predicted that names for the stimuli's features in an 

auditory category learning task might facilitate explicit learning processes.



Figure 1. Schematic of a rule-based (A) and of an information-integration (B) category 

structure in the auditory modality. The categorization items are composed of four binary-

values dimensions, namely pitch (low vs. high), duration (long vs. short), stimulus 

numerocity (one vs. two) and stimulus identity (/a/ vs. /i/). Here, pitch and duration are the 

category-diagnostic dimensions. From Maddox, Chandrasekaran, Smayda, & Yi (2013).

One of the open questions in the study of human category learning concerns the 

nature of the interaction between distinct learning systems. The COVIS model of category 

learning suggests that the two purported systems—the declarative/explicit and the 

procedural/implicit—might operate in parallel and that the most successful system—in 

terms of categorization accuracy—might assume response delivery (Ashby et al., 1998). 

Neuroimaging studies have provided novel insights on the matter, and suggested that the 

two systems might compete during learning. In particular, it has been suggested that the 

engagement of a learning system might inhibit the engagement of the other one (Moody, 

Bookheimer, Vanek, Knowlton, 2004; Poldrack et al., 2001). An alternative hypothesis is that 

the two systems might compete not during the acquisition, but rather during the application 

of knowledge (Foerde, Knowlton, & Poldrack, 2006). Recent behavioral investigations of the 

interaction of the two systems have provided mixed results in favor both of the 

independence and the competition between the systems (Ashby & Crossley, 2010).  Thus 



further research is required to shed light on the interaction of the declarative and the 

procedural system of category learning.

In the literature of dual-systems theories of categorization, a fruitful approach in 

investigating  the cognitive mechanisms of learning has been the experimental manipulation 

of  the engagement of the purported systems. For example, researchers have manipulated 

the timing of feedback and stimulus-offset (Worthy, Markman, & Maddox, 2013), feedback 

informativeness (Maddox, Love, Glass, & Filoteo, 2008), secondary task demands (Miles & 

Minda, 2011; Zeithamova & Maddox, 2006), or the nature of the initial training regime 

(Ashby & Crossley, 2010). It was previously argued that re-examining the effect of names for 

the stimuli in auditory category learning might be proven a worthy endeavor. Insofar as  

names for the categorization items boost explicit processes of learning to categorize in the 

auditory modality, it may be suggested that the training manipulation presented here might 

be proven helpful in elucidating the interaction between the declarative and procedural 

system during an information-integration auditory categorization task (see Figure 1B for an 

example of an information-integration category structure).

Recent research has suggested that adult healthy participants approach an 

information-integration task through sub-optimal verbal rules which are later on replaced 

by implicit learning strategies (Maddox, Pacheco, Reeves, Zhu, & Schnyer, 2010). Moreover, 

Ashby and Maddox (2011) suggested that—during the learning of an information-

integration task—the prevalence of the rule-based explicit strategies might prevent the 

transition to the procedural system (see also Ashby & Crossley, 2010, for evidence 

supporting this assumption). It may therefore be predicted that names for the 

categorization items' features may delay the transition from rule-based to information-

integration strategies (as compared to associating features to hard-to-name visual symbols). 

Monitoring brain activity through neuroimaging techniques could furthermore elucidate the 

question of whether this delay is due to reduced engagement of the implicit system during 

initial learning, or rather due to the reduced access of the normal-functioning implicit 

system to the motor output system (Ashby & Maddox, 2011). Thus, the training 

manipulation of associating stimulus features to either verbal labels or hard-to-name visual 

symbols might be proven a useful tool in modulating the engagement of complementary 

learning systems, and thus in studying the nature of their interaction.   



After examining the effect of verbal labels for categorization items (Chapter 2 and 

Chapter 3), the effect of verbal labels for the formed categories was investigated (Chapter 

4). Various open questions need to be addressed concerning the initial and sustained effect 

of labels for the categories.

The label-feedback hypothesis (Lupyan, 2012a; 2012b) posits a mechanism of 

selective activation of diagnostic features that results in a label advantage during initial 

learning (Lupyan et al., 2007). Indeed, the label-advantage during category learning was 

replicated in a series of three experiments. Moreover, to examine if this label advantage is 

categorization-specific, learning to categorize was contrasted with learning to associate. 

Pooling the data from two experiments showed that the label advantage during learning to 

categorize was greater than during learning to associate. This result is—to my knowledge—

the first piece of evidence suggesting that the mechanism of selective activation of 

diagnostic features might complement a domain-general verbal facilitation phenomenon 

(Tolins & Colunga, 2015). One possibility is that the facilitation during learning to categorize 

is the sum of two effects: the facilitation due to the selective-activation mechanism and the 

domain-general verbal facilitation. Another possibility is that the facilitation during learning 

to categorize exclusively stems from the categorization-specific mechanism of selective 

activation of diagnostic features. The experiments presented here are compatible with both 

accounts, so future research with planned comparisons should address this open question.

I also examined the sustained effects of labels for the formed categories on the 

processing of category-diagnostic perceptual features. In two experiments it was revealed 

that shapes that had previously been diagnostic of named categories captured attention to 

a greater extent compared to shapes that had previously been predictive of hard-to-name 

categories. This effect was found to be categorization-specific, in that following learning to 

associate there was no evidence of any difference in the processing of shapes that had 

previously been paired with labels or hard-to-name symbols. These results are novel (cf. 

