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ITob6Ahoyocg

Oa fideha vo eLyapoTHCW VepUd TNV EMPBAETOVCCA TNG OLTAWHUATIXS UOU
xupla Mopihéva: MntpoOhn yia v eumiotocivn , v xadodAynomn xou tnyv
oLVEY T UTOOTARLEN TNG UE UAXS Yiot TNV OAOXAAR®OT TNS ToEoLcUS EQYACTAC.

H rapotoo dimhwpatind| €yet Véuo tn ueAétn aprduntixey uedédwy yéow mi-
Vaxwy yior Tov utohoyiopé Tou Méyiotou Kool Awupétn tohuwvipny (MKA)
ToAwVOLLY. Eygaon divetoaw otny QR-Column Pivoting method(QRCP) péow
NG EPapUoYnc TNe otoug Tivaxeg Bézout pe yeron twv Yewpnudtwy tou Bar-
nett yio tov (MKA) nohuwvipov.H nopandve pédodoc pog divel yeydho mhe-
ovéxtnuo xadoe yia tivaxeg ye peydho rank deficiency , cuyxpitind pe diioug
uedoooug 6mwe N QR-JBJ v Bézout mivoxeg mou yeketdyue enlong otny epya-
olol, EVE THUTOYEOVIL UG UELOVEL TO YPOVO EXTEAECTS TWV UTOAOYIGUOY ONAXDY
TNV TOAUTAOXOTN T

IIo ouyxexpypéva , GTNY TEMTN EVOTNTA TEPLYEAPOUNE Tal HordNUoTixd ep-
yohela 6mwg ol mivaxeg Householder xou ot egapuoyég toug yioo xahltepn ey-
Bdviduon Tou avay VOO TN GTO TEPLEYOUEVO TG ERYACIAS.

2211 0e0TERT EVOTNTU XAVOUNE [LOL AVOALTIXT| TIEQLYPApT) TV Tvdxwy Bézout
ToEOUCLALOVTAC TOV TEOTO XATAGKELNS TOUC , TIC BIOTNTEC TOUC XadidS xou
xdmotar oprdunTLxd ToEadE Ly oA

Xy Telpn evétnta , Tapouctdlovue otny oy n To Yewpruota Tou Barnett
v Tov (MKA) moluoviymv,xar 6t cuvéyela ouvOEouUE autd ol Vewpria-
o pe Ty QRCP method yio var Snutovpyficoupe éva alydprduo LTOAOYIOUOY
TV oLVTEAEGTOY Tou (MKA) péow twv mvdxwy Bézout énwe tovicoye mpon-
yYoupévwe 1 pédodog auty| etvan wwktepa yeriowun yio Thvaxeg pe peydhn rank
deficiency . YuveyiCovtoag ocuyxpivouye v QRCP pe v uédodo QR yia
Bézout nivaxec. Y10 téhog Y€ow apriunTindy Tapaderyudteny cuyXeiVoUUE Thy
TOAUTTAOXOTNTA TV UEVODWY X0 XAUTUATYOUUE O CUUTEQUCUOTA YL T TAEO-
VEXTNUOTO X0 TOL UELOVEXTNUAT TV UEVOOWY Xadag TN ¥efior Toug avdhoyo
UE Tal BEBOUEVOL TOL TEOPAAUNTOS TOU AV THIETOTILOUYE.

2710 ornyelo autéd Yo ek va euyaplo TG VEPUE GUVHEYTES BLOUXTOPLXOUS
POLTNTES (ev €ZéMEn xou pn) e x. Mnteolin yio Tnv mohdTn Bordeta Tou
wou mpoopepay. Autol elvor ovouaoTixd xon aigaBnTixd xupta Polna Hapaoxeur
0ptog Totavtagiilou Anurtenc.Evyoeiotd yia tnv mohitiun Bordewa eniong
TV OWaxTopwd portnTy| Tou xupiou Basctieiou Aouvyahr) I'enydeio Kouvdon,.

Tehog Vo Adeha var euyaploThow Tov x. Lwthelo Notden yio TiC YVOOELS
TOL UOU TPOCPERE OF TEOTTUYLOXO X0l UETATTUYLOXO ENUITEDO o) xou T
mou uou éxavay va etvon pali ue Tov x. Anurteio Telavtagiilou otny TEWEeER]
EMTEOTY TNG ToEOVCUE BIMAWUATIXAG Xt TeEhog, Vo IEAa VoL EuyopELOTAOL TNV
OWOYEVELNL L0V, TOUS PIAOUS LOU X0l GUUQOLTNTES TOL TOGO OE TEOTTUYLOXO 6GO
X0l OE YETATTLUYLXO ETTEBO Yoo TNV oTAREN xou TNy Bordeio Touc.



ITepiandn

O Méyotoc Kowde Awnpétne (MKA) evdg ouvdrou molumvipmy éyet a-
modetydel Tt elvon TOMD oNpavTINGS Yio TANUOEA papuoyoy ota Egopuoousva
Modnuatixed xon v Mnyoavixr. Apxetéc uédodol éyouv mpotadel yio Tov L-
nohoytopd tou (MKA) nohuwvipwnyv. O neplocdtepes and autée Booilovto
otov BEuxieldeio Alydprduo xou eivon €tol oyedlaocuéveg €tol (oTte va enedep-
YélovTon 2 TOAUGDVUHA TNV PORA XAl UTOPOUY VoL EQUPUOCTODY XUTA ETUVIATN-
b avti yio 600 €youue TeplocdTEPA TOAUGVLUA. T TdEYoUV TOMAES emapXel]
uédoodot Pootouéveg oe Tivaxeg oL omoleg umopoly Vo UToAoylcouv TV TAEN
xou Toug cuvteheotéc Tou MKA e 1o va eopuolouy cuYXEXPUIUEVOUS |UE-
TAoYNUATIOMOUE o€ €val Tivaxa o omolog €yel xataoxevacTel an’ edlelog and
TOUC OUVTEAECTEC TV TOAUYOUWY Tou €youue. To Yewpruato tou Barnett
v tov (MKA) pe yerion mvéxwy Bézout cupmepthopfdver évay moAd cuunay
TpOTO TapoETROTOMoNS Xou ametxoviong Tou (MKA) molvwviuwy.H topodoo
epyaoio acyolettar ue v eqapuoyy|) e QR moapayoviomoinorng ue odrynon
xotd othhec (QRCP) evée mivoxoxon tnv eniteuén oe éva Poadud tou MKA
UEow NG TAENE evog mivaxa ewixdTepa 6Ty the rank deficiency of the Bézout
mivancor ebvan UPNAT. Apyd xataoxeudloupe Tov Bézout mivaxa evog cuvorou
TOAWVOUWY epopuolovye ta Jewpriuata tou Barnett yio tov (MKA) xa 670
téhoc epopuolovue v (QRCP) pébodo yur va Bpolue touc cuvtEAeoTEC TOU
(MKA).H pyédodoc auth pog divel tor u€ao yior Lot To AmOTENECUATINY EQUPUOPT
e xhaooic QR ue Avydtepn mohumhdxotnta. Acyoholuacte eniong Ue T
xhaoowée anewxovioele Tou MKA péow dounuévey mvixwy 6mwe 1 uédodog
QR Bézout xou pe v moAumhoxdtnTa Toug TNV onola avaklouue VewmpnTixd,
otvovtag mapadelypato. Xuyxpivoude Tig pedod0ug xaL TNV TOAUTAOXOTNTA TOUG
Télog mpotetvoupe Vv yeron e QR mou arnoxahinTel Ty 14én Ye odhynon
xotd GTHAES Yo Tov umohoyioud Tou MKA noAuwmviuwy.



Abstract

The Greatest Common Divisor (GCD) of a polynomial set is proven
to be very important to many applications in applied mathematics and
engineering. Several methods have been proposed for the computation
of the GCD of sets of polynomials. Most of them are based on the
Fuclidean algorithm. They are designed to process two polynomials
at a time and can be applied iteratively when a set of more than two
polynomials is considered . Conversely, there exist efficient matrix-
based methods which can compute the degree and the coefficients of
the GCD by applying specific transformations to a matrix formed di-
rectly from the coefficients of the polynomials of the entire given set.
Barnett’s theorems about (GCD) through Bezoutians involve Bézout-
like matrices and suggest a very compact way of parametrising and
representing the GCD of several univariate polynomials. The present
work introduces the application of the QR decomposition with column
pivoting (QRCP) to a Bézout matrix, achieving the computation of
the degree and the coefficients of the GCD through the range of the
Bézout matrix ,especially when the rank deficiency of the Bézout ma-
trix is high.In the beginning we construct the Bézoutmatrix of a set
of polynomials ,we apply Barnett’s theorems and in the end we apply
the QRCP method to find the coeffiecients of the GCD. This method
provides the means for a more efficient implementation of the classi-
cal Bézout-QR method with less computational complexity and with-
out compromising accuracy, and it enriches the existing framework
for the computation of the GCD of several polynomials using struc-
tured matrices. The classical GCD representations through structured
matrices are revisited and their computational complexity is theoret-
ically analyzed and compared. Demonstrative examples explaining
the application of each method are given.We compare the methods
and their complexity.We propose the use of the rank revealing QR
with column pivoting for the computation of the GCD of polynomials
through Bézout-like matrices which improves the numerical behavior
of the existing Bézout-QR, algorithms.
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1 Mathematical Tools Introduction to QR De-
composition

