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Euyaplotieg

Apywd, Yo Hieha vo evyaptothow VYepud tov emPBAénovtd pou x.I.Avopouhiddxm
Yoo TNV LTOBEEY Tou VEpaTog, TV XoodHYNOT) TOU GTO UXUBNUOIXO XOUMATL XAl TNV
uToo THELEY| Tou oe avip®Tvo ETNEBO GE OAN TN BidpExela ExToVnoNne Tne epyaotac. Ile-
PLOGOTERD OUWE TOV EUYUPLO TG ETEWDY) HECEK TOU Ul AUATOC Tou Yvoploo TNV ANyelpuxt
Tomohoyla, o TpdTOC pe ToV omolo BIdUOXE Ue ExOvVE Vo EVIOUCLAO T UE TO OVTIXE(UE-
VO, VoL TO QOVTOG TG Xat Vo TagloéPw o auTd, EVEH 1) TPOOWTIXY TOU TEOGEYYIGT, O Ta
HordnuoTixnd pol €8ELEE TS VoL GUVOLACK TO A@NENUEVO UE TNV OTTY| TEOYUOTIXOTNTA.

Enfone Yo Hdeha va evyaptothion toug xodnyntég x. A Admmo xou x. A. Mehd yiar Ty
OUUUETOY T TOUC 0NV EEETAGTIXT ETULTEOTY), AAAG xou GAOLS Toug oy NTég mou ebya
oto Metamtuytaxd, yatl xdde gopd ue Bondovoay var ovoahOTTe %4t Topamdve yia
Tor pordnuoTed.  AxOun ELYAPLG TG ot TOUS Pihoug amo Tr XLyoAY| UE Toug omoloug ot
WOPES, TAPOTL AlYES, HTOY ATOANUC TIXEC XOU CTUAVTLIXSG TOAUTIIES.

Téhog, YeYdAO EUYOPIGTH YEWOTAW GTOUS Yovelc Tou cullyou ou, oL omolol uou
dvotlav to omitt Toug oty Adrva xan ue Tpdoelay cov Toud! ToUg, XEvovTag ETOL EPIXTT
NV TapaxohoLUnon Tou Metamtuylool, oToug Yovelg pou, yiutl extdg amd guyevixol
yopnyol xdide npoomdieiag, otéxovion oTadepd xou Ue apooienon pall pou axdurn xon oe
ATOQAOELS UE TIC OTOLEG BEV GUUPKVOLY ATONITLS, GTNY AOERPY| LOL Tou e TpoVUi
UETOAAGGOETOL GE O,TL axEBwe yeetdlouar xdie @opd -gikn, Quyohdyo, cuvepydTry,
xa, WLutépwe, otov oLCLYOG LoV, ToL BIGAEEE Vo elval GLYOBOLTOPOE OV, TULOTEVEL OF
epéva o oUevopd amd 6,TL €YK GTOV EAUTO You xat tpooTadel mhvTta vo ue otneilel pe
OTOLOV TEOTO UTOPEL.






ITepiindm

Ytny napovoa gpyasia mapoustdletal plar anddelln tou Yewpruotoc Hurewicz yuo
Levyn yopwv (X, A). To Yewpnua Hurewicz (oyetin| nepintwon) topéyet évay toogop-
pLopd PeTaEl oUddwY opoloyiog xou TNAixwy ouddnv opotoriag Yo (n — 1)-cuvextind
Levyn ywewv (X, A), 6mou 10 A elvan xatd 680 ouvextxd. Awotunddnxe ond Tov
Witold Hurewicz to 1935, o omolog ewofyaye, enlong, tnv évvola tng opotoriog e-
ToE) YWEWY, OPLOE TIC ATONUTES Ol OYETIXEC OUOEC OUOTOTNG BLdcTaoNg 1 > 2 %o
oyNUdTIoE Wi Joneed axoloutia yior Tic opddeg autéc. H amddelln mou emiéloue va
TEOVCLICOUPE €00 Bev xdvel yprnon CW mpooeyyiong, ahid axoloudel Evav mo o-
Holoyloxd Teomo oxécng. Odnyd amotéhecay oL amodellelc mou TEpAaUBdvovTol GTIC
mnyée (1], [2] xou [3].

H noapoloa epyacia diopdpmvetar wg e€ng:

Y10 Kegdhowo 1 divovtan amapaftnTEC EVVOIEC OYETIXES PE TOUG TOTIOAOYIXOUS Y-
poug, didpopeg Totohoyieg xou Tomohoyég WwiotnTeS. Hapouaidlovton Bacuiés mpdelg
enl yopwv, 6Twe xOAVOEOL, xWVoL, suspensions, xOAVOPOL ATELXOVIONS, dhAd XL CLY-
xEXELEVOL Ywpol Tou epgaviovtar oty ahyePpixr Tomoloyia, 6Twe 0 yweog Bedyou,
o H-y&poc (Hopf-space), ta simplices, ta simplicial complexes xat to CW complexes.
[Swdtepor avohleTon 0 n-01dcTaToC TEAYHATIXOSC TEOBOAXOS Yhpoc RP™.

Y10 Kegdhowo 2 acyoholuacte pe tn Yewpio opotorniog. Eiodyovta o évvoleg
NG ouoTomlug UETOD OMEOVIOEWY, TNG TUPUUOPPKOOTE CUCTOAAG, X0k TMV OUOTOTL-
%3 L0OBUVOUMY YOpwY. XTN cLVEYEL opllovTton 1 VeEUEAMBNE OUdda EVOC YMEOL, Ot
OuddES opoToTiog AVOTEENS TAENS XL Ol OYETES OddES opoTtomiog (edyous YWEmY.
Kdvovtog yerion tou yweou Bedyou, twv mapping fibres xaw epoapudlovtac cuvaptntéc
oynuatiloviar poxpéc oxohovdiec ouddwy ouotoniog, oL omoleg amodexviovToL TEAXS
oxpielc.

Y10 Kegdhowo 3 opileton 1 dewplo ogoroylag aliwpoatind. Emiéyetor 7 singular
opohoyla mpoxewévou va detydolv 1 UTaedrn opoloyiag xou 1 HOVUBWOTNTE TS ¢
TEOG LOOUoPPIoUO, eve 1) simplicial xou 71 cellular opoloyla elodyovton cuvoTTIXd GTO
TEN0g ToL xepahaiou. Me 1 yerion Toug YivovTal 0pLoHEVOL UTOMOYLOHOL OUADWY, OTIWS
TOU x0OXAOU X0t TOU TEOBOAXOU Y®EOL BLAG TUOTS N.
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To Kegdhawo 4 Eexwvd e oplopéva otolyela yior Ty simplicial mpooéyyion ywemv.
Axohordwe mapouctdlovton xdmota GUayTXd Yo Ty ahyefBeinr| Totoloyio Yewpruota
xa 0pLoUEva €€ aUTWY amodevUovTon avaAuTixd. Tlpdxeiton yio to Vedpnua tne cellular
Teocéyylong, To Vepnua e CW mpocéyylong ywewy xou To excision Yempenuo yia
NV oyotorio.

Téhog, 610 Kegpdhawo 5 mepihopfdveton 1 amddeln tou Yewprjuatog Hurewicz. 1o
CUYXEXQUIEVOL BLATUTIVOVTOL TO AmOAUTO Xou TO oyeTwo Yewpnua Hurewicz xou amo-
OEWVUETAL TO OYETIXO PE WLOL TPOCEYYLOT omd TNV oxomid Tng oporoyiac. To amdiuto
TEOXUTTEL WG TOPLOUA PECE) TOU GYETIXOU VEWEHUTOC.



Abstract

In this thesis we present a proof of the Hurewicz theorem. The Hurewicz theo-
rem (relative case) provides an isomorphism between homology groups and quotients
of homotopy groups of (n — 1)-connected pairs of spaces. It was stated by Witold
Hurewicz in 1935, who also introduced the notion of homotopy equivalence between
spaces, defined absolute and relative homotopy groups of dimension n > 2 and formed
the long sequence of these groups. Although we devote a chapter to CW approxima-
tion of spaces and the excision theorem in recognition of their significance in algebraic
topology, our proof of the Hurewicz theorem does not make use of them, like many
others do. Instead, it is based on a more homological approach, which follows the
proofs found in [1], [2] and [3].

The thesis is structured as described below:

In Chapter 1 the necessary background about topological spaces, topologies and
topological properties is introduced. Basic operations on spaces, such as cylinders,
cones, suspensions and mapping cylinders, are defined. Also, particular spaces that
are significant in algebraic topology are presented. More specifically, we introduce
loop spaces, H-spaces, simplices, simplicial complexes and CW-complexes. There is
also a special reference to the real projective n-space.

Chapter 2 contains information regarding homotopy theory. The notions of ho-
motopy between maps, deformation retraction and homotopy equivalent spaces are
presented. Their presentation is followed by the introduction of the fundamental
group and higher homotopy groups of a space. The group construction for n > 1 is
given by the fundamental group of loop spaces. After that we generalise to relative
homotopy groups, or in other words homotopy groups that refer to pairs of spaces,
and we form, with the help of loop spaces, of mapping fibres and with the application
of functors, long sequences of these groups that turn to be exact.

In Chapter 3 homology theory is defined axiomatically. Singular homology is
chosen in order to show the existence of a homology theory. Its uniqueness up to
isomorphism is ensured as well. At the end simplicial and cellular homology are
presented briefly and some computations of homology groups are executed.

Chapter 4 includes some major theorems that are considered basic in algebraic
topology. More specifically, we shortly discuss simplicial approximation, we state
and prove the cellular approximation and the CW approximation theorems in detail,
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while we mention without proof the excision theorem of homotopy.

In Chapter 5, finally, the Hurewicz relative theorem is shown, using a homological
approach. The absolute Hurewicz theorem is just stated, since its proof follows from
the relative case.
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Introduction

Algebraic topology employs algebraic tools to study topological spaces. It aims
at finding invariants that can lead to the classification of topological spaces up to
homeomorphism or at least up to homotopy equivalence. Algebraic invariants of the
kind are homotopy groups, homology groups and cohomology groups. Here we are
concerned with homology and homotopy theories, as well as their similarities and
their relation to one another expressed by the Hurewicz theorem.

Homology theories were historically the first to come. Their definition is ax-
iomatic, while particular examples include simplicial homology, singular homology
and cellular homology. It can be shown that all these theories give homology groups
for a space that are isomorphic. Roughly speaking, homology groups classify exist-
ing n-holes in a space up to chain homotopy. One of the axioms they satisfy is the
excision axiom, which facilitates their computation tremendously. Also, long exact
sequences of homology groups emerge almost effortlessly, and provide an additional
tool for calculations.

Moving on to homotopy theory, we start with spaces X of low dimension to see
that the fundamental group m;(X) suffices to enable their study. The fundamen-
tal group consists of equivalence classes of basepointed maps f : S' — X, where
homotopy of maps is the equivalence relation. Its computation can be carried out,
if needed, using the van Kampen theorem or actions on covering spaces. However,
m1(X) fails to provide helpful information when it comes to spaces of higher dimen-
sion. For example, if we take n-spheres, perhaps the simplest noncontractible spaces,
we get m(S') & Z and m;(S™) = 0, n > 2. Therefore spheres S™ with n > 2 can not
be distinguished via their fundamental group and finer tools are needed.

To this end, higher homotopy groups 7, (X) are considered, since they serve as the
natural higher dimensional analog of the fundamental group. They classify all con-
tinuous maps from S™ to pointed topological spaces X up to homotopy equivalence.
Their study has shown that, fruitful as they might be, they are far from easily tamed.
Basic machinery, like the van Kampen theorem for fundamental groups or the exci-
sion theorem and Mayer-Vietoris sequences for homology groups, is not applicable to
m, groups, if n > 2. This fact makes their computation very hard.

Let us examine n-spheres again. Based on intuition someone might conject that
Tm(S™) = 0, when m > n. After all, the same intuitive idea has quite right led us
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to believe that S™ possesses no (n + 1)-holes, hence H,,(S™) = 0 for m > n. But
higher homotopy groups are weird. As Hopf showed in 1931 in [4], there exists a map
f 8% — S? that is not homotopic to the constant map. To be more specific, f
generates the 2-sphere’s third homotopy group, m3(S5?) = Z, and this counterintuitive
result crushes any hope for simplicity, when m > n. Computation of higher homotopy
groups proves to be a challenge and investigation of the homotopy groups of spheres
for m > n is till this day an open research field.

Witold Hurewicz, who was the one to introduce the notion of homotopy, to define
homotopy groups, absolute and relative, and to construct a long sequence of homo-
topy groups, which was later proved to be exact, studied the relationship between
homology and homotopy groups right from their conception. He constructed the
homomorphisms

by : (X, 20) — Ho(X;Z), n>1

by : (X, Ay zg) — Hy (X, A 7Z0), n> 2

which in general are neither injective nor surjective. However, they are isomorphisms
if X is (n — 1)-connected or (X, A) is (n — 1)-connected and A simply connected,
respectively. If A is just path connected in the relative case, one takes a quotient 7, of
the homotopy group instead to ensure that the induced h,," is again an isomorphism.
Hurewicz stated the homomorphisms and this ’Equivalence theorem’ and said he
could prove the isomorphism part, though he did not publish a proof for the relative
case (|5]). Various proofs were written afterwards.

The Hurewicz theorem and its various proofs give an insight in the differences
and the similarities between homology and homotopy groups. It also provides an
way to calculate the first nontrivial homotopy group of a space or a pair of spaces, by
executing the much easier computation of their homology group. m,(S") = Z, n > 2,
comes as an easy corollary. Unfortunately its beneficial effect stops at the first non

trivial homotopy group, because homotopy fails the excision axiom for larger n.

Concluding this introduction, let us ponder on a heretical why to bother with
homotopy theory at all. Why should we need theorems like the Hurewicz to unlock
homotopy theory’s mysteries and not be content with just homology and cohomology
theories? Apart from homotopy groups being an interesting structure that one would
like to study just out of curiosity and for the pleasure of it, homotopy theory can
also contribute to our theoretical knowledge and comprehension of spaces, help us
answer classical questions regarding manifolds and maps between manifolds, deal with
some extension or lifting problems, contribute to the development of new branches of
algebraic topology, such as K-theory, or produce results in other fields of mathematics,
such as graph theory, singularity theory and more. Additionally, it appears to have
applications in physics, chemistry, biology and medical science [6].



Chapter 1

Spaces

1.1 Topological spaces

Algebraic topology revolves principally around the category of topological spaces
and its subcategories. Thus we commence by defining the category of topological
spaces. A brief introduction to categories in general is provided in the Appendix.

Definition 1.1.1. A topological space is an ordered pair (X,T'), where X is a set

and T is a collection of subsets of X, satisfying the following axioms:
l.geTand X €T.
2. If A, €T, i€, then |JA €T.

i€l
3. IfA, eT,ie{l,...,n} =5 neN, then (A €T.
ies
Elements of T" are called open sets and the collection T is called a topology on X.
Remark. Naturally enough, a subset K C X is closed if its complement in X is open.

Remark. Formally, a topological space is denoted with the pair (X, 7). However, we
will scarsely use the formal notation. We will use a simplified X instead.

Definition 1.1.2. Given a set X and two topologies 77 and T, on X, we say that
T is coarser than T, or T5 finer than 77 when T C Ts.
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Example 1.1.3. On a set X T} = {&, X'} is the coarsest and T, = P(X) is the
finest topology.

It is generally difficult to describe all the open sets in a topology 7. However,
one can usually use an appropriately chosen and more easily described subcollection
of spaces in T', noted with %, which can ’produce’ any open set in 1" as a union of
sets in A.

Definition 1.1.4. A subcollection £ of a topology T on a topological space X is
a basis for 7' if, given any open set U € T and point z € U, there is an open set
B € % such that r € B C U.

Example 1.1.5. The real line (R, %), where % is the topology produced by the
basis & = {(a,b) C R| a, b € Q}, is a topological space.

Example 1.1.6. The standard topology of R" is the collection of open sets in R"™.
Here a set U is open iff for every p € U there is an open ball B(p,e) with center p
and radius € > 0 such that B(p,e) C U.

Definition 1.1.7. Let (X, Tx) be a topological space and A be a subset of X. A
becomes a topological space (A, T4), where T4 is the relative topology of A in X
defined as Ty = {UNA| U € Tx}.

Example 1.1.8. I C R becomes a topological space, when we endow it with the
relative topology in R.

Definition 1.1.9. Let (X, Tx), (Y, Ty) be topological spaces. A function f: X —
Y is called continuous on X if the inverse image f~!(U) of every open subset U C Y
is open in X. Using only notation, we get that f is continuous, iff f~Y(U) € Ty
VU eTy.

Taking as a class of objects Obj(.7) all the topological spaces, as a set of mor-
phisms between objects Hom(X,Y), X, Y € Obj(.7), the set of all continuous
functions from X to Y and as composition rule the usual composition of functions,
we form the category .7 of topological spaces.

Homeomorphisms form a subset in the set of all continuous functions in 7. They

are defined as:

Definition 1.1.10. A function f € Hom(X,Y) of .7 is called a homeomorphism
if it is a bijection and its inverse f~! belongs to Hom(Y, X). Two topological spaces
X and Y are homeomorphic if there is a homeomorphism f between them. If so,

we write X =Y.



1.1. TOPOLOGICAL SPACES 3

In topology there are several properties, called topological properties, which re-
main invariant under homeomorphisms. This means that, if a space possesses one
topological property, then every space homeomorphic to it will possess the exact
same property. Some common topological properties are separation, countability
conditions, connectedness and compactness.

Below, we mention some definitions which appertain to the aforementioned topo-
logical properties.

Definition 1.1.11. A topological space X is a Hausdorff space if for all distinct
points x, y in X there exist a neighbourhood U of z and a neighbourhood V of y
such that U and V are disjoint. In that case, points x and y are called pairwise

neighbourhood separable.

Definition 1.1.12. A topological space X is said to be second countable if it has

a countable basis.

Definition 1.1.13. A space X is connected if it can not be written as the union
of a pair of disjoint non-empty open sets. Equivalently, a space X is connected if the

only sets that are simultaneously closed and open in X are () and X.

Definition 1.1.14. A space X is path-connected if for every two points z, y in
X, there is a path p: [ — X from x to y, i.e. a continuous map p : [0,1] — X
with p(0) = z and p(1) = y.

Remark. Path-connected spaces are always connected. The inverse is not always true.

Definition 1.1.15. A space X is compact if every open cover has a finite subcover.

Compactness proves very handy when studying spaces, since it allows us to focus
on finite subcovers that are more readily handled. The following Propositions stem
from these finite subcovers and are going to be needed later on.

Proposition 1.1.16. A space X is compact if and only if any decreasing sequence
of nonempty closed sets has nonempty intersection.

Proof. We refer to Theorem 5.9 and Corollary 5.10 in [7] for the proof. O

Proposition 1.1.17. Let (X, d) be a metric space (we refer to [7] for the definition
of a metric space) that is compact and % be an open cover of X. Then there exists
a number 0 > 0 such that every subset of X having diameter less than d is contained
in some U € % . § is called a Lebesgue number of this cover.

Proof. Let {U;} be a finite subcover of X, i € {1,...,m}, and the result do not
hold. Then V¥V n > 0 there exists a set A, C X with diam(A,) < 1/n such that
AN (X =U;) # O foralli € {1,...,m}. If we take the closures A,, then diam(A,) <
1/n and the closed sets F,,; = A, N (X — U;) are nonempty for all i € {1,...,m}.
But N, Frni € N, An = {z} foralli € {1,...,m} (N, 4n # 0 and diam(N,, A,) =
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lim,1/n = 0), which means that there exists a point x that belongs in every (X —U;),
thus z € (,(X —U;) = 3z € (X — J,(U;)), which can not be, since {U;} is a cover
of X. ]

Proposition 1.1.18. Let X, Y € 7, f : X — Y be a continuous function and
A C X be compact. Then the image f(A) CY is also compact.

