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Εισαγωγή

Ας υποθέσουμε ότι έχουμε μια συνάρτηση f ορισμένη σε ένα διάστημα I και ότι οι παράγωγοί
της f (a)

και f (b)
είναι φραγμένες, όπου a και b είναι φυσικοί αριθμοί, 0 6 a < b < +∞.

΄Εστω l ένας φυσικός αριθμός, τέτοιος ώστε a < l < b, θεωρούμε τώρα την παράγωγο f (l)
.

Μία φυσιολογική ερώτηση είναι εάν η f (l)
είναι επίσης φραγμένη, ή γενικότερα, τι μπορούμε να

πούμε για τον ρυθμό αύξησης της f (l)
στο I. Αυτό το ερώτημα έχει ερευνηθεί από διάφορους

μαθηματικούς, όπως οι Landau, Kolmogorov, Hardy, Littlewood και άλλοι. Συγκεκριμένα,
αν I = R ή I = (0,+∞), τότε εάν οι f (a)

και f (b)
είναι φραγμένες, τότε η f (l)

είναι επίσης

φραγμένη, a < l < b. ΄Επεται ότι, αν Ω είναι ένα ανοικτό υποσύνολο του μιγαδικού επιπέδου C
και αν f είναι μια ολόμορφη συνάρτηση στο Ω, τέτοια, ώστε οι f (a)

και f (b)
να είναι φραγμένες

στο Ω, τότε όλες οι ενδιάμεσες παράγωγοι f (l)
, a < l < b, είναι επίσης φραγμένες στο Ω, υπό

την προυπόθεση ότι το Ω είναι ένωση ανοικτών ημιευθειών. Για παράδειγμα, το Ω θα μπορούσε

να είναι το εσωτερικό μιας γωνίας, μια λωρίδα, η ένωση των εσωτερικών δύο τεμνόμενων

γωνιών, η ένωση δύο τεμνόμενων λωρίδων και άλλα. Η παραπάνω θεώρηση μας οδηγεί στο να

ορίσουμε τον χώρο:

H∞
F (Ω) = {f : Ω→ C ολόμορφη : f (l)

φραγμένη στο Ω, για κάθε l ∈ F},

όπου το F είναι ένα αυθαίρετο, μη κενό υποσύνολο του N0 = {0, 1, ...} και να εξετάσουμε κατά
πόσο ισχύει η σχέση H∞

F (Ω) = H∞
F̃

(Ω) ή όχι, όπου F̃ = {l ∈ N0 : minF 6 l 6 supF}.
Πράγματι, αν το Ω είναι ένωση ανοικτών ημιευθειών, τότε H∞

F (Ω) = H∞
F̃

(Ω). Πιστεύουμε
ότι αυτό δεν ισχύει στην περίπτωση εν γένει για όλα τα ανοικτά σύνολα, αλλά δε έχουμε

αντιπαράδειγμα. Επιπλέον, πιστεύουμε ότι μπορεί να οριστεί μια πλήρης μετρική στο σύνολο

όλων των ανοικτών συνόλων Ω (που περιέχονται σε ένα δίσκο), έτσι ώστε για το τυχόν ανοικτό

σύνολο Ω, να ισχύει H∞
F (Ω) 6= H∞

F̃
(Ω). Ο χώρος H∞

F (Ω), εφοδιασμένος με τη φυσιολογική
του τοπολογία, είναι χώρος Fréchet και έτσι το θεώρημα κατηγορίας του Baire είναι στην
διάθεσή μας για να αποδείξουμε κάποια ΄γενικά΄ αποτελέσματα. Σε αναλογία με τον H∞

F (Ω),
θεωρούμε τον χώρο:

AF (Ω) = {f : Ω→ C ολόμορφη : f (l)
έχει συνεχή επέκταση στο Ω, για κάθε l ∈ F},

όπου η κλειστή θήκη λαμβάνεται στο C. Αυτός ο χώρος, εφοδιασμένος με τη φυσιολογική του
τοπολογία, είναι χώρος Fréchet και το θεώρημα κατηγορίας του Baire μπορεί να εφαρμοστεί
για να αποδείξουμε κάποια ΄γενικά΄ αποτελέσματα. Επιπλέον, χρησιμοποιούμε την πληρότητα

των χώρων αυτών για να αποδείξουμε ότι είτε κάθε συνάρτηση είναι επεκτάσιμη, ή ΄σχεδόν΄

κάθε κάθε συνάρτηση είναι μη επεκτάσιμη. Δίνουμε παραδείγματα όπου εμφανίζεται κάθε μία

από τις περιπτώσεις αυτής της διχοτομίας.

Τέλος, στην τελευταία ενότητα παρουσιάζουμε ακόμα μια διχοτομία σχετικά με τον χώρο

H∞
F (Ω): αν F είναι ένα μη κενό υποσύνολο του N0 = {0, 1, ...}, Ω είναι ένα ανοικτό υποσύνολο
του C και l /∈ F , τότε είτε για κάθε συνάρτηση f στον H∞

F (Ω) η παράγωγος f (l)
είναι

φραγμένη, ή ΄σχεδόν΄ για κάθε συνάρτηση f στον H∞
F (Ω) η παράγωγος f (l)

είναι μη φραγμένη.

΄Ετσι, είτε H∞
F (Ω) = H∞

F∪{l}(Ω), ή ο H∞
F∪{l}(Ω) είναι πρώτης κατηγορίας στον H∞

F (Ω).
Παραμένει ανοικτό το να βρεθεί ένα παράδειγμα ανοικτού συνόλου Ω ⊆ C για το οποίο η ισότητα
H∞

F (Ω) = H∞
F̃

(Ω) να αποτυγχάνει, αν και πιστεύουμε ότι τέτοια παραδείγματα υπάρχουν και
ότι αυτό το φαινόμενο ισχύει στην γενική περίπτωση ανοικτών συνόλων Ω. Αποδεικνύουμε

επίσης ότι για κάθε μη φραγμένο ανοικτό σύνολο Ω και για κάθε F ⊆ N0, ΄σχεδόν΄ για κάθε

συνάρτηση f στον AF (Ω), όλες οι παράγωγοι f (l)
, l ∈ N0, είναι μη φραγμένες.
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1 Introduction

Suppose that f is a function defined on an interval I and that its derivatives f (a) and f (b)

are bounded, where a and b are natural numbers, 0 6 a < b < +∞. Let l be a natural
number, such that a < l < b and consider the derivative f (l). A natural question is if f (l)

is also bounded, or more generally what can be said about the growth of f (l) on I. This
question has been investigated by several mathematicians, such as Landau, Kolmogorov,
Hardy, Littlewood and others; see [3], [4], [5], [6]. In particular, if I = R or I = (0,+∞),
then the boundedness of f (a) and f (b) imply the boundedness of f (l), a < l < b ([2], [3]). It
follows that, if Ω is an open subset of the complex plane C and if f is a holomorphic function
on Ω, such that f (a) and f (b) are bounded on Ω, then all the intermediate derivatives f (l),
a < l < b, are also bounded on Ω, provided that Ω is the union of open half-lines. For
instance, Ω could be an open angle, or a strip, or the union of two meeting angles, or of two
meeting strips, etc.

