NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Extending the Rupture compression attack framework
against real world systems

Dimitrios P. Grigoriou

Supervisor : Kiayias Aggelos, Associate Professor

ATHENS

JULY 2017

EONIKO KAI KAIMOAIZTPIAKO MNMANENIZTHMIO AOHNQN

2XOAH OETIKQN EMIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NTYXIAKH EPTAZIA

ETTéKTOON TOU EpyaAciou €mBEoewV oCUPTTiEoNnNg Rupture yia
€MOECEIG OE TTPAYMATIKA CUCTAHOTA

Anuntpiog IN. Npnyopiou

EmiBAéTTWV: Kiayidag AyyeAog, AvatrrAnpwtng Kabnyntig

AOHNA

IOYAIOZ 2017

BSc THESIS

Extending the Rupture compression attack framework against real world systems

Dimitrios P. Grigoriou
S.N.: 1115201100144

SUPERVISOR: Kiayias Aggelos, Assistance Professor

NTYXIAKH EPTrAZIA

Emékraon Tou gpyaAciou emBEéoewyv ouuTrieong Rupture yia €mOE0EIC 0€ TTPAYHATIKA
OUCTANATA

Anuntpiog IN. N'pnyopiou
A.M.: 1115201100144

EMIBAEMNQN: Kiayiag AyyeAog, AvatrmAnpwTthig KabnyntAg

ABSTRACT

The need for system protection from various attacks makes system security one of the
most important technological fields in the 21° century. This work investigates attacks
on compressed encrypted protocols, and develops further the Rupture framework.

New methods are being proposed that allow the recovery of a secret from a website that
uses cryptographic suites, given the fact that the secret’ s prefix can be found multiple
times in the website’ s plaintext. This way, in theory, we can recover the whole plaintext
from a ciphertext.

At the same time, we present two new patches: one in the BetterCap framework and
one in PacketFu library. With these two patches, IPv6 attacks are now more modular
and easy to conduct. The BetterCap framework is the one used in the first part of the
Rupture attack. The purpose of this work is to make the Rupture attack possible on IPv6
targets.

The implementation of this work aims by no means to be used with malicious purposes.
On the contrary, it aims to sensitize the community about Man-in-the-Middle attacks, as
well as compression side-channel attacks, given the extensive growth of technology,
such as IPv6.

Rupture is a collaborative work with (alphabetical order): Dimitris Karakostas, Dionysis
Zindros, Eva Sarafianou. Updated versions on the current work can be found on the
following link: https://github.com/dimriou/rupture-thesis. Rupture repository is:
https://github.com/decrypto-org/rupture.

SUBJECT AREA: Security, Cryptography

KEYWORDS: Compression Attacks, Rupture Framework, BREACH Attack, Man-in-the-
Middle Attacks, IPv6, Neighbor Discovery Protocol

https://github.com/decrypto-org/rupture

NEPIAHWH

H avdykn yia TTpooTacia Twv UTTOAOYIOTIKWY CUCTNUATWY aTTO £TTIBECEIG, KOBIOTA TNV
A0@AAEIO WG £vav ATTO TOUG ONPAVTIKOTEPOUG TEXVOAOYIKOUG TOUEIG Tou 210 aiwva. H
TTOPOUCA €PYOOia €PeuvA €TMIOECEIC TTAVW OE OCUPTTIECPEVA KPUTTTOYPOPnUEVA
TTPWTOKOAAQ KAl CUYKEKPIPEVA AVATITUCOEI TIEPAITEPW TO EpYaAEio Rupture.

MpoteivovTal péBodol TTou EMTPETTOUV TNV AVOKAAUWN MUCTIKOU KPUTTTOYPO®NUEVNG
oeAidag, Tou otroiou TO TIPOBePa ouvavTaTal TTOAAEG QOPEG PECA OTO KEIPYEVO TNG
oeAidag. Me autd Tov TPOTTO dUvETAl N duvaTdTNTA, O BewWpPNTIKO €TTITTEDO, £CAYWYNAS
OAGKANPOU TOU KABaPOU KEIPEVOU ATTO TO KPUTTTOKEIUEVO.

MapadAAnAa TTapoucidalovtal dUo VEA ETTITTAEOV KOUMATIA OTa AdN UuTTdpXouoa gpyaAcia
BetterCap kai PacketFu, péoa amd Ta otroia €ival TTAéov duvarr) n €1TiBeon O€ TEPUATIKA
TTOU XPNOIUOTTOIOUV TO TTPWTOKOAAO IPV6G, pe TTOAU peyaAuTtepn auTopartoTroinon. To
epyaAeio BetterCap €ival autd TTou XpnOIPOTTOIEITAl ATTO TO Rupture 010 TTPWTO OKENOG
TNG €TTiBeong. Méoa atd auTAv Thv gpyacia 10 Rupture Ba utropei TTAEOV VO OTOXEUEI
BUuaTta TTou XPNOIUOTTIOIOUV TO TTPWTOKOAAO IPV6.

H epyacia autr) dev €xel 0€ Kapia TTEPITITWON WG OTOXO TNV KOAKOBOUAN Xprion Twv
TEXVIKWYV TTOU TTapoucidfovTtal. AvTiBeTa e TNV OAOEVA KAl TTEPICOOTEPN UIOBETNON VEWV
TEXVOAOYIWY, OTTWG To IPV6, B€Ael va guaioBnrotroifocel TNV KOIvOTATA TOCO VIa TIG
emBéoeic Man-in-the-Middle, 600 Kal ylO €KEIVEG O€ CUUTTIEOUEVA KPUTTTOYPOPNUEVA
TTPWTOKOAAQ.

H dnuioupyia 6Awv Twv PEBODdWYV KOl TEXVIKWYV Eival OUVEPYATIKA ME TOUG (aAQaBNTIKA
ocipd): Anuntpn KapakwoTta, Alovuon ZnAvdopo, Eva Zapagiavou. AvavewUEVES
ekdb6oeIC TNG TTapoloag epyaciag Ptmopouv va Bpebouv otov akdAouBo cuvdeoO:
https://github.com/dimriou/rupture-thesis. To epyaAcio Rupture BpiokeTal 0T0 CUVOECHO:
https://github.com/decrypto-org/rupture.

OEMATIKH MNMEPIOXH: AcpdAcia, Kputrtoypagia

AEZEIZ KAEIAIA: EmB¢ocig ZupTrieong, EpyaAcio Rupture, ETriBeon BREACH,
EmO6éocigc Man-in-the-Middle, IPv6, MpwTtdkoAAo Neighbor

Discovery

https://github.com/dimriou
https://github.com/decrypto-org/rupture

EYXAPIZTIEZ

H trruxiokr autr) ektmovABnke uttd tnv eTTiBAeywn Tou kabnynt AyyeAlou Kiayid, Ttov
oTT0i0 Ba BeAa va euxapioThow Bepud yia TN PorBeid Tou, KaBWG Kal yia TO

YEYOVOG OTI HEOW TNG EPYAOiag AQUTAG HE €loryaye OoTov KOOPO TNG ACQAAEIag Kal TNG
KpuTrtoypagiag.

Akoua, Ba nBeAa va suxapiotiow Tov Alovuon ZAvOPO, 0 OTT0I0G HOU TTPATEIVE TO BEUQ
TNG epyaciag, pe kKaBodriynoe katd 1n SIdpKEIa TNG EKTTOVNONG TNG Kal 0€ KABE eukalpeia
MOoU HETEDIDE CUVEXWG KAIVOUPIEG YVWOEIG.

Emiong Ba nBeAa va suxapiotiow Tov Anuntpn KapakwoTa yia Tnv ouvexy pondeia
TTOU TTPOOQEPE, TIG XPAOIMEG CUMPBOUAEG Kal TNV YEVIKOTEPN UTTOOTAPIEN TOU KATA TNV
OIAPKEIA TNG EpYATiag.

TEéNoG, Ba BeAa va euxapIoTHOW TOUG QIAOUG KAl TNV OIKOYEVEIA POU YIa TN OTAPIEN

TTOU PouU TTapeixav OAa autd Ta xpovia.

CONTENTS

e N 12
I N (@ 15 1 L @ I 0 13
L1 TRESIS SETUCTUIE . ..eeiie ittt ettt e e e et e e e ea bt e e e e a b et e e ekt et e e e aabe e e e e anbb e e e e anbeeeeeannns 14
2. THEORETICAL BACKGROUND. ...ttt e e 15
P28 R o A | « B TP TP POPPPPPOPPPPN 15
20 00t R 4 o OO PRSP RPN 15
2.1.2 HUFMEN COOING ...ttt ettt et s ettt e e ettt e e e st e e e e e nbre e e ennees 17
2.2 Same-0rigin POLICY oo 18
2.2.1 CrOSS-SItE SCHPNG . . e uttetieiiiiit ettt ettt e e et et e e e s bt e e s nbe e e e anbr e e e anbeeeesanenes 19
2.2.2 CrOSS-Site rEQUESE FOMGEIY .. .eeiieiiiiiie ittt ettt et e e e e et e e et e e e e ennns 19
2.3 TranSPOIt LAYEI SECUIITY .ooiiuiieiiiiiiie ittt ettt ettt ettt e sttt e e s bb e e e e s abb e e e e sbbe e e e sbbeeeesbneeeeane 20
P \V = T 1 B Y= Y/ Ko | OO PERPR 22
241 ARP SPOOfiNG..cccci i 22
3. RUPTURE FRAMEWORK ...ttt e e e e e e e e e e eees 24
0 A AN = (o3 QX3 U1 T o] o] S PP 24
3.2 PriNCIPIES OF ALLACK ..eeiiiiiiiiie ittt ettt et e et e e s saba e e s aanneee s 24
TR B N o] 11 (=To] AU] =TSP PUPPR PP 27
TR 0 R [0= ox (o] PP PP PR PPRN 27
B T 1 11 SRS 28
R T T O |1 o | PP PRR TP PP 29
3.314 REAIFIME . 30
I TR T T = - Tox 1= o (o EO PR P EEP PP SPPI 32
4. BACKTRACKING ...ttt e e e e e e e e e e eeaans 34
4.1 MethOod SPECITICAIONS ..ouviiii ettt sttt e e s s abe e e s s bt ee s anneeee s 34
O AN o] 4 11 C=Tod AU PSPPSR 36
4.2 1 ROUNG MOAE ...ttt e e e e e sttt et e e e e e e aanb b b e e eeae e e e e annbeeneeas 36

4.2.2 BacKtraCking ANBIYZET........ue it 36

O TPV Bt 42
5.1 Theoretical BACKGIrOUNGuuiiiiiiiiiiiic et e e s e e e e e s s s e e e e e e e e snnnraeeeeaeenas 42
5.1.1 IPV6 AAAresSing MOGESceeiiiiiiiiiiiiiiiie e e e sttt e e e e e s e e e e e s e s et ae e e e e e s s e nntnaaeeeeeeeeesnnennnees 42
B5.1.2 IPVB AUAIESSESveiieiiiiiiee ettt ettt e e ettt e e e sttt e e e sa bt e e e e a b et e e e ambb e e e e anbe e e e e anbbeeeeanbbeeeenneas 44
L0 I B (N =T o] o o] gl D T=T o0 Y= Y SRR 45
5.1.4 Neighbor CaChe SEAtESuueiiiiiiiiiiiiiiiiie e e e e e e e s e e s r e e e e e s s s st ra e e e e e e s e e snnenneees 46
LI | XY A S o= (o I A] L =T (U1 PP a7
521 TPV PaISEI ..o 47
5.2.2 Neighbor IPV6/MAC AdAreSS ISCOVEIYccuuiiiiiiiieeiiiiie ettt ettt 47
5.2.3 IPv6 Packet Manipulation (PacketFu extension patCh)cccocveeiriiiieiniiiee e 48
5.2.4 Neighbor DISCOVErY SPOOTEr....cccooviiiiiee 50
5.25 ip6tables Firewalloooo o 50
6. CONGCLUSION L.cuiiiiiiii et e e e e e e e e et e e ea e e e eannaaes 51

