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Ewcaywyn

Ac vnodéoouye 6T €youue pia cuvdptnon f oplopévn oe éva Sidotnuo I xon Tt oL mapdywyol
e £ xou f®) ebvor gpoayuévee, 6mou a xou b eivan guoxol apripol, 0 < a < b < +oo.
Eotw | évac guoinde aprdudc, tétoloc Gote a < | < b, Yewpolpe thpa thv tapdywyo fO.
Mio guotohoyixh epdtnon eivan edv 1 f( ebvor enione pporyuévn, 1 yevixdtepa, T unopolye vo.
novue yia tov pudud avinone e U oto 1. Auté 1o spdinpa éxel epeuvndel and didpopoug
pordnuatixole, 6mwe ot Landau, Kolmogorov, Hardy, Littlewood xau dAlol. Xuyxexpuéva,
av I =R AT = (0,+00), 16t €dv o1 f(@) xou ) eivan gpoypévee, tote 1 f eivon emione
poayuév, a < I < b. 'Eneton 611, av §2 ebvan éva ovouxté umochvoho tou pyadixol emnédov C
xou av f elvan proe oAdpoppn cuvdptnon oto (2, Tétold, WaTE oL @ xon f®) v etvon peayHEVES
070 (2, TOTE OREC OL EVOLHUETES TTAPAYWYOL fW, a <1 <b,elvou enlone ppaypévee oto 2, und
v npounddeon 6t to ) elvor Evwor avouxtedy NuLeudeldy. o napdderyya, to Q Yo unopoloe
vo elvol To eowTeEpd WG Ywviag, Wiat Awplda, 1 EVwoT TwV ECKOTEPLXWY BV0 TEUVOUEVKV
YWV, N €vwor 800 TeUvoueveY Awpldwv xat dila. H nogandve dedenon poc odnyel oto va
oploouye Tov YWpO:

HE(Q) = {f: Q= C orépopen : fO wpayuévn oo Q, yia xdde | € F},

67ov 10 F elvou éva audaipeto, un xevéd vtosivoro tou Ng = {0, 1, ...} xou va e€etdooupe xatd
nooo woyler n oyxéon Hy () = HF(Q) f 6y, 6mov I = {l € N : minF' < | < sup F'}.
Mpdrypory, av o € elvon Evaon avoutdy nuevdeioy, tote HpP () = HZ(Q2). Miotebouye
6Tl auT6 dev loylel otV TEPINTWOT €V YEVEL Ylol Ohal Tot avoixTd GOVOAD, OAAG OE €)OUUE
avunopdderyyo. Emmiéov, motedoupe 6Tl punopel va oplotel wa mhene YeTexr oto oUvolo
OAWV TWYV AVoIXTHY GUVORGY §) (Tou epLéyovTal o€ éva 8lox0), EToL WOTE Yla TO TUYGY avoLxXTo
obvoho €, va woyler Hy () # H%O(Q) O yopoc HF (), epodlacyévoc Ue 11 QuoLtohoyxn
tou Ttomoloyia, elivon ypoc Fréchet xou étol to VYedpnua xatnyoplag Tou Baire efvan otny
diddeon pog yior vo amodeifoupe xdmowa “yevind anoteléopata. Xe avahoyio pe tov H(Q),
YewpolUe ToV ¥ Wpo:

Ap(Q) = {f : Q = C ohdpopsn : fU éxel ouveyh enéxtaon oto Q, v xdde | € F},

6mou 1 xheloth VN howPdvetar oto C. Autdg 0 YWpog, EPOBLICUEVOC UE TN PUGLONOYIXY) TOU
tomohoyla, ebvan ywpog Fréchet xou to Yedpnua xatnyoploc tou Baire unopel va eqoppooTtel
yia va omodei&ouye xdmolo “‘yevixd amoteléoparto. Emniéov, yenowwonoolue v tAnedtnTa
TV YOPWY ATV Yo vo anodel€oupe otL elte xdde cuvdptnom elvan enextdowy, 1 ‘oyedov’
xdde xdde cuvdptnon eivon pn emextdoiun. Alvoupe mopadelypato dmou eugoaviletar xdve pia
and TIC MEPLNTWOELS AUTAS NG diyoToplog.

Téhog, oty tekevtaio evotnta napoustdlovue axduo pa Sty oToulor OYETIXG PE TOV YWEO
HE(Q): av F eivan éva pn xevé urocvvoho tou Ny = {0, 1, ...}, Q eivon éva avorxtéd unochvoho
wov C xu I ¢ F, t6te elte vy xdde ouvdptnon f otov HX () n napdywyoc fO eivou
poarypévn, 1 ‘oxeddV yio xdde ouvdptnom f otov HR(Q) n nopdywyoc fO) eivon un gpoyuévn,.
‘Etot, eite HP () = H}C’U{l}(Q), Mo H;OU“}(Q) elvon mpdne xotnyoplac otov HF ().
Iopayuéver avouxté to va Peedel éva nopdderyua avoxtol cuvéhou §2 C C yio to onoio N oéTnT
Hp () = HZ () va omotuyydver, av xou moTtelouue 6T TETol mopadelyortar Undpyouy xa
OTL QUTO TO QUUVOUEVO LOYVEL OTNY YEVIXY) TERIMTWOTN avoTdY cuVOAwY 2. Anodelxviouue
eniong ot yiow xdde un @poypévo avoixtd cbvoro £ xou yio xde F C Ny, ‘oyedov yia xdde
ouvdptnon f otov Ap(Q), brec o napdywyor f) 1 € Ny, eivon un gppoyuévec.






1 Introduction

Suppose that f is a function defined on an interval I and that its derivatives f(*) and f®
are bounded, where a and b are natural numbers, 0 < a < b < +00. Let [ be a natural
number, such that a < I < b and consider the derivative f(). A natural question is if f®
is also bounded, or more generally what can be said about the growth of f() on I. This
question has been investigated by several mathematicians, such as Landau, Kolmogorov,
Hardy, Littlewood and others; see [3], [4], [5], [6]. In particular, if ] = R or I = (0, +00),
then the boundedness of f(*) and f(*) imply the boundedness of f), a <1< b ([2], [3]). It
follows that, if ) is an open subset of the complex plane C and if f is a holomorphic function
on , such that f(® and f(® are bounded on €, then all the intermediate derivatives f®),
a < I < b, are also bounded on €2, provided that € is the union of open half-lines. For
instance, ) could be an open angle, or a strip, or the union of two meeting angles, or of two
meeting strips, etc.