Proof. See Theorem 5.5 in [7]. O

Proposition 1.1.19. Let (X,Tx) € Z be Hausdorff and A be a compact subset of
X. Then A is closed in (X, Tx).

Proof. We are going to show that X — A is open. Let x € X — A. Since X is Hausdorff
we can find disjoint open neighbourhoods V;, and U, for every a € A. The collection
{Via}aca is an open cover of the compact set A. We take {V,.}, i € {1,...,m}, to be
a finite subcover. Then U =, U,, € Tx and UNJ; Vo, = 0. But A C |J; Va,, thus
U is an open neighbourhood of = such that U C X — A. m

A topological space X may possess a topological property globally. For example,
X can be compact, connected or path-connected. However, the same properties
may be attributed to a space X locally, occuring to sufficiently or arbitrarily small

neighbourhoods of points.

Definition 1.1.20. A topological space X is called locally compact if Vo € X

there exists a compact neighbourhood C' in X which contains x.

Remark. Every compact space is locally compact. The inverse does not hold.

Definition 1.1.21. A topological space X is called locally Euclidean of dimension
n if every z € X has a neighbourhood U such that there exists a homeomorphism ¢
from U onto an open subset of R™. We call the pair (U, ¢) a chart, U a coordinate
neighbourhood or coordinate open set, and ¢ a coordinate map or coordinate system
on U.

With the general category of topological spaces and the necessary for us topo-
logical properties defined, we are now ready to present several individual types of

topologies or topological spaces which will emerge frequently in our study hence-
forth.

Definition 1.1.22. Let (X, Tx) be a topological space and let ~ be an equivalence
relation on X. The quotient space (Y,7y) is defined to be the set YV := X/ =
{[z]] * € X} of equivalence classes of elements of X equipped with the quotient
topology Ty. Ty consists of all the subsets which have an open preimage under the
surjective map p : X — X/, namely Ty = {U C Y| p ' (U) € Tx }.
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Remark. This topology is the finest which makes the projection map p: X — X/
continuous.

We prove here a basic theorem for quotient spaces, that will be used further on.

Theorem 1.1.23 (Universal property of quotient spaces). Let X be a topological
space, ~ an equivalence relation on X and X/. the quotient space. Also, let p :
X — X/ be the canonical projection. If f : X — Z is a continuous map such
that a ~ b implies f(a) = f(b) for all a and b in X, then there exists a unique
continuous map f : X/.. — Z such that f = f op.

Proof. We define a map f : X/. — Y by the formula

X —= X/, f(la]) = f(a), where [a] € X/. is the equivalence class of

P a € X. fis well defined, because f(a) = f(b) when [a] = [b].
i Also, f = fop, by the way we defined f.

Y Now, in order to prove that f is continuous, we take U to

be an open subset of Y and observe that f~1(U) = {[z] €

Figure 1.1 X| z € f~YU)}. This set is open if and only if p~1(f~1(U))

is open. The latter, however, is exactly f~*(U) and is open
since f is continuous.
Let now h be another continuous function, with the properties described in the

theorem. Then h([a]) = h(p(a)) = f(a) = f([a]) for all [a] € X/, which leads to
h = f and f being unique. O

Definition 1.1.24. Let X be a set and { f;}ic; an indexed family of functions on X.
A weak topology on X with respect to {f;}ics is the coarsest topology on X that

makes these functions continuous.

After topologies, we also need to define categories of spaces that we will use. In
homotopy theory, where loops, spheroids and their homotopy classes are considered,
one needs to choose, name and stabilise a point in each space and refer simultaneously
to the space as well as the point. This point will serve as the basepoint of every loop

or spheroid in this space, leading eventually to well defined structures.

Definition 1.1.25. Let (X, Tx) be a topological space and zo € X. (X, xg) is called
a pointed space. Given another pointed space (Y, yo), amap f : (X, z9) — (Y, y0)
is called basepoint preserving or pointed map if f(z¢) = yo. Using pointed spaces
as objects, basepoint preserving maps as morphisms and the usual composition of

functions, we may form the category .7* of pointed topological spaces.

Remark. The notation (X, ) will be often employed to represent a pointed space in
a slightly more abstract fashion, while the point xy will be suppressed altogether,
when confusion is improbable.
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A subcategory of 7 is the category of compactly generated Hausdorff spaces,
©Y. Compactly generated Hausdorff spaces, €¢, constitute a convenient category
of spaces in algebraic topology, as shown in [8]. In our study, they are going to be
utilised, when the homotopy groups are introduced.

Definition 1.1.26. Let (X,T) be a Hausdorff topological space. X is said to be a
compactly generated Hausdorff space if every K C X which intersects every com-
pact set in a closed set is itself closed. We denote by €% the category of compactly

generated Hausdorff spaces and their continuous functions.

Definition 1.1.27. If X is a Hausdorff space, the associated compactly gener-
ated space k(X) is the set X with the topology defined as follows: a closed set of
k(X) is a set that meets each compact set of X in a closed set.

For X, Y Hausdorff spaces, C'(X,Y) represents the space of continuous maps
X — Y with the compact-open topology, as defined below. Furthermore, we denote
with Y¥ the associated compactly generated space k(C(X,Y)).

Definition 1.1.28. If K is a compact set in X and U is an open set in Y, let W (K, U)
denote the set of all functions f € C(X,Y) with f(K) C U. The family of the
sets W (K, U), created for all possible compact-open pairs (K, U), forms a subbasis
for open sets of C'(X,Y). This subbasis defines the compact-open topology on
C(X,Y).

Keeping the aforementioned notation of sets of functions in mind, we may intro-
duce the loop space QX of a pointed space (X, *):
Definition 1.1.29. QX = {w € X'| w(0) = w(1) = *} is called the loop space of
X. The loop space is an associated compactly generated space and a subspace of
XT. As a subspace, it also inherits the corresponding topology. Q"X = Q(Q"1X)
is inductively defined and it has the constant loop at * as its basepoint.

As implied by the name, the loop space consists of all the loops in X. In other
words, it consinsts of all the paths f in X with f(0) = f(1) = x¢. This space is of
great importance, a fact that will become apparent when we discuss higher homotopy
groups.

If amap f: X — Y between topological spaces is given, one can construct
the map Qf : QX — QY between the corresponding loop spaces via the formula

Qf (w(-) = fw(-)-

A very significant class of topological spaces, with applications in various fields
of mathematics, is without question this of topological manifolds. These are topo-

logical spaces which locally resemble” an n-dimensional Euclidean space in the sense
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discussed below. Topological manifolds, moreover, can be equipped with additional
structure. This happens, for example, in the case of differentiable manifolds, which

are provided with a differentiable structure.

The following are mainly based on [9:

Definition 1.1.30. A topological space X is called a topological manifold if it is
a locally Euclidean, second countable, Hausdorff space. The dimension of a manifold

X is n if every point has a neighbourhood homeomorphic to R"™.

Remark. The dimension of a manifold is well defined, because an open subset of R"™ is
not homeomorphic to an open subset of R™ if n £ m. This fact is called invariance of
dimension and is a classical result of Brouwer, which can be proved with machinery
developed in algebraic topology (see Theorem 2.26 in [10]).

Definition 1.1.31. A smooth or C'"™° or differentiable manifold is a topological
manifold M together with a differentiable structure or maximal atlas. An atlas on
M is a collection U = {(U,, ¢.)} of pairwise C'*°-compatible charts that cover M,
while a maximal atlas is the atlas containing all the charts that are compatible with
i, Finally, two charts (U, ¢), (V,1) are said to be C*°-compatible, if the composite
maps ¢ otp~! and ¥ o ¢! are differentiable on (U NV) and ¢(U NV), respectively.

Example 1.1.32 (Unit sphere S™). The unit sphere S™ is the set of points in R"*?
with unitary distance from the origin 0. It is a smooth manifold of dimension n.
For n = 0, we get the O-sphere S° to be a pair of points. We endow those with the
discrete topology, thus producing a topological space.

For n > 1, we need a topology on our set of points. For each i € {0, ...,n}, we define
hemispheres U;" and U; by

Ut ={(zo,...,xn) € S" 7; > 0}

{
U = {(20, o an) € S"| 21 < O}

3
and maps ¢; and ¢; by
OF (20, oy Tp) = G5 (T0y ooy Tn) = (T0y oy Ti1y Ti 1y oy Ty

Maps ¢; are homeomorphisms for all ¢, their inverses being

QZSZ-_I(I'Q, ...,xi_l,IZ’+1, ,.Cl,’n) = (Io, ey Lj_q, ]_ — inwri-l-la 7I'n)
\l k#1

Hemispheres UijE cover S™ and it can be easily shown that ¢; o gzﬁj_l is C'*° for all pairs
of hemispheres with UijEﬂUjjE # @&. Thus, S™ becomes a smooth topological manifold.
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Real and complex projective n-spaces

We begin with the real projective n-space RP"™, n > 0. RP"™ is defined to be the
space of all the lines in R™""! that pass through the origin. Each such line can be
determined by a nonzero vector in R"*!, unique up to scalar multiplication.

More formally, we define in R"™\{0} the equivalence relation ~ where x ~ y &
x = Ay, A € R\{0}. This relation identifies all the points of the line passing through
0 and x, so the real projective space RP" is the quotient space of R"*1\{0} by this
equivalence relation. We denote the equivalence class of a point (xg, z1,...,2,) # 0
by [z : @1 .o xy).

The real projective space RP™ is a topological space. To prove this we need to define
a topology 1" on RP", so we will find a basis of this topology. Since the equivalence
relation ~ is an open equivalence relation on R"™\{0}, i.e. the projection map
p: R\ {0} — (R"*\{0})/. = RP" is open (see Proposition 7.14 in [9]), a basis
for RP™ will be {p(B,)}, where Z = {B,} is a basis for R"™\{0} (see Theorem 7.9 in
[9]). To be more specific, the collection of subspaces { B(z,r)NR"™\{0}}, z € R,
r € R, forms a basis of open subspaces for R""\{0}, thus {p(B(z,r) N R"*\{0})}
is a basis which defines a topology on RP".

RP™ is also a manifold. As shown in [9], the real projective space is Hausdorff and
second countable. For the locally Euclidean part and the later necessary smooth
structure, we take the sets

Ui=A{[xo:x1:...ixp) € RP"| z; # 0}, i € {0,1,...,n}

and the maps

T T; x
[zo: a1 ixy] (_07"'a = =),
T T Z;
ot R" o RP"
(Z0y ey Ty Tt 1y ey Tpy) [0 1o 2 T 2 L i gy o Xy,

where the hat sign ~ means that the particular entry is to be omitted. ¢ and ¢!
are continuous maps, one being the inverse of the other, which proves that RP" is
locally Euclidean with the (U;, ¢;) as charts. It can be readily proved (see [9]) that
the collection {(U;, ¢;)}iz01,..n is also a C*-atlas for RP™, which suffices to make
RP™ a smooth manifold.

There is, however, another way to build a differentiable structure on RP™. The
map 7 : RP"™ — {l-dimensional subspaces L of R"}, with w(p(x)) = =([z]) =
{1-dimensional subspace L of R™ which contains x}, is a bijection. We will use this
bijection in order to find charts on the real projective space. For every L we consider
the following neighbourhood in RP™:

U, = {subspaces K C R" such that the projection K — L is an isomorphism}

This set is in 1—1 correspondence with the set Hom(L, L) of morphisms from all L to
their orthogonal complements L*. For each K € Uy, the projection K — L* can be
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composed with the isomorphism L — K to produce an operator T' € Hom(L, L1).
Reversely, for an operator T € Hom(L, L*), we define the space K to be the graph
of T, ie. K={(v,Tv)|ve L} ={v+Tv|velL}

Each Uy is a chart in RP™ and n + 1 of them are needed to cover the real projective
space RP". Using the canonical basis {eg, ey, ..., e,} of R"™, we consider for every
0 <4 <n the line L; = {\e,—;| A € R} and take the neighbourhoods

U, = Hom(L;, ®;4L;)

([0 0 ... 0 ay; O .07 107 )
i . . : . 0 :
0 0 0 ag-1 O . 0110
= Al + 10 0 0 0 0 (Al AeRa; €R
0 0 0 a(i—f—l)i 0 .0 0
: .0 :
L [0 10 0 amsni O . 0] 0] )
([ an ] )
A(i—1)i
=< R 1 ’ a; € R
Q(i41)i
\ _a(n—l-l)i_ )
Maps ¢r, take elements R - (ay;, ..., G@u—1)i 1, Q@t1)is - - - Amy1)i) € Ur, to vectors
(@i, ..., A(i—1)is A(it1)is - - - ,a(nﬂ)i) € R", while their inverses, gbzil, do the opposite.

These maps are obviously continuous, thus charts (Uy,, ¢r,) are formed. It is quite

straigtforward to show that these charts also form a C'*°-atlas on RP".

Finally, we will elaborate on the real projective space a bit more. This time we
will treat RP™ as a homogeneous space. This way of viewing RP" is not the most
frequently encountered, but it is pretty interesting. Since the underlying theory
needed to fully understand homogeneous spaces lies out of the scope of our study, we
restrict ourselves to just stating their definition and the basic theorem that is going

to be used. For a more thorough study of homogeneous spaces we refer to [11].

Definition 1.1.33. A homogeneous space is a smooth manifold M endowed with
a transitive, smooth action of a Lie group G. Equivalently, it is a smooth manifold
M of the form G/K, where G is a Lie group and K a closed subgroup of G.

Proposition 1.1.34. Let G be a Lie group, M a homogeneous space and p € M a
random point in M. The map f : G/G, — M with f(9G,) = g - p, where g-p
represents the left action of G on M and G, = {g € G| g-p = p} is the isotropy
group, s a diffeomorphism.
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We take the general linear group GL(n+ 1, R), which is a Lie group (see Chapter 12
in [11]), acting on (R"™'\{0})/. = RP", which is a manifold. So

®:GL(n+1,R) ~ (R™™\{0})/~ | (4,[v]) — [Av]

[v] denotes the equivalence class in the real projective space with representative
v € R"™\{0}, while Av denotes the usual multiplication between a matrix and a
vector.

® is smooth: First, we observe that the action of the general linear group GL(n+1, R)
on R\ {0} is smooth. Now, let (vg, vy, ...,v,) ~ (ug, U1, ..., uy). Then (ug, us, ..., up)
= A(vg, v1, ..., v,) for some A € R\{0} and

O(A u) = A(ug, Uty ..., uy) = AXN(vg, V1, .y V) = AA(vg, V1, .y Uy) ~ Av = O(A, v).

This means that the action ® preserves the equivalence relation ~, which, using
Proposition 13.1.3 in [11], leads to the smoothness of ®.

® is transitive: Let [u], [v] € RP". We can find an A € GL(n+1,R) such that
u=Av = [u] = ®(A, [v]).

Therefore, RP™ is a homogeneous space.

If we choose the point p=[1:0:...: 0] € (R""\{0})/~, its isotropy group is

11 12 cen A1(n+1)
0 a .. Ao,
(GL(n+1,R)], = 22 D gy e Rodyj € {1, (n+ 1))
0 a2 - Gms1)nt)

and, from [1.1.34] RP" is diffeomorphic to GL(n+1,R),//[GL(n+1,R)],.

Remark. A projective space can also be defined on the complex numbers C. This
space is named the complex projective n-space CP". Its points are all the complex
lines that pass through the origin of C"*'. Just like RP", CP™ can be given a
topology and a differentiable structure, becoming thus a smooth manifold.
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1.2 Basic operations over topological spaces

Using spaces already defined as a basis and applying various operations over them,
one can create new interesting topological spaces. In this section, such operations

are introduced.

Definition 1.2.1. Let {X;}, i € I, be a family of topological spaces. Their product
X :=[]X; equipped with the product topology is a topological space, known as the

produzct of {X;}. Given the projection maps p; : X — X, the product topology
on X is defined as the coarsest topology for which all the projections are continuous.
More precisely, a set in X is open if it can be written as a union of sets of the form
[[U;, where U; are open in X; and U; # X; for finitely many i.

Remark. The product space X x Y of two spaces X, Y does not necessarily inherit
the topological properties of its components. For example, if X, Y € €%, then
X x Y endowed with the product topology defined above is not always compactly
generated. However, if X is locally compact and Y € €9, then X xY € €¥¢. An
example that usually occurs is the product X x I. Proofs of this can be found in [10]
and [12].

Definition 1.2.2. Let {X,}, be an arbitrary collection of spaces with chosen base-
points z, € X,. The wedge sum \/, X, is the quotient of the disjoint union | |, X,
obtained by identifying all points x, to a single point.

Remark. When it comes to representing a point in \/, X,, we will treat the wedge
sum as a subspace of [[, X,. This means that a point z in X;, will be denoted with
(X0, TOy ovy Ty Ty eey Ty o2 )

Remark. We can also define the wedge sum of maps. Given maps f, : X, — Y
that agree on the basepoints, we write \/ f, : \/, Xo — Y to represent the function
formed by applying each f, to the respective component X,,.

Definition 1.2.3. Let X be a space and I the segment [0, 1]. The product ZX =
X x I is called the cylinder over X. The quotient of ZX obtained by collapsing
X x {0} to one point, namely CX = X x I/X x {0}, is called the cone CX of X.
Finally, the quotient of ZX obtained by collapsing X x {0} to one point and X x {1}
to another point is called the suspension SX of X.

Remark. Apart from spaces, maps can also be suspended. A map f : X — Y
suspends to Sf : SX — SY, the quotient map of f x 1: X x I — Y x I.

Example 1.2.4. For X = 5" we have CX = CS™ = D"l and SX = SS" = §n+!,
Here we must mention that D"*! is the (n+1)-dimensional disk, i.e. the set of points
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in R™*! which are in a distance less or equal to 1 away from the origin.

To prove the first homeomorphism, we consider the map f : ZS™ — D"! which
takes V x € S™ the path (t,2) € ZS", t € I, to a path in D""! starting at 0 € R""!
and ending at x € D™ (coordinates given by the embedment of S™ in R"*!). We
have f(x,0) = 0, so using we get a unique continuous map f : CX — D"!
with f = f op. f is surjective, since f and p are. f is also injective, because f was
failing injectivity on # € S™ x {0} only and this has been rectified in f. Finally,
CS™ is compact and D"*! is Hausdorff, which leads to f being a homeomorphism
(Corollary A.36 in [9]).

In a similar way, using the map f : 25" — S™! which takes V z € S™ the path
(t,z) € ZS™ to the path in S™™! starting at (0,—1) € R""2, passing through (z,0)
in the equatorial and ending at (0, —1) (coordinates given by the embedment of S™*?
in R"™2), we get a homeomorphism between SS™ and S"T!.

We will use suspensions of spaces later on, when we will define homotopy groups.
More specifically, we will use the reduced suspension XX of a pointed space (X, x*),
which ensures that the basepoint remains well defined after performing the operation
and allows us to define a comultiplication f - g between continuous maps f, g €

CEX)Y), X, Y e 7"

Definition 1.2.5. The reduced suspension XX of a pointed space (X, zg) is the
space obtained by SX if we collapse {xo} X I to a single point. This can be written
as a quotient space in the form XX = X x I /(X x {0,1} U {xo} x I).

Remark. Again, maps can be suspended in this way. A map f: X — Y suspends
in a reduced way to Xf : XX — XY with Xf([z,t]) = [f(x),1].

