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ABSTRACT 

 

The need for system protection from various attacks makes system security one of the 
most important technological fields in the 21st century.  This work investigates attacks 
on compressed encrypted protocols, and develops further the Rupture framework. 
 
New methods are being proposed that allow the recovery of a secret from a website that 
uses cryptographic suites, given the fact that the secretô s prefix can be found multiple 
times in the websiteô s plaintext. This way, in theory, we can recover the whole plaintext 
from a ciphertext. 
 
At the same time, we present two new patches: one in the BetterCap framework and 
one in PacketFu library. With these two patches, IPv6 attacks are now more modular 
and easy to conduct. The BetterCap framework is the one used in the first part of the 
Rupture attack. The purpose of this work is to make the Rupture attack possible on IPv6 
targets. 
 
The implementation of this work aims by no means to be used with malicious purposes. 
On the contrary, it aims to sensitize the community about Man-in-the-Middle attacks, as 
well as compression side-channel attacks, given the extensive growth of technology, 
such as IPv6. 
 
Rupture is a collaborative work with (alphabetical order): Dimitris Karakostas, Dionysis 
Zindros, Eva Sarafianou. Updated versions on the current work can be found on the 
following link: https://github.com/dimriou/rupture-thesis. Rupture repository is: 
https://github.com/decrypto-org/rupture. 
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ɄȺɅȽȿȼɊȼ 

 

ȼ ŬɜɎɔəɖ ɔɘŬ ˊɟɞůŰŬůɑŬ Űɤɜ ɡˊɞɚɞɔɘůŰɘəɩɜ ůɡůŰɖɛɎŰɤɜ Ŭˊɧ ŮˊɘɗɏůŮɘɠ, əŬɗɘůŰɎ Űɖɜ 
ŬůűɎɚŮɘŬ ɤɠ ɏɜŬɜ Ŭˊɧ Űɞɡɠ ůɖɛŬɜŰɘəɧŰŮɟɞɡɠ ŰŮɢɜɞɚɞɔɘəɞɨɠ ŰɞɛŮɑɠ Űɞɡ 21ɞ ŬɘɩɜŬ. ȼ 
ˊŬɟɞɨůŬ ŮɟɔŬůɑŬ ŮɟŮɡɜɎ ŮˊɘɗɏůŮɘɠ ˊɎɜɤ ůŮ ůɡɛˊɘŮůɛɏɜŬ əɟɡˊŰɞɔɟŬűɖɛɏɜŬ 
ˊɟɤŰɧəɞɚɚŬ əŬɘ ůɡɔəŮəɟɘɛɏɜŬ ŬɜŬˊŰɨůůŮɘ ˊŮɟŬɘŰɏɟɤ Űɞ ŮɟɔŬɚŮɑɞ Rupture. 
 
ɄɟɞŰŮɑɜɞɜŰŬɘ ɛɏɗɞŭɞɘ ˊɞɡ ŮˊɘŰɟɏˊɞɡɜ Űɖɜ ŬɜŬəɎɚɡɣɖ ɛɡůŰɘəɞɨ əɟɡˊŰɞɔɟŬűɖɛɏɜɖɠ 
ůŮɚɑŭŬɠ, Űɞɡ ɞˊɞɑɞɡ Űɞ ˊɟɧɗŮɛŬ ůɡɜŬɜŰɎŰŬɘ ˊɞɚɚɏɠ űɞɟɏɠ ɛɏůŬ ůŰɞ əŮɑɛŮɜɞ Űɖɠ 
ůŮɚɑŭŬɠ. ɀŮ ŬɡŰɧ Űɞɜ Űɟɧˊɞ ŭɨɜŮŰŬɘ ɖ ŭɡɜŬŰɧŰɖŰŬ, ůŮ ɗŮɤɟɖŰɘəɧ ŮˊɑˊŮŭɞ, ŮɝŬɔɤɔɐɠ 
ɞɚɧəɚɖɟɞɡ Űɞɡ əŬɗŬɟɞɨ əŮɘɛɏɜɞɡ Ŭˊɧ Űɞ əɟɡˊŰɞəŮɑɛŮɜɞ. 
 
ɄŬɟɎɚɚɖɚŬ ˊŬɟɞɡůɘɎɕɞɜŰŬɘ ŭɡɞ ɜɏŬ Ůˊɘˊɚɏɞɜ əɞɛɛɎŰɘŬ ůŰŬ ɐŭɖ ɡˊɎɟɢɞɡůŬ ŮɟɔŬɚŮɑŬ 
BetterCap əŬɘ PacketFu, ɛɏůŬ Ŭˊɧ ŰŬ ɞˊɞɑŬ ŮɑɜŬɘ ˊɚɏɞɜ ŭɡɜŬŰɐ ɖ ŮˊɑɗŮůɖ ůŮ ŰŮɟɛŬŰɘəɎ 
ˊɞɡ ɢɟɖůɘɛɞˊɞɘɞɨɜ Űɞ ˊɟɤŰɧəɞɚɚɞ IPv6, ɛŮ ˊɞɚɨ ɛŮɔŬɚɨŰŮɟɖ ŬɡŰɞɛŬŰɞˊɞɑɖůɖ. ɇɞ 
ŮɟɔŬɚŮɑɞ BetterCap ŮɑɜŬɘ ŬɡŰɧ ˊɞɡ ɢɟɖůɘɛɞˊɞɘŮɑŰŬɘ Ŭˊɧ Űɞ Rupture ůŰɞ ˊɟɩŰɞ ůəɏɚɞɠ 
Űɖɠ ŮˊɑɗŮůɖɠ. ɀɏůŬ Ŭˊɧ ŬɡŰɐɜ Űɖɜ ŮɟɔŬůɑŬ Űɞ Rupture ɗŬ ɛˊɞɟŮɑ ˊɚɏɞɜ ɜŬ ůŰɞɢŮɨŮɘ 
ɗɨɛŬŰŬ ˊɞɡ ɢɟɖůɘɛɞˊɞɘɞɨɜ Űɞ ˊɟɤŰɧəɞɚɚɞ IPv6. 
 