REFERENCES ... e 52

LIST OF FIGURES

Figure 2.1: Plaintext to be compressed............c.oooiiiiiii 15
Figure 2.2: Compression starts with literal representation.................................l. 16
Figure 2.3: Use a pointer at distance 30 and length 13 ...l 16
Figure 2.4: Continue with literal, 16
Figure 2.5: Use a pointer pointingto a pointer..............ooooiiiiiiieee, 16
Figure 2.6: Use a pointer pointing to a pointer pointing to a pointer.......................... 17
Figure 2.7: HUffman tree. e 18
Figure 2.8: TLS handshake flow........ ... 20
Figure 2.9: TLS reCOId .. .ue i 21
Figure 2.10: Man-in-the-Middle. ... e 22
Figure 2.11: ARP SPOOfiNG.. ..ot 23
FIgure 3.1: Sampleset.o 25
Figure 3.2: Divide & Conquer Alphabet. ... 26
Figure 3.3: SCOrebDOard.ui 27
FIgure 3.4: CHENt COUE. ... e 30
Figure 3.5: Real-time Code. ..o, 31
Figure 3.6: WOIK ODJECT. ... 31
Figure 3.7: work-completed. ... 32
Figure 4.1: Common prefix plaintext.............ooiiiii 34
Figure 4.2: Backtracking tree implementation...................ooi 36
Figure 4.3: Relative probability formula...............c.oooii 37
Figure 4.4: Relative probability example........ ... 37
Figure 4.5: Complete Backtracking graph with all types of probabilities..................... 38
Figure 4.6: Backtracking execution Step 1..... ..o 39

Figure 4.7:

Backtracking execution Step 2..........cooiiiiiii 39

Figure 4.8: Backtracking execution Step 3.........cooiiiiiiiii 40

Figure 4.9: Backtracking execution Step 4.........c.oiiiiiiii i 40
Figure 4.10: Backtracking eXecution Step 5...... ..o 41
Figure 4.11: Backtracking execution Step 6..........ccooviriiiiiii i 41
Figure 5.1: UNiCast MESSAGING.oiritie ittt et e eneaans 42
Figure 5.2: MUItICaSt MESSAGING.ttt e 43
Figure 5.3: ANYCAST MESSAGING. cueuttie ettt ae s 43
Figure 5.4: Cache state algorithm..............ooi e, 47
Figure 5.5: Multicast Neighbor Solicitation Message for address resolution................ 48
Figure 5.6: Unicast Neighbor Advertisement Message for address resolution............. 48
Figure 5.7: Neighbor Solicitation message format................ccoooiiiiiiiiii 49
Figure 5.8: Neighbor Advertisement message format....................coooiiiiiin, 49

Figure 5.9: Spoofed neighbor cache entry..............cooii e, 50

PREFACE

The scope of this thesis project is to study the vulnerabilities of online systems and
more specifically compression side-channel attacks. We develop a tool that performs
such attacks in real world systems.

This thesis project was elaborated during my studies in Department of Informatics and
Telecommunications in the University of Athens.

The thesis was realized from April 2016 to July 2017 under the supervision of Associate

Professor Kiayias Aggelos, under the guidance of PhD candidate Zindros Dionysis and
with the help of Cryptography Researcher Karakostas Dimitris.

Dimitrios Grigoriou,

Athens, 24" July 2017

Extending the Rupture compression attack framework against real world systems

1. INTRODUCTION

As the Internet evolves and computer networks become bigger and better, network
security has become one of the most important factors for society to consider. Big
enterprises like Facebook, Microsoft or Google are designing and building software
products that need to be protected against foreign attacks. At the same time, recent
publications about massive leaks on personal info of users have changed the way
people are using online services. Researchers have been constantly seeking solutions
in order to protect against every possible kind of attack.

The implementation of this work aims to present the weaknesses of multiple online
protocols which are currently used on the Internet and sensitize the community about
Man-in-the-Middle attacks, as well as compression side-channel attacks.

Most of the data which are sent online are compressed beforehand. Our work focuses
on exploiting those compression algorithms in order to extract plaitext from encrypted
pages. More specifically, we extend previous attack models, such as BREACH, by
creating a modular framework for conducting those types of attacks. This way we point
out the weaknesses of online protocols, which are considered to be safe.

On this work, we focus on compression software gzip, which uses the DEFLATE
algorithm which is a variation of Huffman [17] and LZ77 compression. LZ77 finds
duplicated strings in the input data. The second occurrence of a string is replaced by a
pointer to the previous string, in the form of a pair (distance, length). This technique
helps conducting the attack, while Huffman compression prevents it.

HTTP (Hyper-Text Transfer Protocol) is the most common method for data
communication for the World Wide Web. However it is common knowledge that HTTP
data are not encrypted and should not be considered as secure. This problem, was
solved by SSL (Secure Socket Layer) and its descendant TLS (Transport Layer
Security), which is a cryptographic protocol that provides communication security, by
encrypting data before they are sent, over a computer network.

Encryption algorithms can be split in two big categories: stream ciphers and block
ciphers. In the first category, data are encrypted as a continuous stream, while on the
other one they are split into multiple blocks of equal size. In case the data length is not
sufficient to create a complete block, it is filled with artificial noise in order to achieve the
appropriate size.

One of the most popular stream ciphers is RC4. However, this algorithm is considered
to be insecure due to multiple vulnerabilities. On the other hand, AES is the most
popular block cipher algorithm and it is widely used in the majority of online systems
with a few variations. Although block ciphers make it harder for our attack to succeed,
we describe below interesting techniques that can go around this problem and
ultimately perform the attack successfully.

In order to achieve the attack against block ciphers, we use statistical methods by

injecting our own artificial noise to each target block. Then we analyze the results in
order to extract a decision.

D. Grigoriou 13

Extending the Rupture compression attack framework against real world systems

Rupture’s implementation is designed for modularity and easy use. Its architecture
requires minimum modification by the user and gives the ability for multiple compression
side-channel attacks at the same time. This tool was used in lab environment attacks.

This work introduces new techniques in order to extend Rupture and make the attack
possible in real world systems. We introduce a new method for recovering target
secrets with high certainty. We also create new patches in order to use Rupture in IPv6
end-points.

To sum up, this work is the extension of a continuous lab research which was
introduced in the past few years and pointed out some key vulnerabilities in online
systems. It is important that new methods of defense will be adopted against this attack,
in order to achieve higher protection in online communications.

1.1 Thesis Structure

Chapter 2
This chapter provides the reader with basic information, both in technical as well as
theoretical terms, which will be used later. We describe the most common
compression algorithms as well as basic protocols used for secure communications.
We also introduce various attacks against them.

Chapter 3
In this chapter we describe the tool we created for attacks in compressed encrypted
protocols. More specifically, we outline the conditions under which such an attack is
carried out, we analyze the terminology used in our framework and finally we
describe in detail its various parts and their functionalities.

Chapter 4
This chapter introduces a new method for conducting the Rupture attack,
Backtracking. This method can recover multiple secrets with common prefix and
extracts the final secret with a high amount of certainty, based on probabilistic
models.

Chapter 5
In this chapter we introduce a patch for conducting Man-in-the-Middle attacks on
IPv6 endpoints. This is done by extending the capabilities of BetterCap framework,
as well as the underlying library that is used, PacketFu.

Chapter 6
Conclusion

D. Grigoriou 14

Extending the Rupture compression attack framework against real world systems

2. THEORETICAL BACKGROUND

In this chapter, we intend to provide the necessary background to the user to
understand the mechanisms used later in the work. The description of each system is
only a short introduction to familiarize the reader with the needed concepts.

Specifically, section 2.1 describes the functionality of the gzip compression software
and the algorithms that it entails. Section 2.2 covers the same-origin policy that applies
in the web application security model. In section 2.3 we explain Transport Layer
Security, which is the widely used protocol that provides communications security over
the Internet. Finally, in section 2.4 we describe attack methodologies, such as ARP
spoofing, in order for an adversary to perform a Man-in-the-Middle attack.

2.1 gzip

gzip is a file format and a software application used for file compression and
decompression. It is the most popular compression method on the Internet, used
alongside with protocols such as HTTP and XMPP. Derivatives of gzip include the tar
utility, which can extract .tar.gz files, as well as zlib, an abstraction of the DEFLATE
algorithm in library form.

It is based on the DEFLATE algorithm, which is a composition of LZ77 and Huffman
coding. DEFLATE could be described in short by the following compression schema:

DEFLATE(m) = Huffman(LZ77(m))

In the following sections we will briefly describe the functionality of both these
compression algorithms.

21.1LZ77

LZ77 is a lossless data compression algorithm published by A. Lempel and J. Ziv in
1977 [7]. It achieves compression by replacing repeated occurrences of data with
references to a single copy of that data existing earlier in the uncompressed data
stream. A match is encoded by a pair of numbers called a length-distance pair, the first
of which represents the length of the repeated portion and the second of which
describes the distance backwards in the stream. In order to spot repeats, the protocol
needs to keep track of some amount of the most recent data, specifically the latest 32
kilobytes. This data is held in a sliding window, therefore the initial appearance of a
portion of data needs to have occurred at most 32 Kb up the data stream, in order to be
compressed. Also, the minimum length of a text that can be compressed is 3
characters. Compressed text can refer to literals as well as pointers.

Below you can see an example of a step-by-step execution of the algorithm for a
chosen text:

Figure 2.1: Plaintext to be compressed.

D. Grigoriou 15

https://en.wikipedia.org/wiki/Gzip

Extending the Rupture compression attack framework against real world systems

Hello world! Nice to meet you.

Hello world! Nice to meet you.

Figure 2.2;: Compression starts with literal representation.

Hello world! Nice to meet you.
Hello world!

Hello world! Nice to meet you.
L(go,l:a}

Figure 2.3: Use a pointer at distance 30 and length 13.

Hello world! Nice to meet you.
Hello world!

Hello world! Nice to meet you.

L(Sﬂ,l 3) Go away.

Figure 2.4: Continue with literal.

Hello world! Nice to meet you.
Hello world!

Hello world! Nice to meet you.
L(SD,L&L} Go away.
(21,13)

Figure 2.5: Use a pointer pointing to a pointer.

D. Grigoriou

16

Extending the Rupture compression attack framework against real world systems

Hello world! Nice to meet you.

,13) Go away.

A
R 21,19 (13,19
AN

Figure 2.6: Use a pointer pointing to a pointer pointing to a pointer.

2.1.2Huffman coding

Huffman coding is also a lossless data compression algorithm developed by David A.

Huffman and published in 1952 [4]. When compressing a text with this algorithm, a
variable-length code table is created to map source symbols to bit streams. Each
source symbol can be represented with less or more bits compared to the
uncompressed stream, so the mapping table is used to translate source symbols into bit
streams during compression and vice versa during decompression. The mapping table
could be represented as a binary tree of nodes, where each leaf node represents a
source symbol, which can be accessed from the root of the tree by following the left
path for O and the right path for 1. Each source symbol can be represented only by leaf
nodes, therefore the code is prefix-free, i.e. no bit stream representing a source symbol
can be the prefix of any other bit stream representing a different source symbol. The
final mapping of source symbols to bit streams is calculated by finding the frequency of
appearance of each source symbol of the plaintext. That way, most common symbols
will be coded in shorter bit streams, resulting in a compression of the initial text.