The comultiplication f-¢g: XX — Y, which was previously mentioned, can be
formed as a composition of maps. We start by performing a ’pinching’ operation ¢
on the reduced suspension ¥.X of (X, xzg), which collapses the middle copy of X to
the basepoint zy. This leads to XX VXX = ¥X/(X x {1/2}), on which we apply
fV g. To be more explicit, for [z,t] € ¥X, where © € X and ¢ € I, the formulas are

(w2 [),  0<i<g
clz,t] = . : (1.1)
([, w26 = 1)), 5 <t<1
where [z,0] = [2,1] = [zo,t] := [#], V¢ € I. Then
f([$,2t]), [ ]2 = [*]
(fva)lh, )= . (1.2)

g(lz, 2t =1]), [l =1[+

Thus
(f -9z t] == ((fV g)oc)a]. (1.3)

is the desirable comultiplication.
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Definition 1.2.6. Let X, Y be topological spaces. Their smash product X AY is
defined as the quotient space X x Y/X VY.

Remark. The reduced suspension XX is actually the same as the smash product
X AS'=X x S'/X v Sl This is readily understood since both spaces can be seen
as the quotient of X x I with X x {0} UX x {1} U{zo} x I identified with a point.

Proposition 1.2.7. 5"t = ST A ST A LA ST (n-times).
Proof. The result is obvious, if one uses Rem. [I.2.6] and induction on n. O

Definition 1.2.8. Let X, Y € 7 and f: X — Y. The mapping cylinder M f
is the quotient space of the disjoint union (X x I) LY obtained by identifying each
(z,1) € X x I with f(z) € Y. We write M f = (X x I)U;Y.

Remark. We use the notation M f for the mapping cylinder and reserve the notation
M for another construction, the mapping fibre, which will be defined later on.

Definition 1.2.9. Let X, Y € . and f : X — Y. The mapping cone Cf is
the quotient space of the mapping cylinder M f obtained by collapsing X x {0} to a

point.
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1.3 Simplices and complexes

We begin this section by introducing simplicial complexes. Simplicial complexes
can either be seen as objects of combinatorial topology and be given a geometric
realisation later, as done in [2|, or be defined as geometric objects right from the
start, totally skipping the combinatorial part. The geometric point of view is the one
adopted here.

The section continues with the introduction of Whitehead or CW-complexes or
cell complexes. For these objects the requirement for linearity that dominates, as
will be seen, simplicial complexes is aborted. They become thus structures less rigid
than simplicial complexes and more appropriate for homotopy theory.

All these objects will ultimately help us examine random topological spaces by
'subdividing’ them into basic, more easily treated building blocks.

Definition 1.3.1. An n-simplex, n > 0, is the smallest convex set in the euclidean
space R™, m > n, that contains n + 1 linearly independent points vy, vy, ..., v, in
R™, called vertices (points v; being linearly independent is equivalent to not all of
them lying in a hyperplane of dimension less than n). This simplex is denoted with
o = [vg,V1,...,0,] and is given by o = {D> . hiv; € R™| Y. A =1, A\ € R}

If we delete k of the n+ 1 vertices of 0 = [vg, vy, ..., v,], we get a (n — k)-simplex
7. The new simplex is called a (n — k)-face of o, is denoted with 7 = [v;,,...,v; ],
and we write 7 < 0. Every simplex is oriented starting from the vertex with the
smallest index and moving gradually through the remaining vertices by increasing
indices.

Definition 1.3.2. A geometric finite simplicial complex K is a collection of i n;-
simplices in R™, ¢ < 00, 7 € {1,...,i}, m > max{ny,...,n;}, such that the intersection
of two simplices is a face of each and each face of a simplex in K is a simplex in K. We
write | K| for the underlying space, i.e. the union of all the simplices in K. Obviously
we can have |K| = |L| even if K # L.

Definition 1.3.3. Let o be a finite simplicial complex. If ¢ contains at least one
n-simplex, but no k-simplices, k& > n, we say that it has dimension dim(c) = n or

that o is n-dimensional.

We are now going to present a very useful procedure known as barycentric subdi-
vision, which, when applied to a simplex ¢ € R™, produces a simplicial complex %(0)
that consists of simplices o;, that are subspaces of |o|. If we use the Euclidean metric
provided by the ambient space R™, we can compute the mesh of M (#(c)) of %(0).
By the term mesh we mean the maximum diameter max{diam(o;)| o; € #A(o)} of
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the simplices 0; in (o) expressed as a function of o’s diameter. If the initial o was a
simplicial complex instead of a simplex, a barycentric subdivision could be executed
again, this time on each simplex of ¢ individually. The mesh would be expressed as
a function of the mesh of o, M(0).

The main advantage gained from this procedure is that by applying iterated
barycentric subdivisions on a simplicial complex ¢ we can lower the mesh of the final

A" (o) as much as we please.

Definition 1.3.4. Suppose given an n-simplex o = [vg, vy, ..., v,]. The barycentre

of o is the point b(o) = % This is the centre of gravity of the vertices in the

usual sense.

Definition 1.3.5. Let o be a simplicial complex consisting of the simplices ;. A

barycentric subdivision of ¢ is a simplicial complex ¢’ such that
1. the vertices of ¢’ are the barycentres of simplices o; of ¢ and
2. the simplices of ¢’ are the simplices [b(03, ), ..., b(0y,,)], for i; < i;.1 and oy, # 0,

Proposition 1.3.6. Every complex has a barycentric subdivision.
Proof. See Theorem 12.16 in [12]. O

Lemma 1.3.7. The diameter diam(c) of the simplex o = v, ..., v,| with respect to
the Euclidean norm is the mazimum of the ||v; —v;||, i, j € {0, ...,n}.

Proof. Let z, y € 0 and x = > A\ju;. Then ||z —y|| = || Do Ni(v; —y)l| < D2 Ajljv; —
yll < maxj||v; —yl, since Y A; = 1. But now ||v; — y|| = ||y — v;|| < max;|jv; — v,
which leads to ||z — y|| < max; ;||v; — vj]]. O

Lemma 1.3.8. Let o be a simplicial complex with dimension n. Then
M(#B(0)) < —

“n+ 1M(0)'

Proof. See Proposition 12.17 in [12] or Lemma 9.4.3 in |2]. O

Proposition 1.3.9. Let X be a space such that there exists a simplicial complex o
with |o| = X and let € > 0. Then we can find a complex T such that |7| = X and
M(T) <e.

Proof. Let 7 = %"(0) and n = dimo. We have M(7) < (;45)*M(0), thus we
can attain the desired limit € by choosing the number of iterations k£ to be large
enough. O]

Special attention is given to the n-dimensional standard simplex or standard
n-simplex

An = {(to, e ,tn) € Rn+1’ th = 1,751 Z 0 \V/ Z} = [60,61, ...,Gn],
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and its boundary, which is the union of all its faces written as

OA™ ={(ty,...,t,) € A" t; = 0 for some i € {0,1,...,n}},

since they are going to play a major part later, in the presentation of singular ho-
mology theory.

A very important fact regarding simplices is that a free, abelian group G,, can be
constructed having n-simplices as a basis and a sum operation which represents the
union of the added n-simplices.

On G, one can define a map 9, : G, — G,,_1, called the boundary map. Let
or :{0,1,...,n — 1} — {0,1,...,n} be the inclusion that omits the value i and
define a map d7 : A""' — A" by the formula d?(31 tie;) = S o1, tiesn, which is
the i-th face of A™. If we take a basis element of GG,, o and identify it with a homeo-
morphism & : A" — |o|, we can use the maps d? and define 9,(5) = Y ,(—1)'d}s.
Although the choice of the homeomorphism & is free, 0, is well defined, since we are
interested only on its image |o|. Furthermore, 0, is expanded linearly on G,, thus
becoming a group homomorphism.

Proposition 1.3.10. The pair (A", 0A,,) is homeomorphic to the pair (D™, S"1).
Proof. See Proposition 2.3.1 in [2]. O

A powerful tool in algebraic topology are certain spaces called Whitehead com-
plexes or CW-complexes or cell-complexes. These spaces, which were introduced
by J.H.C. Whitehead in [13|, are complexes possessing an additional combinatorial
structure, the CW structure. Providing a space with such a structure essentially
allows its breakdown into basic structural components that are easier to manipulate.
The importance of this becomes apparent especially when trying to compute homol-

0gy groups.
The following notation is employed hereafter:

D" = {z € R"| |z| <1} the closed n-dimensional disc,
oD = S"1 = {z € R"| |z| = 1} the (n — 1)-dimensional sphere,
(D™ ={x € R"| |x| < 1} the open n-dimensional disc,

e" = {x € R"| |z| < 1} an n-dimensional cell homeomorphic to (D")°.

Definition 1.3.11. A CW-complex or cell-complex is a Hausdorff space X with
a fixed partition X = | |~ | ,c, e} of pairwise disjoint cells e} such that:
1. for every cell e} there exists a map ®7 : e — X with ®;|(pnyo : (D")? — €]
a homeomorphism,
2. ;= Dlopn : S"! — X mapping S"! into the union of a finite number of
cells of dimension less than n,

3. a subset of X is closed if and only if it meets the closure of each cell of X in a

closed set.
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Each ®; is called a characteristic map.

Definition 1.3.12. A subcomplex of a CW-complex is a subspace A C X that is
the union of cells of X such that the closure of each cell in A is contained in A. A is
also a CW-complex. A pair (X, A), where X is a CW-complex and A a subcomplex,
will be called a CW pair.

Proposition 1.3.13. A compact subspace of a CW-complex is contained in a finite
subcomplez.

Proof. See A.1 in [10]. O

In a CW-complex the following two properties are satisfied:

1. Closure-finiteness: The closure of each cell e is contained in a finite union of cells
or, in other words, meets only a finite number of cells.

2. Weak topology: A set A C X is open (or closed) iff the intersection A[)el is
open (or closed) in X™ for any cell e'. Another way to describe the topology is to
say that a set A C X is open (or closed) iff ®;'(A) is open (or closed) in D} for
each characteristic map ®,.

A CW-complex can be constructed inductively. We start with a discrete set X°
consisting of O-cells. After the first n-steps, the construction continues by attaching
(n+41)-cells ™! to the n-skeleton X™ via maps ¢; : S — X". This process, which
can either stop for a finite n or continue indefinitely, results to a space X = [J X"

n
with the quotient topology when n < oo (in this case it is the same as the weak
topology) and the weak topology when n = co.

Example 1.3.14. [ is a 1-dimensional CW-complex.
I consists of two O-cells €), €Y, its ends, and a single 1-cell ¢!, with boundary de! =
{ed,ed}. @ : D' — I is given by ®((1 — t)dy + td;) = t.

Example 1.3.15. The sphere S™ is a CW-complex and can be seen as constructed
by a single 0-cell €® and a single n-cell e”.

The characteristic map ® : D" — S™ of the n-cell is given by the formula ®(z) =
(24/1 — ||Z||? z,2||Z||> — 1), where T represents a point in D™ written as a vector
in R". @ collapses 9D™ = S™ ! onto the 0-cell €, while its restriction ®|pnyo is a
homeomorphism between (D™)° and S™ — {e"}.

There is another CW-decomposition of S™ which possesses the additional advantage
that S™ has each S*, k < n, as its subcomplex. This CW-decomposition consists of
two k-cells for each k € {0,...,n} and is obtained inductively using the characteristic
map ¢ : D" — D7, ®(z) = (z,£+/1 — ||Z||?), where D} = {(x;) € S"| 2,41 > 0}.

Example 1.3.16. The real projective space RP" is a CW-complex that has a single
k-cell for every k € {0,1,...,n}.
Although we have elaborated on the real projective space earlier, there is yet another
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way to define RP" and this is the one needed here. RP" can be seen as the quotient
of the sphere S™ under the equivalence relation ~ that identifies antipodal points.
The topology T" will be defined by means of a basis. The map p : S™ — S™/ ~ is
open: Let U an open set in S™. Since p(U) is open if and only if p~'(p(U)) is open,
we only need to show that p~*(p(U)) is open. But p~!(p(U)) is the union of U and
V ={p € S"| —p € U}, the antipodal points of the points in U, where V' = U. This
means that p is an open map and ~ is an open equivalence relation on S™. Therefore
a basis for RP" will be {p(B,)}, where # = {B,} is a basis for S™ (see Theorem 7.9
in [9]). Here, we take open balls {B(x,7)}, x € R*™, r € R, to be a basis for R"".
S™ can be viewed as a subspace of R™! hence £ = {B(x,r) N S"}.

If we identify in S™ all antipodal points that are not on the equatorial S"~!, we get
the hemisphere D". To get to RP", we just need to identify the antipodal points
of 9D™ = S"~!. But this actually is RP"!. Consequently, RP" is obtained from
RP" ! by attaching an n-cell or D", with the quotient projection S"~! — RP" !
that identifies antipodal points as the attaching map. It follows by induction on n
that RP™ has a CW complex structure € U,, e' U,, ... U,, €" with one cell e’ in each
dimension i < n.



Chapter 2

Homotopy theory

2.1 Homotopy equivalence relations

In algebraic topology spaces are studied with the help of various algebraic invari-
ants. This allows for them to be deformed and turned into other spaces, more easily
understood and analysed. The deformations applied must present some sense of con-
tinuity and either lead to homeomorphic spaces or to spaces that maintain some of
the invariants intact. For example, depending on the case, a desirable tranformation
can be achieved using a continuous map, a homeomorphism, or a map that will not
create new or fill existing discontinuities and holes in the space. More generally we
need a series of continuous maps which occur in a ‘continuous flow of movement’.

Some basic deformations, which are frequently used, are presented below. Let us
mention here that X, Y € .7 and all maps between spaces are assumed continuous
throughout this section.

Definition 2.1.1. Let A € X. A map r : X — X such that r(X) = A and
r|A = id4 is a retraction. More formally, a retraction is a map r : X — X with

r?=r.

Definition 2.1.2. A homotopy is a family of maps h; : X — Y such that the
associated map H : X x I — Y given by H(xz,t) = hy(x) is continuous. We say
that the maps f: X — Y, g: X — Y are homotopic if there exists a homotopy
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H from f to g or, more explicitly, if there is a homotopy H which takes values
H(z,0) = f(x) and H(z,1) = g(z) Vx € X. If f and g are homotopic through H,

one writes f ~ g.
ht

Proposition 2.1.3. The relation ~ 15 an equivalence relation.
t

Proof. Let f,g,h : X — Y be maps. Reflexivity is evident since f > f by the
t
constant homotopy F(x,t) = f,(x) = f(z) Vt € I. Symmetry holds since, if f ~ 9,
t
then g i~ f, where h;_; is the inverse homotopy of h;. For transitivity, if f ~ ¢ and

1—t Tt
g ~ h, then f ~ h, where
gt ht

falz), 0<t<
H(z,t) = hy(x) = Vo e X.

Gor—1(x), <t

N | —

IA
—

1
2
The map H is continuous on I X I, because it is continuous on I x [0,1/2] and on

I x [1/2,1] and a function defined on the union of two closed sets is continuous if it
is continuous when restricted to each of the closed sets separately. O

Definition 2.1.4. If f: X — Y is continuous, its homotopy class is the equiva-
lence class
[f] ={g9 € C(X,Y) such that g ~ f}.

The set of all such homotopy classes is denoted by [X,Y] and it is the quotient
C(X,Y)/~.

There are special cases of homotopies between spaces which we mention below.
Definition 2.1.5. Let A C X. A homotopy h; : X — Y for which 4 = hola
holds for all ¢t € I, that is a homotopy whose restriction to A is independent of ¢, is

called a homotopy relative to A, abbreviated to ~ rel A.

Definition 2.1.6. A homotopy h; rel A from the identity map 1 x of X to a retraction

r of X onto A is called a deformation retraction of X to A.

Definition 2.1.7. Let f : X — Y be a map. Then one says that f is a homotopy
equivalence if there is a map g : Y — X such that fg ~ 1y and gf ~ 1x. If this
is the case, X and Y are called homotopy equivalent or they are said to have the
same homotopy type and we write X ~ Y.

Remark. A deformation retraction h; of a space X onto a subspace A is actually
a homotopy equivalence. If we take the retraction r : X — X and the inclusion

ia: A— X, we get riy = 14, while i47 ~ 1x through the homotopy h;. Thus the
homotopy equivalence generalises the deformation retraction notion.
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Definition 2.1.8. A space X is called contractible if it has the homotopy type of

a point.

Remark. Saying that a space X is contractible is weaker than saying that it deforma-
tion retracts onto a point {x} € X, since in the second case the point must remain
steady throughout the homotopy h;, while in the first is allowed to move freely.

Example 2.1.9. The cone CX of a space X deformation retracts to the point [z, 0].
The map H : CX x [ — CX with H([z,t],s) = [z, (1 — s)t] is a homotopy rel|z, 0]
which takes the values H([z,t],0) = 1¢ox[z,t] and H([x,t],1) = [z,0] = r([z,t]) for
all [z,t] € CX.

Example 2.1.10. D", n > 2, deformation retracts to its centre x € D".
The homeomorphism D™ = C'S™ ! which takes the centre of D" to [z, 0], along with
the fact that C'S"~! deformation retracts to [z, 0] give the result.

Example 2.1.11. The mapping cylinder M f of a map f : X — Y deformation
retracts onto Y.

We denote the class of (x,t) € X xIin M f by [z, t] and the class of y € Y in M f with
[y]. This means that [z, 1] = [f(z)]. Now, if we define the map H : M f x [ — M f
by

H([z,t],s) =[z,(1—9)t+s], ifreXtsel
H([yl,s) = [v], ifyeY,sel

then H is a homotopy between Hy = 1,/ and H; = r, where r is the retraction of M f
onto Y. H is obviously constant on Y. Therefore, we have the desired deformation
retraction.

Definition 2.1.12. A map f: X — Y is called nullhomotopic, if it is homotopic

to the constant map.

Proposition 2.1.13. Let X, Y be spaces and let X deformation retract to a point
x € X. Then any map f: X — Y is nullhomotopic.

Proof. Denote with H : X x I — X the given deformation retraction. If we
compose H with f, we get ' = foH : X x I — Y with Fy = fo Hy = f and
H, = foH, = foc, = cfu) which is constant. O

Finally, we mention a proposition that stems from the important homotopy exten-
sion property (see Chapter in 2] or Chapter 0 in [10]). The homotopy extension
property, as betrayed by the name, states that, given a map f : X — Y and
A C X, ahomotopy F': Ax I — Y with Fy = f|a can be extended to a homotopy
H: X xI—Y with Hy = f. Not all pairs of spaces (X, A) possess this property.
However, CW pairs (X, A) behave well regarding the homotopy extension property,
hence the following proposition:

Proposition 2.1.14. If (X, A) is a CW pair consisting of a CW complex X and a
contractible subcomplex A, then the quotient map X — X /A is a homotopy equiva-
lence.
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Proof. See [10], Proposition 0.17. O

Example 2.1.15. S5" ~ ¥.5".

We know that £.5™ = S x I /({xo} x TUS™ x{0,1}) and SS™ = 5" x I/(S™ x{0,1}).
SS™ = 5™ from Example [1.2.4] while Example suggests that there is a CW-
decomposition of the CW-complex S™*! that includes every S* with k& > n as its
subcomplex. This viewpoint allows us to identify {zo} x I € S™ x I with a closed
subcomplex % of S™*! which is essentially one of the two 1-cells that produce S!.
el is obviously a contractible subcomplex, thus S5 = S"! ~ §n+1 /el — 167 from

Proposition [2.1.14
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2.2 Fundamental group

In this section, the fundamental group (X, x¢) of a pointed space (X, xq) is
introduced. As a set, m (X, xo) consists of the homotopy classes of loops based
on the space’s basepoint xy. To construct a group structure on this set, though,
an operation between classes of paths must be defined. This operation stems from
combining consequent representatives of classes of paths. Here consequent implies
that the second path begins at the same point that the first ends. Since in m (X, x¢)
only loops are considered, this condition is immediately satisfied and one can define

a ‘multiplication’ like the one roughly described.
Formally, the fundamental group is defined as follows:

Definition 2.2.1. Let X € .7*. The fundamental group of X with basepoint x,
is

m (X, zo) = {[f]| fis aloop based on z¢}
with binary operation [f][g] = [f - g], which denotes concatenation of loops. Equiva-

lent formulas for the fundamental group are also:
7T1(X7 xO) = [(]7 *)7 (X7 IO)] = [(Slv *)7 (X’ ZEO)]

Remark. 1t should be mentioned here that for a space X my(X) is defined to be the
set of path-components of X. It is a set, not a group.