1.1 The-QR-Gram-Schmidt (Simple QR)

Let A a matrix € C"*(n > m) which its columns ay, as, ..., a,, is linear inde-
pendent,as follows rank(A) = m. Our purpose is to construct an orthonormal
system of vectors ¢1, ga, ...q,,. such that:

span{ay, as, ..., an} = span{q, g, .--qm }-

This method is known as Gram-Schmidt orthonormalization,[3] and it is
based on:

if ,y € C™ two linear independent vectors we symbolize the projection
of xinyasu= Z:—iy,then the vector x — u is vertical in y,because :

*

Yy (r—u)=y'r—>—y"y=0.
vy

At the beginning,we normalize the vector a; such that:

a

||a1||2'

q1 =

Secondly,we construct an orthogonal vector in ¢; ws = as — (¢jas)q; and

we normalize it as ¢y = H;"ﬁ In the third step we construct an orthogonal

vector in spanqi, g w—az—(qjas)q1— (¢5a3)qe and we normalize as g3 = Hlfj”ﬁ
We continue the process and we have:
aallo
az — Ta2q1

T'22

qi

g2 =

and
az — 11341 — 72342

33

g3 =
we continue and we conclude that:

m—1
Ay, — Zi:l Tim4;

rmm

qm =

where
Ti; = q:aj(i § j)



and
m—1
Tij = Ham - ZriinHQ-
i=1

We define the n x m matrix

Q = [QlaQ% 7Q’m]

with an orthonormal system of columns and the m x m upper triangular
matrix :

i1 T2 Tim
0 roo--+ Tom
R =
0
0 0 Thm

which has elements the cofactors of Gram-Schmidt orthonormalization.

Theorem 1. The factorization,[3] :

A=0QR
i1 T2 Tim
0 7” “ . 7” m
(a1 az o am ] =[a @& - ] 0 . . (1)

is called simple QR factorization of A matrix.

Corollary 1. Every matriz A inC"*™(n = m)rank(A) = m has unique QR
factorization.

Proof:
Obviously,the matrix A has QR factorization if and only if Gram-Schmidt
orthonormalization is completed successfully.The vector

7—1
W = a; — Z'rij%'
i=1
is zero. Something like this is not possible because

rank(A) = dim|[span{ay, as, ..., am}] = m.

6



1 R(1,1) = [[A(; D2, Q. 1) = A(:, 1) /R(1,1)
2 for k=2:m

3 R(1:k-1,k)=Q(1:n,1:k-1)’A(1:n,k)

4 z=A(1nk)-Q(1n,1:k-1)A(1:n k)

5 R(k,k) = [|]]2

6 Q(1:nk)=z/R(k,k),end

It is obvious that QR is unique because during the Gram-Schmidt or-
thonormalization due to the fact that rank(A)=m,vectors ¢; and cofactors
r;; exist In unique way.

Now,we present you a pseudocode in Matlab of the QR-Gram-Schmidt:

Example 1.

R 1.4142 1.4142
N 0 1.7321

0.7071  0.5774
Q=] 0 05774
0.7071 —0.5774



1.2 The QR-Householder Factorization (Com-
plete QR)
A matrix of nzn dimension which has the following form

P:[_Quu*
uru

yueCr

it is called Householder matrix or Householder transformation,[4]. The u
vector is called Householder vector of P matrix. For every w € C™,the vector

2uu’* urw
w=w—2
u*u u*u

Pw=w—

u

is the reflection of w in the hyperplane of span{u}. Obviously, Householder
matrix P is hermitian and unitary

(P*P = PP* =1,).

Furthermore, it is a turbulence of I,, matrix

k(—uu®) = k =1
ran (u*uuu) rank(uux)

Let assume that,we want Pw to be a multiple of vector e; of standard
basis. Then Pw belongs in span{e;} and u belongs in span{w, e; }. We write
u = w + aey, a € C and we observe that:

wrw = wrw + delTw = w*w + aw;

where,
w1

is the first element of w which is real number while,
u*u = w*w + w1 2Re(a) + |al?.

Thus,

2 w*w + aw,
Pw=(I,— —uuHw=1-2 -
( uru ) (wxw + 2wy Re(a) + |a|?)w — 2a*2e;.

u*u

The coefficient of w is zero if a = €*91)||w||, and then

U= w—+ eiarg(w1)|

|w||261 =



*

uY )w _ _e’ia’!’g(wl)||w||2€1'

Pw = (I, — 2—
()

In other words, for certain vector w,we construct the vector Householder
u and respectively the Householder matrix

p__ 2uu*
uru
in order Pw vector belongs in
span{e; }.
For example,
Let
3
1
Y= s
1
with
[wl]2 =
and
wp = 3

the householder vector is

u=w+ ePl[w||zer = w + [wl|zex

— Ot = W

and the Householder matrix




=27 -9 —-45 -9
-9 53 -5 -1
-45 =5 29 -5
-9 -1 -5 33

and then we have

O OO

belongs in
span{e; }

Theorem 2. [}/
Let A a matriz € C™™ where n = m rank(A)=m and as follows columns
a1, Qas, ..., Ay 18 linear independent. Let Py a Householder matrix such that

Pyay belongs in span{e;} C C. Then,

PlA = Pl[al,CLQ, ...,Cl,m] = [Plal, PlCLQ, ceey Pl(lm]

, where
*

0
Piay, =

0
Due to the fact that,the columns of A is linear independent,Piay ¢ span{e; }
because Pias column has mnon zero elements under its first element.If wy €

C™ ! the non zero vector which comes from the erase of the first element of
vector column Pias,then exists n—1xn—1 Householder matrix Py such that

Py(Pray) is multiple of e; € C* 1.

Thus,we have:
1 0
0 P

[ v

-Prasy

10



0
- O -
and
1 0
0 B
PlA =
*x % - *
0 *x - *
0O 0 - *
0o 0 - *
It is obvious that
1 0
= { 0 P ]

1s unitary. Let as assume that n > m. We continue the same process
and we are able to construct householder matrices Py € Cn=2x(=2) p, ¢

C(n—S)X(n—Z&),“.’ Pm c C(n—m+1)><(n—m+1)
such that ) )
| L 0
Hy = 0 P
and ) .
| I3 0
Hs =1 P,
and

*
0 =
00
00 O 0 =
00 O 0 O
0 0 0 0 0

11



Now,let
Q=[Hpy 1...HsHyH, P

and R the matriz =

*

0

0 0

0 0 O 0 =

00 O 0 0

o0 0 --- 0 0
which 1s upper triangular with n-m rows in the last part

we have,

QA =R equivalently A = CNQ}N% where Q = Q*

In other words we have a QR factorization through Householder matrices.
Q is a unitary n x n matrix R is n x m upper triangular matrix.[3] and this
factorization is called the Complete QR Factorization. This factorization has
major advantages.For example, if A € C™™ n > m is order of r < m then R
has exactly the last n-m rows zero and m-r elements in its major diagonal. In
the case of square matrices the simple and and the complete QR are the same
methods. Its worth mentioning that Gram-Schmidt orthonormalization can
lead to complete QR factorization if we expand the orthonormal system of
vectors ¢i, g, ..., ¢ in a orthonormal basis of C™ and add n-m zero rows in
the last part of R matrix. In this case,simple QR is not unique.

Now,we are demonstrating some applications of Householder matrices

Corollary 2. A Householder matriz P = I, — 2% has eigenvalues

Al =1

or

Al = 1.

Proof:
He have: P =1 —2v0”, |[v||3 =1. P = PT because PT = (I —2vv")T =
I—-2nwl=P

PPT = P? = (I — 2uu™)? = T — 4(uu?)? + du(uTu)u®’ =1

Now , due to the fact that P matrix is symmetric has real eigenvalues
and secondly,because is orthogonal all eigenvalues have

[IAll3 = 1.

12



Thus,

[1Al] =1
or
1Al | = —1.
Because
Pu=—u
=

-1 is eigenvalue of P and has eigenvector u which is non-zero and every v

vector
e R"

vertical in u.

(1,v) same pair.

Corollary 3. Let x,y € C" non zero vectors. There exists a P Householder
matrix such that Px multiple of .