The above consideration leads us to consider the space:

H∞F (Ω) = {f : Ω→ C holomorphic : f (l) is bounded on Ω, for all l ∈ F},

where F is an arbitrary, non-empty subset of N0 = {0, 1, ...} and examine whether H∞F (Ω) =

H∞
F̃

(Ω) or not, where F̃ = {l ∈ N0 : minF 6 l 6 supF}. Indeed, if Ω is a union of open

half-lines, then H∞F (Ω) = H∞
F̃

(Ω). We believe that this does not hold for the general open
set, but we do not have a counter-example. Furthermore, we believe that a complete metric
can be defined on the set of all open sets Ω (contained in a disc), so that for the generic open
set Ω, it holds H∞F (Ω) 6= H∞

F̃
(Ω). The space H∞F (Ω), endowed with its natural topology, is

a Fréchet space and thus Baire’s Category theorem is at our disposal in order to prove some
generic results.

In analogy to the space H∞F (Ω), we consider the space:

AF (Ω) = {f : Ω→ C holomorphic : f (l) has a continuous extension on Ω, for all l ∈ F},

where the closure is taken in C. This space, endowed with its natural topology, is also a
Fréchet space and Baire’s theorem can be applied in order to prove some generic results.
Moreover, we use the completeness of these spaces and a result from [14] to prove that
either every function is extendable, or generically every function is non-extendable. We give
examples where each horn of the above dichotomy occurs.

We note that if p ∈ N0 = {0, 1, ...} and F = {0, 1, ..., p}, the spaces H∞F (Ω) and AF (Ω)
are denoted by H∞p (Ω) and Ap(Ω), respectively; these spaces have been studied extensively
in [13] and elsewhere.

Finally, in the last section we present another dichotomy result regarding the space H∞F (Ω),
proven using a result from [15]. It states that if F is a non-empty subset of N0 = {0, 1, ...}, Ω
is an open subset of C and l /∈ F , then either for every function f in H∞F (Ω) the derivative
f (l) is bounded, or generically for every function f in H∞F (Ω) the derivative f (l) is un-
bounded. Thus, either H∞F (Ω) = H∞F∪{l}(Ω), or H∞F∪{l}(Ω) is meager in H∞F (Ω). It remains

open to find an example of an open set Ω ⊆ C for which the equality H∞F (Ω) = H∞
F̃

(Ω) fails
to hold, though we believe that such examples exist and that this phenomenon is valid for
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the generic open set Ω. We also prove that for any unbounded open set Ω and any F ⊆ N0,
generically for every function f in AF (Ω), all derivatives f (l), l ∈ N0, are unbounded.

2 Preliminaries

We give the following definition:

Definition 2.1: Let Ω ⊆ C be an open set and f : Ω → C be a holomorphic function.
We say that f is extendable (in the sense of Riemann surfaces) if there exist two open discs
D1 and D2, such that D2 ∩ Ω 6= ∅, D2 ∩ Ωc 6= ∅ and D1 ⊆ D1 ⊆ D2 ∩ Ω and a (bounded)
holomorphic function F : D2 → C, such that F |D1

= f |D1
. Otherwise, we say that f is

non-extendable, or that it is holomorphic exactly on Ω.

Remark 2.2: The reason for which F can be chosen to be bounded is that, if needed, we

can replace disc D2 by another disc D
′

2 compactly contained in D2, that is D
′
2 ⊆ D2, such

that D1 ⊆ D
′

2 ∩Ω. Also, in Definition 2.1, one can replace D2 with any non-empty domain
U ⊆ C satisfying U ∩Ω 6= ∅ and U ∩Ωc 6= ∅ and replace D2 with a connected component V
of U∩Ω, resulting in an equivalent definition of extendability; see [14] for a proof of this fact.

In [14] we find the following theorem, proven using Baire’s and Montel’s theorems:

Theorem 2.3: Let Ω ⊆ C be an open set and H(Ω) be the set of holomorphic functions on
Ω. Also, let X(Ω) ⊆ H(Ω) be a topological vector space endowed with the usual operations
+, ·, whose topology is induced by a complete metric. Suppose that the convergence fn → f
in X(Ω) implies the pointwise convergence fn(z) → f(z), for all z ∈ Ω. Then, there exists
an f ∈ X(Ω) which is non-extendable, if and only if, for any two discs D1 and D2 as in
Definition 2.1, there exists a function fD1,D2

∈ X(Ω) so that the restriction fD1,D2
|D1

on
D1 does not possess a (bounded) holomorphic extension on D2. If the previous assumptions
hold, then the set S = SX(Ω) = {f ∈ X(Ω) : f is non-extendable} is a dense and Gδ subset
of X(Ω).

Corollary 2.4: The set SX(Ω) from Theorem 2.3 is always a Gδ subset of X(Ω), because
either SX(Ω) = ∅, or SX(Ω) 6= ∅ and then it is dense and Gδ from the previous theorem.

We also present the following geometric lemma which will be useful in section 5. The proof
we provide is quite elementary:

Lemma 2.5: Let Ω ⊆ C be an open set. If Ω is unbounded and convex, then it is the
union of open half-lines.

Proof: Fix a point α in Ω. Since Ω is unbounded, there exists a sequence (zn)n of points
in Ω, such that 0 < |zn − α| → +∞. Let hn = zn−α

|zn−α| , then |hn| = 1, for all n ∈ N. That

is, every hn belongs to the compact set S1 = {z ∈ C : |z| = 1}, therefore we can extract a
convergent subsequence of (hn)n. For simplicity and without any loss of generality, we can
assume that (hn)n itself converges to some h ∈ S1, as n→∞. We will show that α+th ∈ Ω,
for all t > 0 (for t = 0 it is trivial). Indeed, let t > 0. Since |zn−α| → +∞, for large enough
n we have that |zn − α| > 2t and therefore 0 < 2t

|zn−α| < 1. Since α ∈ Ω, zn ∈ Ω for all
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n ∈ N and Ω is convex, we deduce that:

wn =

(
1− 2t

|zn − α|

)
α+

2t

|zn − α|
zn ∈ Ω

for large enough n. Observe that:

wn = α+ 2t
zn − α
|zn − α|

= α+ 2thn → a+ 2th.

Therefore, wn − 2th → α and thus 2α + 2th− wn → α. Since α ∈ Ω and Ω is an open set,
we deduce that 2α+ 2th−wn ∈ Ω, for large enough n. So far, we have showed that wn ∈ Ω
and 2α+ 2th−wn ∈ Ω, for large enough n. For these points, the convexity of Ω implies the
following:

1

2
wn +

1

2
(2α+ 2th− wn) = α+ th ∈ Ω.

Thus, the closed half-line {α+th : t > 0} is contained in Ω. In order to find an open half-line
contained in Ω, we pick an r > 0 sufficiently small, so that the disc D(α, r) is contained in
Ω. Then, by extending the closed half-line {α+ th : t > 0} towards point α by an open line
segment of length r, we conclude that the open half-line {α+ th : t > −r}, which is parallel
to h, is contained in Ω. This completes the proof.