Proposition 2.2.2. If (X, zq) € 7%, then m (X, o) is a group.

Proof. The proof is rather easy and we refer the reader to |10]. After checking that
the product operation is well-defined, one finds homotopies between f - (g - h) and
(f-g)-h to prove associativity, amongst ¢, f, f-cs, and f to ensure that the neutreal
element exists and, finally, constructs the loop f from f transversed backwards to
serve as the inverse of f. O

Proposition 2.2.3. 7 is a functor (Definition[A.1.7) from T* to 9.

Proof. Let f € Hom((X,xo),(Y,y0)) and [h] € m(X,z0). We define m(f)([h]) =
[f o h], where foh : I — Y. foh is continuous and its image is a closed path
in Y based on yo. m(f) is well defined, since w1 (f)[h] = [f(h)] = [f(g9)] = m1(f)[R]
if h ~ g through a basepointed homotopy. Now, for [g], [h] € m (X, ) we have

m(Alg-h] = 1folg-M] =1(feg) (feoh)] =m(f)lglm(f)hl, thus m(f) is a
homomorphism. Finally, if f; : (X,z9) — (Y, %) and f2 : (Y, ) — (Z, 20), then

mi(fao fi)[h] = [f20(fioh)] = mi(fo)[fioh] = mi(f2)mi(fi)[h], whilst 71 (f)[cs,] = [cyo),
which complete the proof. O

Remark. We are going to use f. instead of m1(f), in order to simplify notation.
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Before we move on, it is essential to introduce H-spaces. The prefix H- signifies

their connection with Hopf, since he was the first to study them.

Definition 2.2.4. An H-space (X, ) consists of a space X € 7* with basepoint
xo and a continuous map p : (X X X, xg X x9) — (X, o) called multiplication. The
multiplication g must satisfy u|xyx ~ Vin 7%, where V: X VX — X is a folding
map’ with V(z,z¢) = V(zo,x) = z.

Proposition 2.2.5. Let (X, pu) be an H-space and 'Y € T*. Then the set of homo-
topy classes of functions [(Y, *), (X, zo)] has a multiplication with two-sided unit.

Proof. We refer the reader to [12], Proposition 9.8. O

Returning to the fundamental group:
Proposition 2.2.6. Let (X, x¢) € T* be an H-space. Then m (X, xo) is abelian.
Proof. We define a map
0 : 7 (X, 20) x T (Y, 50) — m(X x Y, (20, 40))
through 0([f],[g]) = [(f,¢)]. € is an isomorphism (see Theorem 3.7 in [14]).
For [f], [g] € m1(X, o), we have
g

]
9] = (0 (o 1x))-lg)  (Definition22.4 gives 1o (cuy, Lx) ~ Lyrel{z})

fx(Cags Lx ) [9] (7 is a functor)
= 14[C20 9, ] (Definition of induced map in
= p1:0([cz091, [9])
= pb([czo], [9])

where both the constant map and the constant path are denoted with c,,. Similarly,

using po (Ix,cyy) ~ Lxrel{zo} we get [f] = pu0([f], [cxo))-
Since .0 : m (X, z0) X (X, 29) — m (X, 20) is @ homomorphism, we have

[f1lg] = 11.0((f1; [eao]) - 11:0([cas]s [9]) = 12O(([f], o)) - ([ao], 9])
= (11, 19]) = p0(([eay ), [91) - ([F], ewo]))
= pb([cao ), [9]) - 1011, [eo])
= [9]lf]

Hence, if (X, x¢) is an H-space, m (X, zo) is abelian. ]
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2.3 Higher homotopy groups

Definition 2.3.1. Let (X, z0) € * and I" be the n-dimensional unit cube, n > 1,
with boundary 0I". Maps f : (I",0I") — (X, o) sending the cube’s boundary to
the basepoint are called loops with baseboint zq when n = 1 and n-spheroids with
baseboint xy when n > 1.

Loops and spheroids can also be defined as maps with domain the space (S", so),
where (S™, s¢) is produced as the quotient of (I",0I™) under the relation that col-
lapses OI™ onto the point sg.

Remark. The two definitions are equivalent. Although our study will be based mainly
on the second definition, we may from time to time use the first as well.

1
/ f
/\ J2 SN (
£
I Zo . ) To

Figure 2.1: Loop and 2-spheroid

Definition 2.3.2. Let n > 1 and f : (S™, %) — (X, o) be spheroids. 7,(X, o),
which is called the nth homotopy group of X, is defined to be the set of homotopy
classes of basepoint preserving maps f, where homotopies f; also preserve the base-
point xg. We write m,(X, zq) = [(S™, %), (X, x0)]. An equivalence class is denoted [f]
and is called the homotopy class of f. We have [f] = [g] & f ~9.

For n = 0 we take I° to be a point and 9IY to be empty, so my(X, zy) becomes

the set of path-components of X, as mentioned before.

In the definition above, we have attached somehow arbitrarily the word group
to the name of m,(X, zg). It is still to be proved that this set of homotopy classes
actually possesses a group structure.

However, before we embark on such a proof, we need to state some useful propo-
sitions and theorems. In order to start, let X, Y, Z € €9 (or €9*) and A be a
closed subspace of X such that X /A is a Hausdorff space. Then we have the following
results, which are stated here without proofs. The reader is referred to [8] to find
them proved.
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Proposition 2.3.3. (Z,*)X0)x(V4) = ((Z, %) XNYH " yia the homeomorphism

I ((Z, *)(X,*)>(Y,*) SN <27 *)(X,*)X(Y,*)
where, for f € (Z,%)NES F(f) (X, %) x (Y, %) — (Z,%) is given by the
formula F(f)(z,y) = f(y)(@), with f(y) : (X, *) — (Z, *).
Remark. The result in Proposition is called the exponential law. It also holds
for X locally compact and Hausdorff and Y, Z € *. So, for X =1 or X = S!,

which are obviously both locally compact and Hausdorff, we can have Y and Z to
be topological spaces with no other restrictions (see Chapter 11 in [15]).

Proposition 2.3.4. (Y, *)X/4%) = (Y, %)(XA),
Theorem 2.3.5. (Z, %)) = [(Z, %) V)]0,

Theorem 2.3.6. The homeomorphism of [2.3.5 induces a bijection

¢ [(X, %), (Z,%) "] — [(Y A X, %), (Z,%)]

Notation. We employ = to denote a homeomorphism between spaces, >~ to denote
a homotopy between spaces, = to denote an isomorphism between groups and <> to
declare that there exists a bijection between two sets.

Proposition 2.3.7. m, is a functor from €94 to 4 for n > 1.
Proof. We have

St = g5nt (Example [1.2.4)
~ »nen-t (Example 2.1.15)

=5 AS! (Propll.2.7)

Thus, we get

T (X, o) = [(S", %), (X, zo)]

[(S"HA ST ), (X, 20))]

[(Sla*%(XJo)(Snil’*)] (T'heorem]2.3.6)
= [(S", %), " (X, 20)]

T (0 U(X, 2), %) = T (X, 20) 5" %) %)

which is a group, as stated in Proposition [2.2.2] This proves that m, : €9* — ¥ is
a well defined function between these sets. The operation that guarantees the group
structure of m, (X, xo) is given by [f] x [g] = b= (b([f])b([g])), where b is the implied
bijection above. Under this definition of x, b becomes a homomorphism, besides
being a bijection. Hence b is an isomorphism of groups.

It is shown in that (-)**) is a covariant functor from €%4* to €4*. From m
we see that m; is also a covariant functor from €94* C .7* to ¢4. The composition of
two functors, when defined, is a functor as well. So m,(-) = w1 ((-)®""*) is a functor

from €9* to 4. O

ORI
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Proposition 2.3.8. m, is a functor from * to 4 forn > 1.

Proof. The proof remains essentially the same with Proposition’s [2.3.7] except for
Theorem In this case we use the fact that S is a locally compact, Hausdorff
space and the remark of Proposition [2.3.3] ]

Remark. Comultiplication defined in Equation agrees with that of Proposition
Although in the second case no formula was written explicitly, the multiplica-
tion % in [(S™, %), (X, zo)] has been proved to exist. Let us recall the multiplication
in 7 defined in Proposition The operation % ensures the group structure on
[(S™, %), (X, z0)]. To be more specific, using the homeomorphism described in Theo-

rem [2.3.6] we get
m*m:{”“%u

S

= O

IAINA
IA A

1

2
g([z,2s — 1]), 1
which coincides with the comultiplication in [I.3]
This identification of multiplications would allow us to generalise the result in Propo-
sition to spaces in .7*, even if what is said in the remark of Proposition [2.3.3]
was not true. Also, let it be noted that from now on - will be used in place of x for
this multiplication.

S

Remark. A more general result than this in Proposition is proved in a similar
way in Proposition 9.2 in [12]|. Tt states that, if X, Y € €9*, then F(X,Y) =
(X, %), (Y, *)] is a functor in two variables from €%* to ¢.

Proposition 2.3.9. Let X € .7 and (Y,yo) be an H-space. The two multiplications
in [(SX, %), (Y,y0)] are the same and they are commutative. Commutativity dictates
that f-g=go f, where f, g € [(SX,*),(Y,y0)]. - is the multiplication defined above
and o the multiplication defined in Prop. [2.2.5.

Proof. See the proof given in [12], Proposition 9.9. O

Theorem 2.3.10. Ifn>1, X € 9%, Q"X is an H-space.

Proof. 1t is sufficient to show that 2X is an H-space.

If we consider the constant path as a basepoint, we see that QX € .7*. We define
the multiplication g : QX x QX — QX just like we defined composition of paths
in ;. Explicitly, the formula of y is given by

t
t

i Ll

uwhmxw:{”@”’ 2

(,UQ(2t - 1)7

IAINA

<
<

By Proposition we deduce that p: QX x QX — QX C X7 is continuous if
and only if the corresponding map i : QX x QX x [ — X is continuous. ﬂ|[07%} and

/,_L‘[%J} are continuous. They also have the same value on t = % Thus z is continuous.

Now,
w(Z=2), 0<t<s
H([w,*],s)(t) = 2 . 2
%, s<t<1



30 CHAPTER 2. HOMOTOPY THEORY

and

IN
NS IV

0 1—
1— S

—_ Nl

H{([x,w], )(t) = {*’(i

2—s>’

IA A

is a homotopy between fi|oxvoy and V. Continuity is proved by Proposition [2.3.3]
like before. O]

Proposition 2.3.11. Let X € J*. Then m,(X,xo) is an abelian group, if n > 2.
Proof.

However, Q" 1(X, zy) is an H-space for n — 1 > 1 (Theorem [2.3.10) and the funda-
mental group of H-spaces is abelian (Proposition [2.2.6)). O]

Next, we will see how a loop in 71 (X, %) can act on a spheroid in 7, (X, *), n > 1.

Proposition 2.3.12. Let v € m(X, x0) be a loop. A map
B m(X,xy) —Aut(m, (X, x0))
[v] +— By (X, o) —ma (X, 20)

[T — [yef]

s an action called the action of m on m,.
| © &

BV Sl

Figure 2.2: The action of the fundamental group on , (X, z¢)[16]

Proof. One way to prove that [ is a well defined action is the following:

We first show a more general result. Namely, that (5 : m,(X, h(0)) — 7, (X, h(1)),
where h is a path from h(0) to h(1) in X, is a homomorphism with f; its inverse.
Then we prove that this J possesses the properties presented in Definition [A.2.1]
Figures and provide a pictorial proof for the case n = 2. The complete
proof can be found in [10]. If we replace the random path h with a loop =, the proof
works just fine and gives the desired result.
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1 x1 z1
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1 1

Figure 2.3: Homotopy proving that /3;, is a homomorphism.

There is another interesting way to prove the Proposition. This employs the notions
of a fundamental groupoid TI(X) and transport functors. In this case the intuitive
sense of a path acting on a spheroid remains unaltered, but the properties of an
action come as a special case of the properties of a transport functor. We refrain
ourselves from presenting this particular proof, since we have not even touched upon

the prerequisites and just refer anyone who feels interested in it to [2]. O
T2 T2
/|

1 N7/ i
1 » h- x0 0
o/ h

wa| wipo| f lzdw (w2 @2| @1 |20 f B
0 Z Z Zo f o f x0
A
ooooooooooo Cao
To Z2 Zo Zo
Domain of h'e(hof)  Domain of (b’ - h)of Figure 2.5: cyoof ~ f

Figure 2.4: By (Bn]f]) = Br-nlf]
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2.4 Relative homotopy groups

Definition 2.4.1. Let (X, A) € 72 (Definition in and zo € A a basepoint.
Let also I"™ be the n-dimensional unit cube, n > 2, 91" its boundary, 1™ ! the face
of I" with the last coordinate equal to 0 and J" ! = 9I""! x TU I"! x {0} C
OI" C I"™! x I. The relative homotopy group of (X, A, xg), m,(X, A, xp), is de-
fined as the set [(I™, 01", J" 1), (X, A, z0)]. Equivalently, m,(X, A, ) can be defined
as the set [(D",S" !, s0), (X, A, x9)], due to the existing homeomorphism between
(I",01™, J"1) and (D", S"1, 50).

Remark. The definition 7,(X, A, zo) = [(D",S™!, %), (X, A4, )] will be preferred
throughout our study.

In the definition above, we misused the term group, so our immediate task is
to find out if and when 7, (X, A, z¢) is indeed a group. The main idea is to try
to construct a bijection between the set m,.1(X, A, x¢) = [(D"!, 5™ %), (X, A, x)],
n > 0, and the group [S™, M;,|, where M;, is the mapping fibre of the inclusion
ia: A— X defined below. If we do so, the group operation in m,(M;,) = [S", M;,]
will be transferred via the bijection to an operation in m,1(X, A, %) and thus make
it a group.

Definition 2.4.2. Let (X, ), (Y,y0) € " and f : (X,29) — (Y, yo) be a pointed
map. The mapping fibre of f is the pointed space

M; ={(z,w) € X x Y| w(0) =y and w(1) = f(z)}.

M has the induced topology and its basepoint is (zg,wy), where wy is the constant

path at .

Remark. According to the definition, the mapping fibre of M;, is
M;, = {(a,w) € A x X' w(0) = 20 and w(1) = is(a) = a € A}.

Proposition 2.4.3. Let (X, A,x0) € 7% and ia: A — X be the inclusion. Then
there is a bijection 0 : [S™, M; ] — [(D™*, 5™, vg), (X, A, x¢)].

Proof. In order to define 6 : [S™, M;,] — [(D™*,S™ v), (X, A, x0)], we initially
need to be able to allocate a map f : (D"*!, 8™ vy) — (X, A, x0) to every map
f ;S — MiA~

Let f:S" — M,;, with f(v) = (ay,w,) € M;,, v € S™, be a basepoint preserving
map. If we take the projection ¢ : M;, — X! with ¢(a,w) = w and compose
it with f, we form the map go f : S® — X!, which is continuous being the
composition of continuous functions. From the remark in Proposition 2.3.3] we get
that the map go f : S" x I — X with qo f(v,t) = w,(t) is continuous. Also,

qgo f(v,0) = w,(0) = xg, go f(v,1) = wy(1l) =a, € Aand go f(vy,t) = wo(t) = xo.
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Finally, from the universal property of quotient spaces|1.1.23] there is a continuous,
basepointed map
S™x I
fp:CS"=—=—X
' 5™ x {0}
with f,([v,%]) = w,(t), which finally gives the map f : D" — X as f(tv
(fp o ¢~ H)(tv) = wy(t), where ¢ is the homeomorphism from C'S™ to D" (1.2.4] -

We define
0 : [Sn, MZ'A]—>[(Dn+17 S”, Uo), (Xv A, .To)]
[l — [f]

For [f] = [f'], there is a homotopy F : S™ x I — M;, with F(v,s) = Fs(v),
Fo(v) = f(v), Fi(v) = f'(v), Fs(vg) = (ag,wo). Now, based on what was expounded
previously, for each F, : S® — M;, the continuous map F, : (D", S™ vg) —
(X, A, zo) can be formed. Thus we get another homotopy, namely G : (D" 5™ v,) X
I — (X, A, z) with G, = F, and G(vy) = wo(1) = z¢ for all s € I, which leads
eventually to [f] = [f’] and the fact that 6 is well defined.

We will now construct the inverse of 6. Let h : (D" S vy) — (X, A, o) with
h(0) = xo. If R(0) # xo, we compose h with the homotopy Ts(tv) = tv+ (1 —t)s(vp)
To = Lpa+1 to take a new homotopy between h and h'(tv) = h(tv + (1 — t)(vg))-
Obviously ['] = [h] and '(0) = h(vyg) = zo. Next, we define a path w, for each v € S™
via the formula w,(t) = h(tv) = h(¢([v,t])). Since w,(0) = h(0) = z¢ and w,(1) =
h(v) € A, we have (w,(1),w,) € M;,. We define ~1([h])(v) = (h(é([v,1]), h(¢([v,-])),
for all v € S™. This map is well defined and a continuous pointed map. Finally, we
check that

(0007")([h ]) 0wy (1), ho @) =[hopoo™] =[h]
(00 0)([f]) = 07'[f] = [(wiy (1), wiy)] = [(ag), wey)] = [f]
and conclude that 6 is a bijection. ]

Proposition 2.4.4. 7,(X, A, x) is a group for n > 2 and an abelian group for
n > 3.
G

Proof. In Proposition [2.4.3) a bijection [(D",S™" ! %), (X, A, *)] +— [S"', M;,]
was Constructed Since m,(X, A, x) = [(D", 5" 1 %),(X, A, *)] and Wn_l(MZA) =
[S"=1 M;,], the group structure which 7, ;(M;,) possesses when n > 2 is trans-
ferred through the bijection 6 to m,(X, A, ), same way it did via b in In
addition, we have proved (Prop. that m,_1(M,;,) is an abelian group when
n > 3 and this property is transferred through 0 to 7, (X, A, %) for the same n. [

Proposition 2.4.5. Adjusting appropriately the ideas in Proposition we can
define an action

B m(A xg) —Aut(m, (X, A, x0))
[v] — By s (X, A, ) —ma (XA, 1)
1 — [ref]

for n > 2 in the relative case.
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Proposition 2.4.6 (Compression criterion). A map f : (D", S" 1, %) — (X, A, %)
represents zero in m,(X, A, *) if and only if it is homotopic relS™' to a map with
image contained in A.

Proof. = Let [f] € m,(X, A, x0) with [f] = 0. Then 3 homotopy F : D" x [ — X
such that F(z,0) = f, F(z,1) = ¢y, F(S"1,t) C Afort € I. We form a new
homotopy H : D" x I — X via the formula H(s,t) = F(p:(s)) where each p; is a
radial projection of D™ x {0} to {D™ x t} U {S"! x [0,t]}, for example the radial
projection from the point (0,—1) € D™ x R. For an s € D" = S™! we have
H(s,t) = F(s,0), Vt € I. If sis any point in D", H(s,0) = F(s,0) = f(s) and
H(s,1) = F(pi(s)). But pi(s) belongs either to D" x 1 or to S"~! x [0,1] and this
translates to either H(s,1) = ¢, or H(s,1) C A. Thus, [f] ~pegn—1 [F o pi]| relS™!
with F' o p;(D") C A.