Finally, the compression mapping needs to be included in the final compressed text so
that it can be used during decompression.

Below follows an example of a plaintext and a valid Huffman tree that can be used for
compressing it:

| find myself strangely drawn to this odd configuration of activity

Frequency Analysis

()10 i 7 t: 6 n: 5 0:5
a: 4 d: 4 f: 4 y: 3 c:2
e 2 g: 2 I 2 r.2 S: 2
h: 1 m: 1 u:1 v: 1l w: 1l

D. Grigoriou 17

Extending the Rupture compression attack framework against real world systems

0 1

0 1 0 1
0 1 1 0 1

0 0
7|8 o 1|7 . ° o SPACE [10 o
000 010 110
0 0 0 1 N0 0 4
JE ° D|a] |[F|a4 ° Ala]| |o]s o B o
0010 0110 0111 1001 1011 1110
0\ 1 N0 0 0\
El2] |a]2 cle ° L2 o JE R|3
00110 | | 00111 10001 10100 11110 | [11111
0\ 0 N\
H 1 E v °
100000 | | 100001 101010
0\
THE w i

1010110 1010111

Figure 2.7: Huffman tree.

2.2 Same-origin policy

Same-origin policy is an important aspect of the web application security model. Under
the policy, a web browser permits scripts contained in a first web page to access data in
a second web page, but only if both web pages have the same origin. An origin is
defined as a combination of Uniform Resource Identifier scheme, hostname, and port
number. This policy prevents a malicious script on one page from obtaining access to
sensitive data on another web page through that page’s Document Object Model.

The following table explains same-origin-policy. We assume that we want access from
http://www.example.com/dir/page.html to each of the following URLS:

http://www.example.com/dir/page2.html success
http://www.example.com/dir2/other.html success
http://www.example.com:81/dir/other.html different port
https://www.example.com/dir/other.html different protocol
http://en.example.com/dir/other.html different host
http://example.com/dir/other.html different host

D. Grigoriou 18

https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/Document_Object_Model

Extending the Rupture compression attack framework against real world systems

This mechanism is particularly significant for modern web applications that extensively
depend on HTTP cookies to maintain authenticated user sessions. The lack of same
origin policy would result in the compromise of data confidentiality or integrity.

Despite the use of same-origin policy by modern browsers, there still exist attacks that
enable an adversary to bypass it and compromise a user's communication with a
website. Two major types of such attacks, cross-site scripting (XSS) and cross-site
request forgery (CSRF) are described in the following subsections.

2.2.1Cross-site scripting

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are
injected into otherwise benign and trusted web sites. XSS attacks occur when an
attacker uses a web application to send malicious code, generally in the form of a
browser side script, to a different end user. That way, same-origin policy can be
bypassed and sensitive data handled by the vulnerable website may be compromised.

XSS attacks can generally be categorized into two categories: stored and reflected.

Stored XSS Attacks are those where the injected script is permanently stored on the
target servers, such as in a database, in a message forum. The victim then retrieves the
malicious script from the server when it requests the stored information.

Reflected XSS Attacks are those where the injected script is reflected off the web
server, such as in an error message, search result, or any other response that includes
some or all of the input sent to the server as part of the request.

For further information on XSS refer to [10].

2.2.2Cross-site request forgery

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on a web application in which they are currently authenticated. CSRF
attacks specifically target state-changing requests, not theft of data, since the attacker
has no way to see the response to the forged request. An attacker may trick the users
of a web application into executing actions of the attacker’s choosing. If the victim is a
normal user, a successful CSRF attack can force the user to perform state changing
requests like transferring funds, changing their email address, and so forth. If the victim
is an administrative account, CSRF can compromise the entire web application.

For example, when Alice visits a web page that contains the HTML image tag <img

src="http://bank.example.com/withdraw?account=Alice&amount=100000&for=Mallory ">,
that Mallory has injected, a request from Alice’s browser to the example bank’s website
will be issued, stating an amount of 1.000.000 to be transferred from Alice’s account to
Mallory’s. If Alice is logged in the example bank’s website, the browser will include the
cookie containing Alice’s authentication information in the request, validating the
request for the transfer. If the website does not perform more sanity checks or further
validation from Alice, the unauthorized transaction will be completed. An attack like this
is very common on Internet forums, where users are allowed to post images.

D. Grigoriou 19

Extending the Rupture compression attack framework against real world systems

2.3 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic protocol that provides
communications security over a computer network, allowing a server and a client to
communicate in a way that prevents eavesdropping, tampering or message forgery.

TLS is composed of two layers: the TLS Record Protocol and the TLS Handshake
Protocol. The Record Protocol provides connection security, while the Handshake
Protocol allows the server and client to authenticate each other and negotiate
encryption algorithms and cryptographic keys before any data is exchanged.

One category of TLS attack is compression attacks [13]. Such attacks exploit TLS-level
compression in order to decrypt ciphertext. In this work, we extend the usability and
optimize the performance of such an attack, BREACH.

1.1.1TLS handshake

TLS handshake

client server
L]
Generate a
random number: x

Client Hello: { offered TLS version, lists of ciphers/compression, x }

Generate a
random number: y

Server Hello: { choosed TLS version, choosed ciphers/compression,
server certificate, [cllent certificate re%est], v}

Check: server's certiﬁcatleﬁ

I
Generate a random

nurmber: z(PreMaster Secret

Client Key Exchange: { encrypted z(by server's public key),
[clignt certiﬁcat_e] 1

[Check: client's certiﬁcatelﬂ

N
Decrypte to get z

Compute Session Key:
k= fx, y, 2)

Client Finish: { change cipher spec,
encrypted FINISH message(by session key k) }

Y

Compute Session Key:
k=1 v, 2)

Server Finish: { change cipher spec,
encrypted FINISH message (by session key k) }

Exchange Encrypted Messages >

Check: FINISH message |
1
client server

Figure 2.8: TLS handshake flow.

D. Grigoriou 20

http://breachattack.com/

Extending the Rupture compression attack framework against real world systems

The above sequence diagram presents the functionality of a TLS handshake. The client
and the server exchange the basic parameters of the connection such as the highest

TLS protocol version, a random number, a list of suggested cipher suites and suggested
compression methods. The server provides the client with all the necessary information
in order to validate and use the asymmetric server key to compute the symmetric key
that will be used for the rest of the communication. The client computes the Pre-
MasterSecret and sends it to the server which is then used by both parties to compute
the symmetric key. Finally, both sides exchange and validate hash and MAC codes over
all the previous messages, after which they both have the ability to communicate safely.

This applies only in the basic TLS handshake. Client-authenticated and resumed
handshakes are quite different, although they are not relevant for the purpose of this
work.

1.1.2TLS record

+ Byte +0 Byte +1 Byte +2 Byte +3

Byt Content type
Bytes Version Length
4 (Major) (Minor) (bits 15 8] (bits 7..0)
Bytes
5..(m-1) Protocol message(s)
Bytes
m..(p-1)
Bytes
p-.(q-1)

MAC (optional)
Padding (block ciphers only)

Figure 2.9: TLS record.

The above figure depicts the general format of all TLS records.

The first field defines the Record Layer Protocol Type of the record, which can be one of
the following:

Hex Type

0x14 ChangeCipherSpec
0x15 Alert

0x16 Handshake
0x17 Application
0x18 Heartbeat

The second field defines the TLS version for the record message, which is identified by
the major and minor numbers:

Major Minor Version
3 0 SSL 3.0
3 1 TLS 1.0

D. Grigoriou 21

Extending the Rupture compression attack framework against real world systems

3 2 TLS 1.1
3 3 TLS 1.2

The aggregated length of the payload of the record, the MAC and the padding is then
calculated by the following two fields: 256 _ (bits15::8) + (bits7::0).

Finally, the payload of the record, which, depending on the type, may be encrypted, the
MAC, if provided, and the padding, if needed, make up the rest of the TLS record.

2.4 Man-in-the-Middle

A Man-in-the-Middle attack is a type of cyber attack where a malicious actor inserts
themselves into a conversation between two parties, impersonates both and gains
access to information that they were trying to send to each other. A man-in-the-middle
attack allows a malicious actor to intercept, send and receive data meant for someone
else, or not meant to be sent at all, without either outside party knowing until it is too
late.

<>

Man In The Middle

Figure 2.10: Man-in-the-Middle.

MitM attacks can be mitigated using end-to-end encryption, mutual authentication or
PKls. However, some attacks are still feasible against poorly configured end-points.

Below we describe one such attack, ARP Spoofing.

2.4.1ARP Spoofing

ARP spoofing [8] is a type of attack in which an attacker sends falsified ARP (Address

Resolution Protocol)[11] messages over a local area network. This results in the linking
of an attacker’'s MAC address with the IP address of a legitimate computer or server on
the network. This enables the attacker to begin receiving any data that is intended for
that IP address. ARP spoofing can enable malicious parties to intercept, modify or even
stop data in-transit.

ARP spoofing can also be used for legitimate reasons, when a developer needs to
debug IP traffic between two hosts. The developer can then act as proxy between the

D. Grigoriou 22

https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Extending the Rupture compression attack framework against real world systems

two hosts, configuring a switch that is used by the two parties to forward the traffic to the
proxy for monitoring purposes.

Switch
Alice
Y0 O / IP:10.0.0.7
IP: 10.0.0.1 0%, -@\Q & MAC: [aa:aa:aa:aa:aa:aa]
MAC: [bb:bb:bb:bb:bb:bb] '{347’%& Qb\(\&'
B oL
“a, Fo
%, 2 Q&
G, 06/ ?g-‘&.
EPS &
@, Ob&\\‘o
N “\Q.G'
s o
Attacker
IP10.0.0.3

MAC: [cc:ce:ceiceiccicc]

Figure 2.11: ARP spoofing.

D. Grigoriou 23

Extending the Rupture compression attack framework against real world systems

3. RUPTURE FRAMEWORK

In this chapter, we describe our framework for conducting compression side-channel
attacks, Rupture. Rupture [3] is a service-based architecture system which contains
multiple independent components.

The section 3.1 describes in detail the assumptions needed in order to orchestrate the
attack. The section 3.2 describes the terminology used in our framework and its
governing principles. Finally, the section 3.3 presents the multiple components
thoroughly. While the components are designed to be able to run independently on
different networks or computer systems, the attack can be performed by running all
subsystems on an individual system. We provide appropriate scripts to conduct such
attacks easily.

3.1 Attack Assumptions

The attack framework assumes a target service to be attacked. Typically this target
service is a web service which uses TLS. Specifically, we are targeting services that
provide HTTPS end-points. However, this assumption can be relaxed and attacks
against other similar protocols are possible. Any protocol that exchanges encrypted
data on the network and for which a theoretical attack exists can in principle be attacked
using Rupture. We designed Rupture to be a good playground for experimentation for
such new attacks. Examples of other encrypted protocols for which attacks can be
tested include SMTP and XMPP.

The attack also assumes a user of the target service for which data will be decrypted,
the victim. The victim is associated with a particular target.

There are two underlying assumptions in our attack: The injection and the sniffing
assumptions. These are often achieved through the same means, although not
necessarily.

The injection assumption states that the adversary is able to inject code to the victim’s
browser for execution. This code is able to issue adaptive requests to the target service.

Injection in Rupture is achieved through the injector component. The code that is
injected is the client component.

The sniffing assumption states that the adversary is able to observe network traffic
between the victim and the target. This traffic is typically ciphertexts. Sniffing is
achieved through the sniffer component.

Both the sniffer and client will be described in section 3.3.

