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ABSTRACT 

 

The need for system protection from various attacks makes system security one of the 
most important technological fields in the 21st century.  This work investigates attacks 
on compressed encrypted protocols, and develops further the Rupture framework. 
 
New methods are being proposed that allow the recovery of a secret from a website that 
uses cryptographic suites, given the fact that the secret’ s prefix can be found multiple 
times in the website’ s plaintext. This way, in theory, we can recover the whole plaintext 
from a ciphertext. 
 
At the same time, we present two new patches: one in the BetterCap framework and 
one in PacketFu library. With these two patches, IPv6 attacks are now more modular 
and easy to conduct. The BetterCap framework is the one used in the first part of the 
Rupture attack. The purpose of this work is to make the Rupture attack possible on IPv6 
targets. 
 
The implementation of this work aims by no means to be used with malicious purposes. 
On the contrary, it aims to sensitize the community about Man-in-the-Middle attacks, as 
well as compression side-channel attacks, given the extensive growth of technology, 
such as IPv6. 
 
Rupture is a collaborative work with (alphabetical order): Dimitris Karakostas, Dionysis 
Zindros, Eva Sarafianou. Updated versions on the current work can be found on the 
following link: https://github.com/dimriou/rupture-thesis. Rupture repository is: 
https://github.com/decrypto-org/rupture. 
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ΠΕΡΙΛΗΨΗ 

 

Η ανάγκη για προστασία των υπολογιστικών συστημάτων από επιθέσεις, καθιστά την 
ασφάλεια ως έναν από τους σημαντικότερους τεχνολογικούς τομείς του 21ο αιώνα. Η 
παρούσα εργασία ερευνά επιθέσεις πάνω σε συμπιεσμένα κρυπτογραφημένα 
πρωτόκολλα και συγκεκριμένα αναπτύσσει περαιτέρω το εργαλείο Rupture. 
 
Προτείνονται μέθοδοι που επιτρέπουν την ανακάλυψη μυστικού κρυπτογραφημένης 
σελίδας, του οποίου το πρόθεμα συναντάται πολλές φορές μέσα στο κείμενο της 
σελίδας. Με αυτό τον τρόπο δύνεται η δυνατότητα, σε θεωρητικό επίπεδο, εξαγωγής 
ολόκληρου του καθαρού κειμένου από το κρυπτοκείμενο. 
 
Παράλληλα παρουσιάζονται δυο νέα επιπλέον κομμάτια στα ήδη υπάρχουσα εργαλεία 
BetterCap και PacketFu, μέσα από τα οποία είναι πλέον δυνατή η επίθεση σε τερματικά 
που χρησιμοποιούν το πρωτόκολλο IPv6, με πολύ μεγαλύτερη αυτοματοποίηση. Το 
εργαλείο BetterCap είναι αυτό που χρησιμοποιείται από το Rupture στο πρώτο σκέλος 
της επίθεσης. Μέσα από αυτήν την εργασία το Rupture θα μπορεί πλέον να στοχεύει 
θύματα που χρησιμοποιούν το πρωτόκολλο IPv6. 
 
Η εργασία αυτή δεν έχει σε καμία περίπτωση ως στόχο την κακόβουλη χρήση των 
τεχνικών που παρουσιάζονται. Αντίθετα με την ολοένα και περισσότερη υιοθέτηση νέων 
τεχνολογιών, όπως το IPv6, θέλει να ευαισθητοποιήσει την κοινότητα τόσο για τις 
επιθέσεις Man-in-the-Middle, όσο και για εκείνες σε συμπιεσμένα κρυπτογραφημένα 
πρωτόκολλα. 
 
Η δημιουργία όλων των μεθόδων και τεχνικών είναι συνεργατική με τους (αλφαβητική 
σειρά): Δημήτρη Καρακώστα, Διονύση Ζήνδρο, Εύα Σαραφιανού. Ανανεωμένες 
εκδόσεις της παρούσας εργασίας μπορούν να βρεθούν στον ακόλουθο σύνδεσμο: 
https://github.com/dimriou/rupture-thesis. Το εργαλείο Rupture βρίσκεται στο σύνδεσμο: 
https://github.com/decrypto-org/rupture. 
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1. INTRODUCTION 

As the Internet evolves and computer networks become bigger and better, network 
security has become one of the most important factors for society to consider. Big 
enterprises like Facebook, Microsoft or Google are designing and building software 
products that need to be protected against foreign attacks. At the same time, recent 
publications about massive leaks on personal info of users have changed the way 
people are using online services. Researchers have been constantly seeking solutions 
in order to protect against every possible kind of attack. 
 
The implementation of this work aims to present the weaknesses of multiple online 
protocols which are currently used on the Internet and sensitize the community about 
Man-in-the-Middle attacks, as well as compression side-channel attacks. 
 
Most of the data which are sent online are compressed beforehand. Our work focuses 
on exploiting those compression algorithms in order to extract plaitext from encrypted 
pages. More specifically, we extend previous attack models, such as BREACH, by 
creating a modular framework for conducting those types of attacks. This way we point 
out the weaknesses of online protocols, which are considered to be safe. 
 
On this work, we focus on compression software gzip, which uses the DEFLATE 
algorithm which is a variation of Huffman [17] and LZ77 compression. LZ77 finds 
duplicated strings in the input data. The second occurrence of a string is replaced by a 
pointer to the previous string, in the form of a pair (distance, length). This technique 
helps conducting the attack, while Huffman compression prevents it. 
 
HTTP (Hyper-Text Transfer Protocol) is the most common method for data 
communication for the World Wide Web. However it is common knowledge that HTTP 
data are not encrypted and should not be considered as secure. This problem, was 
solved by SSL (Secure Socket Layer) and its descendant TLS (Transport Layer 
Security), which is a cryptographic protocol that provides communication security, by 
encrypting data before they are sent, over a computer network. 
 
Encryption algorithms can be split in two big categories: stream ciphers and block 
ciphers. In the first category, data are encrypted as a continuous stream, while on the 
other one they are split into multiple blocks of equal size. In case the data length is not 
sufficient to create a complete block, it is filled with artificial noise in order to achieve the 
appropriate size. 
 
One of the most popular stream ciphers is RC4. However, this algorithm is considered 
to be insecure due to multiple vulnerabilities.  On the other hand, AES is the most 
popular block cipher algorithm and it is widely used in the majority of online systems 
with a few variations. Although block ciphers make it harder for our attack to succeed, 
we describe below interesting techniques that can go around this problem and 
ultimately perform the attack successfully. 
 
In order to achieve the attack against block ciphers, we use statistical methods by 
injecting our own artificial noise to each target block. Then we analyze the results in 
order to extract a decision. 
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Rupture’s implementation is designed for modularity and easy use. Its architecture 
requires minimum modification by the user and gives the ability for multiple compression 
side-channel attacks at the same time. This tool was used in lab environment attacks.  
 
This work introduces new techniques in order to extend Rupture and make the attack 
possible in real world systems. We introduce a new method for recovering target 
secrets with high certainty. We also create new patches in order to use Rupture in IPv6 
end-points. 
 
To sum up, this work is the extension of a continuous lab research which was 
introduced in the past few years and pointed out some key vulnerabilities in online 
systems. It is important that new methods of defense will be adopted against this attack, 
in order to achieve higher protection in online communications. 
 

1.1 Thesis Structure 

Chapter 2 
This chapter provides the reader with basic information, both in technical as well as 
theoretical terms, which will be used later. We describe the most common 
compression algorithms as well as basic protocols used for secure communications. 
We also introduce various attacks against them. 
 