Remark 2.6: The result obtained in the previous lemma can be strengthened in the follo-
wing sense: if Ω ⊆ C is an open, unbounded, convex set, then it is the union of open half-lines
which are parallel to each other. This implication follows directly from the previous proof.
Indeed, pick any two points α, β ∈ Ω and consider un = zn−α

|zn−α| and vn = zn−β
|zn−β| , for n ∈ N,

where (zn)n is a sequence of points in Ω, such that zn →∞ and zn 6= α, β for all n ∈ N. As
in the proof of Lemma 2.5, we can assume that un → u and vn → v, for some u, v ∈ C with
|u| = |v| = 1. Furthermore, the proof of Lemma 2.5 guarantees that for some r1, r2 > 0 the
open half-lines Lα,u = {α+ tu : t > −r1} and Lβ,v = {β + tv : t > −r2} are contained in Ω,
where Lα,u passes through point α and is parallel to u, while Lβ,v passes through point β
and is parallel to v. A short calculation shows that:

un − vn =
zn − α
|zn − α|

− zn − β
|zn − β|

→ 0,

thus u = v. Therefore, Lα,u and Lβ,v are parallel, as desired.
This means that u can be thought of as a direction of the set Ω. Also, if we consider the set
of all open half-lines contained in Ω emanating from a fixed point α, then this set defines,
in general, an open cone contained in Ω with a certain angle θ. The only exception is the
case of an open strip, where the above set contains only two opposite half-lines. Clearly, θ
is independent of the choice of the starting point α. If θ is greater than 180◦, then Ω = C
and if θ = 180◦, then Ω is a open half-plane. If θ is less than 180◦, not much can be said
about the geometry of Ω; it could be an open strip, the interior of an angle, the interior of
a parabola or the interior of the branch of a hyperbola etc.

Remark 2.7: The inverse of Lemma 2.5 does not hold, an open set Ω ⊆ C which is the
union of open (parallel) half-lines is certainly unbounded, but not necessarily convex, even
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if Ω is assumed to be connected; this fact is illustrated by picking Ω = {z ∈ C : |z| > 1}.
Furthermore, Lemma 2.5 and Remark 2.6 are also valid for any open, unbounded, convex
set Ω ⊆ Rd or Cd, d ∈ N, since the unit sphere is compact in each case. However, the
compactness of the unit sphere, which is equivalent to the finiteness of the dimension of the
ambient space, is essential for Lemma 2.5 and Remark 2.6 to hold, since neither of these
statements are true in general, if such an Ω is a subset of an infinite-dimensional topologi-
cal vector space. We will neither concern ourselves with these type of results in the present
paper, nor will we provide counter-examples, though they will be investigated in future work.

Remark 2.8: If Ω ⊆ C is a closed, unbounded, convex set, then it is the union of closed
half-lines, since by repeating the proof of Lemma 2.5 and replacing 2t with t, we have that
wn ∈ Ω for large enough n and that wn → α + th, thus α + th ∈ Ω from the closedness
of Ω. Clearly, the last step of that proof cannot be repeated when dealing with boundary
points of Ω, though it can be repeated for its interior points. Thus, for any point α ∈ Ω we
can find a closed half-line entirely contained in Ω containing point α and if α belongs to
the interior Ωo of Ω, then the half-line can be chosen to be open. However, if Ω is assumed
neither open, nor closed, then Lemma 2.5 does not hold in general; for instance, let Ω be the
strip {z ∈ C : 0 < Imz < 1}∪{0} which has 0 as a boundary point, but no half-line entirely
contained in Ω exists containing 0. In light of this remark, one can easily formulate results
analogous to Lemma 2.5 and Remarks 2.6 and 2.7 for closed, unbounded, convex sets.

3 The spaces H∞F (Ω) and AF (Ω)

If Ω ⊆ C is a domain, we denote by H∞(Ω) the space of bounded holomorphic functions
on Ω, endowed with the supremum norm; it is a Banach space. If F ⊆ N0 = {0, 1, ...} is
a non-empty set, then we wish to consider the space H∞F (Ω), containing all holomorphic
functions f on Ω, such that the derivative f (l) belongs to H∞(Ω), for all l ∈ F . Namely:

H∞F (Ω) = {f ∈ H(Ω) : f (l) ∈ H∞(Ω), for all l ∈ F}.

We define a natural topology on this space via the seminorms:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F and

∣∣∣f (l)(zo)
∣∣∣ , for 0 6 l < minF,

where zo is an arbirtrary, yet fixed point in Ω. We will show that H∞F (Ω) is a complete
metric space, hence a Fréchet space. In fact, if F is finite, it is a Banach space. In any case,
Baire’s theorem is at our disposal.

Theorem 3.1: Let Ω ⊆ C be a domain and F ⊆ N0 be a non-empty set. Then, the
space H∞F (Ω) with its natural topology is a complete metric space.

For the proof we need the following propositions:

Proposition 3.2: Let Ω ⊆ C be a domain and zo be a fixed point in Ω. Also, let fn, f ,
n ∈ N, be holomorphic functions on Ω. Assume that f ′n → f ′ uniformly on compact subsets
of Ω and that fn(zo)→ f(zo). Then, fn → f uniformly on compact subsets of Ω.
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Proof: Let D(z, r) be a disc, such that D(z, r) ⊆ Ω. If fn(z)→ f(z), then by writing:

f(w) = f(z) +

∫
[z,w]

f ′(ζ)dζ,

for all w ∈ D(z, r), one can easily show that fn → f uniformly on D(z, r). Therefore, the set
G = {z ∈ Ω : fn(z) → f(z)} can easily seen to be open and closed in Ω. Since zo ∈ G 6= ∅
and Ω is connected, it follows that G = Ω and thus the convergence fn → f is uniform on
every closed disc contained in Ω. Since every compact subset of Ω can be covered by a finite
union of such discs, we conclude that fn → f uniformly on compact subsets of Ω.

Proposition 3.3: Let Ω ⊆ C be a domain and zo be a fixed point in Ω. Also, let (fn)n
be a sequence of holomorphic functions on Ω. Assume that the sequence (f ′n)n is uniformly
Cauchy on compact subsets of Ω and that the sequence (fn(zo))n is Cauchy. Then, there
exists a holomorphic function f on Ω, such that fn → f uniformly on compact subsets of Ω.

Proof: Let g(z) = lim f ′n(z), where the convergence is uniform on every compact subset
of Ω. If we show that g has a primitive f on Ω, then by adding a constant we can obtain
f(zo) = lim fn(zo). Then, Proposition 3.2 yields the result. Therefore, it remains to prove
that g has a primitive on Ω, even though Ω is not assumed to be simply connected. It suffices
to show that: ∫

γ

g(ζ)dζ = 0,

for all closed polygonal lines γ in Ω ([1]). Let γ be such a curve. Since f ′n → g uniformly on
the compact set γ, it follows that:∫

γ

g(ζ)dζ = lim

∫
γ

f ′n(ζ)dζ = 0,

where the last equality is true because γ is a closed curve.

A combination of Propositions 3.2 and 3.3 easily implies Theorem 3.1: H∞F (Ω) is a Fréchet
space.

We now turn our attention to the second space at hand. If Ω ⊆ C is a domain, we de-
note by A(Ω) the space of holomorphic functions on Ω possessing a continuous extension
on Ω, where the closure is taken in C. If Ω is bounded, then this space, endowed with the
supremum norm, is a Banach space. If Ω is unbounded, then the topology of A(Ω) is defined
by the seminorms:

sup
z∈Ω
|z|6n

|f(z)| , for n ∈ N,

and then it is a Fréchet space. If F ⊆ N0 = {0, 1, ...} is a non-empty set, then we wish
to consider the space AF (Ω), containing all holomorphic functions f on Ω, such that the
derivative f (l) belongs to A(Ω), for all l ∈ F . Namely:

AF (Ω) = {f ∈ H(Ω) : f (l) ∈ A(Ω), for all l ∈ F}.
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The natural topology of AF (Ω) is the one defined by the seminorms:

sup
z∈Ω
|z|6n

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F, n ∈ N and

∣∣∣f (l)(zo)
∣∣∣ , for 0 6 l < minF,

where zo is an arbitrary, yet fixed point in Ω. We will show that AF (Ω) is a complete metric
space, hence a Fréchet space. In fact, if Ω is bounded and F is finite, it is a Banach space.
Thus, Baire’s Theorem can be applied once again.