Tolins & Colunga, 2015) and are equally compatible with perceptual learning accounts of 

category learning (Folstein, Palmeri, Van Gulick, & Gauthier, 2015; Goldstone, 1994), with 

learned attention accounts (Goldstone & Steyvers, 2001; Krushke, 1996), or with the label-

feedback hypothesis (Lupyan, 2012a; 2012b). Further research (see Chapter 5 for 

suggestions) should elucidate the origin of the sustained effect of category labels on 

attention. 



Finally, an important open question with respect to the initial and sustained effects 

of category labels is whether these effects are dimension-specific. Previous studies have 

suggested that labels for the categories lead participants to rely on dimensions that are 

typically category-diagnostic in real world situations, such as shape or frequency (Brojde, 

Porter, & Colunga, 2011; Perry & Lupyan, 2014). It could thus be argued that evolutionary 

processes have equipped some perceptual dimensions with a special status or privilege 

regarding their role in learning to categorize. The mechanism of selective activation of 

diagnostic features (Lupyan, 2012a; 2012b) does not seem to account for this purported 

special status of some perceptual dimensions. Future research should examine the initial 

and sustained effects of category labels utilizing typically non-diagnostic dimensions. If the 

effects of category labels are found to be dimension-specific, then the label-feedback 

hypothesis should be modified to account for this purported dimension specificity. 

Conclusions

An important question regarding the architecture of cognition concerns the extent to 

which cognitive faculties and their corresponding representations are encapsulated (e.g, 

Fodor, 1985) or rather interact with other cognitive faculties. Recent theoretical and 

empirical accounts have brought about a renewed interest on the Whorfian hypothesis 

(Gleitman & Papafragou, 2013; Regier, Kay, Gilbert, & Ivry, 2010) that language modulates 

faculties such as color perception or category learning (e.g., Regier & Kay, 2009; Lupyan et 

al., 2007, but see Firestone & Scholl, 2015, for an opposing account).

The present dissertation contributes to the language and thought debate by 

suggesting that verbal labels for the categorization items and also for the formed categories 

affect category learning and attention processes. Notwithstanding the fact that some of the 

described findings call for replication or further investigation, it may be argued that the 

experiments presented here contribute to theories of learning by suggesting a special role 

for verbal labels in learning to categorize. 
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Appendix



Summary 

Recent theories of cognition argue against a modular cognitive architecture and 

instead suggest that language interacts with presumably non-linguistic faculties such as 

learning or perception. In the present dissertation I investigated the interplay between 

language and category learning, with a specific focus on verbal labels. In particular, I 

examined the effect of verbal labels for (a) the to-be-categorized material, and (b) the 

formed categories on learning to categorize. 

Based on dual-systems theories of category learning, it was reasoned that 

participants would find it more easy to develop and apply explicit rules of category 

membership when the to-be-categorized material is readily nameable compared to hard-to-

name material. To test the idea of rule-discovery facilitation due to names for the stimuli, 

separate groups of participants were trained for three consecutive days to associate hard-

to-name auditory tones to verbal labels or hard-to-name ideograms; or to associate cue 

identity to hard-to-name colors; a forth group remained unexposed to the cues (Chapter 2). 

Following training, participants were administered an auditory version of a probabilistic 

category learning task, utilizing the trained tones as cues. Results revealed that the verbal-

label group outperformed the ideogram group, suggesting that names for the auditory cues 

facilitated rule-discovery learning processes. It was additionally revealed that the ideogram 

group outperformed the intensity-training group and that the intensity-training group 

outperformed the no-training group, suggesting that cue individuation and familiarity with 

the stimuli facilitated explicit processes of learning to categorize.

The idea of rule-discovery facilitation due to names for the stimuli was further tested 

by employing a deterministic category learning task in the visual modality (Chapter 3). 

Separate groups of participants were trained for two consecutive days to associate hard-to-

name shapes to verbal labels or hard-to-name ideograms; a third group received mock 

training and remained unexposed to the shapes. Following training, participants were 

administered a category learning task with categorization items composed of the trained 

shapes. Results revealed no group-level differences, there was thus no evidence suggesting 

that names for the features of categorization items facilitate explicit categorization 

processes. The inability to replicate the effect of rule-discovery facilitation due to names 

was interpreted as suggesting that changing the surface structure of a learning paradigm 



severely interferes with the task's processing demands in terms of representations and 

learning system engagement. 

The next research endeavor of the present dissertation examined the effect of labels 

for the formed categories (Chapter 4). The label-feedback hypothesis posits a mechanism of 

selective activation of diagnostic features due to labels for the categories. This mechanism is 

predicted to provide a label advantage during learning and also affect attention in the long 

term. To test the label advantage during initial learning, participants were trained to learn 

named and hard-to-name categories. The sustained effect of category labels were examined 

by employing the category-diagnostic perceptual features in posttraining test tasks, and in 

particular in category learning tasks, and in a visual discrimination task using eye tracking. 

To examine if the selective-activation mechanism is categorization specific, learning to 

categorize was contrasted with learning to associate, by training control groups of 

participants to learn named and hard-to-name association instead of categories. Results 

suggested that named categories were consistently learned more accurately than hard-to-

name categories. This label advantage during learning to categorize was found to be greater 

compared to a label advantage during learning to associate, supporting the notion of a 

categorization-specific mechanism offering facilitation. With respect to the sustained effects 

of labels, category-diagnostic perceptual features of named categories were found to 

capture attention to a greater extent compared to diagnostic features of hard-to-name 

categories. This long-term effect of labels on attention was categorization-specific, in that 

following learning to associate there was no evidence suggesting differential processing of 

diagnostic features of named compared to hard-to-name associations. These results were 

collectively interpreted as supporting the label-feedback hypothesis of a categorization-

specific mechanism of selective activation of diagnostic features due to names for the 

formed categories.