Chapter 3 
In this chapter we describe the tool we created for attacks in compressed encrypted 
protocols. More specifically, we outline the conditions under which such an attack is 
carried out, we analyze the terminology used in our framework and finally we 
describe in detail its various parts and their functionalities. 
 

Chapter 4 
This chapter introduces a new method for conducting the Rupture attack, 
Backtracking. This method can recover multiple secrets with common prefix and 
extracts the final secret with a high amount of certainty, based on probabilistic 
models. 
 

Chapter 5 
In this chapter we introduce a patch for conducting Man-in-the-Middle attacks on 
IPv6 endpoints. This is done by extending the capabilities of BetterCap framework, 
as well as the underlying library that is used, PacketFu. 
 

Chapter 6 
Conclusion 
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2. THEORETICAL BACKGROUND 

In this chapter, we intend to provide the necessary background to the user to 
understand the mechanisms used later in the work. The description of each system is 
only a short introduction to familiarize the reader with the needed concepts. 
Specifically, section 2.1 describes the functionality of the gzip compression software 
and the algorithms that it entails. Section 2.2 covers the same-origin policy that applies 
in the web application security model. In section 2.3 we explain Transport Layer 
Security, which is the widely used protocol that provides communications security over 
the Internet. Finally, in section 2.4 we describe attack methodologies, such as ARP 
spoofing, in order for an adversary to perform a Man-in-the-Middle attack. 

2.1 gzip 

gzip is a file format and a software application used for file compression and 
decompression. It is the most popular compression method on the Internet, used 
alongside with protocols such as HTTP and XMPP. Derivatives of gzip include the tar 
utility, which can extract .tar.gz files, as well as zlib, an abstraction of the DEFLATE 
algorithm in library form. 
 
It is based on the DEFLATE algorithm, which is a composition of LZ77 and Huffman 
coding. DEFLATE could be described in short by the following compression schema:  
 

DEFLATE(m) = Huffman(LZ77(m)) 
 
In the following sections we will briefly describe the functionality of both these 
compression algorithms. 

2.1.1 LZ77 

LZ77 is a lossless data compression algorithm published by A. Lempel and J. Ziv in 
1977 [7]. It achieves compression by replacing repeated occurrences of data with 
references to a single copy of that data existing earlier in the uncompressed data 
stream. A match is encoded by a pair of numbers called a length-distance pair, the first 
of which represents the length of the repeated portion and the second of which 
describes the distance backwards in the stream. In order to spot repeats, the protocol 
needs to keep track of some amount of the most recent data, specifically the latest 32 
kilobytes. This data is held in a sliding window, therefore the initial appearance of a 
portion of data needs to have occurred at most 32 Kb up the data stream, in order to be 
compressed. Also, the minimum length of a text that can be compressed is 3 
characters. Compressed text can refer to literals as well as pointers. 
 
Below you can see an example of a step-by-step execution of the algorithm for a 
chosen text: 
 

 

Figure 2.1: Plaintext to be compressed. 

https://en.wikipedia.org/wiki/Gzip
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Figure 2.2: Compression starts with literal representation. 

 
 
 

 

Figure 2.3: Use a pointer at distance 30 and length 13. 

 
 
 

 

Figure 2.4: Continue with literal. 

 
 
 

 

Figure 2.5: Use a pointer pointing to a pointer. 
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Figure 2.6: Use a pointer pointing to a pointer pointing to a pointer. 

 
 

2.1.2 Huffman coding 

Huffman coding is also a lossless data compression algorithm developed by David A. 

Huffman and published in 1952 [4]. When compressing a text with this algorithm, a 
variable-length code table is created to map source symbols to bit streams. Each 
source symbol can be represented with less or more bits compared to the 
uncompressed stream, so the mapping table is used to translate source symbols into bit 
streams during compression and vice versa during decompression. The mapping table 
could be represented as a binary tree of nodes, where each leaf node represents a 
source symbol, which can be accessed from the root of the tree by following the left 
path for 0 and the right path for 1. Each source symbol can be represented only by leaf 
nodes, therefore the code is prefix-free, i.e. no bit stream representing a source symbol 
can be the prefix of any other bit stream representing a different source symbol. The 
final mapping of source symbols to bit streams is calculated by finding the frequency of 
appearance of each source symbol of the plaintext. That way, most common symbols 
will be coded in shorter bit streams, resulting in a compression of the initial text. 

Finally, the compression mapping needs to be included in the final compressed text so 
that it can be used during decompression. 

 

Below follows an example of a plaintext and a valid Huffman tree that can be used for 
compressing it: 

 
I find myself strangely drawn to this odd configuration of activity 

 
Frequency Analysis 

 

( ): 10 i: 7 t: 6 n: 5 o: 5 

a: 4 d: 4 f: 4 y: 3 c: 2 

e: 2 g: 2 l: 2 r: 2 s: 2 

h: 1 m: 1 u: 1 v: 1 w: 1 
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Figure 2.7: Huffman tree. 

 

2.2 Same-origin policy 

Same-origin policy is an important aspect of the web application security model. Under 
the policy, a web browser permits scripts contained in a first web page to access data in 
a second web page, but only if both web pages have the same origin. An origin is 
defined as a combination of Uniform Resource Identifier scheme, hostname, and port 
number. This policy prevents a malicious script on one page from obtaining access to 
sensitive data on another web page through that page’s Document Object Model. 

 

The following table explains same-origin-policy. We assume that we want access from 

http://www.example.com/dir/page.html to each of the following URLs: 

 
 

http://www.example.com/dir/page2.html success 

http://www.example.com/dir2/other.html success 

http://www.example.com:81/dir/other.html different port 

https://www.example.com/dir/other.html different protocol 

http://en.example.com/dir/other.html different host 

http://example.com/dir/other.html different host 

 
 

https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/Document_Object_Model
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This mechanism is particularly significant for modern web applications that extensively 
depend on HTTP cookies to maintain authenticated user sessions. The lack of same 
origin policy would result in the compromise of data confidentiality or integrity. 

Despite the use of same-origin policy by modern browsers, there still exist attacks that 
enable an adversary to bypass it and compromise a user’s communication with a 
website. Two major types of such attacks, cross-site scripting (XSS) and cross-site 
request forgery (CSRF) are described in the following subsections. 

2.2.1 Cross-site scripting 

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are 
injected into otherwise benign and trusted web sites. XSS attacks occur when an 
attacker uses a web application to send malicious code, generally in the form of a 
browser side script, to a different end user. That way, same-origin policy can be 
bypassed and sensitive data handled by the vulnerable website may be compromised. 

 

XSS attacks can generally be categorized into two categories: stored and reflected. 

 

Stored XSS Attacks are those where the injected script is permanently stored on the 
target servers, such as in a database, in a message forum. The victim then retrieves the 
malicious script from the server when it requests the stored information. 

 

Reflected XSS Attacks are those where the injected script is reflected off the web 
server, such as in an error message, search result, or any other response that includes 
some or all of the input sent to the server as part of the request. 

 

For further information on XSS refer to [10]. 

2.2.2 Cross-site request forgery 

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute 
unwanted actions on a web application in which they are currently authenticated. CSRF 
attacks specifically target state-changing requests, not theft of data, since the attacker 
has no way to see the response to the forged request. An attacker may trick the users 
of a web application into executing actions of the attacker’s choosing. If the victim is a 
normal user, a successful CSRF attack can force the user to perform state changing 
requests like transferring funds, changing their email address, and so forth. If the victim 
is an administrative account, CSRF can compromise the entire web application. 