ȼ ŮɟɔŬůɑŬ ŬɡŰɐ ŭŮɜ ɏɢŮɘ ůŮ əŬɛɑŬ ˊŮɟɑˊŰɤůɖ ɤɠ ůŰɧɢɞ Űɖɜ əŬəɧɓɞɡɚɖ ɢɟɐůɖ Űɤɜ 
ŰŮɢɜɘəɩɜ ˊɞɡ ˊŬɟɞɡůɘɎɕɞɜŰŬɘ. ȷɜŰɑɗŮŰŬ ɛŮ Űɖɜ ɞɚɞɏɜŬ əŬɘ ˊŮɟɘůůɧŰŮɟɖ ɡɘɞɗɏŰɖůɖ ɜɏɤɜ 
ŰŮɢɜɞɚɞɔɘɩɜ, ɧˊɤɠ Űɞ IPv6, ɗɏɚŮɘ ɜŬ ŮɡŬɘůɗɖŰɞˊɞɘɐůŮɘ Űɖɜ əɞɘɜɧŰɖŰŬ Űɧůɞ ɔɘŬ Űɘɠ 
ŮˊɘɗɏůŮɘɠ Man-in-the-Middle, ɧůɞ əŬɘ ɔɘŬ ŮəŮɑɜŮɠ ůŮ ůɡɛˊɘŮůɛɏɜŬ əɟɡˊŰɞɔɟŬűɖɛɏɜŬ 
ˊɟɤŰɧəɞɚɚŬ. 
 
ȼ ŭɖɛɘɞɡɟɔɑŬ ɧɚɤɜ Űɤɜ ɛŮɗɧŭɤɜ əŬɘ ŰŮɢɜɘəɩɜ ŮɑɜŬɘ ůɡɜŮɟɔŬŰɘəɐ ɛŮ Űɞɡɠ (ŬɚűŬɓɖŰɘəɐ 
ůŮɘɟɎ): ȹɖɛɐŰɟɖ ȾŬɟŬəɩůŰŬ, ȹɘɞɜɨůɖ Ȼɐɜŭɟɞ, ȺɨŬ ɆŬɟŬűɘŬɜɞɨ. ȷɜŬɜŮɤɛɏɜŮɠ 
ŮəŭɧůŮɘɠ Űɖɠ ˊŬɟɞɨůŬɠ ŮɟɔŬůɑŬɠ ɛˊɞɟɞɨɜ ɜŬ ɓɟŮɗɞɨɜ ůŰɞɜ Ŭəɧɚɞɡɗɞ ůɨɜŭŮůɛɞ: 
https://github.com/dimriou/rupture-thesis. ɇɞ ŮɟɔŬɚŮɑɞ Rupture ɓɟɑůəŮŰŬɘ ůŰɞ ůɨɜŭŮůɛɞ: 
https://github.com/decrypto-org/rupture. 
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ȺɈɉȷɅȽɆɇȽȺɆ 

ȼ ˊŰɡɢɘŬəɐ ŬɡŰɐ ŮəˊɞɜɐɗɖəŮ ɡˊɧ Űɖɜ ŮˊɑɓɚŮɣɖ Űɞɡ əŬɗɖɔɖŰɐ ȯɔɔŮɚɞɡ ȾɘŬɔɘɎ, Űɞɜ 
ɞˊɞɑɞ ɗŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ ɗŮɟɛɎ ɔɘŬ Űɖ ɓɞɐɗŮɘɎ Űɞɡ, əŬɗɩɠ əŬɘ ɔɘŬ Űɞ 
ɔŮɔɞɜɧɠ ɧŰɘ ɛɏůɤ Űɖɠ ŮɟɔŬůɑŬɠ ŬɡŰɐɠ ɛŮ ŮɘůɐɔŬɔŮ ůŰɞɜ əɧůɛɞ Űɖɠ ȷůűɎɚŮɘŬɠ əŬɘ Űɖɠ 
ȾɟɡˊŰɞɔɟŬűɑŬɠ. 
ȷəɧɛŬ, ɗŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ Űɞɜ ȹɘɞɜɨůɖ Ȼɐɜŭɟɞ, ɞ ɞˊɞɑɞɠ ɛɞɡ ˊɟɧŰŮɘɜŮ Űɞ ɗɏɛŬ 
Űɖɠ ŮɟɔŬůɑŬɠ, ɛŮ əŬɗɞŭɐɔɖůŮ əŬŰɎ Űɖ ŭɘɎɟəŮɘŬ Űɖɠ Ůəˊɧɜɖůɐɠ Űɖɠ əŬɘ ůŮ əɎɗŮ ŮɡəŬɘɟŮɑŬ 
ɛɞɡ ɛŮŰɏŭɘŭŮ ůɡɜŮɢɩɠ əŬɘɜɞɨɟɘŮɠ ɔɜɩůŮɘɠ. 
Ⱥˊɑůɖɠ ɗŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ Űɞɜ ȹɖɛɐŰɟɖ ȾŬɟŬəɩůŰŬ ɔɘŬ Űɖɜ ůɡɜŮɢɐ ɓɞɐɗŮɘŬ 
ˊɞɡ ˊɟɧůűŮɟŮ, Űɘɠ ɢɟɐůɘɛŮɠ ůɡɛɓɞɡɚɏɠ əŬɘ Űɖɜ ɔŮɜɘəɧŰŮɟɖ ɡˊɞůŰɐɟɘɝɐ Űɞɡ əŬŰŬ Űɖɜ 
ŭɘɎɟəŮɘŬ Űɖɠ ŮɟɔŬůɑŬɠ. 
ɇɏɚɞɠ, ɗŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ Űɞɡɠ űɑɚɞɡɠ əŬɘ Űɖɜ ɞɘəɞɔɏɜŮɘɎ ɛɞɡ ɔɘŬ Űɖ ůŰɐɟɘɝɖ 
ˊɞɡ ɛɞɡ ˊŬɟŮɑɢŬɜ ɧɚŬ ŬɡŰɎ ŰŬ ɢɟɧɜɘŬ. 
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PREFACE 

The scope of this thesis project is to study the vulnerabilities of online systems and 
more specifically compression side-channel attacks. We develop a tool that performs 
such attacks in real world systems. 
 
This thesis project was elaborated during my studies in Department of Informatics and 
Telecommunications in the University of Athens. 
 
The thesis was realized from April 2016 to July 2017 under the supervision of Associate 
Professor Kiayias Aggelos, under the guidance of PhD candidate Zindros Dionysis and 
with the help of Cryptography Researcher Karakostas Dimitris. 
 
