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Περίληψη

Στην παρούσα εργασία παρουσιάζεται μια απόδειξη του θεωρήματος Hurewicz για
ζεύγη χώρων (X,A). Το θεώρημα Hurewicz (σχετική περίπτωση) παρέχει έναν ισομορ-
φισμό μεταξύ ομάδων ομολογίας και πηλίκων ομάδων ομοτοπίας για (n− 1)-συνεκτικά

ζεύγη χώρων (X,A), όπου το A είναι κατά τόξα συνεκτικό. Διατυπώθηκε από τον

Witold Hurewicz το 1935, ο οποίος εισήγαγε, επίσης, την έννοια της ομοτοπίας με-
ταξύ χώρων, όρισε τις απόλυτες και σχετικές ομάδες ομοτοπίας διάστασης n ≥ 2 και

σχημάτισε μια μακρά ακολουθία για τις ομάδες αυτές. Η απόδειξη που επιλέξαμε να

παρουσιάσουμε εδώ δεν κάνει χρήση CW προσέγγισης, αλλά ακολουθεί έναν πιο ο-

μολογιακό τρόπο σκέςης. Οδηγό αποτέλεσαν οι αποδείξεις που περιλαμβάνονται στις

πηγές [1], [2] και [3].

Η παρούσα εργασία διαρθρώνεται ως εξής:

Στο Κεφάλαιο 1 δίνονται απαραίτητες έννοιες σχετικές με τους τοπολογικούς χώ-

ρους, διάφορες τοπολογίες και τοπολογικές ιδιότητες. Παρουσιάζονται βασικές πράξεις

επί χώρων, όπως κύλινδροι, κώνοι, suspensions, κύλινδροι απεικόνισης, αλλά και συγ-
κεκριμένοι χώροι που εμφανίζονται στην αλγεβρική τοπολογία, όπως ο χώρος βρόχου,

ο Η-χώρος (Hopf-space), τα simplices, τα simplicial complexes και τα CW complexes.
Ιδιαίτερα αναλύεται ο n-διάστατος πραγματικός προβολικός χώρος RP n

.

Στο Κεφάλαιο 2 ασχολούμαστε με τη θεωρία ομοτοπίας. Εισάγονται οι έννοιες

της ομοτοπίας μεταξύ απεικονίσεων, της παραμόρφωσης συστολής, και των ομοτοπι-

κά ισοδύναμων χώρων. Στη συνέχεια ορίζονται η θεμελιώδης ομάδα ενός χώρου, οι

ομάδες ομοτοπίας ανώτερης τάξης και οι σχετικές ομάδες ομοτοπίας ζεύγους χώρων.

Κάνοντας χρήση του χώρου βρόχου, των mapping �bres και εφαρμόζοντας συναρτητές
σχηματίζονται μακρές ακολουθίες ομάδων ομοτοπίας, οι οποίες αποδεικνύονται τελικά

ακριβείς.

Στο Κεφάλαιο 3 ορίζεται η θεωρία ομολογίας αξιωματικά. Επιλέγεται η singular
ομολογία προκειμένου να δειχθούν η ύπαρξη ομολογίας και η μοναδικότητά της ως

προς ισομορφισμό, ενώ η simplicial και η cellular ομολογία εισάγονται συνοπτικά στο
τέλος του κεφαλαίου. Με τη χρήση τους γίνονται ορισμένοι υπολογισμοί ομάδων, όπως

του κύκλου και του προβολικού χώρου διάστασης n.
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Το Κεφάλαιο 4 ξεκινά με ορισμένα στοιχεία για την simplicial προσέγγιση χώρων.
Ακολούθως παρουσιάζονται κάποια σημαντικά για την αλγεβρική τοπολογία θεωρήματα

και ορισμένα εξ αυτών αποδεικνύονται αναλυτικά. Πρόκειται για το θεώρημα της cellular
προσέγγισης, το θεώρημα της CW προσέγγισης χώρων και το excision θεώρημα για
την ομοτοπία.

Τέλος, στο Κεφάλαιο 5 περιλαμβάνεται η απόδειξη του θεωρήματος Hurewicz. Πιο
συγκεκριμένα διατυπώνονται το απόλυτο και το σχετικό θεώρημα Hurewicz και απο-
δεικνύεται το σχετικό με μια προσέγγιση από την σκοπιά της ομολογίας. Το απόλυτο

προκύπτει ως πόρισμα μέσω του σχετικού θεωρήματος.



Abstract

In this thesis we present a proof of the Hurewicz theorem. The Hurewicz theo-
rem (relative case) provides an isomorphism between homology groups and quotients
of homotopy groups of (n − 1)-connected pairs of spaces. It was stated by Witold
Hurewicz in 1935, who also introduced the notion of homotopy equivalence between
spaces, de�ned absolute and relative homotopy groups of dimension n ≥ 2 and formed
the long sequence of these groups. Although we devote a chapter to CW approxima-
tion of spaces and the excision theorem in recognition of their signi�cance in algebraic
topology, our proof of the Hurewicz theorem does not make use of them, like many
others do. Instead, it is based on a more homological approach, which follows the
proofs found in [1], [2] and [3].

The thesis is structured as described below:
In Chapter 1 the necessary background about topological spaces, topologies and

topological properties is introduced. Basic operations on spaces, such as cylinders,
cones, suspensions and mapping cylinders, are de�ned. Also, particular spaces that
are signi�cant in algebraic topology are presented. More speci�cally, we introduce
loop spaces, H-spaces, simplices, simplicial complexes and CW-complexes. There is
also a special reference to the real projective n-space.

Chapter 2 contains information regarding homotopy theory. The notions of ho-
motopy between maps, deformation retraction and homotopy equivalent spaces are
presented. Their presentation is followed by the introduction of the fundamental
group and higher homotopy groups of a space. The group construction for n > 1 is
given by the fundamental group of loop spaces. After that we generalise to relative
homotopy groups, or in other words homotopy groups that refer to pairs of spaces,
and we form, with the help of loop spaces, of mapping �bres and with the application
of functors, long sequences of these groups that turn to be exact.

In Chapter 3 homology theory is de�ned axiomatically. Singular homology is
chosen in order to show the existence of a homology theory. Its uniqueness up to
isomorphism is ensured as well. At the end simplicial and cellular homology are
presented brie�y and some computations of homology groups are executed.

Chapter 4 includes some major theorems that are considered basic in algebraic
topology. More speci�cally, we shortly discuss simplicial approximation, we state
and prove the cellular approximation and the CW approximation theorems in detail,
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while we mention without proof the excision theorem of homotopy.

In Chapter 5, �nally, the Hurewicz relative theorem is shown, using a homological
approach. The absolute Hurewicz theorem is just stated, since its proof follows from
the relative case.
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Introduction

Algebraic topology employs algebraic tools to study topological spaces. It aims
at �nding invariants that can lead to the classi�cation of topological spaces up to
homeomorphism or at least up to homotopy equivalence. Algebraic invariants of the
kind are homotopy groups, homology groups and cohomology groups. Here we are
concerned with homology and homotopy theories, as well as their similarities and
their relation to one another expressed by the Hurewicz theorem.

Homology theories were historically the �rst to come. Their de�nition is ax-
iomatic, while particular examples include simplicial homology, singular homology
and cellular homology. It can be shown that all these theories give homology groups
for a space that are isomorphic. Roughly speaking, homology groups classify exist-
ing n-holes in a space up to chain homotopy. One of the axioms they satisfy is the
excision axiom, which facilitates their computation tremendously. Also, long exact
sequences of homology groups emerge almost e�ortlessly, and provide an additional
tool for calculations.

Moving on to homotopy theory, we start with spaces X of low dimension to see
that the fundamental group π1(X) su�ces to enable their study. The fundamen-
tal group consists of equivalence classes of basepointed maps f : S1 −→ X, where
homotopy of maps is the equivalence relation. Its computation can be carried out,
if needed, using the van Kampen theorem or actions on covering spaces. However,
π1(X) fails to provide helpful information when it comes to spaces of higher dimen-
sion. For example, if we take n-spheres, perhaps the simplest noncontractible spaces,
we get π1(S1) ∼= Z and π1(Sn) ∼= 0, n ≥ 2. Therefore spheres Sn with n ≥ 2 can not
be distinguished via their fundamental group and �ner tools are needed.

To this end, higher homotopy groups πn(X) are considered, since they serve as the
natural higher dimensional analog of the fundamental group. They classify all con-
tinuous maps from Sn to pointed topological spaces X up to homotopy equivalence.
Their study has shown that, fruitful as they might be, they are far from easily tamed.
Basic machinery, like the van Kampen theorem for fundamental groups or the exci-
sion theorem and Mayer-Vietoris sequences for homology groups, is not applicable to
πn groups, if n ≥ 2. This fact makes their computation very hard.

Let us examine n-spheres again. Based on intuition someone might conject that
πm(Sn) ∼= 0, when m > n. After all, the same intuitive idea has quite right led us
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to believe that Sn possesses no (n + 1)-holes, hence Hm(Sn) ∼= 0 for m > n. But
higher homotopy groups are weird. As Hopf showed in 1931 in [4], there exists a map
f : S3 −→ S2 that is not homotopic to the constant map. To be more speci�c, f
generates the 2-sphere's third homotopy group, π3(S2) ∼= Z, and this counterintuitive
result crushes any hope for simplicity, whenm > n. Computation of higher homotopy
groups proves to be a challenge and investigation of the homotopy groups of spheres
for m > n is till this day an open research �eld.

Witold Hurewicz, who was the one to introduce the notion of homotopy, to de�ne
homotopy groups, absolute and relative, and to construct a long sequence of homo-
topy groups, which was later proved to be exact, studied the relationship between
homology and homotopy groups right from their conception. He constructed the
homomorphisms

hn : πn(X, x0) −→ Hn(X;Z), n ≥ 1

hn : πn(X,A, x0) −→ Hn(X,A;Z), n ≥ 2

which in general are neither injective nor surjective. However, they are isomorphisms
if X is (n − 1)-connected or (X,A) is (n − 1)-connected and A simply connected,
respectively. If A is just path connected in the relative case, one takes a quotient πn′ of
the homotopy group instead to ensure that the induced hn

′ is again an isomorphism.
Hurewicz stated the homomorphisms and this 'Equivalence theorem' and said he
could prove the isomorphism part, though he did not publish a proof for the relative
case ([5]). Various proofs were written afterwards.

The Hurewicz theorem and its various proofs give an insight in the di�erences
and the similarities between homology and homotopy groups. It also provides an
way to calculate the �rst nontrivial homotopy group of a space or a pair of spaces, by
executing the much easier computation of their homology group. πn(Sn) ∼= Z, n ≥ 2,
comes as an easy corollary. Unfortunately its bene�cial e�ect stops at the �rst non
trivial homotopy group, because homotopy fails the excision axiom for larger n.

Concluding this introduction, let us ponder on a heretical why to bother with
homotopy theory at all. Why should we need theorems like the Hurewicz to unlock
homotopy theory's mysteries and not be content with just homology and cohomology
theories? Apart from homotopy groups being an interesting structure that one would
like to study just out of curiosity and for the pleasure of it, homotopy theory can
also contribute to our theoretical knowledge and comprehension of spaces, help us
answer classical questions regarding manifolds and maps between manifolds, deal with
some extension or lifting problems, contribute to the development of new branches of
algebraic topology, such as K-theory, or produce results in other �elds of mathematics,
such as graph theory, singularity theory and more. Additionally, it appears to have
applications in physics, chemistry, biology and medical science [6].



Chapter 1

Spaces

1.1 Topological spaces

Algebraic topology revolves principally around the category of topological spaces
and its subcategories. Thus we commence by de�ning the category of topological
spaces. A brief introduction to categories in general is provided in the Appendix.

De�nition 1.1.1. A topological space is an ordered pair (X,T ), where X is a set

and T is a collection of subsets of X, satisfying the following axioms:

1. ∅ ∈ T and X ∈ T .

2. If Ai ∈ T , i ∈ I, then
⋃
i∈I
Ai ∈ T .

3. If Ai ∈ T , i ∈ {1, ..., n} = S, n ∈ N, then
⋂
i∈S

Ai ∈ T .

Elements of T are called open sets and the collection T is called a topology on X.

Remark. Naturally enough, a subset K ⊂ X is closed if its complement in X is open.

Remark. Formally, a topological space is denoted with the pair (X,T ). However, we
will scarsely use the formal notation. We will use a simpli�ed X instead.

De�nition 1.1.2. Given a set X and two topologies T1 and T2 on X, we say that

T1 is coarser than T2 or T2 �ner than T1 when T1 ⊂ T2.
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Example 1.1.3. On a set X T1 = {∅, X} is the coarsest and T2 = P (X) is the
�nest topology.

It is generally di�cult to describe all the open sets in a topology T . However,

one can usually use an appropriately chosen and more easily described subcollection

of spaces in T , noted with B, which can 'produce' any open set in T as a union of

sets in B.

De�nition 1.1.4. A subcollection B of a topology T on a topological space X is

a basis for T if, given any open set U ∈ T and point x ∈ U , there is an open set

B ∈ B such that x ∈ B ⊂ U .

Example 1.1.5. The real line (R,U ), where U is the topology produced by the
basis B = {(a, b) ⊂ R| a, b ∈ Q}, is a topological space.

Example 1.1.6. The standard topology of Rn is the collection of open sets in Rn.
Here a set U is open i� for every p ∈ U there is an open ball B(p, ε) with center p
and radius ε > 0 such that B(p, ε) ⊂ U .

De�nition 1.1.7. Let (X,TX) be a topological space and A be a subset of X. A

becomes a topological space (A, TA), where TA is the relative topology of A in X

de�ned as TA = {U ∩ A| U ∈ TX}.

Example 1.1.8. I ⊂ R becomes a topological space, when we endow it with the
relative topology in R.

De�nition 1.1.9. Let (X,TX), (Y, TY ) be topological spaces. A function f : X −→
Y is called continuous on X if the inverse image f−1(U) of every open subset U ⊆ Y

is open in X. Using only notation, we get that f is continuous, i� f−1(U) ∈ TY

∀ U ∈ TX .

Taking as a class of objects Obj(T ) all the topological spaces, as a set of mor-
phisms between objects Hom(X, Y ), X, Y ∈ Obj(T ), the set of all continuous
functions from X to Y and as composition rule the usual composition of functions,
we form the category T of topological spaces.

Homeomorphisms form a subset in the set of all continuous functions in T . They

are de�ned as:

De�nition 1.1.10. A function f ∈ Hom(X, Y ) of T is called a homeomorphism

if it is a bijection and its inverse f−1 belongs to Hom(Y,X). Two topological spaces

X and Y are homeomorphic if there is a homeomorphism f between them. If so,

we write X ≡ Y .
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In topology there are several properties, called topological properties, which re-
main invariant under homeomorphisms. This means that, if a space possesses one
topological property, then every space homeomorphic to it will possess the exact
same property. Some common topological properties are separation, countability
conditions, connectedness and compactness.

Below, we mention some de�nitions which appertain to the aforementioned topo-
logical properties.

De�nition 1.1.11. A topological space X is a Hausdor� space if for all distinct

points x, y in X there exist a neighbourhood U of x and a neighbourhood V of y

such that U and V are disjoint. In that case, points x and y are called pairwise

neighbourhood separable.

De�nition 1.1.12. A topological space X is said to be second countable if it has

a countable basis.

De�nition 1.1.13. A space X is connected if it can not be written as the union

of a pair of disjoint non-empty open sets. Equivalently, a space X is connected if the

only sets that are simultaneously closed and open in X are ∅ and X.

De�nition 1.1.14. A space X is path-connected if for every two points x, y in

X, there is a path p : I −→ X from x to y, i.e. a continuous map p : [0, 1] −→ X

with p(0) = x and p(1) = y.

Remark. Path-connected spaces are always connected. The inverse is not always true.

De�nition 1.1.15. A space X is compact if every open cover has a �nite subcover.

Compactness proves very handy when studying spaces, since it allows us to focus
on �nite subcovers that are more readily handled. The following Propositions stem
from these �nite subcovers and are going to be needed later on.

Proposition 1.1.16. A space X is compact if and only if any decreasing sequence
of nonempty closed sets has nonempty intersection.

Proof. We refer to Theorem 5.9 and Corollary 5.10 in [7] for the proof.

Proposition 1.1.17. Let (X, d) be a metric space (we refer to [7] for the de�nition
of a metric space) that is compact and U be an open cover of X. Then there exists
a number δ > 0 such that every subset of X having diameter less than δ is contained
in some U ∈ U . δ is called a Lebesgue number of this cover.

Proof. Let {Ui} be a �nite subcover of X, i ∈ {1, . . . ,m}, and the result do not
hold. Then ∀ n > 0 there exists a set An ⊂ X with diam(An) < 1/n such that
An∩(X−Ui) 6= ∅ for all i ∈ {1, . . . ,m}. If we take the closures Ān, then diam(Ān) ≤
1/n and the closed sets Fni = Ān ∩ (X − Ui) are nonempty for all i ∈ {1, . . . ,m}.
But

⋂
n Fni ⊂

⋂
n Ān = {x} for all i ∈ {1, . . . ,m} (

⋂
n Ān 6= ∅ and diam(

⋂
n Ān) =
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limn1/n = 0), which means that there exists a point x that belongs in every (X−Ui),
thus x ∈

⋂
i(X − Ui)⇒ ∃ x ∈ (X −

⋃
i(Ui)), which can not be, since {Ui} is a cover

of X.

Proposition 1.1.18. Let X, Y ∈ T , f : X −→ Y be a continuous function and
A ⊂ X be compact. Then the image f(A) ⊂ Y is also compact.

Proof. See Theorem 5.5 in [7].

Proposition 1.1.19. Let (X,TX) ∈ T be Hausdor� and A be a compact subset of
X. Then A is closed in (X,TX).

Proof. We are going to show that X−A is open. Let x ∈ X−A. Since X is Hausdor�
we can �nd disjoint open neighbourhoods Va and Ux(a) for every a ∈ A. The collection
{Va}a∈A is an open cover of the compact set A. We take {Vai}, i ∈ {1, ...,m}, to be
a �nite subcover. Then U =

⋂
i Uxai ∈ TX and U ∩

⋃
i Vai = ∅. But A ⊂

⋃
i Vai , thus

U is an open neighbourhood of x such that U ⊂ X − A.

A topological space X may possess a topological property globally. For example,

X can be compact, connected or path-connected. However, the same properties

may be attributed to a space X locally, occuring to su�ciently or arbitrarily small

neighbourhoods of points.

De�nition 1.1.20. A topological space X is called locally compact if ∀x ∈ X

there exists a compact neighbourhood C in X which contains x.

Remark. Every compact space is locally compact. The inverse does not hold.

De�nition 1.1.21. A topological space X is called locally Euclidean of dimension

n if every x ∈ X has a neighbourhood U such that there exists a homeomorphism φ

from U onto an open subset of Rn. We call the pair (U, φ) a chart, U a coordinate

neighbourhood or coordinate open set, and φ a coordinate map or coordinate system

on U .

With the general category of topological spaces and the necessary for us topo-

logical properties de�ned, we are now ready to present several individual types of

topologies or topological spaces which will emerge frequently in our study hence-

forth.

De�nition 1.1.22. Let (X,TX) be a topological space and let ∼ be an equivalence

relation on X. The quotient space (Y, TY ) is de�ned to be the set Y := X/∼ =

{[x]| x ∈ X} of equivalence classes of elements of X equipped with the quotient

topology TY . TY consists of all the subsets which have an open preimage under the

surjective map p : X −→ X/∼, namely TY = {U ⊂ Y | p−1(U) ∈ TX}.
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Remark. This topology is the �nest which makes the projection map p : X −→ X/∼
continuous.

We prove here a basic theorem for quotient spaces, that will be used further on.

Theorem 1.1.23 (Universal property of quotient spaces). Let X be a topological

space, ∼ an equivalence relation on X and X/∼ the quotient space. Also, let p :

X −→ X/∼ be the canonical projection. If f : X −→ Z is a continuous map such

that a ∼ b implies f(a) = f(b) for all a and b in X, then there exists a unique

continuous map f̄ : X/∼ −→ Z such that f = f̄ ◦ p.

X X/∼

Y

f

p

f̄

Figure 1.1

Proof. We de�ne a map f̄ : X/∼ −→ Y by the formula
f([a]) = f(a), where [a] ∈ X/∼ is the equivalence class of
a ∈ X. f̄ is well de�ned, because f(a) = f(b) when [a] = [b].
Also, f = f̄ ◦ p, by the way we de�ned f̄ .
Now, in order to prove that f̄ is continuous, we take U to
be an open subset of Y and observe that f̄−1(U) = {[x] ∈
X| x ∈ f−1(U)}. This set is open if and only if p−1(f̄−1(U))
is open. The latter, however, is exactly f−1(U) and is open

since f is continuous.
Let now h be another continuous function, with the properties described in the
theorem. Then h([a]) = h(p(a)) = f(a) = f̄([a]) for all [a] ∈ X/∼, which leads to
h = f̄ and f̄ being unique.

De�nition 1.1.24. Let X be a set and {fi}i∈I an indexed family of functions on X.

A weak topology on X with respect to {fi}i∈I is the coarsest topology on X that

makes these functions continuous.

After topologies, we also need to de�ne categories of spaces that we will use. In

homotopy theory, where loops, spheroids and their homotopy classes are considered,

one needs to choose, name and stabilise a point in each space and refer simultaneously

to the space as well as the point. This point will serve as the basepoint of every loop

or spheroid in this space, leading eventually to well de�ned structures.

De�nition 1.1.25. Let (X,TX) be a topological space and x0 ∈ X. (X, x0) is called

a pointed space. Given another pointed space (Y, y0), a map f : (X, x0) −→ (Y, y0)

is called basepoint preserving or pointed map if f(x0) = y0. Using pointed spaces

as objects, basepoint preserving maps as morphisms and the usual composition of

functions, we may form the category T ∗ of pointed topological spaces.

Remark. The notation (X, ∗) will be often employed to represent a pointed space in
a slightly more abstract fashion, while the point x0 will be suppressed altogether,
when confusion is improbable.
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A subcategory of T is the category of compactly generated Hausdor� spaces,

C G . Compactly generated Hausdor� spaces, C G , constitute a convenient category

of spaces in algebraic topology, as shown in [8]. In our study, they are going to be

utilised, when the homotopy groups are introduced.

De�nition 1.1.26. Let (X,T ) be a Hausdor� topological space. X is said to be a

compactly generated Hausdor� space if every K ⊂ X which intersects every com-

pact set in a closed set is itself closed. We denote by C G the category of compactly

generated Hausdor� spaces and their continuous functions.

De�nition 1.1.27. If X is a Hausdor� space, the associated compactly gener-

ated space k(X) is the set X with the topology de�ned as follows: a closed set of

k(X) is a set that meets each compact set of X in a closed set.

For X, Y Hausdor� spaces, C(X, Y ) represents the space of continuous maps

X −→ Y with the compact-open topology, as de�ned below. Furthermore, we denote

with Y X the associated compactly generated space k(C(X, Y )).

De�nition 1.1.28. IfK is a compact set inX and U is an open set in Y , letW (K,U)

denote the set of all functions f ∈ C(X, Y ) with f(K) ⊂ U . The family of the

sets W (K,U), created for all possible compact-open pairs (K,U), forms a subbasis

for open sets of C(X, Y ). This subbasis de�nes the compact-open topology on

C(X, Y ).

Keeping the aforementioned notation of sets of functions in mind, we may intro-

duce the loop space ΩX of a pointed space (X, ∗):
De�nition 1.1.29. ΩX = {ω ∈ XI | ω(0) = ω(1) = ∗} is called the loop space of

X. The loop space is an associated compactly generated space and a subspace of

XI . As a subspace, it also inherits the corresponding topology. ΩnX = Ω(Ωn−1X)

is inductively de�ned and it has the constant loop at ∗ as its basepoint.
As implied by the name, the loop space consists of all the loops in X. In other

words, it consinsts of all the paths f in X with f(0) = f(1) = x0. This space is of
great importance, a fact that will become apparent when we discuss higher homotopy
groups.

If a map f : X −→ Y between topological spaces is given, one can construct
the map Ωf : ΩX −→ ΩY between the corresponding loop spaces via the formula
Ωf(ω(·)) = f(ω(·)).