< Let [f] ~ [g] relS™ ! where the image of g is in A. We have [g] ~ 0in 7,(X, 4, x0),
because D" deformation retracts to a point via a homotopy d; from idp» to ¢, and
using d; we can construct the homotopy g; = g o d; with ¢, (0D™) C ¢g(D") C A,
Vitel. So, [f] ~0in m,(X, A, xo). O
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2.5 Exact sequences of homotopy groups

Exact sequences are an extremely useful tool in algebraic topology. In homotopy
theory, however, they do not arise very often. A long exact sequence of homotopy
groups can be meticulously constructed using the Puppe sequence and the functor
[SY,-]. The Puppe sequence, in its turn, can be constructed in two ways: the first
employs mapping fibres, leading to the exact Puppe sequence, while the second uses
quotient spaces and leads to the coexact Puppe sequence.

Here, [14] serves as our main reference for the construction of the exact Puppe
sequence and we refer the reader to |3| for the coexact Puppe sequence.

We recall the definition of the mapping fibre My given in and we observe
that there exist an inclusion j : QY — M; and a projection ¢ : My — X, which
are formed as j(w) = (zo,w) and ¢(z,w) = x for all z € X, w € QY. Composing
these maps, along with f and Qf, we produce the sequence:

ox Loy Loa S x Ly (2.1)

As we can see in[A.1.8] 2 is a covariant functor from 7* to 7*. If we apply this
functor on the previous sequence, we get

02x 2L o2y Yoy, 2 ax oy (2.2)

Sequence overlaps with sequence 2.1l We can splice these two together to
form a longer sequence of spaces and, by iterating this construction, we conclude in
the long sequence

Lo orx Bhary Yon, M ax Yoy v L x Ly (23)
This is the Puppe sequence related to the map f.

Remark. For f =i4: A — X in particular, one gets the Puppe sequence:
2 . . . . .
L APy Yoon, Phox PAqgy Ty, X Ay (24)

Here we state the two theorems that lead eventually to the long exact sequence of
homotopy groups. Theorem [2.5.1] specifically, calls for significant preliminary work,

so its proof is postponed until later in this section.

Theorem 2.5.1 (Puppe sequence). If X, Y € * and f : X — Y is a pointed
map, then the Puppe sequence related to f is exact in hT*.

Theorem 2.5.2 (Homotopy sequence of a pair). If (X, A, ) € T2*, then there is

an exact sequence of homotopy groups

anlq*

e (A T 0 T (G A) T o (A) — (X)) —
. ..7T1(A) — 7T1(X) — 7'('1(X, A) — 7T0(A> — 7T0<X)
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Proof. According to Theorem the Puppe sequence is exact in h.7*. From
the definition of exactness in this is equivalent to saying that, if Z € 7,
applying the functor [Z,:] on the sequence in results to an exact sequence in
Fets*. So, if we apply [S?, -], we get the long exact sequence of pointed sets:
Qg Q"5 L a0 Qrlg,
T (A) — T (X)) —7 (S, QM ] — m(A) — (X)) — ..
. — 7T1(A) — 7T1<X) — [SO,MZ'A] — 7T0(A) — 7T0(X)

The long exact sequence of homotopy groups is formed finally by making use of the
bijection constructed in Proposition [2.4.3]and the fact that every map between groups
in this sequence is a group homomorphism (in a more pedantic approach the functor
[S1, -] is initially applied on to ensure group morphisms, then [S°, -] to produce
the tail of the sequence and finally these sequences are joined appropriately). O

Lemma 2.5.3. Let X, Y € %, f: X — Y be a pointed map and r : My — Y
be a map defined by r(zr,w) = w(1). f is nullhomotopic rel{zy} if and only if there
exists a pointed map ¢ which makes the diagram in[2.6] commute.

Proof. = Since f is nullhomotopic rel{x}, there is homotopy F' : X x I — Y
with F(z,0) = f(xo) = yo, F(x,1) = f(z) V2 € X and F(zg,:) = wo. We de-
fine ¢ : X — My by ¢(z) = (v, F(x,-)). ¢ is a pointed map, because ¢(zg) =
(o, F(xg,-)) = (%0, wp). Furthermore, r(¢(x)) = r(z, F(z,-)) = F(z,1) = f(x) for
all z € X, which proves that the diagram commutes.

< Conversely, assume that such a ¢ exists. Then
o(x) = (a(z),w,) € My, with a: X — X and w, a

My path in Y. From the commutativity of the diagram

P ., we get that 7(¢(x)) = w,(1) = f(z) forallz € X. A
/ \ homotopy F : X x I — Y with F(z,t) = w,(t) can
X ! s Y be defined. Since ¢ is a pointed map, we calculate
d(zo) = (a(wo),ws,) = (To,wp), which means that

Figure 2.6 Wy, 18 the constant path in Y, F(xg,t) = wo(t) =

yo for all ¢ € I and, subsequently, the homotopy
preserves the basepoint. Also F(z,0) = w,(0) = yo and F(z,1) = w,(1) = f(x), for
all z € X, which concludes that wg ~ f rel{zg}. O

Lemma 2.5.4. If X, Y € % and f : X — Y is a pointed map, the sequence
ML x Ly
is exact in hT*.

Proof. We will work in the category h.7*. If Z € h.7*, we need to prove that the
sequence [Z, M;] - [Z, X] AN [Z,Y] is exact in .Lets*.

img, C kerf,:

Let h € [Z, M¢]. We want to show that ¢.([h]) belongs to kerf, or, in other words,
that f o q o h is nullhomotopic.
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Obviously, if we proved instead that fogq is null-

homotopic, it would suffice. From this is Mo,

equivalent to proving that there is a map ¢ o "

which makes the diagram in Fig[2.7] commute. / \

Define ¢ by ¢1(z,w) = ((z,w),w) € My, M; foq Y

Then ri(¢1(z,w)) = r((z,w),w) = w(l) =

f(q(z,w)) for all (z,w) € Mj. Figure 2.7

ker f, C img,:

Let [h] € [Z, X] and f o h be nullhomotopic via Mpop

a homotopy F with Fy = wy and F} = f o h. b2 ro

Then the diagram in Fig2.8 commutes for ¢, : /

Z — Mo, with ¢9(2) = (2, F(2,-)). Indeed, 7Z foh Y

ra(2(2)) = ra(2, F(2,0)) = F(z,1) = f(h(2))

for all z € Z. Figure 2.8

Thus, we conclude that img, = kerf, and our

sequence is exact in h.7*. m

Corollary. If X, Y € % and f : X — Y is a pointed map, the sequence
ML M, - M- x Ly

is exact in hT*.

Here we have M, = {((z,w),v) € M x XI| v(0) = zo, Y(1) = q(z,w) = x},

7: M, — M; with ((z, 9)) = (5.0, 2y = {({(x D2).€) € M, x Al] €(0)

<x07w0) £(1) = (z,w)}, q: Mg — My with CI((( ,7),€)-

Lemma’s [2.5.4] corollary along with the next proposition will be used to prove
that, if X, Y € 7% and f: X — Y is a pointed map, the sequence

QX — QY—>Mf—>X—>Y

is exact in h.T*.

Proposition 2.5.5. If X, Y € 9" and f : X — Y is a pointed map, then the
following diagram is commutative in hT*.

ox Yoo 2 om s x-—t oy

M, —L M, —L My — !

q

~

“«—
=
“«—
=
“«—
=

S
>~<

Figure 2.9
Proof. Let us first define the undefined maps in the diagram. We have

ry 1 QY — M, with ro(w) = ((zo,w),0)
ry : QX — Mg with r1(y) = (((zo, wo),7), &)
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Counting from left to right, the third and fourth squares obviously commute. In the
second square we have 1(j(w)) = 1(xg,w) = (xg,w) and q(r2(w)) = §((zo,w),Y0) =
(20, w) for all w € QY. So it commutes in .7* and, consequently, in h.7* too.

Now, we examine the first square of the diagram. Going one way, we get r1(Q2f (7)) =
r1(£01) = ((z0, £ ), 70), while going the other way q(r»(v)) = Z(((z0, wo), V), €0) =
((xo,wp),7y). If we find a pointed homotopy between these functions, then the square
commutes. First, we define for each ¢ € I and each v € X! a path in X with

B v(s), 0<s<t
ﬁ”’t(‘s)_{y(t), t<s<l

where s € I. These paths coincide with v up until s reaches ¢. After that, meaning
from s =t till s = 1, they remain constant on their end point ().

Let F: X! x I — M, with F(y,t) = ((o, f © By4), By1-1). F is continuous and
giVGS F(’)/,O) = ((‘Tovf © B'Y,O>>B%1> = ((l’o,f © 70)77> = ((xo,(UO),’)/) = §<r2(7>)7

F(7,1) = (o, f © By1), By0) = ((xo, f 07),70) = 11(2f (7)) and F(y0,t) = ((zo, f
Broit)s Broi—t) = ((zo,wo), Y0). Therefore the first square also commutes in h.7*. [

Corollary. If X, Y € " and f : X — Y is a pointed map, then the sequence
ox oy Lv S x Ly

s exact in hT*.

Proof. The diagram in Figure [2.9] commutes, the vertical maps are equivalences in
h* (see Definition [A.1.13) and the bottom row is exact. Apply the functor [Z, ] to
this diagram and use the fact that (). and (r3), are isomorphisms, which is derived
by the aforementioned equivalences. The top row is exact in .Sets*, consequently
the top row in the original diagram is exact in h.7*. O]

Lemma 2.5.6. If X Iy v 2 W ois an ezact sequence in h.T*, then so is the
looped sequence QX v 29w

$2,.X] —— [B2,Y] —— [SZ, W]

| | |

2,Q0X] —— [Z,QY] —— [Z,QW]

Figure 2.10

Proof. From the adjointness of (3, Q) we get the commutative diagram in Fig. [2.10]
where the vertical maps are pointed bijections. The top row is exact in .#ets*, by
hypothesis, and so it follows that the bottom row is exact as well for all Z € .. O

Proof of Theorem[2.5.1 The result is given if we splice together the exact sequence of
Lemma’s Corollary with the exact sequence of Lemma [2.5.6] and akenowledge
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that Q"X = Q(Q"1X). O

Therefore, it has been proved that for every pair (X, A,x) € 7%, there is an
exact sequence of homotopy groups

e T (A) A () T o (X A) T (A) s (X)) —

. — 7T1(A) — 7T1(X) — Wl(X,A) — 7T0(A> — 7T0<X)
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Chapter 3

Homology

3.1 Axiomatic definition of homology

The axiomatic foundation of homology was given by Eilenberg and Steenrod in
[17]. In their book, which was published in 1952, they stated the seven axioms for
a homology theory. Here, we have grouped some of the initial axioms together or
replaced them with notions equivalent to them, and we have added the additivity
axiom, which was firstly introduced by Milnor, in 1962 ([18]). Our presentation fol-
lows at points the presentations of Spanier, in |3|, and Hatcher, in [10].

Homology theory is defined on a suitable category of pairs and maps called ad-
missible category. The definition of this category given by Eilenberg and Steenrod
can be found in [17]. In our study, it suffices to mention that 72 is an admissible
category of pairs and maps.

Let &/ be an admissible category and (X, A), (Y, B) € &2. A homology the-
ory (h, ) consists of a functor h and a natural transformation 0. Specifically, h is a
covariant functor from the category .72 to the category ¥, of graded abelian groups
and homomorphisms of degree 0 (Definition [A.2.7). That is h(X, A) = {h,(X, A)}.
On the other hand, the natural transformation 0, which is called the boundary
operator, is a map of degree —1 from the functor h on (X, A) to the functor h on
(A, @). That is (X, A) : {0.(X, A) : by (X, A) — h,—1(A)}. Naturality of 0 means
that diagram in Fig[3.1]is commutative for every f : (X, A) — (Y, B).
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ha(X, A) =2 h, 1 (A)

lhn(f) lhn(ﬁA)

hn(y7 B) L hn—l(B)

Figure 3.1

For the pair (h, 0) to be a homology theory, the following axioms must be satisfied:

1.

Homotopy Axiom If fy, f1 : (X, A) — (Y, B) are homotopic, then h(fy) =
h(f1): h(X,A) — h(Y, B).

For simplicity, we will employ f.,, instead of h, (f) when referring to the induced
maps.

. Exactness Axiom For any pair (X, A) € &/? with inclusion maps iy : A —

X and jx : X — (X, A) there is an exact sequence

n X,A)

() ") B (00) ") (X, ) O g )

On X,A
oA

This sequence is called the homology sequence of (X, A).

. Excision Axiom For any pair (X, A) € &2, if U is an open subset of X such

that U C int(A), then the excision map j : (X —U, A—U) — (X, A) induces
an isomorphism

h(j) : h(X — U, A —U) — h(X, A).

Additivity Axiom If X is the disjoint union of open subsets X, with inclusion
maps i, : X, — X, {X,} C &, then the homomorphisms

ho(ia) = ias : hn(Xa) — hn(X)

must provide an injective representation of h,(X) as a direct sum. In other
words, the direct sum map @gig. : Bohn(Xa) — hyp(X) is an isomorphism.

Dimension Axiom If P € .o/ consists of a single point, then h,(P) = 0 for
all n # 0.

Our target is to prove that a homology theory like the one axiomatically described
above really exists. For that reason we are going to introduce and study singular
homology. It will be proved that singular homology is indeed such a homology theory.
Moreover, as it was shown by Milnor in [1§|, if we fix ho(P) = G for some abelian
group G, the singular homology with coefficient group G (see below) becomes the
only homology theory that satisfies the axioms of homology.
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3.2 Singular homology

A singular n-simplex in a space X is a continuous map o : A" — X, where
A" is the standard n-simplex defined in Section [1.3] We denote with C,,(X) the
free abelian group with basis the set of singular n-simplices in X. The elements
of C,,(X), called singular n-chains, are finite formal sums ), n;0; for coefficients
niEZ,ai:A"—>X.

Let now {eg, ey, ..., e,} be the standard unit vectors in R""'. We define the map
or :{0,1,...,n — 1} — {0,1,...,n} as the inclusion that omits the value i and
dp : A""' — A" by the formula d7(Y17) tie;) = Y1, tiese, which is the i-th face
of A™. Using the maps d}, a boundary map 0, : C,,(X) — C,_1(X) can be defined
for each n via 9,(0) = Y ,(—1)'od!. Maps 9, lead to the following sequence:

On—1

s C(X) 25 O (X)) 2 (X)) — 0 (3.1)

A sequence like this is called a chain complex whenever 9% = 0.

Lemma 3.2.1. The composition C,(X) Iy O 1(X) Oy Ch—2(X) is zero.

Proof. 1t is easy to check that 5?5;?_1 = 070;"” ! for j < i. Hence

On-10n(0) = Y _(~1) (Z(—l)"odﬁ) it =

7 %

=Y (~D)(=odtd! ™ + > (=1 (=1 odd " =

1<t j>i
= (~1)'(=oddi = + > (-1 Y lodi )~ =0
1<t 7>t

since the second sum becomes the negative of the first after switching ¢ and j in
it. O

Since 9,10, = 0, [3.I|becomes a chain complex, Imd, 1 C kerd, for all n, and the
kero,

Iman-H '
To complete the terminology, let us say that elements of kerd are called cycles, while

elements in Im0 are called boundaries.

n-th singular homology of X can be defined via the formula H,(X) :=

If we use the augmented sequence below instead of 3.1, we compute the reduced
homology groups H,(X).

(9’”71

L Co(X) 2 O (X)) 2 (X)) = Z— 0 (3.2)

Here € : Co(X) — Z takes a chain }7;n;o; to the integer 3 ;n;. As one may
immediately notice, H,(X) = H,(X) when n > 1 and Hy(X) = Hy(X) & Z.
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Deviating slightly from our course, we mention here that if we had built singular
n-chains with coefficients n, € G, G € ¥, instead of n; € Z, we would have created
the abelian group C'(X;G). This would have led, in a similar way as above, to the
definition of the so called singular homology with coefficients in G, denoted
with H,(X;G). Having clarified this, the remainder of the section is dedicated to
proving the existence and uniqueness of a homology theory which satisfies the axioms
and has Hy(P) = Z, or, to state it differently, has coefficient group Z.

The homology that qualifies for the task of fulfilling all the axioms of homology
is the relative singular homology. Let us define it for (X, A) € &%

Let C,(X, A) be the quotient group C,(X)/C,,(A). This means that chains with
image in A are trivial in C,(X, A). These chains are called relative cycles. Since
the boundary map 0 : C,,(X) — C,_1(X) takes C,,(A) to C,,_1(A), it induces a well
defined quotient boundary map 0 : C,(X, A) — C,_1(X, A). Elements in Im0 are
called relative boundaries.

We form a sequence

o Cu(XLA) 2 O (XL A) —

exactly like the one in the absolute case, for which the relation 90> = 0,0, = 0
holds. This means that the sequence is a chain complex for the relative case with
Im0, 1 C kerd,, which eventually allows us to define the relative homology groups

kero
H,(X A = -
( ) ]m8n+1
kero,,.

Remark. Singular homology groups can be derived from relative singular homology
groups, if we employ the pair (X, () € &2 in place of just X € <.

. Elements of H,(X, A) are represented by relative cycles a €

For a map f : X — Y, an induced homomorphism f; : C,,(X) — C,(Y)
is defined by composing each singular n-simplex ¢ : A" — X with f to get a
singular n-simplex fy(o) = fo : A" — Y. fy is then extended linearly. A simple
calculation shows that each f; satisfies 0, f; = f;0 for all n, therefore the diagram in
Figl3.2] commutes. This construction can be modified appropriately to incorporate

o Cu(X) =2 G (X) P G (X)) ——

bk

s OW(Y) =2 O (V) -2 O (V) —— .

Figure 3.2

the case of a map f : (X, A) — (Y, B), leading to an f; which ultimately can pass to
quotients. More specifically, it gives f; : C,, (X, A) — C, (Y, B) with fi([o]) = [fo],
which is a well defined map.

The fact that maps f; satisfy 0, f; = f40 for all n is also expressed by saying that
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maps f; define a chain map from the singular chain complex of (X, A) to that of
(Y, B). The same relation also implies that f; take cycles to cycles and boundaries to
boundaries. f finally leads to an induced homomorphism H,,(f) = f. : H,(X, A) —
H, (Y, B). This result is summarised in the next Proposition:

Proposition 3.2.2. A chain map between chain complexes induces homomorphisms
between the relative homology groups of the two complezes.

It can be verified using the associativity of compositions A" - X -5V BNy
that H,(fg) = (fg). = H,(f)Hn(g9) = f.g. for (X, A) -4 (Y, B) NEIN (Z,C). It also
holds that H,(1) = 1, = 1, where 1 denotes the identity map of a space or a group.
Therefore, H, is a covariant functor from o7 to ¥,.

Proposition 3.2.3. Let X = {xz¢}. Then H,(X) =0 forn # 0 and Hy(X) = Z or,
in other words, singular homology satisfies the Dimension Axiom and has 7. as its
group of coefficients.

Proof. There is a unique singular n-simplex o, for each n. 9o, =Y " (—1)'0,d! =
S o(=1)o,_1, hence 9 is either 0 for n odd or an isomorphism for n even. We have

the chain complex
=T N7 57 57— 0

The conclusion is readily drawn from this chain complex. O]
Proposition 3.2.4. Let (X, A), (Y,B) € &% and f, g € Hom((X,A),(Y,B)). If f

and g are homotopic, then f. = g. : Hy(X, A) — H,(Y, B). Thus, singular relative
homology satisfies the Homotopy Aziom.