 
 
 
 

Dimitrios Grigoriou, 
 

Athens, 24th July 2017 
 

 



Extending the Rupture compression attack framework against real world systems 

D. Grigoriou                               13 

1. INTRODUCTION 

As the Internet evolves and computer networks become bigger and better, network 
security has become one of the most important factors for society to consider. Big 
enterprises like Facebook, Microsoft or Google are designing and building software 
products that need to be protected against foreign attacks. At the same time, recent 
publications about massive leaks on personal info of users have changed the way 
people are using online services. Researchers have been constantly seeking solutions 
in order to protect against every possible kind of attack. 
 
The implementation of this work aims to present the weaknesses of multiple online 
protocols which are currently used on the Internet and sensitize the community about 
Man-in-the-Middle attacks, as well as compression side-channel attacks. 
 
Most of the data which are sent online are compressed beforehand. Our work focuses 
on exploiting those compression algorithms in order to extract plaitext from encrypted 
pages. More specifically, we extend previous attack models, such as BREACH, by 
creating a modular framework for conducting those types of attacks. This way we point 
out the weaknesses of online protocols, which are considered to be safe. 
 
On this work, we focus on compression software gzip, which uses the DEFLATE 
algorithm which is a variation of Huffman [17] and LZ77 compression. LZ77 finds 
duplicated strings in the input data. The second occurrence of a string is replaced by a 
pointer to the previous string, in the form of a pair (distance, length). This technique 
helps conducting the attack, while Huffman compression prevents it. 
 
HTTP (Hyper-Text Transfer Protocol) is the most common method for data 
communication for the World Wide Web. However it is common knowledge that HTTP 
data are not encrypted and should not be considered as secure. This problem, was 
solved by SSL (Secure Socket Layer) and its descendant TLS (Transport Layer 
Security), which is a cryptographic protocol that provides communication security, by 
encrypting data before they are sent, over a computer network. 
 
Encryption algorithms can be split in two big categories: stream ciphers and block 
ciphers. In the first category, data are encrypted as a continuous stream, while on the 
other one they are split into multiple blocks of equal size. In case the data length is not 
sufficient to create a complete block, it is filled with artificial noise in order to achieve the 
appropriate size. 
 
One of the most popular stream ciphers is RC4. However, this algorithm is considered 
to be insecure due to multiple vulnerabilities.  On the other hand, AES is the most 
popular block cipher algorithm and it is widely used in the majority of online systems 
with a few variations. Although block ciphers make it harder for our attack to succeed, 
we describe below interesting techniques that can go around this problem and 
ultimately perform the attack successfully. 
 
In order to achieve the attack against block ciphers, we use statistical methods by 
injecting our own artificial noise to each target block. Then we analyze the results in 
order to extract a decision. 
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Ruptureôs implementation is designed for modularity and easy use. Its architecture 
requires minimum modification by the user and gives the ability for multiple compression 
side-channel attacks at the same time. This tool was used in lab environment attacks.  
 
This work introduces new techniques in order to extend Rupture and make the attack 
possible in real world systems. We introduce a new method for recovering target 
secrets with high certainty. We also create new patches in order to use Rupture in IPv6 
end-points. 
 
To sum up, this work is the extension of a continuous lab research which was 
introduced in the past few years and pointed out some key vulnerabilities in online 
systems. It is important that new methods of defense will be adopted against this attack, 
in order to achieve higher protection in online communications. 
 

1.1 Thesis Structure 

Chapter 2 
This chapter provides the reader with basic information, both in technical as well as 
theoretical terms, which will be used later. We describe the most common 
compression algorithms as well as basic protocols used for secure communications. 
We also introduce various attacks against them. 
 

Chapter 3 
In this chapter we describe the tool we created for attacks in compressed encrypted 
protocols. More specifically, we outline the conditions under which such an attack is 
carried out, we analyze the terminology used in our framework and finally we 
describe in detail its various parts and their functionalities. 
 

Chapter 4 
This chapter introduces a new method for conducting the Rupture attack, 
Backtracking. This method can recover multiple secrets with common prefix and 
extracts the final secret with a high amount of certainty, based on probabilistic 
models. 
 

Chapter 5 
In this chapter we introduce a patch for conducting Man-in-the-Middle attacks on 
IPv6 endpoints. This is done by extending the capabilities of BetterCap framework, 
as well as the underlying library that is used, PacketFu. 
 

Chapter 6 
Conclusion 
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2. THEORETICAL BACKGROUND 

In this chapter, we intend to provide the necessary background to the user to 
understand the mechanisms used later in the work. The description of each system is 
only a short introduction to familiarize the reader with the needed concepts. 
Specifically, section 2.1 describes the functionality of the gzip compression software 
and the algorithms that it entails. Section 2.2 covers the same-origin policy that applies 
in the web application security model. In section 2.3 we explain Transport Layer 
Security, which is the widely used protocol that provides communications security over 
the Internet. Finally, in section 2.4 we describe attack methodologies, such as ARP 
spoofing, in order for an adversary to perform a Man-in-the-Middle attack. 

2.1 gzip 

gzip is a file format and a software application used for file compression and 
decompression. It is the most popular compression method on the Internet, used 
alongside with protocols such as HTTP and XMPP. Derivatives of gzip include the tar 
utility, which can extract .tar.gz files, as well as zlib, an abstraction of the DEFLATE 
algorithm in library form. 
 
It is based on the DEFLATE algorithm, which is a composition of LZ77 and Huffman 
coding. DEFLATE could be described in short by the following compression schema:  
 

DEFLATE(m) = Huffman(LZ77(m)) 
 
In the following sections we will briefly describe the functionality of both these 
compression algorithms. 

2.1.1 LZ77 

LZ77 is a lossless data compression algorithm published by A. Lempel and J. Ziv in 
1977 [7]. It achieves compression by replacing repeated occurrences of data with 
references to a single copy of that data existing earlier in the uncompressed data 
stream. A match is encoded by a pair of numbers called a length-distance pair, the first 
of which represents the length of the repeated portion and the second of which 
describes the distance backwards in the stream. In order to spot repeats, the protocol 
needs to keep track of some amount of the most recent data, specifically the latest 32 
kilobytes. This data is held in a sliding window, therefore the initial appearance of a 
portion of data needs to have occurred at most 32 Kb up the data stream, in order to be 
compressed. Also, the minimum length of a text that can be compressed is 3 
characters. Compressed text can refer to literals as well as pointers. 
 
Below you can see an example of a step-by-step execution of the algorithm for a 
chosen text: 
 

 

Figure 2.1: Plaintext to be compressed. 

https://en.wikipedia.org/wiki/Gzip
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Figure 2.2: Compression starts with literal representation. 