 

For example, when Alice visits a web page that contains the HTML image tag <img 

src=”http://bank.example.com/withdraw?account=Alice&amount=100000&for=Mallory”>,
that Mallory has injected, a request from Alice’s browser to the example bank’s website 
will be issued, stating an amount of 1.000.000 to be transferred from Alice’s account to 
Mallory’s. If Alice is logged in the example bank’s website, the browser will include the 
cookie containing Alice’s authentication information in the request, validating the 
request for the transfer. If the website does not perform more sanity checks or further 
validation from Alice, the unauthorized transaction will be completed. An attack like this 
is very common on Internet forums, where users are allowed to post images. 
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2.3 Transport Layer Security 

Transport Layer Security (TLS) is a cryptographic protocol that provides 
communications security over a computer network, allowing a server and a client to 
communicate in a way that prevents eavesdropping, tampering or message forgery. 

 

TLS is composed of two layers: the TLS Record Protocol and the TLS Handshake 
Protocol. The Record Protocol provides connection security, while the Handshake 
Protocol allows the server and client to authenticate each other and negotiate 
encryption algorithms and cryptographic keys before any data is exchanged. 

One category of TLS attack is compression attacks [13]. Such attacks exploit TLS-level 
compression in order to decrypt ciphertext. In this work, we extend the usability and 
optimize the performance of such an attack, BREACH. 

 
1.1.1 TLS handshake 

 

 

Figure 2.8: TLS handshake flow. 

http://breachattack.com/
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The above sequence diagram presents the functionality of a TLS handshake. The client 
and the server exchange the basic parameters of the connection such as the highest 

TLS protocol version, a random number, a list of suggested cipher suites and suggested 
compression methods. The server provides the client with all the necessary information 
in order to validate and use the asymmetric server key to compute the symmetric key 
that will be used for the rest of the communication. The client computes the Pre-
MasterSecret and sends it to the server which is then used by both parties to compute 
the symmetric key. Finally, both sides exchange and validate hash and MAC codes over 
all the previous messages, after which they both have the ability to communicate safely. 

This applies only in the basic TLS handshake. Client-authenticated and resumed 
handshakes are quite different, although they are not relevant for the purpose of this 
work. 

 
1.1.2 TLS record 
 

 

Figure 2.9: TLS record. 

 
The above figure depicts the general format of all TLS records. 
 
The first field defines the Record Layer Protocol Type of the record, which can be one of 
the following: 
 

Hex Type 

0x14 ChangeCipherSpec 

0x15 Alert 

0x16 Handshake 

0x17 Application 

0x18 Heartbeat 

 
 
The second field defines the TLS version for the record message, which is identified by 
the major and minor numbers: 
 

Major Minor Version 

3 0 SSL 3.0 

3 1 TLS 1.0 
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3 2 TLS 1.1 

3 3 TLS 1.2 

 

The aggregated length of the payload of the record, the MAC and the padding is then 
calculated by the following two fields: 256 _ (bits15::8) + (bits7::0). 

Finally, the payload of the record, which, depending on the type, may be encrypted, the 
MAC, if provided, and the padding, if needed, make up the rest of the TLS record. 

2.4 Man-in-the-Middle 

A Man-in-the-Middle attack is a type of cyber attack where a malicious actor inserts 
themselves into a conversation between two parties, impersonates both and gains 
access to information that they were trying to send to each other. A man-in-the-middle 
attack allows a malicious actor to intercept, send and receive data meant for someone 
else, or not meant to be sent at all, without either outside party knowing until it is too 
late. 

 

 

Figure 2.10: Man-in-the-Middle. 

 
MitM attacks can be mitigated using end-to-end encryption, mutual authentication or 
PKIs. However, some attacks are still feasible against poorly configured end-points. 

Below we describe one such attack, ARP Spoofing. 

2.4.1 ARP Spoofing 

ARP spoofing [8] is a type of attack in which an attacker sends falsified ARP (Address 

Resolution Protocol)[11] messages over a local area network. This results in the linking 
of an attacker’s MAC address with the IP address of a legitimate computer or server on 
the network. This enables the attacker to begin receiving any data that is intended for 
that IP address. ARP spoofing can enable malicious parties to intercept, modify or even 
stop data in-transit. 

 

ARP spoofing can also be used for legitimate reasons, when a developer needs to 
debug IP traffic between two hosts. The developer can then act as proxy between the 

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
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two hosts, configuring a switch that is used by the two parties to forward the traffic to the 
proxy for monitoring purposes. 

 

 

Figure 2.11: ARP spoofing. 
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3. RUPTURE FRAMEWORK 

In this chapter, we describe our framework for conducting compression side-channel 
attacks, Rupture. Rupture [3] is a service-based architecture system which contains 
multiple independent components. 

 

The section 3.1 describes in detail the assumptions needed in order to orchestrate the 
attack. The section 3.2 describes the terminology used in our framework and its 
governing principles. Finally, the section 3.3 presents the multiple components 
thoroughly. While the components are designed to be able to run independently on 
different networks or computer systems, the attack can be performed by running all 
subsystems on an individual system. We provide appropriate scripts to conduct such 
attacks easily. 

3.1 Attack Assumptions 

The attack framework assumes a target service to be attacked. Typically this target 
service is a web service which uses TLS. Specifically, we are targeting services that 
provide HTTPS end-points. However, this assumption can be relaxed and attacks 
against other similar protocols are possible. Any protocol that exchanges encrypted 
data on the network and for which a theoretical attack exists can in principle be attacked 
using Rupture. We designed Rupture to be a good playground for experimentation for 
such new attacks. Examples of other encrypted protocols for which attacks can be 
tested include SMTP and XMPP. 

 

The attack also assumes a user of the target service for which data will be decrypted, 
the victim. The victim is associated with a particular target. 

 

There are two underlying assumptions in our attack: The injection and the sniffing 
assumptions. These are often achieved through the same means, although not 
necessarily. 

 

The injection assumption states that the adversary is able to inject code to the victim’s 
browser for execution. This code is able to issue adaptive requests to the target service. 

Injection in Rupture is achieved through the injector component. The code that is 
injected is the client component. 

 

The sniffing assumption states that the adversary is able to observe network traffic 
between the victim and the target. This traffic is typically ciphertexts. Sniffing is 
achieved through the sniffer component. 

 

Both the sniffer and client will be described in section 3.3. 

3.2 Principles of Attack 

The attack takes place by first injecting client code into the victim’s computer using the 
injector. The client then opens a command-and-control channel to the real-time service, 
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which forwards work from the backend to the client. The real-time service facilitates the 
communication between the client and backend and the backend module makes all the 
decisions for the attack. Further description for the real-time and the backend is 
provided in 3.3. 

 

When a client associated with a victim asks to work, the backend passes a work request 
to the real-time service, which passes it to the client. These work requests ask the client 
to perform a series of network requests from the victim’s computer to the target web 
application. As these requests are made from the victim’s browser, they contain 
authentication cookies which authenticate the user to the target service. As such, the 
responses contain sensitive data, but that data is not readable by the client due to 
same-origin policy. 

 

When a response arrives from the target web app to the victim’s computer, the 
encrypted response is collected by the sniffer on the network. The encrypted data 
pertaining to one response is a sample. Each work asks for multiple requests to be 
made, and therefore multiple samples are collected per work. The set of samples 
collected for a particular work request are a sampleset. 