Theorem 3.4: Let Ω be a domain and F ⊆ N0 be a non-empty set. Then, the space
AF (Ω) with its natural topology is a complete metric space.

The proof of Theorem 3.4 is similar to that of Theorem 3.1, therefore, it is ommited.

We proceed to the setting of open sets. Let Ω be an open subset of C. Then, Ω has countable
connected components Ωi, i ∈ I, where I is either finite, or I = N. For every i ∈ I, we fix a
point zi in Ωi. Let F ⊆ N0 = {0, 1, ...} be a non-empty set. We consider the spaces:

H∞F (Ω) = {f ∈ H(Ω) : f (l) ∈ H∞(Ω), for all l ∈ F}

and

AF (Ω) = {f ∈ H(Ω) : f (l) ∈ A(Ω), for all l ∈ F}.

The topology of H∞F (Ω) is induced by the seminorms:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F and

∣∣∣f (l)(zi)
∣∣∣ , for 0 6 l < minF, i ∈ I.

The topology of AF (Ω) is induced by the seminorms:

sup
z∈Ω
|z|6n

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F, n ∈ N and

∣∣∣f (l)(zi)
∣∣∣ , for 0 6 l < minF, i ∈ I.

By applying the previous results of this section regarding domains to each connected com-
ponent of the open set Ω, we deduce that H∞F (Ω) and AF (Ω) are Fréchet spaces; the proofs
of these assertions are similar to the ones in the case where Ω was a domain, only with some
minor modifications. Therefore, Theorems 3.1 and 3.4 extend to the case of non-connected
open sets Ω. Also, Baire’s theorem can be applied.

Theorem 3.5: Let Ω ⊆ C be an open set and F ⊆ N0 be a non-empty set. Then, the
space H∞F (Ω) with its natural topology is a complete metric space.

Theorem 3.6: Let Ω ⊆ C be an open set and F ⊆ N0 be a non-empty set. Then, the
space AF (Ω) with its natural topology is a complete metric space.
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4 Two special cases of open sets and bounded functions

In this section, we consider two special cases of open sets Ω ⊆ C, where Ω is:

A: the union of open half-lines
B: a bounded convex domain

and we prove some results regarding the space H∞F (Ω), where F ⊆ N0 = {0, 1, ...} is a
non-empty set. In particular, we examine whether the spaces H∞F (Ω) and H∞

F̃
(Ω) coincide

or not, where F̃ = {l ∈ N0 : minF 6 l 6 supF}. In case A, this is true. In case B, we can

replace F̃ with the set F̃0 = {l ∈ N0 : 0 6 l 6 supF} and then of course H∞F (Ω) = H∞
F̃

(Ω).

Case A: We present the following interpolation inequality involving derivatives of func-
tions of one real variable, which gave us the motivation for case A; we refer to [3]:

Theorem 4.1: (Landau-Kolmogorov inequality) Let f be a real- or complex-valued func-
tion defined on I, where I = R or I = (0,+∞). Assume that f is n-times differentiable on
I and let:

Mk = sup
x∈I

∣∣∣f (k)(x)
∣∣∣ ,

for k = 0, 1, ..., n. Then, if both M0 and Mn are finite, the following bounds are valid:

Mk 6 C(n, k, I) ·M1−k/n
0 ·Mk/n

n ,

for k = 1, ..., n− 1, where 0 < C(n, k, I) < +∞ are constants dependent only on n, k and I.

It follows that if f and f (n) are bounded, then all the indermediate derivatives f (k),
k = 1, ..., n− 1, are bounded as well.
We make some additional remarks. These constants depend on I only in the following sense:
C(n, k,R) and C(n, k, (0,+∞)) are different, but in each case they depend only on n and k.
Hence, from now on we will denote these constants simply by C(n, k), since the dependency
on I is of no true significance and to emphasize the fact that we compare derivatives of order
0, k and n. Furthermore, C(n, k) lie between 1 and π

2 for all n and k and can be expressed
in terms of the Favard constants, which are defined as some series of numbers; these results,
among others, are due to Kolmogorov, see [3] for details and some results on the asymptotic
behaviour of C(n, k). Most of the literature surrounding this inequality is concerned with
describing the behaviour of C(n, k) and providing sharp bounds and estimates for them. We
note that, for our purposes, the exact value of these constants will be irrelevant; an explicit
formula is unknown anyway.
Also, it is clear that such an inequality holds for functions defined on any open unbounded
interval, when comparing derivatives of any order. Finally, we note that we shall make use
of this inequality in the following simpler form:

Mk 6 C(n, k) ·max{M0,Mn},

for k = 1, ..., n− 1, which we easily derive from the previous one. Inspired by Theorem 4.1,
we are now ready to prove the following:
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Theorem 4.2: Let Ω ⊆ C be an open set, which is the union of open half-lines and F ⊆ N0

be a non-empty set. Then, H∞F (Ω) = H∞
F̃

(Ω), where F̃ = {l ∈ N0 : minF 6 l 6 supF}.

Proof: Clearly, H∞
F̃

(Ω) ⊆ H∞F (Ω). For the inverse inclusion, let f ∈ H∞F (Ω). Fix any point
p in Ω, then there exists an open half-line L contained entirely in Ω, upon which lies point
p. We can identify L with the interval I := (−ε,+∞), for any fixed ε > 0; that is, I will
serve as a parametrization of L. Choose an h ∈ C, parallel to L, with |h| = 1. Consider the
function g : I → C, defined by g(t) = f(p+th). Since f is holomorphic on Ω, g is of class C∞

on I and g(k)(t) = f (k)(p+ th) · hk, for all t ∈ I and k ∈ N0. Therefore, |g(k)(0)| = |f (k)(p)|,
for all k ∈ N0, since |h| = 1. Observe that:

Mk := sup
x∈I

∣∣∣g(k)(x)
∣∣∣ = sup

z∈L

∣∣∣f (k)(z)
∣∣∣ ,

for all k ∈ N0. We will show that f ∈ H∞
F̃

(Ω). To this end, we pick an l ∈ F̃ \F and we will

show that f (l) ∈ H∞(Ω) (if l ∈ F , we have nothing to prove). Next, pick any α1, α2 ∈ F
such that α1 < l < α2. Since f ∈ H∞F (Ω) and α1, α2 ∈ F , we have that f (α1) and f (α2)

are bounded on Ω, thus they are also bounded on L ⊆ Ω. Consequently, g(α1) and g(α2) are
bounded on I, that is Mα1

< +∞ and Mα2
< +∞. By invoking Theorem 4.1, we obtain

the existence of some constants C(α1, k, α2) satisfying:

Mk 6 C(α1, k, α2) ·max{Mα1
,Mα2

},

for all k ∈ N satisfying α1 < k < α2. Since α1 < l < α2, it follows that Ml < +∞, which
means that g(l) is also bounded on I. Hence:∣∣∣f (l)(p)

∣∣∣ =
∣∣∣g(l)(0)

∣∣∣ 6Ml 6 C(α1, l, α2) ·max{Mα1
,Mα2

}

and for j = α1, α2 we have that:

Mαj = sup
z∈L

∣∣∣f (αj)(z)
∣∣∣ 6 sup

z∈Ω

∣∣∣f (αj)(z)
∣∣∣ < +∞.