The above consideration leads us to consider the space:
H () = {f : Q = C holomorphic : f® is bounded on Q, for all I € F},

where F is an arbitrary, non-empty subset of Ng = {0, 1, ...} and examine whether Hg°(Q) =
HI%O(Q) or not, where F = {l € Ng : min F' <[ < sup F}. Indeed, if Q is a union of open
half-lines, then Hp®(Q2) = H¥(€2). We believe that this does not hold for the general open
set, but we do not have a counter-example. Furthermore, we believe that a complete metric
can be defined on the set of all open sets 2 (contained in a disc), so that for the generic open
set €2, it holds Hg () # HI%O(Q) The space Hg (), endowed with its natural topology, is
a Fréchet space and thus Baire’s Category theorem is at our disposal in order to prove some
generic results.

In analogy to the space H°(£2), we consider the space:
Ap(Q) = {f : @ = C holomorphic : f) has a continuous extension on Q, for all [ € F},

where the closure is taken in C. This space, endowed with its natural topology, is also a
Fréchet space and Baire’s theorem can be applied in order to prove some generic results.
Moreover, we use the completeness of these spaces and a result from [14] to prove that
either every function is extendable, or generically every function is non-extendable. We give
examples where each horn of the above dichotomy occurs.

We note that if p € Ng = {0,1,...} and F = {0,1,...,p}, the spaces H¥(Q) and Ap(Q)
are denoted by Hp°(Q2) and A, (), respectively; these spaces have been studied extensively
in [13] and elsewhere.

Finally, in the last section we present another dichotomy result regarding the space Hp®(12),
proven using a result from [15]. It states that if F' is a non-empty subset of Ng = {0, 1, ...}, Q
is an open subset of C and [ ¢ F', then either for every function f in Hg(€2) the derivative
f® is bounded, or generically for every function f in H(Q) the derivative f® is un-
bounded. Thus, either H(Q) = Hl‘;ou{l}(ﬂ), or Hl‘;"u{l}(ﬂ) is meager in H3°(€2). It remains
open to find an example of an open set 2 C C for which the equality Hz"(Q2) = H* () fails
to hold, though we believe that such examples exist and that this phenomenon is valid for



the generic open set 2. We also prove that for any unbounded open set 2 and any F' C Ny,
generically for every function f in Ap(f2), all derivatives f(!), I € Ny, are unbounded.

2 Preliminaries

We give the following definition:

Definition 2.1: Let 2 C C be an open set and f : £ — C be a holomorphic function.
We say that f is extendable (in the sense of Riemann surfaces) if there exist two open discs
Dy and Dy, such that Do NQ # @, Do N Q¢ # @ and Dy € D1 € Dy N and a (bounded)
holomorphic function F' : Dy — C, such that F|p, = f|p,. Otherwise, we say that f is
non-extendable, or that it is holomorphic exactly on €.

Remark 2.2: The reason for which F' can be chosen to be bounded is that, if needed, we
can replace disc Dy by another disc D; compactly contained in D, that is Dy C D, such
that D; C Dl2 N Q. Also, in Definition 2.1, one can replace Do with any non-empty domain
U C C satisfying UNQ # @ and U NS¢ # & and replace Dy with a connected component V'
of UNK, resulting in an equivalent definition of extendability; see [14] for a proof of this fact.

In [14] we find the following theorem, proven using Baire’s and Montel’s theorems:

Theorem 2.3: Let 2 C C be an open set and H () be the set of holomorphic functions on
Q. Also, let X(Q2) C H(2) be a topological vector space endowed with the usual operations
4+, -, whose topology is induced by a complete metric. Suppose that the convergence f, — f
in X () implies the pointwise convergence f,,(z) — f(z), for all z € Q. Then, there exists
an f € X(Q) which is non-extendable, if and only if, for any two discs Dy and Ds as in
Definition 2.1, there exists a function fp, p, € X () so that the restriction fp, p,|p, on
D7 does not possess a (bounded) holomorphic extension on Ds. If the previous assumptions
hold, then the set S = Sx(q) = {f € X () : f is non-extendable} is a dense and G5 subset
of X(0).

Corollary 2.4: The set Sx(q) from Theorem 2.3 is always a G5 subset of X (£2), because
either Sx(q) = 9, or Sx(q) # 9 and then it is dense and G from the previous theorem.

We also present the following geometric lemma which will be useful in section 5. The proof
we provide is quite elementary:

Lemma 2.5: Let Q@ C C be an open set. If 2 is unbounded and convex, then it is the
union of open half-lines.

Proof: Fix a point « in Q. Since €2 is unbounded, there exists a sequence (z,), of points
in ©, such that 0 < |z, — | = +o0. Let h,, = Z::z‘, then |h,| = 1, for all n € N. That

|z

is, every h,, belongs to the compact set S' = {z € C : |z| = 1}, therefore we can extract a
convergent subsequence of (hy,),. For simplicity and without any loss of generality, we can
assume that (h,,), itself converges to some h € St as n — oo. We will show that a+th € €,
for all t > 0 (for ¢t = 0 it is trivial). Indeed, let ¢ > 0. Since |z, —a| — +o0, for large enough
n we have that |z, — a| > 2t and therefore 0 < —2— < 1. Since a € Q, 2, € Q for all

[zn—af




n € N and 2 is convex, we deduce that:

2t 2t
w, = |1-— o+ zn € Q)
|2 |2

n—af —a

for large enough n. Observe that:

W, :a+2tu =« + 2th,, — a + 2th.
|zn — o
Therefore, w,, — 2th — « and thus 2« + 2th — w,, — «. Since a € § and 2 is an open set,
we deduce that 2a + 2th — w,, € Q, for large enough n. So far, we have showed that w,, €
and 2a + 2th — w,, € €, for large enough n. For these points, the convexity of {2 implies the
following:

%wn—l—%(Qoz—l—Zth—wn) =a+the.
Thus, the closed half-line {a+th : t > 0} is contained in . In order to find an open half-line
contained in €, we pick an r > 0 sufficiently small, so that the disc D(«,r) is contained in
Q. Then, by extending the closed half-line {« + th : t > 0} towards point « by an open line
segment of length 7, we conclude that the open half-line {«+th : ¢ > —r}, which is parallel
to h, is contained in 2. This completes the proof. =