 

 

Figure 3.1: Sampleset 

 
A successful attack completely decrypts a portion of the plaintext. The portion of the 
plaintext which the attack tries to decrypt is the secret. That portion is identified by an 
initially known prefix which distinguishes it from other secrets. This prefix is typically 3 to 
5 bytes long. A prefix of such a length is required to bootstrap the attack due to the 
LZ77 implementation. Each byte of the secret can be drawn from a given alphabet, the 
secret’s alphabet. For example, some secrets only contain numbers, and so their 
alphabet is the set of numbers [0-9]. 

 

At each stage of the attack, a prefix of the secret is known, because that portion of the 
secret has already been successfully decrypted. The known prefix gets extended until 
the whole secret becomes known, at which stage the attack is completed. 

 

When a certain prefix of the secret is known, the next byte of the secret must be 
decrypted. The attack initially assumes the next unknown byte of the secret exists in the 
secret’s alphabet, but slowly drills down and rejects alphabet symbols until only one 
candidate symbol remains. At each stage of the attack on one byte of the secret, there 
is a certain known alphabet which the next byte can belong to. This known alphabet is a 
subset of the secret’s alphabet. 

 



Extending the Rupture compression attack framework against real world systems 

D. Grigoriou                               26 

To drill down on the known alphabet, one of two methods is employed. In the serial 
method, each symbol of the known alphabet is tried sequentially. In the divide & 
conquer method, the alphabet is split into two candidate alphabet subsets which are 
tried independently. 

 

 

Figure 3.2: Divide & Conquer Alphabet 

 

The above figure shows how the initial alphabet is divided into two equal alphabets 
each of which will be tested separately. 

 

The attack is conducted in rounds. In each round, a decision is made about the state of 
the attack and more becomes known about the secret. In a round, either the next byte 
of the secret becomes known, or the known alphabet is drilled down to a smaller set. In 
order to compare various different candidate alphabets, the attack executes a series of 
steps to collect batches of data collection for each round. 

 

In each batch, several samples are collected from each probability distribution 
pertaining to a candidate alphabet, forming a sampleset. When samplesets of the same 
amount of samples have been collected for all the candidate alphabets, a batch is 
complete and the data is analyzed. The analysis is performed by the analyzer which 
statistically compares the samples of different candidates and decides which candidate 
is optimal, i.e. contains the correct guess. This decision is made with some confidence, 
which is expressed in bytes. If the confidence is insufficient, an additional batch of 
samplesets is collected, and the analysis is redone until the confidence value surpasses 
a given threshold. 

 

Once enough batches have been collected for a decision to be made with good 
confidence, the round of the attack is completed and more information about the secret 
becomes known. Each round at best collects one bit of information of the secret. 
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Figure 3.3: Scoreboard 

 

The above figure shows the results of the analysis of one batch. For each candidate 
letter we present a number, which is the total length of the samplesets for the specific 
letter. The candidate letters are presented in an ascending order of the total length. 

Under the scoreboard is the decision which consists of the known alphabet, the possible 
knownsecret and the confidence describing how sure we are regarding the possible 
knownsecret. 

3.3 Architecture 

3.3.1 Injector 

The injector component is responsible for injecting code to the victim’s computer for 
execution. In our implementation, we assume the adversary controls the network of the 
victim. Our injector injects the client code in all unauthenticated HTTP responses that 
the victim receives. This Javascript code is then executed by the victim’s browser in the 
context of the respective domain name. We use BetterCap [1] to perform the HTTP 
injection. The injection is performed by ARP spoofing the local network and forwarding 
all traffic in a Man-in-the-Middle manner. It is simply a series of shell scripts that use the 
appropriate BetterCap modules to perform the attack. 

 

As all HTTP responses are infected, this provides increased robustness. The injected 
client code remains dormant until it is asked to wake up by the command -and-control 
channel. This means that the user can switch between browsers, reboot their computer, 
close and reopen browser tabs, and the attack script will continue to be injected. 

As long as one tab with the client script is open, the attack can keep running. 

 

The injector component needs to run on the victim’s network and as such is lightweight 
and stateless. It can be easily deployed on a machine such as a Raspberry Pi, and can 
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be used for massive attacks, for example at public networks such as coffee shops or 
airports. Multiple injectors can be deployed to different networks, all controlled by the 
same central command-and-control channel. 

3.3.2 Sniffer 

The sniffer component is responsible for collecting data directly from the victim’s 
network. As the client issues chosen plaintext requests, the sniffer collects the 
respective ciphertext requests and ciphertext responses as they travel on the network. 
These encrypted data are then transmitted to the backend for further analysis. 

 

Our sniffer implementation runs on the same network as the victim. It is a Python 
program which uses scapy [2] to collect network data. 

 

Our sniffer runs on the same machine as our injector and utilizes the injector’s ARP 
spoofing to retrieve the data from the network. Other sniffer alternatives include sniffing 
data on the target network side, or on the ISP or router point if the adversary has such a 
level of access. 

 

The sniffer exposes an HTTP API which is utilized by the backend for controlling when 
sniffing starts, when it is completed, and to retrieve the data that was sniffed. This API is 
described below. 

 

Backend ↔ Sniffer (HTTP) 

 

The Python backend application communicates with the sniffer server, in order to initiate 
a new sniffer, get information or deletes an existing one. The sniffer server implements 
a RESTful API for communication with the backend. 

 

/start is a POST request that initializes a new sniffer. Upon receiving this request, the 
sniffer service should start sniffing. 

 

The request contains a JSON with the source_ip, (the IP of the victim on the local 
network) and the destination_host (the hostname of the target that is being attacked). 

 

The backend returns HTTP 201 if the sniffer is created correctly. Otherwise, it returns 

HTTP 400 if either of the parameters is not properly set, or HTTP 409 - Conflict, if a 
sniffer for the given arguments already exists. 

 

/read is GET request that asks for the network capture of the sniffer. 

The GET parameters are the source_ip (the IP of the victim on the local network) and 
the destination_host  (the hostname of the target that is being attacked). 
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The backend returns HTTP 200 with a JSON that has a field capture, which contains 
the network capture of the sniffer as hexadecimal digits, and a field records, that 
contains the total amount of captured TLS application records. In case of error, HTTP 
422 Unprocessable Entity is returned if the captured TLS records were not properly 
formed on the sniffed network, or HTTP 404 if no sniffer with the given parameters 
exists. 

 

/delete is a POST request that asks for the deletion of the sniffer 

 

The request contains a JSON with the source_ip (the IP of the victim on the local 
network) and destination_host  (the hostname of the target that is being attacked). 

 

The backend Returns HTTP 200 if the sniffer was deleted successfully, or HTTP 404 if 
there is no sniffer with the given parameters. 

3.3.3 Client 

The client is written in Javascript and runs in a different context from the target website. 

Thus, it is subject to same-origin policy and cannot parse the plaintext or encrypted 
responses. However, the encrypted requests and responses are available to the sniffer 
through direct network access. 

 

The client contains minimal logic. It connects to the real-time service through a 
command-and-control channel and registers itself there. Afterwards, it waits for work 
instructions by the command-and-control channel, which it executes. The client does 
not take any decisions or receive data about the progress of the attack other than the 
work it is requested to do. This is intentional so as to conceal the workings of the 
adversary analysis mechanisms from the victim in case the victim attempts to reverse 
engineer what the adversary is doing. Furthermore, it allows the system to be upgraded 
without having to deploy a new client at the victim’s network, which can be a difficult 
process. 