The last two inequalities combined imply that:∣∣∣f (l)(p)
∣∣∣ 6 C(α1, l, α2) ·max

{
sup
z∈Ω

∣∣∣f (α1)(z)
∣∣∣ , sup
z∈Ω

∣∣∣f (α2)(z)
∣∣∣} ,

from which we obtain the following:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ 6 C(α1, l, α2) ·max

{
sup
z∈Ω

∣∣∣f (α1)(z)
∣∣∣ , sup
z∈Ω

∣∣∣f (α2)(z)
∣∣∣} < +∞.

Hence, f (l) is bounded on Ω; that is f (l) ∈ H∞(Ω) and l was arbitrary. This implies that
f ∈ H∞

F̃
(Ω), thus H∞F (Ω) ⊆ H∞

F̃
(Ω), completing the proof.

We have proved that H∞F (Ω) = H∞
F̃

(Ω), where Ω ⊆ C is the union of open half-lines,

F ⊆ N0 is a non-empty set and F̃ = {l ∈ N0 : minF 6 l 6 supF}. So far, this is an equality
between sets. We will show that the topologies of these spaces coincide as well.
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We remind that if Ω ⊆ C is an open set with connected components Ωi, i ∈ I, where I
is either finite, or I = N and zi is a fixed point in each Ωi, we topologize H∞

F̃
(Ω) via the

seminorms:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F and

∣∣∣f (l)(zi)
∣∣∣ , for 0 6 l < minF, i ∈ I.

Since F ⊆ F̃ and minF = minF̃ , the topology of H∞
F̃

(Ω) is defined by the same seminorms,
in addition to the following ones:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F̃ \ F,

for which we gave the following bounds during the proof of Theorem 4.2:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ 6 C(α1, l, α2) ·max

{
sup
z∈Ω

∣∣∣f (α1)(z)
∣∣∣ , sup
z∈Ω

∣∣∣f (α2)(z)
∣∣∣} ,

where l ∈ F̃ \ F , α1, α2 ∈ F satisfying α1 < l < α2 and C(α1, l, α2) are the constants
mentioned in Theorem 4.1. It follows that these topologies are indeed the same. Therefore,
we have proved the following statement:

Proposition 4.3: Let Ω ⊆ C be an open set, which is the union of open half-lines
and F ⊆ N0 be a non-empty set. Then, H∞F (Ω) = H∞

F̃
(Ω) as topological spaces, where

F̃ = {l ∈ N0 : minF 6 l 6 supF}.

Remark 4.4: A second proof of the equivalence of these topologies can be given using
the Open Mapping theorem for Fréchet spaces.

Recall Lemma 2.5 from section 2. If Ω ⊆ C is an unbounded convex domain, then Ω is
the union of open (parallel) half-lines. Consequently, Theorem 4.2 and Proposition 4.3 are
valid for such a domain Ω. Therefore, we combine Lemma 2.5, Theorem 4.2 and Proposition
4.3 and we obtain the following:

Theorem 4.5: Let Ω ⊆ C be an unbounded convex domain and F ⊆ N0 be a non-empty
set. Then, H∞F (Ω) = H∞

F̃
(Ω), where F̃ = {l ∈ N0 : minF 6 l 6 supF}.

Proposition 4.6: Let Ω ⊆ C be an unbounded convex domain and F ⊆ N0 be a non-empty
set. Then, H∞F (Ω) = H∞

F̃
(Ω) as topological spaces, where F̃ = {l ∈ N0 : minF 6 l 6 supF}.

Case B: We begin with an elementary observation. Let Ω ⊆ C be a bounded convex domain
and f be a bounded holomorphic function on Ω. Using the convexity and boundedness of
Ω, it is easy to see that the primitive:

F (z) =

∫
[α,z]

f(ζ)dζ

of f , where α is an arbitrary, yet fixed point in Ω, determining the path of integration, is
Lipschitz continuous on Ω. Thus, F is uniformly continuous on Ω, which implies that F
is continuously extendable on the compact set Ω. This in turn implies that F is bounded
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on Ω. Since every other primitive of f differs from F only by a constant, we deduce that
every primitive of f is bounded and uniformly continuous on Ω. By making use of these
statements, we prove the following:

Theorem 4.7: Let Ω ⊆ C be an bounded convex domain and F ⊆ N0 be a non-empty
set. Then, H∞F (Ω) = H∞

F̃0
(Ω), where F̃0 = {l ∈ N0 : 0 6 l 6 supF}.

Proof: Clearly, H∞
F̃0

(Ω) ⊆ H∞F (Ω). For the inverse inclusion, let f ∈ H∞F (Ω). We will show

that f ∈ H∞
F̃0

(Ω). To this end, we pick an l ∈ F̃0 \F and we will show that f (l) ∈ H∞(Ω) (if

l ∈ F , we have nothing to prove). Next, pick any α ∈ F such that α > l. Since f ∈ H∞F (Ω)
and α ∈ F , we have that f (α) is bounded on Ω. By integrating the bounded function f (α)

repeatedly, we deduce that all the functions f (k), k = 0, ..., α − 1, are also bounded on Ω;
this follows from the earlier discussion. Hence, f (l) is bounded on Ω; that is f (l) ∈ H∞(Ω)
and l was arbitrary. This implies that f ∈ H∞

F̃0
(Ω), thus H∞F (Ω) ⊆ H∞

F̃0
(Ω), completing the

proof.

We have proved that H∞F (Ω) = H∞
F̃0

(Ω), where Ω ⊆ C is a bounded convex domain, F ⊆ N0

is a non-empty set and F̃0 = {l ∈ N0 : 0 6 l 6 supF}. So far, this is an equality between
sets. We will show that the topologies of these spaces coincide as well.

We remind that if Ω ⊆ C is a domain and zo is a fixed point in Ω, we topologize H∞F (Ω)
via the seminorms:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F and

∣∣∣f (l)(zo)
∣∣∣ , for 0 6 l < minF,

while the topology of H∞
F̃0

(Ω) is induced by the seminorms:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F̃0.

Since F ⊆ F̃0, for any l ∈ F the seminorm sup
z∈Ω

∣∣f (l)(z)
∣∣ is taken into account in both of

these topologies. If 0 6 l < minF , then l ∈ F̃0 and obviously:∣∣∣f (l)(zo)
∣∣∣ 6 sup

z∈Ω

∣∣∣f (l)(z)
∣∣∣ .

Hence, the topology of H∞
F̃0

(Ω) is finer that the topology of H∞F (Ω). Now pick any l ∈ F̃0.