A very signi�cant class of topological spaces, with applications in various �elds

of mathematics, is without question this of topological manifolds. These are topo-

logical spaces which locally 'resemble' an n-dimensional Euclidean space in the sense
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discussed below. Topological manifolds, moreover, can be equipped with additional

structure. This happens, for example, in the case of di�erentiable manifolds, which

are provided with a di�erentiable structure.

The following are mainly based on [9]:

De�nition 1.1.30. A topological space X is called a topological manifold if it is

a locally Euclidean, second countable, Hausdor� space. The dimension of a manifold

X is n if every point has a neighbourhood homeomorphic to Rn.

Remark. The dimension of a manifold is well de�ned, because an open subset of Rn is
not homeomorphic to an open subset of Rm if n 6= m. This fact is called invariance of
dimension and is a classical result of Brouwer, which can be proved with machinery
developed in algebraic topology (see Theorem 2.26 in [10]).

De�nition 1.1.31. A smooth or C∞ or di�erentiable manifold is a topological

manifold M together with a di�erentiable structure or maximal atlas. An atlas on

M is a collection U = {(Ua, φa)} of pairwise C∞-compatible charts that cover M ,

while a maximal atlas is the atlas containing all the charts that are compatible with

U. Finally, two charts (U, φ), (V, ψ) are said to be C∞-compatible, if the composite

maps φ ◦ψ−1 and ψ ◦ φ−1 are di�erentiable on ψ(U ∩ V ) and φ(U ∩ V ), respectively.

Example 1.1.32 (Unit sphere Sn). The unit sphere Sn is the set of points in Rn+1

with unitary distance from the origin 0. It is a smooth manifold of dimension n.
For n = 0, we get the 0-sphere S0 to be a pair of points. We endow those with the
discrete topology, thus producing a topological space.
For n ≥ 1, we need a topology on our set of points. For each i ∈ {0, ..., n}, we de�ne
hemispheres U+

i and U−i by

U+
i = {(x0, ..., xn) ∈ Sn| xi > 0}

U−i = {(x0, ..., xn) ∈ Sn| xi < 0}

and maps φ+
i and φ−i by

φ+
i (x0, ..., xn) = φ−i (x0, ..., xn) = (x0, ..., xi−1, xi+1, ..., xn).

Maps φi are homeomorphisms for all i, their inverses being

φ−1
i (x0, ..., xi−1, xi+1, ..., xn) = (x0, ..., xi−1,

√
1−

∑
k 6=i

x2
k, xi+1, ..., xn).

Hemispheres U±i cover Sn and it can be easily shown that φi ◦φ−1
j is C∞ for all pairs

of hemispheres with U±i ∩U±j 6= ∅. Thus, Sn becomes a smooth topological manifold.
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Real and complex projective n-spaces

We begin with the real projective n-space RP n, n > 0. RP n is de�ned to be the
space of all the lines in Rn+1 that pass through the origin. Each such line can be
determined by a nonzero vector in Rn+1, unique up to scalar multiplication.
More formally, we de�ne in Rn+1\{0} the equivalence relation ∼ where x ∼ y ⇔
x = λy, λ ∈ R\{0}. This relation identi�es all the points of the line passing through
0 and x, so the real projective space RP n is the quotient space of Rn+1\{0} by this
equivalence relation. We denote the equivalence class of a point (x0, x1, ..., xn) 6= 0
by [x0 : x1 : ... : xn].
The real projective space RP n is a topological space. To prove this we need to de�ne
a topology T on RP n, so we will �nd a basis of this topology. Since the equivalence
relation ∼ is an open equivalence relation on Rn+1\{0}, i.e. the projection map
p : Rn+1\{0} −→ (Rn+1\{0})/∼ = RP n is open (see Proposition 7.14 in [9]), a basis
for RP n will be {p(Ba)}, where B = {Ba} is a basis for Rn+1\{0} (see Theorem 7.9 in
[9]). To be more speci�c, the collection of subspaces {B(x, r)∩Rn+1\{0}}, x ∈ Rn+1,
r ∈ R, forms a basis of open subspaces for Rn+1\{0}, thus {p(B(x, r) ∩Rn+1\{0})}
is a basis which de�nes a topology on RP n.
RP n is also a manifold. As shown in [9], the real projective space is Hausdor� and
second countable. For the locally Euclidean part and the later necessary smooth
structure, we take the sets

Ui := {[x0 : x1 : ... : xn] ∈ RP n| xi 6= 0}, i ∈ {0, 1, ..., n}

and the maps

φi : Ui −→ Rn

[x0 : x1 : ... : xn] 7−→ (
x0

xi
, ...,

x̂i
xi
, ...,

xn
xi

),

φ−1
i : Rn −→ RP n

(x0, ..., xi−1, xi+1, ..., xn) 7−→[x0 : ... : xi−1 : 1 : xi+1 : ... : xn],

where the hat sign ˆ means that the particular entry is to be omitted. φ and φ−1

are continuous maps, one being the inverse of the other, which proves that RP n is
locally Euclidean with the (Ui, φi) as charts. It can be readily proved (see [9]) that
the collection {(Ui, φi)}i=0,1,...,n is also a C∞-atlas for RP n, which su�ces to make
RP n a smooth manifold.

There is, however, another way to build a di�erentiable structure on RP n. The
map π : RP n −→ {1-dimensional subspaces L of Rn}, with π(p(x)) = π([x]) =
{1-dimensional subspace L of Rn which contains x}, is a bijection. We will use this
bijection in order to �nd charts on the real projective space. For every L we consider
the following neighbourhood in RP n:

UL = {subspaces K ⊂ Rn such that the projection K −→ L is an isomorphism}

This set is in 1−1 correspondence with the setHom(L,L⊥) of morphisms from all L to
their orthogonal complements L⊥. For eachK ∈ UL, the projectionK −→ L⊥ can be
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composed with the isomorphism L −→ K to produce an operator T ∈ Hom(L,L⊥).
Reversely, for an operator T ∈ Hom(L,L⊥), we de�ne the space K to be the graph
of T , i.e. K = {(v, Tv)| v ∈ L} = {v + Tv| v ∈ L}.
Each UL is a chart in RP n and n+ 1 of them are needed to cover the real projective
space RP n. Using the canonical basis {e0, e1, ..., en} of Rn+1, we consider for every
0 ≤ i ≤ n the line Li = {λen−i| λ ∈ R} and take the neighbourhoods

ULi = Hom(Li,⊕j 6=iLj)

=





0
...
0
λ
0
...
0


+



0 . . . 0 a1i 0 . . . 0
...

. . .
...

...
...

. . . 0
0 . . . 0 a(i−1)i 0 . . . 0
0 . . . 0 0 0 . . . 0
0 . . . 0 a(i+1)i 0 . . . 0
...

. . .
...

...
...

. . . 0
0 . . . 0 a(n+1)i 0 . . . 0





0
...
0
λ
0
...
0


| λ ∈ R, ali ∈ R



=


R



a1i
...

a(i−1)i

1
a(i+1)i

...
a(n+1)i


| ali ∈ R


.

Maps φLi take elements R · (a1i, . . . , a(i−1)i, 1, a(i+1)i, . . . , a(n+1)i) ∈ ULi to vectors

(a1i, . . . , a(i−1)i, a(i+1)i, . . . , a(n+1)i) ∈ Rn, while their inverses, φ−1
Li
, do the opposite.

These maps are obviously continuous, thus charts (ULi , φLi) are formed. It is quite

straigtforward to show that these charts also form a C∞-atlas on RP n.

Finally, we will elaborate on the real projective space a bit more. This time we

will treat RP n as a homogeneous space. This way of viewing RP n is not the most

frequently encountered, but it is pretty interesting. Since the underlying theory

needed to fully understand homogeneous spaces lies out of the scope of our study, we

restrict ourselves to just stating their de�nition and the basic theorem that is going

to be used. For a more thorough study of homogeneous spaces we refer to [11].

De�nition 1.1.33. A homogeneous space is a smooth manifold M endowed with

a transitive, smooth action of a Lie group G. Equivalently, it is a smooth manifold

M of the form G/K, where G is a Lie group and K a closed subgroup of G.

Proposition 1.1.34. Let G be a Lie group, M a homogeneous space and p ∈ M a
random point in M . The map f : G/Gp −→ M with f(gGp) = g · p, where g · p
represents the left action of G on M and Gp = {g ∈ G| g · p = p} is the isotropy
group, is a di�eomorphism.
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We take the general linear group GL(n+ 1,R), which is a Lie group (see Chapter 12
in [11]), acting on (Rn+1\{0})/∼ = RP n, which is a manifold. So

Φ : GL(n+ 1,R) y (Rn+1\{0})/∼ | (A, [v]) 7−→ [Av]

[v] denotes the equivalence class in the real projective space with representative
v ∈ Rn+1\{0}, while Av denotes the usual multiplication between a matrix and a
vector.
Φ is smooth: First, we observe that the action of the general linear group GL(n+1,R)
on Rn+1\{0} is smooth. Now, let (v0, v1, ..., vn) ∼ (u0, u1, ..., un). Then (u0, u1, ..., un)
= λ(v0, v1, ..., vn) for some λ ∈ R\{0} and

Φ(A, u) = A(u0, u1, ..., un) = Aλ(v0, v1, ..., vn) = λA(v0, v1, ..., vn) ∼ Av = Φ(A, v).

This means that the action Φ preserves the equivalence relation ∼, which, using
Proposition 13.1.3 in [11], leads to the smoothness of Φ.
Φ is transitive: Let [u], [v] ∈ RP n. We can �nd an A ∈ GL(n+1,R) such that
u = Av ⇒ [u] = Φ(A, [v]).
Therefore, RP n is a homogeneous space.
If we choose the point p = [1 : 0 : ... : 0] ∈ (Rn+1\{0})/∼, its isotropy group is

[GL(n+1,R)]p =



a11 a12 . . . a1(n+1)

0 a22 . . . a2(n+1)
...

...
. . .

...
0 a(n+1)2 . . . a(n+1)(n+1)

 | aij ∈ R, i, j ∈ {1, ..., (n+ 1)}


and, from 1.1.34, RP n is di�eomorphic to GL(n+1,R)�[GL(n+1,R)]p.

Remark. A projective space can also be de�ned on the complex numbers C. This
space is named the complex projective n-space CP n. Its points are all the complex
lines that pass through the origin of Cn+1. Just like RP n, CP n can be given a
topology and a di�erentiable structure, becoming thus a smooth manifold.
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1.2 Basic operations over topological spaces

Using spaces already de�ned as a basis and applying various operations over them,

one can create new interesting topological spaces. In this section, such operations

are introduced.

De�nition 1.2.1. Let {Xi}, i ∈ I, be a family of topological spaces. Their product

X :=
∏
i

Xi equipped with the product topology is a topological space, known as the

product of {Xi}. Given the projection maps pi : X −→ Xi, the product topology

on X is de�ned as the coarsest topology for which all the projections are continuous.

More precisely, a set in X is open if it can be written as a union of sets of the form∏
i

Ui, where Ui are open in Xi and Ui 6= Xi for �nitely many i.

Remark. The product space X × Y of two spaces X, Y does not necessarily inherit
the topological properties of its components. For example, if X, Y ∈ C G , then
X × Y endowed with the product topology de�ned above is not always compactly
generated. However, if X is locally compact and Y ∈ C G , then X × Y ∈ C G . An
example that usually occurs is the product X× I. Proofs of this can be found in [10]
and [12].

De�nition 1.2.2. Let {Xa}a be an arbitrary collection of spaces with chosen base-

points xa ∈ Xa. The wedge sum
∨
aXa is the quotient of the disjoint union

⊔
aXa

obtained by identifying all points xa to a single point.

Remark. When it comes to representing a point in
∨
aXa, we will treat the wedge

sum as a subspace of
∏

aXa. This means that a point x in Xi, will be denoted with
(x0, x0, ..., x, x0, ..., x0, ...).

Remark. We can also de�ne the wedge sum of maps. Given maps fa : Xa −→ Y
that agree on the basepoints, we write

∨
a fa :

∨
aXa −→ Y to represent the function

formed by applying each fa to the respective component Xa.

De�nition 1.2.3. Let X be a space and I the segment [0, 1]. The product ZX =

X × I is called the cylinder over X. The quotient of ZX obtained by collapsing

X × {0} to one point, namely CX = X × I/X × {0}, is called the cone CX of X.

Finally, the quotient of ZX obtained by collapsing X×{0} to one point and X×{1}
to another point is called the suspension SX of X.

Remark. Apart from spaces, maps can also be suspended. A map f : X −→ Y
suspends to Sf : SX −→ SY , the quotient map of f × 1 : X × I −→ Y × I.

Example 1.2.4. For X = Sn we have CX = CSn ≡ Dn+1 and SX = SSn ≡ Sn+1.
Here we must mention that Dn+1 is the (n+1)-dimensional disk, i.e. the set of points
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in Rn+1 which are in a distance less or equal to 1 away from the origin.
To prove the �rst homeomorphism, we consider the map f : ZSn −→ Dn+1 which
takes ∀ x ∈ Sn the path (t, x) ∈ ZSn, t ∈ I, to a path in Dn+1 starting at 0 ∈ Rn+1

and ending at x ∈ ∂Dn+1 (coordinates given by the embedment of Sn in Rn+1). We
have f(x, 0) = 0, so using 1.1.23 we get a unique continuous map f̄ : CX −→ Dn+1

with f = f̄ ◦ p. f̄ is surjective, since f and p are. f̄ is also injective, because f was
failing injectivity on x ∈ Sn × {0} only and this has been recti�ed in f̄ . Finally,
CSn is compact and Dn+1 is Hausdor�, which leads to f̄ being a homeomorphism
(Corollary A.36 in [9]).
In a similar way, using the map f : ZSn −→ Sn+1 which takes ∀ x ∈ Sn the path
(t, x) ∈ ZSn to the path in Sn+1 starting at (0,−1) ∈ Rn+2, passing through (x, 0)
in the equatorial and ending at (0,−1) (coordinates given by the embedment of Sn+1

in Rn+2), we get a homeomorphism between SSn and Sn+1.

We will use suspensions of spaces later on, when we will de�ne homotopy groups.
More speci�cally, we will use the reduced suspension ΣX of a pointed space (X, ∗),
which ensures that the basepoint remains well de�ned after performing the operation
and allows us to de�ne a comultiplication f · g between continuous maps f , g ∈
C(ΣX, Y ), X, Y ∈ T ∗.

De�nition 1.2.5. The reduced suspension ΣX of a pointed space (X, x0) is the

space obtained by SX if we collapse {x0} × I to a single point. This can be written

as a quotient space in the form ΣX = X × I/(X × {0, 1} ∪ {x0} × I).

Remark. Again, maps can be suspended in this way. A map f : X −→ Y suspends
in a reduced way to Σf : ΣX −→ ΣY with Σf([x, t]) = [f(x), t].

The comultiplication f · g : ΣX −→ Y , which was previously mentioned, can be
formed as a composition of maps. We start by performing a 'pinching' operation c
on the reduced suspension ΣX of (X, x0), which collapses the middle copy of X to
the basepoint x0. This leads to ΣX ∨ ΣX = ΣX/(X × {1/2}), on which we apply
f ∨ g. To be more explicit, for [x, t] ∈ ΣX, where x ∈ X and t ∈ I, the formulas are

c[x, t] =


([x, 2t], [∗]), 0 ≤ t ≤ 1

2

([∗], [x, 2t− 1]),
1

2
≤ t ≤ 1

, (1.1)

where [x, 0] = [x, 1] = [x0, t] := [∗], ∀ t ∈ I. Then

(f ∨ g)([ ]1, [ ]2) =

f([x, 2t]), [ ]2 = [∗]

g([x, 2t− 1]), [ ]1 = [∗]
. (1.2)

Thus
(f · g)[x, t] := ((f ∨ g) ◦ c)[x, t]. (1.3)

is the desirable comultiplication.
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De�nition 1.2.6. Let X, Y be topological spaces. Their smash product X ∧Y is

de�ned as the quotient space X × Y/X ∨ Y .

Remark. The reduced suspension ΣX is actually the same as the smash product
X ∧ S1 = X × S1/X ∨ S1. This is readily understood since both spaces can be seen
as the quotient of X × I with X × {0} ∪X × {1} ∪ {x0} × I identi�ed with a point.

Proposition 1.2.7. ΣSn−1 = S1 ∧ S1 ∧ ... ∧ S1 (n-times).

Proof. The result is obvious, if one uses Rem. 1.2.6 and induction on n.

De�nition 1.2.8. Let X, Y ∈ T and f : X −→ Y . The mapping cylinder Mf

is the quotient space of the disjoint union (X × I) t Y obtained by identifying each

(x, 1) ∈ X × I with f(x) ∈ Y . We write Mf = (X × I)tfY .

Remark. We use the notation Mf for the mapping cylinder and reserve the notation
Mf for another construction, the mapping �bre, which will be de�ned later on.

De�nition 1.2.9. Let X, Y ∈ T and f : X −→ Y . The mapping cone Cf is

the quotient space of the mapping cylinder Mf obtained by collapsing X ×{0} to a
point.
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1.3 Simplices and complexes

We begin this section by introducing simplicial complexes. Simplicial complexes
can either be seen as objects of combinatorial topology and be given a geometric
realisation later, as done in [2], or be de�ned as geometric objects right from the
start, totally skipping the combinatorial part. The geometric point of view is the one
adopted here.

The section continues with the introduction of Whitehead or CW-complexes or
cell complexes. For these objects the requirement for linearity that dominates, as
will be seen, simplicial complexes is aborted. They become thus structures less rigid
than simplicial complexes and more appropriate for homotopy theory.

All these objects will ultimately help us examine random topological spaces by
'subdividing' them into basic, more easily treated building blocks.

De�nition 1.3.1. An n-simplex, n ≥ 0, is the smallest convex set in the euclidean

space Rm, m ≥ n, that contains n + 1 linearly independent points v0, v1, . . ., vn in

Rm, called vertices (points vi being linearly independent is equivalent to not all of

them lying in a hyperplane of dimension less than n). This simplex is denoted with

σ = [v0, v1, . . . , vn] and is given by σ = {
∑

i λivi ∈ Rm|
∑

i λi = 1, λi ∈ R}.

If we delete k of the n+ 1 vertices of σ = [v0, v1, . . . , vn], we get a (n− k)-simplex
τ . The new simplex is called a (n− k)-face of σ, is denoted with τ = [vi1 , . . . , vin−k ],
and we write τ ≺ σ. Every simplex is oriented starting from the vertex with the
smallest index and moving gradually through the remaining vertices by increasing
indices.

De�nition 1.3.2. A geometric �nite simplicial complex K is a collection of i nj-

simplices in Rm, i <∞, j ∈ {1, ..., i}, m ≥ max{n1, ..., ni}, such that the intersection
of two simplices is a face of each and each face of a simplex inK is a simplex inK. We

write |K| for the underlying space, i.e. the union of all the simplices in K. Obviously

we can have |K| ≡ |L| even if K 6= L.

De�nition 1.3.3. Let σ be a �nite simplicial complex. If σ contains at least one

n-simplex, but no k-simplices, k > n, we say that it has dimension dim(σ) = n or

that σ is n-dimensional.

We are now going to present a very useful procedure known as barycentric subdi-

vision, which, when applied to a simplex σ ∈ Rm, produces a simplicial complex B(σ)

that consists of simplices σi, that are subspaces of |σ|. If we use the Euclidean metric

provided by the ambient space Rm, we can compute the mesh of M(B(σ)) of B(σ).

By the term mesh we mean the maximum diameter max{diam(σi)| σi ∈ B(σ)} of
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the simplices σi in B(σ) expressed as a function of σ's diameter. If the initial σ was a

simplicial complex instead of a simplex, a barycentric subdivision could be executed

again, this time on each simplex of σ individually. The mesh would be expressed as

a function of the mesh of σ, M(σ).

The main advantage gained from this procedure is that by applying iterated

barycentric subdivisions on a simplicial complex σ we can lower the mesh of the �nal

Bk(σ) as much as we please.

De�nition 1.3.4. Suppose given an n-simplex σ = [v0, v1, ..., vn]. The barycentre

of σ is the point b(σ) = v0+...+vn
n+1

. This is the centre of gravity of the vertices in the

usual sense.

De�nition 1.3.5. Let σ be a simplicial complex consisting of the simplices σi. A

barycentric subdivision of σ is a simplicial complex σ′ such that

1. the vertices of σ′ are the barycentres of simplices σi of σ and

2. the simplices of σ′ are the simplices [b(σi1), ..., b(σim)], for ij ≺ ij+1 and σij 6= σij+1
.

Proposition 1.3.6. Every complex has a barycentric subdivision.

Proof. See Theorem 12.16 in [12].

Lemma 1.3.7. The diameter diam(σ) of the simplex σ = [v0, ..., vn] with respect to
the Euclidean norm is the maximum of the ‖vi − vj‖, i, j ∈ {0, ..., n}.
Proof. Let x, y ∈ σ and x =

∑
λjvj. Then ‖x− y‖ = ‖

∑
λj(vj − y)‖ ≤

∑
λj‖vj −

y‖ ≤ maxj‖vj − y‖, since
∑
λj = 1. But now ‖vj − y‖ = ‖y − vj‖ ≤ maxi‖vi − vj‖,

which leads to ‖x− y‖ ≤ maxi,j‖vi − vj‖.

Lemma 1.3.8. Let σ be a simplicial complex with dimension n. Then

M(B(σ)) ≤ n

n+ 1
M(σ).

Proof. See Proposition 12.17 in [12] or Lemma 9.4.3 in [2].

Proposition 1.3.9. Let X be a space such that there exists a simplicial complex σ
with |σ| ≡ X and let ε > 0. Then we can �nd a complex τ such that |τ | ≡ X and
M(τ) < ε.

Proof. Let τ = Bk(σ) and n = dimσ. We have M(τ) ≤ ( n
n+1

)kM(σ), thus we
can attain the desired limit ε by choosing the number of iterations k to be large
enough.

Special attention is given to the n-dimensional standard simplex or standard
n-simplex

∆n = {(t0, . . . , tn) ∈ Rn+1|
∑
i

ti = 1, ti ≥ 0 ∀ i} = [e0, e1, ..., en],



18 CHAPTER 1. SPACES

and its boundary, which is the union of all its faces written as

∂∆n = {(t0, . . . , tn) ∈ ∆n| ti = 0 for some i ∈ {0, 1, ..., n}},
since they are going to play a major part later, in the presentation of singular ho-
mology theory.

A very important fact regarding simplices is that a free, abelian group Gn can be
constructed having n-simplices as a basis and a sum operation which represents the
union of the added n-simplices.

On Gn one can de�ne a map ∂n : Gn −→ Gn−1, called the boundary map. Let
δni : {0, 1, . . . , n − 1} −→ {0, 1, . . . , n} be the inclusion that omits the value i and
de�ne a map dni : ∆n−1 −→ ∆n by the formula dni (

∑n−1
i=0 tiei) =

∑n
i=0 tieδni , which is

the i-th face of ∆n. If we take a basis element of Gn σ and identify it with a homeo-
morphism σ̄ : ∆n −→ |σ|, we can use the maps dni and de�ne ∂n(σ̄) =

∑
i(−1)idni σ̄.

Although the choice of the homeomorphism σ̄ is free, ∂n is well de�ned, since we are
interested only on its image |σ|. Furthermore, ∂n is expanded linearly on Gn, thus
becoming a group homomorphism.

Proposition 1.3.10. The pair (∆n, ∂∆n) is homeomorphic to the pair (Dn, Sn−1).

Proof. See Proposition 2.3.1 in [2].

A powerful tool in algebraic topology are certain spaces called Whitehead com-
plexes or CW-complexes or cell-complexes. These spaces, which were introduced
by J.H.C. Whitehead in [13], are complexes possessing an additional combinatorial
structure, the CW structure. Providing a space with such a structure essentially
allows its breakdown into basic structural components that are easier to manipulate.
The importance of this becomes apparent especially when trying to compute homol-
ogy groups.

The following notation is employed hereafter:

Dn = {x ∈ Rn| |x| ≤ 1} the closed n-dimensional disc,

∂Dn = Sn−1 = {x ∈ Rn| |x| = 1} the (n− 1)-dimensional sphere,

(Dn)o = {x ∈ Rn| |x| < 1} the open n-dimensional disc,

en = {x ∈ Rn| |x| < 1} an n-dimensional cell homeomorphic to (Dn)o.

