
µ
∏
λ∀

Graduate Program in Logic, Algorithms and Computation

Proof Complexity: A Tableau Perspective

Master Thesis of:
Theodoros Papamakarios

July 2017

i

Abstract

The method of semantic tableaux (or simply tableaux) is arguably
one of the most elegant proof systems. Unfortunately, it hasn’t received
much attention in the proof complexity literature, mainly due to early
negative results, concerning the complexity of cut-free tableaux (see for
example [15, 17, 18]). We bring tableaux to the fore, introducing the
measures of tableau depth and width. Equipped with these, we show in
an elegant, uniform way several known results spanning proof complexity,
from a tableau viewpoint.

Contents

List of Figures iv

1 Introduction 1
1.1 What is a proof? . 1
1.2 Games . 3
1.3 Satisfiability algorithms and resolution 4
1.4 Thesis overview . 6

2 Tableaux 9
2.1 Uniform notation . 9
2.2 What are tableaux? . 10
2.3 Cuts . 12
2.4 Tableau depth . 14
2.5 The Prover-Adversary game . 17
2.6 Tableau width . 17
2.7 An upper bound . 19
2.8 Examples . 22

3 Applications 27
3.1 CNF-formulas and the space needed to refute them 27
3.2 Atomic cuts and resolution . 29
3.3 From large depth to large size 37
3.4 General cuts and Frege systems 39
3.5 Lower bounds . 43

4 Conclusions 47

Bibliography 51

ii

List of Figures

1.1 A sample run of Algorithm 1 on the set of clauses S = {¬P¬Q¬R,
¬PQ,P¬R,¬PRS,PR,R¬S} (up) and the corresponding resolu-
tion refutation (down). 5

2.1 A tableau proof of (P ∨ (Q ∧R))→ ((P ∨Q) ∧ (P ∨R)). 11
2.2 A tableau simulation of modus ponens. 13

3.1 A resolution refutation of the formula X = 〈[P,Q], [P,¬Q], [¬P,R],
[¬P,¬R]〉 (up) and the corresponding closed tableau (down). . . . 31

3.2 A simulation of the tableau expansion rules by the cut rule. . . . 32
3.3 Σ(T3) is the formula 〈[PQS], [PQS], [PQT], [PQT], [PRU], [PRU],

[PRV], [PRV]〉. 34

4.1 Cut-free tableaux and resolution. 47

iv

1

Introduction

With the rise of computer science, questions like “Can we solve a problem?” got a
quantitative counterpart: “How hard is it to solve a problem?”. Proof complexity
deals with the quantitative version of “Can we prove a theorem?”, namely,
the question “How hard is it to prove a theorem?”. In this thesis we study
the complexity of propositional proofs in various proof systems. Despite the
intrinsic interest of the problem, the main motivations come from computational
complexity, automated theorem proving and bounded arithmetic. We will
elaborate later on the first two. We won’t touch relations with bounded
arithmetic; let us just mention here that lower bounds on the complexity of
propositional proofs yield independence results in weak subsystems of Peano
arithmetic; we refer the interested reader to [25, 14].

1.1 What is a proof?

A proof is an object certifying the validity of a statement. Since at least Euclid’s
Elements, proofs are seen as rigorous arguments, formalized in an axiomatic
system. But the notion is way broader. For example, if X is a propositional
formula, a proof of the statement “X is satisfiable” is an assignment satisfying
X. On the other hand, if after running an algorithm for satisfiability on X, it
determines that X is not satisfiable, then the trace of its run is a proof of the
statement “X is unsatisfiable”.

An obvious requirement that a proof must meet, is to be easily verifiable,
where “easily” means “in polynomial time”. As formalized by Cook and Reckhow
in [15, 16], proofs are encoded as finite strings, and a proof system for a class L
of statements is a polynomial-time algorithm that takes a finite string y and

1

1. Introduction

1. checks if y is a valid encoding of a proof in the system; if it is not, returns
a prespecified statement T ∈ L;

2. returns the statement which y proves.

Definition 1.1.1. Fix an alphabet Σ. A proof system for a language L ⊆ Σ∗

is a function f : Σ∗ → L, where f is computable in polynomial time and f is
onto. A proof system f is polynomially bounded if there is a polynomial p(n)
such that for all x ∈ L, there is a y ∈ Σ∗ such that x = f(y) and |y| ≤ p(|x|).

The condition “f is onto” refers to completeness ; every statement must have
a proof in the system.

The class NP is by definition the class of all languages that have short
(polynomial-size) proofs. We thus have Theorem 1.1.1. Let us note that this
theorem is the polynomially bounded analogue of the statement in computability
saying that L is recursively enumerable if and only if L = ∅ or L is the range of
a recursive function.

Theorem 1.1.1 (Cook and Reckhow [15, 16]). For any language L ⊆ Σ∗,
L ∈ NP if and only if L = ∅ or L has a polynomially bounded proof system.

Proof. Suppose that L ∈ NP and L 6= ∅. Since L 6= ∅, there is a string t ∈ L.
Since L ∈ NP, there is a predicate R ⊆ Σ∗×Σ∗ computable in polynomial time
and a polynomial p(n) such that for each x ∈ Σ∗

x ∈ L ⇐⇒ ∃y ∈ Σ∗(|y| ≤ p(|x|) & R(x, y)).

The function f : Σ∗ → L, where

f(z) =

{
x, if z = (x, y) & |y| ≤ p(|x|) & R(x, y),

t, otherwise.

is a polynomially bounded proof system for L.

Conversely, obviously ∅ ∈ NP, and if f is a polynomially bounded proof
system with the bound p(n), then for each x ∈ Σ∗

x ∈ L ⇐⇒ ∃y ∈ Σ∗(|y| ≤ p(|x|) & f(y) = x).

This is an NP definition of L.

We will be particularly interested in the set TAUT of all propositional
tautologies. TAUT, being the complement of an NP-complete set, is coNP-
complete, so from Theorem 1.1.1, we get the following.

Corollary 1.1.1. NP = coNP if and only if there is a polynomially bounded
proof system for the set of propositional tautologies.

2

1.2. Games

Hence, showing superpolynomial lower bounds for stronger and stronger
proof systems for propositional tautologies could be seen as an approach to the
conjecture NP 6= coNP. Although this approach seems infeasible (until now
there is no clue on how to prove non-trivial lower bounds for “simple” axiomatic
proof systems), the hope is that eventually general techniques will be unveiled.

We close this section by defining a notion for comparing proof systems over
Σ. The definition is from [16]

Definition 1.1.2. If f1 : Σ∗ → L and f2 : Σ∗ → L are proof systems for L,
then f2 p-simulates f1 provided there is a polynomial-time computable function
g : Σ∗ → Σ∗ such that for all x ∈ Σ∗

f2(g(x)) = f1(x).

It is easy to see that the p-simulation relation is reflexive and transitive, so
that its symmetric closure is an equivalence relation, with equivalence classes
within which the systems are “polynomially equivalent”. Also, as an immediate
consequence of the definitions, we have the following proposition.

Proposition 1.1.1. If a proof system f2 for L p-simulates a polynomially
bounded proof system f1, then f2 is also polynomially bounded.

1.2 Games

Sometimes, proofs can be perceived in terms of a game played by two players.
Plato, a philosopher who, perhaps more than anyone influenced western thought,
used to expound his arguments through an interaction (dialogue) between two
individuals. In his book Meno [29, parts 82b–85b], Socrates speaks with a boy.
The boy claims that by doubling the side of a square, the length of which is two
feet, we get a square the area of which is twice the area of the initial square,
i.e., eight feet. Socrates goes on and refutes this claim, by asking questions,
forcing the boy to a contradiction. Quoting from [29]:

Socrates. Wouldn’t this line [a side of the initial square] become
double itself if we add another of the same length at this point [the
end of the line]?

Boy. Of course.

Socrates. So from this there will be an eight foot area, if we have
four such lines?

Boy. Yes.

Socrates. Let us draw then, using this double line, four equal lines.
Is this exactly what you say the eight foot area is or not?

Boy. This is exactly it.

Socrates. Doesn’t this picure contain four areas, each of which is
equal to that four foot area?

3

1. Introduction

Boy. Yes.

Socrates. How large is this area? Isn’t it four times as large?

Boy. Of course it is.

Socrates. Can therefore, something four times as large, to be double?

Boy. No, by Zeus.

We are going to see several interactive protocols (or games) of this form.
The general setting is the following. The two participants (or players) are called
Prover and Adversary. The Adversary brags that a statement, say S, is true
and the Prover tries to prove him wrong. He does this by asking the Adversary
a series of questions. If at some point there is a contradiction in Adversary’s
answers, e.g., he has responded with a statement and its negation, then the
Prover wins. Notice that a winning strategy of the Prover, i.e., a collection C of
sequences of questions for all possible responses, such that each sequence forces
the Adversary to a contradiction, is a proof of the negation of S (provided of
course that C can be encoded as a finite string and can be easily verified, which
means that there must be some structure in Prover’s questions).

Generally, games offer a nice, intuitive way of seeing things in many areas,
from algorithms (e.g., adversary arguments) to model theory (e.g., Ehrenfeucht–
Fräıssé games). The idea is that a winning strategy for the adversary yields
lower bounds. In the case of algorithms “lower bounds” means running time
lower bounds; in model theory it means inexpressibility, i.e., results of the kind:
a property is not definable in a certain logic (see e.g. [19]). As you may expect,
in proof complexity, winning strategies for the Adversary translate to lower
bounds on the complexity of proofs.

1.3 Satisfiability algorithms and resolution

Virtually all algorithms for satisfiability are based on a proof system, in a way
that lower bounds for the proof system imply limitations of the corresponding
algorithm. The most straightforward such connection is the connection between
resolution and algorithms such as the DPLL procedure. As it is reminiscent
of resolution’s relation to tableaux, which we will see in Chapter 3, we shall
illustrate the basic idea here.

Resolution is a proof system for refuting sets of clauses (or CNF-formulas),
where a clause is a disjunction of variables and negations of variables. Suppose
we begin with a set of clauses, and through sound deductive steps, we end up
with the empty clause. Since no assignment can satisfy the empty clause, the
initial set of clauses is unsatisfiable. Resolution encodes clauses as sets and its
only way of producing new clauses from old ones is the rule:

from C ∪ {P} and D ∪ {¬P}, infer C ∪D.

DPLL-based algorithms are built upon the following primitive method: On
input a set S of clauses, select a variable P , and select a value v ∈ {0, 1}. Then

4

1.3. Satisfiability algorithms and resolution

call yourself recursively on input S[P = v], where S[P = v] is the set that
results from S after applying the restriction P = v (if for example v = 1, remove
all clauses containing P and remove ¬P from all clauses). If at some point a
clause is falsified, backtrack.

Algorithm 1 A basic satisfiability algorithm.

procedure Primitive(S)
if S = ∅ then

return true
if S contains the empty clause then

return false
choose a variable P that occurs in S
choose a value v ∈ {0, 1}
return Primitive(S[P = v]) or Primitive(S[P = 1− v])

Now, if we run this primitive algorithm on an unsatisfiable set of clauses S,
then its execution tree corresponds to a resolution refutation of S. The idea
is that if α is the assignment that has created before a recursive call, then α
falsifies the clause which results from a resolution derivation corresponding to
the call on S[α]. Figure 1.1 hopefully makes things clear. The boxes at the
upper half contain the initial clauses falsified making the algorithm backtrack.

R = 1

P = 1

Q = 1

¬P¬Q¬R
Q = 0

¬PQ

P = 0

P¬R

R = 0

S = 0

P = 1

¬PRS
P = 0

PR

S = 1

R¬S

¬R

¬P¬R

¬P¬Q¬R ¬PQ

P¬R

R

RS

¬PRS PR

R¬S

Figure 1.1: A sample run of Algorithm 1 on the set of clauses S = {¬P¬Q¬R,
¬PQ,P¬R,¬PRS,PR,R¬S} (up) and the corresponding resolution refutation
(down).

5

1. Introduction

Notice that the above transformation tells us that resolution is a complete
proof system, and on top of that, gives an upper bound on the size of resolution
refutations.

Proposition 1.3.1. If S is an unsatisfiable set of clauses defined over n
variables, where n is a non-negative integer, then there is a resolution refutation
of S in at most 2n steps.

Proof. Fix an order P1, . . . , Pn of the variables which occur in S, and call
Algorithm 1 with respect to that order. The execution tree, as well as the
corresponding resolution tree, will have at most 2n nodes.

The first super-polynomial lower bound on the size of resolution proofs was
obtained in the 1960’s by Tseitin [35], for a subsystem of resolution called regular
resolution. The first super-polynomial lower bound for general resolution was
given by Armin Haken in 1985, showing that the CNF encoding the pigeon-hole
principle’s negation is intractable for resolution [23]. Many intractability results
for resolution followed, based on Haken’s method, the so-called “bottleneck
method”, most notably [36] and [12]. A crucial notion underlying the above
proofs was that of resolution width; the width of a resolution proof is the size of
the largest clause in the proof. This was first made explicit by Ben-Sasson and
Wigderson [8], unifying and greatly simplifying the proofs of the aforementioned
lower bounds, by showing that short proofs are narrow :

If an r-CNF formula on n variables has a resolution refutation of
size S, then it has a resolution refutation of width O(

√
n logS) + r.

Resolution width, unlike resolution size, is a measure of semantic flavor. This,
as far as we know, was first noticed by Atserias and Dalmau [3], characterizing
the minimum width needed to refute a formula using a two-player game. That
paper (and the subsequent [38], characterizing in a similar way the minimum
resolution depth) were the main inspiration and the starting point for our work.
Furthermore, from this characterization followed that

the minimum space of refuting an r-CNF formula X is always bigger
than the minimum width of refuting X minus r − 1.