Then, either l ∈ F and thus the seminorm sup
z∈Ω

∣∣f (l)(z)
∣∣ is taken into account in both of these

topologies, or l /∈ F . In the latter case, pick any α ∈ F such that α > l. For all z ∈ Ω we
have that:

∣∣∣f (α−1)(z)
∣∣∣ =

∣∣∣∣∣
∫

[zo,z]

f (α)(ζ)dζ + f (α−1)(zo)

∣∣∣∣∣
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6 sup
w∈Ω

∣∣∣f (α)(w)
∣∣∣ · |z − zo|+ ∣∣∣f (α−1)(zo)

∣∣∣
6 sup
w∈Ω

∣∣∣f (α)(w)
∣∣∣ · diam(Ω) +

∣∣∣f (α−1)(zo)
∣∣∣ ,

since |z − zo| 6 diam(Ω) < +∞, for all z ∈ Ω. Continuing in this manner, we have:

sup
z∈Ω

∣∣∣f (α−m)(z)
∣∣∣ 6 sup

z∈Ω

∣∣∣f (α)(z)
∣∣∣ · (diam(Ω))m +

∣∣∣f (α−1)(zo)
∣∣∣ · (diam(Ω))m−1+

...+
∣∣∣f (α−m+1)(zo)

∣∣∣ · diam(Ω) +
∣∣∣f (α−m)(zo)

∣∣∣ ,
for m = 1, ..., α. Choosing m = α − l and writing the above inequality in a brief form, we
obtain:

sup
z∈Ω

∣∣∣f (l)(z)
∣∣∣ 6 sup

z∈Ω

∣∣∣f (α)(z)
∣∣∣ · (diam(Ω))a−l +

a−1∑
k=l

∣∣∣f (k)(zo)
∣∣∣ · (diam(Ω))k−l.

If (fn)n is a sequence in H∞F (Ω) and f ∈ H∞F (Ω), such that fn → f in the topology of
H∞F (Ω), then by Weierstrass’s theorem and Proposition 3.2, in combination with the pre-
vious inequality, one can easily deduce that fn → f in the topology of H∞

F̃0
(Ω). Hence, these

topologies are indeed the same. Therefore, we have proved the following statement:

Proposition 4.8: Let Ω ⊆ C be a bounded convex domain and F ⊆ N0 be a non-empty
set. Then, H∞F (Ω) = H∞

F̃0
(Ω) as topological spaces, where F̃0 = {l ∈ N0 : 0 6 l 6 supF}.

Remark 4.9: A second proof of the equivalence of these topologies can be given using
the Open Mapping theorem for Fréchet spaces.

Remark 4.10: In [11], see also [9], a Jordan domain Ω ⊆ C has been constructed, suppor-
ting a bounded holomorphic function g, so that its primitive G is unbounded. Thus, for this
domain Ω, the spaces H∞F (Ω) and H∞

F̃0
(Ω) are different for some non-empty set F ⊆ N0,

such that 0 /∈ F and 1 ∈ F . This is certainly true for F = {1} and F̃0 = {0, 1}.

Remark 4.11: Suppose that Ω ⊆ C is a simply connected domain, for which a constant
0 < M < +∞ exists, with the property that any two points p, q ∈ Ω can be joined by
a rectifiable curve γp,q in Ω, with length bounded by M ; then clearly, Ω is bounded with
diam(Ω) 6 M . Then, all the results obtained in case B of this section for bounded convex
domains are still valid for such a domain Ω. Because then, if f is a bounded holomorphic
function on Ω, its primitive is bounded by M · sup

z∈Ω
|f(z)|+ |f(zo)|, where zo is a fixed point
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in Ω. This condition has been used in [11]. More recently, it has been proven in [12] that
his condition is necessary and sufficient for a simply connected domain Ω, in order for the
primitive of any bounded holomorphic function on Ω to be also bounded; this condition is
connected to the boundedness of the integration operator.

5 The special case of convex domains and continuously
extendable functions

In this section, we examine if analogues of Theorems 4.5 and 4.7 are valid for the space
AF (Ω), where F ⊆ N0 = {0, 1, ...} is a non-empty set and Ω is a convex domain. That is,

if AF (Ω) = AF̃ (Ω) when Ω is unbounded and F̃ = {l ∈ N0 : minF 6 l 6 supF} and if

AF (Ω) = AF̃0
(Ω) when Ω is bounded and F̃0 = {l ∈ N0 : 0 6 l 6 supF}. We will show

that AF (Ω) = AF̃0
(Ω) for any convex domain Ω ⊆ C, regardless of whether Ω is bounded

or unbounded. Of course, this implies that AF (Ω) = AF̃ (Ω).

Theorem 5.1: Let Ω ⊆ C be a convex domain and F ⊆ N0 be a non-empty set. Then,
AF (Ω) = AF̃0

(Ω), where F̃0 = {l ∈ N0 : 0 6 l 6 supF}.

Proof: Clearly AF̃0
(Ω) ⊆ AF (Ω). For the inverse inclusion, let f ∈ AF (Ω). We will show

that f ∈ AF̃0
(Ω). To this end, we pick an l ∈ F̃0 \ F and we will show that f (l) ∈ A(Ω) (if

l ∈ F , we have nothing to prove). Next, pick any α ∈ F such that α > l. Since f ∈ AF (Ω)
and α ∈ F , we have that f (α) is continuously extendable on Ω. If Ω is bounded, then f (α) is
bounded on Ω and by integrating f (α) repeatedly we deduce that f (l) is uniformly continuous
on Ω. It follows that f (l) is continuously extendable on Ω. If Ω is unbounded, we work in a
similar way, but only locally. Fix any point ζ ∈ ∂Ω and consider the sets Ωm = Ω∩D(0,m),
for m ∈ N. Then, ζ lies within some set Ωm

o
, where the interior is relative to Ω. Indeed, for

some k ∈ N satisfying |ζ| 6 k, one can easily see that:

ζ ∈ Ω ∩D(0, k) ⊆
(

Ω ∩D(0, k + 1)
)o
⊆ Ω ∩D(0, k + 1).

Since f (α) is continuously extendable on Ω, it is also continuously extendable on the compact
set Ωk+1. Hence, f (α) is bounded on the bounded convex domain Ωk+1 and by integrating
f (α) repeatedly we deduce that f (l) is uniformly continuous on Ωk+1. It follows that f (l)

is continuously extendable on Ωk+1 and thus extends continuously at point ζ which was
arbitrary. It follows that f (l) is continuously extendable on Ω. Hence, f (l) is continuously
extendable on Ω, whether Ω is bounded or unbounded; that is f (l) ∈ A(Ω) and l was arbi-
trary. This implies that f ∈ AF̃0

(Ω), thus AF (Ω) ⊆ AF̃0
(Ω), completing the proof.

We have proved that AF (Ω) = AF̃0
(Ω), where Ω ⊆ C is a convex domain, F ⊆ N0 is a

non-empty set and F̃0 = {l ∈ N0 : 0 6 l 6 supF}. So far, this is an equality between sets.
We will show that the topologies of these spaces coincide as well.

We remind that if Ω ⊆ C is a domain and zo is a fixed point in Ω, we topologize AF (Ω) via
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the seminorms:

sup
z∈Ω
|z|6n

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F, n ∈ N and

∣∣∣f (l)(zo)
∣∣∣ , for 0 6 l < minF,

while the topology of AF̃0
(Ω) is induced by the seminorms:

sup
z∈Ω
|z|6n

∣∣∣f (l)(z)
∣∣∣ , for l ∈ F̃0, n ∈ N.