Proof:
Let
w=M\-y
with
||zl = [Jw]|
. Let
r=w-—x
and .
o VU
v*v

. ,where H is the projection matrix.
Let P =1 — 2H ,then we have:

* * * * _ _ .
v*v v'v o vt

Pr=x-2Hx = w—v—2

v*U v*U

Thus, Pz multiple of y.
Now,we introduce a pseudocode of Householder transformation and Com-

plete QR Factorization

13



Y%housel
m=max (abs (x) ) ;
u=x /m;
suma=0;
for i=1:n
suma=suma+u (i) " 2;
end
i=1;
while u(i)==
1=1+1;
end
s=sign (u(i))*sqrt(suma);
u(l)=u(1l)+s;

S=11* S ;

YQR-housel
smin=min (n (1) —-1,n(2));
for k=1:smin

if sum(abs(A(k:n(1),k))) =
[u(k:n(1)),s]=housel (A(k: n( ),k));
1 A(k,k)=s;

) u(k:n(1))=[1;zeros(n(1)-k,1)|;

for i=k+1:n(1)
A(ik)=u(i);
end
uk (k)=u(k);
uu=u(k:n(1)):
b=2/(uuxuu');
for j=k+1:n(2)
sumi=0;
for i=k:n(1)
sumi=sumi+u (i)*A(i,j);
end
s=bxsumi;
for i=k: n(l)
AL T)=A( ] )—swu(i);

end

14



end

for j=1:n(1)
sumi=0;
for i=k:n(1)
sumi=sumi+u (1)*Q(i,j);
end
s=bxsumi ;
for i=k:n(1)

Q(l 7J):Q(1 7J)_S*u(1)a
end
end

15



Examples 1.

k=1
Q:
=2
Q=
Finally,
Q=
Q=

A:

—_ O =
)

—1.4142
0
1.0000

A=

—0.7071
0
—0.7071

0
1.0000
0

—1.4142
0
1.0000

[—0.7071
0
| —0.7071

0
—1.0000
0

[—0.7071
0

0
—1.0000
0

R

A

| —0.7071

—1.4142
0
0

1
A=10
1

O = DN

—1.4142
0
1.0000

—0.7071
0
—0.7071

0
1.0000
0

16

0

0

1.0000

—0.7071

0

0

0

0

0

0.7071

—1.0000

—0.7071]
0
0.7071 |

—0.7071]
0
0.7071 |

—1.0000

—1.4142
1.0000
—1.4142

—0.7071

0

0.7071



—1.4142 —1.4142
A= 0 —1.7321
1.0000  —1.0000

—0.7071 —0.7071
—-0.5774 —0. 5774 0.5774
—0.4082 0.8165  0.4082

Q=

—0. 7071 —0.5774 —0.4082
—0.5774 0.8165
—0. 7()71 0.5774  0.4082

—1.4142 —1.4142
R = 0 —1.7321
0 0

Q=

Finally,

17



1.3 The Real QR Factorization, Examples and
Complexity

Since,in the most cases the matrices that we are face are real matrices we are
going to present you the Real QR-factorization.

As we present above some useful properties of Householder matrices in R
are:

i) Householder matrix is symmetric.
ii) Householder matrix is orthogonal.

iii) Householder matrix is a reflection matrix.

Reflections are computationally attractive because the can easily con-
structed and they can be used to introduce zeros in a vector properly.

Now,following this short introduction it is time to give the Theorem of
The Real-QR factorization,[4].

Theorem 3. Let A € IR™™™. There is an orthogonal matric Q.,zm, such as
QR =Q"Q=1

and an upper triangular matrix R,.,, in this form

11 Tz - Tin
n— 0 rog -+ T2y
0 0 o
such that:
A=QR

Where @ is the product of
Q=HHy - Hp

where every H; is Householder. This factorization of A is called QR factor-
1zation.

It is proved that the complexity of QR factorization is

2 3
O(2mn? — i)
3
In case of n=m the complexity is:
2n3 4n?
02n® — =) = O(—
(o~ 25) = O(5-)

18



Theorem 4. [3] Let A € R™" with m > n and rank(A) = r < n. Then it
is always exists a permutation matrix P € IR™" and an orthogonal matrix
Q € R™™, that is

QU =Q"Q=1

such that:

QTAP = {RO“ R(ﬂ & AP = QR

where Ryy € R™" an upper triangular matriz with non-zero diagonal ele-
ments.

The QR permutation with column pivoting of a matrix A with rank(A) =
r < min{m,n} has complexity
3
O(2mnr — r*(m +n) + ?)
In this master thesis we are studying square matrices so in case of m=n

we have:
9 9 2r3
O(2rn® — (2n)r +—3 ).

Now,we introduce the pseudocode of the Real QR Factorization with
Column Pivoting.
Lets see a simple numerical example:

0 +8 —4
Example 2. B= |[+8 —4 0
-4 0 41
Then:
1 00
P=10 1 0f,
0 01
0 0.9759 0.2182
Q= 1-0.8944 —0.0976 0.4364

0.4472 —0.1972 0.8729

we ascertain that QQT = I3 and

—8.9443 3.5777  0.4472
R = 0 8.1976 —4.0988
0 0 0

and finally we ascertain AP = QR

19



1 Construct the P permuted matrix find the column with the max norm
from the A matrix,construct the AP, matrix,with first column the col-
umn we have previoysly mentioned.

2 Construct the Householder matrix H; such that AV = H; AP, with
zero elements under the (1, 1) element of the matrix. Repeat step one
and two for the right low part (m — 1) x (m — 1) part of A In matrix
AM(2:m,2:n) we find the column with max norm we construct the
(n —1) x (n — 1) P, matrix and then the matrix

1 0
0 B

3 After r steps we have zero elements under the diagonal and A =
H.H, ,..HyH AP\ P,...P,_1 P,

and PR
(7‘): 11 12
an = [

20



1.4 Error Analysis

Remark 1. In this section,we present you the Roundoff error of QR factorization,[4],[3],
that shows the stability of the QR method, [4].

If R denotes the computed R,then there exists an orthogonal Q such that:

A+ E = R-Q The error matriz E satisfies:

[E|lr < ¢(n)ml|Allr

where ||||r is the Frobenious norm. The ¢(n) is a slowing function of n and m
is the machine precision then it can be shown ¢(n) = 15 — 5n.The algorithm
is stable.

Now,let us see the stability for the 4. We,remind the 4 and the error,[3],
as we did above with the Real QR.

Let A € R™™ m > n, rank(A = r < n).Then always exist one permu-
tation matrix II of order n x n and an orthogonal matrix () of order m x m
such that:

Ru R r
TAH: _ 1 1112
r n-—r

If Ry is suitably small in norm,then it is reasonable to terminate the
reduction and declare A to have rank r. A typical termination criteria might
be:

| Razll2 < || Al

where
]2

is the euclidean norm. for some small machine-dependent parameter e1.In the
view of roundoff properties associated with Householder matrix computation
we know that R is the exact R-factor of a matrix A+E,where

1Bz < €| All2
ea=0(u).
Corollary 4. Let A be a matriz in R™ " and E be a matriz in R™*™. Then

we have:
O'ma;,;(A + E) < OmaaA + HEH2
>

Umax(A‘i‘E) UmaxA_ HE||2
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Using the above corollary ,[3], we have
k1 (A + E) = 041 (R) < || Raslo.
Since
or41(A) < o1 (A + E) + || B2,

it follows that
(A1 < (a1 + e2)[|All2.

In other words, a relative perturbation of O(e; + €;) in A yields a rank-r
matrix. With this termination criterion,we conclude that QR factorization
with column pivoting discovers rank deficiency if R, is small for some r <
n.However,it does not follow that the matrix Ry, is small if rank(A)=r.

Remark 2. 0(A) denotes the singular value of a matriz A.
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2 An Introduction to Bézout Matrices

2.1 Definition and Matrix Representation

A Bézout matrix is a special square matrix associated with two polynomials,
introduced by Sylvester (1853) and Cayley (1857) and named after Etienne
Bézout.

Definition 1. Let f(x) and g(z) be two polynomials in one variable such
that, [5]:

m
flx) = E ulxl = U™ + U1 2™ o+ usx® + urx + ug
1=0

n
! —1 2
g(z) = E VX" = VR X" + Uy Uz v T+
1=0

with deg{ f(x)} = m and deg{g(z)} = n, where m > n and (u,, v,) # (0,0).
Then, the Bézout matriz associated with the polynomials f(x) and g(z) and
denoted by B(f,qg) or Bez(f(x),g(x) is an m x m symmetric matriz which
is constructed from the coefficients of the polynomials as follows:

Uy Uz -+ Unm Vo V1 -+ Ump—1
u2 . e um 0 O fUU . e ’Um72
B = _
Uy 0 ... 0 0o ... 0 Vo
vy V2 - Uy Up Uy -+ Um—1
V2 e Um O 0 Ug e Upm—2
U O ... 0 0O ... O U

The elements b;; of Bézout B(f,g) matriz are calculated by the following
formula:

bij =| woUirj—1 | + | 1Vigj2 |+t | UkVig k-1 |
kE=min(i—1,5—1)

u, = v, = 0 where r > m and
| uvs |= usvyr — upvg

Furthermore,there is another equivalent definition of the Bézout matrix, [6]:
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B(f,9) =

bm,l e bm,m

and the coefficients are calculated by the equation:

f(x)g(y) — fly)g(x)

=[1,2,2% ...,2™"|B Ly g2 y™ = by
Qi—y [,x,ac, 7']7 ] (fag)[7y7y7 y ] Z ,Jx y

ij=1

Let J be an antidiagonal matrix such that:

00 --- 1

00 1 O
J=1.