The present dissertation examined the effects of labels for the categorization items 

and for the formed categories on processes recruited during and also following learning. The 

results presented here suggest that verbal labels affect category learning and attention 

processes, and thus support the notion that language in not merely an interface serving 

communication purposes but rather modulates—or perhaps shapes—cognition. 
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	Method
	Participants
	Eighty five undergraduate and graduate students (19 male, Mage = 25.8, SD = 4.05) of the Philosophy and History of Science Department, University of Athens, Greece, were randomly assigned to one of the three training conditions, receiving course credit for participation, or volunteered. Due to technical failures in collecting the training data or participants' errors in following instructions, 10 participants were excluded from analysis. Thus, there were data from 23 participants (7 male, Mage = 27.7, SD = 4.47) in the label training condition, 22 participants (6 male, Mage = 24.3, SD = 2.55) in the ideogram training condition, and 30 participants (5 male, Mage = 25.6, SD = 4.35) in the intensity training condition. In addition, twenty graduate students (2 male, Mage = 20.3, SD = 3.5) from the Psychology Department, Panteion University, Athens, Greece, were administered only the WPT (no-training group). All participants reported normal hearing and normal or corrected-to-normal vision, no history of neurological illness, and no dyslexia diagnosis.2
	Materials
	Cues. Four 300-ms long frequency-modulated tones, similar to those used by Holt and Lotto (2006), served as cues. The tones were created in Carnegie Mellon University using parameters listed in Table 1. A pilot study employing a 2AFC intensity discrimination task indicated that high-pitched tones were perceived as louder compared to low-pitched tones. Because of the need to be used in intensity training, the four tones were perceptually equated in intensity. Perceptual equation (outlined in the online supplement) resulted in the tones' adjusted intensity levels, subsequently used in the training procedure.
	Four intensity levels were additionally created for each tone: the highest intensity corresponded to the tone's adjusted level, while the high, low, and lowest levels were created by decrements of 3, 6, and 9 dB down from the adjusted level, respectively. The 3 dB step was determined in pilot experiments aiming to equate—to the extent possible—training performance in the 3 conditions.
	In the WPT the original (unadjusted) tones were used with all 4 groups.
	