Since F ⊆ F̃0, for any l ∈ F the seminorms sup
z∈Ω
|z|6n

∣∣f (l)(z)
∣∣, n ∈ N, are taken into account in

both of these topologies. If 0 6 l < minF , then l ∈ F̃0 and obviously:∣∣∣f (l)(zo)
∣∣∣ 6 sup

z∈Ω
|z|6no

∣∣∣f (l)(z)
∣∣∣ ,

for some no ∈ N satisfying |zo| 6 no. Hence, the topology of AF̃0
(Ω) is finer that the topology

of AF (Ω). Now pick any l ∈ F̃0. Then, either l ∈ F and thus the seminorms sup
z∈Ω
|z|6n

∣∣f (l)(z)
∣∣,

n ∈ N, are taken into account in both of these topologies, or l /∈ F . In the latter case, pick
any α ∈ F such that α > l. If Ωm = Ω ∩D(0,m), for m ∈ N, then notice that:

{z ∈ Ω : |z| 6 m} = Ω ∩D(0,m) ⊆ Ω ∩D(0,m+ 1) = Ωm+1

⊆ Ω ∩D(0,m+ 1) = {z ∈ Ω : |z| 6 m+ 1},

for all m ∈ N. From this fact and by applying the inequalities obtained during the proof of
Proposition 4.8 for the closure of the bounded convex domains Ωm, m ∈ N, (the continuity
of functions in A(Ω) on every Ωm guarantees that taking supremum over Ωm or Ωm is the
same and finite in each case) we have that:

sup
z∈Ω
|z|6m

∣∣∣f (l)(z)
∣∣∣ 6 sup

z∈Ωm+1

∣∣∣f (l)(z)
∣∣∣

6 sup
z∈Ωm+1

∣∣∣f (α)(z)
∣∣∣ · (diam(Ωm+1))a−l +

a−1∑
k=l

∣∣∣f (k)(zo)
∣∣∣ · (diam(Ωm+1))k−l

6 sup
z∈Ω

|z|6m+1

∣∣∣f (α)(z)
∣∣∣ · (diam(Ωm+1))α−l +

a−1∑
k=l

∣∣∣f (k)(zo)
∣∣∣ · (diam(Ωm+1))k−l,

where diam(Ωm) < +∞, for all m ∈ N. If (fn)n is a sequence in AF (Ω) and f ∈ AF (Ω),
such that fn → f in the topology of AF (Ω), then by Weierstrass’s theorem and Proposition
3.2, in combination with the previous inequality, one can easily deduce that fn → f in the
topology of AF (Ω). Hence, these topologies are indeed the same. Therefore, we have proved
the following statement:
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Proposition 5.2: Let Ω ⊆ C be a convex domain and F ⊆ N0 be a non-empty set. Then,
AF (Ω) = AF̃0

(Ω) as topological spaces, where F̃0 = {l ∈ N0 : 0 6 l 6 supF}.

Remark 5.3: A second proof of the equivalence of these topologies can be given using
the Open Mapping theorem for Fréchet spaces.

Remark 5.4 For the Jordan domain Ω ⊆ C mentioned in Remark 4.10, we have that
the function g constructed in [11] is continuously extendable on Ω, but its primitive G is
not, since G is unbounded on Ω and Ω is compact. Thus, for this domain Ω, the spaces
AF (Ω) and AF̃0

(Ω) are different for some non-empty set F ⊆ N0, such that 0 /∈ F and

1 ∈ F . This is certainly true for F = {1} and F̃0 = {0, 1}.

6 Non-extendability in H∞F (Ω) and AF (Ω)

In this section, we deal with the notion of non-extendability of holomorphic functions in
the spaces H∞F (Ω) and AF (Ω), where Ω ⊆ C is an open set and F ⊆ N0 = {0, 1, ...} is a
non-empty set. An immediate corollary of Proposition 3.2 is the following:

Proposition 6.1: Let Ω ⊆ C be an open set and F ⊆ N0 be a non-empty set. Also,
let fn, f , n ∈ N, be holomorphic functions on Ω. If either:
(i) fn, f ∈ H∞F (Ω) for n ∈ N and fn → f in the topology of H∞F (Ω), or
(ii) fn, f ∈ AF (Ω) for n ∈ N and fn → f in the topology of AF (Ω),
then fn → f uniformly on compact subsets of Ω, therefore fn → f pointwise.

This enables us to prove the following generic results:

Theorem 6.2: Let Ω ⊆ C be an open set and F ⊆ N0 be a non-empty set. Then, the
set SH∞

F (Ω) of functions in H∞F (Ω) which are non-extendable is either void, or a dense and
Gδ subset of H∞F (Ω).

Proof: Assume that SH∞
F (Ω) 6= ∅. Then, by combining the completeness of the metric space

H∞F (Ω) with condition (i) of Proposition 6.1, we deduce that the assumptions of Theorem
2.3 for X(Ω) = H∞F (Ω) ⊆ H(Ω) are verified. Thus, SH∞

F (Ω) is dense and Gδ in H∞F (Ω).

Theorem 6.3: Let Ω ⊆ C be an open set and F ⊆ N0 be a non-empty set. Then, the
set SAF (Ω) of functions in AF (Ω) which are non-extendable is either void, or a dense and
Gδ subset of AF (Ω).

Proof: Similar to the proof of Theorem 6.2. Assume that SAF (Ω) 6= ∅. Then, by com-
bining the completeness of the metric space AF (Ω) with condition (ii) of Proposition 6.1,
we deduce that the assumptions of Theorem 2.3 for X(Ω) = AF (Ω) ⊆ H(Ω) are verified.
Thus, SAF (Ω) is dense and Gδ in AF (Ω).

Next, we give examples and investigate whether SH∞
F (Ω) and SAF (Ω) are empty or not:
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Example 6.4: Let U ⊆ C be a domain and K ⊆ U be a compact set which is remo-
vable for bounded holomorphic functions; that is, its analytic capacity γ(K) is zero. For
instance, K could be a singleton or a planar Cantor-type set, obtained by removing corner
quarters; see [8]. Let Ω = U \K. Then, it is easy to see that every f ∈ H∞F (Ω) is extendable
for any choice of F , provided that 0 ∈ F . Thus, SH∞

F (Ω) = ∅.

Example 6.5: Let U ⊆ C be a domain and K ⊆ U be a compact set with continuous
analytic capacity α(K) equal to zero. Let Ω = U \ K. Then, it is easy to see that every
f ∈ AF (Ω) is extendable for any choice of F , provided that 0 ∈ F . Thus, SAF (Ω) = ∅.
If we use a result from [7], [13], we see that the same holds if K is any closed subset of C
with α(K) = 0; for instance, K could be a straight line, a line segment, a circular arc, a
circle, an analytic curve or the boundary of a convex set.

Example 6.6: Let U ⊆ C be a domain and K ⊆ U be a singleton, or more generally,
a compact set containing an isolated point. Let Ω = U \ K. Then, every holomorphic
function f which belongs to H∞F (Ω) or AF (Ω) is extendable, for any choice of F . Thus,
SH∞

F (Ω) = SAF (Ω) = ∅.
Indeed, let α = minF and ζ be an isolated point of K. If f ∈ H∞F (Ω), then by Riemann’s
theorem on removable singularities, f (α) is holomorphic on a sufficiently small disc D(ζ, r)
contained in Ω, for some r > 0. If f ∈ AF (Ω), then f (α) is holomorphic on D(ζ, r) by defini-
tion. In any case, since this disc is a bounded convex domain, by integrating f (α) repeatedly
we conclude that f is extendable on D(ζ, r). Hence SH∞

F (Ω) = SAF (Ω) = ∅.