3.2 Principles of Attack

The attack takes place by first injecting client code into the victim’s computer using the
injector. The client then opens a command-and-control channel to the real-time service,

D. Grigoriou 24

Extending the Rupture compression attack framework against real world systems

which forwards work from the backend to the client. The real-time service facilitates the
communication between the client and backend and the backend module makes all the
decisions for the attack. Further description for the real-time and the backend is
provided in 3.3.

When a client associated with a victim asks to work, the backend passes a work request
to the real-time service, which passes it to the client. These work requests ask the client
to perform a series of network requests from the victim’s computer to the target web
application. As these requests are made from the victim’s browser, they contain
authentication cookies which authenticate the user to the target service. As such, the
responses contain sensitive data, but that data is not readable by the client due to
same-origin policy.

When a response arrives from the target web app to the victim’s computer, the
encrypted response is collected by the sniffer on the network. The encrypted data
pertaining to one response is a sample. Each work asks for multiple requests to be
made, and therefore multiple samples are collected per work. The set of samples
collected for a particular work request are a sampleset.

def _sampleset_to_work(self, sampleset):
return {
'url': self._url(sampleset.candidatealphabet),
'amount': self._victim.target.samplesize,
'alignmentalphabet': sampleset.alignmentalphabet,
"timeout': 0

Figure 3.1: Sampleset

A successful attack completely decrypts a portion of the plaintext. The portion of the
plaintext which the attack tries to decrypt is the secret. That portion is identified by an
initially known prefix which distinguishes it from other secrets. This prefix is typically 3 to
5 bytes long. A prefix of such a length is required to bootstrap the attack due to the
LZ77 implementation. Each byte of the secret can be drawn from a given alphabet, the
secret’'s alphabet. For example, some secrets only contain numbers, and so their
alphabet is the set of numbers [0-9].

At each stage of the attack, a prefix of the secret is known, because that portion of the
secret has already been successfully decrypted. The known prefix gets extended until
the whole secret becomes known, at which stage the attack is completed.

When a certain prefix of the secret is known, the next byte of the secret must be
decrypted. The attack initially assumes the next unknown byte of the secret exists in the
secret’s alphabet, but slowly drills down and rejects alphabet symbols until only one
candidate symbol remains. At each stage of the attack on one byte of the secret, there
is a certain known alphabet which the next byte can belong to. This known alphabet is a
subset of the secret’s alphabet.

D. Grigoriou 25

Extending the Rupture compression attack framework against real world systems

To drill down on the known alphabet, one of two methods is employed. In the serial
method, each symbol of the known alphabet is tried sequentially. In the divide &
conquer method, the alphabet is split into two candidate alphabet subsets which are
tried independently.

def _build_candidates_divide_conquer(self, state):
candidate_alphabet_cardinality = len(state['knownalphabet']) / 2

bottom_half = state['knownalphabet'][:candidate_alphabet cardinality]
top_half = state['knownalphabet'][candidate_alphabet_cardinality:]

return [bottom_half, top_half]

Figure 3.2: Divide & Conquer Alphabet

The above figure shows how the initial alphabet is divided into two equal alphabets
each of which will be tested separately.

The attack is conducted in rounds. In each round, a decision is made about the state of
the attack and more becomes known about the secret. In a round, either the next byte
of the secret becomes known, or the known alphabet is drilled down to a smaller set. In
order to compare various different candidate alphabets, the attack executes a series of
steps to collect batches of data collection for each round.

In each batch, several samples are collected from each probability distribution
pertaining to a candidate alphabet, forming a sampleset. When samplesets of the same
amount of samples have been collected for all the candidate alphabets, a batch is
complete and the data is analyzed. The analysis is performed by the analyzer which
statistically compares the samples of different candidates and decides which candidate
is optimal, i.e. contains the correct guess. This decision is made with some confidence,
which is expressed in bytes. If the confidence is insufficient, an additional batch of
samplesets is collected, and the analysis is redone until the confidence value surpasses
a given threshold.

Once enough batches have been collected for a decision to be made with good
confidence, the round of the attack is completed and more information about the secret
becomes known. Each round at best collects one bit of information of the secret.

D. Grigoriou 26

Extending the Rupture compression attack framework against real world systems

B o e o
Candidate scoreboaild:
d: 16576
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
16592
z: 16592
(HHARBRBARRRBRARABARARBHARBARARRARARARBARARARRARARBARRARBRARRBRARBARRBABRARARARARRR
Decision:
state: {'knownalphabet': u'abcdefghijklmnopqrstuvwxyz', ‘knownsecret': u'imperd'}
confidence: 1.0
RERBERBRBRBB BB BB BHBHBRERBH BB RBH BB R BB HB R B R B AR BB BB R BERB R BB BB BB BB R R BB BB AR B R RH

a:
Cc:
b:
e:
g:
1:
h:
k:
j:
m:
Ls
[
n:
q:
p:
S:
r:
u:
t:
w:
v:
y:
X

Figure 3.3: Scoreboard

The above figure shows the results of the analysis of one batch. For each candidate
letter we present a number, which is the total length of the samplesets for the specific
letter. The candidate letters are presented in an ascending order of the total length.

Under the scoreboard is the decision which consists of the known alphabet, the possible
knownsecret and the confidence describing how sure we are regarding the possible
knownsecret.

3.3 Architecture

3.3.1Injector

The injector component is responsible for injecting code to the victim’s computer for
execution. In our implementation, we assume the adversary controls the network of the
victim. Our injector injects the client code in all unauthenticated HTTP responses that
the victim receives. This Javascript code is then executed by the victim’s browser in the
context of the respective domain name. We use BetterCap [1] to perform the HTTP
injection. The injection is performed by ARP spoofing the local network and forwarding
all traffic in a Man-in-the-Middle manner. It is simply a series of shell scripts that use the
appropriate BetterCap modules to perform the attack.

As all HTTP responses are infected, this provides increased robustness. The injected
client code remains dormant until it is asked to wake up by the command -and-control
channel. This means that the user can switch between browsers, reboot their computer,
close and reopen browser tabs, and the attack script will continue to be injected.

As long as one tab with the client script is open, the attack can keep running.

The injector component needs to run on the victim’s network and as such is lightweight
and stateless. It can be easily deployed on a machine such as a Raspberry Pi, and can

D. Grigoriou 27

Extending the Rupture compression attack framework against real world systems

be used for massive attacks, for example at public networks such as coffee shops or
airports. Multiple injectors can be deployed to different networks, all controlled by the
same central command-and-control channel.

3.3.2 Sniffer

The sniffer component is responsible for collecting data directly from the victim’s
network. As the client issues chosen plaintext requests, the sniffer collects the
respective ciphertext requests and ciphertext responses as they travel on the network.
These encrypted data are then transmitted to the backend for further analysis.

Our sniffer implementation runs on the same network as the victim. It is a Python
program which uses scapy [2] to collect network data.

Our sniffer runs on the same machine as our injector and utilizes the injector's ARP
spoofing to retrieve the data from the network. Other sniffer alternatives include sniffing
data on the target network side, or on the ISP or router point if the adversary has such a
level of access.

The sniffer exposes an HTTP API which is utilized by the backend for controlling when
sniffing starts, when it is completed, and to retrieve the data that was sniffed. This API is
described below.

Backend « Sniffer (HTTP)

The Python backend application communicates with the sniffer server, in order to initiate
a new sniffer, get information or deletes an existing one. The sniffer server implements
a RESTful API for communication with the backend.

Istart is a POST request that initializes a new sniffer. Upon receiving this request, the
sniffer service should start sniffing.

The request contains a JSON with the source_ip, (the IP of the victim on the local
network) and the destination_host (the hostname of the target that is being attacked).

The backend returns HTTP 201 if the sniffer is created correctly. Otherwise, it returns

HTTP 400 if either of the parameters is not properly set, or HTTP 409 - Conflict, if a
sniffer for the given arguments already exists.

Iread is GET request that asks for the network capture of the sniffer.

The GET parameters are the source_ip (the IP of the victim on the local network) and
the destination_host (the hostname of the target that is being attacked).

D. Grigoriou 28

Extending the Rupture compression attack framework against real world systems

The backend returns HTTP 200 with a JSON that has a field capture, which contains
the network capture of the sniffer as hexadecimal digits, and a field records, that
contains the total amount of captured TLS application records. In case of error, HTTP
422 Unprocessable Entity is returned if the captured TLS records were not properly
formed on the sniffed network, or HTTP 404 if no sniffer with the given parameters
exists.

/delete is a POST request that asks for the deletion of the sniffer

The request contains a JSON with the source_ip (the IP of the victim on the local
network) and destination_host (the hostname of the target that is being attacked).

The backend Returns HTTP 200 if the sniffer was deleted successfully, or HTTP 404 if
there is no sniffer with the given parameters.

3.3.3Client

The client is written in Javascript and runs in a different context from the target website.

Thus, it is subject to same-origin policy and cannot parse the plaintext or encrypted
responses. However, the encrypted requests and responses are available to the sniffer
through direct network access.

The client contains minimal logic. It connects to the real-time service through a
command-and-control channel and registers itself there. Afterwards, it waits for work
instructions by the command-and-control channel, which it executes. The client does
not take any decisions or receive data about the progress of the attack other than the
work it is requested to do. This is intentional so as to conceal the workings of the
adversary analysis mechanisms from the victim in case the victim attempts to reverse
engineer what the adversary is doing. Furthermore, it allows the system to be upgraded
without having to deploy a new client at the victim’s network, which can be a difficult
process.

As a regular user is browsing the Internet, multiple clients will be injected in insecure
pages and they will run under various origins. All of them will register and maintain an
open connection through a command-and-control channel with the real-time service.
The real-time service will enable one of them for this victim, while keeping the others
dormant. The one enabled will then receive work instructions to perform the required
requests. If the enabled client dies for whatever reason, such as a closed tab, one of the
rest of the clients will be woken up to take over the attack.

The client is a Javascript program written using harmony / ECMAScript 6 and compiled
using babel and webpack.

D. Grigoriou 29

Extending the Rupture compression attack framework against real world systems

doWork (work) {
const {url, amount, alignmentalphabet} = work;

if (typeof url == 'undefined') {
this.noWork()
return;

console.log('Got work: ', work);
const reportCompletion = (success) => {
if (success) {
console.log('Repaorting work-completed to server');

¥
else {

console.log('Reporting work-completed FAILURE to server');
¥

this._socket.emit('work-completed', {
work: work,
success: success,
host: window.location.host

1)

req.Collection.create(
url,
{amount: amount, alignmentalphabet: alignmentalphabet},
function() {},
reportCompletion.bind(this, true),
reportCompletion.bind(this, false)

Figure 3.4: Client code

3.3.4Real-time

The real-time service is a service which waits for work requests by clients. It can handle
multiple connections. It receives command-and-control connections from various clients
which can live on different networks, orchestrates them, and tells them which ones will
remain dormant and which ones will receive work, enabling one client per victim.

The real-time service is developed in Node.js.

The real-time service maintains open web socket command-and-control connections
with clients and connects to the backend service, facilitating the communication
between the two.

The real-time server forwards work requests and responses between the client and the
backend. It communicates with the client in a bi-directional way using web sockets.

This also facilitates the ability to detect that a client has gone away, which is registered
as a failure to do work. This can happen for example due to network errors if the victim
disconnects from the network, closes their tab or browser, and so on. It is imperative
that incomplete work is marked as failed as soon as possible so that the attack can
continue by recollecting the failed samples.