 

As a regular user is browsing the Internet, multiple clients will be injected in insecure 
pages and they will run under various origins. All of them will register and maintain an 
open connection through a command-and-control channel with the real-time service. 
The real-time service will enable one of them for this victim, while keeping the others 
dormant. The one enabled will then receive work instructions to perform the required 
requests. If the enabled client dies for whatever reason, such as a closed tab, one of the 
rest of the clients will be woken up to take over the attack. 

 

The client is a Javascript program written using harmony / ECMAScript 6 and compiled 
using babel and webpack. 
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Figure 3.4: Client code 

3.3.4 Real-time 

The real-time service is a service which waits for work requests by clients. It can handle 
multiple connections. It receives command-and-control connections from various clients 
which can live on different networks, orchestrates them, and tells them which ones will 
remain dormant and which ones will receive work, enabling one client per victim. 

 

The real-time service is developed in Node.js. 

 

The real-time service maintains open web socket command-and-control connections 
with clients and connects to the backend service, facilitating the communication 
between the two. 

 

The real-time server forwards work requests and responses between the client and the 
backend. It communicates with the client in a bi-directional way using web sockets. 

This also facilitates the ability to detect that a client has gone away, which is registered 
as a failure to do work. This can happen for example due to network errors if the victim 
disconnects from the network, closes their tab or browser, and so on. It is imperative 
that incomplete work is marked as failed as soon as possible so that the attack can 
continue by recollecting the failed samples. 

 



Extending the Rupture compression attack framework against real world systems 

D. Grigoriou                               31 

 

Figure 3.5: Real-time code 

 

The web socket API exposed by the real-time service is explained below. 

 

Client ↔ Real-time protocol 

 

The client / real-time protocol is implemented using socket.io websockets. 

 

client-hello / server-hello 

 

When the client initially connects to the real-time server, it sends the message 
clienthello with its victim_id to the real-time server. The server responds with a 
serverhello message. After these handshake messages are exchanged, the client and 
server can exchange further messages. 

 

get-work / do-work 

 

When the client is ready to perform work, it emits the message get-work requesting 
work to be performed from the real-time server. The real-time server responds with a 
do-work message, passing a work object that is structured as defined below: 

 

 

Figure 3.6: work object 
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If the real-time service is unable to retrieve work from the backend due to a 
communication error, real-time will return an empty work object indicating there is no 
available work to be performed at this time. 

 

work-completed 

 

When the client has finished its work or has been interrupted due to network error, it 
emits a work-completed message, containing the following information:  

 

 

Figure 3.7: work-completed 

 
success is true if all requests were performed correctly, otherwise it is false. work 
contains the work that was performed or failed to perform. 

3.3.5 Backend 

The backend is responsible for strategic decision taking, statistical analysis of samples 
collected, adaptively advancing the attack, and storing persistent data about the attacks 
in progress for future analysis. 

 

The backend talks to the real-time service for pushing work out to clients. It also speaks 
to the sniffer for data collection. 

 

It is implemented in Python using the Django framework. 

 

The backend exposes a RESTful API via HTTP to which the real-time service makes 
requests for work. This API is explained below. 

 

Real-time → Backend (HTTP) 

 

The backend implements various API endpoints for communication with the real-time 
server. 

 

/get_work/<victim> is an HTTP GET endpoint. It requests work to be performed on 
behalf of a client. The argument passed is the victim - the id of the victim. 

 

If there is work to be done, it returns an HTTP 200 response with the JSON body 
containing the work structure. The samples associated with a particular work request 
and performed all together constitute a sampleset. 
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In case no work is available for the client, it returns an HTTP ‘404‘response. Work can 
be unavailable in case a different client is already collecting data for the particular 
victim, and we do not wish to interfere with it. 

 

/work_completed/<victim> is an HTTP POST endpoint. It indicates on behalf of the 
client that some work was successfully or unsuccessfully completed. The arguments 
passed are the work and a boolean success parameter. 

 

If success is True, this indicates that the series of indicated requests were performed by 
the victim correctly. Otherwise, the victim failed to perform the required requests due to 
a network error or a timeout and the work has to be redone. 
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4. BACKTRACKING 

Backtracking is a method that allows the adversary to recover the desired target secret 
of an HTML page, whose known prefix can be encountered multiple times. This method 
is implemented in a different way than the other two (Serial, Divide & conquer), since it 
does not require searching for an optimal candidate each round. Instead, it adds every 
possible candidate on a pool and chooses the best one to be examined on the next 
round, based on a probabilistic model. Then, it advances repetitively until the whole 
secret is recovered. 

In section 1 we describe in detail how Backtracking implementation is structured, as well 
as how the method works. 

Section 2 explains the architecture of the new patch and analyzes the crucial 
components responsible for conducting a Backtracking attack. 

In this chapter, we only compare Backtracking characteristics with those of the Serial 
one. Even though Divide & Conquer works in a different way than Serial during each 
round, it does reach to an optimal candidate in the same way the Serial does, making 
the comparison between the first two sufficient. 

4.1 Method Specifications 

When it comes to analyzing compressed ciphertexts, Backtracking deals with the 
problem of secret discovery in a more spherical way. 

In contrast with the Serial, this method does not produce unexpected results when the 
target secret’s prefix can be found multiple times on the HTML page. 

Serial method creates multiple requests for every possible character, produced by a 
given alphabet. During each round it decides an optimal candidate by analyzing the size 
of the compressed cipher responses. The response with the smallest size, is marked as 
the optimal candidate and is added to the known prefix in order to proceed to the next 
round. 

But what happens if there are two (or possibly more) words with the same prefix on the 
HTML page we examine. Here is an example where `sec` is the known prefix, `secret` 
is the target secret word and `second` is also part of the HTML page: 

 

 

Figure 4.1: Common prefix plaintext. 

 

As the above image shows, both the ‘r’ character as well as ‘o’ character will give the 
same size of compressed responses, since both can be compress well with the prefix 
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`sec`. Although there is no violation of any kind, based on the implementation of the 
Serial method, there is a chance the ‘o’ character will be chosen instead of the ‘r’ 
character, giving the wrong outcome. During the next round, the updated knownsecret 
will be the string ‘seco’ , leading to the discovery of word `second` instead of our target 
secret. 

 

On the other hand, Backtracking works in a different way than the previous method. 
Instead of deciding the optimal candidate on each round, Backtracking assigns relative 
probability values on each candidate based on the compression they produce. The 
lower the compression size is, the higher the value goes. So, instead of working in a 
linear structure, where each round we create is the one to be chosen on the next 
iteration, Backtracking creates multiple rounds for each candidate and stores them in a 
tree structure for future analysis. Here is how backtracking works in a step by step 
analysis: 

 

As the Rupture architecture states, every round starts with a given knownsecret. During 
the first iteration of the attack, the knownsecret is equal to the initial known prefix of the 
target secret. Every node represents a round and holds a knownsecret. It is easy to 
assume that the top node of the tree is the first round, where the initial known prefix is 
stored.  

Based on that, the framework starts to make requests on a targeted website, in order to 
measure its responses. When we receive those responses, we analyze them by 
assigning relative probabilities to each one of them. This assignment aims to translate 
the compression size of a candidate into a probability. After this process is completed, 
we store each one of the candidates into the tree structure. This is done by creating 
new rounds with the permutation of knonwsecret and the appropriate candidate. This 
technique is executed repetitively until the target secret is recovered. 