	Pseudowords. Four Greek pseudowords were created to serve as new names for the tones, namely σάβης (/'savis/), λίμης (/'limis/), ρήτης (/'ritis/), and δόθης (/'ðoθis/). They were equal in number of letters, syllables, phonemes, stress position, and orthographic typicality (mean orthographic Levenshtein distance of the 20 nearest neighbors—OLD20—was 2.00 for all cues, taking stress into account, and between 2.15–2.85, ignoring stress; Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012; Yarkoni, Balota, & Yap, 2008).
	Colors. Three “hard-to-name” colors (RGB: 0x649EA7, 0x583232, 0xBFBC8F) were sampled from the on-line version of a study used to assess the involvement of language processing brain regions in a perceptual decision task (Tan et al., 2008; not implying that our stimuli were identical to those used in their study, due to lack of chromatic calibration). A fourth color (0xFEAD5C) was selected, subjectively judged to be hard-to-name. All color stimuli are shown in Fig. 1.B.
	Procedure
	Participants in the training conditions received instructions, a set of headphones, and a questionnaire (in the ideogram and intensity training conditions) on or before the first day of training. Moreover, each participants' computer volume was calibrated (see the online supplement for details). Training took place unsupervised at home for three consecutive days. Compliance was monitored daily by email or phone and by inspection of the data. On the fourth day, the WPT was administered at the university lab. Participants used headphones during the tasks.
	Training. The training tasks and all following procedures were programmed in DMDX display software (Forster & Forster, 2003). Trial randomization was done with Mix (Van Casteren & Davis, 2006).
	Verbal label training. There were 192 trials in each training session. Each cue was presented 12 times in each of 4 intensity levels. Participants heard one tone in each trial. They were instructed to guess at first, gradually learning the correct response for each tone through corrective feedback. They were explicitly told that the purpose of the task was to learn “a name for each tone” and not just make the correct response. On the first day of training they were asked to read aloud the word before responding. The correspondence between sounds and pseudowords was randomly selected for each participant.
	Trial structure is shown in Fig. 1.C. A cross appeared on the center of the screen for 500 ms. A tone lasting 300 ms followed, simultaneous with the 4 response options (pseudowords) presented on screen in a vertical configuration. On the first day of training there was an additional latency period of 500 ms after the presentation of the tone, during which participants were to pronounce the word. Pseudowords remained on screen for up to 5 s, until a mouse click on one of them. Response feedback was provided for 500 ms (“correct,” “wrong,” or “no response”). The intertrial interval was 1 s.
	Trial order was pseudorandom, fixed for all participants, but different for each day of training. Randomization constraints precluded (a) the same configuration of response cues on two consecutive trials, (b) a distance between trials with the same tone (regardless of intensity) less than 2, and (c) a distance between trials with the same intensity less than 1. There was a short break halfway through the procedure. Training lasted on average 18 minutes on the first day and 15 minutes on the second and third day. Training tasks were conducted online using DMDX remote testing mode.
	Figure 1. Training procedure and stimuli. (A) Symbols used as response cues for the ideogram-training condition. (B) Colors used in the intensity-training condition. (C) Sequence of events in a training trial. Response 1, 2, 3 and 4 are used here to depict the four available response options and were replaced with pseudowords, stimuli depicted in (A), and stimuli depicted in (B) in the label, ideogram, and intensity training conditions respectively. The symbol ♪ was never presented.
	Ideogram training. Ideogram training was identical to verbal label training except that (a) 4 ideograms (randomly paired with tones for each participant) replaced the 4 pseudowords, (b) participants were instructed to learn the ideogram that corresponded to each of the tones, and (c) there was no delay to pronounce the labels on the first training day. Participants were instructed to fill in the sealed questionnaire received at the initial meeting on completion of the third day's training. In this questionnaire the four ideograms were printed and participants were asked to name them using only one word.
	Intensity training. Participants in intensity training heard the same stimuli as in the other training conditions but were asked to learn the color that matched each intensity level. They were explicitly instructed to ignore the identity of the tones and only pay attention to intensity. Intensity-color correspondence was randomized across participants. All other aspects of the procedure were the same as in the ideogram training condition. Following third day's training participants were asked to fill in a questionnaire asking for the names of the four colors using one word (as in Sturges & Whitfield, 1995).
	WPT. Participants were told that they would take part in a learning experiment and would be asked questions about it at the end. They were not informed of the probabilistic nature of the task. For those in the training conditions it was noted that this was neither a continuation nor a test of their training. Written instructions were presented on the screen (adopted from Lagnado et al., 2006). Five practice trials were given before the actual experiment, for familiarization and sound volume adjustment, using animal sounds as cues.
	The probabilistic structure of this auditory version of the WPT followed that of Gluck et al. (2002, Experiment 2). As already noted, each cue is independently associated with an outcome with a fixed probability. This probability can be calculated from Table 2 (as described by Shohamy et al., 2004). For example, Cue 1 is present in patterns H to N, which appear in 100 out of 200 trials of the experiment. In these 100 trials the outcome of sun occurs 20 times and the outcome of rain occurs 80 times. Thus, Cue 1 is associated with sun with probability 20 ÷ 100 = .2 and with rain with probability .8. Likewise, it can be calculated that cues 2, 3, and 4 predict sun with probabilities .4, .6, and .8 respectively. Cue 1 and Cue 2 are therefore predictive of sun, Cue 3 and Cue 4 are predictive of rain, and the highly predictive cues of the task are Cue 1 and Cue 4 for sun and rain respectively. The assignment of tone (Tone 1, Tone 2, etc.) to associative strength (Cue 1, Cue 2, etc.) was counterbalanced across participants, and the relative position of a tone within a pattern was held constant for a given pattern and a given participant.
	In each trial a series of tones forming a cue pattern were delivered through the headphones sequentially, with an intercue interval of 1 s. Hence, the duration of each pattern ranged from 0.3 s (1-cue pattern) to 2.9 s (3-cue pattern). Following an additional interval of 1 s, two icons representing the outcomes (a sun and a raining cloud) appeared on the screen for the participant to respond by pressing the corresponding key on the keyboard. At registration of a response, the correct outcome was presented on screen for 2 s along with feedback: a happy smiley and a high tone (frequency: 1000 Hz, duration: 0.1 s) for correct selection, or a frowning smiley and a low tone (frequency: 500 Hz, duration: 0.1 s) when incorrect. If the participant did not respond within 2 s, a “Please respond now” prompt appeared on the bottom of the screen. The trial was terminated if no response was registered within 5 s total, counting as “incorrect” for the purpose of analysis. Following Knowlton et al. (1994), a yellow bar on the right side of the screen provided a rough estimate of performance. The intertrial interval was 500 ms. Short breaks were given every 50 trials. The complete sequence of events in a 2-cue auditory pattern trial is shown in Fig. 2. The duration of the categorization task was 35 minutes on average.
	Cue naming. Immediately after the WPT, participants were asked to write down which single cue they considered most likely for each outcome (the precise formulation of the questions was based on Reber et al., 1996). Participants in the three training conditions were also presented with the four tones again, and were asked to denote which tone corresponded to their two previous responses.
	Data Analysis.
	Analyses reported below (except for cue naming) employed generalized mixed-effects logistic regression models for binomial distributions (Dixon, 2008) via a logit transformation (Jaeger, 2008), with participants and stimuli (or patterns of auditory stimuli for WPT) as random factors (Baayen, Davidson, & Bates, 2008), fitted with restricted maximum-likelihood estimation using package lme4 (Bates & Sarkar, 2007) in R (R Development Core Team, 2011). Effect sizes (β) are estimated log odds regression coefficients, with zero corresponding to no effect.
	Training. Training data were analyzed in terms of correct or erroneous responses.
	WPT. Following standard procedure, participants' categorization performance was measured in terms of optimal responding (Knowlton et al., 1994). A response was marked correct if it corresponded to the most likely outcome given task contingencies, regardless of the actual feedback presented to the participant on that particular trial. For example, throughout the task trials incorporating pattern A were marked as correct if and only if the response was “Sun.” As can be seen in Table 2, patterns F and I are equally associated to both outcomes, hence no optimal response can be defined for them. Responses to these patterns (12 trials overall for each participant) were not included in the analysis.
	Cue naming. Answers were scored with 1 if participants responded with the tone that was highly predictive of the stated outcome, with 0.75 for the less predictive tone, 0.50 and 0.25 for the tones predictive of the opposite outcome, weakly or strongly, respectively, and 0 for no answering. Cue selection performance was the sum of the two outcomes, ranging from 0 to 2.
	Results
	Training
	Performance increased throughout and across the three days of training, but not all participants exhibited high performance at the end of the third day. To ensure that subsequent categorization performance (on the WPT) would be subject to the trained cue associations, we excluded participants exhibiting low performance (45% or less) in the second half of the third day of training. This included two “non-learners” in label training, two in ideogram, and seven in intensity. Moreover, to equate sample size across conditions, we randomly excluded one participant from the label condition and three from intensity (see Fig. S1 in the online supplement). Data shown and analyzed henceforth correspond to the following sample: 20 participants (6 male, Mage = 26.8, SD = 3.47) in the label training condition, 20 participants (6 male, Mage = 24.4, SD = 2.62) in ideogram training, and 20 participants (4 male, Mage = 25.7, SD = 3.92) in intensity training.
	