De�nition 1.3.11. A CW-complex or cell-complex is a Hausdor� space X with

a �xed partition X =
⊔∞
n=0

⊔
i∈Jn e

n
i of pairwise disjoint cells eni such that:

1. for every cell eni there exists a map Φn
i : eni −→ X with Φi|(Dn)o : (Dn)o −→ eni

a homeomorphism,

2. ϕi := Φi|∂Dn : Sn−1 −→ X mapping Sn−1 into the union of a �nite number of

cells of dimension less than n,

3. a subset of X is closed if and only if it meets the closure of each cell of X in a

closed set.
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Each Φi is called a characteristic map.

De�nition 1.3.12. A subcomplex of a CW-complex is a subspace A ⊂ X that is

the union of cells of X such that the closure of each cell in A is contained in A. A is

also a CW-complex. A pair (X,A), where X is a CW-complex and A a subcomplex,

will be called a CW pair.

Proposition 1.3.13. A compact subspace of a CW-complex is contained in a �nite
subcomplex.

Proof. See A.1 in [10].

In a CW-complex the following two properties are satis�ed:

1. Closure-�niteness: The closure of each cell ēni is contained in a �nite union of cells
or, in other words, meets only a �nite number of cells.

2. Weak topology: A set A ⊂ X is open (or closed) i� the intersection A
⋂
ēni is

open (or closed) in Xn for any cell eni . Another way to describe the topology is to
say that a set A ⊂ X is open (or closed) i� Φ−1

i (A) is open (or closed) in Dn
i for

each characteristic map Φi.

A CW-complex can be constructed inductively. We start with a discrete set X0

consisting of 0-cells. After the �rst n-steps, the construction continues by attaching
(n+1)-cells en+1

i to the n-skeletonXn via maps ϕi : Sn −→ Xn. This process, which
can either stop for a �nite n or continue inde�nitely, results to a space X =

⋃
n

Xn

with the quotient topology when n < ∞ (in this case it is the same as the weak
topology) and the weak topology when n =∞.

Example 1.3.14. I is a 1-dimensional CW-complex.
I consists of two 0-cells e0

0, e
0
1, its ends, and a single 1-cell e1, with boundary ∂e1 =

{e0
0, e

0
1}. Φ : D1 −→ I is given by Φ((1− t)d0 + td1) = t.

Example 1.3.15. The sphere Sn is a CW-complex and can be seen as constructed
by a single 0-cell e0 and a single n-cell en.
The characteristic map Φ : Dn −→ Sn of the n-cell is given by the formula Φ(x) =
(2
√

1− ‖x̄‖2 x̄, 2‖x̄‖2 − 1), where x̄ represents a point in Dn written as a vector
in Rn. Φ collapses ∂Dn = Sn−1 onto the 0-cell e0, while its restriction Φ|(Dn)o is a
homeomorphism between (Dn)o and Sn − {e0}.
There is another CW-decomposition of Sn which possesses the additional advantage
that Sn has each Sk, k ≤ n, as its subcomplex. This CW-decomposition consists of
two k-cells for each k ∈ {0, . . . , n} and is obtained inductively using the characteristic
map Φ : Dn −→ Dn

±, Φ(x̄) = (x̄,±
√

1− ‖x̄‖2), whereDn
± = {(xi) ∈ Sn| ±xn+1 ≥ 0}.

Example 1.3.16. The real projective space RP n is a CW-complex that has a single
k-cell for every k ∈ {0, 1, ..., n}.
Although we have elaborated on the real projective space earlier, there is yet another
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way to de�ne RP n and this is the one needed here. RP n can be seen as the quotient
of the sphere Sn under the equivalence relation ∼ that identi�es antipodal points.
The topology T will be de�ned by means of a basis. The map p : Sn −→ Sn/ ∼ is
open: Let U an open set in Sn. Since p(U) is open if and only if p−1(p(U)) is open,
we only need to show that p−1(p(U)) is open. But p−1(p(U)) is the union of U and
V = {p ∈ Sn| − p ∈ U}, the antipodal points of the points in U , where V ≡ U . This
means that p is an open map and ∼ is an open equivalence relation on Sn. Therefore
a basis for RP n will be {p(Ba)}, where B = {Ba} is a basis for Sn (see Theorem 7.9
in [9]). Here, we take open balls {B(x, r)}, x ∈ Rn+1, r ∈ R, to be a basis for Rn+1.
Sn can be viewed as a subspace of Rn+1, hence B = {B(x, r) ∩ Sn}.
If we identify in Sn all antipodal points that are not on the equatorial Sn−1, we get
the hemisphere Dn. To get to RP n, we just need to identify the antipodal points
of ∂Dn = Sn−1. But this actually is RP n−1. Consequently, RP n is obtained from
RP n−1 by attaching an n-cell or Dn, with the quotient projection Sn−1 −→ RP n−1

that identi�es antipodal points as the attaching map. It follows by induction on n
that RP n has a CW complex structure e0 ∪α1 e

1 ∪α2 ...∪αn en with one cell ei in each
dimension i ≤ n.



Chapter 2

Homotopy theory

2.1 Homotopy equivalence relations

In algebraic topology spaces are studied with the help of various algebraic invari-
ants. This allows for them to be deformed and turned into other spaces, more easily
understood and analysed. The deformations applied must present some sense of con-
tinuity and either lead to homeomorphic spaces or to spaces that maintain some of
the invariants intact. For example, depending on the case, a desirable tranformation
can be achieved using a continuous map, a homeomorphism, or a map that will not
create new or �ll existing discontinuities and holes in the space. More generally we
need a series of continuous maps which occur in a `continuous �ow of movement'.

Some basic deformations, which are frequently used, are presented below. Let us
mention here that X, Y ∈ T and all maps between spaces are assumed continuous
throughout this section.

De�nition 2.1.1. Let A ⊂ X. A map r : X −→ X such that r(X) = A and

r|A = idA is a retraction. More formally, a retraction is a map r : X −→ X with

r2 = r.

De�nition 2.1.2. A homotopy is a family of maps ht : X −→ Y such that the

associated map H : X × I −→ Y given by H(x, t) = ht(x) is continuous. We say

that the maps f : X −→ Y , g : X −→ Y are homotopic if there exists a homotopy
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H from f to g or, more explicitly, if there is a homotopy H which takes values

H(x, 0) = f(x) and H(x, 1) = g(x) ∀x ∈ X. If f and g are homotopic through H,

one writes f ∼
ht
g.

Proposition 2.1.3. The relation ∼
ht

is an equivalence relation.

Proof. Let f, g, h : X −→ Y be maps. Re�exivity is evident since f ∼
ft
f by the

constant homotopy F (x, t) = ft(x) = f(x) ∀t ∈ I. Symmetry holds since, if f ∼
ht
g,

then g ∼
h1−t

f , where h1−t is the inverse homotopy of ht. For transitivity, if f ∼
ft
g and

g ∼
gt
h, then f ∼

ht
h, where

H(x, t) = ht(x) =


f2t(x), 0 ≤ t ≤ 1

2

g2t−1(x),
1

2
≤ t ≤ 1

∀x ∈ X.

The map H is continuous on I × I, because it is continuous on I × [0, 1/2] and on
I × [1/2, 1] and a function de�ned on the union of two closed sets is continuous if it
is continuous when restricted to each of the closed sets separately.

De�nition 2.1.4. If f : X −→ Y is continuous, its homotopy class is the equiva-

lence class

[f ] = {g ∈ C(X, Y ) such that g ∼ f}.

The set of all such homotopy classes is denoted by [X, Y ] and it is the quotient

C(X, Y )/∼.

There are special cases of homotopies between spaces which we mention below.

De�nition 2.1.5. Let A ⊂ X. A homotopy ht : X −→ Y for which ht|A = h0|A
holds for all t ∈ I, that is a homotopy whose restriction to A is independent of t, is

called a homotopy relative to A, abbreviated to ∼ relA.

De�nition 2.1.6. A homotopy ht relA from the identity map 1X ofX to a retraction

r of X onto A is called a deformation retraction of X to A.

De�nition 2.1.7. Let f : X −→ Y be a map. Then one says that f is a homotopy

equivalence if there is a map g : Y −→ X such that fg ∼ 1Y and gf ∼ 1X . If this
is the case, X and Y are called homotopy equivalent or they are said to have the

same homotopy type and we write X ' Y .

Remark. A deformation retraction ht of a space X onto a subspace A is actually
a homotopy equivalence. If we take the retraction r : X −→ X and the inclusion
iA : A −→ X, we get riA = 1A, while iAr ∼ 1X through the homotopy ht. Thus the
homotopy equivalence generalises the deformation retraction notion.
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De�nition 2.1.8. A space X is called contractible if it has the homotopy type of

a point.

Remark. Saying that a space X is contractible is weaker than saying that it deforma-
tion retracts onto a point {x} ∈ X, since in the second case the point must remain
steady throughout the homotopy ht, while in the �rst is allowed to move freely.

Example 2.1.9. The cone CX of a space X deformation retracts to the point [x, 0].
The map H : CX × I −→ CX with H([x, t], s) = [x, (1− s)t] is a homotopy rel[x, 0]
which takes the values H([x, t], 0) = 1CX [x, t] and H([x, t], 1) = [x, 0] = r([x, t]) for
all [x, t] ∈ CX.

Example 2.1.10. Dn, n ≥ 2, deformation retracts to its centre x ∈ Dn.
The homeomorphism Dn ≡ CSn−1, which takes the centre of Dn to [x, 0], along with
the fact that CSn−1 deformation retracts to [x, 0] give the result.

Example 2.1.11. The mapping cylinder Mf of a map f : X −→ Y deformation
retracts onto Y .
We denote the class of (x, t) ∈ X×I inMf by [x, t] and the class of y ∈ Y inMf with
[y]. This means that [x, 1] = [f(x)]. Now, if we de�ne the map H : Mf × I −→Mf
by

H([x, t], s) = [x, (1− s)t+ s], if x ∈ X, t, s ∈ I
H([y], s) = [y], if y ∈ Y, s ∈ I

thenH is a homotopy betweenH0 = 1Mf andH1 = r, where r is the retraction ofMf
onto Y . H is obviously constant on Y . Therefore, we have the desired deformation
retraction.

De�nition 2.1.12. A map f : X −→ Y is called nullhomotopic, if it is homotopic

to the constant map.

Proposition 2.1.13. Let X, Y be spaces and let X deformation retract to a point
x ∈ X. Then any map f : X −→ Y is nullhomotopic.

Proof. Denote with H : X × I −→ X the given deformation retraction. If we
compose H with f , we get F = f ◦ H : X × I −→ Y with F0 = f ◦ H0 = f and
H1 = f ◦H1 = f ◦ cx = cf(x) which is constant.

Finally, we mention a proposition that stems from the important homotopy exten-
sion property (see Chapter in [2] or Chapter 0 in [10]). The homotopy extension
property, as betrayed by the name, states that, given a map f : X −→ Y and
A ⊂ X, a homotopy F : A× I −→ Y with F0 = f |A can be extended to a homotopy
H : X × I −→ Y with H0 = f . Not all pairs of spaces (X,A) possess this property.
However, CW pairs (X,A) behave well regarding the homotopy extension property,
hence the following proposition:

Proposition 2.1.14. If (X,A) is a CW pair consisting of a CW complex X and a
contractible subcomplex A, then the quotient map X −→ X/A is a homotopy equiva-
lence.
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Proof. See [10], Proposition 0.17.

Example 2.1.15. SSn ' ΣSn.
We know that ΣSn = Sn×I/({x0}×I∪Sn×{0, 1}) and SSn = Sn×I/(Sn×{0, 1}).
SSn ≡ Sn+1 from Example 1.2.4, while Example 1.3.15 suggests that there is a CW-
decomposition of the CW-complex Sn+1 that includes every Sk with k ≥ n as its
subcomplex. This viewpoint allows us to identify {x0} × I ∈ Sn × I with a closed
subcomplex e1

α of Sn+1, which is essentially one of the two 1-cells that produce S1.
e1
α is obviously a contractible subcomplex, thus SSn ≡ Sn+1 ' Sn+1/e1

α = ΣSn from
Proposition 2.1.14.
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2.2 Fundamental group

In this section, the fundamental group π1(X, x0) of a pointed space (X, x0) is

introduced. As a set, π1(X, x0) consists of the homotopy classes of loops based

on the space's basepoint x0. To construct a group structure on this set, though,

an operation between classes of paths must be de�ned. This operation stems from

combining consequent representatives of classes of paths. Here consequent implies

that the second path begins at the same point that the �rst ends. Since in π1(X, x0)

only loops are considered, this condition is immediately satis�ed and one can de�ne

a 'multiplication' like the one roughly described.

Formally, the fundamental group is de�ned as follows:

De�nition 2.2.1. Let X ∈ T ∗. The fundamental group of X with basepoint x0

is
π1(X, x0) = {[f ]| f is a loop based on x0}

with binary operation [f ][g] = [f · g], which denotes concatenation of loops. Equiva-

lent formulas for the fundamental group are also:

π1(X, x0) = [(I, ∗), (X, x0)] = [(S1, ∗), (X, x0)].

Remark. It should be mentioned here that for a space X π0(X) is de�ned to be the
set of path-components of X. It is a set, not a group.

Proposition 2.2.2. If (X, x0) ∈ T ∗, then π1(X, x0) is a group.

Proof. The proof is rather easy and we refer the reader to [10]. After checking that
the product operation is well-de�ned, one �nds homotopies between f · (g · h) and
(f ·g)·h to prove associativity, amongst cx0 ·f , f ·cx0 and f to ensure that the neutreal
element exists and, �nally, constructs the loop f̄ from f transversed backwards to
serve as the inverse of f .

Proposition 2.2.3. π1 is a functor (De�nition A.1.7) from T ∗ to G .

Proof. Let f ∈ Hom((X, x0), (Y, y0)) and [h] ∈ π1(X, x0). We de�ne π1(f)([h]) =
[f ◦ h], where f ◦ h : I −→ Y . f ◦ h is continuous and its image is a closed path
in Y based on y0. π1(f) is well de�ned, since π1(f)[h] = [f(h)] = [f(g)] = π1(f)[h]
if h ∼ g through a basepointed homotopy. Now, for [g], [h] ∈ π1(X, x0) we have
π1(f)[g · h] = [f ◦ (g · h)] = [(f ◦ g) · (f ◦ h)] = π1(f)[g]π1(f)[h], thus π1(f) is a
homomorphism. Finally, if f1 : (X, x0) −→ (Y, y0) and f2 : (Y, y0) −→ (Z, z0), then
π1(f2◦f1)[h] = [f2◦(f1◦h)] = π1(f2)[f1◦h] = π1(f2)π1(f1)[h], whilst π1(f)[cx0 ] = [cy0 ],
which complete the proof.

Remark. We are going to use f∗ instead of π1(f), in order to simplify notation.



26 CHAPTER 2. HOMOTOPY THEORY

Before we move on, it is essential to introduce H-spaces. The pre�x H- signi�es

their connection with Hopf, since he was the �rst to study them.

De�nition 2.2.4. An H-space (X,µ) consists of a space X ∈ T ∗ with basepoint

x0 and a continuous map µ : (X ×X, x0×x0) −→ (X, x0) called multiplication. The

multiplication µ must satisfy µ|X∨X ∼ ∇ in T ∗, where ∇ : X∨X −→ X is a 'folding

map' with ∇(x, x0) = ∇(x0, x) = x.

Proposition 2.2.5. Let (X,µ) be an H-space and Y ∈ T ∗. Then the set of homo-
topy classes of functions [(Y, ∗), (X, x0)] has a multiplication with two-sided unit.

Proof. We refer the reader to [12], Proposition 9.8.

Returning to the fundamental group:

Proposition 2.2.6. Let (X, x0) ∈ T ∗ be an H-space. Then π1(X, x0) is abelian.

Proof. We de�ne a map

θ : π1(X, x0)× π1(Y, y0) −→ π1(X × Y, (x0, y0))

through θ([f ], [g]) = [(f, g)]. θ is an isomorphism (see Theorem 3.7 in [14]).

For [f ], [g] ∈ π1(X, x0), we have

[g] = (µ ◦ (cx0 ,1X))∗[g] (De�nition2.2.4 gives µ ◦ (cx0 ,1X) ∼ 1Xrel{x0})
= µ∗(cx0 ,1X)∗[g] (π1 is a functor)

= µ∗[cx0g, g] (De�nition of induced map in 2.2.3)

= µ∗θ([cx0g], [g])

= µ∗θ([cx0 ], [g])

where both the constant map and the constant path are denoted with cx0 . Similarly,
using µ ◦ (1X , cx0) ∼ 1Xrel{x0} we get [f ] = µ∗θ([f ], [cx0 ]).
Since µ∗θ : π1(X, x0)× π1(X, x0) −→ π1(X, x0) is a homomorphism, we have

[f ][g] = µ∗θ([f ], [cx0 ]) · µ∗θ([cx0 ], [g]) = µ∗θ(([f ], [cx0 ]) · ([cx0 ], [g]))

= µ∗θ([f ], [g]) = µ∗θ(([cx0 ], [g]) · ([f ], [cx0 ]))

= µ∗θ([cx0 ], [g]) · µ∗θ([f ], [cx0 ])

= [g][f ]

Hence, if (X, x0) is an H-space, π1(X, x0) is abelian.
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2.3 Higher homotopy groups

De�nition 2.3.1. Let (X, x0) ∈ T ∗ and In be the n-dimensional unit cube, n ≥ 1,

with boundary ∂In. Maps f : (In, ∂In) −→ (X, x0) sending the cube's boundary to

the basepoint are called loops with baseboint x0 when n = 1 and n-spheroids with

baseboint x0 when n > 1.

Loops and spheroids can also be de�ned as maps with domain the space (Sn, s0),

where (Sn, s0) is produced as the quotient of (In, ∂In) under the relation that col-

lapses ∂In onto the point s0.

Remark. The two de�nitions are equivalent. Although our study will be based mainly
on the second de�nition, we may from time to time use the �rst as well.

0 1
I

f

x0

0 1

1

I2

f

x0

Figure 2.1: Loop and 2-spheroid

De�nition 2.3.2. Let n > 1 and f : (Sn, ∗) −→ (X, x0) be spheroids. πn(X, x0),

which is called the nth homotopy group of X, is de�ned to be the set of homotopy

classes of basepoint preserving maps f , where homotopies ft also preserve the base-

point x0. We write πn(X, x0) = [(Sn, ∗), (X, x0)]. An equivalence class is denoted [f ]

and is called the homotopy class of f . We have [f ] = [g]⇔ f ∼
ht
g.

For n = 0 we take I0 to be a point and ∂I0 to be empty, so π0(X, x0) becomes

the set of path-components of X, as mentioned before.

In the de�nition above, we have attached somehow arbitrarily the word group
to the name of πn(X, x0). It is still to be proved that this set of homotopy classes
actually possesses a group structure.

However, before we embark on such a proof, we need to state some useful propo-
sitions and theorems. In order to start, let X, Y , Z ∈ C G (or C G ∗) and A be a
closed subspace of X such that X/A is a Hausdor� space. Then we have the following
results, which are stated here without proofs. The reader is referred to [8] to �nd
them proved.
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Proposition 2.3.3. (Z, ∗)(X,∗)×(Y,∗) ≡ ((Z, ∗)(X,∗))(Y,∗), via the homeomorphism

F : ((Z, ∗)(X,∗))(Y,∗) −→ (Z, ∗)(X,∗)×(Y,∗)

where, for f ∈ ((Z, ∗)(X,∗))(Y,∗), F (f) : (X, ∗)× (Y, ∗) −→ (Z, ∗) is given by the
formula F (f)(x, y) = f(y)(x), with f(y) : (X, ∗) −→ (Z, ∗).

Remark. The result in Proposition 2.3.3 is called the exponential law. It also holds
for X locally compact and Hausdor� and Y , Z ∈ T ∗. So, for X = I or X = S1,
which are obviously both locally compact and Hausdor�, we can have Y and Z to
be topological spaces with no other restrictions (see Chapter 11 in [15]).

Proposition 2.3.4. (Y, ∗)(X/A,∗) ≡ (Y, ∗)(X,A).

Theorem 2.3.5. (Z, ∗)(Y ∧X,∗) ≡ [(Z, ∗)(Y,∗)](X,∗).

Theorem 2.3.6. The homeomorphism of 2.3.5 induces a bijection

φ : [(X, ∗), (Z, ∗)(Y,∗)] −→ [(Y ∧X, ∗), (Z, ∗)]

Notation. We employ ≡ to denote a homeomorphism between spaces, ' to denote
a homotopy between spaces, ∼= to denote an isomorphism between groups and ↔ to
declare that there exists a bijection between two sets.

Proposition 2.3.7. πn is a functor from C G ∗ to G for n ≥ 1.

Proof. We have

Sn ≡ SSn−1 (Example 1.2.4)

' ΣSn−1 (Example 2.1.15)

≡ Sn−1 ∧ S1 (Prop.1.2.7)

Thus, we get

πn(X, x0) = [(Sn, ∗), (X, x0)]

↔ [(Sn−1 ∧ S1, ∗), (X, x0)]

↔ [(S1, ∗), (X, x0)(Sn−1,∗)] (Theorem2.3.6)

= [(S1, ∗),Ωn−1(X, x0)]

= π1(Ωn−1(X, x0), ∗) = π1((X, x0)(Sn−1,∗), ∗)

which is a group, as stated in Proposition 2.2.2. This proves that πn : C G ∗ −→ G is
a well de�ned function between these sets. The operation that guarantees the group
structure of πn(X, x0) is given by [f ] ? [g] = b−1(b([f ])b([g])), where b is the implied
bijection above. Under this de�nition of ?, b becomes a homomorphism, besides
being a bijection. Hence b is an isomorphism of groups.
It is shown in A.1.8 that (·)(Y,∗) is a covariant functor from C G ∗ to C G ∗. From 2.2.3
we see that π1 is also a covariant functor from C G ∗ ⊂ T ∗ to G . The composition of
two functors, when de�ned, is a functor as well. So πn(·) = π1((·)(Sn−1,∗)) is a functor
from C G ∗ to G .
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Proposition 2.3.8. πn is a functor from T ∗ to G for n ≥ 1.

Proof. The proof remains essentially the same with Proposition's 2.3.7, except for
Theorem 2.3.6. In this case we use the fact that S1 is a locally compact, Hausdor�
space and the remark of Proposition 2.3.3.

Remark. Comultiplication de�ned in Equation 1.3 agrees with that of Proposition
2.3.7. Although in the second case no formula was written explicitly, the multiplica-
tion ? in [(Sn, ∗), (X, x0)] has been proved to exist. Let us recall the multiplication
in π1 de�ned in Proposition 2.2.2. The operation ? ensures the group structure on
[(Sn, ∗), (X, x0)]. To be more speci�c, using the homeomorphism described in Theo-
rem 2.3.6, we get

[f ] ? [g] =

{
f([x, 2s]), 0 ≤ s ≤ 1

2

g([x, 2s− 1]), 1
2
≤ s ≤ 1

which coincides with the comultiplication in 1.3.
This identi�cation of multiplications would allow us to generalise the result in Propo-
sition 2.3.7 to spaces in T ∗, even if what is said in the remark of Proposition 2.3.3
was not true. Also, let it be noted that from now on · will be used in place of ? for
this multiplication.

Remark. A more general result than this in Proposition 2.3.7 is proved in a similar
way in Proposition 9.2 in [12]. It states that, if X, Y ∈ C G ∗, then F (X, Y ) =
[(ΣX, ∗), (Y, ∗)] is a functor in two variables from C G ∗ to G .

Proposition 2.3.9. Let X ∈ T and (Y, y0) be an H-space. The two multiplications
in [(SX, ∗), (Y, y0)] are the same and they are commutative. Commutativity dictates
that f · g = g ◦ f , where f , g ∈ [(SX, ∗), (Y, y0)]. · is the multiplication de�ned above
and ◦ the multiplication de�ned in Prop. 2.2.5.

Proof. See the proof given in [12], Proposition 9.9.

Theorem 2.3.10. If n ≥ 1, X ∈ T ∗, ΩnX is an H-space.

Proof. It is su�cient to show that ΩX is an H-space.
If we consider the constant path as a basepoint, we see that ΩX ∈ T ∗. We de�ne
the multiplication µ : ΩX × ΩX −→ ΩX just like we de�ned composition of paths
in π1. Explicitly, the formula of µ is given by

µ(ω1, ω2)(t) =

{
ω1(2t), 0 ≤ t ≤ 1

2

ω2(2t− 1), 1
2
≤ t ≤ 1

By Proposition 2.3.3 we deduce that µ : ΩX × ΩX −→ ΩX ⊂ XI is continuous if
and only if the corresponding map µ̄ : ΩX×ΩX× I −→ X is continuous. µ̄|[0, 1

2
] and

µ̄|[ 1
2
,1] are continuous. They also have the same value on t = 1

2
. Thus µ̄ is continuous.