It is quite clear, that if we pick a random node and follow its path, starting from the top, 
we can observe every step of the analysis process for the given knownsecret. The key 
aspect though, behind each node is that it doesn’t only store a string with a 
knownsecret, but it also holds an accumulated probability number which represents the 
certainty of the knownsecret being a part of the target secret. This value is calculated by 
combining the relative probability of each candidate at a given round and the depth of 
the current node. Accumulated probability is a very valuable variable, since we use it in 
order to decide the next round to be analyzed. The one with the highest value is the one 
to be chosen. 

 

This technique give us the ability to explore more than one known prefixes at a time, 
ensuring that if a conflict arises in a round (as stated above, two words having the same 
prefix) we can solve it by exploring all possible secrets until we find the desired one. 
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Figure 4.2: Backtracking tree implementation. 

 

4.2  Architecture 

4.2.1 Round Model 

In order to support the Backtracking tree structure, there was a need for the Round 
model to undergo a few changes. Since Serial method works in a linear way, Round’s 
old form simply starts every time we want to explore our knownsecret and ends when 
we gather a proper amount of data, in order to extract a decision. 

However, when we need to explore multiple paths of the same prefix, this approach 
doesn’t work. We need to create Rounds with various knownsecrets and store them in 
the database for future use. This is done by the fields `started` and `completed` on 
Round model. These two fields not only allow us to store multiple possible candidates in 
the form of a Round, but also help us to distinguish which Round we are currently 
working on, which one is already completed and which one is about to be explored. 

Another important part for the Backtracking tree structure is the accumulated_probability 
field. This field holds the amount of certainty of each Round’s knownsecret being in the 
final secret. 

4.2.2 Backtracking Analyzer 

Backtracking Analyzer is responsible for three major tasks. Firstly, to calculate relative 
probabilities for each character from a given knownalphabet, secondly calculate 
accumulated probabilities for those characters and finally to return all these values and 
states. 

  

 

 Relative Probabilities 

The function get_accumulated_probabilities takes up the first two tasks. It is given a 
dictionary of sorted candidate alphabets and it calculates the relative probabilities of 
each candidate being in the target secret based on their associated accumulative 
lengths. Since the length significance of the better compressed candidates is more 
important than those with the least compression, the function connecting each 
candidate’s probability cannot be linear. This is why we use an exponential function. 

The formula that calculates the relative probability of the ith candidate is: 
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Figure 4.3: Relative probability formula. 

 

  b: compression function factor 

  i: ith candidate compression length 

  min: candidate with the least compression length 

  S: alphabet’ s size 

Base b represents the efficiency of the compression function. A good compression 
function indicates that the total length we collect is rather accurate, increasing the 
significance of the compression difference between two candidates. 

The key concept behind this formula is the effort to quantify how much a given 
candidate differs from the minimum candidate and the average difference. This is all 
translated with a probability value. Here is an example of the usage of that formula: 

r compression length: 45 

o compression length: 47 

b: 1.2 

 

 

Figure 4.4 Relative probability example. 

 

As the above image shows, if the alphabet for the first round consists of characters r 
and o, given their compression length their relative probability will be 0.8 and 0.2 
respectively. This example demonstrates accurately the importance of the compression 
function factor in the calculation of relative probabilities, as we can configure the 
constant according to the nature of the problem (compression function algorithm) and 
ultimately create more accurate results. 

 

 Accumulated Probabilities 

Once the relative values are calculated then get_accumulated_probabilities associates 
them with the probability of the parent Round and calculates the final accumulated 
probability. 
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In order to get more accurate results it is essential that each candidate that is analyzed 
should have the appropriate weight of importance. So what happens if we want to 
choose the next round, but two or more candidates do not have the same depth on the 
tree structure? Is it enough to compare only the relative values? 

This is where accumulated probability comes in. The calculation of this value is done by 
the following formula: 

 

APi = AF * RPi * APi-1 

 

  AF: amplification factor 

  RPi: relative probability of current candidates 

  APi-1: parent’s accumulated probability 

 

The Amplification factor is the most crucial part in this formula. This constant states that 
the deeper a candidate is on the Backtracking tree structure, the more important it gets. 
This can also be verified intuitively. As long as we make “optimal” candidate choices 
and we still get “optimal” compression length, then it is more likely that the next choice 
we are about to make, will be “optimal” too. Here is an example of a Backtracking tree, 
with both relative and accumulated probabilities: 

 

Figure 4.5: Complete Backtracking graph with all types of probabilities 

4.3 Backtracking experimental results 

The Backtracking method was tested on lab environment attacks. More specifically, we 
created a test end-point containing two words with the same prefix and tried to recover 
both of them, based on the theoretical architecture. The first one is the word `secret` 
and the other one is the word `second`. Our goal was to confirm our hypothesis: 

At first, Rupture will identify both of the secrets by appearing two candidates with 
significant accumulated probability, compared to the other ones. This can be shown in 
the following figure: 
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Figure 4.6: Backtracking execution step 1. 

Both `seco` as well as `secr` have a distinguishable probability value compared to the 
other candidates (we only show two of them for simplicity purposes). This hints that 
characters `o` and `r` could possibly be part of two different secrets. As the attack 
continues, Backtracking analyzer chooses the candidate with the maximum value, in our 
case `o` and continues the analysis: 

 

 

Figure 4.7: Backtracking execution step 2. 

Given the prefix `secon` as knownsecret Backtracking continues by extending it until the 
whole secret is recovered. 
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Figure 4.8: Backtracking execution step 3. 

At this point, since the target secret `second` is recovered, we expect that on the next 
iteration Backtracking is going to get insignificant probability value for every single 
candidate, since none of them belongs to the actual secret. 

 

 

Figure 4.9: Backtracking execution step 4. 

Since our hypothesis is confirmed by the probability values, Backtracking chooses as 
the next round to analyze the node with the prefix `secr`, which was stored in the tree 
structure, at the beginning of the attack. This is due to the fact that the node with the 
prefix `secr` was the one with the highest accumulated probability value, among every 
single not started Round models, saved in the tree. 
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Figure 4.10: Backtracking execution step 5. 

This way Backtracking recovered both secrets, with high amount of certainty. 

 

  

Figure 4.11: Backtracking execution step 6. 

 

 

 

 

 

 

 

 

 



Extending the Rupture compression attack framework against real world systems 

D. Grigoriou                               42 

5. IPV6 

As stated before, the Rupture attack is based on controlling the victim’s browser, while 
he visits websites that do not provide encrypted communication (HTTP connections). 
This situation creates the opportunity for an adversary to send arbitrary requests to 
HTTPS websites and as a result of that to allow him to measure the compressed 
response. 

This technique requires from an adversary to perform a Man in the Middle (MitM) attack 
in order to inject javascript code to the victim's browser and ultimately send crafted 
requests to targeted endpoints. This is performed by the usage of the BetterCap 
framework, a Ruby gem that enables various MitM attacks, along with PacketFu [14], a 
mid-level packet manipulation library for Ruby. 

However current versions of BetterCap as well as PacketFu, only support the IPv4 
protocol. That being said, Rupture cannot target popular IPv6 endpoints such as CNN 
or IMDb making the extension of BetterCap for IPv6 protocol mandatory. 

In this chapter we present both our patches for BetterCap, as well as PacketFu, that 
made the Rupture attack possible for IPv6 endpoints. 

Section 1 is a brief introduction to the IPv6 theoretical background which is an essential 
part of the IPv6 attack. 

In Section 2 we describe all the important changes of the IPv6 patch in BetterCap, along 
with the algorithm of the MitM injection attack. 