1.4 Thesis overview

We define in the present thesis the notions of tableau depth and tableau width.
These measures are generalizations of resolution depth and width, and are
characterized by a generic two-player game. We identify cut-free tableau
width (which we just call tableau width) as a crucial parameter for resolution,
by noticing that many relations concerning resolution width, are not only
continue to hold if we replace resolution width by tableau width, but also are
simplified. We believe that connections between different versions of the tableau
depth/width game, in particular the versions resulting by adding or restricting
cuts, are fruitful and should be investigated further.

6

1.4. Thesis overview

Chapter 2 contains the basic theory, introducing tableau depth and tableau
width. Our exposition of the tableaux proof system closely follows [21]. Chapter
3 contains applications, notably the relation of tableaux with clause space,
resolution and Frege systems. The sections of Chapter 3 are independent of
each other and can be read in any order.

Remark 1.4.1. Although some of the results presented in this thesis can be
extended to first-order, or other logics, the focus is on propositional logic.
Traditionally proof complexity deals with only propositional logic. Perhaps one
reason for this is that the question “Does there exist a tautology with no short
proofs?” can be answered for undecidable logics in a very strong way. Take
any proof system F for the set, let’s say of all first-order valid formulas VAL. If
there was a computable function f such that for any formula X ∈ VAL of size
n, X has a proof in F of size at most f(n), then we would have a procedure
deciding VAL: On input a string x, write down all possible strings of size at
most f(|x|), and for each one of them check if it represents a proof of x in F . If
such a string was found, return yes; otherwise return no. We know that such a
decision procedure cannot exist, therefore for any proof system for VAL and any
computable function f , there exists a first-order valid formula with no proof of
size f(n).

7

2

Tableaux

2.1 Uniform notation

We consider throughout the thesis only propositional logic. The formulas are
built up from propositional variables P1, P2, . . . , P,Q, . . . using negations, and
finite conjunctions/disjunctions of unbounded arity. A propositional variable
or the negation of a propositional variable is called a literal. If X1, . . . , Xk

are formulas, we denote by 〈X1, . . . , Xk〉 their conjunction and by [X1, . . . , Xk]
their disjunction. (X ∧Y) and (X ∨Y) are abbreviations for 〈X,Y 〉 and [X,Y]
respectively. (X → Y) is an abbreviation for [¬X,Y].

Making use of Smullyan’s uniform notation [33], we group all formulas of the
forms 〈X1, . . . , Xk〉, ¬〈X1, . . . , Xk〉, [X1, . . . , Xk] and ¬[X1, . . . , Xk] into two
categories, those that act conjunctively, which we call α-formulas, and those
that act disjunctively, which we call β-formulas. For an α-formula we write
α1, . . . , αk for its components. Similarly, we write β1, . . . , βk for the components
of a β-formula. The situation is summarized in Table 2.1.

α α1 . . . αk β β1 . . . βk

〈X1, . . . , Xk〉 X1 . . . Xk [X1, . . . , Xk] X1 . . . Xk

¬[X1, . . . , Xk] ¬X1 . . . ¬Xk ¬〈X1, . . . , Xk〉 ¬X1 . . . ¬Xk

Table 2.1: Uniform notation.

The principles of structural induction and structural recursion as well as
the unique parsing theorem stated in this setting are the following.

9

2. Tableaux

Theorem 2.1.1 (Structural Induction). Every formula has a property Q pro-
vided that:

Base case. Every literal has property Q.

Inductive step.

If Z has property Q, then so does ¬¬Z.

If every component α1, . . . , αk of α has property Q, then so does α.

If every component β1, . . . , βk of β has property Q, then so does β.

Theorem 2.1.2 (Structural Recursion). There is a unique function f defined
on the set of propositional formulas such that:

Base case. The value of f is specified explicitly on literals.

Recursion step.

The value of f on ¬¬Z is specified in terms of the value of f on Z.

The value of f on α is specified in terms of the values of f on the
components α1, . . . , αk of α.

The value of f on β is specified in terms of the values of f on the
components β1, . . . , βk of β.

Theorem 2.1.3 (Unique Parsing). Every formula is in exactly one of the
following categories: a literal, ¬¬Z for a unique formula Z, an α-formula,
with unique components α1, . . . , αk, or a β-formula, with unique components
β1, . . . , βk.

2.2 What are tableaux?

Tableaux make up one of the simplest proof systems one could think of. To
show that a set of formulas S0 is unsatisfiable, we start from S0 and try to
produce a contradiction. To do this, we expand the formulas in S0 so that
inessential details of their logical structure are cleared away. Such an expansion
takes the form of a tree.

We consider a tableau system with the rules depicted in Table 2.2. The

¬¬Z
Z

α

αi

for any compo-
nent αi of α

β

β1 | . . . | βk

Table 2.2: Tableau expansion rules.

rules 2.2 allow us to turn a tree with formulas as node labels into another
such tree. Suppose we have a finite tree T with nodes labelled by formulas.

10

2.2. What are tableaux?

Select a branch θ of T and a non-literal formula occurrence X on θ. If X is
¬¬Z, lengthen θ by adding a node labelled by Z to its end. If X is α, select a
component αi of α and add a node to the end of θ labelled by αi. Finally, if X
is β, add k children to the final node of θ, and label them by the components
β1, . . . , βk of β. Call the resulting tree T′. We say T′ results from T by the
application of a tableau expansion rule.

The notion of a tableau is given in the following recursive definition.

Definition 2.2.1. Let {X1, . . . , Xm} be a set of propositional formulas.

1. The following one-branch tree is a tableau for {X1, . . . , Xm}:

X1
...

Xm

2. If T is a tableau for {X1, . . . , Xm} and T′ results from T by the application
of a tableau expansion rule, then T′ is a tableau for {X1, . . . , Xm}.

Definition 2.2.2. A branch θ of a tableau is called closed if both X and ¬X
occur on θ for some formula X. A tableau is closed if every branch is closed.
Tableaux form a refutation proof system, which means that a tableau proof of a
formula X is a closed tableau for ¬X (for singletons {X} we say “tableau for
X” instead of “tableau for {X}”).

Example 2.2.1. Figure 2.1 shows a tableau proof of (P ∨ (Q ∧R))→ ((P ∨
Q) ∧ (P ∨R)). The first line is the negation of the formula to be proved; the
second and third lines resulted from the first by the α rule; the two formulas
in the first branch resulted from the second line by the β rule; the branch
underneath the node labelled by P resulted by the β rule from the third line,
and so forth.

¬((P ∨ (Q ∧R))→ ((P ∨Q) ∧ (P ∨R)))
P ∨ (Q ∧R)

¬((P ∨Q) ∧ (P ∨R))

P

¬(P ∨Q)
¬P
¬Q

¬(P ∨R)
¬P
¬R

Q ∧R
Q
R

¬(P ∨Q)
¬P
¬Q

¬(P ∨R)
¬P
¬R

Figure 2.1: A tableau proof of (P ∨ (Q ∧R))→ ((P ∨Q) ∧ (P ∨R)).

11

2. Tableaux

Tableaux constitute a sound and complete proof system. The soundness
direction is easy; for the completeness direction see [21], and also Section 2.7.

Theorem 2.2.1. For any set S0 of formulas, S0 is unsatisfiable if and only if
there exists a closed tableau for S0.

Remark 2.2.1. A minor technical point, which will not bother us, except now.
Theorem 2.2.1 does not hold if we are dealing with things such as the negation
of the empty conjunction ¬〈 〉 or the empty disjunction []. Tableaux as stated,
cannot produce a contradiction from neither of these. To be able to do this, so
that Theorem 2.2.1 includes these cases, we may add the rules:

¬〈 〉
X

[]

X
,

where X is an arbitrary formula, or simply say that a branch is closed if it
contains ¬〈 〉 or []. We could augment all the appropriate definitions to include
empty disjunctions/conjunctions. We chose, for the sake of simplicity, not to
do so.

2.3 Cuts

Tableaux with the rules of Table 2.2 have a very important property: the
subformula property. Every formula in a proof is a subformula (or the negation
of one) of the formula to be proved. It is this property that makes the procedure
of constructing proofs appear algorithmic. In Gentzen’s words [22]:

Perhaps we may express the essential properties of such a normal
proof by saying: it is not roundabout. No concepts enter into the
proof other than these contained in its final result, and their use
was therefore essential to the achievement of that result.

The cut rule: for any formula X, at any point split a branch in two, adding
X to one’s end and ¬X to the other’s,

X | ¬X
,

violates the subformula propery. Instead, it gives immense power to tableau
proofs in terms of efficiency.

First, the cut rule allows the use of intermediate lemmas. Known tautologies
could serve as lemmas for further work: Suppose that we have already proved a
formula X, and now we are trying to prove a different formula, Y . In a tableau
for ¬Y , we can split a branch at any point, adding ¬X to one fork and X to the
other. Underneath ¬X, we can simply copy the closed tableau for ¬X that we
already have, thus closing that fork. This leaves us the other fork to work with,
and we have X available on it as a lemma, which may help us in producing a
closed branch.

12

2.3. Cuts

Secondly, consider an axiomatic proof system F with finitely many axiom
schemes, say A1, . . . , Ak, and modus ponens

X X → Y

Y

as the only rule of inference, where the proofs are in tree form. A proof in F
is a tree the leaves of which are labelled with substitutional instances of the
axioms, and the formulas labelling the internal nodes can be derived from the
formulas in their children by modus ponens.

Proposition 2.3.1. Tableaux with cuts p-simulate F .

Proof. Let T be a proof in F . We show that there is a constant c such that for
every node x of T , if X is the formula labelling x and Tx is the subtree of T
having x as its root, then there is a closed tableau for ¬X with at most c · |Tx|
nodes.

Fix a large enough constant c ≥ 3 so that for every axiom Ai of F , there is
a closed tableau for ¬Ai with c nodes. For the inductive step, suppose that y is
an internal node of T labelled by Y , and say that T1 and T2 are the immediate
subtrees of y, the roots of which are labelled by X and X → Y respectively.
From the induction hypothesis, there are closed tableaux, say T1 and T2, for
¬X and ¬(X → Y), with at most c · |T1| and c · |T2| nodes respectively. A
closed tableau T for ¬Y can be constructed as in Figure 2.2.

¬Y

X → Y

¬X

T1

Y

¬(X → Y)

T2

Figure 2.2: A tableau simulation of modus ponens.

T has at most

c · |T1|+ c · |T2|+ 3 ≤ c · (|T1|+ |T2|+ 1) = c · |Ty|

nodes, and we are done.
It should be clear from the above proof how this transormation can be

computed in linear time, therefore tableaux with cuts p-simulate F .

We will see Proposition 2.2 in its full generality in Chapter 3.
Gentzen’s cut elimination theorem gives an algorithm that removes the

cuts from proofs, making them purely analytic. For a quite readable proof

13

2. Tableaux

(basically Gentzen’s proof [22] in tableau terms), see [21, Section 8.9]. As we
may anticipate, eliminating cuts may result in a blow-up of proof size; in fact
cuts can make the difference between linear and exponential. This, as far as we
know, was first made explicit for propositional logic in [34] (also see [21, Section
8.10] and Section 3.3), by giving an example of formulas having proofs of linear
size when the use of cuts is allowed, but require cut-free proofs of exponential
size.

Henceforth, by tableaux we mean tableaux without the cut rule; when we
want to speak of tableaux with cuts, we will mention it explicitly.

Remark 2.3.1. Let us, before moving on, make one more observation about
the tableau proof system. We stressed in Chapter 1 that there are two dual
ways of seeing a proof system: as a bottom-up proof system, or as a top-down
satisfiability algorithm. For example, we saw that resolution, when seen as a
satisfiability algorithm, tries to construct a satisfying assignment for the set we
are trying to refute, by querying variables. Tableaux are a system already in
its algorithmic manifestation. They try to construct an assignment (or more
generally a model) satisfying the set we are trying to refute, by querying, either
formulas in the partial model we have already constructed, or (when the cut rule
is allowed) arbitrary formulas. The bottom-up counterpart of tableaux is a proof
system, first defined by Gentzen in [22] in order to prove his cut-elimination
theorem, called sequent calculus (see [33, Chapter XI, Section 1] for details).

One difference between resolution and the DPLL procedure, or between
sequent calculus and tableaux, is that in the latter the proofs are restricted
to be in tree-like form, whereas in the former the proofs can be in a DAG-like
form. While a representation of a proof as a DAG can be much shorter than
its shortest representation as a tree, the tree-like restriction doesn’t affect the
depth or width of proofs. As we will see, it also does not affect the size of the
proofs, if the set from where the cut-formulas are drawn is big enough.

2.4 Tableau depth

We define the length of a path as the number of its vertices. The depth,
TDepth(T), of a tableau T, is the length of its longest branch. The tableau
depth of an unsatisfiable set of formulas S0 is the minimum depth of a closed
tableau for S0:

TDepth(S0)
def
= min{TDepth(T) : T is a closed tableau for S0}.

If S0 is the singleton {X}, we write TDepth(X) instead of TDepth({X}).
The collection of all sets of formulas for which there exists a closed tableau

(of unbounded depth) is, from Theorem 2.2.1, exactly the collection of the
unsatisfiable sets of formulas. What about the collection of all sets of formulas
for which there exists a closed tableau of depth d (for a fixed positive integer
d)? We characterize those sets using the notion of a d-consistency property.