Proof. In the prism A" x I we denote with [vg, vy, ...,v,] the n-simplex A" x {0}
and with [wg, w1, ..., w,] the n-simplex A™ x {1}. Then A™ x I consists of all the
(n + 1)-simplices of the form [vg, ..., v, w;, ..., w,], where i € {0,1,...,n}. Given a

homotopy F': X x I — Y from f to g and a singular simplex o : A" — X, the
composition G = Fo (o x1): A" x I — X x I — Y can be formed. Through
this we define the prism operators P : C,,(X) — Cy41(Y) with:

P(0) =Y (=1)'(F (0 % 1))|fun,..vsswmin]-
Obviously, P take C,,(A) to C,11(B), hence they induce relative prism operators
o denoting the equivalence class in C,,(X)/C,(A) from here on.
If we compute dP(c) and P9(0) and then take their sum, we get dP(c) + Pd(o) =
go — fo = gy(o) — fi(o). Now, if a € C,(X,A) is a relative cycle, then we have
gi(a) — fy(a) = OP(a) + PO(a) = OP(a) + P(0) = OP(a) € Im0,+1, hence g.(0) —
f«(0) =0in H,(X, A). If the equation P+ PO = g; — f; holds for all o € C,,(X, A),
we say that fy and gy are chain homotopic on relative chain groups. In this case they
induce equal homomorphisms f, and g, on relative homology groups, as it has been
shown. ]
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Remark. If two maps are chain homotopic in relative homotopy groups, we get equal-
ity of the induced maps. Chain homotopy is not as strict a requirement as regular
homotopy. In a way, it is easier to find maps f and g with f, = g, in homology,
since no basepoint is required to be fixed and fx and g4 are allowed to differ by
boundaries.

Proposition 3.2.5. There is a long exact sequence of homology groups:

L (A) 2 HL(X) 2 H (X, A) 2 H(A) 2

which proves that singular relative homology satisfies the Exactness Axiom.

Proof. We present here the proof in a descriptive manner and refer to [10] for its
detailed and complete version.

In the long sequence of homology groups i4, and jx, are induced by the inclusions
ia: (A0) — (X,0) and jx : (X,0) — (X, A), respectively. Therefore, the only
map left to define is the boundary map 0 : H,(X,A) — H,_1(A). In order to
do so we employ the following diagram, which is commutative and has short exact
sequences as columns and chain complexes as rows. 0 is built using the relevant

Figure 3.3

part of this diagram as a ’stair’ from C,,(X, A) to C,,_1(A) (up-right-up). A relative
cycle ¢ € C,(X, A) moves through the epimorphism j up to an element b € C,(X)
with j(b) = ¢, then goes to b € C,_1(X) and from there up again to an element
a € C,_1(A) such that i(a) = 0b.

The commutativity of the diagram, the exactness of the columns and the properties
of the rows ensure that this map is well defined. Now, one has just to check if the
produced sequence of homology groups is exact, which is routine and analytically
addressed in [10]. O

Remark. Generalising the concept of a pair (X, A) and its exact sequence, we form
triples of spaces (X, A, B), B C A C X, and the sequence:
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...— H,(A,B) — H,(X,B) — H,(X,A) — H, 1(A,B) — ...,

which is proved to be exact. For the proof a diagram similar to the one in Figure 3.3
is used, where the columns are the short exact sequences

0— Ch(A,B) — Cy(X,B) — C,(X,A) — 0.

Remark. Obviously, the same proof works for the construction of a long exact se-
quence of reduced homology groups of a pair (X, A), A # 0,

. — Hy(A) — Hy(X) — Ho(X, A) — Hy 1 (A) — ...,
if we add the short exact sequence

0—>Zi>Z—>O—>0

in dimension —1. H, (X, A) = H,(X, A) for all n, when A # ().

Example 3.2.6. H,(X,z0) = H,(X)
The long exact sequence for the reduced homology is

o — Hy(x) — Ho(X) — Hy (X, x9) — Hyoq(20) — ...

But H,(zo) = 0 for all n, thus H, (X, z¢) = H,(X, z0) = H,(X).

Theorem 3.2.7. Let (X, A) € &% and U C X open such that U C int(A). The
excision map j : (X —U, A—U) — (X, A) induces isomorphisms j. : H,(X —U, A—
U) — H,(X,A) for all n. In other words, singular relative homology satisfies the
Excision Aziom.

Equivalently, for subspaces A, B C X, whose interiors cover X, the inclusion i :
(B,AU B) — (X, A) induces isomorphisms i, : H,(B,AN B) — H,(X, A) for all
n.

Proof. The complete proof is rather lengthy and technical. We refer the reader to
|[10] for it. Here we confine ourselves to discussing its general idea and some of its
basic steps.

We start by considering a collection % = {U;} of subspaces of X, whose interiors
cover X, and denoting with C# (X) the subgroup of C,,(X) generated by singular
maps o with image in some U; € % . Observe that 9(C# (X)) C C% ,(X), so H” (X)
can be formed, as usual. For this cover % and o € C,,(X), {c7'(U;)} is a cover of
open sets of the compact metric space A" C R". We name m(o) a fixed Lebesgue
number for the cover {o~!(U;)} (see Proposition [1.1.17). Based on it we will try to
'break down’ the domain A" and subsequently each map o to components fitting
inside some U,.

Having said that, the main idea behind the proof is to construct a map p : C,(X) —
C”(X) which decomposes each generator o to a sum of such ’small’ component
maps 0; € C%(X) and makes ip and pi chain homotopic to the identity. Then i, :
H?”(X) — H,(X) will become an isomorphism. Applying this result for the cover

n
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% = {A, B} and the inclusion i between quotients C# (X)/C,(A) — C,(X)/C,(A)
gives H? (X, A) = H, (X, A), which, combined with the isomorphism C,,(B)/C, (AN
B) =2 C?(X)/C,(A), will ultimately lead to the desired isomorphism H, (B, ANB) =
H, (X, A).

In order to achieve what has been just described, we need to decompose every o’s
domain A" into simplices with diameters smaller than m(c). Iterated barycentric
subdivision of A™ is employed to this end (see(1.3.5} [L.3.6/and [L.3.9). This procedure is
extended to maps and produces an operator S : C,,(X) — C,,(X), which subdivides
generators o. S leads to a new operator D : C,(X) — C,11(X), for which 0D +
DO =1 —ip holds. Also pi = 1, since m(c) =0 if 0 € C¥(X). O

Proposition 3.2.8. Let X € . and {X,} be its path components. Then the in-
clusions i, : Xo — X induce an isomorphism @yios : BaHn(Xo) — Hy(X). In
other words, singular homology satisfies the Additivity Axiom.

Proof. A singular simplex has always a path connected image. Thus C,(X) can be
written as the direct sum of its subgroups C,,(X,). This decomposition remains un-
changed even after applying the boundary maps 0, so C,(X,) is taken to C,,_1(X,).
kerd, and Imad, 1 split similarly into direct sums. Therefore, the homology groups
also split, giving finally the isomorphism H,(X) = &, H,(X,). O

We have proved that singular homology H,, together with its boundary map,
constitute a homology theory, indeed. Next, some useful Propositions and examples
will be mentioned, right before we prove the uniqueness of H,.

Proposition 3.2.9. A pair (X, A) € T2 is called a good pair if A is a nonempty
closed subspace of X and a deformation retraction of some neighbourhood U in X.
Let (X, A) be a good pair and q : (X, A) — (X/A, AJA) the quotient map. Then q
induces isomorphisms q. : H,(X, A) — H,(X/A, AJA) = H,(X/A) for all n.

Proof. In the commutative diagram in Figure 114 are isomorphisms, because
H,(U,A) =0 and H,(U/A,AJ/A) = 0 for all n in the exact sequences of the triple
(X,U, A) and (X/A,U/A, AJA), respectively. iy, are isomorphisms too, a conclusion
reached through excision. Finally, the right-hand vertical map ¢, is an isomorphism,

Hy(X,A) — 2 H (X, U) «——— H,(X — A, U — A)

12

l : lq* lq*

H, (X/A, AJA) —" H,(X/A,U/A) +—— H,(X/A~ A/A,UJA - AJA)

Figure 3.4
because ¢ restricts to a homeomorphism on the complement of A. The commutativity
of the diagram leads to the desired result. O]

Example 3.2.10.

Hi(D", 0D") = Z fori=n
! ’ ~ 1 0 otherwise
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From the long exact sequence of the pair (D", dD"), where D" = S"! and D"
is contractible, we get H;(D" 0D™) = H; ,(S™1'). Proposition also gives
H;(D™,D") = H;(D"/oD") = H;(S™). Thus H;(S") = H;_1(S™). Induction
and the homology groups of S* calculated in Example produce the result.

Example 3.2.11. The identity map id, : A" — A" is a relative cycle generating
H,(A™ 0A™) = H, (D", 0D") = Z (see Example [3.2.10)).

It is obvious that [id,] is a relative cycle, so we need only to prove that it generates
H,(A™ 0A™). We will use induction on n. For n = 0 the result is trivial. Let it also
hold till n — 1. We denote the union of all but one of the (n — 1)-dimensional faces of
A™ with K. More specifically, we choose to work with the inclusion djj : A"t — A"
and excise the face [d}] in every case. The following maps are isomorphisms

Ho(A", 0A") 25 H, (0A", K) & f, (A1, 0™,

0 is the boundary map in the long exact sequence of the triple (K, JA™ A™)
— H,(0A™, K) — H,(A", K) — H, (A", 0A") -2 H,_1(0A™, K) —»

and an isomorphism, because A™ deformation retracts to K. (df). is an isomorphism
as well, since A""1/OA"1 = JA"/K and these pairs are good (Proposition [3.2.9).
According to the definition of the boundary map we have 9lid,] = >_;(—1)"[d}].
However, [d7] = 0 for j # 0 in the relative group H,(0A", K), so we get J[id,| =
(—1)"[d3]. In conclusion, the composite isomorphism 9~ (dy). : H,(A™ 0A") —
H, 1 (A" 1 A" 1) sends the generator [id,_1] to [id,)].

Proposition 3.2.12. If X s a CW-complex, the inclusion i : X™ — X induces an
isomorphism i, : H;(X") — H;(X) for all i < n.

Proof. Since (X", X™) is a good pair and X"t/ X" = \/_ S"* we deduce that
Hy( X" X™) =0 fori #n+1and H, (X" X") = Hypi(V, SPH). Generally,
for a wedge sum \/_, X, at basepoints z, € X, such that the pairs (X,,z,) are
googa we get Hyy1 ([, Xo/Ilo2a) & Hopa (Lo X, o a) = @aHpi1(Xa, za) =
@DaHn11(X,) from the excision axiom, the additivity axiom and Example .
Knowing that H, ,(S"™) = Z, we conclude that H, (X" X") = ®,Z.

Let us consider the long exact sequence of the pair (X" X™)

oo Hyp (X" X)) — Hy(X™) — Hy (X" — Hy(X™H X™) — .. (3.3)

Ifi #n+1, 4 # n, then Hy(X"") @ H;(X"), and, if we take the long exact
sequences of the pairs (X% X"**=1) the one after the other, for k > 1, we conclude
that H;(X™) = H;(X"**), when i < n. This finishes the case of a finite dimensional
CW-complex.

Let X have infinite dimension. A singular chain ), nxop € C;(X) has compact
image in the CW-complex X (Proposition [I.1.18)), hence meets only finitely many
cells of X. Take m € Z such that Y, nyor(A") C X™. For a i-cycle ¢ and with
the finite dimensional case already proved, we know that there exists an n such that
c € H;(X") for all i < n. Therefore, i, : H;(X") — H;(X) is surjective. For this n,
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1. : Hj(X™) — H;(X) is also injective. If we take representatives ¢, co € H;(X")
such that i,[c;] = i.[co], then these are homologous, so they differ by a boundary of
a chain b in C;11(X), ¢ < n. Since b has compact image in the CW-complex X, we
get an m, n < m, such that b(A™) C X™ and this leads to [c1] = [co] in H;(X™).
But then H;(X™) = H;(X") for all i < n from the finite dimensional case, which
completes the proof. O

We are going to complete our presentation of singular homology by calling up the
following Theorem, which was stated and proved by Milnor in 1962, regarding the

uniqueness of H,,:

Theorem 3.2.13. Let (h,0) be an additive homology theory on the category W
(Ezample 6) with coefficient group G. Then for each (X,A) € W there is
a natural isomorphism between h,(X,A) and the nth singular homology group of
(X, A) with coefficients in G, H,((X, A); G).

Proof. Tt can be found in [18]. O

Therefore, if one chooses a particular coefficient group, there is exactly one homol-
ogy theory which conforms with all the axioms. Furthemore, this homology theory is
isomorphic to the singular homology theory. In other words, any homology theory in
compliance with the aforementioned requirements coincides with the singular relative
homology theory.
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3.3 Computations of homological groups

Singular homology proves extremely handy for the theoretical study of homology
theory. However, it does not offer similar advantages when it comes to computing
homology groups of spaces. There are other, more suitable homology theories that can
do the trick. In this section, we will briefly introduce two such homologies: simplicial
and cellular. We will restrict ourselves to very limited information, since we would
rather make some calculations than be thorough in presenting these theories.

3.3.1 Simplicial homology

Definition 3.3.1. Let X € .7 and A" be the standard n-simplex. A A-complex

stucture is a collection of maps o, : A™® — X such that:

1. the restriction O'a|(An(a))o is injective and each point of X is in the image of
exactly one such restriction oo |(an())o;

2. each restriction of o, to a face in OA™ = A" ! of A" is one of the maps
o5 : A" — X

3. aset A C X is open if and only if 6 '(A) is open in A" for each o,.

n

Let A,(X) be the free abelian group with basis the open n-simplices e :=
o((AM@)°) of X. Elements of A,(X) are written as finite sums Y, n,e? with
ne € Z. Equivalently, we can write ) n,0, where o, is the characteristic map
of . A boundary map 0 : A,(X) — A,,_1(X) is defined by the formula 0(c,) =
>oi(=1)o,d?, just like it did in singular homology. The proof of suffices to

show that 9% = 0, hence the groups A, (X) form a chain complex.

an, -1

o ARX) 2 AL (X)L ANX) — 0 (3.4)

The n-th simplicial homology of X can be defined via the formula H(X) :=
kero,

I manJrl

using the chain complex in (3.4

Theorem 3.3.2. The homomorphisms H>(X, A) — H,(X,A) are isomorphisms
for all A-complex pairs (X, A) (X is a A-complex and A C X is also a A-complex).

Proof. See Theorem 2.27 in [10]. O

Example 3.3.3.
Z, forn=0,1
0, forn>2
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We equip S! with a A-complex and see it as a space with vertex sy and an edge e!.
Ao(SY) 27, A(SY) 2 7Z and Ap(S') =0 for all £ > 1. Now for the boundary map
01 : A1(ST) — Ag(Sh) we have 9)(e) = sg—so = 0, thus 9; = 0. These observations
lead us to kerd; = 7, kerdy = 7., Imd, = 0, Imod; = 0, which eventually produce
the groups H2(S1) = H,(S1).

3.3.2 Cellular homology

Proposition 3.3.4. Let X be a CW-complex. The sequence

e Ho (X XY (X, XY S | (X0 XYY s L (3.5)
15 a chain complex called the cellular chain complex of X. The homology groups
of this chain map are called the cellular homology groups of X and we denote the
n-th cellular homology group with HEW (X).

Proof. We recall Proposition [3.2.12] and intersperse the sequence (3.5 with portions
of the long exact sequences of the form to formulate the following diagram. d,, .4

/ 0
0 Ho (X" = H,(X)
H,(X")

On .
4 In—1
anl (Xn—l)
0 /
Figure 3.5

and d,, are defined to be j, o 0,41 and j,_1 o J,, respectively. The composition
dp 0 dpi1 = Jp © Oyt © Jn_1 © 0, = 0, because 0,41 © j,—1 = 0 being the composition
of successive maps in the chain complex

0= Hy(X™) 2% Ho(X™, X" ) 2% H, (X" — Hy 1 (X™) 2 H, 1(X) =0
0
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Theorem 3.3.5. HSV (X) = H,(X).

Proof. H,(X) = H,(X")/Imd,4: as can be extracted from Figl3.5 Since j, is
injective Imad, 1 is mapped isomorphically onto Im(j,0,+1) = Imd,+1 and H,(X™)
isomorphically onto Imj, = kerd,. The injectivity of j,_ 1 gives kerd, = kerd,.
Thus j, induces the isomorphism H,(X™)/Im0, 1 = kerd, /Imd, . O

If we want to calculate some homology groups, we need a more concrete way
to estimate maps d, = j,0,+1.- The appropriate formula of d, uses the notion of
the degree of a map f : S" — S™, n > 0, which will be introduced in a bit,
and is built via the commutative diagram in Fig. [3.6] Neither the details of the
formula’s construction nor the properties and the theory relevant to the degree map
are presented here. The reader can find them in [10].

Definition 3.3.6. Let f : S® — S™ n > 0. The induced map f. : H,(S") —
H,,(S™) is a homomorphism from an infinite cyclic group to itself. Therefore it can be
expresses as f.(«) = da, where « is the generator of H,(S™) and d € Z. d depends
only on f, it is called the degree of f and has the notation d = deg f.

Remark. Although deg f has several properties, we are going to need only two of
them, namely:

1. deg id =1 and deg f = +1, if f is a homotopy equivalence.
2. If f is the antipodal map, i.e. the map that takes each point of S™ to its
antipodal point, deg f = (—1)""1.

Definition 3.3.7. Let f : S™ — S™, n > 0, be a map such that there exists a point
y € S" whose preimage f~'(y) = {z1, ..., ¥, } consists of finitely many points. If we
take U,,, ..., U,, to be disjoint neighbourhoods of the points z;, with f(U,,) C V,
V, neighbourhood of y, then the map f, : H,(U,,, Uy, — {z;}) — H,(V,, V, —{y})
can be expressed as f.(«) = d;a, d; € Z. d; is called the local degree of f at z;

and is written as deg f

T

Remark. The local degree deg f|., is well defined, because exactness and excision
axioms provide the following isomorphisms for the contractible subspaces U,, and
S —{x; }:

H,(Uy;, Uy, —{2i}) = Hyoy (U, — {4})
(5" = {xi}, Us, —{z:})
(5", Us,) = Hy(S™)

1%

H,
H,

12

Similarly, H,(V,,V, —{y}) = H,(S"™).

Proposition 3.3.8. deg f = ) .deg f|,,, where the aforementioned notation is
adopted.

Proof. See Proposition 2.30 in [10]. O



54 CHAPTER 3. HOMOLOGY

The cellular boundary formula of d,, : H, (X", X" ') — H, (X" 1 X"?) is
dn(ep) = Y gdagely ", where dyg is the degree of the map f : Sp~! RN G
Sg_l. ¢4 1s the attaching map of the cell €2, while g is the quotient map that collapses
X" — e~ to a point.

During the proof of Proposition [3.2.12| we saw that H, (X", X" !) & @,Z, where
the index a counts the n-cells of X. For this reason it is enough to define the formula
of d,, on the basis elements el. Also, in spite of the fact that eg_l might be infinite,
the summation has a finite number of summands, because ¢, has a compact image

in the CW-complex X! (Proposition [1.1.18]).