Remark 2.6: The result obtained in the previous lemma can be strengthened in the follo-
wing sense: if ) C C is an open, unbounded, convex set, then it is the union of open half-lines
which are parallel to each other. This implication follows directly from the previous proof.
Indeed, pick any two points «, 5 € Q and consider u,, = \Z:ZI and v, = \Zi:gl’ forn € N,
where (z,,), is a sequence of points in , such that z, — co and z, # a, 8 for all n € N. As
in the proof of Lemma 2.5, we can assume that w,, - v and v,, — v, for some u,v € C with
|u| = |v| = 1. Furthermore, the proof of Lemma 2.5 guarantees that for some 71, 72 > 0 the
open half-lines L, , = {a+tu:t > —r1} and Lg, = {f+tv:t > —ry} are contained in §2,
where L, passes through point o and is parallel to u, while Lg , passes through point 3
and is parallel to v. A short calculation shows that:

Zn — Q _ Zn_/B N
lzn —al  [2n — B

Up — Unp = Oa

thus u = v. Therefore, L, and Lg, are parallel, as desired.

This means that v can be thought of as a direction of the set €. Also, if we consider the set
of all open half-lines contained in 2 emanating from a fixed point «, then this set defines,
in general, an open cone contained in ) with a certain angle #. The only exception is the
case of an open strip, where the above set contains only two opposite half-lines. Clearly, 6
is independent of the choice of the starting point «. If 6 is greater than 180°, then 2 = C
and if § = 180°, then (2 is a open half-plane. If 6 is less than 180°, not much can be said
about the geometry of §2; it could be an open strip, the interior of an angle, the interior of
a parabola or the interior of the branch of a hyperbola etc.

Remark 2.7: The inverse of Lemma 2.5 does not hold, an open set 2 C C which is the
union of open (parallel) half-lines is certainly unbounded, but not necessarily convex, even



if O is assumed to be connected; this fact is illustrated by picking Q = {z € C: |z| > 1}.

Furthermore, Lemma 2.5 and Remark 2.6 are also valid for any open, unbounded, convex
set @ C R? or C?, d € N, since the unit sphere is compact in each case. However, the
compactness of the unit sphere, which is equivalent to the finiteness of the dimension of the
ambient space, is essential for Lemma 2.5 and Remark 2.6 to hold, since neither of these
statements are true in general, if such an €2 is a subset of an infinite-dimensional topologi-
cal vector space. We will neither concern ourselves with these type of results in the present
paper, nor will we provide counter-examples, though they will be investigated in future work.

Remark 2.8: If ) C C is a closed, unbounded, convex set, then it is the union of closed
half-lines, since by repeating the proof of Lemma 2.5 and replacing 2¢ with ¢, we have that
w, € Q for large enough n and that w, — a + th, thus a + th € Q from the closedness
of Q. Clearly, the last step of that proof cannot be repeated when dealing with boundary
points of €, though it can be repeated for its interior points. Thus, for any point a €  we
can find a closed half-line entirely contained in 2 containing point a and if o belongs to
the interior Q° of 2, then the half-line can be chosen to be open. However, if € is assumed
neither open, nor closed, then Lemma 2.5 does not hold in general; for instance, let {2 be the
strip {z € C: 0 < Imz < 1} U {0} which has 0 as a boundary point, but no half-line entirely
contained in {2 exists containing 0. In light of this remark, one can easily formulate results
analogous to Lemma 2.5 and Remarks 2.6 and 2.7 for closed, unbounded, convex sets.

3 The spaces H¥(2) and Ap(Q)

If Q C C is a domain, we denote by H*(£2) the space of bounded holomorphic functions
on Q, endowed with the supremum norm; it is a Banach space. If FF C Ny = {0,1,...} is
a non-empty set, then we wish to consider the space Hg(2), containing all holomorphic
functions f on €2, such that the derivative f(!) belongs to H> (), for all I € F. Namely:

HE(Q) ={fecHQ): fO e H®(Q), forall | € F}.
We define a natural topology on this space via the seminorms:

sup‘f(l)(z) , for 0 <1 <minF,

z€Q

, for l € F and ’f(l)(zo)

where z, is an arbirtrary, yet fixed point in Q. We will show that H3*(€) is a complete
metric space, hence a Fréchet space. In fact, if F' is finite, it is a Banach space. In any case,
Baire’s theorem is at our disposal.

Theorem 3.1: Let Q@ C C be a domain and F C Ny be a non-empty set. Then, the
space H () with its natural topology is a complete metric space.

For the proof we need the following propositions:
Proposition 3.2: Let 2 C C be a domain and z, be a fixed point in . Also, let f,, f,

n € N, be holomorphic functions on 2. Assume that f; — f’ uniformly on compact subsets
of Q and that f,(z,) — f(%0). Then, f, — f uniformly on compact subsets of (2.



Proof: Let D(z,r) be a disc, such that D(z,r) C Q. If f,(2) = f(z), then by writing:

flw) = f(2) + [ ]f'(C)dC,

for all w € D(z,1), one can easily show that f, — f uniformly on D(z,r). Therefore, the set
G={z€Q: fu(z) > f(2)} can easily seen to be open and closed in Q. Since z, € G # &
and 2 is connected, it follows that G = 2 and thus the convergence f, — f is uniform on
every closed disc contained in €). Since every compact subset of €2 can be covered by a finite
union of such discs, we conclude that f, — f uniformly on compact subsets of 2. m

Proposition 3.3: Let Q C C be a domain and z, be a fixed point in Q. Also, let (f)n
be a sequence of holomorphic functions on . Assume that the sequence (f},), is uniformly
Cauchy on compact subsets of © and that the sequence (f,,(z,))n is Cauchy. Then, there
exists a holomorphic function f on €2, such that f,, — f uniformly on compact subsets of (2.

Proof: Let g(z) = lim f/ (z), where the convergence is uniform on every compact subset
of Q. If we show that g has a primitive f on {2, then by adding a constant we can obtain
f(20) = lim f,,(2,). Then, Proposition 3.2 yields the result. Therefore, it remains to prove
that ¢g has a primitive on €2, even though (2 is not assumed to be simply connected. It suffices
to show that:

L 9()dc =0,

for all closed polygonal lines 7 in € ([1]). Let v be such a curve. Since f;, — g uniformly on
the compact set v, it follows that:

[ atcrac =tim [ fic)a¢ =0,
2l el
where the last equality is true because + is a closed curve. =

A combination of Propositions 3.2 and 3.3 easily implies Theorem 3.1: H3 () is a Fréchet
space.