14

2.4. Tableau depth

Definition 2.4.1. A d-consistency property is a collection C of sets of formulas
such that for each S ∈ C:

1. For each formula X, not both X ∈ S and ¬X ∈ S.

2. ¬¬Z ∈ S & |S| < d =⇒ S ∪ {Z} ∈ C.

3. α ∈ S & |S| < d =⇒ S ∪ {αi} ∈ C for every component αi of α.

4. β ∈ S & |S| < d =⇒ S ∪ {βi} ∈ C for some component βi of β.

We say that a set S0 of formulas has the d-consistency property if there
exists a d-consistency property C such that S0 ∈ C.
Remark 2.4.1. A d-consistency property is a bounded version of what Fitting
calls in [21] a propositional consistency property.

Lemma 2.4.1 (Soundness). If S0 has the d-consistency property, then there
does not exist a closed tableau of depth at most d for S0.

Proof. For a branch θ of a tableau, we denote by Γθ the set of formulas that
appear in θ.

Let C be a d-consistency property such that S0 ∈ C. We will show that for
every tableau T for S0 of depth at most d, there exists a non-closed branch θ
of T such that Γθ ∈ C.

Base case. If T consists of a unique branch with the formulas of S0

labelling its nodes, then T cannot be closed because of the condition 1 of
Definition 2.4.1.

Inductive step. Suppose that T has depth at most d and resulted from T′

by the application of a tableau expansion rule on a branch τ of T′. From
the induction hypothesis there exists a non-closed branch θ′ of T′ such
that Γθ′ ∈ C. If τ 6= θ′ we are done, since θ′ is a branch of T. Otherwise,
we have the following cases:

Case 1. ¬¬Z ∈ Γθ′ and the branch θ of T resulted adding to the
end of θ′ a node labelled by Z. T has depth at most d, thus |Γθ| ≤ d
and |Γθ′ | < d. Now since Γθ′ ∈ C, from the condition 2 of Definition
2.4.1, Γθ ∈ C, and from the condition 1 θ is not closed.

Case 2. α ∈ Γθ′ and θ resulted adding to the end of θ′ a node labelled
by αi, where αi is a component of α. As in case 1, |Γθ′ | < d, thus
Γθ ∈ C and θ is not closed.

Case 3. β ∈ Γθ′ and T resulted adding to the end of θ′ a fork of
k nodes labelled by the components β1, . . . , βk of β. We have that
|Γθ′ | < d and Γθ′ ∈ C, so from the condition 4 of Definition 2.4.1,
there is a βi such that Γθ′ ∪ {βi} ∈ C. For the branch θ of T which
contains θ′ and ends with βi, it holds that Γθ ∈ C and θ is not
closed.

15

2. Tableaux

Lemma 2.4.2 (Completeness). Let S0 be a set of propositional formulas such
that |S0| ≤ d. If there is no closed tableau of depth at most d for S0, then S0

has the d-consistency property.

Proof. Let

C := {S : |S| ≤ d & TDepth(S) > d}.

Obviously S0 ∈ C. We will show that C is a d-consistency property, i.e., C
satisfies the conditions of Definition 2.4.1. For the first condition, let S be an
arbitrary member of C. For any formula X, it cannot hold that both X ∈ S
and ¬X ∈ S, since then a single branch of length |S| labelled by the formulas
of S would constitute a closed tableau of depth at most d for S.

For condition 2, we work in the contrapositive direction. Let S ∈ C. Suppose
that ¬¬Z ∈ S and |S| < d, but S ∪ {Z} /∈ C. We have that |S ∪ {Z}| ≤ d, so
since S ∪ {Z} /∈ C, TDepth(S ∪ {Z}) ≤ d, therefore there is a closed tableau,
let us call it T, for the set S ∪ {Z} of depth at most d. But we can easily see
that T is also a closed tableau for the diminished set S, contradicting the fact
that S is in C.

Conditions 3 and 4 are similar to condition 2. Let S ∈ C. Suppose that
α ∈ S and |S| < d but there is a component αi of α such that S ∪ {αi} /∈ C. As
before, there is a closed tableau T of depth at most d for the set S ∪ {αi} and
T is also a closed tableau for the set S.

For condition 4, suppose that β ∈ S and |S| < d, but S ∪ {βi} /∈ C for every
component βi, 1 ≤ i ≤ k, of β. Then there are closed tableaux T1, . . . ,Tk each
of depth at most d for the sets S ∪ {β1}, . . . , S ∪ {βk}, and is an easy task to
construct from T1, . . . ,Tk a closed tableau of depth at most d for the set S.

Combining Lemmas 2.4.1 and 2.4.2 we get:

Theorem 2.4.1. Let S0 be a set of propositional formulas such that |S0| ≤ d.
Then there is no closed tableau for S0 of depth at most d if and only if S0 has
the d-consistency property.

Remark 2.4.2. We can modify accordingly Definition 2.4.1 so that Theorem
2.4.1 holds for any kind of tableau system, e.g. tableaux with cuts, first-order
tableaux, tableaux for modal logics etc. For example, if we augment the tableau
rules of Table 2.2 with the cut rule, where the cut formulas are from a specified
set A,

X | ¬X
for any formula X ∈ A,

then the change to Definition 2.4.1 will be to add the condition

X ∈ A & |S| < d =⇒ S ∪ {X} ∈ C or S ∪ {¬X} ∈ C.

16

2.5. The Prover-Adversary game

2.5 The Prover-Adversary game

Definitions such as Definition 2.4.1 are often seen as a game between two
players. We call the two players Prover and Adversary and the game, played
on a set of formulas S0, is as follows: The aim of the Prover is to show that
S0 is unsatisfiable, demonstrating a contradiction, while the Adversary tries to
frustrate this intention. During a play of the game the two players construct a
set of formulas S. Initially, S := S0. In an arbitrary round, the Prover selects a
non-literal X ∈ S and

• if X is of the form ¬¬Z, then the Prover sets S := S ∪ {Z};

• if X is of the form α, then the Prover selects a component αi of α and
sets S := S ∪ {αi};

• if X is of the form β, then the Adversary selects a component βi of β and
the Prover sets S := S ∪ {βi}.

If at any moment S contains a formula and its negation, then the Prover wins.
Due to the completeness of the tableau system, if we allow an unlimited

number of rounds, the Prover can always win, provided that S0 is unsatisfiable.
This is not the case if we bound the number of rounds. Indeed, a d-consistency
property C containing S0 provides a winning strategy for the Adversary when
the number of rounds is bounded by d− |S0|, in the sense that no matter what
Prover does, he can’t win in the course of d− |S0| rounds. The converse of the
above sentence is also true. If the Adversary has a winning strategy for d− |S0|
rounds, then the responses, according to this strategy, to all the possible queries
of the Prover, form a d-consistency property containing S0.

Proposition 2.5.1. Let S0 be a set of formulas. Then S0 has the d-consistency
property if and only if the Adversary has a winning strategy for the Prover-
Adversary game played on S0, when the number of rounds is bounded by d−|S0|.

2.6 Tableau width

Consider the following variation of the Prover-Adversary game, which we call
the width game. We give Prover the ability to “forget” formulas. Initially,
S := S0, where S0 is the input, i.e., the set of formulas the game is played on.
In an arbitrary round, the Prover either selects a non-literal formula X ∈ S and
the game proceeds as before, or forgets a formula X ∈ S, i.e., selects a formula
X ∈ S and sets S := S − {X} as the current set. We now have an unlimited
number of rounds, but we set a bound to the size of the set S the two players
preserve. The question is: Can the Prover always reach a contradiction (reach a
set containing a formula and its negation), maintaining that |S| ≤ w? If he can,
we say that the Prover has a winning strategy for the w-width game played
on S0; otherwise, we say that the Adversary has a winning strategy. Like in
Proposition 2.5.1, we can see that the following proposition is true.

17

2. Tableaux

Proposition 2.6.1. Let S0 be a set of formulas such that |S0| ≤ w. Then there
is a w-consistency property which is closed under subsets containing S0 if and
only if the Adversary has a winning strategy for the w-width game played on S0.

For an unsatisfiable set of formulas S0, we define the tableau width of S0,
TWidth(S0), as the minimum w such that the Prover has a winning strategy for
the w-width game on S0. Again, for a single formula X, we write TWidth(X)
instead of TWidth({X}). Notice that

TWidth(S0) ≤ TDepth(S0),

since a tableau of depth at most d for S0 gives rise to a winning strategy for
the Prover which lasts for at most d− |S0|, and this strategy is also a winning
strategy for the d-width game.

Tableau width is a space measure. We shall show now, that indeed, for any
reasonable definition of tableau space, tableau width is less than or equal to
tableau space.

Let S0 be a set of formulas. Suppose that during the construction of a
tableau for S0 we are allowed to manipulate the tableau, deleting some of its
nodes. Of course, we cannot do this arbitrarily; we must do it in a sound way.
This means that, if T′ and T are trees the nodes of which are labelled with
formulas, and T′ resulted after the deletion of some of the nodes of T, then for
every non-closed branch θ of T, there exists a branch τ of T′ such that the set
of formulas which occur on τ is a subset of the formulas which occur on θ. We
write T |≈ T′ for two trees T and T′ satisfying the above condition.

Definition 2.6.1. An s-tableau sequence for S0 is a sequence T1, . . . ,Ts of
trees, such that T1 is the one-branch tableau with |S0| nodes labelled by all
the formulas in S0, and for each i, 1 < i ≤ s,

1. Ti results from Ti−1 by the application of a tableau expansion rule, or

2. Ti−1 |≈ Ti.

If Ts is closed then the sequence is called an s-tableau refutation of S0.

Definition 2.6.2. The space, TSpace(π), of an s-tableau sequence π is the size
(i.e., the number of nodes) of the biggest tree in π. The tableau space of an
unsatisfiable set of formulas S0 is the minimum space of a tableau refutation of
S0:

TSpace(S0)
def
= min{TSpace(π) : π is an s-tableau refutation of S0}.

Proposition 2.6.2. For any unsatisfiable set of formulas S0,

TWidth(S0) ≤ TSpace(S0).

18

2.7. An upper bound

Proof. The proof mimics that of Lemma 2.4.1. Suppose that TWidth(S0) > w.
This means that there exists a w-consistency property C closed under subsets
containing S0. We show that there cannot be an s-tableau refutation of S0 of
space less than or equal to w. More specifically, let π = T1, . . . ,Ts an s-tableau
sequence such that the size |Ti| of every tableau in π is less than or equal to
w; we show that every Ti must have a non-closed branch θ such that Γθ ∈ C,
where Γθ is the set of formulas occurring in θ.

Base case. T1 has as its only branch a branch θ labelled by the formulas
in S0, so Γθ ∈ C and from the condition 1 of Definition 2.4.1 θ cannot be
closed.

Inductive step. Suppose that Ti resulted from Ti−1, and let θ′ be a
non-closed branch of Ti−1 such that Γθ′ ∈ C. If Ti is the result of the
application of a tableau expansion rule on a branch of Ti−1 different from
θ′, then θ′ remains in Ti and we are done. So suppose (the two other
cases are similar) that β ∈ Γθ′ and Ti resulted from Ti−1 adding to the
end of θ′ a fork of k nodes labelled by the components β1, . . . , βk of β.
We have that |Ti| ≤ w, therefore |Γθ′ | < w. From the condition 4 of
Definition 2.4.1, there is a βi such that Γθ′ ∪ {βi} ∈ C and for the branch
θ of Ti which contains θ′ and ends with βi, it holds that Γθ ∈ C and θ is
not closed.

Next, suppose that Ti−1 |≈ Ti. Then Ti contains a branch θ such that
Γθ ⊆ Γθ′ , and since C is subset closed, Γθ ∈ C.

Again, Proposition 2.6.2 extends to tableaux with cuts, first-order tableaux
etc.

2.7 An upper bound

We show in this section a general upper bound on the depth (and thus also
the width) of an unsatisfiable set of formulas. Doing this we also prove tableau
completeness for finite sets; the infinite case follows via compactness. Although
the upper bound is fairly straightforward, it requires some preliminary results.

Definition 2.7.1. A tableau T is called saturated if for each branch θ of T:

1. If ¬¬Z occurs on θ, then so does Z.

2. If α occurs on θ, then so does every component αi of α.

3. If β occurs on θ, then at least one component βi of β occurs on θ.

Lemma 2.7.1 (Hintikka’s Lemma). Let S0 be an unsatisfiable set of formulas.
Then every saturated tableau for S0 must be closed.

19

2. Tableaux

Proof. Suppose, for the sake of contradiction, that T is a saturated but not
closed tableau for S0. Since T is not closed, it must contain a non-closed branch.
Let θ be such a branch and let H be the set of formulas that appear on θ. We
show that there exists an assignment that satisfies all formulas in H, which,
since S0 ⊆ H, contradicts the assumption that S0 is unsatisfiable.

Let f be the assignment of Boolean values to propositional variable defined
as follows: For every propositional variable P

f(P) :=

{
true, if P ∈ H,

false, otherwise.

Now let v be the Boolean valuation (i.e., the assignment of Boolean values to
all propositional formulas respecting the meaning of connectives) that extends
f . We show that for every formula X,

X ∈ H =⇒ v(X) = true.

The proof is by structural induction (Theorem 2.1.1).

Base case. Suppose that X is a literal and that X ∈ H. If X is a
propositional variable P , then by definition, v(X) = true. If X is the
negation of a variable ¬P , then from the fact that θ is not closed, it
cannot be the case that P ∈ H, therefore v(P) = false and v(X) = true.