) AaB* = QB*Q*d)a*

En—l(sg_l)

l‘ba* Dax apx

Hy (X, X)) =2y g (XY —— & (X X2

o)

jn—l

Hn_l(anlean) i Hn_l(anl/an{an2/Xn72)

Figure 3.6

Example 3.3.9.
Z, iftk=0, k=nodd
Hy(RP") =< Zo, ifkodd, 0<k<n

0, otherwise

In Example we saw that RP™ has a CW structure with a single k-cell for
each k& < n. The attaching map of the k-cell e¥ is the quotient projection ¢ :
Sk=1 s RP* ! that identifies antipodal points of S*~! and ’glues’ them to RP* 1.
Consider the composition f : St —2» RPF-1 -4 RPF1/RPF2 = k-1 and
a point y € S*1. The preimage f~!(y) consists of two points x1, x5, one in each
hemisphere of the domain S*~!. The restrictions f; and f> of f on neighbourhoods of
U,, and U,,, respectively, are homeomorphisms. To be more exact one is homotopic
to the identity, while the other is homotopic to the antipodal map. Now, di, = deg f =
deg f1 +deg fo = 1+ (—=1)¥1*1 Concequently, d; will be 0 or a multiplication by
2, depending on whether £ is odd or even. This result leads to the following cellular
chain complexes for RP":

H, 1 ([RP")"™ RP") — H,(RP",[RP"]" ) — .. — Hi([RP"]',[RP"]°) = 0
O—>ZL>ZL>...L>ZL>Z—>O, if n is even

0—72-572%... 572" 7—0, ifnisodd
which give the values of HW (RP") = Hy(RP") which were stated at the beginning.

Remark. With the notation [RP"]* we mean the k-skeleton of RP™.



Chapter 4

Theorems preceding Hurewicz’

Theorems that are often employed to prove the relative Hurewicz theorem are
presented in this Chapter. Although the way we chose to prove the Theorem does
not use them, we seized the opportunity to include them due to their significance in
algebraic topology in general.
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4.1 Elements of simplicial approximation

Definition 4.1.1. Let K be a simplicial complex and f : |K| — R". f is said
to be linear if for each simplex [vy, ..., v;] of K and for each x € [vg, ..., v;], we have
flz) = f(ZizO tiv;) = Zli:() t;f(v;). This means that a linear map is completely

determined by its value on the vertices of the domain.

Definition 4.1.2. A set X C R™ is said to have linear dimension < k, k < m, if
there exist affine k-planes Ay, ..., A; with X C Ué:o A;. For the empty set () we
define lindim(()) = —1.

Proposition 4.1.3. Let X be a set in R™ with lindim(X) < m. Then X is nowhere
dense.

Proof. See Proposition 12.5 in [12]. O

Proposition 4.1.4. Let K be a complex, f : |K| — R™ be a linear map and
X C K. Then lindim(f(X)) < lindim(X).

Proof. See Proposition 12.6 in [12)]. O

Lemma 4.1.5. Let X be a CW-complez, f:I" — X U e¥, n < k. Then there is
an open set U C I™ and a homotopy hy : U — €* reloU such that:

1. hy= f|ﬁ7'

2. there is a complex N C U such that hy|y is linear;

3. hi'(eF(1/2)) C N°, where €¥(1/2) = ®(B(k,1/2)), ® is the characteristic map
and D* = B(k,1).

Proof. See Lemma 13.4 in [12]. O

Corollary (4.1.5). m,(X Ue*, X, %) =0 forn < k.

Proof. Let f: (I",0I", J" 1) — (X Ue*, X, %) represent a homotopy element. We
apply Lemma for f. For the open set U given by the Lemma, f(U) C ¢* and
f(0I") ¢ X. Thus UNAI™ = () and h, can be extended to a homotopy H, : I" —
X Uer with Hy|prn = flam for all t. More specifically, we have

aeo= {0 <l

Hy = f. Let us choose a point p € €*(1/2) such that p ¢ H;(N). This we can do,
because [, (N) has linear dimension < n < k = lindim(e*) (Proposition [4.1.4), hence
it is nowhere dense (Proposition 4.1.3). H; '(p) C H; '(e"(1/2)) C N, so H; '(p) = 0.
This leads us to the conclusion that H; is in the image of 4, : m,(XUe*—{p}, X, *) —
(X Uek —{p}, X, ) induced by inclusion. But X U (e* — {p}) deformation retracts
to X. Thus m,(X Ue? — {p}, X, %) = 7, (X, X,*) = 0. O
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4.2 Cellular approximation

The cellular approximation theorem states that any map between CW-complexes
is homotopic to one that sends cells to cells of the same or lower dimension. It ensures
in a way that a homotopically equivalent version of maps between CW complexes
can be found, which is more easily contained and manipulated.

[12], [2] and [19] prove the Cellular Approximation Theorem in the general context
of relative CW-complexes and subspaces of CW-complexes. To this end, they use
the notions of colimits or direct limits. Since we are only interested in CW-pairs and
subcomplexes of CW-complexes in our study, we choose to present the less general

version found in [10] and [20].

Definition 4.2.1. Let X and Y be CW-complexes. A map f : X — Y is called
cellular if f(X™) C Y™

Remark. The exact same definition also holds for a map f : (X,4) — (Y, B)
between CW-pairs.

Theorem 4.2.2. Let (X, A) be a CW pair, (Y,B) € T* with B+ 0, f: (X, A) —
(Y,B) and S be a set of integers. Suppose that, if e¥ C X — A, then k € S and
(Y, B, %) = 0 for any choice of the base point x. Then there is a map g : X — B
with g ~ f relA.

Proof. See Lemma 4.6 in [10]. O

Theorem 4.2.3 (Cellular approximation theorem). Every map f: X — Y between
CW-complexes is homotopic to a cellular map. If f is already cellular on a subcomplex

A C X, the homotopy may be taken to be stationary on A.

Proof. The proof will be by induction. Assume that f has already been made cellular
on X" ! and take e" to be an n-cell of X (or X — A). The closure €” is compact
in X, so its image under f is also compact in Y. Proposition ensures that
S={jell f(e")Ne; # 0} is a finite set, where [ is a set of indices. Let e; = e* € S
be the cell with the maximal dimension k. If n < k, then f is already cellular
on e* and we need to do nothing. If, however, k& > n, we take the composition
g = f o ® of the characteristic map ® : I = D" — X" 1 Ue" with the given map
f:X"tUe® — Y* and apply Lemma From now on arguments are very
similar to the arguments in the proof of Corollary [£.1.5] Using the Lemma we obtain
an open subset U C I™ and a homotopy h; with the properties described there. Since
g(U) C €* and g(dI™) C (Y*—eF), we take UNOI™ = (). Hence h; can be extended to
a homotopy H; : I" — (Y* —e*)Ue® with Hy|g;m = gl for all t. More specifically,

we have o
) h(u), uelU
Ht<u>—{g(u):fo<l>(u), uel"-U
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Obviously, Hy = g, while H is linear on N C U. Let us choose a point p € €¥(1/2)
such that p ¢ H;(N), just like we did in the corollary. Using now what was found
for H;, we can define the homotopy

L [heoi@), ze o
Gle) {fm, v e X = o(U)

where G| xn-1 = f|xn-1 for all ¢ and there exists p ¢ G1(¢(N)). In other words, our
initial f|xn-1ee is homotopic relX™ ! to a map whose image misses one point on
ek C Y*. If we compose the homotopy G; with a deformation retraction of Y* — {p}
to Y* — ek we can deform the map f|xn-10en 7€l X" to a map whose image misses
the whole cell €.

Using finitely many repetitions of this procedure we find a homotopic map whose
image f(e") misses all cells e;, j € S, with dimension greater than n. If we do
this for all n-cells in X (or X — A), we obtain a homotopy of f|x» relX™1 (or
flxn rel X"~ U A™) to a cellular map. The induction step is completed with the
application of the homotopy extension property, which extends this homotopy to one
defined on all X.

If X has infinite dimension, we let n go to oo and the resulting infinite string of
homotopies becomes a single, coherent one with the nth homotopy being performed
during the ¢-interval [1—1/2",1—1/2""1]. The continuity of this homotopy is ensured
by the weak homotopy axiom of CW complexes. n

Example 4.2.4. 7,(S*) =0 for n < k.

S™ is a CW-complex with a single 0O-cell and a single n-cell (1.3.15). If we take
f:(S™ %) — (S* %) to represent an element in the homotopy group, we get that
[f] = [g] where g(S™) C [S¥]". However, since n < k and with given the CW-
decomposition of S*, [S*]" = {x} and g = 0, which means that f is homotopic to
the constant map.
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4.3 CW approximation

Many general statements in algebraic topology can be proved using CW approx-
imations of spaces. Their study is easier since, in their case, any problem can be
tackled using a cell-by-cell approach. Conclusions are more readily reached for in-
dividual cells, so the process of decomposing a CW complex to its building blocks
and reconstructing it from its elements can efficiently lead to the desired results. Of
course, these CW complexes must be equivalent to the studied spaces in a way that
will be defined shortly.

Definition 4.3.1. A map f: X — Y is called a weak homotopy equivalence
if fo @ m (X, 20) — m(Y, f(z0)) is an isomorphism for all n > 0 and all 2y € X.
Generalising the definition to pairs, a map f : (X, Xo) — (Y, Yp) is called a weak
homotopy equivalence if the associated maps f: X — Y and fl|y, : Xg — Y} are

weak homotopy equivalences.

Definition 4.3.2. Let X € 7*. A CW approximation or resolution of X is a pair
(K, f) where K is a CW-complex and [ : K — X is a weak homotopy equivalence.
A CW approximation of a pair (X, Xy), now, is a CW pair (K, Kj) and a weak
homotopy equivalence f : (K, Ky) — (X, Xp).

It will be shown that CW approximations of spaces and pairs always exist and any
two of them are homotopically equivalent. However, before proving their existence,
let us prove that CW approximations behave well with respect to homology. We
follow here the proof presented in Section 9.5 of [2], altering slightly the notation.

Let (X, A, %) € 7* and [A*]" the n-skeleton of the standard simplicial complex
Ak, Let also C"(X) € Cy(X) for n > 0 be the subgroup generated by singular
simplices 0 : A¥ — X with the property o([A*]") C A. The groups {C,S,"’A) (X)| k>
0} form the Eilenberg subcomplex C{™(X) of C,(X).

Proposition 4.3.3. Let (X, A) be n-connected. Then the inclusion of the Eilenberg
subcomplez i : C"Y (X) — Cu(X) is a chain equivalence.

Proof. We refer the reader to [2].

First of all, it is pretty straigtforward to check that the Eilenberg subcomplex does
produce a chain complex (9? = 0) and thus homology groups. In the proof, that was
referred to above, a map P : Cj,(X) — X2"1 is constructed using induction on
k, the n-connectedness of (X, A) and the homotopy extension property (2.1.14). For
o € Cy(X), P(o) : AF x I — X is actually a homotopy between P(c)y = o and
P(0); which satisfies P(0);([A*]") C Aand P(o)o(d¥xid) = P(cod¥). This P allows
us to define the chain map p : C(X) — C;”’A) (X) with p(o) = P(0);, for which
p o1 =id holds by construction. The operator s : Cy(X) — Cy11(X) with s(o) =
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P(o)4(h(ix)) is also formed, where i), € Ci(A*) and h : Cx(A*) — Cry1(A* x 1)
is given in 9.3.3 in [2]. Computations result to the relation ds + s0 = i o p — id,
which, if combined with the previous equality p o ¢ = id, shows that i is a chain
equivalence. O

Now, for k < n [A¥]" = A*. Consequently, C,g"’A) (X) = Cx(A) and the exact
homology sequence of (X, A) gives Hy(A) = Hy(X) for (X, A) n-connected.

Theorem 4.3.4. A weak homotopy equivalence f : X — Y induces isomorphisms
fo: Ho(X) — Hu(Y) for all n.

Proof. The mapping cylinder M f deformation retracts to Y (see Example ,
thus M f is homotopy equivalent to Y and homotopy equivalent spaces have isomor-
phic homotopy and homology groups. Let us denote with r the retraction from M f
to Y and point out here that roix =r|x = f.

Taking the long exact sequence of homotopy of (M f, X)

oo — (X)) — m(Mf) — m(Mf,X) — m(X) — ...

the weak homotopy equivalence guarantees that H, (M f, X) = 0 for all n or equiv-
alently (M f, X) is n-connected for all n. From Proposition we conclude that

fe: Hy(X) SEEN H,(Mf) - H,(Y) is an isomorphism for all n. O

CW approximations can simplify proofs regarding homotopy and homology groups
of spaces by reducing them to ’equivalent’” CW-complexes. However, both their exis-
tence and their uniqueness up to homotopy equivalence are yet to be proved. Exis-
tence will be proven by construction, while a theorem known as Whitehead’s theorem
will be employed for the uniqueness part.

Theorem 4.3.5. FEvery space X has a CW approzimation (K, f). If X is path
connected, K can be chosen to have a single O-cell with all other cells attached by
basepoint preserving maps.

Proof. Let X be path connected. If not, the described construction still works, but
we need to perform small alterations, which are pointed out below.

The construction of a CW approximation f : K — X of X is inductive on n > 1.
Generally, the induction step for n > 1 begins with a given CW-complex L, a map
f: L — X and the fixed basepoints p € L, xy € X with f(p) = 2. During the
n-th step, n € Z, we attach n-cells to L to form a new CW-complex M = L U; e
and a map f: M — X extending the previous f, in a way that ensures that the
induced map m;(f) : m;(M,p) — m(X, f(p)) is injective for i = n — 1 and surjective
for i = n. This way, we eventually build isomorphisms m;(f) for all i.

Let n = 1. We choose a basepoint zy € X, form L° = {p} and create f: L° — X
with f(p) = zo. Obviously, mo(f) is an isomorphism. If X was not path connected,
then L° would include a separate point p; for each path component of X and ev-
erything would be repeated for each basepoint/path component. Now, we need to
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make 71 (f) surjective. We choose maps f5 : (S*, s9) — (X, f(p)), which are repre-
sentatives of generators of m (X, f(p)). For each fz we attach a 1-cell ey to L via
$(0S*) = ¢, the constant map at p. This results to M = L° Ug ej. f is extended
over M using the fgs on each S}g. Surjectivity is dictated by construction.

Let the inductive step be true for n — 1.

Entering the n-th step, we aim at making 7,_(f) an isomorphism and 7, (f) sur-
jective, where f will be an extension of f : L' — X on a new CW complex
M. Since we already have the surjectivity of m,_1(f) from induction and any new
n-cell will not influence that, ,_1(f) will be surjective whatever the extension and
we can focus on injectivity. We choose representatives of generators of kerm, 1(f)
Go : (8" s9) — (L, p). From Theorem each representative ¢, can be chosen
to be cellular. Viewing S"! as a CW-complex with its usual structure of a single 0-
cell and a single (n — 1)-cell presented in Example we use ¢@,s as characteristic
maps and glue n-cells e/ to L with them. Let L" = LU, e?. Themap f: L — X
extends to a map f : L" — X, because f¢, is nullhomotopic in L™ (see Lemma
below). In order to make 7,(f) surjective, we do what we did for 7, (f), using
n-cells instead of 1-cells. As a result, M = L U, e}, Ug e} is formed, along with the
extension f: M — X.

Again, 7,(f) is surjective thanks to its construction, while the injectivity of m,_;(f)
stems from our freedom to choose cellular representatives h € kerm, 1(f). Since
h(S™Y) C M™ ' =L, we get h € kerm,—1(f)= h =, ni(¢a)i ~ 0 in M. O
Lemma 4.3.6. Suppose given maps f : X — Y and g: Y — Z in 7. Then, if
f o g is nullhomotopic, there exists h: Y Uy CX — Z with hly = g.

X f

>YUfCX

s Y
g
7z

Proof. See Proposition 14.15 in [12]. O

Theorem 4.3.7. Let (X, X,) € T2. There exists a CW pair (K, Ky) and a weak
equivalence f 1 (X, Xo) — (K, Ko) or in other words (X, Xo) has a CW approzima-
tion (K, Ky).

Proof. The technique used to prove Theorem can be applied to the pair of spaces
(X, Xp) as well. We first construct a CW approximation (K, fo) of Xo. Then,
we start the inductive step for the construction of the desired CW approximation
considering given the CW-complex K and the map ix,o fy : Ko — X and attaching
cells to Ky to create a weak homotopy equivalence (K, f) extending fy. Finally, using

the Five-Lemma (see [A.2.9)), we conclude that the map f : (K, K,) — (X, Xo)
induces isomorphisms on relative as well as absolute homotopy groups. O

Remark. If (X, Xo) is n-connected for some n > 0, then (K, Ky) is n-connected too,
since the weak equivalence f induces isomorphisms on all homotopy groups.
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Proposition 4.3.8. Let f : (K, Ky) — (X, Xo) and g : (L, Ly) — (Y, Yy) be CW
approzimations and suppose given a map h : (X, Xo) — (Y,Yy). Then there is a
map ¢ : (K, Ko) — (L, Lo) that is unique in h.7* and makes the diagram in Fig.

(L7 LO) # (Y7 YVO)

| |

(K, Ko) —1— (X, Xo)
Figure 4.1

commute in the same category.

Proof. Analytically, the proof can be found in Chapter 16 of [12]. Here we give a
general idea of its structure.

Lemma |4.3.9 and the homotopy extension property in are consecutively used.
First one finds a map ¢y : Kg — Lo with g o ¢y ~ h o f. This homotopy is
extended to create Hy : K x I — Y and through this and Lemma the desired
map ¢ : (K, Kyg) — (L, L) is found. For the uniqueness part two such maps are
assumed given, v, 1o, which satisfy go ¢y ~ ho f ~ go1y. We start with a
homotopy between 9|1, ~ 1|1, that arises from applying Lemma [4.3.9 on the right
diagram and conclude to a homotopy v ~ 15 after using repeatedly the lemma and
the homotopy extension property. O

Lemma 4.3.9. Let X, Y € " and [ : (X,*x) — (Y,%). f is a weak homotopy
equivalence if and only if given any CW pair (K, Ky) and maps ko : Ko — X,
k: K — Y with foky = k|k, there is a map g : K — X with g|k, = ko and
fogn~krelKy, as shown in Fig. [{.9

Proof. For the if part, let the property be satisfied and [k] € m,(Y,*). From the
diagram in Fig. [£.3] we get that there exists a map [g1] € 7,(X, %) such that [fg] =
[k], which means that f, is onto. Now, let [a] € m,(X, %) such that [fa] = 0 and

x 1oy x -ty x—1 vy
Ky —— K « — §n .y prtl
Figure 4.2 Figure 4.3 Figure 4.4

be a homotopy from fa to the constant map. For the induced map 5 : D" — Y
and the diagram in Fig. there exists a map g, with gs|sn = «a. From g, we
get a homotopy from « to the constant map, so f, is also injective. For the only
if part, we form the diagram in Fig. and define F : K x 0U Ky x I — MFf
by F(1,0) = j(k(l)) and F(l,t) = (ko(I),t) for | € Ky. We may extend F' to the
F : K x I — M f using the homotopy extension property. Let now v: K — M f
be given by y(I) = F(l,1). We have y(K;) C X x {1}. If we use Theorem [£.2.2] we
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Figure 4.5

can construct a map g3 : K — X x {1} with g3 ~ v relKy. Now g3|x, = ko and
fgs = mg3 ~ my ~ k rel Ky, where the last homotopy is G = nF. n

Theorem 4.3.10 (Whitehead’s Theorem). Let X, Y be connected CW complezes.
If a map f: X — Y between them induces isomorphisms fi : m,(X) — m,(Y) for
all n, then f is a homotopy equivalence. In case X is a subcomplex of Y and f is the
nclusion X — Y, X 1s a deformation retract of Y.

Proof. See [13]. O

Theorem 4.3.11. Let (X, Xy) € 2. (X, Xy) has a CW approzimation (K, K,)
that is unique up to homotopy equivalence.