Example 6.7: Let Ω ⊆ C be a domain, such that every point ζ ∈ ∂Ω is the limit of a
sequence (zn)n of points contained in

(
Ω
)c

. Then, for any choice of F , the sets SH∞
F (Ω) and

SAF (Ω) are dense and Gδ in H∞F (Ω) and AF (Ω), respectively.
We will use a result from [14] regarding non-extendability, which was stated in Theorem
2.3. Pick any two discs D1 and D2 as in Definition 2.1 and a point ζ ∈ ∂Ω ∩ D2. By our
assumption, there exists a point w ∈ D2 \ Ω. Consider the function f(z) = 1

z−w , which

belongs to H∞F (Ω)∩AF (Ω). Since this function restricted to D1 is equal to f |D1
(z) = 1

z−w ,
by analytic continuation we have that its only holomorphic extension on D2 \ {w} is the
function g(z) = 1

z−w , which has a pole at w ∈ D2. Thus, f does not possess a holomorphic
extension on D2. This means that f is non-extendable; that is f ∈ SH∞

F (Ω)∩SAF (Ω). Hence,
SH∞

F (Ω) 6= ∅ and SAF (Ω) 6= ∅, therefore the sets SH∞
F (Ω) and SAF (Ω) are dense and Gδ in

H∞F (Ω) and AF (Ω), respectively, as Theorems 6.2 and 6.3 indicate.

Example 6.8: Let Ω ⊆ C be a domain bounded by a finite set of disjoint Jordan curves.
Then, for any choice of F , the sets SH∞

F (Ω) and SAF (Ω) are dense and Gδ in H∞F (Ω) and
AF (Ω), respectively. Clearly, this is a particular case of Example 6.7.

7 Two more dichotomy results

In this section, we prove two more dichotomy results regarding boundedness or unbounded-
ness of derivatives of functions in the spaces H∞F (Ω) and AF (Ω), where Ω ⊆ C is an open
set and F ⊆ N0 = {0, 1, ...} is a non-empty set. We will use the following result from [15]:
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Proposition 7.1: Let V be a topological vector space over the field R or C and let X
be a non-empty set. Denote by CX the set of all complex valued functions on X and con-
sider a linear operator T : V → CX with the property that the mapping V 3 α 7→ Tx(a) =
T (α)(x) ∈ C is continuous, for all x ∈ X; observe that this assumption is weaker than T
being continuous. Let S = S(T, V,X) = {α ∈ V : T (α) is unbounded on X}. Then, either
S = ∅, or S is a dense and Gδ subset of V .

Note that in Proposition 7.1., the space V is not assumed to be a complete metric space.

Let Ω ⊆ C be an open set and let V be one of the topological vector spaces H∞F (Ω) or
AF (Ω), endowed with its natural topology, where F is a non-empty subset of N0. Let X be
any subset of Ω and l ∈ N0. Then, the function V 3 f 7→ Tl(f)(z) = f (l)(z) ∈ C is conti-
nuous, for all z ∈ X; this follows from Weierstrass’s theorem if l > minF and from Proposi-
tion 3.2 if 0 6 l < minF . Thus, the corresponding set S = Sl is either empty, or dense and
Gδ in the space V . In particular, the above holds true for V = H∞F (Ω) and X = Ω. Thus,
we have proved the following:

Theorem 7.2: Let Ω ⊆ C be an open set, F ⊆ N0 be a non-empty set and l ∈ N0.
Then, either for every f ∈ H∞F (Ω) the derivative f (l) is bounded on Ω, or generically for
every f ∈ H∞F (Ω) the derivative f (l) is unbounded on Ω.

If l ∈ F , then obviously for every f ∈ H∞F (Ω) the derivative f (l) is bounded on Ω. If Ω
is a bounded convex domain and l 6 supF , then for every f ∈ H∞F (Ω) the derivative f (l) is
bounded on Ω, according to Theorem 4.7.

In [11], see also [9], a Jordan domain Ω was constructed, such that a function g : Ω → C
continuous on Ω and holomorphic on Ω has an unbounded primitive on Ω. Let us call this
primitive G; then G ∈ H∞{1}(Ω), but for l = 0 the function G(0) = G is unbounded on

Ω. Thus, in this domain Ω, generically every function f ∈ H∞{1}(Ω) has the property that

f (0) = f is unbounded on Ω. It follows that H∞{0,1}(Ω) is meager in H∞{1}(Ω) for this parti-

cular domain Ω. In general, either H∞{0,1}(Ω) = H∞{1}(Ω), or H∞{0,1}(Ω) is meager in H∞{1}(Ω),
for any open set Ω ⊆ C.

Let Ω = D be the open unit disc and let w(z) = (z − 1) · exp z+1
z−1 . Then, w ∈ A(D) ⊆

H∞(D) = H∞{0}(D) and w′ is unbounded on D, thus generically every function f ∈ H∞{0}(D)

has the property that f (1) = f ′ is unbounded on D. It follows that H∞{0,1}(D) is meager in

H∞{0}(D). More generally, if F is finite and l > maxF , then generically for every f ∈ H∞F (D)

the derivative f (l) is unbounded on D and H∞F∪{l}(D) is meager in H∞F (D).

It remains open to give an example of a domain Ω ⊆ C, supporting a holomorphic function
f , so that f (0) = f and f (2) are bounded on Ω, but f (1) = f ′ is unbounded. We believe
that such a domain Ω exists. Moreover, we think that a complete metric topology can be
defined on the set of all domains (contained in the open unit disc), so that for the generic
domain Ω, there exists a holomorphic function f on Ω, such that f and f (2) are bounded,
but f ′ is not. More generally, we think that for every non-empty set F ⊆ N0 and l /∈ F ,
minF < l < supF , for the generic domain Ω ⊆ C, there exists an f ∈ H∞F (Ω) such that f (l)
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is unbounded and H∞F∪{l}(Ω) is meager in H∞F (Ω). But we do not have a proof and these
assertions remain open.

Next, consider the space AF (Ω), where Ω ⊆ C is an open set and F is a non-empty sub-
set of N0. If Ω is bounded, then for every f ∈ AF (Ω), all derivatives f (l), l ∈ F , are also
bounded on Ω. Assume that Ω is unbounded, we will apply Proposition 7.1. We set X = Ω
and let Tl : AF (Ω) → CX be the function Tl(f)(z) = f (l)(z), z ∈ X, where l is a fixed
element of N0. Then, the assumptions of Proposition 7.1 are easily verified. Therefore, the
set Sl = {f ∈ AF (Ω) : f (l) is unbounded on Ω} is either void, or dense and Gδ in AF (Ω).
But the function f(z) = zl+1 belongs to AF (Ω). Therefore, the set Sl is dense and Gδ in
AF (Ω). Baire’s theorem implies that the set S =

⋂
l∈N0

Sl is also dense and Gδ in AF (Ω).
Thus, we have proved the following:

Proposition 7.3: Let Ω ⊆ C be an unbounded open set and F ⊆ N0 be a non-empty
set. Then, the set S of functions f ∈ AF (Ω) such that all derivatives f (l), l ∈ N0, are un-
bounded on Ω, is dense and Gδ in AF (Ω).

More generally, if Ω is an unbounded open set and (zn)n is a sequence of points in Ω
converging to ∞, then for X = {zn : n ∈ N}, generically every function f ∈ AF (Ω) has
the property that the derivative f (l) is unbounded on X, for all l ∈ N0. To give an explicit
example of such a function f ∈ AF (C) = H(C), it suffices to set f(z) = exp(e−iθz), for some
well-chosen θ ∈ R. Indeed, let cn = zn

|zn| and let ckn→c for a subsequence. Then, |c| = 1 and

it suffices to choose θ ∈ R, such that c = e−iθ. One can easily see that |f (l)(z)| = |f(z)|, for
all z ∈ C and l ∈ N0 and that |f(zkn)| → +∞.
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