1 :

1 0 0

and f(a:) and g(x) two polynomials such that:

m

r k -1 -2 2

flz) = E Uk = X" + U™+ us™ T+ o U 2T” + Uy 1T+ Uy
k=0

and
n
~ _ § : k __ n n—1 n—2 2
g(l‘) = Unp—kX = Vg -+ mx -+ VoI + ...+ Up—2T + Up—1T -+ Un
k=0

Previously,we have shown that

m
flz) = E uk:ck = Uy ™ + U1 2™ + um_me—Q + ...+ U2$2 + urr + uo
k=0

and

n
E : k -1 -2 2
g(x> = VXl = Unxn + ,Un—lvrn + Un_an + + Vo + mI + Vo
k=0
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In other words, the polynomials f(z) and §(z) are the reversed polyno-
mials of f(x) and g(x).
This remark provides us with the following conclusion:

B(f(x),g(x)) = J * B(f.g) * J

where B(f(x), §(z)) is the Bézout matrix of f(z) and §(z).
Considering the case of sets of several polynomials, the following definition
of an extended form of the Bézout matrix is given,[5].

Definition 2. We consider the set of m + 1 real univariate polynomials:

Prtin = {a(s), bi(s) € R[s], 1 =1,2,...,m with n = deg{a(s)},

= ; <
p= max {deg{b(s)}} <n} (2)
Definition 3. Let u,vq,...,v, be m + 1 polynomials, with u a polynomial
of maximal degree n. Let B; be the Bézout matrix of polynomials u,v;, for
1 =1,...,n. Then the generalized Bézout matriz is defined as follows:

By

By

B = ) SN (3)
B,
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2.2 Properties of The Bézout Matrix

Some properties of the Bézout matrix are,[?],[?].

i) B(f,f)=0

iii) if deg{f(x)} = deg{g(x)} = n then the Bézout matrix is non-singular
only if and only f(x) g(x) do not have the same roots.

iv)
B(af +bw,g) = aB(f,g) + bB(w, g),
B(f,ag +bs) =aB(f,g) + bB(f,s)
w(z),s(x)

v) if deg{f(x)} = m and deg{g(z)} = n then f(z), g(z)in R[z].

vi) B(f,g) is symmetric for every m,n positive integer or non-negative
integer

vii) If S0 uga® and YO, _, vpa® with deg{f(z)} = m and deg{g(z)} =n
then
IB(f; 9)ll2 < 2m| fll2llgll2

|||z is the euclidean norm.
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2.3 Complexity of The Bézout Matrix

We have:

min(i,n—1—j
Bij = E : (Ui kUjp 14k — ViekWjg14k)-
k=maxz(0,i—j)

We should calculate {B; ;} for every i < j:

e for i+ j < n —1 we have:

%

Bij=> (Ui—kUj 1k — VikUji11k)
k=0

e for i+ j > n — 1 we have:

n—1—j
A= (WimkVj 14k — ViekUjt14k),
0

=
Il

Every calculation requires two products and one sum.

Let n odd, the overall number of products in order to calculate {B; ;},i < j
is:

(n—1)/2 n—1
2. ) (n=20)-(i+1)+2- Y (n—j)-(2i-n+1)=
i=0 j=(nt1)/2
207 +9n® +10n + 3
N 12
and the overall number of sums is:
(n—1)/2 n—1
Yo n-20)-2i+1)+ > (2n—2j-1)-(2j—n+1)=
i=0 j=(n+1)/2

20 4+ 3n° +4n+3
B 12
The previous calculation gives the same results in case of an n is even.

Its worth mentioning that,the previous calculation requires

O(n*)
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flops.We are going to use the advantage that Bézout matrices are symmetric
in order to achieve complexity

O(n?)

Due to the fact that,Bézout matrices are symmetric we need only to find
the elements b; ; for 7 < j. We use the calculation of 1.1 section and we find
the entries for b; ; for ¢ < j and we complete for the rest elements(: > j).

i) In the beginning every element-entry requires 2 products and 1 plus.We
have n? + n products and ”2% sums.

ii) As we calculating the next elements of matrix,every element above
the diagonal when i=j expect from the elements of first row and the
. 2
elements of last column require 1 sum. The total sums are “—=.

TL2—1’L

To sum up with, the total number of calculations is: n2+n+”2%+ 7 =
22 And finally the total number of flops is O(n?).
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2.4 Numerical Examples

We are presenting some simple examples of how a Bézout matrix is con-
structed and we introduce you two examples of the Generalized Bézout ma-
trix.

Examples 2. i)
flx)y=2>-1=12"+0z -1

g(@) =2 —-1=02"+ 1z —1
We have:
Ug = 1,U1 :O,UO: —1
and
(%) :O,Ul = 1,U0:—1

We calculate the elements of the matriz:
b11 :| UgU1 |: U1Yy — UgU1 = O . (—1) — (—1) -1 = +1

bl2 :| U U2 |: U2V — U2 = 1- (—1) — (—1) .
b21 :’ U V2 ’: U2V — U2 = 1- (—1) — (—1) .
b22:’UOU3’+|U1U2 |:U2U1—U1U2:1'1—0'O:+1

we use ug = vy =0
due to the fact thatr =3 > 2 =m = n.
The Bézout is:

s =1

flx) =2 -8 =12+ 02> + 0 — 8

glr) =2 —4=02"+ 12> + 0z — 4
We have :
Uz = 1,U2:O,U1 :0,U0:—8
and
U3 :O,’UQZ ]_,Ul :0,U0:—4
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We calculate the elements of the matriz:
b =| uov1 |[= u1vg — uguy, (k =0) =0-(—4) — (-8)-0=10

b1 =| ugvg |= ugvg — ugua, (k =0)=0-(—4) — (-8)-1=38
bis =| uovs |= ugvg — upus, (k =0)=1-(—4) — (-8)-0=—4
b1 =| ugvg |= ugvg — ugua(k =0)=0-(—4) — (-8)-1 =8
bao =| ugus | + | u1vy |= uzvg—ugustusv; —usvy, (k = 1) = 1-(—4)—(-8)-0+0-0—0-1 = —4
baz =| ugvs | + | w1vs |= usvy —ugvs, (k=1)=1-0—-0-0=0

for the bys we use uy = vy =0
due to the fact thatr =4 >3 =m =n.

bs1 =| upvs |[= uzvg — vz, (k =0)==1-(-4) — (=8)-0=—4
bso =| uovs | + | wvs |= usvy —wgvs, (k=1)==1-0—-0-0=0

bss =| uovs | + | wvs | + | ugvs |= ugva—ugus, (k=2)=1-1-0-0=1

for bss we use ug = vy =0 and us = vs =0
due to the fact thatr =4 >3 =m =n.

The Bézout matriz is

0 +8 —4
B(f.g)=|+8 —4 0
-4 0 +1

i)
f@)=(x—-17"=12>—-322+ 32— 1
g(x) = (x — D)z +2)(x + 3) = 12° + 42° + 1z — 6
We have:
Uz = 1,U2 = —3,U1 = 3,'LLO =-1

and
Vg = 1,’()2:4,1}1 = 1,U0:—6

We calculate the elements of the matriz:

b1 =] ugvy |= uyvg — uguy, (k = 0) =3+ (=6) — (=1) -1 = —17

30



b1z =| ugua |= uavg — v, (k =0) = =3+ (=6) — (—1) - 4 = 22
biz =| uovs |[= uzvg — uous, (k =0) = 1-(=6) — (=1)- 1= =5
ba1 = ugus |= usvg — ugua, (k= 0) = =3+ (—6) — (—1) -4 =22
by =| ugvs | + | uyvy |= ugvo—ugustusvy —uvg, (k = 1) = =3-1—-4-341-(—6)—(—1)-1 = —
bas =| upvs | + | wvs |= ugvy —ugvs, (k=1)=1-1-3-1= -2
for the bys we use that uy = vy =0
due to the fact thatr =4 >3 =m =n.
bs1 =| uovs |= usvy — upvs, (k=0)=1-(—6) —(=1)-1= -5
bsa =| upvy | + | wivs |= ugvy —ugvs, (k=1)=1-1-3-1= -2
bss =| ugUs | 4 | u1vg | + | ugvs |= uzvg—ugus, (k = 2) = 1-4—(=3)-1 =7

for the bss we use ug = vy =0 and us = vs =0
due to the fact thatr =4 >3 =m = n.