Now,

H([ω, ∗], s)(t) =

{
ω(2t−s

2−s ), 0 ≤ t ≤ s
2

∗, s
2
≤ t ≤ 1
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and

H([∗, ω], s)(t) =

{
∗, 0 ≤ t ≤ 1− s

2

ω( 2t
2−s), 1− s

2
≤ s ≤ 1

is a homotopy between µ|ΩX∨ΩX and ∇. Continuity is proved by Proposition 2.3.3,
like before.

Proposition 2.3.11. Let X ∈ T ∗. Then πn(X, x0) is an abelian group, if n ≥ 2.

Proof.
πn(X, x0) = [(Sn, ∗), (X, x0)]

∼= [(S1, ∗), (Ωn−1(X, x0), ∗)]
= π1(Ωn−1(X, x0), ∗).

However, Ωn−1(X, x0) is an H-space for n− 1 ≥ 1 (Theorem 2.3.10) and the funda-
mental group of H-spaces is abelian (Proposition 2.2.6).

Next, we will see how a loop in π1(X, ∗) can act on a spheroid in πn(X, ∗), n > 1.

Proposition 2.3.12. Let γ ∈ π1(X, x0) be a loop. A map

β : π1(X, x0) −→Aut(πn(X, x0))

[γ] 7−→ βγ : πn(X, x0) −→πn(X, x0)

[f ] 7−→ [γ�f ]

is an action called the action of π1 on πn.

x0

x0

x0
x0

x0

X

Figure 2.2: The action of the fundamental group on πn(X,x0)[16]

Proof. One way to prove that β is a well de�ned action is the following:
We �rst show a more general result. Namely, that βh : πn(X, h(0)) −→ πn(X, h(1)),
where h is a path from h(0) to h(1) in X, is a homomorphism with βh̄ its inverse.
Then we prove that this β possesses the properties presented in De�nition A.2.1.
Figures 2.3, 2.4 and 2.5 provide a pictorial proof for the case n = 2. The complete
proof can be found in [10]. If we replace the random path h with a loop γ, the proof
works just �ne and gives the desired result.
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f gx1

x1

x1

x1

x0

x0

x0

x0

f gcx0x1

x1

x1

x1

x0

x0

x0

x0

' ' x0f gx1

x1

x1

x1

Figure 2.3: Homotopy proving that βh is a homomorphism.

There is another interesting way to prove the Proposition. This employs the notions
of a fundamental groupoid Π(X) and transport functors. In this case the intuitive
sense of a path acting on a spheroid remains unaltered, but the properties of an
action come as a special case of the properties of a transport functor. We refrain
ourselves from presenting this particular proof, since we have not even touched upon
the prerequisites and just refer anyone who feels interested in it to [2].

x2 x1 x0

x2

x1
x0

x2x1x0

x2

x1

x0

h′

h
f

Domain of h′�(h�f)

x2

x2

x2

x2

h′

h

x1 x0

Domain of (h′ · h)�f

f

Figure 2.4: βh′(βh[f ]) = βh′·h[f ]

f fx0 x0

x0 x0

x0 x0

cx0

x0

Figure 2.5: cx0
�f ∼ f
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2.4 Relative homotopy groups

De�nition 2.4.1. Let (X,A) ∈ T 2∗ (De�nition in A.1.3) and x0 ∈ A a basepoint.

Let also In be the n-dimensional unit cube, n ≥ 2, ∂In its boundary, In−1 the face

of In with the last coordinate equal to 0 and Jn−1 = ∂In−1 × I ∪ In−1 × {0} ⊂
∂In ⊂ In−1 × I. The relative homotopy group of (X,A, x0), πn(X,A, x0), is de-

�ned as the set [(In, ∂In, Jn−1), (X,A, x0)]. Equivalently, πn(X,A, x0) can be de�ned

as the set [(Dn, Sn−1, s0), (X,A, x0)], due to the existing homeomorphism between

(In, ∂In, Jn−1) and (Dn, Sn−1, s0).

Remark. The de�nition πn(X,A, x0) = [(Dn, Sn−1, ∗), (X,A, ∗)] will be preferred
throughout our study.

In the de�nition above, we misused the term group, so our immediate task is
to �nd out if and when πn(X,A, x0) is indeed a group. The main idea is to try
to construct a bijection between the set πn+1(X,A, x0) = [(Dn+1, Sn, ∗), (X,A, ∗)],
n > 0, and the group [Sn,MiA ], where MiA is the mapping �bre of the inclusion
iA : A ↪→ X de�ned below. If we do so, the group operation in πn(MiA) = [Sn,MiA ]
will be transferred via the bijection to an operation in πn+1(X,A, ∗) and thus make
it a group.

De�nition 2.4.2. Let (X, x0), (Y, y0) ∈ T ∗ and f : (X, x0) −→ (Y, y0) be a pointed

map. The mapping �bre of f is the pointed space

Mf = {(x, ω) ∈ X × Y I | ω(0) = y0 and ω(1) = f(x)}.

Mf has the induced topology and its basepoint is (x0, ω0), where ω0 is the constant

path at y0.

Remark. According to the de�nition, the mapping �bre of MiA is

MiA = {(a, ω) ∈ A×XI | ω(0) = x0 and ω(1) = iA(a) = a ∈ A}.

Proposition 2.4.3. Let (X,A, x0) ∈ T 2∗ and iA : A ↪→ X be the inclusion. Then
there is a bijection θ : [Sn,MiA ]∗ −→ [(Dn+1, Sn, v0), (X,A, x0)]∗.

Proof. In order to de�ne θ : [Sn,MiA ] −→ [(Dn+1, Sn, v0), (X,A, x0)], we initially
need to be able to allocate a map f̄ : (Dn+1, Sn, v0) −→ (X,A, x0) to every map
f : Sn −→MiA .
Let f : Sn −→ MiA with f(v) = (av, ωv) ∈ MiA , v ∈ Sn, be a basepoint preserving
map. If we take the projection q : MiA −→ XI with q(a, ω) = ω and compose
it with f , we form the map q ◦ f : Sn −→ XI , which is continuous being the
composition of continuous functions. From the remark in Proposition 2.3.3, we get
that the map q ◦ f : Sn × I −→ X with q ◦ f(v, t) = ωv(t) is continuous. Also,
q ◦ f(v, 0) = ωv(0) = x0, q ◦ f(v, 1) = ωv(1) = av ∈ A and q ◦ f(v0, t) = ω0(t) = x0.
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Finally, from the universal property of quotient spaces 1.1.23, there is a continuous,
basepointed map

fp : CSn =
Sn × I
Sn × {0}

−→ X

with fp([v, t]) = ωv(t), which �nally gives the map f̄ : Dn+1 −→ X as f̄(tv) =
(fp ◦ φ−1)(tv) = ωv(t), where φ is the homeomorphism from CSn to Dn+1 (1.2.4).
We de�ne

θ : [Sn,MiA ]−→[(Dn+1, Sn, v0), (X,A, x0)]

[f ] 7−→ [f̄ ]

For [f ] = [f ′], there is a homotopy F : Sn × I −→ MiA with F (v, s) = Fs(v),
F0(v) = f(v), F1(v) = f ′(v), Fs(v0) = (a0, ω0). Now, based on what was expounded
previously, for each Fs : Sn −→ MiA the continuous map F s : (Dn+1, Sn, v0) −→
(X,A, x0) can be formed. Thus we get another homotopy, namelyG : (Dn+1, Sn, v0)×
I −→ (X,A, x0) with Gs = F s and Gs(v0) = ω0(1) = x0 for all s ∈ I, which leads
eventually to [f̄ ] = [f̄ ′] and the fact that θ is well de�ned.
We will now construct the inverse of θ. Let h : (Dn+1, Sn, v0) −→ (X,A, x0) with
h(0) = x0. If h(0) 6= x0, we compose h with the homotopy Ts(tv) = tv+ (1− t)s(v0),
T0 = 1Dn+1 to take a new homotopy between h and h′(tv) = h(tv + (1 − t)(v0)).
Obviously [h′] = [h] and h′(0) = h(v0) = x0. Next, we de�ne a path ωv for each v ∈ Sn
via the formula ωv(t) = h(tv) = h(φ([v, t])). Since ωv(0) = h(0) = x0 and ωv(1) =
h(v) ∈ A, we have (ωv(1), ωv) ∈MiA . We de�ne θ−1([h])(v) = (h(φ([v, 1]), h(φ([v, ·])),
for all v ∈ Sn. This map is well de�ned and a continuous pointed map. Finally, we
check that

(θ ◦ θ−1)([h]) = θ[(ω(·)(1), h ◦ φ)] = [h ◦ φ ◦ φ−1] = [h]

(θ−1 ◦ θ)([f ]) = θ−1[f̄ ] = [(ω(·)(1), ω(·))] = [(a(·), ω(·))] = [f ]

and conclude that θ is a bijection.

Proposition 2.4.4. πn(X,A, x0) is a group for n ≥ 2 and an abelian group for
n ≥ 3.

Proof. In Proposition 2.4.3, a bijection [(Dn, Sn−1, ∗), (X,A, ∗)] θ←→ [Sn−1,MiA ]
was constructed. Since πn(X,A, ∗) = [(Dn, Sn−1, ∗), (X,A, ∗)] and πn−1(MiA) =
[Sn−1,MiA ], the group structure which πn−1(MiA) possesses when n ≥ 2 is trans-
ferred through the bijection θ to πn(X,A, ∗), same way it did via b in 2.3.7. In
addition, we have proved (Prop. 2.3.11) that πn−1(MiA) is an abelian group when
n ≥ 3 and this property is transferred through θ to πn(X,A, ∗) for the same n.

Proposition 2.4.5. Adjusting appropriately the ideas in Proposition 2.3.12, we can
de�ne an action

β : π1(A, x0) −→Aut(πn(X,A, x0))

[γ] 7−→ βγ : πn(X,A, x0) −→πn(X.A, x0)

[f ] 7−→ [γ�f ]

for n ≥ 2 in the relative case.
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Proposition 2.4.6 (Compression criterion). A map f : (Dn, Sn−1, ∗) −→ (X,A, ∗)
represents zero in πn(X,A, ∗) if and only if it is homotopic relSn−1 to a map with
image contained in A.

Proof. ⇒ Let [f ] ∈ πn(X,A, x0) with [f ] = 0. Then ∃ homotopy F : Dn × I −→ X
such that F (x, 0) = f , F (x, 1) = cx0 , F (Sn−1, t) ⊂ A for t ∈ I. We form a new
homotopy H : Dn × I −→ X via the formula H(s, t) = F (pt(s)) where each pt is a
radial projection of Dn × {0} to {Dn × t} ∪ {Sn−1 × [0, t]}, for example the radial
projection from the point (0̄,−1) ∈ Dn × R. For an s ∈ ∂Dn = Sn−1 we have
H(s, t) = F (s, 0), ∀ t ∈ I. If s is any point in Dn, H(s, 0) = F (s, 0) = f(s) and
H(s, 1) = F (p1(s)). But p1(s) belongs either to Dn × 1 or to Sn−1 × [0, 1] and this
translates to either H(s, 1) = cx0 or H(s, 1) ⊂ A. Thus, [f ] ∼relSn−1 [F ◦ p1] relSn−1

with F ◦ p1(Dn) ⊂ A.
⇐ Let [f ] ∼ [g] relSn−1 where the image of g is in A. We have [g] ∼ 0 in πn(X,A, x0),
because Dn deformation retracts to a point via a homotopy dt from idDn to cx0 and
using dt we can construct the homotopy gt = g ◦ dt with gt(∂D

n) ⊂ g(Dn) ⊂ A,
∀ t ∈ I. So, [f ] ∼ 0 in πn(X,A, x0).
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2.5 Exact sequences of homotopy groups

Exact sequences are an extremely useful tool in algebraic topology. In homotopy
theory, however, they do not arise very often. A long exact sequence of homotopy
groups can be meticulously constructed using the Puppe sequence and the functor
[S0, ·]. The Puppe sequence, in its turn, can be constructed in two ways: the �rst
employs mapping �bres, leading to the exact Puppe sequence, while the second uses
quotient spaces and leads to the coexact Puppe sequence.

Here, [14] serves as our main reference for the construction of the exact Puppe
sequence and we refer the reader to [3] for the coexact Puppe sequence.

We recall the de�nition of the mapping �bre Mf given in 2.4.2 and we observe
that there exist an inclusion j : ΩY −→ Mf and a projection q : Mf −→ X, which
are formed as j(ω) = (x0, ω) and q(x, ω) = x for all x ∈ X, ω ∈ ΩY . Composing
these maps, along with f and Ωf , we produce the sequence:

ΩX
Ωf−→ ΩY

j−→Mf
q−→ X

f−→ Y (2.1)

As we can see in A.1.8, Ω is a covariant functor from T ∗ to T ∗. If we apply this
functor on the previous sequence, we get

Ω2X
Ω2f−→ Ω2Y

Ωj−→ ΩMf
Ωq−→ ΩX

Ωf−→ ΩY (2.2)

Sequence 2.2 overlaps with sequence 2.1. We can splice these two together to
form a longer sequence of spaces and, by iterating this construction, we conclude in
the long sequence

. . .
Ω2q−→ Ω2X

Ω2f−→ Ω2Y
Ωj−→ ΩMf

Ωq−→ ΩX
Ωf−→ ΩY

j−→Mf
q−→ X

f−→ Y (2.3)

This is the Puppe sequence related to the map f .

Remark. For f = iA : A ↪→ X in particular, one gets the Puppe sequence:

. . .
Ω2q−→ Ω2A

Ω2iA−→ Ω2X
Ωj−→ ΩMiA

Ωq−→ ΩX
ΩiA−→ ΩY

j−→MiA

q−→ X
iA−→ Y (2.4)

Here we state the two theorems that lead eventually to the long exact sequence of

homotopy groups. Theorem 2.5.1, speci�cally, calls for signi�cant preliminary work,

so its proof is postponed until later in this section.

Theorem 2.5.1 (Puppe sequence). If X, Y ∈ T ∗ and f : X −→ Y is a pointed

map, then the Puppe sequence related to f (2.3) is exact in hT ∗.

Theorem 2.5.2 (Homotopy sequence of a pair). If (X,A, ∗) ∈ T 2∗, then there is

an exact sequence of homotopy groups

. . . πn+1(A)
ΩniA∗−→ πn+1(X)

Ωn−1j∗−→ πn+1(X,A)
Ωn−1q∗−→ πn(A) −→ πn(X) −→ . . .

. . . π1(A) −→ π1(X) −→ π1(X,A) −→ π0(A) −→ π0(X)
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Proof. According to Theorem 2.5.1, the Puppe sequence 2.4 is exact in hT ∗. From
the de�nition of exactness in A.2.5 this is equivalent to saying that, if Z ∈ T ∗,
applying the functor [Z, ·] on the sequence in 2.4 results to an exact sequence in
S ets∗. So, if we apply [S0, ·], we get the long exact sequence of pointed sets:

. . . πn+1(A)
ΩniA∗−→ πn+1(X)

Ωn−1j∗−→ [S0,ΩnMiA ]
Ωn−1q∗−→ πn(A) −→ πn(X) −→ . . .

. . . −→ π1(A) −→ π1(X) −→ [S0,MiA ] −→ π0(A) −→ π0(X)

The long exact sequence of homotopy groups is formed �nally by making use of the
bijection constructed in Proposition 2.4.3 and the fact that every map between groups
in this sequence is a group homomorphism (in a more pedantic approach the functor
[S1, ·] is initially applied on 2.4 to ensure group morphisms, then [S0, ·] to produce
the tail of the sequence and �nally these sequences are joined appropriately).

Lemma 2.5.3. Let X, Y ∈ T ∗, f : X −→ Y be a pointed map and r : Mf −→ Y
be a map de�ned by r(x, ω) = ω(1). f is nullhomotopic rel{x0} if and only if there
exists a pointed map φ which makes the diagram in 2.6 commute.

Proof. ⇒ Since f is nullhomotopic rel{x0}, there is homotopy F : X × I −→ Y
with F (x, 0) = f(x0) = y0, F (x, 1) = f(x) ∀ x ∈ X and F (x0, ·) = ω0. We de-
�ne φ : X −→ Mf by φ(x) = (x, F (x, ·)). φ is a pointed map, because φ(x0) =
(x0, F (x0, ·)) = (x0, ω0). Furthermore, r(φ(x)) = r(x, F (x, ·)) = F (x, 1) = f(x) for
all x ∈ X, which proves that the diagram commutes.

Mf

X Y

rφ

f

Figure 2.6

⇐ Conversely, assume that such a φ exists. Then
φ(x) = (a(x), ωx) ∈Mf , with a : X −→ X and ωx a
path in Y . From the commutativity of the diagram
we get that r(φ(x)) = ωx(1) = f(x) for all x ∈ X. A
homotopy F : X× I −→ Y with F (x, t) = ωx(t) can
be de�ned. Since φ is a pointed map, we calculate
φ(x0) = (a(x0), ωx0) = (x0, ω0), which means that
ωx0 is the constant path in Y , F (x0, t) = ω0(t) =
y0 for all t ∈ I and, subsequently, the homotopy

preserves the basepoint. Also F (x, 0) = ωx(0) = y0 and F (x, 1) = ωx(1) = f(x), for
all x ∈ X, which concludes that ω0 ∼ f rel{x0}.

Lemma 2.5.4. If X, Y ∈ T ∗ and f : X −→ Y is a pointed map, the sequence

Mf
q−→ X

f−→ Y

is exact in hT ∗.

Proof. We will work in the category hT ∗. If Z ∈ hT ∗, we need to prove that the

sequence [Z,Mf ]
q∗−→ [Z,X]

f∗−→ [Z, Y ] is exact in S ets∗.
imq∗ ⊂ kerf∗:
Let h ∈ [Z,Mf ]. We want to show that q∗([h]) belongs to kerf∗ or, in other words,
that f ◦ q ◦ h is nullhomotopic.
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Mf◦q

Mf Y

r1φ1

f ◦ q

Figure 2.7

Mf◦h

Z Y

r2φ2

f ◦ h

Figure 2.8

Obviously, if we proved instead that f ◦q is null-
homotopic, it would su�ce. From 2.5.3 this is
equivalent to proving that there is a map φ1

which makes the diagram in Fig.2.7 commute.
De�ne φ1 by φ1(x, ω) = ((x, ω), ω) ∈ Mf◦q.
Then r1(φ1(x, ω)) = r1((x, ω), ω) = ω(1) =
f(q(x, ω)) for all (x, ω) ∈Mf .
kerf∗ ⊂ imq∗:
Let [h] ∈ [Z,X] and f ◦ h be nullhomotopic via
a homotopy F with F0 = ω0 and F1 = f ◦ h.
Then the diagram in Fig.2.8 commutes for φ2 :
Z −→ Mf◦h with φ2(z) = (z, F (z, ·)). Indeed,
r2(φ2(z)) = r2(z, F (z, ·)) = F (z, 1) = f(h(z))
for all z ∈ Z.
Thus, we conclude that imq∗ = kerf∗ and our
sequence is exact in hT ∗.

Corollary. If X, Y ∈ T ∗ and f : X −→ Y is a pointed map, the sequence

. . .Mq̄

¯̄q−→Mq
q̄−→Mf

q−→ X
f−→ Y

is exact in hT ∗.
Here we have Mq = {((x, ω), γ) ∈ Mf × XI | γ(0) = x0, γ(1) = q(x, ω) = x},
q̄ : Mq −→ Mf with q̄((x, ω), γ) = (x, ω), Mq̄ = {(((x, ω), γ), ξ) ∈ Mq ×M I

f | ξ(0) =
(x0, ω0), ξ(1) = (x, ω)}, ¯̄q : Mq̄ −→Mq with ¯̄q(((x, ω), γ), ξ).

Lemma's 2.5.4 corollary along with the next proposition will be used to prove
that, if X, Y ∈ T ∗ and f : X −→ Y is a pointed map, the sequence

ΩX
Ωf−→ ΩY

j−→Mf
q−→ X

f−→ Y

is exact in hT ∗.

Proposition 2.5.5. If X, Y ∈ T ∗ and f : X −→ Y is a pointed map, then the
following diagram is commutative in hT ∗.

ΩX ΩY Mf X Y

Mq̄ Mq Mf X Y

Ωf

r1

j

r2

q

1

f

1 1

¯̄q q̄ q f

Figure 2.9

Proof. Let us �rst de�ne the unde�ned maps in the diagram. We have

r2 : ΩY −→Mq with r2(ω) = ((x0, ω), γ0)

r1 : ΩX −→Mq̄ with r1(γ) = (((x0, ω0), γ), ξ0)
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Counting from left to right, the third and fourth squares obviously commute. In the
second square we have 1(j(ω)) = 1(x0, ω) = (x0, ω) and q̄(r2(ω)) = q̄((x0, ω), γ0) =
(x0, ω) for all ω ∈ ΩY . So it commutes in T ∗ and, consequently, in hT ∗ too.
Now, we examine the �rst square of the diagram. Going one way, we get r1(Ωf(γ)) =
r1(f ◦γ) = ((x0, f ◦γ), γ0), while going the other way ¯̄q(r2(γ)) = ¯̄q(((x0, ω0), γ), ξ0) =
((x0, ω0), γ). If we �nd a pointed homotopy between these functions, then the square
commutes. First, we de�ne for each t ∈ I and each γ ∈ XI a path in X with

βγ,t(s) =

{
γ(s), 0 ≤ s ≤ t

γ(t), t ≤ s ≤ 1

where s ∈ I. These paths coincide with γ up until s reaches t. After that, meaning
from s = t till s = 1, they remain constant on their end point γ(t).
Let F : XI × I −→ Mq with F (γ, t) = ((x0, f ◦ βγ,t), βγ,1−t). F is continuous and
gives F (γ, 0) = ((x0, f ◦ βγ,0), βγ,1) = ((x0, f ◦ γ0), γ) = ((x0, ω0), γ) = ¯̄q(r2(γ)),
F (γ, 1) = ((x0, f ◦ βγ,1), βγ,0) = ((x0, f ◦ γ), γ0) = r1(Ωf(γ)) and F (γ0, t) = ((x0, f ◦
βγ0,t), βγ0,1−t) = ((x0, ω0), γ0). Therefore the �rst square also commutes in hT ∗.

Corollary. If X, Y ∈ T ∗ and f : X −→ Y is a pointed map, then the sequence

ΩX
Ωf−→ ΩY

j−→Mf
q−→ X

f−→ Y

is exact in hT ∗.

Proof. The diagram in Figure 2.9 commutes, the vertical maps are equivalences in
hT ∗ (see De�nition A.1.13) and the bottom row is exact. Apply the functor [Z, ·] to
this diagram and use the fact that (r1)∗ and (r2)∗ are isomorphisms, which is derived
by the aforementioned equivalences. The top row is exact in S ets∗, consequently
the top row in the original diagram is exact in hT ∗.

Lemma 2.5.6. If X
f−→ Y

g−→ W is an exact sequence in hT ∗, then so is the

looped sequence ΩX
Ωf−→ ΩY

Ωg−→ ΩW .

[ΣZ,X] [ΣZ, Y ] [ΣZ,W ]

[Z,ΩX] [Z,ΩY ] [Z,ΩW ]

Figure 2.10

Proof. From the adjointness of (Σ,Ω) we get the commutative diagram in Fig. 2.10,
where the vertical maps are pointed bijections. The top row is exact in S ets∗, by
hypothesis, and so it follows that the bottom row is exact as well for all Z ∈ T .

Proof of Theorem 2.5.1 The result is given if we splice together the exact sequence of
Lemma's 2.5.4 Corollary with the exact sequence of Lemma 2.5.6 and akcnowledge
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that ΩnX = Ω(Ωn−1X).

Therefore, it has been proved that for every pair (X,A, ∗) ∈ T 2∗, there is an
exact sequence of homotopy groups

. . . −→ πn+1(A)
ΩniA∗−→ πn+1(X)

Ωn−1j∗−→ πn+1(X,A)
Ωn−1q∗−→ πn(A) −→ πn(X) −→ . . .