D. Grigoriou 30

Extending the Rupture compression attack framework against real world systems

const createNewwWork = () => {
const getWorkOptions = {
host: BACKEND_HOST,
port: BACKEND_PORT,
path: '/breach/get_work/' + victimId

winston.debug('Forwarding get_work request to backend URL ' + getWorkOptions.path);

const getWorkRequest

let responseData ;

response.on('data', (chunk) => {
responseData += chunk;

http. request(getWorkOptions, (response) => {

1)
response.on('end', () => {
try {
client.emit('do-work', JSON.parse(responseData));
winston.info('Got (get-work) response from backend: ' + responseData);
+
catch (e) {
winston.error('Got invalid (get-work) response from backend');
doNoWork() ;
+
e
e
getWorkRequest.on('error', (err) => {
winston.error('Caught getWorkRequest error: ' + err);
doNoWork () ;
1)

getWorkRequest.end();

Figure 3.5: Real-time code

The web socket API exposed by the real-time service is explained below.

Client — Real-time protocol

The client / real-time protocol is implemented using socket.io websockets.

client-hello / server-hello

When the client initially connects to the real-time server, it sends the message
clienthello with its victim_id to the real-time server. The server responds with a
serverhello message. After these handshake messages are exchanged, the client and
server can exchange further messages.

get-work / do-work

When the client is ready to perform work, it emits the message get-work requesting
work to be performed from the real-time server. The real-time server responds with a
do-work message, passing a work object that is structured as defined below:

typedef work
amount: int
url: string
timeout: int (ms)

Figure 3.6: work object

D. Grigoriou 31

Extending the Rupture compression attack framework against real world systems

If the real-time service is unable to retrieve work from the backend due to a
communication error, real-time will return an empty work object indicating there is no
available work to be performed at this time.

work-completed

When the client has finished its work or has been interrupted due to network error, it
emits a work-completed message, containing the following information:

work: work
success: bool
Figure 3.7: work-completed
success is true if all requests were performed correctly, otherwise it is false. work
contains the work that was performed or failed to perform.

3.3.5Backend

The backend is responsible for strategic decision taking, statistical analysis of samples
collected, adaptively advancing the attack, and storing persistent data about the attacks
in progress for future analysis.

The backend talks to the real-time service for pushing work out to clients. It also speaks
to the sniffer for data collection.

It is implemented in Python using the Django framework.

The backend exposes a RESTful API via HTTP to which the real-time service makes
requests for work. This API is explained below.

Real-time — Backend (HTTP)

The backend implements various API endpoints for communication with the real-time
server.

/get_work/<victim> is an HTTP GET endpoint. It requests work to be performed on
behalf of a client. The argument passed is the victim - the id of the victim.

If there is work to be done, it returns an HTTP 200 response with the JSON body
containing the work structure. The samples associated with a particular work request
and performed all together constitute a sampleset.

D. Grigoriou 32

Extending the Rupture compression attack framework against real world systems

In case no work is available for the client, it returns an HTTP ‘404‘response. Work can
be unavailable in case a different client is already collecting data for the particular
victim, and we do not wish to interfere with it.

Iwork_completed/<victim> is an HTTP POST endpoint. It indicates on behalf of the
client that some work was successfully or unsuccessfully completed. The arguments
passed are the work and a boolean success parameter.

If success is True, this indicates that the series of indicated requests were performed by
the victim correctly. Otherwise, the victim failed to perform the required requests due to
a network error or a timeout and the work has to be redone.

D. Grigoriou 33

Extending the Rupture compression attack framework against real world systems

4. BACKTRACKING

Backtracking is a method that allows the adversary to recover the desired target secret
of an HTML page, whose known prefix can be encountered multiple times. This method
is implemented in a different way than the other two (Serial, Divide & conquer), since it
does not require searching for an optimal candidate each round. Instead, it adds every
possible candidate on a pool and chooses the best one to be examined on the next
round, based on a probabilistic model. Then, it advances repetitively until the whole
secret is recovered.

In section 1 we describe in detail how Backtracking implementation is structured, as well
as how the method works.

Section 2 explains the architecture of the new patch and analyzes the crucial
components responsible for conducting a Backtracking attack.

In this chapter, we only compare Backtracking characteristics with those of the Serial
one. Even though Divide & Conquer works in a different way than Serial during each
round, it does reach to an optimal candidate in the same way the Serial does, making
the comparison between the first two sufficient.

4.1 Method Specifications

When it comes to analyzing compressed ciphertexts, Backtracking deals with the
problem of secret discovery in a more spherical way.

In contrast with the Serial, this method does not produce unexpected results when the
target secret’s prefix can be found multiple times on the HTML page.

Serial method creates multiple requests for every possible character, produced by a
given alphabet. During each round it decides an optimal candidate by analyzing the size
of the compressed cipher responses. The response with the smallest size, is marked as
the optimal candidate and is added to the known prefix in order to proceed to the next
round.

But what happens if there are two (or possibly more) words with the same prefix on the
HTML page we examine. Here is an example where “sec’ is the known prefix, “secret’
is the target secret word and “second' is also part of the HTML page:

Z <html>
<body>

y <p>TheLies in the second prefix of this plaintext.</p>

</body>
6 </html>

Figure 4.1: Common prefix plaintext.

As the above image shows, both the ‘r’ character as well as ‘0’ character will give the
same size of compressed responses, since both can be compress well with the prefix

D. Grigoriou 34

Extending the Rupture compression attack framework against real world systems

‘sec’. Although there is no violation of any kind, based on the implementation of the
Serial method, there is a chance the ‘0’ character will be chosen instead of the ‘r
character, giving the wrong outcome. During the next round, the updated knownsecret
will be the string ‘seco’ , leading to the discovery of word "second’ instead of our target
secret.

On the other hand, Backtracking works in a different way than the previous method.
Instead of deciding the optimal candidate on each round, Backtracking assigns relative
probability values on each candidate based on the compression they produce. The
lower the compression size is, the higher the value goes. So, instead of working in a
linear structure, where each round we create is the one to be chosen on the next
iteration, Backtracking creates multiple rounds for each candidate and stores them in a
tree structure for future analysis. Here is how backtracking works in a step by step
analysis:

As the Rupture architecture states, every round starts with a given knownsecret. During
the first iteration of the attack, the knownsecret is equal to the initial known prefix of the
target secret. Every node represents a round and holds a knownsecret. It is easy to
assume that the top node of the tree is the first round, where the initial known prefix is
stored.

Based on that, the framework starts to make requests on a targeted website, in order to
measure its responses. When we receive those responses, we analyze them by
assigning relative probabilities to each one of them. This assignment aims to translate
the compression size of a candidate into a probability. After this process is completed,
we store each one of the candidates into the tree structure. This is done by creating
new rounds with the permutation of knonwsecret and the appropriate candidate. This
technique is executed repetitively until the target secret is recovered.

It is quite clear, that if we pick a random node and follow its path, starting from the top,
we can observe every step of the analysis process for the given knownsecret. The key
aspect though, behind each node is that it doesn’t only store a string with a
knownsecret, but it also holds an accumulated probability number which represents the
certainty of the knownsecret being a part of the target secret. This value is calculated by
combining the relative probability of each candidate at a given round and the depth of
the current node. Accumulated probability is a very valuable variable, since we use it in
order to decide the next round to be analyzed. The one with the highest value is the one
to be chosen.

This technique give us the ability to explore more than one known prefixes at a time,
ensuring that if a conflict arises in a round (as stated above, two words having the same
prefix) we can solve it by exploring all possible secrets until we find the desired one.

D. Grigoriou 35

Extending the Rupture compression attack framework against real world systems

SEecC

Secre Secrw secom Secoi

/ N\

secret secreq

Figure 4.2: Backtracking tree implementation.

4.2 Architecture

4.2.1 Round Model

In order to support the Backtracking tree structure, there was a need for the Round
model to undergo a few changes. Since Serial method works in a linear way, Round’s
old form simply starts every time we want to explore our knownsecret and ends when
we gather a proper amount of data, in order to extract a decision.

However, when we need to explore multiple paths of the same prefix, this approach
doesn’t work. We need to create Rounds with various knownsecrets and store them in
the database for future use. This is done by the fields ‘started” and "completed” on
Round model. These two fields not only allow us to store multiple possible candidates in
the form of a Round, but also help us to distinguish which Round we are currently
working on, which one is already completed and which one is about to be explored.

Another important part for the Backtracking tree structure is the accumulated_probability
field. This field holds the amount of certainty of each Round’s knownsecret being in the
final secret.

4.2.2Backtracking Analyzer

Backtracking Analyzer is responsible for three major tasks. Firstly, to calculate relative
probabilities for each character from a given knownalphabet, secondly calculate
accumulated probabilities for those characters and finally to return all these values and
states.

+ Relative Probabilities

The function get_accumulated_probabilities takes up the first two tasks. It is given a
dictionary of sorted candidate alphabets and it calculates the relative probabilities of
each candidate being in the target secret based on their associated accumulative
lengths. Since the length significance of the better compressed candidates is more
important than those with the least compression, the function connecting each
candidate’s probability cannot be linear. This is why we use an exponential function.

The formula that calculates the relative probability of the i candidate is:

D. Grigoriou 36

Extending the Rupture compression attack framework against real world systems

b i—min

k=S ,k—min
Yroib

Figure 4.3: Relative probability formula.

o b: compression function factor

o i: i candidate compression length

o min: candidate with the least compression length
o S: alphabet’ s size

Base b represents the efficiency of the compression function. A good compression
function indicates that the total length we collect is rather accurate, increasing the
significance of the compression difference between two candidates.

The key concept behind this formula is the effort to quantify how much a given
candidate differs from the minimum candidate and the average difference. This is all
translated with a probability value. Here is an example of the usage of that formula:

r compression length: 45
o compression length: 47
b: 1.2

sec
08 A 02

Secr | | seco |

Figure 4.4 Relative probability example.

As the above image shows, if the alphabet for the first round consists of characters r
and o, given their compression length their relative probability will be 0.8 and 0.2
respectively. This example demonstrates accurately the importance of the compression
function factor in the calculation of relative probabilities, as we can configure the
constant according to the nature of the problem (compression function algorithm) and
ultimately create more accurate results.

s*Accumulated Probabilities

Once the relative values are calculated then get_accumulated_probabilities associates
them with the probability of the parent Round and calculates the final accumulated
probability.

D. Grigoriou 37

Extending the Rupture compression attack framework against real world systems

In order to get more accurate results it is essential that each candidate that is analyzed
should have the appropriate weight of importance. So what happens if we want to
choose the next round, but two or more candidates do not have the same depth on the
tree structure? Is it enough to compare only the relative values?