We now turn our attention to the second space at hand. If  C C is a domain, we de-
note by A(€Q) the space of holomorphic functions on 2 possessing a continuous extension
on Q, where the closure is taken in C. If Q is bounded, then this space, endowed with the
supremum norm, is a Banach space. If {2 is unbounded, then the topology of A() is defined
by the seminorms:

sup |f(2)|, for n € N,

z€Q)

=I<n
and then it is a Fréchet space. If F C Ny = {0,1,...} is a non-empty set, then we wish
to consider the space Ap(Q)), containing all holomorphic functions f on 2, such that the
derivative f() belongs to A(Q), for all | € F. Namely:

Ap(Q) ={fe HQ): fU e AQ), foralll € F}.



The natural topology of Ar(Q) is the one defined by the seminorms:

sup ‘f(l)(z)‘, forle F, neN and ’f(l)(zo) , for 0 <1 < min F,

z€Q

|z]<n

where z, is an arbitrary, yet fixed point in 2. We will show that Ag () is a complete metric
space, hence a Fréchet space. In fact, if 2 is bounded and F' is finite, it is a Banach space.
Thus, Baire’s Theorem can be applied once again.

Theorem 3.4: Let Q) be a domain and F C Ny be a non-empty set. Then, the space
Ar(Q) with its natural topology is a complete metric space.

The proof of Theorem 3.4 is similar to that of Theorem 3.1, therefore, it is ommited.

We proceed to the setting of open sets. Let €2 be an open subset of C. Then, {2 has countable
connected components €2;, ¢ € I, where [ is either finite, or I = N. For every ¢ € I, we fix a
point z; in Q;. Let FF C Ny = {0, 1, ...} be a non-empty set. We consider the spaces:

HE(Q) ={fcH®): fO e H®(Q), for all | € F}
and
Ap(Q) ={fe HQ): fU e AQ), foralll € F}.

The topology of H () is induced by the seminorms:

sup’f(”(z)  for 0<I<minF, iel.

z€Q

, forl e F and ‘f(l)(zi)

The topology of Ar(Q) is induced by the seminorms:

Sug’f(l)(Z)  for 0<I<minF, i€l

z€Q)

[zl<n

 forleF,neN and ’f(l)(zi)

By applying the previous results of this section regarding domains to each connected com-
ponent of the open set €2, we deduce that Hg®(2) and Ag(Q) are Fréchet spaces; the proofs
of these assertions are similar to the ones in the case where 2 was a domain, only with some
minor modifications. Therefore, Theorems 3.1 and 3.4 extend to the case of non-connected
open sets 2. Also, Baire’s theorem can be applied.

Theorem 3.5: Let 2 C C be an open set and FF C Ny be a non-empty set. Then, the
space H () with its natural topology is a complete metric space.

Theorem 3.6: Let 2 C C be an open set and FF C Ny be a non-empty set. Then, the
space Ap () with its natural topology is a complete metric space.



4 Two special cases of open sets and bounded functions

In this section, we consider two special cases of open sets 2 C C, where Q is:

A: the union of open half-lines
B: a bounded convex domain

and we prove some results regarding the space H3 (), where F C Ny = {0,1,...} is a
non-empty set. In particular, we examine whether the spaces Hy°(Q2) and H2((2) coincide

or not, where F = {l eNp:minF < <supF}. In case A, this is true. In case B, we can
replace F* with the set Fo = {l € No : 0 <1 <sup F'} and then of course Hz"(Q2) = HZ ().

Case A: We present the following interpolation inequality involving derivatives of func-
tions of one real variable, which gave us the motivation for case A; we refer to [3]:

Theorem 4.1: (Landau-Kolmogorov inequality) Let f be a real- or complex-valued func-
tion defined on I, where I =R or I = (0,+00). Assume that f is n-times differentiable on
I and let:

)

My, = sup | ) ()
zel

for k =0,1,...,n. Then, if both My and M,, are finite, the following bounds are valid:
My < C(n,k,I) - My ="/ Mk,
for k=1,..,n—1, where 0 < C(n,k,I) < 400 are constants dependent only on n, k and I.

It follows that if f and f(™ are bounded, then all the indermediate derivatives f*),
k=1,...,n—1, are bounded as well.

We make some additional remarks. These constants depend on I only in the following sense:
C(n,k,R) and C(n,k, (0,+00)) are different, but in each case they depend only on n and k.
Hence, from now on we will denote these constants simply by C(n, k), since the dependency
on I is of no true significance and to emphasize the fact that we compare derivatives of order
0, k and n. Furthermore, C(n, k) lie between 1 and 5 for all n and k and can be expressed
in terms of the Favard constants, which are defined as some series of numbers; these results,
among others, are due to Kolmogorov, see [3] for details and some results on the asymptotic
behaviour of C(n, k). Most of the literature surrounding this inequality is concerned with
describing the behaviour of C(n, k) and providing sharp bounds and estimates for them. We
note that, for our purposes, the exact value of these constants will be irrelevant; an explicit
formula is unknown anyway.

Also, it is clear that such an inequality holds for functions defined on any open unbounded
interval, when comparing derivatives of any order. Finally, we note that we shall make use
of this inequality in the following simpler form:

My, < C(n, k) - max{ My, M, },

for k =1,...,n — 1, which we easily derive from the previous one. Inspired by Theorem 4.1,
we are now ready to prove the following:



Theorem 4.2: Let ) C C be an open set, which is the union of open half-lines and F' C N
be a non-empty set. Then, H*(Q) = H¥ (), where F' = {l € No : min F' < I < sup I}

Proof: Clearly, HZ () C H (). For the inverse inclusion, let f € H¥(Q). Fix any point
p in 2, then there exists an open half-line L contained entirely in 2, upon which lies point
p. We can identify L with the interval I := (—&,+00), for any fixed ¢ > 0; that is, I will
serve as a parametrization of L. Choose an h € C, parallel to L, with |h| = 1. Consider the
function g : I — C, defined by g(t) = f(p+th). Since f is holomorphic on €, g is of class C*°
on I and g®)(t) = fB)(p+th) - h*, for all t € T and k € Ny. Therefore, [g*) (0)| = |f*)(p)],
for all k € Ny, since |h| = 1. Observe that:

My, = sup g (2)| = sup | £V (2)]
xel z€L

for all k € No. We will show that f € H2*(£2). To this end, we pick an I € F\ F and we will

show that f() € H>®(Q) (if | € F, we have nothing to prove). Next, pick any a;,ay € F
such that a1 <! < ag. Since f € HX(Q) and aj,as € F, we have that fle) and flo2)
are bounded on €, thus they are also bounded on L C €. Consequently, g(*1) and ¢(®2) are
bounded on I, that is M,, < 400 and M,, < +o0o. By invoking Theorem 4.1, we obtain
the existence of some constants C'(aq, k, ) satisfying:

My, < Clag, k,ag) - max{M,,, M,, },

for all k£ € N satisfying a; < k < ag. Since a1 < [ < ag, it follows that M; < 400, which
means that ¢ is also bounded on I. Hence:

FO@)| = oV 0] < 24 < Clar i as) - max{Ma,, M)
and for j = aj, as we have that:

M, = sup ‘f("f)(z)‘ < sup ‘f(“j)(z)’ < +o00.
z€L z€QN

The last two inequalities combined imply that:

‘f(l)(p)‘ < C(Oq, l, Ckg) - max {sup ‘f(al)(z)

z€Q

supl 72}

z€Q
} < +o0.

Hence, f® is bounded on €; that is f() € H*(Q) and [ was arbitrary. This implies that
fe H%O(Q), thus Hy(Q2) C HI%"(Q)7 completing the proof. m

from which we obtain the following:

sup | £(2)

< Clag,l, ag) - max {sup ’f(al)(z)
z€Q

sup £ (2)
zEQN

We have proved that H(€2) = HZ(Q2), where @ C C is the union of open half-lines,

F' C Nj is a non-empty set and F= {l € Ny : min F <! < sup F'}. So far, this is an equality
between sets. We will show that the topologies of these spaces coincide as well.



We remind that if & C C is an open set with connected components €);, i € I, where I
is either finite, or I = N and z; is a fixed point in each 2;, we topologize H%o (Q) via the
seminorms:

sug ’f(l)(z)‘ , forl € F' and ‘f(l)(zi)
z€E

,for0<I<minF, i € 1.

Since F' C F and min F = mz’nﬁ, the topology of HI%O(Q) is defined by the same seminorms,
in addition to the following ones:

sup ‘f(l)(z)’ ,forle F\F,
z€Q

for which we gave the following bounds during the proof of Theorem 4.2:

sup | £0(2)

< Clag,l, az) - max {sup ‘f(al)(z)
2€EQ

sup £ (2)
ZEQN

b

where | € F \ F, a1,ay € F satisfying oy < I < ag and C(ay,l,as) are the constants
mentioned in Theorem 4.1. It follows that these topologies are indeed the same. Therefore,
we have proved the following statement:

Proposition 4.3: Let 2 C C be an open set, which is the union of open half-lines
and F C Ny be a non-empty set. Then, H¥(Q) = HI%O(Q) as topological spaces, where

F={leNy:minF <I<supF}.

Remark 4.4: A second proof of the equivalence of these topologies can be given using
the Open Mapping theorem for Fréchet spaces.

Recall Lemma 2.5 from section 2. If 2 C C is an unbounded convex domain, then (2 is
the union of open (parallel) half-lines. Consequently, Theorem 4.2 and Proposition 4.3 are
valid for such a domain €. Therefore, we combine Lemma 2.5, Theorem 4.2 and Proposition
4.3 and we obtain the following:

Theorem 4.5: Let 2 C C be an unbounded convex domain and F' € Ny be a non-empty
set. Then, Hp"(Q) = HZ (), where F' = {l € No : min F < I < sup F'}.

Proposition 4.6: Let (2 C C be an unbounded convex domain and F' C Ny be a non-empty
set. Then, H"(€2) = H () as topological spaces, where F' = {l € N : min ' <1 < sup F'}.

Case B: We begin with an elementary observation. Let 2 C C be a bounded convex domain
and f be a bounded holomorphic function on 2. Using the convexity and boundedness of
Q, it is easy to see that the primitive:

F() = /[ S0

of f, where « is an arbitrary, yet fixed point in {2, determining the path of integration, is
Lipschitz continuous on 2. Thus, F' is uniformly continuous on 2, which implies that F'
is continuously extendable on the compact set 2. This in turn implies that F' is bounded



on 2. Since every other primitive of f differs from F' only by a constant, we deduce that
every primitive of f is bounded and uniformly continuous on 2. By making use of these
statements, we prove the following:

Theorem 4.7: Let 2 C C be an bounded convex domain and F' C Ny be a non-empty
set. Then, HF"(Q) = H2(Q2), where Fo = {l € No : 0 <1 < sup F'}.
0

Proof: Clearly, H}%Z(Q) C H(Q). For the inverse inclusion, let f € Hp (). We will show
that f € H2 (). To this end, we pick an [ € Fy\ F and we will show that fO € H>(Q) (if
0
l € F, we have nothing to prove). Next, pick any o € F such that o > [. Since f € H¥(Q)
and a € F, we have that f(® is bounded on Q. By integrating the bounded function f(®)
repeatedly, we deduce that all the functions f*), k = 0,...,a — 1, are also bounded on €;
this follows from the earlier discussion. Hence, f() is bounded on ; that is f() € H>®(Q)
and [ was arbitrary. This implies that f € HZ(Q2), thus H*(Q2) € HZ (), completing the
0 0

proof. m

We have proved that H®(€2) = H2(€2), where  C C is a bounded convex domain, F' C Ny
— 0
is a non-empty set and Fy = {l € Ny : 0 < I < sup F'}. So far, this is an equality between

sets. We will show that the topologies of these spaces coincide as well.