	Figure 3. Mean accuracy of 60 participants (20 in each training condition) in cue-response training. Error bars show between-subjects standard error of the means.
	Mean performance in training per condition and day is shown in Fig. 3. Participants’ responses were analyzed with a model including fixed effects of trial, training condition, and day of training, as well as their interactions, and random effects of participants and of stimuli (four tones by four intensity levels, i.e., 16 distinct stimuli). In R notation, one such model was specified as:
	accuracy ~ trial * condition * day + (1+trial|participant) + (1|stimulus)
	with two levels of accuracy (“correct” and “wrong”) regressed onto 192 trials, three levels of condition (“intensity,” “ideogram,” and “label”), and three levels of day. By-participant random slopes of trial were included to model participants' individual learning rates; by-stimulus random slopes of trial did not improve model fit and were excluded. Quadratic effects of trial were not significant and were therefore excluded from the models.
	The main purpose of the analysis was to assess whether training resulted in comparable knowledge—by the end of the third day of training—of the cue-response pairings across the three groups. Therefore, the model's intercept was set at the end of training (i.e., the levels of the day predictor were ordered as “day3” “day2” and “day1,” and trial was specified numerically as −191, −190, ..., −1, 0). The simple effect of condition indicated that the odds of correct responding at the end of Day 3 of training were comparable between the label and ideogram training conditions whereas both of these groups outperformed the intensity training group (label vs. ideogram: β = −.180 , ɀ = −0.700, p = .484; label vs. intensity: β =.667 , ɀ = 2.633, p = 0.009; ideogram vs. intensity: β = .847, ɀ = 3.332, p < .001; the last two estimates survived Bonferroni correction for three pairwise comparisons). There was a marginal interaction of trial by condition, indicating that change in correct responding as trials progressed in Day 3 was marginally different between the label and ideogram conditions but comparable between the other conditions (label vs. intensity β = −.001 , ɀ = −1.241, p = .215; ideogram vs. intensity: β = .001 , ɀ = 1.086, p = .278; label vs. ideogram: β = −.002 , I = −2.185, p = .029, not surviving Bonferroni correction for three comparisons). No three-way interaction survived Bonferroni correction for multiple comparisons.3
	Written responses on the post-training questionnaire assessing ideograms' names confirmed that the symbols used were hard-to-name and did not invoke common associations. Names given were mainly idiosyncratic (such as “air” or “sunset”). Α few (6 out of 20) participants named the ideograms after the sounds they had been paired to (i.e., they gave names such as “bass” or “shrill”).
	In contrast, questionnaire responses regarding colors revealed participants' tendency to give common names to Color 1 (“light blue”—a single word in Greek—by 10 participants, “blue” by 7), Color 2 (“brown” by 10), Color 3 (“beige” by 8, “grey” by 7), and Color 4 (“orange” by 15).
	WPT
	Participants' performance is shown in Fig. 4 in blocks of 10 trials. Participants averaged 74.9% (SD = 8.7%) optimal responses over all 200 trials in the label training condition, 71.7% (SD = 8.8%) in the ideogram condition, 68.5% (SD = 12.0) in the intensity condition, and 63.6% (SD = 9.0) in the no-training condition.
	Responses were analyzed with a model including fixed effects of target (optimal) response, trial, and training condition, as well as their interactions, and random effects of participants and of patterns of auditory cues. In R notation, the model was specified as:
	response ~ target * trial * condition + (1+trial|participant) + (1|pattern)
	with two types of response (“Sun” and “Rain”) regressed onto two types of target (“Sun” and “Rain”), 188 trials (centered, thus specified numerically as, -99.5, -98.5,..., 98.5, 99.5, excluding trials presenting patterns “F” and “I”), and four types of condition (“no-training”, “intensity”, “ideogram”, and “label”); there were also twelve types of pattern (“A”...“N”, excluding patterns “F” and “I”). By-participant random slopes of trial were included to model participants' individual learning rates.
	