Inductive step. Suppose that Z ∈ H =⇒ v(Z) = true; we show that
¬¬Z ∈ H =⇒ v(¬¬Z) = true. Suppose that ¬¬Z ∈ H. Then because
T is saturated, Z ∈ H, so v(Z) = true and v(¬¬Z) = true.

The α and β cases are similar to the ¬¬Z case. We show only the second.
Suppose that βi ∈ H =⇒ v(βi) = true for every component βi of β. If
β ∈ H, then since T is saturated, βj ∈ H for some component βj , thus
v(βj) = true and v(β) = true.

Theorem 2.7.1. Let h be a function mapping every formula to an integer,
such that h(P) = h(¬P) = 1 for every propositional variable, and

h(¬¬Z) = 1 + h(Z);

h(α) = 1 +
∑

h(αi);

h(β) = 1 + maxh(βi).

From Theorem 2.1.2 h exists and is unique. For any finite unsatisfiable set of
formulas S0 = {X1, . . . , Xm}, there is a closed tableau for S0 of depth

m∑
i=1

h(Xi).

20

2.7. An upper bound

Proof. We show that for any formula X, there is a saturated tableau for X of
depth h(X). Theorem 2.7.1 then follows because a saturated tableau T for S0

of depth k − 1 can be obtained from a saturated tableau for XS0
of depth k,

where XS0
is the conjunction of all the formulas in S0. From Lemma 2.7.1, T

will be closed. The proof is by structural induction.

Base case. For every literal L, the tableau with one node labelled by L,
is a saturated tableau for L of depth 1 = h(L).

Inductive step. Suppose that T is a saturated tableau for Z of depth h(Z).
For a saturated tableau for ¬¬Z simply plug-in T under ¬¬Z. The depth
of the new tableau is 1 + h(Z) = h(¬¬Z).

For the α case, suppose that every component αi, 1 ≤ i ≤ k, of α has
a saturated tableau Ti of depth h(αi). Start with T1 and to the end of
every branch of T1 add T2. Call the resulting tree T′. Then do the same,
adding T3 to the end of every branch of T′. Keep doing this, until all the
trees Tk have been added, and then add a new root (making the old root
a child of the new root) labelled by α. Call the resulting tree T∗. The

depth of T∗ is 1 +
∑k
i=1 h(αi) = h(α). We claim that T∗ is a saturated

tableau for α. The fact that T∗ is a valid tableau is easy to verify, and T∗

is saturated since all Ti are saturated and every branch of T∗ contains
all the components αi of α.

Finally, for the β case, suppose that every component βi, 1 ≤ i ≤ k, of
β has a saturated tableau Ti of depth h(βi). For a saturated tableau
for β, start with a node labelled by β, add T1, . . . ,Tk as the immediate
subtrees of β. It is easy to see that the resulted tree is a saturated tableau
for β, and its depth is 1 + max{βi : 1 ≤ i ≤ k} = h(β).

Corollary 2.7.1. For any unsatisfiable set of formulas S0 = {X1, . . . , Xm},

TDepth(S0) ≤
m∑
i=0

s(Xi),

where for a formula X, s(X) is the number of symbols appearing in X.

Proof. We show, by structural induction, that for any formula X, h(X) ≤ s(X).
The base case is clearly true. For the inductive step, we only show the α case.
The others are similar. Suppose that h(αi) ≤ s(αi) for every component αi,
1 ≤ i ≤ k, of α. Then

h(α) = 1 +

k∑
i=1

h(αi)

≤ 1 +

k∑
i=1

s(αi)

= 1 + (s(α)− c), where c ≥ 1

≤ s(α)

21

2. Tableaux

Corollary 2.7.2. Let S0 be an unsatisfiable set of formulas, and c an integer
bigger than the arities of the connectives occurring in S0. If s is the total number
of symbols in S0, then there exists a closed tableau for S0 with at most cs+1

nodes.

Proof. Immediate, from the fact that a tree of depth d, every node of which
has at most c children, has at most (cd+1 − 1)/(c− 1) nodes.

2.8 Examples

Example 2.8.1. Let us begin with a family of formulas for which Prover has
an efficient winning strategy in the basic variation of the Prover-Adversary
game. Set

Xn := 〈P1, P1 → P2, P2 → P3, . . . , Pn−1 → Pn,¬Pn〉.

Prover’s strategy is a “binary search” on the sequence

P1, P1 → P2, P2 → P3, . . . , Pn−1 → Pn,¬Pn.

He starts by selecting from Xn the middle formula Pdn/2e → Pdn/2e+1. The
Adversary may respond with either ¬Pdn/2e or Pdn/2e+1. In the first case the
Prover continues recursively with the sequence

P1, P1 → P2, P2 → P3, . . . , Pdn/2e−1 → Pdn/2e,¬Pdn/2e

and in the second case he continues with the sequence

Pdn/2e+1, Pdn/2e+1 → Pdn/2e+2, Pdn/2e+2 → Pdn/2e+3, . . . , Pn−1 → Pn,¬Pn.

In at most 2dlog ne rounds, the players will reach a set containing either ¬P1,
or Pn, or Pi and ¬Pi for some i, 1 < i < n.

The best the Prover can do is 2 log n. A winning strategy of the Adversary
when the game is played for at most 2 log n− 1 rounds is the following. Suppose
that the Prover selects at the beginning the formula Pi → Pi+1. If i < n/2 then
the Adversary selects Pi+1; otherwise he selects ¬Pi. Suppose (the other case
is similar) that i < n/2. Then after Adversary selected Pi+1, it is no use for
the Prover to play on the sequence

P1, P1 → P2, P2 → P3, . . . , Pi → Pi+1

and if he plays on the other half sequence (which becomes the current critical
sequence), the Adversary continues as before. Every time the Adversary picks
a formula, the size of the critical sequence is reduced by at most a factor of two,
therefore the Adversary can be consistent for at least 2 log n− 1 rounds.

It follows that

2 log n < TDepth(Xn) ≤ 2 log n+ 2.

22

2.8. Examples

Example 2.8.2. The next example is a family of formulas for which the Prover
does not have a good winning strategy. Set

Ai := 〈P1, . . . , Pi〉,

Sn := {A1, A1 → P2, A2 → P3, . . . , An−1 → Pn,¬Pn}
and let Xn be the conjunction of all the formulas in Sn. Also, for 1 < i ≤ n, let
Sn[Pi] be the formula which results from Sn removing the formula Ai−1 → Pi
and removing every occurrence of Pi.

Let G(Sn) be the minimum number of rounds in which the Prover can win
the Prover-Adversary game played on Sn. We will show, by induction on n,
that for every n ≥ 2,

G(Sn) ≥ n.
From this, will also follow that G(Xn) ≥ n and TDepth(Xn) > n. The base
case is immediate. For the inductive step, suppose that n > 2, and suppose
that the first move of the Prover is to select the formula Ai−1 → Pi. Adversary
responds with Pi. One round has passed and now the current set is Sn ∪ {Pi}.
We show that G(Sn ∪ {Pi}) ≥ n− 1; G(Sn) ≥ n follows. The argument is that

G(Sn ∪ {Pi}) ≥ G(Sn[Pi])

≥ G((Sn−1)

≥ n− 1.

The first line follows because when the game is played on Sn ∪ {Pi}, the Prover
accomplishes nothing by selecting the formula Ai−1 → Pi and if he selects a
formula of the form ¬Aj for some j > i, the Adversary cannot select ¬Pi. The
second line follows from the fact that the sets Sn[Pi] and Sn−1 are the same up
to a renaming of the variables and the third line is the induction hypothesis.

From Theorem 2.7.1, TDepth(Xn) ≤ 1 + 3n, so the above lower bound is
tight.

Example 2.8.3. The cut rule gives the ability to the Prover to select at any
time an arbitrary formula X. Adversary’s response must be either X or ¬X.
We show now, that equipped with this ability, the Prover can refute the set Sn
(and therefore also the formula Xn) of the previous example in O(log n) rounds.

Prover’s strategy is the following: He starts with the set Sn and selects
the “middle” formula Adn/2e. If the Adversary responds with Adn/2e, then the
current set contains the set consisting of the formulas

Adn/2e, Adn/2e → Pdn/2e+1, Adn/2e+1 → Pdn/2e+1, . . . , An−1 → Pn,¬An
and the Prover may continue recursively with this set. If the Adversary responds
with ¬Adn/2e then the Prover may continue recursively with the set

A1, A1 → P2, A2 → P3, . . . , Adn/2e−1 → Pdn/2e,¬Adn/2e.

In at most dlog ne rounds, the two players will reach a set containing the
formulas Ai, Ai → Pi+1 and ¬Ai+1, and from this set the Prover can reach a
contradiction in at most four rounds.

23

2. Tableaux

Prover’s strategy in Example 2.8.3 can be stated in a more general manner,
by noticing that Prover always picks an interpolant which splits the current
unsatisfiable set of formulas into two sets of equal size.

Definition 2.8.1. Let S be a set of formulas and let (S1, S2) be a partition of
S into two sets S1 and S2 (i.e., S1 and S2 satisfy S1 ∪ S2 = S and S1 ∩ S2 = ∅).
An interpolant of S with respect to the partition (S1, S2) is a formula I such
that every every propositional variable of I also occurs in both S1 and S2 and
the sets S1 ∪ {¬I} and S2 ∪ {I} are both unsatisfiable.

The Prover can always find such an interpolant, since:

Lemma 2.8.1. For any set S of formulas and any partition (S1, S2) of S, if
S is unsatisfiable, then there exists an interpolant of S with respect to (S1, S2).

Proof. Let P1 be the set of variables that occur in S1 and let P2 be the set
of variables that occur in S2. Set Q := P1 ∩P2 and define the function f as
follows. For any assignment α of Boolean values to Q,

f(α) :=

{
true, if S2 becomes unsatisfiable under α,

false, otherwise.

The formula I defined over the variables in Q that realizes f is an interpolant
of S with respect to (S1, S2). This is easy to check, since for any assignment to
Q, either S1 becomes unsatisfiable or S2 becomes unsatisfiable.

Craig’s celebrated interpolation theorem says that Lemma 2.8.1 holds when S
is an unsatisfiable set of first-order sentences. As a matter of fact, an interpolant
of S (with respect to a partition) of size at most n can be constructed from a
closed cut-free tableau for S of size n (see [21, Section 8.12]).

Example 2.8.4. Actually the formulas in both examples 2.8.1 and 2.8.2 belong
to a more general family of formulas, referred to in the literature as pebbling
contradictions.

Definition 2.8.2. Let G be a finite DAG. Let S ⊆ V (G) be the set containing
the vertices in G of zero in-degree and T ⊆ V (G) the set containing the vertices
of zero out-degree. Associate with each vertex x ∈ V (G) a variable Px. Peb(G)
is defined as the conjunction of the following formulas:

1. the formulas Px, for each x ∈ S;

2. the formulas ¬Px, for each x ∈ T ;

3. the formulas 〈Px1
, . . . , Pxk

〉 → Px, for each vertex x ∈ V (G) with imme-
diate predecessors the vertices x1, . . . , xk, where k > 0.

24

2.8. Examples

So the formulas in Example 2.8.1 correspond to directed paths, and the formulas
in Example 2.8.2 to the transitive closures of directed paths.

Peb(G) is unsatisfiable, because every assignment α that satisfies the formu-
las of the forms 1 and 3, must make every variable Px true, thus α falsifies the
formulas of the form 2. We shall see in this example that for any finite DAG G,

TWidth(Peb(G)) = O(1).

Therefore {Peb(G)} is a family of formulas that separates cut-free tableau width
from cut-free tableau depth.

Prover’s strategy is the following. He starts on a vertex t ∈ T and walks along
a path in the reverse direction to a vertex s ∈ S. He maintains the invariant
that when he is on a vertex x, then ¬Px ∈ S, and at any time |S| = O(1),
where S is the set the two players keep. At the start of the game, the Prover
selects ¬Pt and the invariant is true. Now, suppose that the Prover is on a
vertex x. If x ∈ S, then he selects Px, and the game ends, since {Px,¬Px} ∈ S.
Otherwise, he selects the formula 〈Px1

, . . . , Pxk
〉 → Px, where x1, . . . , xk are the

immediate predecessors of x. If the Adversary selects Px, the game ends. If he
selects ¬〈Px1 , . . . , Pxk

〉, then the Prover asks for ¬〈Px1 , . . . , Pxk
〉, and after the

Adversary selects one of the literals ¬Px1 , . . . ,¬Pxk
, say ¬Pxi the Prover moves

to the vertex xk and deletes from S all formulas except Peb(G) and ¬Pxi
.

25

3

Applications

3.1 CNF-formulas and the space needed to refute them

A clause is a disjunction of literals. A conjuctive normal form formula (shortly,
CNF-formula) is a conjunction of clauses. Finally an r-CNF formula is a
CNF-formula the clauses of which have at most r literals.

The Prover-Adversary games have a particularly nice form when they are
played on a CNF-formula X; they boil down to this: The Prover is selecting
the clauses of X, and when the Prover selects a clause C, the Adversary must
respond with a literal contained in C. If the Adversary selected a variable and
its negation, the Prover wins. Note that the upper bound of Theorem 2.7.1
gives us TDepth(X) ≤ 1 + 2m for any CNF formula with m clauses.

In this section we will prove the following statement:

The space needed, in any proof system working with clauses, in
order to refute a CNF-formula X, is always lower bounded by the
tableau width of X minus 2.