This is where accumulated probability comes in. The calculation of this value is done by
the following formula:

AP; = AF * RP; * APi;

o AF: amplification factor
o RP;: relative probability of current candidates

o AP;.1: parent’s accumulated probability

The Amplification factor is the most crucial part in this formula. This constant states that
the deeper a candidate is on the Backtracking tree structure, the more important it gets.
This can also be verified intuitively. As long as we make “optimal” candidate choices
and we still get “optimal” compression length, then it is more likely that the next choice
we are about to make, will be “optimal” too. Here is an example of a Backtracking tree,
with both relative and accumulated probabilities:

 sec

1
secr sSeco
0.48 0.72
09 A o1 05 . < 05
AN . AN
[secre [secrw | [secom [secai
0.518 0.057 0.432 0.432
09 A 01 N N__ N__
AN
secret Secreq

0559 10.062
Figure 4.5: Complete Backtracking graph with all types of probabilities

4.3 Backtracking experimental results

The Backtracking method was tested on lab environment attacks. More specifically, we
created a test end-point containing two words with the same prefix and tried to recover
both of them, based on the theoretical architecture. The first one is the word “secret’
and the other one is the word "second’. Our goal was to confirm our hypothesis:

At first, Rupture will identify both of the secrets by appearing two candidates with
significant accumulated probability, compared to the other ones. This can be shown in
the following figure:

D. Grigoriou 38

Extending the Rupture compression attack framework against real world systems

e dimitris@alleria: ~/Documents/rupture

dimitris@alleria: ~/Documents/rupture/ba... dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture

[22/3ul/2017 15:04:48] DEBUG [breach.strategy:487] Work completed:
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:488] Length: 63968
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:489] Records: 64
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:266] Marking sampleset as completed:
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:267] candidatealphabet: y
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
[22/3ul/2017 15:04:48] "POST /breach/work_completed/22 HTTP/1.1" 200 18
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:216] Found 1 unstarted samplesets
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:226] Giving work:
[22/3ul/2017 15:04:48] DEBUG [breach.strategy:227] Candidate: z
[22/3ul/2017 15:04:48] "GET /breach/get_work/22 HTTP/1.1" 200 194
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:487] Work completed:
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:488] Length: 63958
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:489] Records: 64
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:266] Marking sampleset as completed:
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:267] candidatealphabet: z
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
[22/3ul/2017 15:04:49] DEBUG [breach.strateqy:282] ##tHHHHHHHHHHHHH
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:288] Optimal Candidates
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:290] {'probability': 0.7211538461538461, 'knownsecret': u'seco', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:290] {'probability': 0.15137019230769233, 'knownsecret': u'secr', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:290] {'probability': 0.03173076923076923, 'knownsecret': u'secj', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
[22/3ul/2017 15:04:49] DEBUG [breach.strategy:290] {'probability': 0.03173076923076923, 'knownsecret': u'secs', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
[22/3ul/2017 15:04: DEBUG [breach.strateqy:298] #ittHHHHHHHHHHHHHHHHH
[22/3ul/2017 15:04: DEBUG [breach.strategy:349] Checking max reflection length...
[22/3ul/2017 15:04: [breach.strategy:415] Created new round:
o oa. booocb eoa1c o .

Figure 4.6: Backtracking execution step 1.

Both "seco™ as well as "secr have a distinguishable probability value compared to the
other candidates (we only show two of them for simplicity purposes). This hints that
characters "'o° and r could possibly be part of two different secrets. As the attack
continues, Backtracking analyzer chooses the candidate with the maximum value, in our
case 0 and continues the analysis:

¢ dimitris@alleria: ~/Documents/rupture

dimitris@alleria: ~/Documents/rupture/ba... dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@al

[22/3ul/2017 15:05: DEBUG [breach.strategy:487] Work completed:
[22/3ul/2017 DEBUG [breach.strategy:488] Length: 64056
22/3ul/2017 DEBUG [breach.strategy:489] Records: 64
[22/3ul/2017 DEBUG [breach.strategy:266] Marking sampleset as completed:
[22/3ul/2017 DEBUG [breach.strategy:267] candidatealphabet: y
[22/3ul/2017 DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
[22/3ul/2017 "POST /breach/work_completed/22 HTTP/1.1" 200 18
22/3ul/2017 DEBUG [breach.strategy:216] Found 1 unstarted samplesets
22/3ul/2017 DEBUG [breach.strategy:226] Giving work:
DEBUG [breach.strategy:227] Candidate: z
"GET /breach/get_work/22 HTTP/1.1" 200 195
DEBUG [breach.strategy:487] Work completed:
DEBUG [breach.strategy:488] Length: 64056
DEBUG [breach.strategy:489] Records: 64
DEBUG [breach.strategy:266] Marking sampleset as completed:
DEBUG [breach.strategy:267] candidatealphabet: z
DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
DEBUG [breach.strateqy:282] ittt
[22/3ul/2017 DEBUG [breach.strategy:288] Optimal Candidates
[22/3ul/2017 DEBUG [breach.strategy:290] {'probability': 0.16039558949809113, 'knownsecret': u'secon', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
[22/3ul/2017 DEBUG [breach.strategy:290] {'probability': 0.06664436743645687, 'knownsecret': u'secoc', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz'}
[22/3ul/2017 DEBUG [breach.strategy:290] {'probability': 0.040916914880963044, 'knownsecret': u'secom', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz'}
[22/3ul/2017 DEBUG [breach.strategy:290] {'probability': 0.040916914880963044, 'knownsecret': u'secol', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
[22/3ul/2017 DEBUG [breach.strateqy: 298] it
[22/3ul/2017] DEBUG [breach.strategy:349] Checking max reflection length...
[22/3ul/2017 15:05:18] DEBUG [breach.strategy:415] Created new round:

Figure 4.7: Backtracking execution step 2.

Given the prefix 'secon’ as knownsecret Backtracking continues by extending it until the
whole secret is recovered.

D. Grigoriou 39

Extending the Rupture compression attack framework against real world systems

¢ dimitris@alleria: ~/Documents/rupture

dimitris@alleria: ~/Documents/rupture/ba... dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture

[22/3ul/2017 e DEBUG [breach.strategy:487] Work completed:
[22/3ul/2017 DEBUG [breach.strategy:488] Length: 64126
22/3ul/2017 DEBUG [breach.strategy:489] Records: 64
22/3ul/2017 DEBUG [breach.strategy:266] Marking sampleset as completed:
DEBUG [breach.strategy:267] candidatealphabet: y
DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
"POST /breach/work_completed/22 HTTP/1.1" 200 18
DEBUG [breach.strategy:216] Found 1 unstarted samplesets
DEBUG [breach.strategy:226] Giving work:
DEBUG [breach.strategy:227] Candidate: z
"GET /breach/get_work/22 HTTP/1.1" 200 196
DEBUG [breach.strategy:487] Work completed:
DEBUG [breach.strategy:488] Length: 64126
DEBUG [breach.strategy:489] Records: 64
DEBUG [breach.strategy:266] Marking sampleset as completed:
DEBUG [breach.strategy:267] candidatealphabet: z
DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
DEBUG [breach.strateqy: 282] ittt A
DEBUG [breach.strategy:288] Optimal Candidates:
DEBUG [breach.strategy:290] {'probability': 0.160993565598887, 'knownsecret': u'second', 'knownalphabet': u abcdefghl)klmnopqrstuvwxyz }
DEBUG [breach.strategy:290] {'probability': 0.0008210671845543237, 'knownsecret': u'seconf', 'knownalphabet jklmnopgrstuvwxyz'}
DEBUG [breach.strategy:290] {'probability': 0.0005151794099164384, 'knownsecret': u'seconc', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz'}
DEBUG [breach.strategy:290] {'probability': 0.0005151794099164384, 'knownsecret': u'seconm', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz'}
DEBUG [breach.strateqy: 298] ittt A
DEBUG [breach.strategy:349] Checking max reflection length...
15:05:44] DEBUG [breach.strategy:415] Created new round:

Figure 4.8: Backtracking execution step 3.

At this point, since the target secret ‘second” is recovered, we expect that on the next
iteration Backtracking is going to get insignificant probability value for every single
candidate, since none of them belongs to the actual secret.

¢ dimitris@alleria: ~/Documents/rupture

dimitris@alleria: ~/Documents/rupture/ba dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@all

[22/3ul/2017 :06: DEBUG [breach.strategy:487] Work completed:

DEBUG [breach.strategy:488] Length: 64018

DEBUG [breach.strategy:489] Records: 64

DEBUG [breach.strategy:266] Marking sampleset as completed:

DEBUG [breach.strategy:267] candidatealphabet:

DEBUG [breach.strategy:268] roundknownalphabet abcdefghl)klmnopqrstuvwxyz

"POST /breach/work_completed/22 HTTP/1.1" 200 18

DEBUG [breach.strategy:216] Found 1 unstarted samplesets

DEBUG [breach.strategy:226] Giving work:

DEBUG [breach.strategy:227] Candidate: z

"GET /breach/get_work/22 HTTP/1.1" 200 197

DEBUG [breach.strategy:487] Work completed:

DEBUG [breach.strategy:488] h:

DEBUG [breach.strategy:489]

DEBUG [breach.strategy:266] Marking sampleset as completed:

DEBUG [breach.strategy:267] candidatealphabet: z

DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz

DEBUG [breach.strateqy:282] it

DEBUG [breach.strategy:288] Optimal Candidates

DEBUG [breach.strategy:290] {'probability': 0.027372321174738305, 'knownsecret': u'secondf', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'
DEBUG [breach.strategy:290] {'probability': 0.016803867969171844, 'knownsecret': u'secondo', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz
DEBUG [breach.strategy:290] {'probability': 0.016803867969171844, 'knownsecret': u'secondy', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz
DEBUG [breach.strategy:290] {'probability': 0.010316627850758868, 'knownsecret': u'secondq', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz
DEBUG [breach.strateqy: 298] it R

DEBUG [breach.strategy:349] Checking max reflection length..

DEBUG [breach.strategy:415] Created new round:

[22/3u1/2017
[22/3ul/2017

]
]
]
3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
15:

[22/3ul/2017
Figure 4.9: Backtracking execution step 4.

Since our hypothesis is confirmed by the probability values, Backtracking chooses as
the next round to analyze the node with the prefix “secr’, which was stored in the tree
structure, at the beginning of the attack. This is due to the fact that the node with the
prefix “secr was the one with the highest accumulated probability value, among every
single not started Round models, saved in the tree.

D. Grigoriou 40

Extending the Rupture compression attack framework against real world systems

¢ dimitris@alleria: ~/Documents/rupture

dimitris@alleria: ~/Documents/rupture/ba... dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@alleria: ~/Documents/rupture dimitris@al

[22/3ul/2017 8] "POST /breach/work_completed/22 HTTP/1.1" 200 18
[22/3ul/2017 8] DEBUG [breach.strategy:216] Found 2 unstarted samplesets
8] DEBUG [breach.strategy:226] Giving work:
8] DEBUG [breach.strategy:227] Candidate: y
8] "GET /breach/get_work/22 HTTP/1.1" 200 195
DEBUG [breach.strategy:487] Work completed:
DEBUG [breach.strategy:488] Length: 64030
DEBUG [breach.strategy:489] Records: 64
DEBUG [breach.strategy:266] Marking sampleset as completed:
DEBUG [breach.strateg 67] candidatealphabet:
DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
"POST /breach/work_completed/22 HTTP/1.1" 200 18
DEBUG [breach.strategy:216] Found 1 unstarted samplesets
DEBUG [breach.strategy:226] Giving work
DEBUG [breach.strateg] Candidate: z
"GET /breach/get_work/22 HTTP/1.1" 200 195
DEBUG [breach.strategy:48
DEBUG [breach.strateg
DEBUG [breach.strateg Records: 64
DEBUG [breach.strateg Marking sampleset as completed:
DEBUG [breach.strateg candidatealphabet: z
DEBUG [breach.strateg roundknownalphabet: abcdefghijklmnopgrstuvwxyz
DEBUG [breach.strateg U A
DEBUG [breach.strateg Optimal Candidates
DEBUG [breach.strateg {'probability': 0.15784954009641175, 'knownsecret': u'secre', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
DEBUG [breach.strateg {'probability': 0.00012627963207712938, 'knownsecret' u'sec ', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz'}
DEBUG [breach.strateg G probablllty 7.892477004820587e-05, 'knownsecret' u secrq , "knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
DEBUG [breach.strateg {'probabilit 4.735486202892352e-05, 'knownsecret': crb', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
DEBUG [breach. z #####ﬂ##ﬁ################ﬂﬂﬂ#########ﬁ##ﬂ######ﬂ##############ﬂ######ﬂ#ﬂﬁ##
DEBUG [breach. Checking max reflection length..
[22/3ul/2017 DEBUG [breach. Created new round:

Figure 4.10: Backtracking execution step 5.