	Figure 4. Post-training categorization performance of the four training conditions in blocks of 10 trials. The dotted line denotes chance performance (50%). Error bars show between-subjects standard error of the means.
	In this model, learning effects would be evident as a significant interaction of trial by target, insofar as increases in trial would increase the probability of responding correctly. This interaction was significant (β = .010, ɀ = 7.830, p < .001). A triple interaction including condition would indicate differential learning effects across training conditions, however this interaction was not significant for any pair of conditions (all β < .002, p > .3).
	There were significant interactions of condition by target, indicating significant performance differences between conditions, in the following order: label > ideogram > intensity > no-training. Successive pairwise differences survived Bonferroni correction for three comparisons and were all highly significant (label vs. ideogram: β = .351, ɀ = 3.205, p = .001; ideogram vs. intensity: β = .341, ɀ = 3.247, p = .001; intensity vs. no-training: β = 0.451, ɀ = 4.441, p < .001)4.
	Cue naming
	In response to the post-categorization questionnaire most participants provided verbal descriptions of the tones related to their acoustical features, such as “the high-pitched one” or “the bass sound.” In the label condition, 11 out of 20 participants used the trained pseudowords. In the ideogram condition, 4 participants gave descriptions related to the visual features of the ideograms, such as “the F” or “antenna.” None of the participants in the intensity training condition used a color name to describe the tones.
	Mean cue selection scores were 1.79 (SD = 0.26) in the label condition, 1.76 (SD = 0.25) in the ideogram condition, and 1.58 (SD = 0.47) in the intensity condition. An oneway ANOVA revealed no effect of condition, F(2, 57) = 2.328, η2 = 0.076, p = .107, suggesting that participants' explicit knowledge of the highly predictive cues did not differ among training conditions.
	To assess whether WPT accuracy was affected by explicit knowledge of the newly-trained names for the cues as inspected through the post-categorization questionnaire, we analyzed categorization data from the label training group only. A modified version of the mixed-effects model included a categorical fixed effect (with two levels, “No” and “Yes”) reflecting whether participants used the trained verbal labels in responding to the post-categorization questionnaire. This factor was not significant (β = −. 012, ɀ = −.086, p = .932) and did not interact with the other predictors (all |β| < .003, p > .130).
	Correlation between training and categorization performance
	Inspection of individual data revealed participants with high performance during training but low performance in the WPT, and vice versa. To investigate the possibility that cue training was predictive of subsequent categorization we regressed WPT performance onto average performance in the second half of Day 3 of training, potentially interacting with training condition. There was no significant effect of either condition or training performance and no significant interaction (all p > .4). Fig. 5 shows the scatter plot and the regression lines for the three training conditions as well as the regression line for data pooled from all three conditions. To explore the possibility that training performance was predictive of WPT performance depending on the number of cues forming a pattern, we separately calculated average WPT performance on 1-cue, 2-cue, and 3-cue trials. We regressed each performance measure onto average training performance in the second half of Day3, possibly interacting with training condition, and again there were no effects neither interactions for any of these analyses (all p > .2).
	
	Figure 5. Scatter plot of WPT categorization performance versus training performance on the second half of Day 3. Lines correspond to linear regression parameter estimates.
	