The Bézout matrix 1s:

—17 22 -5
B(f,g)=122 —20 —2
-5 =2 47

Now we introduce two examples of generalized Bézout matrix:

iv) Let us consider the next set of three univariate polynomials:

pi(s) = s*+4s*+5s+2
Pss =< pas) = s*—4s* —3s+18 (4)
p3(s) = s+ 125> + 455+ 50

of degree 3.
8 8 16
By = Bez{p1,p2} = 8 —24 —6 (5)
—16 80 —96
-8 —40 —48
By = Bez{py,p3} = | —40 —168 —176 (6)

—48 —176 —160
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8 8
8 —24

B ] | 16 80
b= { By } | -8 —40
—40 168

| —48 176

v) Let us consider the next set of three univariate polynomials:

—16
—80
—96
—48
—176
—160

pi(s) = 2—6s>+11s—6

P33 = pa(s) = s3 — 75+ 145 — 8
p3(s) = s> —8s*+17s— 10
of degree 3.
1 -3 2
By = Bez{p1,p2}=| -3 9 —6
2 —6 4
2 -6 4
By = Bez{p1,ps} = | —6 18 —12
4 —12 8
1 -3 2]
-3 9 —6
(Bl | 2 -6 4
b= { B ] 2 -6 4
—6 18 —12
4 —12 8

32

(10)

(11)



3 Greatest Common Divisor of Polynomials(GCD)throug
Bézout Matrix

3.1 Barnett’s Theorems and Representation of
the GCD through Bézout Matrix

The greatest common divisor (GCD) of a polynomial set is proven to be
very important to many applications in applied mathematics and engineer-
ing. Several methods have been proposed for the computation of the GCD
of sets of polynomials. Most of them are based on the Euclidean algorithm.
They are designed to process two polynomials at a time and can be applied
iteratively when a set of more than two polynomials is considered . Con-
versely, there exist efficient matrix-based methods which can compute the
degree and the coefficients of the GCD by applying specific transformations
to a matrix formed directly from the coefficients of the polynomials of the
entire given set.The greatest common divisor has a significant role in Control
Theory, Network Theory, signal and image processing and in several other
areas of mathematics. A number of important invariants for Linear Systems
rely on the notion of the greatest common divisor of many polynomials.In
some cases,we are not sure if the GCD of a set of polynomials exists or not.In
this section we use an algorithm based on the QRCP method and Barnett’s
Theorems of GCD of polynomials through Bézout matrices in order to find
the GCD of a set of real polynomials.

To begin with,we introduce 2 theorems about the greatest common divisor
of two polynomials and Bézout matrix and some typical numerical exam-
ples.Barnett’s theorems provided for the first time an alternative to standard
approaches based on the Euclidean algorithm, since the GCD can be found
in a single step by solving a system of linear equations.

Theorem 5. [5] Let f(s) and g(s) two polynomials in one variable as given
in Definition 1. The greatest common diwisor of the polynomials f(s) and
g(s), denoted by ged(f,g), is a polynomial with degree deg{gcd(f,g)} < p
such that

dim { NullSpace (B(f. 9))} = deg{ged(f. 9)} = n — rank(B(f.g))  (12)

Theorem 6. [5] If ¢1,ca, ..., ¢, are the columns of the Bézout matriz B(f, g)
with rank n — k, then

i) the last n — k columns, i.e. Cyy1,...,Cpn, are linearly independent, and
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ii) every column c; fori =1,2,... k can be written as a linear combination
of Cka1y- -, Cpn -

Chi = Z hiiPe;, i=0,1,... k-1 (13)

j=k+1

iii) There are dy,dy, ..., dy such that d; = dj, - R - ond

k—j+1
[ | _ 1(k+1) -
dy—1 hkk )
dj—a| =q, | "D (14)
dy }lngrl)

with dy a non-zero real number.

Then, the GCD of the polynomials f and g, denoted by ged(f, g), is
ged(f,9) = dos* + dis" ™+ 4 dy1s + dy (15)

Remark 3. [5] Let f, g be two polynomials of degree n and p, respectively,
and let k = max{n,p}. Then deg{ged(f,g)} = k — rank(B(f,g)) or equiva-
lently rank(B(f,g)) = k — deg{ged(f,9)} < k. The equality holds when the
polynomials are coprime. Otherwise, rank(B(f, g)) < k, which means that
the Bézout matrixz is rank deficient.

Now,we are going to see some examples of how Barnett’s theorems apply
to Bézout matrices.

Examples 3. i) We have the following set of polynomials:
flx)=2*—-1
glx)=2—-1
f@)y=a>-1=(@x-D(z+1)=12"-0r -1

m =2
g(@) =2 —1=02"+ 1z -1

n =1 their GCD isx —1



0.7071
Nullspace|B(f, g)] = {0.70711

rankB(f,g) =1
dim[Nullspace] =1
deg(GCD)=2—-1=1
deg(GCD) =m —rank(B(f,g)) = dim[Nullspace B(f, g)]

ii)
flx) =2 8= (z—2)(2* + 22 +2) = 12 + 02 + 0z — 8
g(2) =2 —4=(r—2)(x+2)
m=3,n=2 their GCD isx —2
0o 8 —4
B(f,g)=18 -4 0
-4 0 1
0.8729
Nullspace[B(f,g)] = |0.4364
0.2182
rankB(f,g) =2
dim[Nullspace] = 1
deg(GCD)=3—-2=1
deg(GCD) =m —rank(B(f,g)) = dim[Nullspace B(f, g)]
iii)

fx)=(r—1)*=12"-32"+32 — 1
g(z) = (z = 1)@ +2)(x+3) =12° + 42° + 1z — 6
m=3,n=3 their GCD isxz—1

17 22 -5
B(f,g)= |22 -20 -2
-5 -2 7
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0.5774
Nullspace[B(f,g)] = |0.5774
0.5774

rankB(f,g) =2
dim[Nullspace] =1
deg(GCD)=3—-2=1
deg(GCD) =m — rank(B(f, g)) = dim[Nullspace B(f, g)]

The previous examples demonstrate the application of the first theorem,the
following examples are about the second theorem.

1)
fx)=2*-1=12"+0x —1,m =2

and
g@)=2—-1=02"+1r—1,n=1
we have: _
+1 -1
as follows: o
IR
C1 = _1_
and .
-1
Cy = -+1-
moreover
rank(B(f,g))=1=m—-k=2-1
as follows

e m—k=2—1= lcolumn,thus cy 1s linearly independent

e the ¢1 column is linear combination of ca, because

c1=(-1) ¢
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We observe that c¢; = ¢y and hFtt = —1.

because of this:

Thus
GCD(f,g) = doxr — dy

and dy € R*, we choose dy = 1 in order to be a monic polynomial and
finally we have:

and
g@)=2>—4=(z—-2)(x+2) =02+ 12 + 0z — 4,n = 2
so:
0 +8 —4
B(f.g)= [+8 —4 0
-4 0 +1
as follows: o
0
c1 = |[+8
__4_
S
Cy = —4
- 0 -
and o
—4
C3 — 0
moreover
rank(B(f,g)) =2=m—-k=3-1
thus
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o the lastm—k =3 —1 =2 columns co, c3 are linearly independent.
Indeed \i, Ao :

)

)\1'02‘{’)\2'032

+8 —4
)\1 . —4 + )\2 N O —
0 +1

—4X\ =0
/\220

o O O

then
/\1 = )\2 = O

e column cy s linear combination of co, c3, because

61:—2'02—4’03
We observe that c; = ca,¢j11 = c3 and R = —2 bt = —4.
due to this:

dy 1

dy| =dy |2

dy —4
Thus

GCD(f, g) = doZL‘ — 2d0

because the degree should be k = 1 according to the theorem,we choose
do = 1 for the same reason as the previous example and we have:

iii)
f@)=(x—-1)°=12"-322 43z —1,m=3

and
g@)= (- 1)(x+2)(z+3) =12+ 42 + 12 —6,n =3

as follows:

17 22 -5
B(f,g)= |22 -20 -2
5 -2 47
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We have:

cl = —|—22

Cy = —20

and

C3 = -2

we find

thus

o the last m — k = 3 — 1 = 2 columns, thus co, c3 are linearly inde-
pendent. Indeed A\, Ay :

0
)\1'CQ+)\2‘03: 0
10
+22 —5] 0
—2 +7] |0

and solving this linear system
)\1 == )\2 - O

e column ¢y s linear combination of co, c3, because

ci=—1-co—1-¢c3
We have ¢; = ¢y, ¢jp1 = c3 and hy"™ = —1, hy"™ = —1.
Thus:

dy 1

di| =dy |—1

dy -1
As follows

GCD(f,g) = dox — do
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working similarly with the previous examples dy = 1 and

GCD(f,g)=x—1

An important issue arising from Theorem 6 is the determination of the
coefficients of the GCD of the entire set of polynomials.
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3.2 The GCD of Polynomials via The QRCP
method

In this section, exploiting the rank deficiency property of the Bézout ma-
trix when a non-trivial GCD exists, we propose the application of the rank
revealing QR factorization to a Bézout matrix.

Theorem 7. [2] Let B € R™™ and rank(B) = r < n, where B is a Bézout
matriz as defined in (1). Then, there always exist a permutation matriz 11
of order n and a n X n orthogonal matriz ()

T _ _ Ry R r
QBH—R—[ N (16)
r m-—r

where Ryy is an X1 upper triangular matriz with non-zero diagonal elements.
Furthermore, if BII = [be,bey, .-, be,] and Q = [qu,-..,q,] presented in
column form, then

min{r,k}

be, = Z rieq; € span{qi,...,q}, k=1,2,....n (17)

i=1
which implies that range(B) = span{q, ..., q}-

Remark 4. [2]

Considering the values of ryy in (17) as the values of h,(:zl in (13), we can
directly obtain the coefficients d; of the ged(f,g) through the Bézout-QRCP
method. (This is fully demonstrated in Example 1 ). The application of
the QRCP method to Bézout matrices simultaneously reveals the rank and
an orthogonal base for the range of the Bézout matriz. Thus, by following
Theorem 6 the coefficients of the GCD can easily be determined in a more
efficient way.