 
 
 

 

Figure 2.3: Use a pointer at distance 30 and length 13. 

 
 
 

 

Figure 2.4: Continue with literal. 

 
 
 

 

Figure 2.5: Use a pointer pointing to a pointer. 
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Figure 2.6: Use a pointer pointing to a pointer pointing to a pointer. 

 
 

2.1.2 Huffman coding 

Huffman coding is also a lossless data compression algorithm developed by David A. 

Huffman and published in 1952 [4]. When compressing a text with this algorithm, a 
variable-length code table is created to map source symbols to bit streams. Each 
source symbol can be represented with less or more bits compared to the 
uncompressed stream, so the mapping table is used to translate source symbols into bit 
streams during compression and vice versa during decompression. The mapping table 
could be represented as a binary tree of nodes, where each leaf node represents a 
source symbol, which can be accessed from the root of the tree by following the left 
path for 0 and the right path for 1. Each source symbol can be represented only by leaf 
nodes, therefore the code is prefix-free, i.e. no bit stream representing a source symbol 
can be the prefix of any other bit stream representing a different source symbol. The 
final mapping of source symbols to bit streams is calculated by finding the frequency of 
appearance of each source symbol of the plaintext. That way, most common symbols 
will be coded in shorter bit streams, resulting in a compression of the initial text. 

Finally, the compression mapping needs to be included in the final compressed text so 
that it can be used during decompression. 

 

Below follows an example of a plaintext and a valid Huffman tree that can be used for 
compressing it: 

 
I find myself strangely drawn to this odd configuration of activity 

 
Frequency Analysis 

 

( ): 10 i: 7 t: 6 n: 5 o: 5 

a: 4 d: 4 f: 4 y: 3 c: 2 

e: 2 g: 2 l: 2 r: 2 s: 2 

h: 1 m: 1 u: 1 v: 1 w: 1 
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Figure 2.7: Huffman tree. 

 

2.2 Same-origin policy 

Same-origin policy is an important aspect of the web application security model. Under 
the policy, a web browser permits scripts contained in a first web page to access data in 
a second web page, but only if both web pages have the same origin. An origin is 
defined as a combination of Uniform Resource Identifier scheme, hostname, and port 
number. This policy prevents a malicious script on one page from obtaining access to 
sensitive data on another web page through that pageôs Document Object Model. 

 

The following table explains same-origin-policy. We assume that we want access from 

http://www.example.com/dir/page.html to each of the following URLs: 

 
 

http://www.example.com/dir/page2.html success 

http://www.example.com/dir2/other.html success 

http://www.example.com:81/dir/other.html different port 

https://www.example.com/dir/other.html different protocol 

http://en.example.com/dir/other.html different host 

http://example.com/dir/other.html different host 

 
 

https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/Document_Object_Model
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This mechanism is particularly significant for modern web applications that extensively 
depend on HTTP cookies to maintain authenticated user sessions. The lack of same 
origin policy would result in the compromise of data confidentiality or integrity. 

Despite the use of same-origin policy by modern browsers, there still exist attacks that 
enable an adversary to bypass it and compromise a userôs communication with a 
website. Two major types of such attacks, cross-site scripting (XSS) and cross-site 
request forgery (CSRF) are described in the following subsections. 

2.2.1 Cross-site scripting 

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are 
injected into otherwise benign and trusted web sites. XSS attacks occur when an 
attacker uses a web application to send malicious code, generally in the form of a 
browser side script, to a different end user. That way, same-origin policy can be 
bypassed and sensitive data handled by the vulnerable website may be compromised. 

 

XSS attacks can generally be categorized into two categories: stored and reflected. 

 

Stored XSS Attacks are those where the injected script is permanently stored on the 
target servers, such as in a database, in a message forum. The victim then retrieves the 
malicious script from the server when it requests the stored information. 

 

Reflected XSS Attacks are those where the injected script is reflected off the web 
server, such as in an error message, search result, or any other response that includes 
some or all of the input sent to the server as part of the request. 

 

For further information on XSS refer to [10]. 

2.2.2 Cross-site request forgery 

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute 
unwanted actions on a web application in which they are currently authenticated. CSRF 
attacks specifically target state-changing requests, not theft of data, since the attacker 
has no way to see the response to the forged request. An attacker may trick the users 
of a web application into executing actions of the attackerôs choosing. If the victim is a 
normal user, a successful CSRF attack can force the user to perform state changing 
requests like transferring funds, changing their email address, and so forth. If the victim 
is an administrative account, CSRF can compromise the entire web application. 

 

For example, when Alice visits a web page that contains the HTML image tag <img 

src=òhttp://bank.example.com/withdraw?account=Alice&amount=100000&for=Malloryò>,
that Mallory has injected, a request from Aliceôs browser to the example bankôs website 
will be issued, stating an amount of 1.000.000 to be transferred from Aliceôs account to 
Malloryôs. If Alice is logged in the example bankôs website, the browser will include the 
cookie containing Aliceôs authentication information in the request, validating the 
request for the transfer. If the website does not perform more sanity checks or further 
validation from Alice, the unauthorized transaction will be completed. An attack like this 
is very common on Internet forums, where users are allowed to post images. 
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2.3 Transport Layer Security 

Transport Layer Security (TLS) is a cryptographic protocol that provides 
communications security over a computer network, allowing a server and a client to 
communicate in a way that prevents eavesdropping, tampering or message forgery. 

 

TLS is composed of two layers: the TLS Record Protocol and the TLS Handshake 
Protocol. The Record Protocol provides connection security, while the Handshake 
Protocol allows the server and client to authenticate each other and negotiate 
encryption algorithms and cryptographic keys before any data is exchanged. 

One category of TLS attack is compression attacks [13]. Such attacks exploit TLS-level 
compression in order to decrypt ciphertext. In this work, we extend the usability and 
optimize the performance of such an attack, BREACH. 

 
1.1.1 TLS handshake 

 

 

Figure 2.8: TLS handshake flow. 

http://breachattack.com/
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The above sequence diagram presents the functionality of a TLS handshake. The client 
and the server exchange the basic parameters of the connection such as the highest 

TLS protocol version, a random number, a list of suggested cipher suites and suggested 
compression methods. The server provides the client with all the necessary information 
in order to validate and use the asymmetric server key to compute the symmetric key 
that will be used for the rest of the communication. The client computes the Pre-
MasterSecret and sends it to the server which is then used by both parties to compute 
the symmetric key. Finally, both sides exchange and validate hash and MAC codes over 
all the previous messages, after which they both have the ability to communicate safely. 