But what we mean by “the space needed, in any proof system working with
clauses, in order to refute a CNF-formula”? Consider a CNF-formula X and a
refutation system with syntactic rules by which we can produce clauses from
clauses. Suppose we have a set M viewed as the memory. Initially, M = ∅.
At any stage of a refutation of X, we can either add a clause C of X to M,
erase a clause from M, or add to M a clause which can be inferred using the
rules of the system from clauses already inM. The smallest amount of memory
we can use in order to reach a contradiction (when working with clauses, a
contradiction is just the empty clause []) is the space needed to refute X. This
is made precise in the following definitions of [2].

27

3. Applications

Definition 3.1.1. A configuration is a set of clauses. A derivation π from a
CNF X is a sequence of configurationsM0, . . . ,Ms such thatM0 = ∅ and, for
all i ∈ {1, . . . , s}, Mi is obtained from Mi−1 by one of the following rules:

Axiom download. Mi :=Mi−1 ∪ {C} for a clause C of X.

Erasure. Mi :=Mi−1 − {C} for a clause C ∈Mi−1.

Inference. Mi :=Mi−1 ∪ {C} for a clause C such that Mi−1 |= C.

If [] ∈Ms then the derivation is called a refutation of X.

Definition 3.1.2. The clause space of a sequence of configurations π =M0,
. . . ,Ms is

CSpace(π)
def
= max {|Mi| : i ∈ {0, . . . , s}} .

The clause space of an unsatisfiable CNF-formula X is

CSpace(X)
def
= min {CSpace(π) : π is a refutation of X} .

Note that the inference case of Definition 3.1.1 allows us to talk about the
space needed in any refutational proof system working with clauses.

Remark 3.1.1. What we defined as clause space is often called in the literature
semantic clause space, whereas the term clause space is used to denote the
resolution clause space. We chose to call the semantic clause space simply clause
space, in order to avoid unnecessary terminology. As a matter of fact, this is of
little importance, since resolution clause space and semantic clause space are
linearly related (see [2]).

A key, immediate fact about clause space is the following lemma of [2]. For
two sets of formulas S and T , we write S |= T if every assignment that makes
all formulas in S true, also makes all formulas in T true.

Lemma 3.1.1 (Locality Lemma). Let S be a satisfiable set of literals, and T a
set of clauses. If S |= T , then there is a set S′ ⊆ S of size |S′| ≤ |T | such that
S′ |= T .

Proof. For each clause C ∈ T , there is a literal LC ∈ S contained in C (otherwise,
if there was a clause C ∈ T containing no literals in S, we could at the same
time satisfy S and make C false). Setting S′ := {LC : C ∈ T} we have the
lemma.

Finally, we have the following theorem (the proof of which is similar to the
proof of theorem 3 in [3], or of theorem 3.13 in [2]).

Theorem 3.1.1. For any unsatisfiable CNF-formula X,

TWidth(X) ≤ CSpace(X) + 2.

28

3.2. Atomic cuts and resolution

Proof. Suppose that TWidth(X) > w ≥ 1. This means that there exists a
w-consistency property C closed under subsets, containing X. We show that
there cannot be a refutation of X of space at most w − 2. More specifically, let
π =M0, . . . ,Ms be a derivation from X of space at most w− 2. We show that
for every Mi there exists a satisfiable set of literals Si such that Si ∪ {X} ∈ C
and Si |=Mi. It follows that no Mi can be the empty clause, hence π cannot
be a refutation.

Base case. M0 = ∅, and S0 := ∅ is a satisfiable set of literals such that
S0 ∪ {X} ∈ C and S0 |=M0.

Inductive step. Suppose that i > 0. From the induction hypothesis, there
is a satisfiable set Si−1 such that Si−1 ∪ {X} ∈ C and Si−1 |=Mi−1. We
have the three cases:

Axiom Download. Mi = Mi−1 ∪ {C} for a clause C of X not in
Mi−1. From hypothesis, |Mi| ≤ w − 2 so |Mi−1| ≤ w − 3. Since
Si−1 is satisfiable and Si−1 |=Mi−1, from the locality lemma there
is a set S′i−1 ⊆ Si−1 such that S′i−1 |= Mi−1 and |S′i−1| ≤ w − 3.
Moreover, since Si−1 ∪ {X} ∈ C and C is closed under subsets, we
have that S′i−1 ∪ {X} ∈ C. Now C is a w-consistency property and
|S′i−1 ∪ {X}| ≤ w − 2, so we have that

S′i−1 ∪ {X} ∪ {C} ∈ C, from condition 3 of Definition 2.4.1

S′i−1 ∪ {X} ∪ {C} ∪ {L} ∈ C, from condition 4 of Definition 2.4.1

S′i−1 ∪ {X} ∪ {L} ∈ C, because C is closed under subsets,

where L is a literal contained in C. Now from the condition 1 of
Definition 2.4.1, the set Si := S′i−1∪{L} is satisfiable and Si∪{X} ∈
C, Si |=Mi.

Erasure. Mi = Mi−1 − {C} for a clause C ∈ Mi−1. The set
Si := Si−1 is a set such that Si ∪ {X} ∈ C and Si |=Mi.

Inference. Mi =Mi−1 ∪ {C} for a clause C such that Mi−1 |= C.
Again, since Si−1 |=Mi−1 and Mi−1 |= C, the set Si := Si−1 is a
set such that Si ∪ {X} ∈ C and Si |=Mi.

3.2 Atomic cuts and resolution

Resolution is a system for refuting CNF-formulas. It can be converted into a
polynomially equivalent proof system for general propositional formulas, by
employing an efficient translation to CNF, first used in [35]: Any formula X
can be transformed in polynomial time to a CNF X ′, so that X is satisfiable if
and only if X ′ is satisfiable.1

1This can also be seen to be true from Cook’s theorem [13]: Any NP set, in particular the
set of all satisfiable formulas, can be reduced in polynomial time to the set of all satisfiable
CNF-formulas.

29

3. Applications

Clauses are represented within the system as sets of literals. The only rule
of inference is the resolution rule,

C ∪ {P} D ∪ {¬P}
C ∪D

.

We say that C ∪D resulted from C ∪ {P} and D ∪ {¬P} resolving on P .

Definition 3.2.1. A resolution derivation from a CNF X is a sequence C1, . . . ,
Cs of clauses (represented as sets of literals) such that for each i ∈ {1, . . . , s},
either Ci is a clause of X, or is the result of the resolution rule on two previous
clauses. If Cs is the empty set, then the derivation is called a resolution
refutation of X.

Given a resolution derivation π = C1, . . . , Cs, we can define a DAG Gπ =
(Vπ, Eπ) with s vertices Vπ = {x1, . . . , xs}, and edges given by the relation Eπ,
where

Eπ(xi, xj) ⇐⇒ Ci is one of the two premises from which Cj was derived.

If Gπ is a tree then we say that π is in tree-like form.
Tree-like resolution refutations can be seen as a special case of tableau

refutations using only atomic cuts (i.e., cuts to propositional variables) except
at the bottom levels.2 This is demonstrated in Figure 3.1, where for convenience
we omitted commas and brackets. In words, let π be a tree-like resolution
refutation of X and let T be its corresponding tree. Label the root of T by X.
For every node which resulted from its children resolving on, say P , label the
child the clause of which contains P with ¬P , and the other child with P . Call
the resulting tree T ′. We can easily see that for every branch θ of T ′, the set of
formulas that occur in θ falsifies a clause of X, namely the clause associated
with the leaf of T corresponding to θ, so we can add that clause at the end of θ
and expand it, closing θ.

Actually, tableaux with atomic cuts and tree-like resolution are two p-
equivalent proof systems. This is a corollary of the fact that the cut rule can
efficiently simulate the tableau expansion rules; more precisely, is a corollary
(why?) of the following lemma.

Lemma 3.2.1. For any formula X and any tableau (even with cuts) T for X,
there is a tableau Tr for X such that

1. Tr is using only cuts except at the bottom levels;

2. |Tr| ≤ 3 · |T|;

3. there is a one-to-one mapping f between the branches of T and Tr, such
that Γθ ⊆ Γf(θ) and for every non-closed branch τ of Tr there is a branch
θ such that τ = f(θ);

2More accurately, on each branch every application, except the last one, of a tableau rule
is the application of the cut rule on a propositional variable.

30

3.2. Atomic cuts and resolution

P

PQ P¬Q

¬P

¬PR ¬P¬R

X

¬P

¬Q
PQ

P Q

Q
P¬Q

P ¬Q

P

¬R
¬PR

¬P R

R
¬P¬R

¬P ¬R

Figure 3.1: A resolution refutation of the formula X = 〈[P,Q], [P,¬Q], [¬P,R],
[¬P,¬R]〉 (up) and the corresponding closed tableau (down).

4. every cut-formula in Tr is either a formula or the negation of a formula
that occurs in T.

Recall that Γθ is the set of formulas that occur in θ.

Proof. The proof is by induction on the construction of T. The base case
is trivial, so suppose that we have already constructed a tableau T′r for T′

satisfying the lemma’s conditions, and T resulted from T′ by the expansion
of a β-formula (the other cases are similar, see Figure 3.2) on a branch θ′ of
T′. Let τ ′ the branch of T′r, guaranteed by the induction hypothesis, such that
Γθ′ ⊆ Γτ ′ . To construct Tr, simply append to the end of τ ′ the rightmost tree
of Figure 3.2 (erasing the root label β) to the end of τ ′. It is easy to see that
the resulting tableau satisfies the conditions 1, 3 and 4 of the lemma, and its
size is

|T′r|+ 3k ≤ 3 · (|T′|+ k) = 3 · |T|,

completing the proof.

Resolution depth

The depth of a resolution derivation π is the length of the longest path from a
leaf to a root of Gπ minus one (we don’t want to count the root). The resolution
depth, RDepth(X), of an unsatisfiable CNF-formula X is the minimum depth
of a resolution refutation of X:

RDepth(X)
def
= min{RDepth(π) : π is a resolution refutation of X}.

31

3. Applications

¬¬Z

Z ¬Z

α

αi ¬αi
αi

β

β1 ¬β1

β2 ¬β2
...

βk ¬βk

β1 · · · βk

Figure 3.2: A simulation of the tableau expansion rules by the cut rule.

Since, by repeating subderivations, we can turn any resolution refutation to a
tree-like one without increasing the depth, this minimum could be taken over
all tree-like refutations. The transformation is described in more detail in the
following proposition.

Proposition 3.2.1. A depth d resolution derivation of a clause C from a CNF
X can be transformed into a depth d tree-like resolution derivation of C from
X.

Proof. Let C1, . . . , Cs be a resolution derivation from X. We show that for
every i ∈ {1, . . . , s}, Ci has a tree-like resolution derivation from X of depth di,
where di is the depth of the subderivation C1, . . . , Ci.

If Ci is a clause of X, then Ci is a tree-like derivation from X and we are
done. Now suppose that Ci was derived from the clauses Cj and Ck. From
the induction hypothesis, there are tree-like derivations πj and πk of Cj and
Ck with depths dj and dk respectively. πk ◦ πj ◦ Ci, where ◦ denotes sequence
concatenation, is a depth di tree-like derivation of Ci from X.

Remark 3.2.1. Even though the above construction keeps the depth invariant,
it induces redundacies, increasing the proof size. Indeed, it is shown in [6] that
resolution is exponentially more powerfull than tree-like resolution in terms of
size, demonstrating a family of formulas (which are a variant of the pebbling
contradictions of Definition 2.8.2) of size n that have O(n)-size resolution
refutations, but require exp(Ω(n/ log n))-size tree-like resolution refutations.

We have the following version of Definition 2.4.1 for characterizing the
resolution depth of an unsatisfiable CNF-formula. Theorem 3.2.1 is from [38]
(presented here in slightly different terms); we omit its proof, which is, given
the translation of Figure 3.1, a variation of the proof of Theorem 2.4.1. But
first, some handy notation: For a propositional variable P , let P := ¬P and
¬P := P . Also, for a formula X, we denote by V (X) the set of variables that
occur in X.

32

3.2. Atomic cuts and resolution

Definition 3.2.2. Let X be a CNF-formula and d a non-negative integer. We
say that X has the d-resolution consistency property if there exists a collection
C of sets of literals such that ∅ ∈ C and for each S ∈ C:

1. For each clause C of X, S does not falsify C, i.e., for any subset S′ ⊆ {L :
L ∈ S}, C is not the disjunction of S′.

2. P ∈ V (X) & |S| < d =⇒ S ∪ {P} ∈ C or S ∪ {¬P} ∈ C.

Theorem 3.2.1 (Urquhart [38]). For any CNF X, X does not have a resolution
refutation of depth at most d if and only if X has the d-resolution consistency
property.

The version of the Prover-Adversary game corresponding to Definition 3.2.2
is as follows: Let X be the CNF-formula the game is played on, and S the
set maintained by the two players. Initially, S := ∅. In any round, the Prover
selects a variable P ∈ V (X) and the Adversary must respond with either P or
¬P . In the first case P is added to S, while in the second case ¬P is added
to S. If at any stage of the game the set of literals S falsifies a clause C of X
then the Prover wins.

We have the following relationship between tableau and resolution depth. In
order to separate the games characterizing the tableau depth and the resolution
depth, we refer to the first as the tableau depth game and to the second as the
resolution depth game. Also, we call the players of the tableau depth game
Prover A and Adversary A, and the players of the resolution depth game Prover
B and Adversary B.

Proposition 3.2.2. For any unsatisfiable r-CNF formula,

RDepth(X) ≤ r · TDepth(X).