. . . −→ π1(A) −→ π1(X) −→ π1(X,A) −→ π0(A) −→ π0(X)
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Chapter 3

Homology

3.1 Axiomatic de�nition of homology

The axiomatic foundation of homology was given by Eilenberg and Steenrod in
[17]. In their book, which was published in 1952, they stated the seven axioms for
a homology theory. Here, we have grouped some of the initial axioms together or
replaced them with notions equivalent to them, and we have added the additivity
axiom, which was �rstly introduced by Milnor, in 1962 ([18]). Our presentation fol-
lows at points the presentations of Spanier, in [3], and Hatcher, in [10].

Homology theory is de�ned on a suitable category of pairs and maps called ad-
missible category. The de�nition of this category given by Eilenberg and Steenrod
can be found in [17]. In our study, it su�ces to mention that T 2 is an admissible
category of pairs and maps.

Let A be an admissible category and (X,A), (Y,B) ∈ A 2. A homology the-
ory (h, ∂) consists of a functor h and a natural transformation ∂. Speci�cally, h is a
covariant functor from the category A 2 to the category Gab of graded abelian groups
and homomorphisms of degree 0 (De�nition A.2.7). That is h(X,A) = {hn(X,A)}.
On the other hand, the natural transformation ∂, which is called the boundary
operator, is a map of degree −1 from the functor h on (X,A) to the functor h on
(A,∅). That is ∂(X,A) : {∂n(X,A) : hn(X,A) −→ hn−1(A)}. Naturality of ∂ means
that diagram in Fig.3.1 is commutative for every f : (X,A) −→ (Y,B).
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hn(X,A) hn−1(A)

hn(Y,B) hn−1(B)

∂n

hn(f) hn(f |A)

∂n

Figure 3.1

For the pair (h, ∂) to be a homology theory, the following axioms must be satis�ed:

1. Homotopy Axiom If f0, f1 : (X,A) −→ (Y,B) are homotopic, then h(f0) =
h(f1) : h(X,A) −→ h(Y,B).
For simplicity, we will employ f∗n instead of hn(f) when referring to the induced
maps.

2. Exactness Axiom For any pair (X,A) ∈ A 2 with inclusion maps iA : A −→
X and jX : X −→ (X,A) there is an exact sequence

. . .
∂n+1(X,A)−→ hn(A)

hn(iA)−→ hn(X)
hn(jX)−→ hn(X,A)

∂n(X,A)−→ hn−1(A)
hn−1(iA)−→ . . .

This sequence is called the homology sequence of (X,A).

3. Excision Axiom For any pair (X,A) ∈ A 2, if U is an open subset of X such
that Ū ⊂ int(A), then the excision map j : (X −U,A−U) −→ (X,A) induces
an isomorphism

h(j) : h(X − U,A− U) −→ h(X,A).

4. Additivity Axiom If X is the disjoint union of open subsets Xa with inclusion
maps ia : Xa −→ X, {Xa} ⊂ A , then the homomorphisms

hn(ia) = ia∗ : hn(Xa) −→ hn(X)

must provide an injective representation of hn(X) as a direct sum. In other
words, the direct sum map ⊕aia∗ : ⊕ahn(Xa) −→ hn(X) is an isomorphism.

5. Dimension Axiom If P ∈ A consists of a single point, then hn(P ) = 0 for
all n 6= 0.

Our target is to prove that a homology theory like the one axiomatically described
above really exists. For that reason we are going to introduce and study singular
homology. It will be proved that singular homology is indeed such a homology theory.
Moreover, as it was shown by Milnor in [18], if we �x h0(P ) = G for some abelian
group G, the singular homology with coe�cient group G (see below) becomes the
only homology theory that satis�es the axioms of homology.
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3.2 Singular homology

A singular n-simplex in a space X is a continuous map σ : ∆n −→ X, where
∆n is the standard n-simplex de�ned in Section 1.3. We denote with Cn(X) the
free abelian group with basis the set of singular n-simplices in X. The elements
of Cn(X), called singular n-chains, are �nite formal sums

∑
i niσi for coe�cients

ni ∈ Z, σi : ∆n −→ X.
Let now {e0, e1, ..., en} be the standard unit vectors in Rn+1. We de�ne the map

δni : {0, 1, . . . , n − 1} −→ {0, 1, . . . , n} as the inclusion that omits the value i and
dni : ∆n−1 −→ ∆n by the formula dni (

∑n−1
i=0 tiei) =

∑n
i=0 tieδni , which is the i-th face

of ∆n. Using the maps dni , a boundary map ∂n : Cn(X) −→ Cn−1(X) can be de�ned
for each n via ∂n(σ) =

∑
i(−1)iσdni . Maps ∂n lead to the following sequence:

. . . −→ Cn(X)
∂n−→ Cn−1(X)

∂n−1−→ . . .
∂1−→ C0(X) −→ 0 (3.1)

A sequence like this is called a chain complex whenever ∂2 = 0.

Lemma 3.2.1. The composition Cn(X)
∂n−→ Cn−1(X)

∂n−1−→ Cn−2(X) is zero.

Proof. It is easy to check that δni δ
n−1
j = δnj δ

n−1
i−1 for j < i. Hence

∂n−1∂n(σ) =
∑
j

(−1)j

(∑
i

(−1)iσdni

)
dn−1
j =

=
∑
j<i

(−1)i(−1)jσdni d
n−1
j +

∑
j≥i

(−1)i(−1)jσdni d
n−1
j =

=
∑
j<i

(−1)i(−1)jσdnj d
n−1
i−1 +

∑
j>i

(−1)i(−1)j−1σdni d
n−1
j−1 = 0

since the second sum becomes the negative of the �rst after switching i and j in
it.

Since ∂n−1∂n = 0, 3.1 becomes a chain complex, Im∂n+1 ⊂ ker∂n for all n, and the

n-th singular homology of X can be de�ned via the formula Hn(X) :=
ker∂n
Im∂n+1

.

To complete the terminology, let us say that elements of ker∂ are called cycles, while
elements in Im∂ are called boundaries.

If we use the augmented sequence below instead of 3.1, we compute the reduced
homology groups H̃n(X).

. . . −→ Cn(X)
∂n−→ Cn−1(X)

∂n−1−→ . . .
∂1−→ C0(X)

ε−→ Z −→ 0 (3.2)

Here ε : C0(X) −→ Z takes a chain
∑

i niσi to the integer
∑

i ni. As one may
immediately notice, Hn(X) = H̃n(X) when n ≥ 1 and H0(X) = H̃0(X)⊕ Z.
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Deviating slightly from our course, we mention here that if we had built singular
n-chains with coe�cients ni ∈ G, G ∈ Gab, instead of ni ∈ Z, we would have created
the abelian group C(X;G). This would have led, in a similar way as above, to the
de�nition of the so called singular homology with coe�cients in G, denoted
with Hn(X;G). Having clari�ed this, the remainder of the section is dedicated to
proving the existence and uniqueness of a homology theory which satis�es the axioms
and has H0(P ) = Z, or, to state it di�erently, has coe�cient group Z.

The homology that quali�es for the task of ful�lling all the axioms of homology
is the relative singular homology. Let us de�ne it for (X,A) ∈ A 2:

Let Cn(X,A) be the quotient group Cn(X)/Cn(A). This means that chains with
image in A are trivial in Cn(X,A). These chains are called relative cycles. Since
the boundary map ∂ : Cn(X) −→ Cn−1(X) takes Cn(A) to Cn−1(A), it induces a well
de�ned quotient boundary map ∂ : Cn(X,A) −→ Cn−1(X,A). Elements in Im∂ are
called relative boundaries.
We form a sequence

. . . −→ Cn(X,A)
∂n−→ Cn−1(X,A) −→ . . . ,

exactly like the one in the absolute case, for which the relation ∂2 = ∂n∂n+1 = 0
holds. This means that the sequence is a chain complex for the relative case with
Im∂n+1 ⊂ ker∂n, which eventually allows us to de�ne the relative homology groups

Hn(X,A) =
ker∂n
Im∂n+1

. Elements of Hn(X,A) are represented by relative cycles a ∈
ker∂n.

Remark. Singular homology groups can be derived from relative singular homology
groups, if we employ the pair (X, ∅) ∈ A 2 in place of just X ∈ A .

For a map f : X −→ Y , an induced homomorphism f] : Cn(X) −→ Cn(Y )
is de�ned by composing each singular n-simplex σ : ∆n −→ X with f to get a
singular n-simplex f](σ) = fσ : ∆n −→ Y . f] is then extended linearly. A simple
calculation shows that each f] satis�es ∂nf] = f]∂ for all n, therefore the diagram in
Fig.3.2 commutes. This construction can be modi�ed appropriately to incorporate

. . . Cn(X) Cn−1(X) Cn−2(X) . . .

. . . Cn(Y ) Cn−1(Y ) Cn−2(Y ) . . .

∂n

f]

∂n−1

f] f]

∂n ∂n−1

Figure 3.2

the case of a map f : (X,A) −→ (Y,B), leading to an f] which ultimately can pass to
quotients. More speci�cally, it gives f] : Cn(X,A) −→ Cn(Y,B) with f]([σ]) = [fσ],
which is a well de�ned map.

The fact that maps f] satisfy ∂nf] = f]∂ for all n is also expressed by saying that
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maps f] de�ne a chain map from the singular chain complex of (X,A) to that of
(Y,B). The same relation also implies that f] take cycles to cycles and boundaries to
boundaries. f �nally leads to an induced homomorphism Hn(f) = f∗ : Hn(X,A) −→
Hn(Y,B). This result is summarised in the next Proposition:

Proposition 3.2.2. A chain map between chain complexes induces homomorphisms
between the relative homology groups of the two complexes.

It can be veri�ed using the associativity of compositions ∆n σ−→ X
g−→ Y

f−→ Z

that Hn(fg) = (fg)∗ = Hn(f)Hn(g) = f∗g∗ for (X,A)
g−→ (Y,B)

f−→ (Z,C). It also
holds that Hn(1) = 1∗ = 1, where 1 denotes the identity map of a space or a group.
Therefore, Hn is a covariant functor from A to Gab.

Proposition 3.2.3. Let X = {x0}. Then Hn(X) = 0 for n 6= 0 and H0(X) = Z or,
in other words, singular homology satis�es the Dimension Axiom and has Z as its
group of coe�cients.

Proof. There is a unique singular n-simplex σn for each n. ∂σn =
∑n

i=0(−1)iσnd
n
i =∑n

i=0(−1)iσn−1, hence ∂ is either 0 for n odd or an isomorphism for n even. We have
the chain complex

. . .
∼=−→ Z

0−→ Z
∼=−→ Z

0−→ Z −→ 0

The conclusion is readily drawn from this chain complex.

Proposition 3.2.4. Let (X,A), (Y,B) ∈ A 2 and f , g ∈ Hom((X,A), (Y,B)). If f
and g are homotopic, then f∗ = g∗ : Hn(X,A) −→ Hn(Y,B). Thus, singular relative
homology satis�es the Homotopy Axiom.

Proof. In the prism ∆n × I we denote with [v0, v1, . . . , vn] the n-simplex ∆n × {0}
and with [w0, w1, . . . , wn] the n-simplex ∆n × {1}. Then ∆n × I consists of all the
(n+ 1)-simplices of the form [v0, . . . , vi, wi, . . . , wn], where i ∈ {0, 1, . . . , n}. Given a
homotopy F : X × I −→ Y from f to g and a singular simplex σ : ∆n −→ X, the
composition G = F ◦ (σ × 1) : ∆n × I −→ X × I −→ Y can be formed. Through
this we de�ne the prism operators P : Cn(X) −→ Cn+1(Y ) with:

P (σ) =
∑
i

(−1)i(F ◦ (σ × 1))|[v0,...,vi,wi,...,wn].

Obviously, P take Cn(A) to Cn+1(B), hence they induce relative prism operators
P : Cn(X,A) −→ Cn+1(Y,B) with P (σ) =

∑
i(−1)i(F ◦ (σ× 1))|[v0,...,vi,wi,...,wn], with

σ denoting the equivalence class in Cn(X)/Cn(A) from here on.
If we compute ∂P (σ) and P∂(σ) and then take their sum, we get ∂P (σ) + P∂(σ) =
gσ − fσ = g](σ) − f](σ). Now, if a ∈ Cn(X,A) is a relative cycle, then we have
g](a) − f](a) = ∂P (a) + P∂(a) = ∂P (a) + P (0) = ∂P (a) ∈ Im∂n+1, hence g∗(σ) −
f∗(σ) = 0 in Hn(X,A). If the equation ∂P +P∂ = g]−f] holds for all σ ∈ Cn(X,A),
we say that f] and g] are chain homotopic on relative chain groups. In this case they
induce equal homomorphisms f∗ and g∗ on relative homology groups, as it has been
shown.
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Remark. If two maps are chain homotopic in relative homotopy groups, we get equal-
ity of the induced maps. Chain homotopy is not as strict a requirement as regular
homotopy. In a way, it is easier to �nd maps f and g with f∗ = g∗ in homology,
since no basepoint is required to be �xed and f# and g# are allowed to di�er by
boundaries.

Proposition 3.2.5. There is a long exact sequence of homology groups:

. . .
∂̄n+1−→ Hn(A)

iA∗−→ Hn(X)
jX∗−→ Hn(X,A)

∂̄n−→ Hn−1(A)
iA∗−→ . . .

which proves that singular relative homology satis�es the Exactness Axiom.

Proof. We present here the proof in a descriptive manner and refer to [10] for its
detailed and complete version.
In the long sequence of homology groups iA∗ and jX∗ are induced by the inclusions
iA : (A, ∅) ↪→ (X, ∅) and jX : (X, ∅) ↪→ (X,A), respectively. Therefore, the only
map left to de�ne is the boundary map ∂ : Hn(X,A) −→ Hn−1(A). In order to
do so we employ the following diagram, which is commutative and has short exact
sequences as columns and chain complexes as rows. ∂ is built using the relevant

0 0 0

. . . Cn+1(A) Cn(A) Cn−1(A) . . .

. . . Cn+1(X) Cn(X) Cn−1(X) . . .

. . . Cn+1(X,A) Cn(X,A) Cn−1(X,A) . . .

0 0 0

∂

i

∂

i i

∂

j

∂

j j

∂ ∂

Figure 3.3

part of this diagram as a 'stair' from Cn(X,A) to Cn−1(A) (up-right-up). A relative
cycle c ∈ Cn(X,A) moves through the epimorphism j up to an element b ∈ Cn(X)
with j(b) = c, then goes to ∂b ∈ Cn−1(X) and from there up again to an element
a ∈ Cn−1(A) such that i(a) = ∂b.
The commutativity of the diagram, the exactness of the columns and the properties
of the rows ensure that this map is well de�ned. Now, one has just to check if the
produced sequence of homology groups is exact, which is routine and analytically
addressed in [10].

Remark. Generalising the concept of a pair (X,A) and its exact sequence, we form
triples of spaces (X,A,B), B ⊂ A ⊂ X, and the sequence:



3.2. SINGULAR HOMOLOGY 47

. . . −→ Hn(A,B) −→ Hn(X,B) −→ Hn(X,A) −→ Hn−1(A,B) −→ . . . ,

which is proved to be exact. For the proof a diagram similar to the one in Figure 3.3
is used, where the columns are the short exact sequences

0 −→ Cn(A,B) −→ Cn(X,B) −→ Cn(X,A) −→ 0.

Remark. Obviously, the same proof works for the construction of a long exact se-
quence of reduced homology groups of a pair (X,A), A 6= ∅,

. . . −→ H̃n(A) −→ H̃n(X) −→ H̃n(X,A) −→ H̃n−1(A) −→ . . . ,

if we add the short exact sequence

0 −→ Z
1−→ Z −→ 0 −→ 0

in dimension −1. Hn(X,A) = H̃n(X,A) for all n, when A 6= ∅.

Example 3.2.6. Hn(X, x0) ∼= H̃n(X)
The long exact sequence for the reduced homology is

. . . −→ H̃n(x0) −→ H̃n(X) −→ H̃n(X, x0) −→ H̃n−1(x0) −→ . . .

But H̃n(x0) ∼= 0 for all n, thus Hn(X, x0) = H̃n(X, x0) ∼= H̃n(X).

Theorem 3.2.7. Let (X,A) ∈ A 2 and U ⊂ X open such that Ū ⊂ int(A). The

excision map j : (X−U,A−U) −→ (X,A) induces isomorphisms j∗ : Hn(X−U,A−
U) −→ Hn(X,A) for all n. In other words, singular relative homology satis�es the

Excision Axiom.

Equivalently, for subspaces A, B ⊂ X, whose interiors cover X, the inclusion i :

(B,A ∪ B) ↪→ (X,A) induces isomorphisms i∗ : Hn(B,A ∩ B) −→ Hn(X,A) for all

n.

Proof. The complete proof is rather lengthy and technical. We refer the reader to
[10] for it. Here we con�ne ourselves to discussing its general idea and some of its
basic steps.
We start by considering a collection U = {Ui} of subspaces of X, whose interiors
cover X, and denoting with CU

n (X) the subgroup of Cn(X) generated by singular
maps σ with image in some Ui ∈ U . Observe that ∂(CU

n (X)) ⊂ CU
n−1(X), so HU

n (X)
can be formed, as usual. For this cover U and σ ∈ Cn(X), {σ−1(Ui)} is a cover of
open sets of the compact metric space ∆n ⊂ Rn. We name m(σ) a �xed Lebesgue
number for the cover {σ−1(Ui)} (see Proposition 1.1.17). Based on it we will try to
'break down' the domain ∆n and subsequently each map σ to components �tting
inside some Ui.
Having said that, the main idea behind the proof is to construct a map ρ : Cn(X) −→
CU
n (X) which decomposes each generator σ to a sum of such 'small' component

maps σi ∈ CU
n (X) and makes iρ and ρi chain homotopic to the identity. Then i∗ :

HU
n (X) −→ Hn(X) will become an isomorphism. Applying this result for the cover
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U = {A,B} and the inclusion i between quotients CU
n (X)/Cn(A) ↪→ Cn(X)/Cn(A)

gives HU
n (X,A) ∼= Hn(X,A), which, combined with the isomorphism Cn(B)/Cn(A∩

B) ∼= CU
n (X)/Cn(A), will ultimately lead to the desired isomorphismHn(B,A∩B) ∼=

Hn(X,A).
In order to achieve what has been just described, we need to decompose every σ's
domain ∆n into simplices with diameters smaller than m(σ). Iterated barycentric
subdivision of ∆n is employed to this end (see 1.3.5, 1.3.6 and 1.3.9). This procedure is
extended to maps and produces an operator S : Cn(X) −→ Cn(X), which subdivides
generators σ. S leads to a new operator D : Cn(X) −→ Cn+1(X), for which ∂D +
D∂ = 1− iρ holds. Also ρi = 1, since m(σ) = 0 if σ ∈ CU

n (X).

Proposition 3.2.8. Let X ∈ T and {Xα} be its path components. Then the in-
clusions iα : Xα −→ X induce an isomorphism ⊕αiα∗ : ⊕αHn(Xα) −→ Hn(X). In
other words, singular homology satis�es the Additivity Axiom.

Proof. A singular simplex has always a path connected image. Thus Cn(X) can be
written as the direct sum of its subgroups Cn(Xα). This decomposition remains un-
changed even after applying the boundary maps ∂n, so Cn(Xα) is taken to Cn−1(Xα).
ker∂n and Im∂n+1 split similarly into direct sums. Therefore, the homology groups
also split, giving �nally the isomorphism Hn(X) ∼= ⊕αHn(Xα).

We have proved that singular homology Hn, together with its boundary map,
constitute a homology theory, indeed. Next, some useful Propositions and examples
will be mentioned, right before we prove the uniqueness of Hn.

Proposition 3.2.9. A pair (X,A) ∈ T 2 is called a good pair if A is a nonempty
closed subspace of X and a deformation retraction of some neighbourhood U in X.
Let (X,A) be a good pair and q : (X,A) −→ (X/A,A/A) the quotient map. Then q

induces isomorphisms q∗ : Hn(X,A) −→ Hn(X/A,A/A) ∼= H̃n(X/A) for all n.

Proof. In the commutative diagram in Figure 3.4 i1∗ are isomorphisms, because
Hn(U,A) = 0 and Hn(U/A,A/A) = 0 for all n in the exact sequences of the triple
(X,U,A) and (X/A,U/A,A/A), respectively. i2∗ are isomorphisms too, a conclusion
reached through excision. Finally, the right-hand vertical map q∗ is an isomorphism,

Hn(X,A) Hn(X,U) Hn(X − A,U − A)

Hn(X/A,A/A) Hn(X/A,U/A) Hn(X/A− A/A,U/A− A/A)

i1∗

q∗ q∗

i2∗

q∗

i1∗

i2∗

Figure 3.4

because q restricts to a homeomorphism on the complement of A. The commutativity
of the diagram leads to the desired result.

Example 3.2.10.

Hi(D
n, ∂Dn) ∼=

{
Z for i = n

0 otherwise
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From the long exact sequence of the pair (Dn, ∂Dn), where ∂Dn ≡ Sn−1 and Dn

is contractible, we get Hi(D
n, ∂Dn) ∼= Hi−1(Sn−1). Proposition 3.2.9 also gives

Hi(D
n, ∂Dn) ∼= Hi(D

n/∂Dn) ∼= H̃i(S
n). Thus H̃i(S

n) ∼= Hi−1(Sn−1). Induction
and the homology groups of S1 calculated in Example 3.3.3 produce the result.

Example 3.2.11. The identity map idn : ∆n −→ ∆n is a relative cycle generating
Hn(∆n, ∂∆n) ∼= Hn(Dn, ∂Dn) ∼= Z (see Example 3.2.10).
It is obvious that [idn] is a relative cycle, so we need only to prove that it generates
Hn(∆n, ∂∆n). We will use induction on n. For n = 0 the result is trivial. Let it also
hold till n− 1. We denote the union of all but one of the (n− 1)-dimensional faces of
∆n with K. More speci�cally, we choose to work with the inclusion dn0 : ∆n−1 −→ ∆n

and excise the face [dn0 ] in every case. The following maps are isomorphisms

Hn(∆n, ∂∆n)
∂−→ Hn−1(∂∆n, K)

(dn0 )∗←− Hn−1(∆n−1, ∂∆n−1).

∂ is the boundary map in the long exact sequence of the triple (K, ∂∆n,∆n)

−→ Hn(∂∆n, K) −→ Hn(∆n, K) −→ Hn(∆n, ∂∆n)
∂−→ Hn−1(∂∆n, K) −→

and an isomorphism, because ∆n deformation retracts to K. (dn0 )∗ is an isomorphism
as well, since ∆n−1/∂∆n−1 ≡ ∂∆n/K and these pairs are good (Proposition 3.2.9).
According to the de�nition of the boundary map we have ∂[idn] =

∑
j(−1)n[dnj ].

However, [dnj ] = 0 for j 6= 0 in the relative group Hn(∂∆n, K), so we get ∂[idn] =
(−1)n[dn0 ]. In conclusion, the composite isomorphism ∂−1(dn0 )∗ : Hn(∆n, ∂∆n) −→
Hn−1(∆n−1, ∂∆n−1) sends the generator [idn−1] to [idn].

Proposition 3.2.12. If X is a CW-complex, the inclusion i : Xn ↪→ X induces an
isomorphism i∗ : Hi(X

n) −→ Hi(X) for all i < n.