This applies only in the basic TLS handshake. Client-authenticated and resumed 
handshakes are quite different, although they are not relevant for the purpose of this 
work. 

 
1.1.2 TLS record 
 

 

Figure 2.9: TLS record. 

 
The above figure depicts the general format of all TLS records. 
 
The first field defines the Record Layer Protocol Type of the record, which can be one of 
the following: 
 

Hex Type 

0x14 ChangeCipherSpec 

0x15 Alert 

0x16 Handshake 

0x17 Application 

0x18 Heartbeat 

 
 
The second field defines the TLS version for the record message, which is identified by 
the major and minor numbers: 
 

Major Minor Version 

3 0 SSL 3.0 

3 1 TLS 1.0 
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3 2 TLS 1.1 

3 3 TLS 1.2 

 

The aggregated length of the payload of the record, the MAC and the padding is then 
calculated by the following two fields: 256 _ (bits15::8) + (bits7::0). 

Finally, the payload of the record, which, depending on the type, may be encrypted, the 
MAC, if provided, and the padding, if needed, make up the rest of the TLS record. 

2.4 Man-in-the-Middle 

A Man-in-the-Middle attack is a type of cyber attack where a malicious actor inserts 
themselves into a conversation between two parties, impersonates both and gains 
access to information that they were trying to send to each other. A man-in-the-middle 
attack allows a malicious actor to intercept, send and receive data meant for someone 
else, or not meant to be sent at all, without either outside party knowing until it is too 
late. 

 

 

Figure 2.10: Man-in-the-Middle. 

 
MitM attacks can be mitigated using end-to-end encryption, mutual authentication or 
PKIs. However, some attacks are still feasible against poorly configured end-points. 

Below we describe one such attack, ARP Spoofing. 

2.4.1 ARP Spoofing 

ARP spoofing [8] is a type of attack in which an attacker sends falsified ARP (Address 

Resolution Protocol)[11] messages over a local area network. This results in the linking 
of an attackerôs MAC address with the IP address of a legitimate computer or server on 
the network. This enables the attacker to begin receiving any data that is intended for 
that IP address. ARP spoofing can enable malicious parties to intercept, modify or even 
stop data in-transit. 

 

ARP spoofing can also be used for legitimate reasons, when a developer needs to 
debug IP traffic between two hosts. The developer can then act as proxy between the 

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
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two hosts, configuring a switch that is used by the two parties to forward the traffic to the 
proxy for monitoring purposes. 

 

 

Figure 2.11: ARP spoofing. 
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3. RUPTURE FRAMEWORK 

In this chapter, we describe our framework for conducting compression side-channel 
attacks, Rupture. Rupture [3] is a service-based architecture system which contains 
multiple independent components. 

 

The section 3.1 describes in detail the assumptions needed in order to orchestrate the 
attack. The section 3.2 describes the terminology used in our framework and its 
governing principles. Finally, the section 3.3 presents the multiple components 
thoroughly. While the components are designed to be able to run independently on 
different networks or computer systems, the attack can be performed by running all 
subsystems on an individual system. We provide appropriate scripts to conduct such 
attacks easily. 

3.1 Attack Assumptions 

The attack framework assumes a target service to be attacked. Typically this target 
service is a web service which uses TLS. Specifically, we are targeting services that 
provide HTTPS end-points. However, this assumption can be relaxed and attacks 
against other similar protocols are possible. Any protocol that exchanges encrypted 
data on the network and for which a theoretical attack exists can in principle be attacked 
using Rupture. We designed Rupture to be a good playground for experimentation for 
such new attacks. Examples of other encrypted protocols for which attacks can be 
tested include SMTP and XMPP. 

 

The attack also assumes a user of the target service for which data will be decrypted, 
the victim. The victim is associated with a particular target. 

 

There are two underlying assumptions in our attack: The injection and the sniffing 
assumptions. These are often achieved through the same means, although not 
necessarily. 

 

The injection assumption states that the adversary is able to inject code to the victimôs 
browser for execution. This code is able to issue adaptive requests to the target service. 

Injection in Rupture is achieved through the injector component. The code that is 
injected is the client component. 

 

The sniffing assumption states that the adversary is able to observe network traffic 
between the victim and the target. This traffic is typically ciphertexts. Sniffing is 
achieved through the sniffer component. 

 

Both the sniffer and client will be described in section 3.3. 

3.2 Principles of Attack 

The attack takes place by first injecting client code into the victimôs computer using the 
injector. The client then opens a command-and-control channel to the real-time service, 
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which forwards work from the backend to the client. The real-time service facilitates the 
communication between the client and backend and the backend module makes all the 
decisions for the attack. Further description for the real-time and the backend is 
provided in 3.3. 

 

When a client associated with a victim asks to work, the backend passes a work request 
to the real-time service, which passes it to the client. These work requests ask the client 
to perform a series of network requests from the victimôs computer to the target web 
application. As these requests are made from the victimôs browser, they contain 
authentication cookies which authenticate the user to the target service. As such, the 
responses contain sensitive data, but that data is not readable by the client due to 
same-origin policy. 

 

When a response arrives from the target web app to the victimôs computer, the 
encrypted response is collected by the sniffer on the network. The encrypted data 
pertaining to one response is a sample. Each work asks for multiple requests to be 
made, and therefore multiple samples are collected per work. The set of samples 
collected for a particular work request are a sampleset. 

 

 

Figure 3.1: Sampleset 

 
A successful attack completely decrypts a portion of the plaintext. The portion of the 
plaintext which the attack tries to decrypt is the secret. That portion is identified by an 
initially known prefix which distinguishes it from other secrets. This prefix is typically 3 to 
5 bytes long. A prefix of such a length is required to bootstrap the attack due to the 
LZ77 implementation. Each byte of the secret can be drawn from a given alphabet, the 
secretôs alphabet. For example, some secrets only contain numbers, and so their 
alphabet is the set of numbers [0-9]. 

 

At each stage of the attack, a prefix of the secret is known, because that portion of the 
secret has already been successfully decrypted. The known prefix gets extended until 
the whole secret becomes known, at which stage the attack is completed. 