Remark 5. Theorems 5, 6, and 7 also hold for the generalized Bézout matrix.
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Now,we are demonstrating a pseudo code of GCD computation through
QRCP method,|2]

Input: Real polynomials u(x) and v(x) of degrees n and m with n > m

tolerance e.
Output:An GCD for u(x) and v(x).

1 Form the vectors u and v with the coefficients of the u(x) and v(x)
respectively.

2 Compute B=Bez(u,v).

3 Perform QR decomposition with column pivoting in B ,BP=QR,where
P is a permuted matrix.

4 Apply 5 and 6,find the rank of BP and the degree of the GCD of the
polynomials u(x) and v(x).

5 Use 7 and solve an upper triangular linear system.

6 Compute the coefficients of GCD of the of the polynomials u(x) and
v(x) from the solution of the previous step.

e Bézout-Computation of the GCD through QR factorization with column
pivoting -QRCP factorization, [2]

Since the mn x n Bézout B matrix is always rank deficient when a
non-trivial GCD exists, it is more efficient to extract the coefficients
h; appeared in (13) using Remark 4, which indicates that the coeffi-
cients of the GCD of the polynomials can be derived from the QRCP
factorization of the Bézout matrix. The complexity of the QRCP fac-
torization is

3

flops , where r is the rank of B, which is less than the flops required
by the classical QR factorization. The appropriate correspondence of
the columns of the original and the permuted matrix, which reveal
the GCD coefficients (Remark 4), is symbolically implemented. In the
case where the rank deficiency of B is high, the Bézout-QRCP method
becomes more efficient. When m ~ n the required flops are about
O (2n’r — n?r?)

3
O (anzr —r*(mn +n) + QL) (18)
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3.3 Demonstrative Examples

The following examples demonstrates the steps of the current Bézout-QRCP
method for computing the GCD of set of many polynomials, [2].

Examples 4. i) We consider the pair of real univariate polynomials of
degree 5:

P pi(s) = s°— 245" + 2085 — 78652 + 1231s — 630 (19)
257 pa(s) = s° — 235" +1955% — 74552 + 12445 — 672

The exact GCD is s> —8s+ 7. The Bézout matriz of the given polyno-
mials in the set Pys is

-1 13 —41 —13 42
13 —145 185 1585  —1638
B = Bez{pi,p2} = —41 185 3275 —20345 16926 |(20)

—13 1585 —20345 77615 —58842
42 —1638 16926 —58842 43512

= [bcl bey, bey  bey bc5}

where b.,;, 1 = 1,2,...,5 are the columns of the initial Bézout matriz
B € R%5,

The following factorization is achieved by applying the QR factorization
with column pivoting (QRCP) to B, such that
BII=QR (21)

where

—0.0001306 0.017252  0.12062  0.52198 —0.84421
0.015928 —0.23579 —0.85628 —0.32276 —0.32674
Q = —0.20444  0.83472 0.029962 —0.44344 —0.25281 (22)
0.77995 —0.13851  0.31873 —0.46068 —0.24225
—0.5913 —-0.47767  0.38697 —0.46314 —0.24074

= [Q1 q2 43 44 CI5]

99513 —26543 2164.6 —75109 —26.384
0  —2577.6 751.71 1881.4 —55.567
R= 0 0 2.6078 —2.2362 —0.37162 (23)
0 0 0 7.2816- 10712 2.0961-10"14
0 0 0 0 0
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and

0000 1
00100

mI=[0 1000 (24)
10000
00010

After applying the QRCP factorization, the permuted Bézout matrix
Bperm = B - 11 s

—13 —41 13 42 -1
1585 185 —-145 —1638 13
Bperm = | —20345 3275 185 16926 —41 (25)

77615 —20345 1585 —58842 —13
—58842 16926 —1638 43512 42

The lowest right 2 X2 part of R is considered to be zero and, thus, QRCP
indicates that r = rank(B) = 3 and deg{gcd(Ps25)} =5—3 = 2.

From Theorem 6 we know that the last 3 columns of the initial Bézout
matriz B in (20), i.e. by, be,, and b, are linear independent. There-
fore, the first two columns of B, b., and b.,, can be written as a linear
combination of bey, be, and b.,. Thus, from (13) in Theorem 6 we have:

bey = 5 bey + B5 b, + B b, (26)
bey = h{be, + iV, + 170, (27)

Let dys*+dys+dy be the GCD of the polynomials. The coefficients h§3)

and hﬁg) giwe the coefficients dy and dy, respectively, and the constant
term dy is 1.

Using QRCP, the coefficients h§3) and hf’) of the GCD are derived
from the correspondence of the columns of B and Bper,. According to
Theorem 7, the columns q1, g2 and g3 of @ generate the range of Bperm.
From (17) we have:

Ecl be, = Ru1qa

écz = bey = Rioqi + Raa o

903 = Cep = Ri3qi + Rozqa + R33q3 (28)
bey = bey = Ruaqu + Roa g2 + R34 g3

bes = be, = Risqi + Ros g2 + Rss g3
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Since the columns b., and b., of the initial Bézout matrix B correspond
to /663 and /b\c5 of the permuted Bézout matric Bpeym, respectively, it is
necessary to express the columns 303 and /b\cs as linear combinations of
the columns gcl, ?J\CQ and 304. Since each column q;, i = 1,2,3 is given
by an analytic formula as the solution of the lower triangular system,
formed from the first, the second, and the fourth equation of (28), we
symbolically substitute in the third and the fifth equation of (28) and
we obtain:

b, = Risqi+ Rosqs+ Rasgs (29)
be;, = Risqi+ Rasqo + Ras g3 (30)

Therefore, we conclude that

= —1.14282712402397 b,, — 1.16326188998929 b, — 1.16617476075485 b,
= 0.142855765690511 by, -+ 0.163268401615028 b, + 0.166183704498703 b,

beg
bes

and from the correspondence of the columns of B and Bperm we have:

)

ey = —1.14282712402397 b., — 1.16326188998929 b, — 1.16617476075485 b,
es = 0.142855765690511 b, 4 0.163268401615028 b, + 0.166183704498703 b,

5

)

be, =
be, =

S

Thus,
K = —1.14282712402397 and A = 0.142855765690511
and we obtain the quadratic polynomial:
0.142855765690511 s* — 1.14282712402397 s + 1

If we convert it to a monic polynomial, dividing by 0.142855765690511,
we finally compute the GCD of the polynomials in Pays. That is

ged(Pys) = 1.0 52 — 7.999866988216918 s + 7.000067481815496  (31)

We consider the pair of real univariate polynomials of degree 5:

pi(s) = s°+ st =373+ 1652+ 97s — 10
P = 5 4 3 2
pa(s) = s> —13s* +53s° — 72s° + 455 — 50

The GCD is s> —Ts +10. The Bézout matriz of the given polynomials
in the set P is:

14 -90 88 52 40
-90 216 -84  —1266 180

B = Bez{p1,p2} = 88 —84 —3082 6986 —2380 :[cl Co C3 C4 65}

52 —1266 6986 —10084 1520
40 180 —2380 1520 4400
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where ¢y, ¢, c3, ¢4, C5 are the columns of the initial Bézout matriz B.

The following factorization is achieved by applying the QR factorization
with column pivoting to B:

BII=QR

where

—0.00013064 0.017252  0.12062  0.52198 —0.84421
0.015928 —0.23579 —0.85628 —0.32276 —0.32674

Q= —0.20444  0.83472 0.029962 —0.44344 —0.25281 | [ q1 @ ¢3 @1 5 |
0.77995 —0.13851  0.31873 —0.46068 —0.24225
—0.5913 —0.47767  0.38697 —0.46314 —0.24074

—1.9426 0.2052 0.7684 —0.0949 —0.0021 000O0T1

0 0.4812 —0.1723 0.0229  0.0015 00010

R = 0 0 —0.1402 0.0981 —-0.0140 |, and II=|[0 0 1 0 O
0 0 0 0 0 10000

0 0 0 0 0 01000

The permuted Bézout matrix Bpeym = B - 11 after the QRCP factoriza-
tion 1s
52 40 13 -90 14
—1266 180 —145 516 —90
Bper = 6986 —2380 185  —84 88 | =[ac, G Gy Goy G |
—10084 1520 1585 —1266 52
1520 4400 —1638 180 40

Now the first Barnett’s theorem indicates that rank(B) = 3 and degree(GC D) =
5O—3=2.

From Theorem 6 we get that the last 3 columns of the initial Bézout ma-
triz B, c3, ¢4, cs5, are linear independent and thus the other two columns
of B, c1, co, can be written as a linear combination of c3, c4, c5, as
indicates formula 13 of Theorem 6:

Co = h§3)c3 + hg4)04 + hg5)c5

= hg?’)c;), + h§4)04 + h§5)c5
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The coefficients h§3) and hf’) give the coefficients of x and x* respec-
tively, and the constant term of the GCD of the polynomials is 1 (for-
muls 13).