Proof. Since (Xn+1, Xn) is a good pair and Xn+1/Xn ≡
∨
α S

n+1
α , we deduce that

Hi(X
n+1, Xn) = 0 for i 6= n + 1 and Hn+1(Xn+1, Xn) ∼= Hn+1(

∨
α S

n+1
α ). Generally,

for a wedge sum
∨
αXα at basepoints xα ∈ Xα such that the pairs (Xα, xα) are

good, we get H̃n+1(
∐

αXα/
∐

α xα) ∼= Hn+1(
∐

αXα,
∐

α xα) ∼= ⊕αHn+1(Xα, xα) ∼=
⊕αH̃n+1(Xα) from the excision axiom, the additivity axiom and Example 3.2.6.
Knowing that Hn+1(Sn+1) ∼= Z, we conclude that Hn+1(Xn+1, Xn) ∼= ⊕αZ.
Let us consider the long exact sequence of the pair (Xn+1, Xn)

.. −→ Hi+1(Xn+1, Xn) −→ Hi(X
n) −→ Hi(X

n+1) −→ Hi(X
n+1, Xn) −→ .. (3.3)

If i 6= n + 1, i 6= n, then Hi(X
n+1) ∼= Hi(X

n), and, if we take the long exact
sequences of the pairs (Xn+k, Xn+k−1) the one after the other, for k ≥ 1, we conclude
that Hi(X

n) ∼= Hi(X
n+k), when i < n. This �nishes the case of a �nite dimensional

CW-complex.
Let X have in�nite dimension. A singular chain

∑
k nkσk ∈ Ci(X) has compact

image in the CW-complex X (Proposition 1.1.18), hence meets only �nitely many
cells of X. Take m ∈ Z such that

∑
k nkσk(∆

i) ⊂ Xm. For a i-cycle c and with
the �nite dimensional case already proved, we know that there exists an n such that
c ∈ Hi(X

n) for all i < n. Therefore, i∗ : Hi(X
n) −→ Hi(X) is surjective. For this n,
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i∗ : Hi(X
n) −→ Hi(X) is also injective. If we take representatives c1, c2 ∈ Hi(X

n)
such that i∗[c1] = i∗[c2], then these are homologous, so they di�er by a boundary of
a chain b in Ci+1(X), i < n. Since b has compact image in the CW-complex X, we
get an m, n ≤ m, such that b(∆i+1) ⊂ Xm and this leads to [c1] = [c2] in Hi(X

m).
But then Hi(X

m) ∼= Hi(X
n) for all i < n from the �nite dimensional case, which

completes the proof.

We are going to complete our presentation of singular homology by calling up the

following Theorem, which was stated and proved by Milnor in 1962, regarding the

uniqueness of Hn:

Theorem 3.2.13. Let (h, ∂) be an additive homology theory on the category W

(Example A.1.3, 6) with coe�cient group G. Then for each (X,A) ∈ W there is

a natural isomorphism between hn(X,A) and the nth singular homology group of

(X,A) with coe�cients in G, Hn((X,A);G).

Proof. It can be found in [18].

Therefore, if one chooses a particular coe�cient group, there is exactly one homol-
ogy theory which conforms with all the axioms. Furthemore, this homology theory is
isomorphic to the singular homology theory. In other words, any homology theory in
compliance with the aforementioned requirements coincides with the singular relative
homology theory.
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3.3 Computations of homological groups

Singular homology proves extremely handy for the theoretical study of homology
theory. However, it does not o�er similar advantages when it comes to computing
homology groups of spaces. There are other, more suitable homology theories that can
do the trick. In this section, we will brie�y introduce two such homologies: simplicial
and cellular. We will restrict ourselves to very limited information, since we would
rather make some calculations than be thorough in presenting these theories.

3.3.1 Simplicial homology

De�nition 3.3.1. Let X ∈ T and ∆n be the standard n-simplex. A ∆-complex

stucture is a collection of maps σα : ∆n(α) −→ X such that:

1. the restriction σα|(∆n(α))o is injective and each point of X is in the image of

exactly one such restriction σα|(∆n(α))o ;

2. each restriction of σα to a face in ∂∆n ≡ ∆n−1 of ∆n is one of the maps

σβ : ∆n−1 −→ X;

3. a set A ⊂ X is open if and only if σ−1
α (A) is open in ∆n for each σα.

Let ∆n(X) be the free abelian group with basis the open n-simplices enα :=

σ((∆n(α))o) of X. Elements of ∆n(X) are written as �nite sums
∑

α nαe
n
α with

nα ∈ Z. Equivalently, we can write
∑

α nασα where σα is the characteristic map

of enα. A boundary map ∂ : ∆n(X) −→ ∆n−1(X) is de�ned by the formula ∂(σα) =∑
i(−1)iσαd

n
i , just like it did in singular homology. The proof of 3.2.1 su�ces to

show that ∂2 = 0, hence the groups ∆∗(X) form a chain complex.

. . . −→ ∆n(X)
∂n−→ ∆n−1(X)

∂n−1−→ . . .
∂1−→ ∆0(X) −→ 0 (3.4)

The n-th simplicial homology of X can be de�ned via the formula H∆
n (X) :=

ker∂n
Im∂n+1

using the chain complex in 3.4.

Theorem 3.3.2. The homomorphisms H∆
∗ (X,A) −→ H∗(X,A) are isomorphisms

for all ∆-complex pairs (X,A) (X is a ∆-complex and A ⊂ X is also a ∆-complex).

Proof. See Theorem 2.27 in [10].

Example 3.3.3.

Hn(S1) ∼=

{
Z, for n = 0, 1

0, for n ≥ 2
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We equip S1 with a ∆-complex and see it as a space with vertex s0 and an edge e1.
∆0(S1) ∼= Z, ∆1(S1) ∼= Z and ∆k(S

1) ∼= 0 for all k > 1. Now for the boundary map
∂1 : ∆1(S1) −→ ∆0(S1) we have ∂1(e) = s0−s0 = 0, thus ∂1 = 0. These observations
lead us to ker∂1

∼= Z, ker∂0
∼= Z, Im∂2

∼= 0, Im∂1
∼= 0, which eventually produce

the groups H∆
n (S1) ∼= Hn(S1).

3.3.2 Cellular homology

Proposition 3.3.4. Let X be a CW-complex. The sequence

. . . −→ Hn+1(Xn+1, Xn)
dn+1−→ Hn(Xn, Xn−1)

dn−→ Hn−1(Xn−1, Xn−2) −→ . . . (3.5)

is a chain complex called the cellular chain complex of X. The homology groups
of this chain map are called the cellular homology groups of X and we denote the
n-th cellular homology group with HCW

n (X).

Proof. We recall Proposition 3.2.12 and intersperse the sequence 3.5 with portions
of the long exact sequences of the form 3.3 to formulate the following diagram. dn+1

0

0 Hn(Xn+1) ∼= Hn(X)

Hn(Xn)

. . . Hn+1(Xn+1, Xn) Hn(Xn, Xn−1) Hn−1(Xn−1, Xn−2) . . .

Hn−1(Xn−1)

0

jn
∂n+1

dn+1

∂n

dn

jn−1

Figure 3.5

and dn are de�ned to be jn ◦ ∂n+1 and jn−1 ◦ ∂n, respectively. The composition
dn ◦ dn+1 = jn ◦ ∂n+1 ◦ jn−1 ◦ ∂n = 0, because ∂n+1 ◦ jn−1 = 0 being the composition
of successive maps in the chain complex

0→ Hn(Xn)
jn−→ Hn(Xn, Xn−1)

∂n−→ Hn−1(Xn−1) −→ Hn−1(Xn) ∼= Hn−1(X)→ 0
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Theorem 3.3.5. HCW
∗ (X) ∼= H∗(X).

Proof. Hn(X) ∼= Hn(Xn)/Im∂n+1 as can be extracted from Fig.3.5. Since jn is
injective Im∂n+1 is mapped isomorphically onto Im(jn∂n+1) = Imdn+1 and Hn(Xn)
isomorphically onto Imjn = ker∂n. The injectivity of jn−1 gives ker∂n = kerdn.
Thus jn induces the isomorphism Hn(Xn)/Im∂n+1

∼= kerdn/Imdn+1.

If we want to calculate some homology groups, we need a more concrete way
to estimate maps dn = jn∂n+1. The appropriate formula of dn uses the notion of
the degree of a map f : Sn −→ Sn, n > 0, which will be introduced in a bit,
and is built via the commutative diagram in Fig. 3.6. Neither the details of the
formula's construction nor the properties and the theory relevant to the degree map
are presented here. The reader can �nd them in [10].

De�nition 3.3.6. Let f : Sn −→ Sn, n > 0. The induced map f∗ : Hn(Sn) −→
Hn(Sn) is a homomorphism from an in�nite cyclic group to itself. Therefore it can be

expresses as f∗(α) = dα, where α is the generator of Hn(Sn) and d ∈ Z. d depends

only on f , it is called the degree of f and has the notation d = deg f .

Remark. Although deg f has several properties, we are going to need only two of
them, namely:

1. deg id = 1 and deg f = ±1, if f is a homotopy equivalence.
2. If f is the antipodal map, i.e. the map that takes each point of Sn to its

antipodal point, deg f = (−1)n+1.

De�nition 3.3.7. Let f : Sn −→ Sn, n > 0, be a map such that there exists a point

y ∈ Sn whose preimage f−1(y) = {x1, ..., xm} consists of �nitely many points. If we

take Ux1 , ..., Uxm to be disjoint neighbourhoods of the points xi, with f(Uxi) ⊂ Vy,

Vy neighbourhood of y, then the map f∗ : Hn(Uxi , Uxi − {xi}) −→ Hn(Vy, Vy − {y})
can be expressed as f∗(α) = diα, di ∈ Z. di is called the local degree of f at xi

and is written as deg f |xi .

Remark. The local degree deg f |xi is well de�ned, because exactness and excision
axioms provide the following isomorphisms for the contractible subspaces Uxi and
Sn − {xi}:

Hn(Uxi , Uxi − {xi}) ∼= Hn−1(Uxi − {xi})
∼= Hn(Sn − {xi}, Uxi − {xi})
∼= Hn(Sn, Uxi)

∼= Hn(Sn)

Similarly, Hn(Vy, Vy − {y}) ∼= Hn(Sn).

Proposition 3.3.8. deg f =
∑

i deg f |xi, where the aforementioned notation is
adopted.

Proof. See Proposition 2.30 in [10].
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The cellular boundary formula of dn : Hn(Xn, Xn−1) −→ Hn−1(Xn−1, Xn−2) is

dn(enα) =
∑

β dαβe
n−1
β , where dαβ is the degree of the map f : Sn−1

α

φα−→ Xn−1 q−→
Sn−1
β . φα is the attaching map of the cell enα, while q is the quotient map that collapses
Xn−1 − en−1

β to a point.
During the proof of Proposition 3.2.12 we saw that Hn(Xn, Xn−1) ∼= ⊕αZ, where

the index α counts the n-cells of X. For this reason it is enough to de�ne the formula
of dn on the basis elements enα. Also, in spite of the fact that en−1

β might be in�nite,
the summation has a �nite number of summands, because φα has a compact image
in the CW-complex Xn−1 (Proposition 1.1.18).

Hn(Dn, ∂Dn) H̃n−1(∂Dn
α) H̃n−1(Sn−1

β )

Hn(Xn, Xn−1) H̃n−1(Xn−1) H̃n−1(Xn−1/Xn−2)

Hn−1(Xn−1, Xn−2) Hn−1(Xn−1/Xn−2, Xn−2/Xn−2)

∂
∼=

Φα∗ φα∗

∆αβ∗ = qβ∗q∗φα∗

∂n

dn

q∗

jn−1

qβ∗

∼=

∼=

Figure 3.6

Example 3.3.9.

Hk(RP
n) =


Z, if k = 0, k = n odd

Z2, if k odd, 0 < k < n

0, otherwise

In Example 1.3.16 we saw that RP n has a CW structure with a single k-cell for
each k ≤ n. The attaching map of the k-cell ek is the quotient projection φ :
Sk−1 −→ RP k−1 that identi�es antipodal points of Sk−1 and 'glues' them to RP k−1.

Consider the composition f : Sk−1 φ−→ RP k−1 q−→ RP k−1/RP k−2 = Sk−1 and
a point y ∈ Sk−1. The preimage f−1(y) consists of two points x1, x2, one in each
hemisphere of the domain Sk−1. The restrictions f1 and f2 of f on neighbourhoods of
Ux1 and Ux2 , respectively, are homeomorphisms. To be more exact one is homotopic
to the identity, while the other is homotopic to the antipodal map. Now, dk = deg f =
deg f1 + deg f2 = 1 + (−1)k−1+1. Concequently, dk will be 0 or a multiplication by
2, depending on whether k is odd or even. This result leads to the following cellular
chain complexes for RP n:

Hn+1([RP n]n+1,RP n) −→ Hn(RP n, [RP n]n−1) −→ .. −→ H1([RP n]1, [RP n]0)→ 0

0 −→ Z
2−→ Z

0−→ . . .
2−→ Z

0−→ Z −→ 0, if n is even

0 −→ Z
0−→ Z

2−→ . . .
2−→ Z

0−→ Z −→ 0, if n is odd

which give the values of HCW
k (RP n) ∼= Hk(RP

n) which were stated at the beginning.

Remark. With the notation [RP n]k we mean the k-skeleton of RP n.



Chapter 4

Theorems preceding Hurewicz'

Theorems that are often employed to prove the relative Hurewicz theorem are
presented in this Chapter. Although the way we chose to prove the Theorem does
not use them, we seized the opportunity to include them due to their signi�cance in
algebraic topology in general.
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4.1 Elements of simplicial approximation

De�nition 4.1.1. Let K be a simplicial complex and f : |K| −→ Rn. f is said

to be linear if for each simplex [v0, ..., vl] of K and for each x ∈ [v0, ..., vl], we have

f(x) = f(
∑l

i=0 tivi) =
∑l

i=0 tif(vi). This means that a linear map is completely

determined by its value on the vertices of the domain.

De�nition 4.1.2. A set X ⊂ Rm is said to have linear dimension ≤ k, k ≤ m, if

there exist a�ne k-planes A1, ..., Al with X ⊂
⋃l
i=0Ai. For the empty set ∅ we

de�ne lindim(∅) = −1.

Proposition 4.1.3. Let X be a set in Rm with lindim(X) < m. Then X is nowhere
dense.

Proof. See Proposition 12.5 in [12].

Proposition 4.1.4. Let K be a complex, f : |K| −→ Rm be a linear map and
X ⊂ K. Then lindim(f(X)) ≤ lindim(X).

Proof. See Proposition 12.6 in [12].

Lemma 4.1.5. Let X be a CW-complex, f : In −→ X ∪ ek, n < k. Then there is
an open set U ⊂ In and a homotopy ht : U −→ ek rel∂U such that:

1. h0 = f |U ;
2. there is a complex N ⊂ U such that h1|N is linear;

3. h−1
1 (ek(1/2)) ⊂ N o, where ek(1/2) = Φ(B̄(k, 1/2)), Φ is the characteristic map

and Dk = B̄(k, 1).

Proof. See Lemma 13.4 in [12].

Corollary (4.1.5). πn(X ∪ ek, X, ∗) = 0 for n < k.

Proof. Let f : (In, ∂In, Jn−1) −→ (X ∪ ek, X, ∗) represent a homotopy element. We
apply Lemma 4.1.5 for f . For the open set U given by the Lemma, f(U) ⊂ ek and
f(∂In) ⊂ X. Thus U ∩ ∂In = ∅ and ht can be extended to a homotopy Ht : In −→
X ∪ ek with Ht|∂In = f |∂In for all t. More speci�cally, we have

Ht(u) =

{
ht(u), u ∈ U
f(u), u ∈ In − U

H0 = f . Let us choose a point p ∈ ek(1/2) such that p /∈ H1(N). This we can do,
becauseH1(N) has linear dimension ≤ n < k = lindim(ek) (Proposition 4.1.4), hence
it is nowhere dense (Proposition 4.1.3). H−1

1 (p) ⊂ H−1
1 (en(1/2)) ⊂ N , soH−1

1 (p) = ∅.
This leads us to the conclusion thatH1 is in the image of i∗ : πn(X∪ek−{p}, X, ∗) −→
πn(X ∪ ek−{p}, X, ∗) induced by inclusion. But X ∪ (ek−{p}) deformation retracts
to X. Thus πn(X ∪ ek − {p}, X, ∗) ∼= πn(X,X, ∗) = 0.
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4.2 Cellular approximation

The cellular approximation theorem states that any map between CW-complexes

is homotopic to one that sends cells to cells of the same or lower dimension. It ensures

in a way that a homotopically equivalent version of maps between CW complexes

can be found, which is more easily contained and manipulated.

[12], [2] and [19] prove the Cellular Approximation Theorem in the general context

of relative CW-complexes and subspaces of CW-complexes. To this end, they use

the notions of colimits or direct limits. Since we are only interested in CW-pairs and

subcomplexes of CW-complexes in our study, we choose to present the less general

version found in [10] and [20].

De�nition 4.2.1. Let X and Y be CW-complexes. A map f : X −→ Y is called

cellular if f(Xn) ⊂ Y n.

Remark. The exact same de�nition also holds for a map f : (X,A) −→ (Y,B)
between CW-pairs.

Theorem 4.2.2. Let (X,A) be a CW pair, (Y,B) ∈ T 2∗ with B 6= ∅, f : (X,A) −→
(Y,B) and S be a set of integers. Suppose that, if ek ⊂ X − A, then k ∈ S and

πk(Y,B, ∗) = 0 for any choice of the base point ∗. Then there is a map g : X −→ B

with g ∼ f relA.

Proof. See Lemma 4.6 in [10].

Theorem 4.2.3 (Cellular approximation theorem). Every map f : X −→ Y between

CW-complexes is homotopic to a cellular map. If f is already cellular on a subcomplex

A ⊂ X, the homotopy may be taken to be stationary on A.

Proof. The proof will be by induction. Assume that f has already been made cellular
on Xn−1 and take en to be an n-cell of X (or X − A). The closure en is compact
in X, so its image under f is also compact in Y . Proposition 1.3.13 ensures that
S = {j ∈ I| f(en)∩ ej 6= ∅} is a �nite set, where I is a set of indices. Let ej = ek ∈ S
be the cell with the maximal dimension k. If n ≤ k, then f is already cellular
on ek and we need to do nothing. If, however, k > n, we take the composition
g = f ◦ Φ of the characteristic map Φ : In ≡ Dn −→ Xn−1 ∪ en with the given map
f : Xn−1 ∪ en −→ Y k and apply Lemma 4.1.5. From now on arguments are very
similar to the arguments in the proof of Corollary 4.1.5. Using the Lemma we obtain
an open subset U ⊂ In and a homotopy ht with the properties described there. Since
g(U) ⊂ ek and g(∂In) ⊂ (Y k−ek), we take U∩∂In = ∅. Hence ht can be extended to
a homotopy Ht : In −→ (Y k−ek)∪ek with Ht|∂In = g|∂In for all t. More speci�cally,
we have

Ht(u) =

{
ht(u), u ∈ U
g(u) = f ◦ Φ(u), u ∈ In − U
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Obviously, H0 = g, while H1 is linear on N ⊂ U . Let us choose a point p ∈ ek(1/2)
such that p /∈ H1(N), just like we did in the corollary. Using now what was found
for Ht, we can de�ne the homotopy

Gt(x) =

{
ht ◦ φ−1(x), x ∈ φ(U)

f(x), x ∈ Xn−1 − φ(U)

where Gt|Xn−1 = f |Xn−1 for all t and there exists p /∈ G1(φ(N)). In other words, our
initial f |Xn−1∪en is homotopic relXn−1 to a map whose image misses one point on
ek ⊂ Y k. If we compose the homotopy Gt with a deformation retraction of Y k −{p}
to Y k − ek we can deform the map f |Xn−1∪en relX

n−1 to a map whose image misses
the whole cell ek.
Using �nitely many repetitions of this procedure we �nd a homotopic map whose
image f(en) misses all cells ej, j ∈ S, with dimension greater than n. If we do
this for all n-cells in X (or X − A), we obtain a homotopy of f |Xn relXn−1 (or
f |Xn relXn−1 ∪ An) to a cellular map. The induction step is completed with the
application of the homotopy extension property, which extends this homotopy to one
de�ned on all X.
If X has in�nite dimension, we let n go to ∞ and the resulting in�nite string of
homotopies becomes a single, coherent one with the nth homotopy being performed
during the t-interval [1−1/2n, 1−1/2n+1]. The continuity of this homotopy is ensured
by the weak homotopy axiom of CW complexes.

Example 4.2.4. πn(Sk) = 0 for n < k.
Sn is a CW-complex with a single 0-cell and a single n-cell (1.3.15). If we take
f : (Sn, ∗) −→ (Sk, ∗) to represent an element in the homotopy group, we get that
[f ] = [g] where g(Sn) ⊂ [Sk]n. However, since n < k and with given the CW-
decomposition of Sk, [Sk]n = {∗} and g = 0, which means that f is homotopic to
the constant map.
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4.3 CW approximation

Many general statements in algebraic topology can be proved using CW approx-

imations of spaces. Their study is easier since, in their case, any problem can be

tackled using a cell-by-cell approach. Conclusions are more readily reached for in-

dividual cells, so the process of decomposing a CW complex to its building blocks

and reconstructing it from its elements can e�ciently lead to the desired results. Of

course, these CW complexes must be equivalent to the studied spaces in a way that

will be de�ned shortly.

De�nition 4.3.1. A map f : X −→ Y is called a weak homotopy equivalence

if f∗ : πn(X, x0) −→ πn(Y, f(x0)) is an isomorphism for all n ≥ 0 and all x0 ∈ X.

Generalising the de�nition to pairs, a map f : (X,X0) −→ (Y, Y0) is called a weak

homotopy equivalence if the associated maps f : X −→ Y and f |X0 : X0 −→ Y0 are

weak homotopy equivalences.

De�nition 4.3.2. Let X ∈ T ∗. A CW approximation or resolution of X is a pair

(K, f) where K is a CW-complex and f : K −→ X is a weak homotopy equivalence.

A CW approximation of a pair (X,X0), now, is a CW pair (K,K0) and a weak

homotopy equivalence f : (K,K0) −→ (X,X0).

It will be shown that CW approximations of spaces and pairs always exist and any
two of them are homotopically equivalent. However, before proving their existence,
let us prove that CW approximations behave well with respect to homology. We
follow here the proof presented in Section 9.5 of [2], altering slightly the notation.

Let (X,A, ∗) ∈ T ∗ and [∆k]n the n-skeleton of the standard simplicial complex
∆k. Let also C(n,A)

k (X) ⊂ Ck(X) for n ≥ 0 be the subgroup generated by singular
simplices σ : ∆k −→ X with the property σ([∆k]n) ⊂ A. The groups {C(n,A)

k (X)| k ≥
0} form the Eilenberg subcomplex C(n,A)

∗ (X) of C∗(X).

Proposition 4.3.3. Let (X,A) be n-connected. Then the inclusion of the Eilenberg

subcomplex i : C
(n,A)
∗ (X) −→ C∗(X) is a chain equivalence.

Proof. We refer the reader to [2].
First of all, it is pretty straigtforward to check that the Eilenberg subcomplex does
produce a chain complex (∂2 = 0) and thus homology groups. In the proof, that was
referred to above, a map P : Ck(X) −→ X∆k×I is constructed using induction on
k, the n-connectedness of (X,A) and the homotopy extension property (2.1.14). For
σ ∈ Ck(X), P (σ) : ∆k × I −→ X is actually a homotopy between P (σ)0 = σ and
P (σ)1 which satis�es P (σ)1([∆k]n) ⊂ A and P (σ)◦(dki×id) = P (σ◦dki ). This P allows
us to de�ne the chain map ρ : Ck(X) −→ C

(n,A)
k (X) with ρ(σ) = P (σ)1, for which

ρ ◦ i = id holds by construction. The operator s : Ck(X) −→ Ck+1(X) with s(σ) =
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P (σ)#(h(ik)) is also formed, where ik ∈ Ck(∆k) and h : Ck(∆
k) −→ Ck+1(∆k × I)

is given in 9.3.3 in [2]. Computations result to the relation ∂s + s∂ = i ◦ ρ − id,
which, if combined with the previous equality ρ ◦ i = id, shows that i is a chain
equivalence.

Now, for k ≤ n [∆k]n = ∆k. Consequently, C(n,A)
k (X) = Ck(A) and the exact

homology sequence of (X,A) gives Hk(A) ∼= Hk(X) for (X,A) n-connected.

Theorem 4.3.4. A weak homotopy equivalence f : X −→ Y induces isomorphisms

f∗ : Hn(X) −→ Hn(Y ) for all n.

Proof. The mapping cylinder Mf deformation retracts to Y (see Example 2.1.11),
thus Mf is homotopy equivalent to Y and homotopy equivalent spaces have isomor-
phic homotopy and homology groups. Let us denote with r the retraction from Mf
to Y and point out here that r ◦ iX = r|X = f .
Taking the long exact sequence of homotopy of (Mf,X)

. . . −→ πi(X) −→ πi(Mf) −→ πi(Mf,X) −→ πi−1(X) −→ . . .

the weak homotopy equivalence guarantees that Hn(Mf,X) = 0 for all n or equiv-
alently (Mf,X) is n-connected for all n. From Proposition 4.3.3 we conclude that

f∗ : Hn(X)
iX∗−→ Hn(Mf)

r∗−→ Hn(Y ) is an isomorphism for all n.