Proof (sketch). Given a winning strategy of Prover A which lasts for at most
d rounds, we show how Prover B can simulate this strategy in at most r · d
rounds. Consider an arbitrary round of the tableau depth game, and say that
Prover A has selected a clause C of X, waiting for Adversary A to respond with
a literal contained in C. Then Prover B, selects one by one, all the variables
in V (C), until Adversary B selects a literal L contained in C; if Adversary B
selected for each variable P ∈ V (C) the opposite of C’s literal corresponding to
P , then clause C is falsified and Prover B wins. Afterwards Prover A continues
provided that Adversary A selected literal L and the simulation goes on.

Remark 3.2.2. The above construction corresponds to the translation of tableau
proofs into resolution proofs of Lemma 3.2.1 (see also Theorem 5.1 of [37]).

An example of a family of formulas, due to Cook (see [15, Section V] and
also [37, page 432]), for which the resolution depth is much smaller than the
tableau depth is the following: Let Tn be a complete binary tree with n+1 levels
in which the interior nodes are labelled with distinct variables. We associate
a CNF-formula Σ(Tn) with Tn, in such a way that each branch θ in Tn has a

33

3. Applications

clause Cθ of Σ(Tn) associated with it. The variables in Cθ are those labelling
the nodes in θ; if P is such a variable, then P is included in Cθ if θ branches to
the left below the node labelled with P , otherwise Cθ contains ¬P . Figure 3.2
shows an example.

P

Q

S

PQS PQS

T

PQT PQT

R

U

PRU PRU

V

PRV PRV

Figure 3.3: Σ(T3) is the formula 〈[PQS], [PQS], [PQT], [PQT], [PRU], [PRU],
[PRV], [PRV]〉.

We can see that Tn forms a resolution refutation of Σ(Tn), so for every
n > 0,

RDepth(Σ(Tn)) ≤ n.

On the other hand, TDepth(Σ(Tn)) is as large as it can be.

Proposition 3.2.3. For every n > 0,

TDepth(Σ(Tn)) > 2n.

Proof. The proof is by induction on n. The base case is true, since

TDepth(Σ(T1)) > 2.

For the inductive step, suppose that n > 1. Let P be the variable labelling
the root of Tn and let T 0 and T 1 be the immediate left and right respectively
subtrees of Tn. Since T 0 and T 1 are binary trees with n levels, we have by the
induction hypothesis that

TDepth(Σ(T 0)) > 2n−1

and
TDepth(Σ(T 1)) > 2n−1,

meaning that the Adversary has winning strategies in the tableau depth game
played on Σ(T 0) and Σ(T 1) for at most 2n−1 − 1 rounds. Fix a strategy C0
for Σ(T 0) and a strategy C1 for Σ(T 1). We construct a winning strategy for
the Adversary in the tableau depth game played on Σ(Tn) for at most 2n − 1
rounds.

34

3.2. Atomic cuts and resolution

The Adversary selects literals different from P and ¬P until he is no longer
able to do this. More specifically, if the Prover selects a clause corresponding
to a leaf of T 0, then the Adversary selects a literal according to the strategy
C0; if he cannot do this, he selects P . Similarly, if the Prover selects a clause
corresponding to a leaf of T 1, then the Adversary selects a literal according to
the strategy C1, and if he cannot do this, he selects ¬P . Playing this way, the
Prover can force the Adversary to select P only when he has selected all the
clauses corresponding to the leaves of T 0 after 2n−1 rounds, and similarly for
¬P . Since the sets of variables of T 0 and T 1 are disjoint, the above strategy
is a winning strategy for the Adversary in the tableau depth game played on
Σ(Tn) for 2n − 1 rounds.

Resolution width

The width of a resolution derivation π = C1, . . . , Cs is the size of the largest
clause in π,

RWidth(π)
def
= max{|Ci| : i ∈ {1, . . . , s}}.

The resolution width of an unsatisfiable CNF-formula X is the minimum width
of a resolution refutation of X,

RWidth(X)
def
= min{RWidth(π) : π is a resolution refutation of X}.

A major insight of [3] was to show that the following theorem holds.

Theorem 3.2.2 (Atserias and Dalmau [3]). Let X be an r-CNF formula and
w an integer such that r ≤ w. Then X does not have a resolution refutation
of width at most w if and only if there exists a (w + 1)-resolution consistency
property closed under subsets for X.

Proof. (Soundness) Let C be a (w + 1)-resolution consistency property closed
under subsets for X. Let π = C1, . . . , Cs be a resolution derivation from X, of
width at most w. We show that for every set S ∈ C and every clause Ci in π, S
does not falsify Ci. Since C is non-empty, it follows that π cannot contain the
empty clause, therefore cannot be a refutation.

Base case. If Ci is a clause of X, then for every S ∈ C, S cannot falsify
Ci, from the condition 1 of Definition 3.2.2.

Inductive step. Suppose that the clause Ci = C ∪ D results from the
clauses C ∪ {P} and D ∪ {¬P}. Assume, for the sake of contradiction,
that there is a set S ∈ C falsifying Ci. Let S′ be the minimal subset
of S falsifying Ci. Since C is closed under subsets S′ ∈ C. Moreover,
since |Ci| ≤ w, |S′| ≤ w. From the condition 2 of Definition 3.2.2, either
S′∪{P} ∈ C, or S′∪{¬P} ∈ C. In the first case S′∪{P} falsifies D∪{¬P}
and in the second case S′ ∪ {¬P} falsifies C ∪ {P}, contradicting the
induction hypothesis.

35

3. Applications

(Completeness) Suppose that there is no resolution refutation of X of width at
most w. Let C be the set of all clauses having a resolution derivation from X of
width at most w. Set

C ′ := {S set of literals : for each C ∈ C, S does not falsify C}.

We show that C′ is a (w+1)-resolution consistency property closed under subsets
for X. First, ∅ ∈ C′ since C does not contain the empty clause. Secondly, a
subset of a set S ∈ C′ cannot falsify a clause in C, so C′ is closed under subsets.
For the first condition of Definition 3.2.2, X is an r-CNF and r ≤ w, so all the
clauses of X belong to C, and for any such clause there is no set in C′ falsifying
it. For condition 2, let S be any set in C′ such that |S| ≤ w and P a variable.
Assume, for the sake of contradiction, that S∪{P} falsifies C ∈ C and S∪{¬P}
falsifies D ∈ C. It follows that C = E∪{¬P}, since otherwise S would falsify C,
and similarly D = F ∪ {P}. But then S must falsify E ∪ F , and since |S| ≤ w,
it must be that |E ∪ F | ≤ w. Therefore, from the fact that C and D are in C,
it follows that E ∪ F is in C, which is a contradiction.

Of course, the closure under subsets condition corresponds to the ability of
the Prover to forget formulas. More specifically, consider the width game, where
the Prover is selecting variables and tries to reach a set falsifying a clause of
the r-CNF (r ≤ w) X; we call this game resolution width game. From Theorem
3.2.2, we have that the Prover wins the (w + 1)-width resolution game if and
only if RWidth(X) ≤ w. Similar to Proposition 3.2.2, we have the following
relationship with tableau width.

Proposition 3.2.4. For any unsatisfiable r-CNF formula X,

RWidth(X) ≤ TWidth(X) + r − 1.

Proof (sketch). Given a winning strategy of Prover A in the w-width tableau
game played on X, we show how Prover B can simulate this strategy, winning
the (w + r)-width resolution game. Consider an arbitrary round of the tableau
width game, and say that Prover A has selected a clause C of X, waiting for
Adversary A to respond with a literal contained in C. Then Prover B, selects
one by one, all the variables in V (C), until Adversary B selects a literal L
contained in C; if Adversary B selected for each variable P ∈ V (C) the opposite
of C’s literal corresponding to P , then clause C is falsified and Prover B wins.
Afterwards Prover B forgets all the unnecessary literals (those that Prover A
doesn’t have in his memory) corresponding to variables in V (C) except L and
Prover A continues provided that Adversary A selected literal L. Whenever
Prover A forgets a literal L, Prover B also forgets L.

From Theorem 3.1.1, we have the following major theorem of [3].

Corollary 3.2.1. For any unsatisfiable r-CNF X,

RWidth(X) ≤ CSpace(X) + r + 1.

36

3.3. From large depth to large size

Open Problem. Does there exist a family of formulas separating resolution width
from tableau width? To put it in other words, do atomic cuts shorten the width
of proofs?

3.3 From large depth to large size

While for both tableaux and resolution, width lower bounds imply size lower
bounds (see Chapter 4), depth lower bounds are of no help in proving size lower
bounds. It may be the case that a formula has large tableau (or resolution)
depth, but has a closed tableau (or a resolution refutation) of small size. The
formulas Xn of Example 2.8.2 provide such an example. When the cut rule is
forbidden, they require Ω(n) tableau depth, but there is a closed tableau for
Xn of size O(n2). For an even simpler example take the formula

¬ . . .¬︸ ︷︷ ︸
2n

(P ∧ ¬P).

We demonstrate in this section, how we can get a formula that requires large
size from a formula that requires large depth.

First, an observation about tableau size. Suppose that the Prover-Adversary
game is played on X and for every size d sequence of Prover’s questions, the
Adversary has at least k different winning strategies. More specifically, suppose
that for at least k β-formulas, the Adversary has more than one choices. We
will show that this implies that every tableau of depth d for X has size at least
2k. Following [31], we give the ability to the Adversary to select, instead of a
single component βi, a set of components. Each time the Adversary selects such
a set B with |B| ≥ 2 he scores one point, and then the Prover selects a formula
X ∈ B and updates to S := S ∪ {X}. As usual, Prover wins if he reaches a set
S containing a formula and its negation.

Proposition 3.3.1. If the set S0 has a closed tableau of size t, then the Prover
has a strategy which forces the Adversary to score at most dlog te points.

Proof. Let T be a closed tableau for S0 of size t. The Prover follows a branch
of T beginning after S0. He keeps the invariant:

If θ is the path already traversed, then the current set S of the
game contains exactly the formulas occurring in θ. Moreover, if the
Adversary has scored k points, then the subtree of T rooted at the
current node has size at most s/2k.

So every time the Adversary scores a point, the size of the current subtree is
reduced by at least a factor of two. Since T is closed, when the Prover reaches a
subtree of size 1, the set S will contain a formula and its negation, and therefore
the Adversary cannot score more than dlog te points.

At the beginning k = 0 and the invariant is obviously true. Now suppose
that θ is the path already traversed and the invariant is true. If θ doesn’t split

37

3. Applications

at the current node, then the next node x to be visited is the result of either
a double negation rule, or an α-rule. In either case, the Prover may add the
formula labelling x to S, and since Adversary doesn’t score any points, the
invariant is maintained. Next suppose that θ splits at the current node to
the components of a formula β in θ. Then Prover selects β. If the Adversary
selects exactly one component βi, then Prover goes to the node labelled by
βi. The invariant is maintained since adversary doesn’t score any points. If
the Adversary selects more than one components, then the Prover selects the
component corresponding to the smallest subtree, and goes to the root of that
tree. Adversary scores one point, and since the size of this subtree is at most
half the size rooted at the previous node, the invariant is maintained.

Remark 3.3.1. We should note here that one can get, using a similar game to
the above, a characterization of the order of tableau size, along the lines of [9].

Now to our main result. The transformation turning large tableau depth to
large tableau size is the following. Being so naive, this transformation manifests
the inefficiency of cut-free tableaux.

Definition 3.3.1. Let f be a function mapping formulas to formulas, such
that f(L) = L ∨ L for every literal L, and

f(¬¬Z) = ¬¬f(Z) ∨ ¬¬f(Z);

f(α) = 〈f(α1), . . . , f(αk)〉 ∨ 〈f(α1), . . . , f(αk)〉;
f(β) = [f(β1), . . . , f(βk)] ∨ [f(β1), . . . , f(βk)].

Theorem 3.3.1. For any formula X, if TDepth(X) > d+1, then every tableau
for f(X) must have size at least 2d.

Proof (sketch). Suppose that TDepth(X) > d+ 1. This means that the Adver-
sary wins, when the depth game is played on X for at most d round. We show
that the Adversary can always score d points when the game played on f(X).

Define c as the function mapping every formula to a set of formulas such
that c(L) = {L} for every literal L, and

c(¬¬Z) = c(Z) ∪ {¬¬Z};

c(α) =
⋃
{c(αi) : αi is a component of α} ∪ {α};

c(β) =
⋃
{c(βi) : βi is a component of β} ∪ {β}.

It is easy to show, by structural induction, that

1. the formulas selected by the two players when the Prover-Adversary game
is played on X, must belong to the set c(X);

2. a formula in c(f(X)) is either of the form f(Z), or one of the two compo-
nents of f(Z), for some Z ∈ c(X).

38

3.4. General cuts and Frege systems

Having said that, consider the game played on f(X). Whenever the Prover
selects a formula f(Z), then the Adversary selects both its components and
he scores one point. We claim that the Adversary can play so that the Prover
must select at least d such formulas. This is true, because of the fact that the
Prover cannot win the depth game on X in the course of d rounds. The Prover
of the depth game on X can simulate a strategy of the Prover on f(X) in a
way that every time the second Prover selects a component of a formula f(Z),
then the first Prover selects Z. The details are left to the reader.

Remark 3.3.2. Notice that Theorem 3.3.1 makes sense when the size of f(X) is
polynomial to the size of X.

Remark 3.3.3. The formulas of [34], showing that cuts shorten proofs, are
very similar to the formulas f(Xn), where Xn are the formulas of Example
2.8.2. First of all, notice that the size of f(Xn) is O(n2). Now we saw that
TDpeth(Xn) > n, hence from Theorem 3.3.1 f(Xn) requires tableau size at
least 2n. On the other hand, when the cut rule is allowed, f(Xn) has a closed
tableau of size O(n2) (see [34], [21, Section 8.10]).