	Discussion
	In this study, participants performed the WPT, a probabilistic category learning task, using hard-to-name auditory cues. In a training phase preceding the WPT, groups of participants learned to associate the cues to verbal labels or hard-to-name ideograms, or were exposed to the cues in an intensity task orthogonal to cue identity; there was also a group of participants receiving no training. Categorization performance in the WPT was significantly affected: the label training group outperformed the ideogram group, the ideogram training group outperformed the intensity training group, and the intensity training group outperformed the no-training group. Since all groups were administered the same auditory version of the WPT, the differences in performance can only be attributed to training. Therefore, (a) availability of verbal labels, (b) cue individuation, and (c) exposure to stimuli conferred independent benefits in the category learning task.
	Verbal labels
	We assumed that the availability of cue names would favor the formation, testing, and application of verbalizable strategies by participants in the label training condition because these participants would have easily accessible names for the cues of the categorization task. To ensure that availability of names was not confounded with categorical training, verbal label training was contrasted with ideogram training differing in the nonverbal nature of the associations. The advantage of the label training group suggests that cue names specifically enhanced explicit processes mediating WPT performance. The lack of significant differences in learning slopes between conditions further suggests that the naming advantage was not limited to early stages in WPT learning, perhaps serving simply as initial anchors, but extended throughout training. Also, participants' identification of the highly predictive cues, although a poor measure of awareness (see Lagnado et al., 2006, for a trial-by-trial assessment of task knowledge and self insight) suggests that awareness for the learned material was comparable among the training conditions, and thus precludes a potential explanation of the present results on the grounds of differential mediation of distinct memory systems in each condition.
	Participants in the ideogram training group might have developed labels for the cues due to the extended exposure (cf. Galizio & Baron, 1976; Lupyan et al., 2007). Care was taken so that ideograms would be hard-to-name and that potential labels for the cues would not originate in them. Indeed, the post-training questionnaire confirmed the unavailability of easily accessible names for the ideograms, and the post-categorization questionnaire showed that very few participants in the ideogram training condition (4 out of 20) gave descriptions of the tones corresponding to ideograms' features. In contrast, in the label training condition, 11 out of 20 participants used the trained pseudowords to describe the tones, a significantly larger proportion (χ2 = 3.84, df = 1, p = .05). Even if labels were developed under ideogram training, the finding that the label group outperformed the ideogram group in the WPT—given equal performance at the end of training—suggests that these purported labels were largely idiosyncratic and ineffective.
	It is conceivable that the advantage in categorization of the label group compared to the ideogram group might be due to more efficient encoding of the tones under label training. The difference in encoding efficiency might have resulted in a memory benefit (easier retrieval) when categorizing the tones. Identification of auditory warning sounds has shown more robust learning using verbal labels compared to “graphic” labels (Edworthy & Hards, 1999; though in some of the sounds graphic labels worked better and there were further confounds in that study). However, there is little reason to assume that auditory-verbal pairings resulted in an encoding advantage in our study, given our finding of equal training performance between the label and ideogram training groups at the end of training.
	Another possible interpretation of the categorization advantage under label training would be increased perceptual discrimination of the cues (hypothesis of the “acquired distinctiveness of cues,” Miller & Dollard, 1941, as cited by Galizio & Baron, 1976). However, equal performance at the end of training in the label and ideogram conditions again argues against such an interpretation. Galizio and Baron (1976) suggested that acquired distinctiveness might be manifested with label training only when task conditions make cues difficult to discriminate. We have no reason to assume that the sequential presentation of the tones—with an interstimulus interval of 1 s—during the WPT imposes perceptual difficulty. Therefore the acquisition of perceptual features under label training does not seem to offer a strong explanation for our results.
	It could be argued that label and ideogram group training differed in ways other than verbal labels. For example, the Chinese characters may be characterized by greater visual complexity than the printed pseudowords. This difference might not affect training but only manifest itself in a demanding task such as WPT. The present design cannot preclude this possibility, which must be explored in further research.
	To explore the mechanisms that contributed to the difference in performance between the label and ideogram training groups we considered the possibility that WPT performance was driven by partial cue knowledge5. Given differences in training performance across participants and tones (e.g., not all participants were equally successful in learning the cue-response pairings for each of the four tones) we calculated each participant's individual cue knowledge, that is, the average performance for each of the four tones at the second half of the third day of training. Subsequently we constructed a measure of “partial cue knowledge” for each pattern and each participant in the WPT by averaging the participant's cue knowledge for the tones appearing in the pattern. This was only possible for participants in the label and ideogram training groups (because participants in intensity training did not classify tones by their identity). Data from the two conditions were re-analyzed with a modified mixed-effects model including partial cue knowledge (centered) as a fixed effect, along with its interactions. There was a four-way interaction involving target, trial, condition, and partial cue knowledge (β = −.034, ɀ = −3.124, p = .002), hence data from the two conditions were separately analyzed. For the label training group there was a positive effect of partial cue knowledge on optimal responding (interaction of partial cue knowledge by target: β = 1.722, ɀ = 3.313, p < .001), not interacting with trial (interaction of partial cue knowledge by trial and target: β = -0.004, ɀ = -0.511, p = .609), consistent with a constant influence throughout the WPT. For the ideogram training group there was an interaction of partial cue knowledge by trial and target (β = .030, ɀ = 4.480, p < .001) suggesting a variable effect of partial cue knowledge. Models with alternative trial centering revealed that partial cue knowledge had a negative effect in the first half of the procedure (e.g., at Trial 50, β = −2.365, ɀ = −3.124, p = .002; at Trial = 100, β = −.851, ɀ = −2.191, p = .029), no effect later on (at Trial = 150, β = .633, p = .229), and a positive effect at the end (β = 2.144, ɀ = 2.709, p = .007).
	This post-hoc analysis suggests that participants' categorization accuracy in the label training group was driven throughout the procedure by partial knowledge of the tone-label pairings. Participants performed better on those WPT trials that employed cues for which labels were better learned during training. This is consistent with the hypothesis that explicit hypothesis testing processes, mediated by the availability of verbal labels, are recruited during the WPT. Having names for the cues may have facilitated verbal working memory processes that contribute to category learning (Miles & Minda, 2011). In contrast, knowledge of tone-ideogram pairing seems to have interfered with WPT performance in the first half of the procedure. Perhaps the visual complexity of the ideograms distracted participants in the demanding WPT, impeding the formation of verbal, explicit rules. Further empirical investigation is needed to study this issue with planned comparisons in an appropriate design.
	Cue individuation
	The advantage in WPT performance of the ideogram training group compared to the intensity group may be attributed to the individuated representations formed for the tones during ideogram training. These representations, possibly akin to “perceptual anchors” (Ahissar, 2007), may have rendered the tones less abstract in working memory, thus facilitating the use of strategies when solving the WPT. In contrast, participants in intensity training could perform successfully disregarding tone identity, so task demands may not have caused the formation of individuated, concrete representations of the tones.