We remind that if Q C C is a domain and z, is a fixed point in , we topologize H ()
via the seminorms:

sup ’f(l)(z)‘ , forle F and ‘f(l)(zo)
z€Q

, for 0 <! < minF,
while the topology of H%"(Q) is induced by the seminorms:
0

sup ’f(l)(z)’ , for l € Fy.
z€Q

Since F C Fy, for any [ € F the seminorm sup ’f(l)(z)’ is taken into account in both of
z€Q

these topologies. If 0 < I < min F, then [ € Fj; and obviously:

[£O (=) < sup |10z
z€Q

Hence, the topology of H%o () is finer that the topology of Hg (). Now pick any [ € Fy.
0
Then, either [ € F' and thus the seminorm sup |f(l) (z)| is taken into account in both of these
z€Q

topologies, or [ ¢ F. In the latter case, pick any o € F' such that « > . For all z € 2 we
have that:

£ =

/[ Q)

10



)

< sup ‘f(o‘)(w)‘ - diam(Q2) + ‘f(a_l)(zo)

since |z — 2| < diam(§2) < +o0, for all z € Q. Continuing in this manner, we have:

sup £ (2)] < sup |19 (2)] - (diam (@)™ + |17 (z)] - (diam(€))"

b

ot ‘ FeTm N (z,)] - diam(@) + ] FOT™ (2,)

for m = 1, ...,a. Choosing m = « — [ and writing the above inequality in a brief form, we
obtain:

a—1
sup ’f(l)(z)‘ < sup ‘f(o‘)(z)‘ - (diam(9))*! + Z ‘f(k)(zo)‘ - (diam(Q))*~.
z€EQ z€EQ el

If (fn)n is a sequence in H¥(Q) and f € H¥ (), such that f, — f in the topology of
H¥ (), then by Weierstrass’s theorem and Proposition 3.2, in combination with the pre-
vious inequality, one can easily deduce that f,, — f in the topology of H%‘;(Q) Hence, these
topologies are indeed the same. Therefore, we have proved the following statement:

Proposition 4.8: Let 2 C C be a bounded convex domain and F' C Ny be a non-empty
set. Then, Hz"(Q) = HZ () as topological spaces, where Fy = {l € Ng : 0 <l <sup F}.
0

Remark 4.9: A second proof of the equivalence of these topologies can be given using
the Open Mapping theorem for Fréchet spaces.

Remark 4.10: In [11], see also [9], a Jordan domain 2 C C has been constructed, suppor-

ting a bounded holomorphic function g, so that its primitive G is unbounded. Thus, for this

domain €2, the spaces Hz"(2) and HZ (€2) are different for some non-empty set I € No,
0

such that 0 ¢ F and 1 € F. This is certainly true for F = {1} and Fy, = {0,1}.

Remark 4.11: Suppose that Q@ C C is a simply connected domain, for which a constant

0 < M < +oo exists, with the property that any two points p,q € €2 can be joined by

a rectifiable curve v, , in , with length bounded by M; then clearly, 2 is bounded with

diam(Q2) < M. Then, all the results obtained in case B of this section for bounded convex

domains are still valid for such a domain 2. Because then, if f is a bounded holomorphic

function on , its primitive is bounded by M -sup |f(2)| + | f(20)|, where z, is a fixed point
z€Q

11



in Q. This condition has been used in [11]. More recently, it has been proven in [12] that
his condition is necessary and sufficient for a simply connected domain €2, in order for the
primitive of any bounded holomorphic function on €2 to be also bounded; this condition is
connected to the boundedness of the integration operator.

5 The special case of convex domains and continuously
extendable functions

In this section, we examine if analogues of Theorems 4.5 and 4.7 are valid for the space
Ap(Q), where FF C Ny = {0,1,...} is a non-empty set and 2 is a convex domain. That is,
if Ap(©2) = Ax(Q2) when Q is unbounded and F={leNy:mnF <1l <supF} and if
Ap(Q) = Ap () when Q is bounded and Fy = {l € N : 0 < I < sup F'}. We will show
that Ap(€2) = Ap (€2) for any convex domain 2 C C, regardless of whether € is bounded
or unbounded. Of course, this implies that Ap(Q) = Ax(9).

Theorem 5.1: Let @ C C be a convex domain and F' € Ny be a non-empty set. Then,
Ap(Q) = Ap, (), where Fy = {l € No: 0 <l < sup I}

Proof: Clearly Ag (€2) € Ap(Q). For the inverse inclusion, let f € Ap(£2). We will show

that f € Ag (©2). To this end, we pick an [ € Fy \ F and we will show that fO) e A(Q) (if
l € F, we have nothing to prove). Next, pick any o € F such that « > [. Since f € Ap(Q)
and o € F, we have that f(® is continuously extendable on Q. If  is bounded, then f(®) is
bounded on © and by integrating f(®) repeatedly we deduce that f is uniformly continuous
on Q. It follows that f( is continuously extendable on Q. If © is unbounded, we work in a
similar way, but only locally. Fix any point ¢ € 9Q and consider the sets §2,,, = QN D(0, m),
for m € N. Then, ( lies within some set mo, where the interior is relative to . Indeed, for
some k € N satisfying || < k, one can easily see that:

CeQnDO.k) C (QﬁD(O,kJrl))ogQﬁD(O,k+1).

Since f(® is continuously extendable on €, it is also continuously extendable on the compact
set Qp41. Hence, f(® is bounded on the bounded convex domain €4, and by integrating
f(@ repeatedly we deduce that f() is uniformly continuous on Q. It follows that f()
is continuously extendable on € ,; and thus extends continuously at point ¢ which was
arbitrary. It follows that f() is continuously extendable on Q. Hence, f® is continuously
extendable on Q, whether Q is bounded or unbounded; that is f) € A(Q) and I was arbi-
trary. This implies that f € Ag (Q2), thus Ap(€2) C Ag (€2), completing the proof. m

We have proved that Ap(Q) = Ag (©2), where Q@ C C is a convex domain, F' C Ny is a

non-empty set and Fy = {l € Ng: 0 <l <supF}. So far, this is an equality between sets.
We will show that the topologies of these spaces coincide as well.