In the case of resolution, the corresponding transformation, as described in
[38], is the following. P1 ⊕ P2 stands for the formula (P1 ∧ ¬P2) ∨ (¬P1 ∧ P2).
For the proof of the Theorem 3.3.2 see [38]. The idea is very similar to that of
Theorem’s 3.3.1 proof.

Definition 3.3.2. Let X be a CNF-formula, and {P1, P2} a pair of variables
associated with each distinct variable in V (X). Then the xorification of X,
written X⊕, is defined to be the conjunctive normal form of the formula obtained
from X by substituting P1 ⊕ P2 for each variable P ∈ V (X).

Theorem 3.3.2 (Urquhart [38]). If RDepth(X) ≥ k, then any tree resolution
refutation of X⊕ has size at least 2k.

3.4 General cuts and Frege systems

We consider now tableaux with cuts to arbitrary formulas. Let us repeat
Definition 2.4.1 in this setting.

Definition 3.4.1. A d-Frege consistency property is a collection C of sets of
formulas such that for each S ∈ C:

1. For each formula X, not both X ∈ S and ¬X ∈ S.

2. ¬¬Z ∈ S & |S| < d =⇒ S ∪ {Z} ∈ C.

3. α ∈ S & |S| < d =⇒ S ∪ {αi} ∈ C for every component αi of α.

4. β ∈ S & |S| < d =⇒ S ∪ {βi} ∈ C for some component βi of β.

5. |S| < d =⇒ S ∪ {X} ∈ C or S ∪ {¬X} ∈ C for any formula X.

39

3. Applications

Of course, a formula X has the d-Frege consistency property if and only
if there is no closed tableau with cuts to arbitrary formulas for X of depth
at most d. In the corresponding Prover-Adversary game, which we call the
Frege game, the Prover can at any time select an arbitrary formula Y and
the Adversary must respond with Y or ¬Y . We will prove in this section the
following statement, due to [30], phrased in the tableau setting, that for any
tautology X,

the minimum number of rounds needed for the Prover to win the
Frege game on ¬X (which is equal to the minimum depth of a closed
tableau with cuts for ¬X minus one) is at most the logarithm of the
minimum number of steps in a Frege proof of X plus a constant.

But first, what is a Frege proof? Frege proof systems are the standard
textbook proof systems; typically such a system consists of a couple of axioms
and modus ponens as the only rule of inference.

Definition 3.4.2. An axiomatic system is defined as a finite set of local, sound
rules of the form

A1 . . . Ak

B
.

If k = 0 for some rule, the rule is called an axiom. The rules are faced as schemes,
meaning that when applying them we use their substitutional instances, where
a substitutional instance of a rule is the result of uniformly substituting the
propositional variables of the rule by arbitrary formulas.

Definition 3.4.3. Let S0 be a set of formulas and F an axiomatic system.
A proof of a formula X from S0 in F is a sequence X1, . . . , Xs of formulas
such that Xs is X and for each i ∈ {1, . . . , s}, Xi is either an element of S0,
or follows from a constant number (zero if the rule is an axiom) of previous
formulas by an inference rule. We say that X has a proof in F , if it has a proof
in F from ∅.

Definition 3.4.4. An axiomatic system F is called implicationally complete if
there is a proof in F of X from S0 whenever S0 |= X. A Frege system is an
implicationally complete axiomatic system.

Frege systems provide a quite robust notion of a proof system. Much like
what can be computed by a Turing machine in polynomial time does not change
by adding extra features to the Turing machine, such as multiple tapes or
random access to the tape (see e.g. [27]), formulas having short proofs in a Frege
system still have short proofs if the system is enhanced. As it is shown in [32],
any two Frege proof systems (even defined over different bases of connectives)
are p-equivalent. It can be shown that any Frege system can p-simulate tableaux
with the cut rule, and this, combined with Proposition 2.3.1 and the fact that
tree-like and DAG-like Frege systems are p-equivalent (see Corollary 3.4.1),
yields that tableaux with arbitrary cuts are p-equivalent to any Frege system.

40

3.4. General cuts and Frege systems

Before proving the main theorem, let us mention the following obvious
lemma.

Lemma 3.4.1. Let F be a Frege system. There is a constant c, depending only
on F , such that for any substitutional instance

A1 . . . Ak

B

of an inference rule in F , there is a closed, cut-free tableau for the set {A1, . . . , Ak,
¬B} of depth at most c.

Theorem 3.4.1 (Buss and Pudlák [30]). For any tautology X, the minimum
number of rounds needed for the Prover to win the Frege game played on ¬X is
at most the logarithm of the minimum number of formulas in a Frege proof of
X plus a constant.

Proof. Let X1, . . . , Xt be a Frege proof of X. We set Yi := 〈X1, . . . , Xi〉.
Prover’s strategy is a binary search on the sequence Y1, . . . , Yt. More specifically,
the Prover starts by selecting the formula Ydt/2e. If the Adversary responds
with Ydt/2e, the Prover continues recursively with the sequence Ydt/2e, . . . , Yt,
and if the Adversary responds with ¬Ydt/2e, the Prover continues with the
sequence Y1, . . . , Ydt/2e. Eventually, in at most dlog te rounds, a configuration
S will be reached containing either Yt, or ¬Y1, or both Yi and ¬Yi+1 for some
i, 1 ≤ i < t.

Case 1. If Yt ∈ S, then since Yt is the formula 〈X1, . . . , Xt〉, the Prover
can add to S the formula Xt and a contradiction is reached, as ¬Xt ≡
¬X ∈ S.3

Case 2. If ¬Y1 ∈ S, then the Prover may select ¬Y1 ≡ ¬〈X1〉, and the
Adversary is obliged to select ¬X1. Since X1 is the substitutional instance
of an axiom, from Lemma 3.4.1, the Prover can reach a contradiction in a
constant number of rounds.

Case 3. Finally, suppose that Yi ≡ 〈X1, . . . , Xi〉 ∈ S and ¬Yi+1 ≡
¬〈X1, . . . , Xi, Xi+1〉 ∈ S for some i. Then the Prover first selects ¬Yi+1.
If the Adversary selects a formula ¬Xj , for 1 ≤ j ≤ i, then the Prover can
select Xj from Yi, and a contradiction is reached. So suppose that the Ad-
versary selects ¬Xi+1. Suppose that Xi+1 was derived from Xi1 , . . . , Xik ,
i1, . . . , ik ≤ i. Then the Prover can select Xi1 , . . . , Xik from Yi and force,
by Lemma 3.4.1, a contradiction in a constant number of rounds.

We saw that a tree-like resolution proof is a “normal form” of a tableau
proof, in which the top levels consist exclusively of atomic cuts, and the tableau
expansion rules of Table 2.2 occur at the bottom levels, only to falsify a clause
of the formula to be refuted. Theorem 3.4.1 constructs tableau proofs of a

3We write ≡ for the syntactic equivalence of two expressions.

41

3. Applications

similar form, where the top levels consist of cuts to arbitrary formulas, and
each branch contains at its end a constant number of the tableau expansion
rules, used only to demonstrate a local contradiction in the branch. In fact,
and this statement is also from [30],

the minimum depth of such a closed tableau for a formula ¬X (or
the minimum depth of any closed tableau with arbitrary cuts for
¬X, provided that X has only bounded disjunctions) is proportional
to the logarithm of the minimum number of steps in a Frege proof
of X.

Indeed, depth-d tableaux of these forms have at most 2O(d) nodes and such a
tableau can be formulated as a Frege proof with at most a polynomial increase
in the number of steps.

This also shows that, unlike resolution, where proofs are exponentially more
powerfull than tree-like proofs (see Remark 3.2.1), the tree-like restriction does
not harm the efficiency of Frege proofs. Our proof is from [30].

Corollary 3.4.1 (Kraj́ıček [24]). Let F1 be a Frege proof system and F2 be a
tree-like Frege proof system. Then F1 and F2 are p-equivalent.

Proof (sketch). Take an arbitrary Frege proof of size n. First, transform it into
a O(log n)-step winning strategy of the Prover. Transforming the later into a
tableau proof, we get a tableau of size 2O(logn) = nO(1) in the form discussed
above. Then one can check that the translation of this proof into a Frege proof
can be done so that the tree form is preserved.

Regarding the width of tableau proofs with arbitrary cuts, it is easy to see
that it is always bounded by a constant.

Proposition 3.4.1. When cuts to arbitrary formulas are allowed, then for any
tautology X, there is a constant c, such that the Prover can win the c-width
game played on ¬X.

Proof. Let X1, . . . , Xt be a Frege proof of X. Set Yi := 〈X1, . . . , Xi〉, and let c
be the constant guaranteed by Lemma 3.4.1. The Prover begins by choosing
Y1. If Adversary responds with ¬Y1, then, since Y1 is an axiom, the Prover
can force a contradiction in c rounds, and we are done. Otherwise the Prover
continues with Y2. If the the Adversary responds with Y2, then the Prover
forgets Y1, and continues in the same way. At some point, while maintaining
that the size of the current set S of formulas is at most c+ 1, the Prover will
either reach Yn, or Yi and ¬Yi+1 for some i. In the first case, a contradiction
is reached since always ¬X ∈ S. In the second case, arguing as in the proof
of Theorem 3.4.1, Yi and ¬Yi+1 will contain a local contradiction, which the
Prover can find within c rounds.

42

3.5. Lower bounds

3.5 Lower bounds

Everyone familiar with complexity theory knows that proving lower bounds is a
difficult task. Regarding propositional proofs, the first exponential lower bound
on the size of resolution proofs was proved in 1985, almost 20 years since the
first attempts. The Adversary arguments provide a conceptually viable way for
showing lower bounds. We already saw several lower bounds for tableau depth.
We will now show lower bounds on the tableau width of the formulas PHPn+1

n

and POPn. The first is encoding the negation of the pigeon-hole principle, and
the second the negation of the fact that a finite partial order has always a
minimal element.

Definition 3.5.1. The formula PHPn+1
n is defined as the conjunction of the

following clauses:

1. [Pi1, . . . , Pin], i ∈ {1, . . . , n+ 1};

2. [¬Pik,¬Pjk], i, j ∈ {1, . . . , n+ 1}, i 6= j, k ∈ {1, . . . , n}.

The intended meaning of the variable Pij is that pigeon i is in hole j. The
clauses 1 are saying that every pigeon must go to a hole, while the clauses 2 are
saying that there cannot be a hole with two pigeons. PHPn+1

n is unsatisfiable,
beacause an assignment sending all the pigeons in {1, . . . , n+ 1} to a hole in
{1, . . . , n} must send, from the pigeon-hole principle, two different pigeons to
the same hole. Following lemma 6 of [3] we have the following proposition.

Proposition 3.5.1. For any positive integer n,

TWidth(PHPn+1
n) > n.

Proof. Let F be the set of all partial one-to-one functions from {1, . . . , n+ 1}
to {1, . . . , n}. With every function f ∈ F , we associate a set Sf of literals as
follows.

Sf := {Pij : f(i) = j} ∪ {¬Pij : f(i) is defined but f(i) 6= j}.

Let C be the collection of all the sets Sf for f ∈ F , each joined with PHPn+1
n

and all the clauses of PHPn+1
n ,

C := {Sf ∪ {PHPn+1
n } ∪ {C : C is a clause of PHPn+1

n } : f ∈ F},

and let C+ be the closure of the set C under subsets. We claim that C+ is a
n-consistency property. Since C+ is closed under subsets and {PHPn+1

n } ∈ C+,
the proposition follows. Indeed, by the definition of C+, a set S ∈ C+ cannot
contain a formula and its negation. Now let S ∈ C+ such that |S| < n and
say that the Prover chooses a clause C of PHPn+1

n . Since |S| < n, there is an
unoccupied hole, therefore there exists an extension of S in C+ containing a
literal of C.

43

3. Applications

Proposition 3.5.1 is tight, since the Prover has the following strategy for
refuting PHPn+1

n in O(n) rounds: He first chooses one by one all the clauses of
the form [Pi1, . . . , Pin]. The Adversary is obliged to put two different pigeons
into the same hole, i.e., to select Pik and Pjk for some i, j, k with i 6= j. Then
the Prover can force the Adversary to a contradiction by selecting the clause
[¬Pik,¬Pjk].

Definition 3.5.2. The formula POPn is defined as the conjunction of the
following clauses:

No-minimal. [P1i, . . . , Pni], i ∈ {1, . . . , n}.

Transitivity. [¬Pij ,¬Pjk, Pik], i, j, k ∈ {1, . . . , n}.

Irreflexivity. ¬Pii, i ∈ {1, . . . , n}.

The intended meaning of the variable Pij is that i is smaller than j, which
we visualize as an edge from vertex i to vertex j. POPn is unsatisfiable due
to the fact that a finite partial order can be turned into a linear order, or in
computer science jargon “you can always topologically sort a finite DAG”. More
specifically, take an arbitrary element i. Because of the no-minimal clauses, i
must have a smaller element, say i′. In turn i′ must have a smaller element i′′

and so on. Since the universe of elements is finite, at some point we will reach a
cycle. The transitivity clauses then would force an element to be smaller than
itself, something which contradicts the irreflexivity clauses.

Proposition 3.5.2. For any positive integer n,

TWidth(POPn) > n− 1.

Proof. With every directed graph G on the vertices V (G) = {1, . . . , n}, we
associate a set of literals SG as follows.

SG := {Pij : (i, j) ∈ E(G)} ∪ {¬Pij : (i, j) /∈ E(G)}.