The coefficients h§3) and h§3) of the GCD will be derived from the cor-
respondence of the columns of B and Bperm. Theorem 7 denotes that
the columns q1, q2, qs of QQ generate the range of B. Thus, a., and a.,
are written as linear combination of a.,, ac,, a.,. From equation 17 of
Theorem 7 it holds that

Ay = Riiqq

e, = Raoq1 + Roago
ey = Rizqn + Raszqa + R33qs
Solving symbolically the previous under triangular system with respect
to q1, q2, q3 and substituting to
ey, = Riaq1 + Rosqa + R34q3
and
ac; = Risqi + Rasqa + Rasq3

we conclude that

ae, = —0.697a,, — 0.8537a,, — 2.504a.,

and
a., = 0.098a., — 0.35099a., + 0.0384a,

From the correspondence of the columns of the initial and permuted
matrices we get that
dphS) = —0.697

and
d,hS? = 0.098.

Thus GCD = 0.0982% — 0.697x + 1 and making the GCD monic poly-
nomaial by dividing with 0.100 we finally compute the greatest common
divisor of the polynomials:

GCD = 1.0002% — 7.11222 + 10.204

Thus
GCD = 2> -7z + 10
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iii) Let us consider the next set of three univariate polynomials:

p1(s)
pa(s)
p3(s)

P3,3 =

of degree 3. Their exact GCD

s3—6s2+11s—6
s —Ts?+ 14s — 8
s —8s%2 4+ 17s — 10

(32)

is s> — 3s + 2.

The generalized Bézout matriz of the given polynomials in the set Ps3

5

1 -3 2
-3 9 —6
B 2 —6 4
B:[B;]: 5 6 4 [ be, bey ey | (33)
—6 18 —12
4 —12 8|
where
1 -3 2
By = Bez{p1,p2}=| -3 9 —6 (34)
2 —6 4
and
2 —6 4
By = Bez{p1,p3s} = | -6 18 —12 (35)
4 —12 8
and c1, co, c3 are the columns of B.
We apply the QRCP factorization to B, such that
BII=QR
where
[ —0.1195 —0.9008  0.0782 0.1362  0.0739 0.3796
0.3586 0.1955 —0.1646 0.2821 —0.5820 0.6228
0 = —0.2390 —-0.0528 —0.9655 —0.0125  0.0871 —0.0140( 6)
- —0.2390 0.1333 0.0583 0.9320 0.1821 —0.1407
0.7171 0.0188 —0.1214 0.0791 0.6675 0.1371
| —0.4781 0.3597 0.1285 —0.1636 0.4118 0.6552 |

[Q1 q2 43 44 CI5]

48



[ 25.0998 —16.7332 —8.3666 |
A Y
R= andII=11 0 0 (37)
0 0 0 010
0 0 0
i 0 0 0]

where q1, q2, q3, qa, and g5 are the columns of Q). The lowest right 5 x 2
part of R is zero and thus, QRCP indicates that r = rank(B) = 1. The
degree of the GCD is deg{gcd(Ps33)} =3 —r = 2.

Theorem 6 denotes that the last column bs of the initial Bézout matrix
B in (33) is linear independent and the other columns by and by are
multiples of by. Working similarly with Fxample 1 we conclude that:

ged(Ps3) = s* — 3.0000s + 2.0000 (38)

Let us consider the next set of three univariate polynomials:

pi(s) = s3+4s2+5s5+2
Pyz =1 pa(s) = s —4s* —3s+18 (39)
p3(s) = s34 12s% + 455 + 50

of degree 3. Their exact GCD is s + 2.

The generalized Bézout matriz of the given polynomials in the set Ps3
18

8 8 —16 ]
8§ =24 80
Bl | -16 80 -9 |
B_{Bz]_ 8 —40 —ag | =Ll be be ] (40)
—40 —-168 —176
| 48 176 —160 |
where
8 8 16
By = Bez{p1,p2} = 8 —24 —6 (41)
—-16 80 —-96
and
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8 —40 —48
By = Bez{p1,ps} = | —40 —168 —176 (42)
—48 —176 —160

and c1, cg, c3 are the columns of B.

We apply the QRCP factorization to B, such that

BII=QR
where
[ —5.8521e — 002 —1.1420e — 001 3.5384e — 001 —2.0436e — 001 —6.9655e¢ — 001
—2.9260e — 001 —1.9632¢ — 001 8.0675¢ — 001 —6.1589¢ — 002 1.0594e — 001
0 — —3.5112e¢ — 001 —8.7254e¢ — 001 —3.3968¢ — 001 —1.3878¢ — 017 —2.7756¢e — 016
- —1.7556e — 001 3.2079¢ — 002 9.9074¢ — 002 9.6373e — 001 —1.2922¢ — 001
—6.4373e — 001 2.4252¢ — 001 4.2460e — 002 —1.2354¢ — 001 4.9631e — 001
| —5.8521e — 001 3.5672e — 001 —3.1138¢ — 001 —1.0200e — 001 —4.9049¢ — 001
= |[a @ ¢ u o ]
[ 273.408 252.8089 58.0524
8 —62.671(1) —31.3363 00 1
R = andII=10 1 0 (44)
0 0 0 10 0
0 0 0
I 0 0 0

where q1, 2, q3, qa, and g5 and qg are the columns of Q). The low-
est right 5 X 2 part of R is zero and thus, QRCP indicates that r =
rank(B) = 2. The degree of the GCD is deg{gcd(Ps3)} =3 —2=1.

Theorem 6 denotes that the first column by of the initial Bézout matrix
B is linear independent and the other columns by and bs are multiples
of bi. Working similarly with Fxample 1 we conclude that:

ged(Ps3) = 1.000s + 2.000 (45)

Remark 6. From,Numerical Linear Algebra,[1], we know that the following
Uy U2 v Uim I by
system has this solution: 0 i ‘. Ur:n2 xz = 5
0O ... 0 Unm T, b
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Now,we have this system of equations

L

U1

r1 =

we continue and we conclude that:

m
bi — D s WigT

Uy

xTr; =

i=23,...

As,we notice in 28 the solution of this system reminds us the backward
substitution of a linear triangular system as we know from the Numerical
Linear Algebra. We conclude that for the case of n = 1,2,3 we use the same
equations in order to solve the system immediately through symbolical pack-
ages. However,we are studying if we can expand the system of solutions for
n>4.
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3.4 Comparison of Methods

An alternative way of specifying the GCD of the polynomials is through the
following theorem,[7]

Theorem 8. Let B be the generalized Bézout matriz of m~+1 polynomials. If
JBJ=QR isthe QR factorization of J B J, where J a permutation matrix
with ones in its anti-diagonal and zeros elsewhere, then the last non-zero row
of R gives the coefficients of the GCD of the polynomials.

Now,we are demonstrating a pseudo code of GCD computation through
JBJ method

Input: Real polynomials u(x) and v(x) of degrees n and m with n > m
tolerance e.

Output:An GCD for u(x) and v(x).

1 Form the vectors u and v with the coefficients of the u(x) and v(x)
respectively.

2 Compute B=Bez(u,v).
3 Compute the JBJ matrix where J is a permuted matrix.
4 Compute the QR decomposition of JBJ :QR=JBJ.

5 Compute the coefficients of GCD of the of the polynomials u(x) and
v(x) from the last non-vanishing column of R.

The following examples demonstrates the steps of the current Bézout-JBJ
method for computing the GCD of set of many polynomials.

Examples 5. i)
fx)=(x4+1)° =12° + 52 + 102> + 1022 + 52 + 1,m = 5
and
g(x) = (x—1)(x+1) =02° + 02" + 02 + 12> + 0z — 1,n = 2

we have:

0 0 1 0 -1
0 1 5 -1 -5
1 5 9 -5 =10
0O -1 -5 —-15 -—11
-1 -5 —-10 —-11 -5

Bezout =



-5 11 —-10 5 -1
1 =15 5 -1 0
JsBJs = [—=10 5 9 -5 1
d -1 -5 1 0
-1 0 1 0 O

—0.5703 —0.4441 —0.4159 —0.3233 0.4472
0.7777  —0.0328 —0.2993 —0.3233 0.4472

Q= [—-0.2592 0.7994 0.1770 —0.2498 0.4472
0.0518 —0.3964 0.7989  0.0441 0.4472

0 0.0739 —0.2607 0.8524 0.4472

—19.2873 6.9994 —2.2813 0.311114.2581

0 13.5280 —6.5813 1.2435 —8.1903
R = 0 0 —1.8660 0.5928 1.2732
0 0 0 0.0735 —0.0735
0 0 0 0 —0.0000
0 00O0T1
1 0000
P=101000
00100
0001O0

and now an alternative way of the GCD computation of 4 .

ii) We consider the pair of real univariate polynomials of degree 5:

pi(s) = s°+ st =373+ 1652 +97s — 10
P = 5 4 3 2
pa(s) = s> —13s* 4+ 53s® — 72s% + 455 — 50

The GCD is s> — 7s + 10. The Bézout matriz of the given polynomials
in the set P is:

14 —90 88 52 40
-90 216 -84  —1266 180
B = BBZ{pl,pQ} = 88 —84 —3082 6986 —2380 = [ Ci Co C3 C4 Ch }

52 —1266 6986 —10084 1520
40 180 —2380 1520 4400

where c1, o, C3, C4, C5 are the columns of the initial Bézout matriz B.
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Now the J permuted matrix is:

[ —0.8411

—0.2905
Q= 0.4549
—0.0344
—0.0076

[ —1.9426
0

0
0
0

<
I
o oo o

0.4915
—0.7583
0.4172
—0.0961
0.0078

0.2052
0.4812
0
0
0

and the permuted matrix:

4400
1520

Bper = | —2380
180

40

Now if we divide the last non vanishing row with —0.1402 we have that

the ged is

Remark 7. The complezity of the previous factorization, [2],for a mn x n
Bézout matrix is O(2n2(mn — %)) flops and, if m ~ n, the required flops are

about O(2n*).