We remind that if Q C C is a domain and z, is a fixed point in 2, we topologize Ar(f2) via
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the seminorms:

sup ‘f(l)(z)‘7 forle F, neN and ’f(l)(zo) , for 0 <! < minF,

z€Q)

[z]<n

while the topology of Az (€2) is induced by the seminorms:

sup ‘f(”(z)’7 forl € Fy, n € N.
zeﬁ

[z]<n

Since F' C ﬁo, for any [ € F' the seminorms sup ’f(l)(z)’, n € N, are taken into account in
2€Q

|zl<n

both of these topologies. If 0 <! < min F', then [ € Fy and obviously:

‘f(l)(zo)‘ < sup ‘f(l)(z)
E1SY)

[z[<no

)

for some n,, € N satisfying |z,| < n,. Hence, the topology of Afo () is finer that the topology

of Ap(2). Now pick any [ € Fy. Then, either [ € F' and thus the seminorms sup |f(l)(z){,
2€Q

[=I<n
n € N, are taken into account in both of these topologies, or [ ¢ F. In the latter case, pick
any « € F such that a > 1. If Q,, = QN D(0,m), for m € N, then notice that:

{z€Q: 2| <m}=0NDO,m) CANDO,m+1) = Qi1
CONDO,m+1)={2€Q:|z| <m+1},

for all m € N. From this fact and by applying the inequalities obtained during the proof of
Proposition 4.8 for the closure of the bounded convex domains €2,,, m € N, (the continuity
of functions in A(f) on every Q,, guarantees that taking supremum over €2, or €2, is the
same and finite in each case) we have that:

sup [10(2)| < s |70(2)|
z€Q 2EQm41

Izl<m

. (diam(Qm-i-l))k_l

a—1
< sup ‘f(a)(z)‘ . (diam(QmH))a_l + Z ’f(k)(zo)
k=l

2€EQm 41

< s 7)o@+ 3 [9)| (@am( @),

2€Q =
[z]<m+1 k=l

where diam($,,,) < +oo, for all m € N. If (f,), is a sequence in Ap(Q2) and f € Ap(Q),
such that f,, — f in the topology of Ar(€2), then by Weierstrass’s theorem and Proposition
3.2, in combination with the previous inequality, one can easily deduce that f,, — f in the
topology of Ar(€2). Hence, these topologies are indeed the same. Therefore, we have proved
the following statement:

13



Proposition 5.2: Let 2 C C be a convex domain and F' C Ny be a non-empty set. Then,
Ap(Q) = A};O(Q) as topological spaces, where Fy = {l € Ny : 0 <! < sup F'}.

Remark 5.3: A second proof of the equivalence of these topologies can be given using
the Open Mapping theorem for Fréchet spaces.

Remark 5.4 For the Jordan domain Q@ C C mentioned in Remark 4.10, we have that
the function g constructed in [11] is continuously extendable on €, but its primitive G is
not, since G is unbounded on Q and Q is compact. Thus, for this domain €, the spaces
Ap(Q2) and A () are different for some non-empty set ' C Ny, such that 0 ¢ F and

1 € F. This is certainly true for F = {1} and Fy = {0,1}.

6 Non-extendability in H¥(Q2) and Ap(Q2)

In this section, we deal with the notion of non-extendability of holomorphic functions in
the spaces H () and Ap(Q2), where Q C C is an open set and FF C Ny = {0,1,...} is a
non-empty set. An immediate corollary of Proposition 3.2 is the following:

Proposition 6.1: Let Q2 C C be an open set and F' C Ny be a non-empty set. Also,
let f,, f, n € N, be holomorphic functions on . If either:

(1) fn, f € HX(Q) for n € N and f, — f in the topology of H (), or

(ii) fn, f € Ap(Q) for n € N and f,, — f in the topology of Ap(12),

then f, — f uniformly on compact subsets of €2, therefore f,, — f pointwise.

This enables us to prove the following generic results:

Theorem 6.2: Let 2 C C be an open set and FF C Ny be a non-empty set. Then, the
set Spee(q) of functions in Hz°(2) which are non-extendable is either void, or a dense and
G5 subset of Hg2 ().

Proof: Assume that Spee(q) # @. Then, by combining the completeness of the metric space
H¥ () with condition (i) of Proposition 6.1, we deduce that the assumptions of Theorem
2.3 for X(Q2) = Hp*(Q2) C H(Q?) are verified. Thus, Sprec(q) is dense and G5 in H*(Q2). =

Theorem 6.3: Let 2 C C be an open set and FF C Ny be a non-empty set. Then, the
set S, (q) of functions in Ap(€2) which are non-extendable is either void, or a dense and
G subset of Ap(92).

Proof: Similar to the proof of Theorem 6.2. Assume that S4,q) # @. Then, by com-
bining the completeness of the metric space Ap(2) with condition (ii) of Proposition 6.1,
we deduce that the assumptions of Theorem 2.3 for X () = Ap(Q2) C H(Q) are verified.
Thus, S4,. (o) is dense and G5 in Ap(Q2). =

Next, we give examples and investigate whether Sy (o) and S4, (o) are empty or not:
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Example 6.4: Let U C C be a domain and K C U be a compact set which is remo-
vable for bounded holomorphic functions; that is, its analytic capacity v(K) is zero. For
instance, K could be a singleton or a planar Cantor-type set, obtained by removing corner
quarters; see [8]. Let Q@ = U\ K. Then, it is easy to see that every f € H () is extendable
for any choice of F, provided that 0 € F. Thus, Syee(q) = @.

Example 6.5: Let U C C be a domain and K C U be a compact set with continuous
analytic capacity a(K) equal to zero. Let @ = U \ K. Then, it is easy to see that every
[ € Arp(Q) is extendable for any choice of F, provided that 0 € F. Thus, S4, (o) = @.

If we use a result from [7], [13], we see that the same holds if K is any closed subset of C
with a(K) = 0; for instance, K could be a straight line, a line segment, a circular arc, a
circle, an analytic curve or the boundary of a convex set.

Example 6.6: Let U C C be a domain and K C U be a singleton, or more generally,
a compact set containing an isolated point. Let Q@ = U \ K. Then, every holomorphic
function f which belongs to H () or Ap(f2) is extendable, for any choice of F. Thus,
Shz@) = Sap@) = 9.

Indeed, let & = min F' and ¢ be an isolated point of K. If f € H(€), then by Riemann’s
theorem on removable singularities, f(*) is holomorphic on a sufficiently small disc D(, )
contained in €, for some r > 0. If f € Ap(Q), then f(*) is holomorphic on D(¢,r) by defini-
tion. In any case, since this disc is a bounded convex domain, by integrating f(®) repeatedly
we conclude that f is extendable on D((,r). Hence Sue@) = Sap) = 9.

Example 6.7: Let Q C C be a domain, such that every point ¢ € 9f) is the limit of a
sequence (z,), of points contained in (Q)°. Then, for any choice of F, the sets S () and
SAp(q) are dense and G in Hg®(Q2) and Ap(Q), respectively.