CW approximations can simplify proofs regarding homotopy and homology groups
of spaces by reducing them to 'equivalent' CW-complexes. However, both their exis-
tence and their uniqueness up to homotopy equivalence are yet to be proved. Exis-
tence will be proven by construction, while a theorem known as Whitehead's theorem
will be employed for the uniqueness part.

Theorem 4.3.5. Every space X has a CW approximation (K, f). If X is path

connected, K can be chosen to have a single 0-cell with all other cells attached by

basepoint preserving maps.

Proof. Let X be path connected. If not, the described construction still works, but
we need to perform small alterations, which are pointed out below.
The construction of a CW approximation f : K −→ X of X is inductive on n ≥ 1.
Generally, the induction step for n > 1 begins with a given CW-complex L, a map
f : L −→ X and the �xed basepoints p ∈ L, x0 ∈ X with f(p) = x0. During the
n-th step, n ∈ Z, we attach n-cells to L to form a new CW-complex M = L ∪j enj
and a map f̄ : M −→ X extending the previous f , in a way that ensures that the
induced map πi(f) : πi(M, p) −→ πi(X, f(p)) is injective for i = n− 1 and surjective
for i = n. This way, we eventually build isomorphisms πi(f) for all i.
Let n = 1. We choose a basepoint x0 ∈ X, form L0 = {p} and create f : L0 −→ X
with f(p) = x0. Obviously, π0(f) is an isomorphism. If X was not path connected,
then L0 would include a separate point pi for each path component of X and ev-
erything would be repeated for each basepoint/path component. Now, we need to
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make π1(f) surjective. We choose maps fβ : (S1, s0) −→ (X, f(p)), which are repre-
sentatives of generators of π1(X, f(p)). For each fβ we attach a 1-cell e1

β to L0 via
φ(∂S1) = cp the constant map at p. This results to M = L0 ∪β e1

β. f is extended
over M using the fβs on each S1

β. Surjectivity is dictated by construction.
Let the inductive step be true for n− 1.
Entering the n-th step, we aim at making πn−1(f̄) an isomorphism and πn(f̄) sur-
jective, where f̄ will be an extension of f : Ln−1 −→ X on a new CW complex
M . Since we already have the surjectivity of πn−1(f) from induction and any new
n-cell will not in�uence that, πn−1(f̄) will be surjective whatever the extension and
we can focus on injectivity. We choose representatives of generators of kerπn−1(f)
φα : (Sn−1, s0) −→ (L, p). From Theorem 4.2.3, each representative φα can be chosen
to be cellular. Viewing Sn−1 as a CW-complex with its usual structure of a single 0-
cell and a single (n−1)-cell presented in Example 1.3.15, we use φαs as characteristic
maps and glue n-cells enα to L with them. Let Ln = L ∪α enα. The map f : L −→ X
extends to a map f̄ : Ln −→ X, because fφα is nullhomotopic in Ln (see Lemma
4.3.6 below). In order to make πn(f̄) surjective, we do what we did for π1(f), using
n-cells instead of 1-cells. As a result, M = L ∪α enα ∪β enβ is formed, along with the
extension f̄ : M −→ X.
Again, πn(f̄) is surjective thanks to its construction, while the injectivity of πn−1(f̄)
stems from our freedom to choose cellular representatives h ∈ kerπn−1(f̄). Since
h(Sn−1) ⊂Mn−1 = L, we get h ∈ kerπn−1(f)⇒ h =

∑
i ni(φα)i ∼ 0 in M .

Lemma 4.3.6. Suppose given maps f : X −→ Y and g : Y −→ Z in T . Then, if
f ◦ g is nullhomotopic, there exists h : Y ∪f CX −→ Z with h|Y = g.

X Y Y ∪f CX

Z

f

g

h

Proof. See Proposition 14.15 in [12].

Theorem 4.3.7. Let (X,X0) ∈ T 2. There exists a CW pair (K,K0) and a weak

equivalence f : (X,X0) −→ (K,K0) or in other words (X,X0) has a CW approxima-

tion (K,K0).

Proof. The technique used to prove Theorem 4.3.5 can be applied to the pair of spaces
(X,X0) as well. We �rst construct a CW approximation (K0, f0) of X0. Then,
we start the inductive step for the construction of the desired CW approximation
considering given the CW-complexK0 and the map iX0◦f0 : K0 −→ X and attaching
cells to K0 to create a weak homotopy equivalence (K, f) extending f0. Finally, using
the Five-Lemma (see A.2.9), we conclude that the map f : (K,K0) −→ (X,X0)
induces isomorphisms on relative as well as absolute homotopy groups.

Remark. If (X,X0) is n-connected for some n ≥ 0, then (K,K0) is n-connected too,
since the weak equivalence f induces isomorphisms on all homotopy groups.
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Proposition 4.3.8. Let f : (K,K0) −→ (X,X0) and g : (L,L0) −→ (Y, Y0) be CW
approximations and suppose given a map h : (X,X0) −→ (Y, Y0). Then there is a
map ψ : (K,K0) −→ (L,L0) that is unique in hT 2∗ and makes the diagram in Fig.

(L,L0) (Y, Y0)

(K,K0) (X,X0)

g

f

ψ h

Figure 4.1

4.1 commute in the same category.

Proof. Analytically, the proof can be found in Chapter 16 of [12]. Here we give a
general idea of its structure.
Lemma 4.3.9 and the homotopy extension property in 2.1.14 are consecutively used.
First one �nds a map ψ0 : K0 −→ L0 with g ◦ ψ0 ∼ h ◦ f . This homotopy is
extended to create H1 : K × I −→ Y and through this and Lemma 4.3.9 the desired
map ψ : (K,K0) −→ (L,L0) is found. For the uniqueness part two such maps are
assumed given, ψ1, ψ2, which satisfy g ◦ ψ1 ∼ h ◦ f ∼ g ◦ ψ2. We start with a
homotopy between ψ1|L0 ∼ ψ2|L0 that arises from applying Lemma 4.3.9 on the right
diagram and conclude to a homotopy ψ1 ∼ ψ2 after using repeatedly the lemma and
the homotopy extension property.

Lemma 4.3.9. Let X, Y ∈ T ∗ and f : (X, ∗) −→ (Y, ∗). f is a weak homotopy
equivalence if and only if given any CW pair (K,K0) and maps k0 : K0 −→ X,
k : K −→ Y with f ◦ k0 = k|K0 there is a map g : K −→ X with g|K0 = k0 and
f ◦ g ∼ k relK0, as shown in Fig. 4.2.

Proof. For the if part, let the property be satis�ed and [k] ∈ πn(Y, ∗). From the
diagram in Fig. 4.3 we get that there exists a map [g1] ∈ πn(X, ∗) such that [fg1] =
[k], which means that f∗ is onto. Now, let [α] ∈ πn(X, ∗) such that [fα] = 0 and β

X Y

K0 K

f

k0 k
g

Figure 4.2

X Y

∗ K

f

x k
g1

Figure 4.3

X Y

Sn Dn+1

f

α βg2

Figure 4.4

be a homotopy from fα to the constant map. For the induced map β : Dn+1 −→ Y
and the diagram in Fig.4.4 there exists a map g2 with g2|Sn = α. From g2 we
get a homotopy from α to the constant map, so f∗ is also injective. For the only
if part, we form the diagram in Fig.4.5 and de�ne F : K × 0 ∪ K0 × I −→ Mf
by F (l, 0) = j(k(l)) and F (l, t) = (k0(l), t) for l ∈ K0. We may extend F to the
F : K × I −→ Mf using the homotopy extension property. Let now γ : K −→ Mf
be given by γ(l) = F (l, 1). We have γ(K0) ⊂ X × {1}. If we use Theorem 4.2.2, we
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Mf

X Y

K0 K

π

f

i j

k0 k
g3

Figure 4.5

can construct a map g3 : K −→ X × {1} with g3 ∼ γ relK0. Now g3|K0 = k0 and
fg3 = πg3 ∼ πγ ∼ k relK0, where the last homotopy is G = πF .

Theorem 4.3.10 (Whitehead's Theorem). Let X, Y be connected CW complexes.

If a map f : X −→ Y between them induces isomorphisms f∗ : πn(X) −→ πn(Y ) for

all n, then f is a homotopy equivalence. In case X is a subcomplex of Y and f is the

inclusion X ↪→ Y , X is a deformation retract of Y .

Proof. See [13].

Theorem 4.3.11. Let (X,X0) ∈ T 2∗. (X,X0) has a CW approximation (K,K0)

that is unique up to homotopy equivalence.

Proof. Let ((K,K0), f) and ((L,L0), g) be CW approximations of the pair (X,X0).
Proposition 4.3.8 provides a map ψ : (K,K0) −→ (L,L0) with g ◦ ψ ∼ f . Thus ψ
induces isomorphisms in all homotopy groups. Moreover, using Whitehead's theorem
we get that ψ is a homotopy equivalence from (K,K0) to (L,L0).
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4.4 Excision in homotopy

One last theorem that we will mention here without its proof is the one referred to

as excision in homotopy. Generally, the excision axiom which was presented in Chap-

ter 3 fails in homotopy and this is rather important, since it essentially distinguishes

homotopy from homology. If it didn't fail, homotopy theory would become one more

example of homology theory. However, some sort of the excision property holds for a

speci�c range of dimensions if we pose additional hypotheses on the homotopy groups

in question.

Theorem 4.4.1 (Excision in homotopy). Let X ∈ T which is decomposed as the

union of subspaces A and B. Let also C = A ∩ B 6= ∅, (A,C) be m-connected and

(B,C) be n-connected, m, n ≥ 1. Then the map i∗ : πi(A,C) −→ πi(X,B) induced

by inclusion is an isomorphism for i < m+ n and a surjection for i = m+ n.

Proof. For the proof see Sections 6.4 to 6.9 in [2].



Chapter 5

The Hurewicz theorem

5.1 Absolute and relative Hurewicz theorems

The Hurewicz theorem in its elementary, absolute form states that the �rst
nonzero homotopy and homology groups of a simply connected space happen si-
multaneously and are isomorphic. For its general and relative form, which refers to
all spaces, not just simply connected, quotients of homotopy groups are taken.
The central idea behind the general proof is that there exists a homomorphism h be-
tween the long exact sequences of homology and quotients of homotopy groups that
is proved to be an isomorphism. In the relative case, elements in both homotopy
and homology groups of a space X can be represented by maps from ∆n to X, since
∆n is homeomorphic to Dn. However, in homotopy groups constant attention must
be paid to the chosen basepoint x0 of X, keeping maps and homotopies pointed,
while in homology groups a certain freedom of movement is allowed, which leads to
homologous maps that can di�er by a boundary. In order to amend this discrepancy
and attain the same level of 'freedom' such boundaries must become trivial. Also
n-spheroids that di�er by a loop must be considered equivalent.

The proof of the general Hurewicz theorem that will be presented here is induc-
tive, starting with the fundamental group π1(X) and the �rst homology group H1(X)
and increasing n′s value from there. A speci�c map h is constructed and then it is
checked and proved to be an isomorphism.

Presentations of the theorem can be found in a plethora of textbooks. To name a
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few, we mention [10], [2], [15], [3], [19]. The proof we present here for the case n = 1
has been in�uenced by [10] and [15], while we follow the more homological approach
of [2] and [3] for n > 1, which does not use CW approximation and the excision of
homotopy, like others do.

Theorem 5.1.1 (Hurewicz - n = 1). Let X be path connected. Then π1(X, x0)ab ∼=
H1(X), where Gab = G/[G,G].

Proof. Let h : π1(X, x0) −→ H1(X) which takes the homotopy class of a loop [f ]#

to the homology class [fa] of the same loop seen as an 1-cycle. a : ∆1 −→ I is
the homeomorphism that takes (1− t)d1

0 + td1
1 to t, while the superscript # is being

employed to distinguish homotopy elements from homology elements. In what follows
we will show that h is a well de�ned isomorphism.

h is well-de�ned: Let f1, f2 be representatives of a class [f ]#, such that f1 6= f2. If
we consider the homotopy F : I × I −→ X from f1 to f2 and draw one of I × I's
diagonals, we can view F as a pair of singular 2-simplices, namely σ1 = F |t1 and
σ2 = F |t2 , as can be seen in the Figure 5.1. Now, ∂(σ1 − σ2) =

∑
i(−1)iσ1d

2
i −∑

i(−1)iσ2d
2
i = f1a + c1a − f2a − c2a, since the two restrictions of F cancel on the

σ1

σ2
c2

f2

c1

f1

>>

>

>

>

g

f
cv1

v2

v1v0 f

g

Figure 5.1

diagonal. The constant maps c1a, c2a ∈ C0(X) can be written as the boundary of
the constant map c : ∆2 −→ X, therefore they are homologous to zero. This leads
us to f1a− f2a = ∂(σ1 − σ2)− c1a+ c2a ∈ Im∂2 and [f1a] = [f2a].

h is a homomorphism: For [f ]#, [g]# ∈ π1(X, x0), we de�ne a singular map σ :
∆2 −→ X, as shown in Figure 5.1, whose restriction on each ray under cv1 identi�es
with fa, while over cv1 the restriction identi�es with ga. For this σ, we have ∂σ =∑3

i=0(−1)iσd2
i = ga− (f · g)a+ fa⇒ fa+ ga− fa · ga ∈ Im∂2, thus h([f ]#[g]#) =

[fa] + [ga] = h([f ]#) + h([g]#).

h is a surjection: Take the chain c1 =
∑

i niσi to be a representative of a class [c] in
H1(X). We will transform c1 until we reach such a homologous 1-cycle c′ that c′a−1

is a loop based on x0. First, we 'explode' the sum of c1, relabeling σis, so all its
coe�cients become equal to ±1. Then we substitute each σj with coe�cient −1 in
the new sum with its inverse path σj. This way we get a homologous c2 with ni = 1
for all i. Since ∂c2 = 0⇒

∑
j σj(d

1
0 − d1

1) = 0 and every σjd1
k is a basis element in the

free abelian group C0(X), we conclude that they must be mutually eliminated two
by two. This means that we can combine the relevant paths σjd1

ka
−1 till we are left

with loops τja−1 each one based on a point xj in X, whose summation now forms
[c3] = [c]. We choose a path γj from x0 to xj for each j in the path-connected space
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X and form the composite paths γj · τja−1 · γj with h[τja
−1]# = h[γj · τja−1 · γj]#.

Therefore, we have managed to transform c1 to its homologous c4 =
∑

j γja · τj · γja,
for which the loop c4a

−1 based on x0 gives h([c4a
−1]#) = [c].

kerh = [π1, π1]: [π1, π1] ⊂ kerh, since h is a homomorphism and H1(X) abelian.
For the inverse inclusion, take an element [f ]# ∈ kerh. We want to show that f
is homotopic to a map in [π1, π1]. From the hypothesis ∃ σi ∈ C2(X) such that
∂(
∑

i niσi) = fa. We 'explode' this sum, relabeling σjs, in order to get the chain∑
jmjσj with mj = ±1. This gives the equation fa = ∂(

∑
jmjσj) =

∑
jmj∂(σj) =∑

jmj

∑
k(−1)kσjd

2
k =

∑
jmj(σjd

2
0 − σjd2

1 + σjd
2
2) in the free abelian group C1(X).

But fa and σjd
2
k are basis elements of C1(X). This means that all but one of the

σjd
2
ks must cancel two by two. The only one eventually left will be the one equal to

f , namely f = mpσpd
2
k for some p and k ∈ {0, 1, 2}.

In the path connected space X we choose paths γj0, γj1 and γj2 from x0 to σjd2
0d

1
0,

σjd
2
1d

1
1 and σjd

2
2d

1
0, respectively. If any of the ends happens to be x0, we choose

the constant path on x0 as γ, and the same path is chosen for all coinciding ends.
Applying composition of paths, we get for each path σjd2

ka
−1, k ∈ {0, 1, 2}, a class

Lj0 = [γj0 · σjd2
ka
−1 · γj1]#, Lj1 = [γj2 · σjd2

ka
−1 · γj1]# or Lj2 = [γj2 · σjd2

ka
−1 · γj0]#

in π1. According to what we have de�ned so far [f ]# = Lpk = [γj· · σjd2
ka
−1 · γj·]# =

[σjd
2
ka
−1]#, since γ paths are constant in this case. Lemma 5.1.2 below allows the

substitution 〈Lpk〉 = 〈f〉 =
∏

j(〈Lj0〉 · 〈Lj1〉
−1 · 〈Lj2〉)mj , where the brackets 〈 〉 are

now used to denote elements in the quotient multiplicative abelian group π1/[π1, π1].
If we examine representatives of the cosets in π1/[π1, π1], we get

Lj0 · L−1
j1 · Lj2 = [γj0 · σjd2

ka
−1 · γj1 · (γj2 · σjd2

ka
−1 · γj1)−1 · γj2 · σjd2

ka
−1 · γj0]#

= [γj0 · σjd2
ka
−1 · γj1 · γj1 · (σjd2

ka
−1)−1 · γj2)−1 · γj2 · σjd2

ka
−1 · γj0]#

= [γj0 · σjd2
ka
−1 · (σjd2

ka
−1)−1 · σjd2

ka
−1 · γj0]# = [cx0 ]

#,

because σjd2
ka
−1 · (σjd2

ka
−1)−1 · σjd2

ka
−1 ∼ (σ|∂∆2)a−1 is nullhomotopic. Since 〈cx0〉 =

〈1〉, we conclude that 〈f〉 = 〈1〉, hence [f ]# ∈ [π1, π1].

Lemma 5.1.2. Let F be a free abelian group with basis B, {x0, . . . , xk} be a subset
of B (repetitions of elements are allowed) and assume that

m0x0 = m1x1 + · · ·+mkxk,

where mi ∈ Z. Now, take an abelian group (G,+′) and a set {y0, . . . , yk} of elements
of G for which yi = yj whenever xi = xj. Then we can substitute xi with yi in the
previous equation, i.e. m0y0 = m1y1 +′ · · ·+′ mkyk holds.

Proof. The proof can be found in [15].

Remark. A di�erent way to formulate the homomorphism h is by using the equivalent
de�nition [S1, X] = π1(X, ∗) for the fundamental group. If we do so and choose as z1

the generator of H1(S1) corresponding to the singular simplex Φ : ∆1 −→ I/∂I = S1,
we get h([f ]#) = f∗[z1], which equates with the previous de�nition.

We move now to the case n ≥ 2. For (X,A, ∗) ∈ T 2∗ we de�ne maps h, called
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Hurewicz homomorphisms,

h(X,A,∗) = h : πn(X,A, ∗) −→ Hn(X,A), n ≥ 2,

h(X,A) = h : πn(X, ∗) −→ Hn(X) n ≥ 1.

We are going to provide a speci�c formula for these maps and prove that they are
natural homomorphisms that make the diagrams in Figure 5.2 commute.

πn(X, ∗) πn(X,A, ∗) πn−1(A, ∗)

Hn(X) Hn(X,A) Hn−1(A)

h

∂

h h

∂

Figure 5.2

Let us consider the de�nitions for homotopy groups [(Sn, ∗), (X, ∗)] = πn(X, ∗)
and [(Dn, Sn−1, ∗), (X,A, ∗)] = πn(X,A, ∗). We also choose generators zn ∈ Hn(Sn)
and zn ∈ Hn(Dn, Sn−1) such that ∂zn = zn−1 and q∗(zn) = zn, where q : Dn −→
Dn/Sn−1 = Sn is the quotient map. If we start our selection by �xing the z1 = Φ that
was picked in a remark earlier, then the other generators are uniquely determined
through induction and the previous relations.

Using the notation that has just been introduced:

De�nition 5.1.3. The Hurewicz map is de�ned via the formulas h(X,A,∗)([f ]#) =

f∗[zn], n ≥ 2, and h(X,∗)([f ]#) = f∗[zn], n ≥ 1.

The naturality of h and their compatibility with exact sequences (commutativity
of the diagram in Figure 5.2) arise directly from the de�nitions. The fact that h is a
homomorphism, however, requires a bit more work.

Proposition 5.1.4. The Hurewicz map h(X,A,∗), n ≥ 2, is a homomorphism of
groups.

Proof. h is well de�ned due to the homotopy axiom (Section 3) of the homology
theory h∗. Our target is to show that (f + g)∗ = f∗ + g∗ for every pair of maps
f , g : (Dn, ∂Dn, ∗) −→ (X,A, ∗), because then h([f + g]#) = h([f ]#) + h([g]#).
Although we use the + symbol between maps here, f + g can be identi�ed with the
comultiplication · de�ned in Equation 1.2. Moreover, for n = 2 + does not imply
commutativity, but we prefer it for the sake of uniformity.
We employ the map c : Dn −→ Dn∨Dn, which performs a 'pinch' in the middle of Dn

by collapsing the equatorial Dn−1 to a point, the quotient maps q1, q2 : Dn ∨Dn −→
Dn, where:

q1(x1, x2) =

{
x1, if x2 = ∗
∗, if x1 = ∗

q2(x1, x2) =

{
∗, if x2 = ∗
x2, if x1 = ∗

(5.1)
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and the map f ∨ g : Dn∨Dn −→ X, f, g : Dn −→ X, f(∂Dn) and g(∂Dn) ⊂ A with

(f ∨ g)(x1, x2) =


f(x1), if x1 6= ∗, x2 = ∗
g(x2), if x1 = ∗, x2 6= ∗
f(∗) = g(∗) = ∗, if x1 = x2 = ∗

. (5.2)

Their induced maps produce the diagram in Figure 5.3.
It has been shown, while proving Proposition 3.2.12, that, if X is the wedge sum of
pointed spaces Xα, i.e. X =

∨
αXα, then the inclusions iα : Xα ↪→ X induce an

Hn(Dn, ∂Dn) Hn(Dn ∨Dn, ∂Dn ∨ ∂Dn) Hn(X,A)

Hn(Dn, ∂Dn)⊕Hn(Dn, ∂Dn)

c∗

[a] 7−→ ([a], [a])

(f ∨ g)∗

q1∗ ⊕ q2∗

Figure 5.3

isomorphism i∗ = ⊕αiα∗ : ⊕αH̃n(Xα, xα) −→ H̃n(X). Applying this result on the
space Sn ∨ Sn, along with the isomorphism Hn(Dn, ∂Dn) ∼= H̃n(Sn), we conclude
that q1∗ ⊕ q2∗ is the inverse of i1∗ ⊕ i2∗, hence an isomorphism.
We denote the diagonal map [a] 7−→ ([a], [a]) with the letter D. The left triangle in
the diagram commutes and (f ∨ g)∗(i1∗+ i2∗) sends ([a], [0]) to f∗([a]) and ([0], [a]) to
g∗([a]), since the composite maps give (f ∨ g)i1 = f and (f ∨ g)i2 = g. This means
that ([a], [a]) is being sent to f∗([a])+g∗([a]) or equivalently (f∨g)∗(i1∗+i2∗)D([a]) =
f∗([a]) + g∗([a]) = (f ∨ g)∗c∗([a]). But (f ∨ g)∗c∗([a]) = (f + g)∗([a]), which proves
the desired.

Basepoints of X are undeniably signi�cant when examining homotopic elements
in πn, while completely absent in Hn. Since our goal is to �nd an isomorphism
between a homology group and a group that has spheroids as elements, we need to
treat spheroids that are homotopic via a homotopy which does not respect basepoints
as equivalent, because their images under h are equal. If we are to have a chance to
get an isomorphism, we need kerh to be trivial. Since it is not, we need to factor
this kernel out.
We consider the actions

βX : π1(X, ∗)× πn(X, ∗) −→ πn(X, ∗), n ≥ 1

βA : π1(A, ∗)× πn(X,A, ∗) −→ πn(X,A, ∗), n ≥ 2

When n = 1, β{·}([γ], [f ]#) = [γ ·f ·γ]#, while, for n ≥ 2, the actions are those de�ned
in Propositions 2.3.12 and 2.4.5. Now h(β{·}([γ], [f ]#)−[f ]#) = 0, since β{·}([γ], [f ]#)
is homotopic to [f ]# through a homotopy that does not respect basepoints. Conce-
quently, if we name N E πn the normal subgroup generated by all elements of the
form β{·}([γ], [f ]#)− β{·}([c∗], [f ]#) = [γ][f ]# − [f ]# and π′n = πn/N , then N ⊂ kerh
and h induce the homomorphisms
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h′ : πn
′(X, x0) −→ Hn(X), n ≥ 1

h′ : πn
′(X,A, x0) −→ Hn(X,A), n ≥ 2.