Remark 8. Remarks upon the computational complexity of the methods.[2]

The Bézout QRCP exploits the rank deficiency n—r of the matrices, which
1s equal to the degree of the GCD of the polynomials. Thus, the higher the
GCD degree is (i.e higher rank deficiency of the Bézout matriz) the more ef-
ficient the method becomes. If the rank of the Bézout matrixz r is significantly

1520
—10084
6986
—1266

_ o O O O
O O = OO
S OO~ O

—0.1609
—0.4981
—0.5699

0.6258
—0.0981

0.7684
—0.1723
—0.1402

0
0

o O O o

—0.0320
—0.0565
—0.0759
0.0336
0.9944

—0.0949
0.0229
0.0981

0
0

—2380 180
6986 —1266
—3082 —84
—84 516

52 88 -90

GCD = s> —7s+ 10

o4

0.1554 ]
0.2987
0.5371
0.7725
0.0369

—0.0021 |
0.0015
—0.0140

0

0

40
52
88
-90
14



less than the maximum degree n of the polynomials, then the complexity of
the Bézout QRCP method is one order less comparing to the complexity of
the classical Bézout QR. However,as we notice in the table above in section
3.4 if the rank deficiency is not high we can choose either the QRCP or the
QR-JBJ,it depends on the problem that we are challenging.

Example 3. In the table below we summarize the results obtained regarding
the numerical relative error for the computed GCD of the polynomial sets in
Ezxample 4

Table 1: Numerical relative error for the GCD of Example 4 ii).
Algorithm Tolerance Rel. Error

Bézout-QRCP 10710 — 10716 O (10713)
Bézout-QR 10710 — 10716 O (10712)

The tolerance indicates the different levels of precision (numerical accu-
racy) where a number is considered to be zero. For the particular sets of
polynomials a tolerance between 1071% and 10716 was selected .
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3.5 Conclusions

We proposed the application of the QR factorization with column pivoting
to a Bézout matrix in order to compute the coefficients of the GCD of sets
of several polynomials in a more efficient way.We also presented an overview
of the most frequently applied structured matrix-based representations:i) the
Bézout QR. As the number of the polynomials in the set decreases the Bézout
QRCP becomes more efficient. The Bézout QRCP exploits the rank defi-
ciency n — r of the matrices, which is equal to the degree of the GCD of the
polynomials. Thus, the higher the GCD degree is (i.e higher rank deficiency
of the Bézout matrix) the more efficient the method becomes. If the rank of
the Bézout matrix r is significantly less than the maximum degree n of the
polynomials, then the complexity of the Bézout QRCP method is one order
less comparing to the complexity of the classical Bézout QR. However,as we
notice in the table above in section 3.4 if the rank deficiency is not high
we can choose either the QRCP or the QR-JBJ,it depends on the problem
that we are challenging. The study of the approximate GCD case is also a
topic of great interest. A thorough comparison among the existing meth-
ods and possible extension of the QRCP method to the approximate case
is under consideration. Furthermore, a proper framework for the algebraic
and geometric properties of the GCD of sets of many polynomials in a mul-
tidimensional space is currently under study in order to define and evaluate
exact or approximate multivariate GCDs given by the QRCP method. This
is a challenging problem for further research, because several real-time ap-
plications, such as image and signal processing, rely on GCD methods where
multivariate polynomials (especially in two variables) are used.
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Appendix

In this section,we present you the Matlab Codes that we use

function [Q,R]=qr_gs(A)

[n,mj=size (A);
R(1,1)=norm (A(:

for k=2:m
R(1:k—1,k)=Q(1:
z=A(1:n,k)-Q(
R(k, k)—norm(z
Q(1:n,k)=z/R(

end

end

function [Q,R]=qrfq(A)

% function qrfq calls the function housel

n=size (A);

Q=eye(n (1) ,n(1));
smin=min (n(1)—-1,n(2));
for k=1:smin

if sum(abs(A(k:n(1),k))) =0
[u(k:n(1)),s]=housel (A(k:n(1),k));
1 Ak, k)=s;

u(k:n(1))=[1;zeros(n(1)=k,1)];

end

for i=k+1:n(1)

A(i,k)=u(i);
end
uk (k)=u(k);
wuzu (k:n (1)) ;

b=2/(uuxuu');
for j=k+1:n(2)
sumi=0;
for i=k:n(1)
sumi=sumi+u (i)*A(i,j);
end
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s=bxsumi ;

for i=k: n(l)
A(L,J)=A(1,))=s*u(i);
end
end
for j=1:mn(1)
sumi=0;
for i=k:n(1)
sumi=sumi+u (1)*Q(i,j);
end
s=b*xsumi ;
for i=k: n(l)
Q(1,J)=Q(1,j)—s*u(i);
end
end
end

for j=1:n(2)
for i=j+1:n(1)
A(l,j)=0;
end
end
QQ";
s=min(n(1) ,n(2));
R=zeros (size (A));
R(1:s,1:8)=A(1:s,1:8);

function [u,s]=housel (x)
n=length (x);
m=max (abs (x) ) ;
if m =0
u=x/m;
suma=0;
for i=1:n
suma=suma+u (i) " 2;
end
i=1;
while u(i)==
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i=1+1;
end
s=sign (u(i))=*sqrt (suma);
u(l)=u(1)+s;
S=N*S ;
else
u=zeros(n,1);
s=0;
end

R = A;
Q = eye(m);

% 1 am going to use a permutation matrix.

P = eye(n);

% Compute the norms.

for i=1 :n
colnorm (i) = R(:,1)'"*R(:,1)
end

%Swapping procedure
for i=1:n

%Find max col norm
maxcolnorm = colnorm(i); perms = 1i;
for j =141 :n
if (colnorm(j) $>$ maxcolnorm)

perms = j;
maxcolnorm = colnorm (j);
end
end
%Break
if ( colnorm(perms) = 0 )
break ;
end

Y%Swap P
temp = P(:, i);
P(:, i) =P (:, perms)
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P(:, perms) = temp

%Swap R
temp = R(:, i);
R(:, i) =R (:, perms)
R(:, perms) = temp
%Swap colnorm
colnorm = colnorm*P

% Get the Householder vector from get_house.
v = gethouse(R(:,1),1,m)

% Apply the transformation to R from the left.
R = R—vx(v'*R)

% And also apply it to Q from the right.
Q=0Q — (Qxv)*v'

%Norm downdate
if i"=n
colnorm (i+1:n) = colnorm (i+1:n) — $R(i, i+l
n) 2%

end
end

% Get the Householder vector from get_house.
v = gethouse(R(:,n) ,n,m)

% Apply the transformation to R from the left.
R=R-v *(v' xR)

% And also apply it to Q from the right.
Q=Q— (Qx* v)x v’
R = R«P'; % put the columns back to its original
order!
function [v] = gethouse(x,i,j)

% Initialization .
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n = length(x);
v = zeros(n,1);

% Copy that part of x to be worked on to the
corresponding positions in v.

v(i:j) =x(i:j);

% Compute the proper Householder vector.
v(i) = v(i) — norm(x(i:j));

% Normalize the result so that H=1 — vxv'. Includes
an error check for
% the trivial reflection .

if ((v'xv) $>$ 0)
$v = vxsqrt (2/(v'*v))$;
end

function B =bezoutmatrix(u,v)
n=length (u)—1;
m=length (v) —1;

if nmxn

v=[zeros (1,n-m) v];
end

if nm>n

temp=u;

u=v;

v=temp ;
n=length (u) —1;
m=length (v)—1;
v=[zeros (1,n-m) v];
end

B=zeros (n);

for i=1:n

for j=1:n
mij=min ([1,n+1-j]) ;
for k=1:mij
B(i,j)=B(i,j)+u(j+l+k—1)*v(i+1-k) —u(i+l-k)=*v(j+1+k

—1);
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end
end
end

Also,there are two commands in Matlab : [Q,R]=qr(A), [Q,R,P]=qr(A)
for the QR permutation of a A matrix without and with column pivoting
respectively.
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