We will use a result from [14] regarding non-extendability, which was stated in Theorem

2.3. Pick any two discs D; and D5 as in Definition 2.1 and a point ¢ € 92 N Dy. By our
1

assumption, there exists a point w € Dy \ Q. Consider the function f(z) = -, which

belongs to Hg°(€2) NAr (). Since this function restricted to D is equal to f|p, (z) = =,
by analytic continuation we have that its only holomorphic extension on Dy \ {w} is the
function g(z) = Z_lw, which has a pole at w € Ds. Thus, f does not possess a holomorphic
extension on Ds. This means that f is non-extendable; that is f € Spee(q) N Sap (o). Hence,

SH;c(Q) # @ and S4,(q) # 9, therefore the sets SH%o(Q) and S 4, (o) are dense and G5 in
HX () and Ap(Q), respectively, as Theorems 6.2 and 6.3 indicate.

Example 6.8: Let {2 C C be a domain bounded by a finite set of disjoint Jordan curves.
Then, for any choice of F', the sets SH;O(Q) and S4,.(q) are dense and G5 in Hg(Q2) and
Apr(Q), respectively. Clearly, this is a particular case of Example 6.7.

7 Two more dichotomy results
In this section, we prove two more dichotomy results regarding boundedness or unbounded-

ness of derivatives of functions in the spaces H () and Ap(f2), where Q C C is an open
set and F C Ny = {0, 1,...} is a non-empty set. We will use the following result from [15]:
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Proposition 7.1: Let V be a topological vector space over the field R or C and let X
be a non-empty set. Denote by CX the set of all complex valued functions on X and con-
sider a linear operator 7 : V — CX with the property that the mapping V 3 a + Ty (a) =
T(o)(z) € C is continuous, for all x € X; observe that this assumption is weaker than T
being continuous. Let S = S(T,V, X) = {a € V : T(«) is unbounded on X}. Then, either
S =@, or Sis a dense and G subset of V.

Note that in Proposition 7.1., the space V' is not assumed to be a complete metric space.

Let © C C be an open set and let V' be one of the topological vector spaces H(£2) or
Ar(Q), endowed with its natural topology, where F is a non-empty subset of Ny. Let X be
any subset of Q and I € Ny. Then, the function V > f + Ti(f)(2) = fW(z) € C is conti-
nuous, for all z € X; this follows from Weierstrass’s theorem if [ > min F' and from Proposi-
tion 3.2 if 0 <! < min F. Thus, the corresponding set S = S is either empty, or dense and
G5 in the space V. In particular, the above holds true for V.= Hg(Q2) and X = Q. Thus,
we have proved the following:

Theorem 7.2: Let 2 C C be an open set, F' C Ny be a non-empty set and [ € Ny.
Then, either for every f € H°(Q) the derivative f) is bounded on Q, or generically for
every f € H®(Q) the derivative f() is unbounded on Q.

If | € F, then obviously for every f € H(Q) the derivative f() is bounded on Q. If Q
is a bounded convex domain and [ < sup F, then for every f € H3° (1) the derivative f() is
bounded on €2, according to Theorem 4.7.

In [11], see also [9], a Jordan domain  was constructed, such that a function g : Q — C
continuous on 2 and holomorphic on € has an unbounded primitive on €. Let us call this
primitive G; then G € Hff} (Q), but for I = 0 the function G(® = G is unbounded on
Q. Thus, in this domain 2, generically every function f € Hf{’f}(Q) has the property that

f© = f is unbounded on Q. It follows that HE, 1}(Q) is meager in Hff}(Q) for this parti-
cular domain €2. In general, either H |, (€2) = HY, (Q2), or H{F 1,(€2) is meager in HY) (€2),

for any open set 2 C C.

Let © = D be the open unit disc and let w(z) = (z — 1) - expZt}. Then, w € A(D) C
H>(D) = Hfg}(]D) and w’ is unbounded on D, thus generically every function f € HE, (D)
has the property that f) = f’ is unbounded on . It follows that Hf{’g,l}(]D)) is meager in
H 0} (D). More generally, if F' is finite and [ > max F, then generically for every f € H (D)

the derivative f() is unbounded on D and H;"U{l}(]D)) is meager in H®(D).

It remains open to give an example of a domain 2 C C, supporting a holomorphic function
f, so that f(© = f and £ are bounded on Q, but f) = f’ is unbounded. We believe
that such a domain  exists. Moreover, we think that a complete metric topology can be
defined on the set of all domains (contained in the open unit disc), so that for the generic
domain , there exists a holomorphic function f on Q, such that f and f® are bounded,
but f’ is not. More generally, we think that for every non-empty set F* C Ng and | ¢ F,
min F' < I < sup F, for the generic domain 2 C C, there exists an f € H(£2) such that fo
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is unbounded and H;Zou{l}(Q) is meager in H (). But we do not have a proof and these
assertions remain open.

Next, consider the space Ap(Q2), where Q@ C C is an open set and F' is a non-empty sub-
set of No. If Q is bounded, then for every f € Ap(Q), all derivatives fV), | € F, are also
bounded on 2. Assume that 2 is unbounded, we will apply Proposition 7.1. We set X = Q
and let T; : Ap(Q) — CX be the function Ty(f)(z) = f¥(z), z € X, where [ is a fixed
element of Ny. Then, the assumptions of Proposition 7.1 are easily verified. Therefore, the
set S; = {f € Ap(Q) : f® is unbounded on Q} is either void, or dense and G5 in Ap(Q).
But the function f(z) = 2!T! belongs to Ag(£2). Therefore, the set S; is dense and Gy in
Ap(€2). Baire’s theorem implies that the set S = [,y S is also dense and G5 in Ap(£2).
Thus, we have proved the following;:

Proposition 7.3: Let 2 C C be an unbounded open set and F C Ny be a non-empty
set. Then, the set S of functions f € Ap(Q) such that all derivatives f), I € Ny, are un-
bounded on £, is dense and G5 in Ap ().

More generally, if € is an unbounded open set and (z,), is a sequence of points in
converging to oo, then for X = {z, : n € N}, generically every function f € Apr(2) has
the property that the derivative f() is unbounded on X, for all I € Ny. To give an explicit
example of such a function f € Ap(C) = H(C), it suffices to set f(z) = exp(e~2), for some
well-chosen 6 € R. Indeed, let ¢, = £2; and let ¢, —c for a subsequence. Then, |¢| = 1 and

|2n|
it suffices to choose 6 € R, such that ¢ = e~*. One can easily see that |f()(2)| = |f(z)|, for
all z € C and [ € Ny and that |f(zx, )] — +o0.
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