 

When a certain prefix of the secret is known, the next byte of the secret must be 
decrypted. The attack initially assumes the next unknown byte of the secret exists in the 
secretôs alphabet, but slowly drills down and rejects alphabet symbols until only one 
candidate symbol remains. At each stage of the attack on one byte of the secret, there 
is a certain known alphabet which the next byte can belong to. This known alphabet is a 
subset of the secretôs alphabet. 
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To drill down on the known alphabet, one of two methods is employed. In the serial 
method, each symbol of the known alphabet is tried sequentially. In the divide & 
conquer method, the alphabet is split into two candidate alphabet subsets which are 
tried independently. 

 

 

Figure 3.2: Divide & Conquer Alphabet 

 

The above figure shows how the initial alphabet is divided into two equal alphabets 
each of which will be tested separately. 

 

The attack is conducted in rounds. In each round, a decision is made about the state of 
the attack and more becomes known about the secret. In a round, either the next byte 
of the secret becomes known, or the known alphabet is drilled down to a smaller set. In 
order to compare various different candidate alphabets, the attack executes a series of 
steps to collect batches of data collection for each round. 

 

In each batch, several samples are collected from each probability distribution 
pertaining to a candidate alphabet, forming a sampleset. When samplesets of the same 
amount of samples have been collected for all the candidate alphabets, a batch is 
complete and the data is analyzed. The analysis is performed by the analyzer which 
statistically compares the samples of different candidates and decides which candidate 
is optimal, i.e. contains the correct guess. This decision is made with some confidence, 
which is expressed in bytes. If the confidence is insufficient, an additional batch of 
samplesets is collected, and the analysis is redone until the confidence value surpasses 
a given threshold. 

 

Once enough batches have been collected for a decision to be made with good 
confidence, the round of the attack is completed and more information about the secret 
becomes known. Each round at best collects one bit of information of the secret. 
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Figure 3.3: Scoreboard 

 

The above figure shows the results of the analysis of one batch. For each candidate 
letter we present a number, which is the total length of the samplesets for the specific 
letter. The candidate letters are presented in an ascending order of the total length. 

Under the scoreboard is the decision which consists of the known alphabet, the possible 
knownsecret and the confidence describing how sure we are regarding the possible 
knownsecret. 

3.3 Architecture 

3.3.1 Injector 

The injector component is responsible for injecting code to the victimôs computer for 
execution. In our implementation, we assume the adversary controls the network of the 
victim. Our injector injects the client code in all unauthenticated HTTP responses that 
the victim receives. This Javascript code is then executed by the victimôs browser in the 
context of the respective domain name. We use BetterCap [1] to perform the HTTP 
injection. The injection is performed by ARP spoofing the local network and forwarding 
all traffic in a Man-in-the-Middle manner. It is simply a series of shell scripts that use the 
appropriate BetterCap modules to perform the attack. 

 

As all HTTP responses are infected, this provides increased robustness. The injected 
client code remains dormant until it is asked to wake up by the command -and-control 
channel. This means that the user can switch between browsers, reboot their computer, 
close and reopen browser tabs, and the attack script will continue to be injected. 

As long as one tab with the client script is open, the attack can keep running. 

 

The injector component needs to run on the victimôs network and as such is lightweight 
and stateless. It can be easily deployed on a machine such as a Raspberry Pi, and can 
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be used for massive attacks, for example at public networks such as coffee shops or 
airports. Multiple injectors can be deployed to different networks, all controlled by the 
same central command-and-control channel. 

3.3.2 Sniffer 

The sniffer component is responsible for collecting data directly from the victimôs 
network. As the client issues chosen plaintext requests, the sniffer collects the 
respective ciphertext requests and ciphertext responses as they travel on the network. 
These encrypted data are then transmitted to the backend for further analysis. 

 

Our sniffer implementation runs on the same network as the victim. It is a Python 
program which uses scapy [2] to collect network data. 

 

Our sniffer runs on the same machine as our injector and utilizes the injectorôs ARP 
spoofing to retrieve the data from the network. Other sniffer alternatives include sniffing 
data on the target network side, or on the ISP or router point if the adversary has such a 
level of access. 

 

The sniffer exposes an HTTP API which is utilized by the backend for controlling when 
sniffing starts, when it is completed, and to retrieve the data that was sniffed. This API is 
described below. 

 

Backend ź Sniffer (HTTP) 

 

The Python backend application communicates with the sniffer server, in order to initiate 
a new sniffer, get information or deletes an existing one. The sniffer server implements 
a RESTful API for communication with the backend. 

 

/start is a POST request that initializes a new sniffer. Upon receiving this request, the 
sniffer service should start sniffing. 

 

The request contains a JSON with the source_ip, (the IP of the victim on the local 
network) and the destination_host (the hostname of the target that is being attacked). 

 

The backend returns HTTP 201 if the sniffer is created correctly. Otherwise, it returns 

HTTP 400 if either of the parameters is not properly set, or HTTP 409 - Conflict, if a 
sniffer for the given arguments already exists. 

 

/read is GET request that asks for the network capture of the sniffer. 

The GET parameters are the source_ip (the IP of the victim on the local network) and 
the destination_host  (the hostname of the target that is being attacked). 

 



Extending the Rupture compression attack framework against real world systems 

D. Grigoriou                               29 

The backend returns HTTP 200 with a JSON that has a field capture, which contains 
the network capture of the sniffer as hexadecimal digits, and a field records, that 
contains the total amount of captured TLS application records. In case of error, HTTP 
422 Unprocessable Entity is returned if the captured TLS records were not properly 
formed on the sniffed network, or HTTP 404 if no sniffer with the given parameters 
exists. 

 

/delete is a POST request that asks for the deletion of the sniffer 

 

The request contains a JSON with the source_ip (the IP of the victim on the local 
network) and destination_host  (the hostname of the target that is being attacked). 

 

The backend Returns HTTP 200 if the sniffer was deleted successfully, or HTTP 404 if 
there is no sniffer with the given parameters. 

3.3.3 Client 

The client is written in Javascript and runs in a different context from the target website. 

Thus, it is subject to same-origin policy and cannot parse the plaintext or encrypted 
responses. However, the encrypted requests and responses are available to the sniffer 
through direct network access. 

 

The client contains minimal logic. It connects to the real-time service through a 
command-and-control channel and registers itself there. Afterwards, it waits for work 
instructions by the command-and-control channel, which it executes. The client does 
not take any decisions or receive data about the progress of the attack other than the 
work it is requested to do. This is intentional so as to conceal the workings of the 
adversary analysis mechanisms from the victim in case the victim attempts to reverse 
engineer what the adversary is doing. Furthermore, it allows the system to be upgraded 
without having to deploy a new client at the victimôs network, which can be a difficult 
process. 