Now let

G := {G : G is the transitive closure of a DAG},
C := {SG ∪ {POPn} ∪ {C : C is a clause of POPn} : G ∈ G},

and let C+ be the closure of the set C under subsets. We claim that C+ is a
(n− 1)-consistency property. As in Proposition 3.5.1, since C+ is closed under
subsets and {POPn} ∈ C+, TWidth(POPn) > n− 1 follows. By definition, C+
cannot contain a formula and its negation. Now take an S ∈ C+ such that
|S| < n− 1 and suppose that the Prover chooses a clause C of POPn. Suppose
(the other cases are easy to check) that C is of the form [P1i, . . . , Pni]. Let G
be the DAG on the vertices V (G) = {1, . . . , n} which contains an edge (i, j) if
and only if Pij ∈ S. We show that there exists a DAG G′ containing exactly

44

3.5. Lower bounds

the edges of G plus the edge (k, i) for some k, where k 6= i. Then SG′′ ∈ C+,
for the transitive closure of G′, and adding to SG′′ all the formulas in

{POPn} ∪ {C : C is a clause of POPn}

which appear in S, and deleting all the literals except Pki which do not appear
in S, we get that S ∪ {Pki} ∈ C+. Because |S| < n − 1, G has at most n − 2
edges. This means that since

|E(G)| =
∑

j∈V (G)

din(j),

where din(j) is the number of edges entering j, G must have a vertex different
than i with no incoming edges. Let k be such a vertex and let G′ be the graph
which results from G by adding the edge (k, i). Since G is acyclic, G′ is also
acyclic, because a cycle cannot contain the vertex k and we are done.

From Propositions 3.5.1 and 3.5.2 and Theorem 3.1.1 we get that

CSpace(PHPn+1
n) > n− 2

and
CSpace(POPn) > n− 3.

We claim, along the lines of [3], that almost all known clause space lower bounds
can be derived in this way. For example, the main theorem of [4] can be seen
as providing the Adversary with a winning strategy in the Θ(n)-width game
played on a random r-CNF with n variables and a constant number times n
clauses.

Furthermore, as we will see in Chapter 4, the lower bounds 3.5.1 and 3.5.2,
tell us that any closed tableau with atomic cuts for the formulas PHPn+1

n and
POPn, must have size at least c · 2n for some constant c.

As we add cuts to the tableaux, the task of proving non-trivial lower bounds
on the depth/width of tableau proofs becomes increasingly more difficult. If
we confine ourselves to atomic cuts, we have resolution depth/width, and the
problem remains doable (see e.g. [8]). The situation becomes chaotic when the
cuts are unrestricted. The limit of our knowledge reaches the case where the
cuts are restricted to formulas of bounded depth. The depth of a formula X is
the depth of the tree representing X. For a non-negative integer k, what is the
minimum number of rounds in which the Prover can refute a given formula,
using cuts of depth at most k? Theorem 3.4.1 tells us that if this number is, say
d, then the size of all Frege proofs consisting of formulas of depth at most k− 1
is Ω(2d). One of the most advanced results in the field of proof complexity is
that for any k this minimum number for PHPn+1

n (when n is large enough) is at
least nµ, where µ is a ratio depending on k (see [1, 28, 26, 5]). On the contrary,
in the case of unrestricted cuts, we know that there are polynomial size Frege
proofs of PHPn+1

n [11], so the Prover can refute PHPn+1
n using unrestricted

cuts within O(log n) rounds.

45

4

Conclusions

We believe that tableaux provide a nice, uniform template for arguing about
the complexity of proofs. Tableaux with atomic cuts is a system p-equivalent
to tree-like resolution. Tableaux with bounded depth cuts form a strictly
stronger system (see e.g. [24]), p-equivalent to what is known as bounded depth
Frege systems. Tableaux with arbitrary cuts form an even stronger system,
p-equivalent to Frege systems. A general question is what is the exact effect of
adding cuts on the width, depth or size of tableaux proofs.

Concerning the relationship of cut-free tableaux and resolution, the situation
is summarized in Figure 4.1.

√
n · log(RLength) log(RTrLength) log(TSize)

RWidth TWidth CSpace RDepth TDepth

Figure 4.1: Cut-free tableaux and resolution.

A 99K B means that for any r-CNF X, where r is a constant independent of
the number of variables of X, A(X) = O(B(X)). A→ B means that A 99K B
and there is a CNF X such that A(X) = o(B(X)). RLength(X) denotes the
minimum number of clauses in a resolution refutation of X; RTreeLength(X)
denotes the minimum number of clauses in a tree-like resolution refutation of X.
Finally, TSize(X) is the minimum number of nodes in a closed tableau for X.

47

4. Conclusions

Let us elaborate on Figure 3.1. Let X be an r-CNF, where r is a constant.

RWidth(X) = O
(√

n · log(RLength(X))
)

is the “short proofs are narrow” relation of [8]. This relation is almost tight
[10] and for a formula separating RWidth from

√
log(RLength) take any large,

minimally unsatisfiable 2-CNF. A family of formulas separating TWidth from
CSpace are the XOR-pebbling contradictions. These formulas result from the
formulas of Definition 2.8.2 after applying the transformation of Definition
3.3.2. We can see, as in Example 2.8.4, that any such formula has O(1) tableau
width, but there is a family of graphs (of constant in-degree) for which the
corresponding formulas require clause space Ω(n/ log n), where n is proportional
to the formula size [7]. The relation

CSpace(X) = O (log(TreeRLegth(X)))

(actually, CSpace(X) ≤ log(TreeRLegth(X)) + 2) is from [20]; for a formula
separating the two sides of the relation, again take any large, minimally unsatis-
fiable 2-CNF. A family of formulas separating log(RTreeLength) from RDepth
are the pebbling contradictions (i.e., the formulas of Definition 2.8.2) [38]. Fi-
nally, a formula separating tableau size from resolution size are the formulas
Σ(Tn) of Figure 3.3 (see Theorem 5.1 of [37]). Could Figure 4.1 be made better?

Notice that we can deduce from Figure 3.1 the relation

TWidth(X) = O (log(TSize(X))) ,

for any unsatisfiable r-CNF X, and in fact, being a little more careful,

TWidth(X) ≤ log (TSize(X)) +O(1),

for any unsatisfiable CNF X. That is, “short proofs are narrow” in cut-free
tableaux too, for CNF-formulas. One could merge the different parts of this
proof into a single proof, something we do right now.

Lemma 4.0.1. Let X be a CNF-formula and L a literal. We write X[L] for
the formula resulting from X by removing all the clauses which contain L and
removing L from all the clauses containing it. If TWidth(X[L]) ≤ w, then
the Prover has a width-w strategy on X, by which either wins, or forces the
Adversary to select L.

Proof. The fact that TWidth(X[L]) ≤ w means that the Prover has a width-w
winning strategy on X[L]. Now if the same strategy is applied on X and the
Adversary never selects L, the Prover will eventually win.

Theorem 4.0.1. For any CNF-formula X, if there is a size t closed tableau
with atomic cuts for X, then

TWidth(X) ≤ 3 + log t.

48

Proof. A tableau for a CNF-formula is called regular if it uses only atomic cuts
except at the bottom levels, where a clause is expanded. We show, by induction
on t, that for any CNF X, and every regular closed tableau T for X, if T has t
nodes, then

TWidth(X) ≤ log t.

Theorem 4.0.1 follows, because a closed tableau with atomic cuts for a CNF-
formula can be transformed, using Lemma 3.2.1, into a closed regular tableau,
of size at most three times the size of the initial tableau. We assume during
the proof, for convenience, that the Provers always keep the formula the game
is played on in their memory, but we do not charge extra space for it.

The base case is easy to check. For the inductive step, let X be a CNF and
let T be a regular closed tableau for X of size t. T must have two subtrees, say
T0 and T1, the roots of which are labelled by P and ¬P respectively, for some
propositional variable P . Moreover, one of T0 and T1, suppose T0, must have
size less than t/2. We will construct a (log t)-width winning strategy for the
Prover on X. The Prover begins by trying to select the formula P . We claim
that he can do this using at most log t space. This is so, because by deleting all
the leaves labelled by P from T1, and deleting all the leaves which are labelled
with ¬P along with their siblings, we can get a closed regular tableau for X[¬P]
of size less than t. By the induction hypothesis,

TWidth(X[¬P]) < log t,

and by Lemma 4.0.1, the Prover can force the Adversary to select P using only
space blog tc. Then the Prover forgets everything except P and while having P
in his memory, tries to select ¬P using at most blog tc − 1 space. The trick is
the same as before. From T0 we can get a closed regular tableau for X[P] of
size less than |T0|. Now since |T0| < t/2, this new tableau will have size less
than t/2, and by the induction hypothesis

TWidth(X[P]) < log t− 1.

So again, by Lemma 4.0.1 the Prover can select ¬P using space at most blog tc−1
and the proof is complete.

Open Problem. Does Theorem 4.0.1 hold for non CNF-formulas? Does it hold
for tableaux using only analytic cuts (i.e. tableaux where the cut formulas are
subformulas, or negations of subformulas of the input formula)? Does it hold
for cut-free, DAG-like sequent calculus proofs?

49

Bibliography

[1] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica,
14:417–433, 1994.

[2] Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi
Wigderson. Space complexity in propositional calculus. SIAM Journal of
Computing, 31:1184–1211, 2002.

[3] Albert Atserias and Victor Dalmau. A combinatorial characterization of
resolution width. Journal of Computer and System Sciences, 74:323 –334,
2008.

[4] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae
in resolution. Random Structures & Algorithms, 23:92–109, 2003.

[5] Eli Ben-Sasson and Prahladh Harsha. Lower bounds for bounded depth
frege proofs via pudlák-buss games. ACM Transactions on Computational
Logic, 11:19:1–19:17, 2010.

[6] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal
separation of tree-like and general resolution. Combinatorica, 24:585–603,
2004.

[7] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An
optimal separation of space and length in resolution. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’08, pages
709–718, 2008.

[8] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow — resolution
made simple. Journal of the ACM, 48:149–169, 2001.

[9] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization
of tree-like resolution size. Information Processing Letters, 113:666–671,
2013.

51

Bibliography

[10] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs
for resolution. Computational Complexity, 10:261–276, 2002.

[11] Samuel Buss. Polynomial size proofs of the propositional pigeonhole
principle. Journal of Symbolic Logic, 52:916927, 1987.

[12] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution.
Journal of the ACM, 35:759–768, 1988.

[13] Stephen Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, pages 151–158, 1971.

[14] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Com-
plexity. Cambridge University Press, 2010.

[15] Stephen Cook and Robert Reckhow. On the lengths of proofs in the
propositional calculus (preliminary version). In Proceedings of the Sixth
Annual ACM Symposium on Theory of Computing, STOC ’74, pages
135–148, 1974.

[16] Stephen Cook and Robert Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

[17] Marcello D’Agostino. Are tableaux an improvement on truth-tables?
Journal of Logic, Language and Information, 1:235–252, 1992.

[18] Marcello D’Agostino and Marco Mondadori. The taming of the cut. classical
refutations with analytic cut. Journal of Logic and Computation, 4:285–319,
1994.

[19] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives
in Mathematical Logic. Springer, 1995.

[20] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Infor-
mation and Computation, 171:84–97, 2001.

[21] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Grad-
uate Texts in Computer Science. Springer, 1996.

[22] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland, 1969.

[23] Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39:297 – 308, 1985.

[24] Jan Kraj́ıček. Lower bounds to the size of constant-depth propositional
proofs. Journal of Symbolic Logic, 59:7386, 1994.

52

Bibliography

[25] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge University Press, 1995.

[26] Jan Kraj́ıcek, Pavel Pudlák, and Alan Woods. An exponenetioal lower
bound to the size of bounded depth frege proofs of the pigeonhole principle.
Random Structures and Algorithms, 7:15–40, 1995.

[27] Christos Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[28] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Computational Complexity, 3:97–140,
1993.

[29] Plato. Meno. Polis, 2008. in Greek.

[30] Pavel Pudlák and Samuel Buss. How to lie without being (easily) convicted
and the length of proofs in propositional calculus. In Selected Papers from
the 8th International Workshop on Computer Science Logic, CSL ’94, pages
151–162, 1995.

[31] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms
for k-SAT. In Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’00, pages 128–136, 2000.

[32] Robert Reckhow. On the lengths of proofs in the propositional calculus.
PhD thesis, Department of Computer Science, University of Toronto, 1975.

[33] Raymond Smullyan. First-order Logic. Dover, 1995.

[34] Richard Statman. Bounds for proof-search and speed-up in the predicate
calculus. Annals of Mathematical Logic, 15:225–287, 1978.

[35] Grigori Tseitin. On the complexity of derivation in propositional calculus.
Studies in constructive mathematics and mathematical logic, part 2, pages
115–125, 1968.

[36] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34:209–219, 1987.

[37] Alasdair Urquhart. The complexity of propositional proofs. Bulletin of
Symbolic Logic, 1:425–467, 1995.

[38] Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99:349–
364, 2011.

53

	List of Figures
	Introduction
	What is a proof?
	Games
	Satisfiability algorithms and resolution
	Thesis overview

	Tableaux
	Uniform notation
	What are tableaux?
	Cuts
	Tableau depth
	The Prover-Adversary game
	Tableau width
	An upper bound
	Examples

	Applications
	CNF-formulas and the space needed to refute them
	Atomic cuts and resolution
	From large depth to large size
	General cuts and Frege systems
	Lower bounds

	Conclusions
	Bibliography