 

5.1 Theoretical Background 

5.1.1 IPv6 Addressing Modes 

    Unicast 

In unicast mode of addressing, an IPv6 interface (host) is uniquely identified in a 
network segment. The IPv6 packet contains both source and destination IP addresses. 
A host interface is equipped with an IP address which is unique in that network 
segment. When a network switch or router receives a unicast IP packet, destined to a  
single host, sends out that packet to one of its outgoing interface which connects to that 
particular host. 

 

Figure 5.1: Unicast messaging. 
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    Multicast 

The IPv6 multicast mode is the same as that of IPv4. The packet destined to multiple 
hosts is sent on a special multicast address. All hosts interested in that multicast 
information, need to join that multicast group first. All interfaces which have joined the 
group receive the multicast packet and process it, while other hosts not interested in 
multicast packets ignore the multicast information. 

 

Figure 5.2: Multicast messaging. 

    Anycast 

IPv6 has introduced a new type of addressing, which is called Anycast addressing. In 
this addressing mode, multiple interfaces (hosts) are assigned the same Anycast IP 
address. When a host wishes to communicate with a host equipped with an Anycast IP 
address, it send a Unicast message. With the help of a complex routing mechanism, 
that Unicast message is delivered to the host closest to the sender, in terms of Routing 
cost. 

 

Figure 5.3: Multicast messaging. 
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5.1.2 IPv6 Addresses 

An IPv6 address is represented as eight groups of four hexadecimal digits, each group 
representing 16 bits (two octets). The groups are separated by colons (:). An example of 
an IPv6 address is: 

2001:0db8:85a3:0000:0000:8a2e 

 

One or more consecutive groups of zero values may be replaced with a single empty 
group using two consecutive colons (::). 

 

2001:0db8:85a3::8a2e 

 

The first two types are mainly used for end-to-end IPv6 routing. On the other hand the 
last one has a limited use in private networks. 

 
* Global Unicast Addresses are similar to IPv4 public addresses and they are used for 
one to one communication by exchanging unicast messages. This mode dictates that 
the sender’s outgoing packets are destined to a single host. Global Addresses can be 
acquired with three different ways, either by DHCPv6, SLAAC or Static Configuration. 
DHCPv6 is the equivalent protocol of IPv4, DHCP, dynamically configuring hosts with 
IPv6 addresses, IP prefixes and other configuration data required to operate on the 
network. Stateless_Address_Autoconfiguration (SLAAC) protocol gives the ability to 
hosts to configure themselves automatically when connected to an IPv6 network. 
SLAAC is the most preferable method in IPv6 configuration, unless an application 
imposes otherwise. Static Configuration is executed manually in order to assign a host 
with a static IPv6 Global Address that cannot be changed by DHCPv6 or SLAAC 
protocols.  

 

 
* Link-local Address is a network address that is valid only for communication within 
the network segment that the host is connected to. They are not guaranteed to be 
unique beyond a single network segment. Therefore, routers do not forward packets 
with Link-local addresses outside a LAN. This type of address consists of two main 
components. The first part is generated by adding the prefix 0xFE80 to a sequence of 
48-bits of 0. The second part is called Interface ID and it is created by splitting the 
interface’s MAC address in half and adding the 16-bit Hex value 0xFFFE between the 
two halves. An example of Link-local Address is: 

 

fe80::ca78:abff:fevc:12df 

 

Link-local addresses can be used in multicast messaging mode, meaning that a packet 
can be destined to multiple hosts. All hosts interested in that multicast information, need 
to join that multicast group first. All interfaces which have joined the group receive the 
multicast packet and process it, while other hosts not interested in that type of packet 
ignore the information. 

https://en.wikipedia.org/wiki/DHCPv6
https://en.wikipedia.org/wiki/IPv6#Stateless_address_autoconfiguration_.28SLAAC.29
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* Unique Local Addresses is globally unique, but it should be used in local 

communication, limiting their scope to an organization’s boundary. 

5.1.3 Neighbor Discovery 

The Neighbor Discovery Protocol [15] (NDP) is used with the IPv6 protocol and it 
operates in the Data Link Layer of OSI model. It is responsible for address 
autoconfiguration, discovery of other nodes on the link, duplicate address detection, 
finding available routers and maintaining reachability information. The protocol defines 
five different ICMPv6 packet types to perform functions for IPv6 similar to the Address 
Resolution Protocol (ARP), such as Router Discovery as well as Router Redirection: 

 

  ROUTER SOLICITATION  

Hosts inquire with Router Solicitation messages to locate router on an attached link. 

Routers which receive the solicited packets will generate Router Advertisements 

immediately upon receipt of this message rather at their next scheduled time. 

 

  ROUTER ADVERTISEMENT  

Routers advertise their presence together with various link parameters either 

periodically, or in response to a Router Solicitation message. 

 

  NEIGHBOR SOLICITATION  

Neighbor solicitations are used by nodes to determine the link layer address of a 

neighbor, or to verify that a neighbor is still reachable via a cached link layer address. 

 

  NEIGHBOR ADVERTISEMENT  

Neighbor advertisements are used by nodes to respond to a Neighbor Solicitation 

message. 

 

  REDIRECT  

Router may inform hosts of a better first hop router for a destination. 

 

IPv6 hosts can configure themselves automatically (SLAAC) when connected to an IPv6 

network following the Neighbor Discovery Protocol, by using Router Discovery 

messages. When first connected to a network, a host has to send a Router Solicitation 

multicast request for its configuration parameters. The message is received by all nodes 

but only routers are the ones to process it. When the default gateway receives the 

Solicitation message, it has to respond immediately with a Router Advertisement 

informing the sender about its Link-local address, MAC address as well as Internet 

Layer configuration parameters. Routers present a special case of requirements for 

https://en.wikipedia.org/wiki/OSI_model
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address configuration, as they often are sources of autoconfiguration information, such 

as router and prefix advertisements. This leads to the host configuring its own IPv6 

addresses, as well as discovering the IPv6 and MAC address of the gateway. 

Similar to default gateway address resolution, the MAC address of a local host can be 

discovered by sending Neighbor Solicitation messages requiring the MAC address of 

the receiver, for the given IPv6 address. The response is sent in the form of a Neighbor 

Advertisement message, containing all the appropriate information about the inquired 

host. 

5.1.4 Neighbor Cache States 

Every pair of IPv6/MAC addresses, originated from a neighbor, is saved locally as a 
new entry in the neighbor discovery cache. When communication between two nodes is 
required, hosts will inquire the appropriate origin of the table, about their IPv6/MAC 
pairs, in order to maintain an up to date discovery cache. The reachability of a neighbor 
node is determined by monitoring the state of the neighboring node’s entry in the 
cache. RFC 2461 defines the following states: 

 

INCOMPLETE  

IPv6 address resolution, which is using a solicited-node multicast Neighbor Solicitation 

message, is in progress. The INCOMPLETE state is entered when a neighbor cache 

entry is created but does not yet have the node’s corresponding Link-layer address. 

 
REACHABLE  
Reachability has been confirmed by receipt of a solicited unicast Neighbor 
Advertisement message. The neighbor cache entry stays in the REACHABLE state until 
the number of milliseconds indicated in the Reachable Time field in the Router 
Advertisement message elapses.  