 

As a regular user is browsing the Internet, multiple clients will be injected in insecure 
pages and they will run under various origins. All of them will register and maintain an 
open connection through a command-and-control channel with the real-time service. 
The real-time service will enable one of them for this victim, while keeping the others 
dormant. The one enabled will then receive work instructions to perform the required 
requests. If the enabled client dies for whatever reason, such as a closed tab, one of the 
rest of the clients will be woken up to take over the attack. 

 

The client is a Javascript program written using harmony / ECMAScript 6 and compiled 
using babel and webpack. 
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Figure 3.4: Client code 

3.3.4 Real-time 

The real-time service is a service which waits for work requests by clients. It can handle 
multiple connections. It receives command-and-control connections from various clients 
which can live on different networks, orchestrates them, and tells them which ones will 
remain dormant and which ones will receive work, enabling one client per victim. 

 

The real-time service is developed in Node.js. 

 

The real-time service maintains open web socket command-and-control connections 
with clients and connects to the backend service, facilitating the communication 
between the two. 

 

The real-time server forwards work requests and responses between the client and the 
backend. It communicates with the client in a bi-directional way using web sockets. 

This also facilitates the ability to detect that a client has gone away, which is registered 
as a failure to do work. This can happen for example due to network errors if the victim 
disconnects from the network, closes their tab or browser, and so on. It is imperative 
that incomplete work is marked as failed as soon as possible so that the attack can 
continue by recollecting the failed samples. 
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Figure 3.5: Real-time code 

 

The web socket API exposed by the real-time service is explained below. 

 

Client ź Real-time protocol 

 

The client / real-time protocol is implemented using socket.io websockets. 

 

client-hello / server-hello 

 

When the client initially connects to the real-time server, it sends the message 
clienthello with its victim_id to the real-time server. The server responds with a 
serverhello message. After these handshake messages are exchanged, the client and 
server can exchange further messages. 

 

get-work / do-work 

 

When the client is ready to perform work, it emits the message get-work requesting 
work to be performed from the real-time server. The real-time server responds with a 
do-work message, passing a work object that is structured as defined below: 

 

 

Figure 3.6: work object 
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If the real-time service is unable to retrieve work from the backend due to a 
communication error, real-time will return an empty work object indicating there is no 
available work to be performed at this time. 

 

work-completed 

 

When the client has finished its work or has been interrupted due to network error, it 
emits a work-completed message, containing the following information:  

 

 

Figure 3.7: work-completed 

 
success is true if all requests were performed correctly, otherwise it is false. work 
contains the work that was performed or failed to perform. 

3.3.5 Backend 

The backend is responsible for strategic decision taking, statistical analysis of samples 
collected, adaptively advancing the attack, and storing persistent data about the attacks 
in progress for future analysis. 

 

The backend talks to the real-time service for pushing work out to clients. It also speaks 
to the sniffer for data collection. 

 

It is implemented in Python using the Django framework. 

 

The backend exposes a RESTful API via HTTP to which the real-time service makes 
requests for work. This API is explained below. 

 

Real-time Ÿ Backend (HTTP) 

 

The backend implements various API endpoints for communication with the real-time 
server. 

 

/get_work/<victim> is an HTTP GET endpoint. It requests work to be performed on 
behalf of a client. The argument passed is the victim - the id of the victim. 

 

If there is work to be done, it returns an HTTP 200 response with the JSON body 
containing the work structure. The samples associated with a particular work request 
and performed all together constitute a sampleset. 
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In case no work is available for the client, it returns an HTTP ó404óresponse. Work can 
be unavailable in case a different client is already collecting data for the particular 
victim, and we do not wish to interfere with it. 

 

/work_completed/<victim> is an HTTP POST endpoint. It indicates on behalf of the 
client that some work was successfully or unsuccessfully completed. The arguments 
passed are the work and a boolean success parameter. 

 

If success is True, this indicates that the series of indicated requests were performed by 
the victim correctly. Otherwise, the victim failed to perform the required requests due to 
a network error or a timeout and the work has to be redone. 
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4. BACKTRACKING 

Backtracking is a method that allows the adversary to recover the desired target secret 
of an HTML page, whose known prefix can be encountered multiple times. This method 
is implemented in a different way than the other two (Serial, Divide & conquer), since it 
does not require searching for an optimal candidate each round. Instead, it adds every 
possible candidate on a pool and chooses the best one to be examined on the next 
round, based on a probabilistic model. Then, it advances repetitively until the whole 
secret is recovered. 

In section 1 we describe in detail how Backtracking implementation is structured, as well 
as how the method works. 

Section 2 explains the architecture of the new patch and analyzes the crucial 
components responsible for conducting a Backtracking attack. 

In this chapter, we only compare Backtracking characteristics with those of the Serial 
one. Even though Divide & Conquer works in a different way than Serial during each 
round, it does reach to an optimal candidate in the same way the Serial does, making 
the comparison between the first two sufficient. 

4.1 Method Specifications 

When it comes to analyzing compressed ciphertexts, Backtracking deals with the 
problem of secret discovery in a more spherical way. 

In contrast with the Serial, this method does not produce unexpected results when the 
target secretôs prefix can be found multiple times on the HTML page. 

Serial method creates multiple requests for every possible character, produced by a 
given alphabet. During each round it decides an optimal candidate by analyzing the size 
of the compressed cipher responses. The response with the smallest size, is marked as 
the optimal candidate and is added to the known prefix in order to proceed to the next 
round. 

But what happens if there are two (or possibly more) words with the same prefix on the 
HTML page we examine. Here is an example where `sec` is the known prefix, `secret` 
is the target secret word and `second` is also part of the HTML page: 

 

 

Figure 4.1: Common prefix plaintext. 

 

As the above image shows, both the órô character as well as óoô character will give the 
same size of compressed responses, since both can be compress well with the prefix 
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`sec`. Although there is no violation of any kind, based on the implementation of the 
Serial method, there is a chance the óoô character will be chosen instead of the órô 
character, giving the wrong outcome. During the next round, the updated knownsecret 
will be the string ósecoô , leading to the discovery of word `second` instead of our target 
secret. 