	However, the ideogram and intensity training groups also differed in training performance, prior to WPT, leaving the WPT difference open to alternative interpretations that cannot be confidently rejected. For example, participants in the intensity training group may have recruited fewer or less efficient cognitive resources during training. The lower rate of successful performance produced diminished reinforcement—through positive feedback—and may have led to less efficient processing of the auditory tones. Further research with an easier training task is required to empirically assess this possibility.
	The finding that cue individuation alone, in the absence of verbal labels, was beneficial to category learning in the WPT is important to the extent that the latter is primarily mediated by explicit processes, as it highlights the potential of individuated representations to participate flexibly in novel learning tasks. Previous research has suggested that cue characteristics are immaterial to WPT performance as long as there is an isomorphic probabilistic structure (Hopkins et al., 2004, Knowlton et al., 1994). In contrast, cue individuation seems to affect categorization performance, necessitating an explanation from memory systems approaches.
	Prior exposure
	Participants trained to associate sound intensity to colors exhibited greater categorization performance in the WPT compared to participants receiving no training at all. Notably, the intensity group was able to benefit from training explicitly requiring that the relevant dimension for later categorization (cue identity) be disregarded. The critical manipulation in this condition required participants to form intensity “categories” orthogonal to cue identity. Our pilot experiments showed that cue identity interfered with intensity judgments, so there is reason to hypothesize that cue identity and cue intensity are “integral” dimensions (Goldstone, 1994). On that account, it is possible that sensitization occurred along both dimensions during training and, thus, that intensity training enhanced discriminability among the cues (Goldstone, 1994). That this manipulation led to increased WPT performance compared to no training therefore suggests that (a) discriminability of the cues may be crucial for their effectiveness in probabilistic category learning and (b) exposure to stimuli is in itself beneficial for subsequent processing of these stimuli.
	The beneficial effect of intensity training was especially apparent early in the WPT since participants in the no training condition exhibited near-chance performance in the first two blocks of 10 trials (see Fig. 4), reflecting perhaps an initial difficulty to identify the four tones. Generally, familiarity with the stimulus set is known to affect subsequent performance (e.g., Goldstone & Steyvers, 2001). More specifically, Folstein et al. (2010) exposed participants to artificial stimuli prior to a categorization task utilizing categorizing stimuli that were novel but had similar configuration as exposure stimuli. Even when the dimensions of exposure stimuli were uncorrelated and thus provided no diagnostic value for later categorization, there was a clear advantage in categorization performance compared to a group that remained unexposed to the stimuli. Perhaps participants were able to learn the structure of the stimuli and thus had an advantage in hypothesis testing or resource allocation. In our experiment participants received feedback for associating sound intensity to colors. However, the relevant dimension for training was absent in later categorization, similar to Folstein et al., allowing an explanation of the beneficial effect of exposure to stimuli in later categorization performance along the same lines.
	Concerns and limitations
	It is notable that average performance on the second half of Day 3 of training was not correlated to average WPT categorization performance for any of the training conditions. This may be interpreted as supporting the existence of discrete learning systems: training required gradual acquisition of cue-response pairings, whereas the WPT presumably required explicit hypothesis testing. At the moment, differences in task demands between the training and categorization task in our study do not allow us to draw firm conclusions in this matter (cf. Dunn & Kirsner, 2003). On the other hand, a more refined, by-cue measure of training performance was found to be predictive of between-trials differences in WPT performance . Partial knowledge of the cue-label pairings acquired during training was found to facilitate post-training categorization, whereas partial knowledge of the cue-ideogram pairings initially interfered with and later facilitated categorization. This connection between training and categorization provides no evidence in favor of a multiple systems account.
	Observed differences in training performance between groups may cause some concern regarding the interpretations. Verbal label and ideogram training performance did not differ at the end of training, yet participants in the label training group probably achieved plateau performance (as evidenced by a lack of an effect of trial on Day 3) earlier compared to the ideogram training group (which kept on learning the cue-response pairings during Day 3, as evidenced by an effect of trial). We believe that this discrepancy between the two conditions does not pose a significant limitation on the interpretation of our results insofar as both groups' knowledge of the cue-response pairings was comparable at the end of the training procedure.
	Another concern stems from the fact that the ideogram group outperformed the intensity group in training performance. Although similar performance in all three training conditions was desirable, the intensity training condition was primarily designed to equate exposure to the stimulus set and recruitment of attentional resources. The design constraint that tone identity be disregarded led to a significant difference in training performance at the end of training, leaving our results regarding individuation open to alternative interpretations.
	Finally, we acknowledge that care should taken when interpreting the difference in WPT performance between the intensity and no-training groups. Participants in these conditions were—due to recruiting difficulties—sampled from different pools, hence no strong inferences can be made. This confound does not undermine the comparison of prime interest in our study, that is, between label and ideogram training.
	Implications and conclusion
	The WPT has been extensively used as a tool by multiple systems (e.g., Knowlton et al., 1996; Poldrack and Foerde, 2008) and single system theorists (e.g., Newell et al., 2011) to assess the existence and relative contribution of discrete memory systems during categorization learning. It has been suggested that the majority of young healthy participants (Gluck et al., 2002; Poldrack & Foerde, 2008) initially approach the task by sub-optimal strategies that can be said to be declarative (Shohamy et al., 2008) but later on they engage multiple-cue (or integrative) strategies. These later strategies may be mediated by the procedural system (Shohamy et al., 2008) or they may be supported by declarative learning processes since they are accompanied by high levels of awareness (Price, 2009) or self-insight (Lagnado et al., 2006; Newell et al., 2007). Our results are consistent with the latter assumption. If the WPT is mediated by a procedural system and not by explicit hypothesis testing later in training, then having names for the cues should not affect later categorization performance. The fact that the label training group outperformed the ideogram training group throughout the task suggests that the declarative-procedural distinction does not explain healthy participants' behavior in the WPT. Instead, a general learning mechanism may support performance throughout the task (Newell et al., 2007).
	To conclude, we have showed that newly trained verbal labels for the cues provide an advantage in probabilistic category learning performance. We based our hypothesis on the assumption that explicit hypothesis testing of verbal rules would be facilitated when having names for the cues, as opposed to associating the cues to difficult-to-name ideograms. The present results extend recent studies suggesting that language is not just for talking (Lupyan, 2008; Lupyan et al., 2007) and that verbal processes are important for categorization (Ashby & Maddox, 2005; Miles & Minda, 2011). Future research should examine in more detail the intuitive (but perhaps simplistic, see Newell et al., 2011) notion that humans may benefit from linguistic faculties during categorization with a new focus on verbal labels for categorizing items.
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