 
STALE  
Reachable time (the duration since the last reachability confirmation was received) has 
elapsed. The neighbor cache entry enters the STALE state after the number of 
milliseconds in the Reachable Time field in the Router Advertisement message (or a 
host default value) elapses, and the entry remains in this state until a packet is sent to 
the neighbor. The entry also enters the STALE state when the host receives an 
unsolicited Neighbor Advertisement message that is advertising the Link-layer address.  

 
DELAY  
To allow time for upper layer protocols to provide reachability confirmation before 
sending Neighbor Solicitation messages, the neighbor cache entry enters the DELAY 
state and waits a configurable period of time after sending a packet. If reachability is not 
confirmed by the delay time, then the entry enters the PROBE state, and a unicast 
Neighbor Solicitation message is sent.  

 
PROBE  
Reachability confirmation is in progress for a neighbor cache entry that was in the 
STALE or DELAY state. Unicast Neighbor Solicitation messages are sent at intervals 
corresponding to a retransmission timer field in the Router Advertisement message that 

https://www.ietf.org/rfc/rfc2461.txt
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this host received. A configurable variable determines the number of Neighbor 
Solicitation messages sent before the reachability detection process is abandoned and 
the neighbor cache entry is removed. 

 

 

Figure 5.4: Cache state algorithm 

5.2 Ipv6 Patch Architecture 

This thesis presents important network improvements that make the Rupture attack 
more practical by implementing two new patches: one in the BetterCap framework and 
one in the underlying ruby PacketFu library. With these two patches IPv6 attacks are 
now possible in the Rupture. The patches have successfully been merged in upstream 
BetterCap, allowing BetterCap to perform IPv6 NDP attacks from the CLI, a contribution 
which is of independent interest as this class of attacks had not been automated 
previously. 

Below are described the key aspects of this patch’s architecture. 

5.2.1 IPv6 Parser 

The first part of the attack involves user input parsing. One of the most important 
changes in the BetterCap patch is to enable the gem to manage IPv6 addresses. IPv6 
protocol uses a different address scheme, making address manipulation challenging. As 
a result of that, the extension needs to validate IPv6 addresses and exclude those with 
the wrong format. This gap is filled by the IPv6 validator with the appropriate regex 
matching patterns.  

5.2.2 Neighbor IPv6/MAC Address discovery 

The IPv6 extension on BetterCap has a specific algorithm for discovering matches 
between IP and MAC addresses (including the gateway's MAC in case of an error at the 
lookup). The NDP discovery agent is responsible for activating this procedure. First, it 
performs a lookup into the neighbor discovery cache and if no entry is found matching 
the specific address, it then sends a Neighbor Solicitation message on the wire, seeking 
for a proper response. The message consists of a multicast IPV6 address. This address 
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is created by the prefix ff02::1:ff plus the 24 least significant bits of the destination 
address. An example is: 

 

 

Figure 5.5: Multicast Neighbor Solicitation Message for address resolution. 

 

When the targeted host receives the message, it responds to the sender so he can 
update his cache entry with the valid data: 

 

 

Figure 5.6: Unicast Neighbor Advertisement Message for address resolution. 

5.2.3 IPv6 Packet Manipulation ( PacketFu extension patch) 

The current Ruby implementations on low level packet crafting (with PacketFu library 
being the most famous among them and the one BetterCap is using) do not provide the 
ability to create Neighbor Discovery packets. PacketFu’s ICMPv6 old packet formats 
only provide error reporting and network diagnostics. However NDP extended those 
capabilities on RFC 4861 by adding multiple header fields serving the protocol’s 
purposes. So in order to extend BetterCap capabilities, we created a PacketFu 
patch supporting NDP packet manipulation. 

 

https://tools.ietf.org/html/rfc4861
https://github.com/packetfu/packetfu/pull/160
https://github.com/packetfu/packetfu/pull/160
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This patch in particular, as an underlying library, can be used to develop new 
manipulation tools and techniques around Neighbor Discovery, giving the users the 
ability to create their own Neighbor Solicitation Packets, as well as Neighbor 
Advertisement Packets: 

 

 

Figure 5.7: Neighbor Solicitation message format. 

 

 

Figure 5.8: Neighbor Advertisement message format. 

The three first fields of the above Packets are Type, Code and Checksum. As it states, 
type field determines the type of the ICMPv6 Packet. Its value determines the format of 
the remaining data. Number 135 refers to a Neighbor Solicitation packet, whereas 136 
is for a Neighbor Advertisement. Code field should always be 0.  The checksum field is 
used to detect data corruption in the ICMPv6 message and parts of the IPv6 header. 

 

The PackteFu extension required the development of the rest of the fields that are 
introduced with Neighbor Discovery Protocol. Fields like Reserved, Target Address, 
Options, and most importantly R-S-O bits (which are used for NDP spoofing) are part of 
this thesis patch extension. 
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5.2.4 Neighbor Discovery Spoofer 

The NDP spoofing algorithm is the most important part in IPv6 MitM attack. The 
adversary sends Neighbor Advertisement messages to the victim with a certain 
frequency, informing him that he is the default gateway. This is achieved by crafting a 
Neighbor Advertisement packet with gateway's Link-local address as the source, paired 
with the adversary’s MAC address. In addition to this, Neighbor Advertisement packet 
contains three flag bits R,S,O. R-bit indicates that the sender is a router, S-bit indicates 
that the advertisement was sent in response to a Neighbor Solicitation from Destination 
address and O-bit indicates that the advertisement should override an existing cache 
entry. By enabling R/O-bits on the Advertisement message the victim updates his cache 
entry representing the gateway, with the adversary’s MAC address. Since the S-bit is 
also enabled the victim doesn’t send a revalidation Neighbor Solicitation message to 
verify the IPv6/MAC pair and marks its entry as REACHABLE. This results into the 
victim forwarding all of his IPv6 traffic to the adversary. 

 

 

Figure 5.9: Spoofed neighbor cache entry. 

 

5.2.5 ip6tables Firewall 

As an adversary, being in the middle of a host and a router requires a proper grouping 
of the victim's traffic in order to inject the desired javascript code. The HTTP responses 
of the majority of the websites are directed to the receiver's port number 80. By using 
the ip6tables library we create a firewall redirecting the incoming packets with the 
victim's address source and port number 80, to a locally deployed proxy.  
The proxy’s core role is to collect every packet sent by ip6tables rules and create 
readable HTML source code out of the HTTP responses. Then the proxy injects the 
javascript code at the top of the tag of the HTML page. As a result of that, the HTTP 
proxy sends an HTML response with injected javascript code to the victim, ready to be 
executed by the victim's browser. 

 

 

 

 

 

 

 

 

 

 

 

http://ipset.netfilter.org/ip6tables.man.html
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6. CONCLUSION 

 

The last few years we have witnessed a phenomenal growth in the security industry. 
The ever growing demands for safer communications over the Internet triggered 
researchers to come up with better and more secure practices. However, as this thesis 
states, while the technological industry develops new ways of improvement, the 
attackers can take advantage of this technology too. 

Compression side-channel attacks, sophisticated as they are, can take place in 
everyday scenarios. It is important that developers should defend against this type of 
attacks, since various tools that have already been implemented for that purpose[16]. 

Also users should not rest by the fact that ARP is not used in IPv6 protocol. As already 
shown, IPv6 is also susceptible in MitM attacks. They should always follow the good 
practices, as concerns the MitM attacks, such as always check the domain name and 
provide sensitive data only on https connections. 

Researchers should continue to develop tools that protect the community from every 
possible web attack, but also try to share their knowledge with everyone. This way the  
Security culture will be strengthen, lowering the risk of cyber attacks. 
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