 

On the other hand, Backtracking works in a different way than the previous method. 
Instead of deciding the optimal candidate on each round, Backtracking assigns relative 
probability values on each candidate based on the compression they produce. The 
lower the compression size is, the higher the value goes. So, instead of working in a 
linear structure, where each round we create is the one to be chosen on the next 
iteration, Backtracking creates multiple rounds for each candidate and stores them in a 
tree structure for future analysis. Here is how backtracking works in a step by step 
analysis: 

 

As the Rupture architecture states, every round starts with a given knownsecret. During 
the first iteration of the attack, the knownsecret is equal to the initial known prefix of the 
target secret. Every node represents a round and holds a knownsecret. It is easy to 
assume that the top node of the tree is the first round, where the initial known prefix is 
stored.  

Based on that, the framework starts to make requests on a targeted website, in order to 
measure its responses. When we receive those responses, we analyze them by 
assigning relative probabilities to each one of them. This assignment aims to translate 
the compression size of a candidate into a probability. After this process is completed, 
we store each one of the candidates into the tree structure. This is done by creating 
new rounds with the permutation of knonwsecret and the appropriate candidate. This 
technique is executed repetitively until the target secret is recovered. 

It is quite clear, that if we pick a random node and follow its path, starting from the top, 
we can observe every step of the analysis process for the given knownsecret. The key 
aspect though, behind each node is that it doesnôt only store a string with a 
knownsecret, but it also holds an accumulated probability number which represents the 
certainty of the knownsecret being a part of the target secret. This value is calculated by 
combining the relative probability of each candidate at a given round and the depth of 
the current node. Accumulated probability is a very valuable variable, since we use it in 
order to decide the next round to be analyzed. The one with the highest value is the one 
to be chosen. 

 

This technique give us the ability to explore more than one known prefixes at a time, 
ensuring that if a conflict arises in a round (as stated above, two words having the same 
prefix) we can solve it by exploring all possible secrets until we find the desired one. 
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Figure 4.2: Backtracking tree implementation. 

 

4.2  Architecture 

4.2.1 Round Model 

In order to support the Backtracking tree structure, there was a need for the Round 
model to undergo a few changes. Since Serial method works in a linear way, Roundôs 
old form simply starts every time we want to explore our knownsecret and ends when 
we gather a proper amount of data, in order to extract a decision. 

However, when we need to explore multiple paths of the same prefix, this approach 
doesnôt work. We need to create Rounds with various knownsecrets and store them in 
the database for future use. This is done by the fields `started` and `completed` on 
Round model. These two fields not only allow us to store multiple possible candidates in 
the form of a Round, but also help us to distinguish which Round we are currently 
working on, which one is already completed and which one is about to be explored. 

Another important part for the Backtracking tree structure is the accumulated_probability 
field. This field holds the amount of certainty of each Roundôs knownsecret being in the 
final secret. 

4.2.2 Backtracking Analyzer 

Backtracking Analyzer is responsible for three major tasks. Firstly, to calculate relative 
probabilities for each character from a given knownalphabet, secondly calculate 
accumulated probabilities for those characters and finally to return all these values and 
states. 

  

 

× Relative Probabilities 

The function get_accumulated_probabilities takes up the first two tasks. It is given a 
dictionary of sorted candidate alphabets and it calculates the relative probabilities of 
each candidate being in the target secret based on their associated accumulative 
lengths. Since the length significance of the better compressed candidates is more 
important than those with the least compression, the function connecting each 
candidateôs probability cannot be linear. This is why we use an exponential function. 

The formula that calculates the relative probability of the ith candidate is: 
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Figure 4.3: Relative probability formula. 

 

¶  b: compression function factor 

¶  i: ith candidate compression length 

¶  min: candidate with the least compression length 

¶  S: alphabetô s size 

Base b represents the efficiency of the compression function. A good compression 
function indicates that the total length we collect is rather accurate, increasing the 
significance of the compression difference between two candidates. 

The key concept behind this formula is the effort to quantify how much a given 
candidate differs from the minimum candidate and the average difference. This is all 
translated with a probability value. Here is an example of the usage of that formula: 

r compression length: 45 

o compression length: 47 

b: 1.2 

 

 

Figure 4.4 Relative probability example. 

 

As the above image shows, if the alphabet for the first round consists of characters r 
and o, given their compression length their relative probability will be 0.8 and 0.2 
respectively. This example demonstrates accurately the importance of the compression 
function factor in the calculation of relative probabilities, as we can configure the 
constant according to the nature of the problem (compression function algorithm) and 
ultimately create more accurate results. 

 

× Accumulated Probabilities 

Once the relative values are calculated then get_accumulated_probabilities associates 
them with the probability of the parent Round and calculates the final accumulated 
probability. 
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In order to get more accurate results it is essential that each candidate that is analyzed 
should have the appropriate weight of importance. So what happens if we want to 
choose the next round, but two or more candidates do not have the same depth on the 
tree structure? Is it enough to compare only the relative values? 

This is where accumulated probability comes in. The calculation of this value is done by 
the following formula: 

 

APi = AF * RPi * APi-1 

 

¶  AF: amplification factor 

¶  RPi: relative probability of current candidates 

¶  APi-1: parentôs accumulated probability 

 

The Amplification factor is the most crucial part in this formula. This constant states that 
the deeper a candidate is on the Backtracking tree structure, the more important it gets. 
This can also be verified intuitively. As long as we make ñoptimalò candidate choices 
and we still get ñoptimalò compression length, then it is more likely that the next choice 
we are about to make, will be ñoptimalò too. Here is an example of a Backtracking tree, 
with both relative and accumulated probabilities: 

 

Figure 4.5: Complete Backtracking graph with all types of probabilities 

4.3 Backtracking experimental results 

The Backtracking method was tested on lab environment attacks. More specifically, we 
created a test end-point containing two words with the same prefix and tried to recover 
both of them, based on the theoretical architecture. The first one is the word `secret` 
and the other one is the word `second`. Our goal was to confirm our hypothesis: 

At first, Rupture will identify both of the secrets by appearing two candidates with 
significant accumulated probability, compared to the other ones. This can be shown in 
the following figure: 
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Figure 4.6: Backtracking execution step 1. 

Both `seco` as well as `secr` have a distinguishable probability value compared to the 
other candidates (we only show two of them for simplicity purposes). This hints that 
characters `o` and `r` could possibly be part of two different secrets. As the attack 
continues, Backtracking analyzer chooses the candidate with the maximum value, in our 
case `o` and continues the analysis: 

 

 

Figure 4.7: Backtracking execution step 2. 

Given the prefix `secon` as knownsecret Backtracking continues by extending it until the 
whole secret is recovered. 




