This way Backtracking recovered both secrets, with high amount of certainty.

dimitris@alleria: ~/Documents/rupture

Dalleria: ~/Documents/rupture/ba... dimitris@alleria: ~/Documents/rupture imitri i imitris(i Documents/rupture dimitris@alle

[22/3ul/2017 15:07:21] DEBUG [breach.strategy:487] Work completed:
15:07:21] DEBUG [breach.strategy:488] Length: 64160
15:07:21] DEBUG [breach.strategy:489] Records: 64
15:07:21] DEBUG [breach.strategy:266] Marking sampleset as completed:
15:07:21] DEBUG [breach.strategy:267] candidatealphabet: y
15:07:21] DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
15:07:21] "POST /breach/work_completed/22 HTTP/1.1" 200 18
15:07:21] DEBUG [breach.strategy:216] Found 1 unstarted samplesets
15:07:21] DEBUG [breach.strategy:226] Giving work
15:07:21] DEBUG [breach.strategy:227] Candidate: z
15:07:21] "GET /breach/get_work/22 HTTP/1.1" 200 196
15:07:23] DEBUG [breach.strategy:487] Work completed:
15:07:23] DEBUG [breach.strategy:488] Length: 64140
15:07:23] DEBUG [breach.strategy:489] Records: 64
15:07:23] DEBUG [breach.strategy:266] Marking sampleset as completed:
15:07:23] DEBUG [breach.strategy:267] candidatealphabet: z
15:07:23] DEBUG [breach.strategy:268] roundknownalphabet: abcdefghijklmnopqrstuvwxyz
15:07:23] DEBUG [breach.strateqy:282] it
15:07:23] DEBUG [breach.strategy:288] Optimal Candidates:
15:07:23] DEBUG [breach.strategy:290] {'probability': 0.16555990120990144, 'knownsecret' 'secret', 'knownalphabet' 'abcdefghijklmnopgrstuvwxyz'}
15:07:23] DEBUG [breach.strategy:290] {'probability': 1.6555990120990144e-05, 'knownsecret': u'secrea', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
15:07:23] DEBUG [breach.strategy:290] {'probability': 1.6555990120990144e-05, 'knownsecret': u'secrei', 'knownalphabet': u'abcdefghijklmnopgrstuvwxyz'}
15:07:23] DEBUG [breach.strategy:290] {'probability': 1.6555990120990144e-05, 'knownsecret': u'secrek', 'knownalphabet': u'abcdefghijklmnopqrstuvwxyz'}
15:07:23] DEBUG [breach.strateqy:298]
15:07:23] DEBUG [breach.strategy:349] Checking max reflection length...
[22/3ul/2017 15:07:23] DEBUG [breach.strategy:415] Created new round:

Figure 4.11: Backtracking execution step 6.

D. Grigoriou 41

Extending the Rupture compression attack framework against real world systems

5. IPV6

As stated before, the Rupture attack is based on controlling the victim’s browser, while
he visits websites that do not provide encrypted communication (HTTP connections).
This situation creates the opportunity for an adversary to send arbitrary requests to
HTTPS websites and as a result of that to allow him to measure the compressed
response.

This technique requires from an adversary to perform a Man in the Middle (MitM) attack
in order to inject javascript code to the victim's browser and ultimately send crafted
requests to targeted endpoints. This is performed by the usage of the BetterCap
framework, a Ruby gem that enables various MitM attacks, along with PacketFu [14], a
mid-level packet manipulation library for Ruby.

However current versions of BetterCap as well as PacketFu, only support the IPv4
protocol. That being said, Rupture cannot target popular IPv6 endpoints such as CNN
or IMDb making the extension of BetterCap for IPv6 protocol mandatory.

In this chapter we present both our patches for BetterCap, as well as PacketFu, that
made the Rupture attack possible for IPv6 endpoints.

Section 1 is a brief introduction to the IPv6 theoretical background which is an essential
part of the IPv6 attack.

In Section 2 we describe all the important changes of the IPv6 patch in BetterCap, along
with the algorithm of the MitM injection attack.

5.1 Theoretical Background

5.1.11Pv6 Addressing Modes
< Unicast

In unicast mode of addressing, an IPv6 interface (host) is uniquely identified in a
network segment. The IPv6 packet contains both source and destination IP addresses.
A host interface is equipped with an IP address which is unique in that network
segment. When a network switch or router receives a unicast IP packet, destined to a
single host, sends out that packet to one of its outgoing interface which connects to that
particular host.

=
T

Figure 5.1: Unicast messaging.

D. Grigoriou 42

Extending the Rupture compression attack framework against real world systems

+ Multicast

The IPv6 multicast mode is the same as that of IPv4. The packet destined to multiple
hosts is sent on a special multicast address. All hosts interested in that multicast
information, need to join that multicast group first. All interfaces which have joined the
group receive the multicast packet and process it, while other hosts not interested in

multicast packets ignore the multicast information.

—

Pz T N

Figure 5.2: Multicast messaging.

« Anycast

IPv6 has introduced a new type of addressing, which is called Anycast addressing. In
this addressing mode, multiple interfaces (hosts) are assigned the same Anycast IP
address. When a host wishes to communicate with a host equipped with an Anycast IP
address, it send a Unicast message. With the help of a complex routing mechanism,
that Unicast message is delivered to the host closest to the sender, in terms of Routing

cost.

Server

Il

with Ay st IP

Server

Figure 5.3: Multicast messaging.

D. Grigoriou

Il

with Am

woast [

o

Server with Amyc@st [P

43

Extending the Rupture compression attack framework against real world systems

5.1.21Pv6 Addresses

An IPv6 address is represented as eight groups of four hexadecimal digits, each group
representing 16 bits (two octets). The groups are separated by colons (:). An example of
an IPv6 address is:

2001:0db8:85a3:0000:0000:8a2¢e

One or more consecutive groups of zero values may be replaced with a single empty
group using two consecutive colons (::).

2001:0db8:85a3::8a2¢

The first two types are mainly used for end-to-end IPv6 routing. On the other hand the
last one has a limited use in private networks.

* Global Unicast Addresses are similar to IPv4 public addresses and they are used for
one to one communication by exchanging unicast messages. This mode dictates that
the sender’s outgoing packets are destined to a single host. Global Addresses can be
acquired with three different ways, either by DHCPv6, SLAAC or Static Configuration.
DHCPV6 is the equivalent protocol of IPv4, DHCP, dynamically configuring hosts with
IPv6 addresses, IP prefixes and other configuration data required to operate on the
network. Stateless _Address Autoconfiguration (SLAAC) protocol gives the ability to
hosts to configure themselves automatically when connected to an IPv6 network.
SLAAC is the most preferable method in IPv6 configuration, unless an application
imposes otherwise. Static Configuration is executed manually in order to assign a host
with a static IPv6 Global Address that cannot be changed by DHCPv6 or SLAAC
protocols.

* Link-local Address is a network address that is valid only for communication within
the network segment that the host is connected to. They are not guaranteed to be
unigue beyond a single network segment. Therefore, routers do not forward packets
with Link-local addresses outside a LAN. This type of address consists of two main
components. The first part is generated by adding the prefix OXFE80 to a sequence of
48-bits of 0. The second part is called Interface ID and it is created by splitting the
interface’s MAC address in half and adding the 16-bit Hex value OXFFFE between the
two halves. An example of Link-local Address is:

fe80::ca78:abff:fevc:12df

Link-local addresses can be used in multicast messaging mode, meaning that a packet
can be destined to multiple hosts. All hosts interested in that multicast information, need
to join that multicast group first. All interfaces which have joined the group receive the
multicast packet and process it, while other hosts not interested in that type of packet
ignore the information.

D. Grigoriou 44

https://en.wikipedia.org/wiki/DHCPv6
https://en.wikipedia.org/wiki/IPv6#Stateless_address_autoconfiguration_.28SLAAC.29

Extending the Rupture compression attack framework against real world systems

* Unique Local Addressesis globally unique, but it should be used in local
communication, limiting their scope to an organization’s boundary.

5.1.3Neighbor Discovery

The Neighbor Discovery Protocol [15] (NDP) is used with the IPv6 protocol and it
operates in the Data Link Layer of OSI model. It is responsible for address
autoconfiguration, discovery of other nodes on the link, duplicate address detection,
finding available routers and maintaining reachability information. The protocol defines
five different ICMPV6 packet types to perform functions for IPv6 similar to the Address
Resolution Protocol (ARP), such as Router Discovery as well as Router Redirection:

. ROUTER SOLICITATION

Hosts inquire with Router Solicitation messages to locate router on an attached link.
Routers which receive the solicited packets will generate Router Advertisements
immediately upon receipt of this message rather at their next scheduled time.

. ROUTER ADVERTISEMENT
Routers advertise their presence together with various link parameters either
periodically, or in response to a Router Solicitation message.

. NEIGHBOR SOLICITATION
Neighbor solicitations are used by nodes to determine the link layer address of a
neighbor, or to verify that a neighbor is still reachable via a cached link layer address.

° NEIGHBOR ADVERTISEMENT
Neighbor advertisements are used by nodes to respond to a Neighbor Solicitation
message.

. REDIRECT
Router may inform hosts of a better first hop router for a destination.

IPv6 hosts can configure themselves automatically (SLAAC) when connected to an IPv6
network following the Neighbor Discovery Protocol, by using Router Discovery
messages. When first connected to a network, a host has to send a Router Solicitation
multicast request for its configuration parameters. The message is received by all nodes
but only routers are the ones to process it. When the default gateway receives the
Solicitation message, it has to respond immediately with a Router Advertisement
informing the sender about its Link-local address, MAC address as well as Internet
Layer configuration parameters. Routers present a special case of requirements for

D. Grigoriou 45

https://en.wikipedia.org/wiki/OSI_model

Extending the Rupture compression attack framework against real world systems

address configuration, as they often are sources of autoconfiguration information, such
as router and prefix advertisements. This leads to the host configuring its own IPv6
addresses, as well as discovering the IPv6 and MAC address of the gateway.

Similar to default gateway address resolution, the MAC address of a local host can be
discovered by sending Neighbor Solicitation messages requiring the MAC address of
the receiver, for the given IPv6 address. The response is sent in the form of a Neighbor
Advertisement message, containing all the appropriate information about the inquired
host.

5.1.4Neighbor Cache States

Every pair of IPv6/MAC addresses, originated from a neighbor, is saved locally as a
new entry in the neighbor discovery cache. When communication between two nodes is
required, hosts will inquire the appropriate origin of the table, about their IPv6/MAC
pairs, in order to maintain an up to date discovery cache. The reachability of a neighbor
node is determined by monitoring the state of the neighboring node’s entry in the
cache. RFC 2461 defines the following states:

INCOMPLETE

IPv6 address resolution, which is using a solicited-node multicast Neighbor Solicitation
message, is in progress. The INCOMPLETE state is entered when a neighbor cache
entry is created but does not yet have the node’s corresponding Link-layer address.

REACHABLE

Reachability has been confirmed by receipt of a solicited unicast Neighbor
Advertisement message. The neighbor cache entry stays in the REACHABLE state until
the number of milliseconds indicated in the Reachable Time field in the Router
Advertisement message elapses.

STALE

Reachable time (the duration since the last reachability confirmation was received) has
elapsed. The neighbor cache entry enters the STALE state after the number of
milliseconds in the Reachable Time field in the Router Advertisement message (or a
host default value) elapses, and the entry remains in this state until a packet is sent to
the neighbor. The entry also enters the STALE state when the host receives an
unsolicited Neighbor Advertisement message that is advertising the Link-layer address.