Finally, for n = 1 it is easy to see that N = [π1(X, x0), π1(X, x0)] and π1
′ coincides

with its de�nition as an abelianisation given earlier.

Lemma 5.1.5. Let (X,A, ∗) ∈ T 2∗. Then πn
′(X,A, ∗) is abelian for n ≥ 2.

Proof. For n ≥ 3 the result is readily obtained by Proposition 2.4.4.
Let n = 2 and [f ]#, [g]# ∈ π2(X,A, ∗). Recall the boundary map ∂ : π2(X,A, ∗) −→
π1(A, ∗) and observe that ∂f is a loop in A that can act on g. Since [∂f ][g]# = [g]#,
πn
′(X,A, ∗) would prove to be abelian, if we managed to show the validity of the

equation [f ]#[g]#[f ]# = [∂f ][g]#.
The homotopy that provides us with the result is depicted in Figure 5.4.

f g f̄x0

x0

x0

A

f

g

f̄
x0

x0

x0

A

∂f

cxo

∂f

' ' '
g

x0

x0

x0

A

∂f ∂f

f f̄

g
x0

x0

x0

A

∂f ∂f

Figure 5.4: Homotopy proving that πn
′(X,A, ∗) is abelian.

We mention the absolute form of the Hurewicz theorem without a proof, because

it can be seen as a special case of the relative form.

Theorem 5.1.6 (Hurewicz - Absolute form). Let X ∈ T ∗ be (n − 1)-connected

(n ≥ 1). Then h′ : πn
′(X, ∗) −→ Hn(X) is an isomorphism.

Theorem 5.1.7 (Hurewicz - Relative form). If (X,A) is a (k− 1)-connected pair of

path connected spaces, k ≥ 2 and A 6= ∅, then h′ : πk
′(X,A, x0) −→ Hk(X,A) is an

isomorphism and Hi(X,A) = 0 for i < k.

Proof. The proof is by induction on k. The absolute case for k = 1 has already been
proved in Theorem 5.1.1. First we use the inductive step described below to prove
the Theorem for k = 2. Then, assuming the absolute theorem for 1 ≤ k ≤ n − 1,
we prove the relative theorem for k = n following the same inductive step and the
absolute case is simultaneously true for k ≥ 2, if we set A = {∗}.
We extend here the de�nition of the Eilenberg subcomplexes introduced in 4.3.3
to cover for the relative, basepointed case. Let C(n−1,A,∗)

k (X,A) be the quotient
of the abelian group generated by maps σ ∈ Ck(X) such that σ([∆k]n−1) ⊂ A,
σ([∆k]0) = {∗}, modulo C

(0,{∗})
k (A). ∂∂ = 0 still holds and the chain complex

that is created produces the homology group H
(n−1,A,∗)
k (X,A). The inclusion i :

C
(n−1,A,∗)
∗ (X,A) ↪→ C∗(X,A) induces isomorphisms H(n−1,A,∗)

∗ (X,A) ∼= H∗(X,A) for
an (n− 1)-connected pair (X,A) with path connected A, just like it did in Proposi-
tion 4.3.3.
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Elements [f ]# in πn(X,A, ∗) are homotopy classes of maps from (Dn, ∂Dn, ∗) to
(X,A, ∗), while elements [f ] in H(n−1,A,∗)

n (X,A) are equivalence classes of n-chains of
maps from (∆n, ∂∆n,∆0) to (X,A, ∗). Since the n-dimensional disk is homeomorphic
to the n-simplex and [(Dn, ∂Dn, ∗), (X,A, ∗)] ∼= [(∆n, ∂∆n, v0), (X,A, ∗)], v0 vertex
of ∆n, we can look at πn′(X,A, ∗) as consisting of homotopy classes in the group
[(∆n, ∂∆n, v0), (X,A, ∗)] and perform a minor alteration to the Hurewicz homomor-
phism so as to match our change in view.
Let Dn α≡ ∆n, where α is the homeomorphism that sends the generator [z̄n] of
Hn(Dn, ∂Dn) to the generator [idn] of Hn(∆n, ∂∆n) (Example 3.2.11). We ad-
just slightly the Hurewicz homomorphism h and now it takes the homotopy class
[f ]# ∈ πn(X,A, ∗) to f∗(α∗(z̄n)) = f∗(idn) in Hn(X,A) ∼= H

(n−1,A,∗)
n (X,A).

In what follows we are going to gradually build an inverse homomorphism ψ of the
adjusted Hurewicz homomorphism h′. Let ψ1 : C

(n−1,A,∗)
n (X) −→ πn

′(X,A, ∗) which
assigns to a singular simplex σ : (∆n, ∂∆n,∆0) −→ (X,A, ∗) the corresponding ele-
ment σ#′ in πn′(X,A, ∗) = [(∆n, ∂∆n, v0), (X,A, ∗) (the superscript ′ is used to din-
stinguish elements in πn′). ψ1 is well de�ned and a homomorphism, since πn′ is abelian
(see Lemma 5.1.5). If σ(∆n) ⊂ A, then by the compression criterion (2.4.6) the cor-
responding homotopy class is zero, i.e. Cn(A) ⊂ kerψ1. Therefore, we can extend
the homomorphism ψ1 to the homomorphism ψ2 : C

(n−1,A,∗)
n (X,A) −→ πn

′(X,A, ∗).
Each σ ∈ C(n−1,A,∗)

n (X,A) is a relative cycle, because ∂σ belongs to C(n−1,A,∗)
n−1 (X,A)

which leads to ∂σ(∆n−1) ⊂ A ⇒ ∂σ ∈ Cn−1(A). This leads us to C(n−1,A,∗)
n (X,A) =

ker∂n. We have yet to show that ψ2 ◦ ∂ : C
(n−1,A,∗)
n+1 (X,A) −→ πn

′(X,A, ∗) is trivial,
because then ψ2(Im∂n+1) = 0⇒ Im∂n+1 ⊂ kerψ2 and we will be able to form a well
de�ned homomorphism

ψ : H(n−1,A,∗)
n (X,A) −→ πn

′(X,A, ∗),

with ψ([c]+Im∂n+1) = ψ(p([c])) = ψ2([c]) = [c]#
′
, where p : ker∂n −→ ker∂n/Im∂n+1

is the quotient projection.
Take τ : (∆n+1, [∆n+1]n−1, [∆n+1]0) −→ (X,A, ∗) such that [τ ] ∈ C

(n−1,A,∗)
n+1 (X,A)

is a basis element. ψ(∂([τ ])) =
∑n+1

i=0 (−1)i[τdn+1
i ]#

′
and, if we de�ne elements

[bn]# ∈ πn(∂∆n+1, [∆n+1]n−1, v0) via

[b2]# = ([v1v0][d3
0])[d3

2][d3
1]−1[d3

3]−1,

[bn]# = [v1v0][dn+1
0 ] +

n+1∑
i=1

(−1)i[dn+1
i ], n ≥ 3,

where [v1v0] denotes the a�ne path class in ∆n+1 from v1 to v0, then

ψ(∂([τ ])) = τ#
∗
′
[bn]#

′
= τ#

∗
′
(j#
∗
′
[bn]#

′
)

in πn′(X,A, ∗), since [v1v0][dn+1
0 ]#

′
= [dn+1

0 ]#
′
, n ≥ 2.

Elements [b2]# and [bn]# are closely related to the homological boundary operator.
Their main di�erence from ∂ is that in their case provisions have been made in order
for the face maps to be transported to the base point v0. Also, in the formula above
we write j#

∗ for the map induced from the inclusion j : ∂∆n+1 −→ ∆n+1 and we
insert j#

∗ freely in the calculation, since τ gets restricted on ∆n+1's faces when ψ ◦ ∂
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is applied on it.
The (n − 1)-skeleton of ∆n+1 is (n − 2)-connected. This can be proved by induc-
tion on n: For n = 2, [∆3]1 is 0-connected. Let [∆n]n−2 be (n − 3)-connected.
Then, combining the homeomorphism Dn+1 ≡ ∆n+1 with the fact Hn−2(Dn+1) ∼= 0,
the isomorphism Hn−2(X) ∼= Hn−2(Xn+i) for i ≥ −1 from Proposition 3.2.12 and
the theorem's induction hypothesis applied to the absolute case, we conclude that
[∆n+1]n−1 is (n− 2)-connected.

The induction assumption also gives πn−1
′([∆n+1]n−1, v0)

h′∼= Hn−1([∆n+1]n−1) for the
(n − 2)-connected skeleton [∆n+1]n−1. Commutativity of the diagram in Figure 5.5
gives ∂nhn

′ = hn−1
′∂#
n and it is easy to see that ∂nhn

′[bn]# = ∂n(bn∗(idn)) = 0, since

πn
′(∂∆n+1, [∆n+1]n−1, v0) πn−1

′([∆n+1]n−1, v0)

Hn(∂∆n+1, [∆n+1]n−1) Hn−1([∆n+1]n−1)

hn
′

∂#n

hn−1
′

∂n

Figure 5.5

it is a boundary. This leads to hn−1
′∂#
n [bn]# = 0 and �nally results to ∂#

n [bn]# = 0,
because hn−1

′ is an isomorphism.

We split the boundary map ∂#
n into

∂#
n : πn

′([∆n+1]n, [∆n+1]n−1, v0)
j#∗−→ πn

′(∆n+1, [∆n+1]n−1, v0)
∂′−→ πn−1

′([∆n+1]n−1, v0)

and, since ∆n+1 is contractible, ∂′ is an isomorphism, as one can see from the long
exact homotopy sequence of the pair (∆n+1, [∆n+1]n−1). Thus, j#

∗ [bn]# = 0⇒ ψ◦∂ =
0, which means that the inverse map ψ can be extended and this �nishes the inductive
step for the relative Hurewicz theorem.

Corollary. πn(Sn) ∼= Z, n ≥ 2.



Appendix

A.1 Categories and functors

The following are based on [12] and [15].

De�nition A.1.1. A category C consists of:

1. A class of objects Obj(C ).

2. A set of morphisms Hom(X, Y ) for every ordered pair of objects (X, Y ) such

that it is pairwise disjoint and for each A ∈ Obj(C ) it includes an 'identity'

morphism 1A ∈ Hom(A,A).

3. A function for the composition of morphisms ◦: Hom(X, Y )×Hom(Y, Z) −→
Hom(X,Z) for every ordered triple of objects (X, Y, Z), which is associative

when de�ned and satis�es f ◦ 1A = f and 1A ◦ g = g, for all f ∈ Hom(X,A),

g ∈ Hom(A,X), X, A ∈ Obj(C ).

De�nition A.1.2. Let A and C be categories with ObjC ⊂ ObjA . If A, B ∈
ObjC , let us denote the two possible Hom sets by HomC (A,B) and HomA (A,B).

Then C is a subcategory of A if HomC (A,B) ⊂ HomA (A,B) for all objects A,

B in C and if composition in C is the same as composition in A . A subcategory

C that inherits all morphisms between its objects from A , namely HomA (A,B) =
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HomA (A,B), is called a full subcategory.

Example A.1.3.

1. The category of all topological spaces T has topological spaces X as objects,
continuous functions between spaces as morphisms and the usual composition
of maps as composition.

2. The category of all pointed topological spaces T ∗ has pointed spaces (X, x0)
as objects, basepoint preserving continuous functions between spaces as mor-
phisms and the usual composition of maps as composition.

3. The category of all pointed sets S ets∗ has pointed sets (X, x0) as objects,
basepoint preserving functions between sets as morphisms and the usual com-
position of maps as composition.

4. The category of all algebraic groups G has groups as objects, morphisms be-
tween groups as morphisms and the usual composition of morphisms as com-
position.

5. The category of ordered pairs of topological spaces T 2 has ordered pairs (X,A),
A ⊂ X, as objects, functions f : (X,A) −→ (Y,B) with f(A) ⊂ B as mor-
phisms and the usual composition as composition. The category of pointed
ordered pairs, T 2∗, can be de�ned combining the de�nitions of T 2 and T ∗.

6. The category W of topological spaces that have the homotopy type of a CW
complex has spaces X ∈ T with X ' K, K a CW complex, as objects and all
morphisms between these spaces as morphisms. It is a full subcategory of T .

De�nition A.1.4. A congruence on a category C is an equivalence relation ∼
on the class

⋃
(A,B)Hom(A,B) of all morphisms in C , such that f ∈Hom(A,B) and

f ∼ f ′ implies f ′ ∈Hom(A,B) and, if f ∼ f ′, g ∼ g′ and g◦f exists, then g◦f ∼ g′◦f ′.

Theorem A.1.5. Let C be a category with congruence ∼ and let [f ] denote the

equivalence class of a morphism f . De�ne C ′ as follows:

ObjC ′ = ObjC

HomC ′(A,B) = {[f ]| f ∈ Hom(A,B)}
[g] ◦ [f ] = [g ◦ f ].

Then C ′ is a category.

Proof. See Theorem 0.4 in [15].

Remark. The category C ′ is called a quotient category of C ′. We usually denote
HomC ′(A,B) by [A,B].
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Example A.1.6. A very common category in algebraic topology is the homotopy
category hT . It is constructed as a quotient category of T , where the congruence
relation ∼ is the homotopy relation between morphisms in T . Thus hT has topolog-
ical spaces as objects and equivalence classes of continuous functions as morphisms.
In a similar way, we get hT ∗ from the category of pointed topological spaces T ∗ and
hT 2 from the category of ordered pairs of topological spaces T 2. The homotopy
relations are realised again through morphisms in the respective categories.

De�nition A.1.7. If A and C are categories, a covariant functor F : A −→ C is

a function that assigns to each object A ∈ ObjA an object FA ∈ ObjC and to each

morphism f ∈ Hom(A,A′) in A a morphism Ff ∈ Hom(FA, FA′) in C , in such a

way that:

1. if f , g are morphisms in A for which g ◦ f is de�ned, then F (g ◦ f) = Fg ◦Ff
and

2. F1A = 1FA for every A ∈ ObjA .

Example A.1.8.

1. Fixing (X,A), [(X,A), (Y,B)] is a covariant functor from T 2 or hT 2 to the
category of sets and functions.

2. Fixing (X, ∗) ∈ C G ∗, (·)(X,∗) is a covariant functor from C G ∗ to C G ∗.

Proof. Let (Y, ∗) ∈ C G ∗. Then (Y, ∗)(X,∗) is the compactly generated topo-
logical space produced by all the pointed continuous functions from (X, ∗) to
(Y, ∗). Thus (·)(X,∗) takes objects from the category C G ∗ to Obj(C G ∗).
For f1 ∈ Hom((Y, ∗), (Z, ∗)), (·)(X,∗)f1 : (Y, ∗)(X,∗) −→ (Z, ∗)(X,∗) is given by
(·)(X,∗)f1 (g) = f1 ◦ g, g ∈ (Y, ∗)(X,∗), which is a pointed continuous map. In
other words f1 ◦ g belongs to C((X, ∗), (Z, ∗)), which proves that (·)(X,∗)f1 ∈
C G ∗.
For f1 ∈ Hom((Y, ∗), (Z, ∗)) and f2 ∈ Hom((Z, ∗), (W, ∗)) we have (·)(X,∗)(f1 ◦
f2) (g) = (f1 ◦ f2) ◦ g = f1(f2 ◦ g) = (·)(X,∗)(f1) ◦ (·)(X,∗)(f2) (g), g ∈ (Y, ∗)(X,∗)

and (·)(X,∗)id (g) = id ◦ g = g.

3. Σ is a functor from hT ∗ −→ hT ∗.

Proof. hT ∗ is a quotient category, so it su�ces to prove that Σ is a functor
from T ∗ to T ∗ and Σf ∼ Σg for f ∼ g.
Let X ∈ T ∗. Then the reduced suspension ΣX also belongs to T ∗, since
it is a quotient space of X × I that that preserves a well de�ned basepoint.
For f ∈ Hom((X, x0), (Y, f(x0))), Σf : ΣX −→ ΣY is given by Σf([x, t]) =
[f(x), t]. From the quotient topology and the commutative diagram in A.1
(Σf)−1(U) is open for all U ⊂ ΣY open neighbourhoods of f(x0), which leads
ultimately to Σf being continuous. Moreover, Σf [x0, t] = [f(x0), t], where
[x0, t] is the basepoint of ΣX and [f(x0), t] is the basepoint of ΣY . Thus
Σf ∈ Hom((ΣX, [x0, t]), (ΣY, [f(x0), t])).
Taking f ∈ Hom((X, x0), (Y, f(x0))), g ∈ Hom((Y, f(x0)), (Z, g(f(x0)))), we
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have Σ(g◦f)([x, t]) = [(g◦f)(x), t] = [g(f(x)), t] = Σg([f(x), t]) = Σg(Σf([x, t]))
= (Σg ◦ Σf)([x, t]). Finally, Σid([x, t]) = [x, t] and Σ has been proved to be a
functor from T ∗ to T ∗.
Now, let f ∼ g. Taking fΣX , gΣX : (ZX, (X × {0} ∪X × {1} ∪ {x0} × I)) −→
(ZY, (Y × {0} ∪ Y × {1} ∪ {f(x0)} × I)) with fΣX(x, t) = (f(x), t) we have
fZX ∼ gZX via a homotopy F : (ZX × I −→ ZY ). From A.2 we can �nally
form the maps Σf,Σg : (ΣX, [x0, t]) −→ (ΣY, [f(x0), t]), which are homotopic
via the homotopy F̄ .

4. Ω is a functor from hT ∗ −→ hT ∗. This is actually Theorem 11.8 in [14].

(X, x0) (Y, f(x0))

(ΣX, [x0, t]) (ΣY, [f(x0), t])

Σ

f

Σ

Σf

Figure A.1

ZX × I Y

ZX/(X×{0,1}∪{x0}×I) × I Y/(Y×{0,1}∪{f(x0)}×I))

p× 1

F

q

F̄

Figure A.2

De�nition A.1.9. If A and C are categories, a contravariant functor F : A −→
C is a function that assigns to each object A ∈ ObjA an object FA ∈ ObjC and

to each morphism f ∈ Hom(A,A′) in A a morphism Ff ∈ Hom(FA′, FA) in C , in

such a way that:

1. if f , g are morphisms in A for which g ◦ f is de�ned, then F (g ◦ f) = Ff ◦Fg
and

2. F1A = 1FA for every A ∈ ObjA .

Example A.1.10.

1. Fixing (Y,B), [(X,A), (Y,B)] is a contravariant functor from T 2 or hT 2 to
the category of sets and functions.

2. Fixing (Y, ∗) ∈ C G ∗, (Y, ∗)(·) is a contravariant functor from C G ∗ to C G ∗.
This is proved similarly to Example A.1.8, 2.

De�nition A.1.11. Let F : A −→ C and G : C −→ A be functors. The ordered

pair (F,G) is an adjoint pair of functors if, for each object A in A and each object

C in C , there is a bijection
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τ = τAC : Hom(FA,C) −→ Hom(A,GC),

which is natural in each variable.

Naturality means that diagrams in Fig.A.3 and Fig.A.4 commute for all f ∈
Hom(A′, A) in A and g ∈ Hom(C,C ′) in C .

Hom(FA,C) Hom(FA′, C)

Hom(A,GC) Hom(A′, GC)

τ

Ff ◦ (·)

τ

f ◦ (·)

Figure A.3

Hom(FA,C) Hom(FA,C ′)

Hom(A,GC) Hom(A,GC ′)

τ

g ◦ (·)

τ

Gg ◦ (·)

Figure A.4

Example A.1.12. (Σ,Ω) are adjoint functors from hT ∗ to hT ∗.

Proof. See the proof for Theorem 11.2 in [15].

Remark. Using the previous result inductively we can conclude that (Σn,Ωn) are
adjoint functors.

De�nition A.1.13. An equivalence in a category A is a morphism f : A −→ B

for which there exists a morphism g : B −→ A with f ◦ g = 1B and g ◦ f = 1A.

Remark. For example, a homotopy equivalence between pointed topological spaces is
an equivalence in the category hT ∗.
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A.2 Basic notions in algebra

The following are based on [14], [15] and [21].

De�nition A.2.1. Let X be a set and G a group. Then the function

τ : G×X −→ X

(g, x) 7−→ g · x

is called the action of G on X, if the following are valid:

1. 1 · x = x, for all x ∈ X
2. g · (h · x) = (gh) · x, for all g, h ∈ G and x ∈ X.

De�nition A.2.2. Let R be a ring. A left R-module is an abelian group M on

which R acts linearly; that is, there is a map

R×M −→M
(r,m) 7−→rm

for r ∈ R, m ∈M , for which

1. (r + s)m = rm+ sm

2. r(m+ n) = rm+ rn

3. (rs)m = r(sm)

4. 1m = m.

Exact sequences of objects and morphisms can be de�ned in any category with

kernels and cokernels.

De�nition A.2.3. In G , a sequence ...
fi+1−→ Ai+1

fi−→ Ai
fi−1−→ Ai−1

fi−2−→ ... of groups

and group morphisms is called an exact sequence if kerfi = Imfi+1, ∀i ∈ N. The
sequence may be either �nite or in�nite.

De�nition A.2.4. In S ets∗ a sequence

...
fi+1−→ (Ai+1, ∗)

fi−→ (Ai, ∗)
fi−1−→ (Ai−1, ∗)

fi−2−→ ...

of pointed sets and pointed sets morphisms is called exact in S ets∗ if kerfi =

Imfi+1, ∀i ∈ N, where kerfi = f−1
i (∗).
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De�nition A.2.5. In hT ∗ a sequence

...
fi+1−→ (Ai+1, ∗)

fi−→ (Ai, ∗)
fi−1−→ (Ai−1, ∗)

fi−2−→ ...

of pointed topological spaces and pointed maps is called exact in hT ∗ if the induced

sequence

...
fi+1−→ [(X, ∗), (Ai+1, ∗)]

fi−→ [(X, ∗), (Ai, ∗)]
fi−1−→ [(X, ∗), (Ai−1, ∗)]

fi−2−→ ...

is exact in S ets∗ for every X ∈ T ∗.

De�nition A.2.6. An exact sequence of the form 0 −→ A
f−→ B

g−→ C −→ 0 is

called a short exact sequence.

De�nition A.2.7. A graded group C = {Cq} consists of a collection of abelian

groups Cq indexed by integers q. Elements of Cq are said to have degree q. For C

and D graded groups, a homomorphism of degree d, τ : C −→ D, consists of a

collection of morphisms τ = {τq : Cq −→ Dq+d}.

De�nition A.2.8. In homological algebra, a chain complex (A,d) is a sequence

of abelian groups {Ai}, i ∈ Z, connected by homomorphisms dn : An −→ An−1, such

that the composition of any two consecutive of them is the zero map, i.e. dn◦dn−1 = 0,

for all n. These maps are called boundary operators and a chain complex usually is

written as:

. . . −→ An+1
dn+1−→ An

dn−→ An−1
dn−1−→ . . .

d1−→ A0
d0−→ A−1

d−1−→ . . .

Lemma A.2.9. Let A, B, C, D, E, A′, B′, C ′, D′, E ′ ∈ G ab be in a commutative
as the one depicted in Figure A.5. If the two rows are exact and α, β, δ and ε are
isomorphisms, then γ is an isomorphism too. The result is known as the Five-Lemma.

Proof. It su�ces to show that γ is surjective if β and δ are surjective and ε is injective,

A B C D E

A′ B′ C ′ D′ E ′

α

i

β

j

γ

k

δ

l

ε

i′ j′ k′ l′

Figure A.5

and γ is injective if β and δ are injective and α is surjective. The proof is based on a
technique called diagram chasing. It is simple yet rather tedious, thus we prove here
the �rst statement and refer the reader to Chapter 2 in [10] for the second.
Let c′ ∈ C ′. Since δ is surjective, the second row exact and ε injective, we have
k′(c′) = δ(d) for some d ∈ D, ε(l(d)) = l′(δ(d)) = l′(k′(c′)) = 0 and l(d) = 0.
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Hence d = k(c) for some c ∈ C by exactness of the upper row. Now commutativity
gives k′(c′ − γ(c)) = δ(d) − δ(k(c)) = 0. Therefore c′ − γ(c) = j′(b′) for some
b′ ∈ B′ by exactness and, since β is surjective and b′ = β(b) for some b ∈ B, we get
γ(c+ j(b)) = γ(c) + γ(j(b)) = γ(c)j′(β(b)) = γ(c) + j′(b′) = c′ which shows that γ is
surjective.
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