DELAY

To allow time for upper layer protocols to provide reachability confirmation before
sending Neighbor Solicitation messages, the neighbor cache entry enters the DELAY
state and waits a configurable period of time after sending a packet. If reachability is not
confirmed by the delay time, then the entry enters the PROBE state, and a unicast
Neighbor Solicitation message is sent.

PROBE

Reachability confirmation is in progress for a neighbor cache entry that was in the
STALE or DELAY state. Unicast Neighbor Solicitation messages are sent at intervals
corresponding to a retransmission timer field in the Router Advertisement message that

D. Grigoriou 46

https://www.ietf.org/rfc/rfc2461.txt

Extending the Rupture compression attack framework against real world systems

this host received. A configurable variable determines the number of Neighbor
Solicitation messages sent before the reachability detection process is abandoned and
the neighbor cache entry is removed.

Send Multicast
| Meighbor Solicitation |
| MO ENTRY EXISTS | "-'-l INCOMPLETE

& *

Feceive Saolicited
Meighbor
Advertisermnent

Multicast Meighbor Solicitation
Retries Exceeded

R T |
g REACHABLE
eachable Time l

Exceeded 4 - N

or Unsolicted Reachability Reachability

Meighbar Confirrmed by Canfirmed by

Advertisernent Upper Layer Sending Unicast

Received Protocol Meighbor Solicitation
and Receiving
Solicited Meighbor
Advertisernent

L |
- [Pre
S UL Send Packet g 2L Delay Time UL

Exceeded

nicast Meighbor Solicitation Retries Exceeded

Figure 5.4: Cache state algorithm

5.2 Ipv6 Patch Architecture

This thesis presents important network improvements that make the Rupture attack
more practical by implementing two new patches: one in the BetterCap framework and
one in the underlying ruby PacketFu library. With these two patches IPv6 attacks are
now possible in the Rupture. The patches have successfully been merged in upstream
BetterCap, allowing BetterCap to perform IPv6 NDP attacks from the CLI, a contribution
which is of independent interest as this class of attacks had not been automated
previously.

Below are described the key aspects of this patch’s architecture.

5.2.11Pv6 Parser

The first part of the attack involves user input parsing. One of the most important
changes in the BetterCap patch is to enable the gem to manage IPv6 addresses. IPv6
protocol uses a different address scheme, making address manipulation challenging. As
a result of that, the extension needs to validate IPv6 addresses and exclude those with
the wrong format. This gap is filled by the IPv6 validator with the appropriate regex
matching patterns.

5.2.2Neighbor IPv6/MAC Address discovery

The IPv6 extension on BetterCap has a specific algorithm for discovering matches
between IP and MAC addresses (including the gateway's MAC in case of an error at the
lookup). The NDP discovery agent is responsible for activating this procedure. First, it
performs a lookup into the neighbor discovery cache and if no entry is found matching
the specific address, it then sends a Neighbor Solicitation message on the wire, seeking
for a proper response. The message consists of a multicast IPV6 address. This address

D. Grigoriou 47

Extending the Rupture compression attack framework against real world systems

is created by the prefix ff02::1:ff plus the 24 least significant bits of the destination
address. An example is:

Ethernet Header

= Dest MAC is 33-33-FF-22-22-22

IPwé Header

= Source Address is FESO0: 2AA:FRFELL: 1111

= Destination Address is FFO2:: 11FF22:2222

= Hop Limit is 255

Meighbor Solicitation Header

= Target Address is FESD::2AM: FFIFE22:2222

Meighbor Discovery Option

= Source Link-Layer Address Host A

@ MAC: 00-AA-00-11-11-11
IP: FESOD::2AAFF:FE11:1111

| Neighbor Solicitation I

@ MAC: D0-AA-00-22-22-22 @
IP: FES0::2AMFF:FE22:2222

Host B

Figure 5.5: Multicast Neighbor Solicitation Message for address resolution.

When the targeted host receives the message, it responds to the sender so he can
update his cache entry with the valid data:

Ethernet Header

» Dest MAC is 00-AA-00-11-11-11

IPyE Header

» Source Address is FES0:: 2AA:FFiFE22: 2222

» Destination Address is FES0:: 2AAFFIFELILI1111

= Hop Limitis 255

Meighbor Solicitation Header

» Target Address is FESO:: 2881 FFIFE22:2222

Meighbor Discovery Cption

» Target Link-Layer Address Host A

@ MAC: 00-AA-00-11-11-11
IP: FESO:: 244 FF:FE11:1111

[Neighbor Advertisement |

@ MAC: 00-AA-00-22-22-22 @
1P: FES01: 244 FFi FE22: 2222

Host B

Figure 5.6: Unicast Neighbor Advertisement Message for address resolution.

5.2.31Pv6 Packet Manipulation (PacketFu extension patch)

The current Ruby implementations on low level packet crafting (with PacketFu library
being the most famous among them and the one BetterCap is using) do not provide the
ability to create Neighbor Discovery packets. PacketFu’s ICMPv6 old packet formats
only provide error reporting and network diagnostics. However NDP extended those
capabilities on RFC 4861 by adding multiple header fields serving the protocol’s
purposes. So in order to extend BetterCap capabilities, we created a PacketFu
patch supporting NDP packet manipulation.

D. Grigoriou 48

https://tools.ietf.org/html/rfc4861
https://github.com/packetfu/packetfu/pull/160
https://github.com/packetfu/packetfu/pull/160

Extending the Rupture compression attack framework against real world systems

This patch in particular, as an underlying library, can be used to develop new
manipulation tools and techniques around Neighbor Discovery, giving the users the
ability to create their own Neighbor Solicitation Packets, as well as Neighbor
Advertisement Packets:

%) 1 2 3
123456789012 345678090123456789801
S e S S S S S S
| Type | Code | Checksum
S e S S S S S S
| Reserved
S e S S S S S S

+
|
+
|
+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+

S S S S S S S A S S S
| Options ...
T

Figure 5.7: Neighbor Solicitation message format.

5] 1 2 3
B12345678901234567898123456789081
S S S S S S S S S S S S S SRS
| Type | Code | Checksum
S S S S S S S S S S S S S SRS
|R|S|0O] Reserved
S S S S S S S S S S S S S SRS

|
+
|
+ Target Address
|
+
|

+
|
+
|
+
|
+
|
+
|
+
|
+

S S S S S S S S S S S S S SRS
| Options ...
B S S S S S

Figure 5.8: Neighbor Advertisement message format.

The three first fields of the above Packets are Type, Code and Checksum. As it states,
type field determines the type of the ICMPv6 Packet. Its value determines the format of
the remaining data. Number 135 refers to a Neighbor Solicitation packet, whereas 136
is for a Neighbor Advertisement. Code field should always be 0. The checksum field is
used to detect data corruption in the ICMPv6 message and parts of the IPv6 header.

The PackteFu extension required the development of the rest of the fields that are
introduced with Neighbor Discovery Protocol. Fields like Reserved, Target Address,
Options, and most importantly R-S-O bits (which are used for NDP spoofing) are part of
this thesis patch extension.

D. Grigoriou 49

Extending the Rupture compression attack framework against real world systems

5.2.4Neighbor Discovery Spoofer

The NDP spoofing algorithm is the most important part in IPv6 MitM attack. The
adversary sends Neighbor Advertisement messages to the victim with a certain
frequency, informing him that he is the default gateway. This is achieved by crafting a
Neighbor Advertisement packet with gateway's Link-local address as the source, paired
with the adversary’s MAC address. In addition to this, Neighbor Advertisement packet
contains three flag bits R,S,0. R-bit indicates that the sender is a router, S-bit indicates
that the advertisement was sent in response to a Neighbor Solicitation from Destination
address and O-bit indicates that the advertisement should override an existing cache
entry. By enabling R/O-bits on the Advertisement message the victim updates his cache
entry representing the gateway, with the adversary’s MAC address. Since the S-bit is
also enabled the victim doesn’t send a revalidation Neighbor Solicitation message to
verify the IPv6/MAC pair and marks its entry as REACHABLE. This results into the
victim forwarding all of his IPv6 traffic to the adversary.

¢ dimitris@alleria: ~

dimitris@alleria:~$ 1p -6 neighbor show
fe80::1 dev wlp2s0 1laddr 78:96:82:4d:d3:5a router REACHABLE

Figure 5.9: Spoofed neighbor cache entry.

5.2.5ip6tables Firewall

As an adversary, being in the middle of a host and a router requires a proper grouping
of the victim's traffic in order to inject the desired javascript code. The HTTP responses
of the majority of the websites are directed to the receiver's port number 80. By using
the ip6tables library we create a firewall redirecting the incoming packets with the
victim's address source and port number 80, to a locally deployed proxy.
The proxy’s core role is to collect every packet sent by ip6tables rules and create
readable HTML source code out of the HTTP responses. Then the proxy injects the
javascript code at the top of the tag of the HTML page. As a result of that, the HTTP
proxy sends an HTML response with injected javascript code to the victim, ready to be
executed by the victim's browser.

D. Grigoriou 50

http://ipset.netfilter.org/ip6tables.man.html

Extending the Rupture compression attack framework against real world systems

6. CONCLUSION

The last few years we have witnessed a phenomenal growth in the security industry.
The ever growing demands for safer communications over the Internet triggered
researchers to come up with better and more secure practices. However, as this thesis
states, while the technological industry develops new ways of improvement, the
attackers can take advantage of this technology too.

Compression side-channel attacks, sophisticated as they are, can take place in
everyday scenarios. It is important that developers should defend against this type of
attacks, since various tools that have already been implemented for that purpose[16].

Also users should not rest by the fact that ARP is not used in IPv6 protocol. As already
shown, IPv6 is also susceptible in MitM attacks. They should always follow the good
practices, as concerns the MitM attacks, such as always check the domain name and
provide sensitive data only on https connections.

Researchers should continue to develop tools that protect the community from every
possible web attack, but also try to share their knowledge with everyone. This way the
Security culture will be strengthen, lowering the risk of cyber attacks.

D. Grigoriou 51

Extending the Rupture compression attack framework against real world systems

REFERENCES

[1] (online) url: https://www.bettercap.org.

[2] (online) url: http://www.secdev.org/projects/scapy/.

[3] D.zZindros D. Karakostas. Practical New Developments on BREACH, April 2016.
[4] David A. Huffman. A method for the construction of minimum-redundancy

codes. Proceedings of the IEEE, 40:1098-1101, September 1952.

[5] Dimitris Karakostas. Probabilistic attacks against compressed encrypted
protocols, January 2016.

[6] Bodo Moller, Thai Duong, Krzysztof Kotowicz. This POODLE Bites: Exploiting The
SSL 3.0 Fallback, September 2014.

[7] Jacob Ziv, Abraham Lempel. A universal algorithm for sequential data compression.

Information Theory, IEEE Transactions, 23:337-343, May 1977.

[8] (online) URL: https://en.wikipedia.org/wiki/ARP_spoofing.

[9] (online) URL: https://en.wikipedia.org/wiki/RC4.

[10] (online) URL.: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS).
[11] David C. Plummer. An Ethernet Address Resolution Protocol, November 1982.
[12] Andrei Popov. Prohibiting RC4 Cipher Suites, February 2015.

[13] Yaron Sheffer Porticor, Ralph Holz, Peter Saint-Andre. Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS), February
2015.

[14] (online) url: https://github.com/packetfu/packetfu

[15] (online) url: https://en.wikipedia.org/wiki/Neighbor Discovery Protocol

[16] (online) url: https://ctxdefense.com/

[17] (online) url: https://en.wikipedia.org/wiki/Huffman_coding

D. Grigoriou

52

https://github.com/packetfu/packetfu
https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol
https://ctxdefense.com/