Proof. Let ((K, Ky), f) and ((L, Ly), g) be CW approximations of the pair (X, X).
Proposition provides a map ¢ : (K, Ky) — (L, L) with got ~ f. Thus ¢
induces isomorphisms in all homotopy groups. Moreover, using Whitehead’s theorem
we get that 1) is a homotopy equivalence from (K, Ky) to (L, Lo). O
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4.4 Excision in homotopy

One last theorem that we will mention here without its proof is the one referred to
as excision in homotopy. Generally, the excision axiom which was presented in Chap-
ter |3/ fails in homotopy and this is rather important, since it essentially distinguishes
homotopy from homology. If it didn’t fail, homotopy theory would become one more
example of homology theory. However, some sort of the excision property holds for a
specific range of dimensions if we pose additional hypotheses on the homotopy groups

in question.

Theorem 4.4.1 (Excision in homotopy). Let X € 7 which is decomposed as the
union of subspaces A and B. Let also C = AN B # 0, (A,C) be m-connected and
(B,C) be n-connected, m, n > 1. Then the map i, : m;(A,C) — m(X, B) induced
by inclusion is an isomorphism for i < m+n and a surjection for i = m + n.

Proof. For the proof see Sections 6.4 to 6.9 in [2]. O



Chapter 5

The Hurewicz theorem

5.1 Absolute and relative Hurewicz theorems

The Hurewicz theorem in its elementary, absolute form states that the first

nonzero homotopy and homology groups of a simply connected space happen si-
multaneously and are isomorphic. For its general and relative form, which refers to
all spaces, not just simply connected, quotients of homotopy groups are taken.
The central idea behind the general proof is that there exists a homomorphism h be-
tween the long exact sequences of homology and quotients of homotopy groups that
is proved to be an isomorphism. In the relative case, elements in both homotopy
and homology groups of a space X can be represented by maps from A" to X, since
A" is homeomorphic to D". However, in homotopy groups constant attention must
be paid to the chosen basepoint zy of X, keeping maps and homotopies pointed,
while in homology groups a certain freedom of movement is allowed, which leads to
homologous maps that can differ by a boundary. In order to amend this discrepancy
and attain the same level of ’freedom’ such boundaries must become trivial. Also
n-spheroids that differ by a loop must be considered equivalent.

The proof of the general Hurewicz theorem that will be presented here is induc-
tive, starting with the fundamental group 7, (X) and the first homology group H;(X)
and increasing n's value from there. A specific map h is constructed and then it is
checked and proved to be an isomorphism.

Presentations of the theorem can be found in a plethora of textbooks. To name a
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few, we mention [10], [2], [15], [3], [L9]. The proof we present here for the case n =1
has been influenced by [10] and [15], while we follow the more homological approach
of [2] and [3] for n > 1, which does not use CW approximation and the excision of
homotopy, like others do.

Theorem 5.1.1 (Hurewicz - n = 1). Let X be path connected. Then w1 (X, xy)%® =
Hy(X), where G* = G /|G, G].

Proof. Let h : m(X,x9) — H,(X) which takes the homotopy class of a loop [f]*
to the homology class [fa] of the same loop seen as an l-cycle. a : Al — [ is
the homeomorphism that takes (1 — t)d} + td} to ¢, while the superscript # is being
employed to distinguish homotopy elements from homology elements. In what follows
we will show that A is a well defined isomorphism.

h is well-defined: Let f, f» be representatives of a class [f]#, such that f; # fo. If
we consider the homotopy F': [ x I — X from f; to fo and draw one of I x I’s
diagonals, we can view F' as a pair of singular 2-simplices, namely oy = F|;, and
oy = F|i,, as can be seen in the Figure Now, (o1 — 09) = > ,(=1)'oyd? —
Soi(=1)ioad? = fia+ cra — faa — coa, since the two restrictions of F' cancel on the

f2 v

()] 9
c2 c1 g
01 f

f1 V0 f v1

Figure 5.1

diagonal. The constant maps cja, caa € Cy(X) can be written as the boundary of
the constant map ¢ : A? — X, therefore they are homologous to zero. This leads
us to fia — foa = 0(0y — 03) — c1a + coa € Imd?* and [fia] = [f2al.

h is a homomorphism: For [f]*, [g]* € m (X, zo), we define a singular map o :
A? — X, as shown in Figure , whose restriction on each ray under ¢,, identifies
with fa, while over ¢,, the restriction identifies with ga. For this o, we have do =
Yo o(—1)od? = ga—(f gla+ fa= fa+ga— fa-ga € Imd?, thus h([f]*[g]#) =
[fa] + [ga] = R([f17) + R([g]?).

h is a surjection: Take the chain ¢; = ), n;0; to be a representative of a class [c] in
Hy(X). We will transform ¢; until we reach such a homologous 1-cycle ¢ that ¢'a™
is a loop based on xy. First, we ’explode’ the sum of c;, relabeling o;s, so all its
coefficients become equal to £1. Then we substitute each o; with coefficient —1 in
the new sum with its inverse path ;. This way we get a homologous ¢, with n; =1
for all i. Since dcy = 0=) . 0;(dj — di) = 0 and every o;dj, is a basis element in the
free abelian group Cy(X), we conclude that they must be mutually eliminated two
by two. This means that we can combine the relevant paths o;dja™! till we are left
with loops 7;a=! each one based on a point x; in X, whose summation now forms
[cs] = [c]. We choose a path 7; from z( to z; for each j in the path-connected space
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X and form the composite paths ;- 7ja™" - 7; with h[r;a™'|# = hly; - ja™" - 7,]%.
Therefore, we have managed to transform ¢; to its homologous ¢, = ) AT,
for which the loop csa™! based on zg gives h([cia™t#) = [c].

kerh = [m,m]: [m,m] C kerh, since h is a homomorphism and H;(X) abelian.
For the inverse inclusion, take an element [f]# € kerh. We want to show that f
is homotopic to a map in [my,m]. From the hypothesis 3 o, € Cy(X) such that
9>, nio;) = fa. We ’explode’ this sum, relabeling o;s, in order to get the chain
>_;mjo; with m; = £1. This gives the equation fa = 9(3_; m;jo;) = >, m;0(0;) =
>0 my Yo (=DFosdi = 37 my(o;ds — 0;d3 + 0;d3) in the free abelian group C(X).
But fa and o;di are basis elements of C1(X). This means that all but one of the
o;d2s must cancel two by two. The only one eventually left will be the one equal to
[, namely f = m,o,d: for some p and k € {0, 1,2}.

In the path connected space X we choose paths vjo, v;1 and ;2 from xq to o;d3dp,
ojdid} and o;d3d, respectively. If any of the ends happens to be xg, we choose
the constant path on zy as 7, and the same path is chosen for all coinciding ends.
Applying composition of paths, we get for each path o;d2a™!, k € {0,1,2}, a class
Ljo = [yj0 - oydia™ - Ful*, Ljy = [yj2 - o5dia™ - 7u]* or Lyjz = [0 - oydia™ - 7,0]*
in 7. According to what we have defined so far [f]# = Ly = [y;. - ojdja™" -7, 1% =
[0;d?a=11#, since « paths are constant in this case. Lemma below allows the
substitution (Lyx) = (f) = [1;((Ljo) - (Lj1)~" - (Lj3))™, where the brackets () are
now used to denote elements in the quotient multiplicative abelian group 7y /[y, m1].
If we examine representatives of the cosets in m /[m1, m1], we get

Ljo - Lj_ll Ljp =[yjo - ojdpa™ -7,y - (2 - o5dia™ ;) e - odia! '%o]#

= [vjo - ojdia”" ViV (ojdra")! '7]'2)71 Yo - ojdiat ‘73'0]#

= [0 - oydpa™ - (oydpa™) ™ oydia™ - F0l" = [,

because o;dia™! - (o;dia™t) ™ - oydia™! ~ (0]paz)a™t is nullhomotopic. Since (c,,) =
(1), we conclude that (f) = (1), hence [f]# € [r1, m]. O

Lemma 5.1.2. Let F be a free abelian group with basis B, {xq,...,zx} be a subset
of B (repetitions of elements are allowed) and assume that

MoZTo = M1 T1 + - - - + MpTy,

where m; € Z.. Now, take an abelian group (G,+') and a set {yo, ..., yr} of elements
of G' for which y; = y; whenever x; = x;. Then we can substitute x; with y; in the
previous equation, i.e. moyo = miyy + -+ mypy, holds.

Proof. The proof can be found in [15]. O
Remark. A different way to formulate the homomorphism h is by using the equivalent
definition [S?, X] = 7 (X, ) for the fundamental group. If we do so and choose as z;

the generator of H;(S') corresponding to the singular simplex ® : A — [/01 = S,
we get h([f]#) = f.[21], which equates with the previous definition.

We move now to the case n > 2. For (X, A, ) € 7 we define maps h, called
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Hurewicz homomorphisms,

hixas =h:m(X, A x) — H,(X, A), n>2,
h(X7A):h27Tn(X,*) —>Hn(X) n > 1.

We are going to provide a specific formula for these maps and prove that they are
natural homomorphisms that make the diagrams in Figure [5.2] commute.

T (X, %) — T (X, A %) —2 7,1 (A, %)

I I I

H,(X) —— Hy(X, A) —2— H,_1(A)
Figure 5.2

Let us consider the definitions for homotopy groups [(S™, *), (X, *)] = 7, (X, *)
and [(D", S"1 %), (X, A, x)] = m,(X, A, %). We also choose generators z, € H,(S™)
and z, € H,(D", S"!) such that 0z, = z,1 and ¢.(Z,) = 2,, where ¢ : D" —
Dm/Sn=1 = S™is the quotient map. If we start our selection by fixing the z; = ® that
was picked in a remark earlier, then the other generators are uniquely determined
through induction and the previous relations.

Using the notation that has just been introduced:

Definition 5.1.3. The Hurewicz map is defined via the formulas h(x 4. ([f]#) =
felZnl, n > 2, and hx o ([f1#) = fulzal, n > 1.

The naturality of h and their compatibility with exact sequences (commutativity
of the diagram in Figure [5.2)) arise directly from the definitions. The fact that h is a
homomorphism, however, requires a bit more work.

Proposition 5.1.4. The Hurewicz map h(x ax), n > 2, is a homomorphism of
groups.

Proof. h is well defined due to the homotopy axiom (Section of the homology
theory h,. Our target is to show that (f + g). = f. + g« for every pair of maps
f, g : (D",0D" x) — (X, A, %), because then h([f + g]*) = h([f]*) + h([g]").
Although we use the 4+ symbol between maps here, f 4+ g can be identified with the
comultiplication - defined in Equation [I.2} Moreover, for n = 2 + does not imply
commutativity, but we prefer it for the sake of uniformity.

We employ the map ¢ : D™ — D™V D", which performs a ’pinch’ in the middle of D™
by collapsing the equatorial D" to a point, the quotient maps q;,q : D"V D" —
D", where:

r1, if x9 =% *, if 1o = x
qi(x1,22) = { ' ? qa(1,T) = { ? (5.1)

*, if o1 = * To, ifx;=x%



5.1. ABSOLUTE AND RELATIVE HUREWICZ THEOREMS 69

and the map fvg: D"VD" — X, f,g: D" — X, f(OD™) and g(0D") C A with

f(z1), if o1 # *, w9 = *
(fVg)(x1,22) = < g(), if 21 =%, @9 # *. (5.2)
f(x)=g(x) =%, ifzg=xy=x
Their induced maps produce the diagram in Figure [5.3

It has been shown, while proving Proposition [3.2.12] that, if X is the wedge sum of
pointed spaces X,, i.e. X = \/_  X,, then the inclusions 7, : X, — X induce an

FVg)

H,(D",0D™) —<— H,(D"v D", dD" v dD") L9,
fa] — ({al a]) l
q15 D q24

H,(D",0D") & H,(D",dD")

H,(X,A)

Figure 5.3

isomorphism i, = @yias : @aﬁn(Xa,xa) — ﬁn(X) Applying this result on the
space S™ VvV S" along with the isomorphism H, (D™, 0D") = f[n(S"), we conclude
that ¢, @ ¢o, is the inverse of iy, & is,, hence an isomorphism.

We denote the diagonal map [a] — ([a], [a]) with the letter D. The left triangle in
the diagram commutes and (fV ¢). (i1« +1i2.) sends ([al, [0]) to f.([a]) and ([0], [a]) to
g«([al]), since the composite maps give (f V ¢)iy = f and (f V g)ia = ¢g. This means
that ([a], [a]) is being sent to f.([a])+g«([a]) or equivalently (fV g). (i1« +i24)D([a]) =
fula) + g.([a]) = (F V ghuc(a]). But (f V g).cu((a]) = (f + g)u([a]), which proves
the desired. ]

Basepoints of X are undeniably significant when examining homotopic elements
in m,, while completely absent in H,. Since our goal is to find an isomorphism
between a homology group and a group that has spheroids as elements, we need to
treat spheroids that are homotopic via a homotopy which does not respect basepoints
as equivalent, because their images under h are equal. If we are to have a chance to
get an isomorphism, we need kerh to be trivial. Since it is not, we need to factor
this kernel out.

We consider the actions

Bx (X, %) X 1, (X, %) — 1, (X, %), n > 1
Ba:mi(A x) X m (X, A %) — m, (X, A, %), n > 2

When n =1, B3 ([0, [f1#) = [y f-7]*, while, for n > 2, the actions are those defined
in Propositions 2.3.12/and [2.4.5] Now h(B(4([v], [f]#)—[f]#) = 0, since By ([], [f]#)
is homotopic to [f]# through a homotopy that does not respect basepoints. Conce-
quently, if we name N < m, the normal subgroup generated by all elements of the
form A, (], [F1#) — B (e [f1%) = BILA* = [f1# and 7, = m,/N, then N C kerh
and h induce the homomorphisms
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oy (X, xg) — Ho(X), n>1
b m (X, A zg) — Hoy(X, A), n > 2.

Finally, for n = 1 it is easy to see that N = [ (X, x¢), 71 (X, x¢)] and ;" coincides
with its definition as an abelianisation given earlier.

Lemma 5.1.5. Let (X, A,x) € T2*. Then m,'(X, A, *) is abelian for n > 2.

Proof. For n > 3 the result is readily obtained by Proposition [2.4.4]

Let n = 2 and [f]#, [g]* € m2(X, A, *). Recall the boundary map 0 : mo(X, A, *) —»
71(A, x) and observe that df is a loop in A that can act on g. Since [0f][g]* = [g]*,
7. (X, A, %) would prove to be abelian, if we managed to show the validity of the

equation [f]#[g]*[f]# = [0f][g]*.

The homotopy that provides us with the result is depicted in Figure [5.4] O]
Zo o x0 0
A=k 7|/
o f g fT To X~ o o = X0 of of 0 Y X0 of of o
ar| g |of g q
A A A

Figure 5.4: Homotopy proving that m,’(X, A, %) is abelian.

We mention the absolute form of the Hurewicz theorem without a proof, because

it can be seen as a special case of the relative form.

Theorem 5.1.6 (Hurewicz - Absolute form). Let X € J* be (n — 1)-connected
(n>1). Then I : m,/(X, %) — H,(X) is an isomorphism.

Theorem 5.1.7 (Hurewicz - Relative form). If (X, A) is a (k — 1)-connected pair of
path connected spaces, k > 2 and A # &, then h' . m/ (X, A, x0) — Hp(X, A) is an
isomorphism and H;(X,A) =0 fori < k.

Proof. The proof is by induction on k. The absolute case for £k = 1 has already been
proved in Theorem [5.1.1] First we use the inductive step described below to prove
the Theorem for £ = 2. Then, assuming the absolute theorem for 1 < k£ < n —1,
we prove the relative theorem for £ = n following the same inductive step and the
absolute case is simultaneously true for £ > 2, if we set A = {x}.

We extend here the definition of the Eilenberg subcomplexes introduced in [4.3.3
to cover for the relative, basepointed case. Let C,i"_l’A’*)(X, A) be the quotient
of the abelian group generated by maps ¢ € Ci(X) such that o([AF]"7!) C A,
o([A*]%) = {*}, modulo C’,go’{*})(A). 00 = 0 still holds and the chain complex
that is created produces the homology group H,gnil’A’*)(X, A). The inclusion i :
C AN (X A) < €, (X, A) induces isomorphisms H" (X, A) = H,(X, A) for
an (n — 1)-connected pair (X, A) with path connected A, just like it did in Proposi-
tion 3.3l
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Elements [f]# in m,(X, A, x) are homotopy classes of maps from (D" dD", ) to
(X, A, %), while elements [f] in H\" " (X, A) are equivalence classes of n-chains of
maps from (A", A", A% to (X, A, *). Since the n-dimensional disk is homeomorphic
to the n-simplex and [(D",0D™, %), (X, A, x)] = [(A™, 0A"™, vy), (X, A, *)], vy vertex
of A", we can look at m,/(X, A,*) as consisting of homotopy classes in the group
[(A™ OA™ 1), (X, A, %)] and perform a minor alteration to the Hurewicz homomor-
phism so as to match our change in view.
Let D® = A", where « is the homeomorphism that sends the generator [z,] of
H,(D",0D") to the generator [id,] of H,(A" dA™) (Example [3.2.11). We ad-
just slightly the Hurewicz homomorphism h and now it takes the homotopy class
[F1# € (X, A, %) to fu(au(Za)) = fi(id,) in H, (X, A) = H (X, A).
In what follows we are going to gradually build an inverse homomorphism 1 of the
adjusted Hurewicz homomorphism h'. Let vy : C5"" A*)(X) — 1, (X, A, *) which
assigns to a singular simplex o : (A", dA™, A%) — (X, A, %) the corresponding ele-
ment o# in 7,"(X, A, %) = [(A", A", vy), (X, A, %) (the superscript ’ is used to din-
stinguish elements in 7,,). 1y is well defined and a homomorphism, since 7, is abelian
(see Lemma [5.1.5)). If o(A™) C A, then by the compression criterion the cor-
responding homotopy class is zero, i.e. C,(A) C kery;. Therefore, we can extend
the homomorphism ¢ to the homomorphism s : C,g"_l’A’*)(X, A) — m/ (X, A, ).
Each o € C" (X, A) is a relative cycle, because do belongs to C" 7" (X, A)
which leads to do(A"1) C A = o € C,_1(A). This leads us to CV" (X, A) =
kerd,. We have yet to show that ¢ 0 @ : CU7 ") (X, A) — 7,/(X, A, %) is trivial,
because then 1o (Im0dy,+1) = 0 = Im0,1 C keriyy and we will be able to form a well
defined homomorphism

o H WA (X A) — m)/ (X, A, *),

with ¥ ([c]+Imdpi1) = ¥(p([c])) = ¥a2([d]) = [c]#, where p : kerd, — kerd,/Imd, 1
is the quotient projection.

Take 7 : (A" [A"H =1 [A"H]0) — (X, A, ) such that [7] € C’” LAY (X A)
is a basis element. ¥(d([r])) = S0 (=1)/[rdM'# and, if we define elements
[0,]7 € T (OA™ [ATMHL ) via

[b2]7 = ([orvo [do]) [d3] )" 3]

n+1
[b ] UIUO dn+1 + Z dn+1 , n Z 3,

where [v11g] denotes the affine path class in A”“ from v; to vy, then

W(O([r])) = T2 b]* = 7 (7 (b))

in 7,/ (X, A, %), since [v100][diT# = [, n > 2.

Elements [b2]# and [b,]# are closely related to the homological boundary operator.
Their main difference from 0 is that in their case provisions have been made in order
for the face maps to be transported to the base point vy. Also, in the formula above
we Write 47 for the map induced from the inclusion j : A" — A" and we
insert j7 freely in the calculation, since T gets restricted on A"*1’s faces when v 0 0
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is applied on it.

The (n — 1)-skeleton of A" is (n — 2)-connected. This can be proved by induc-
tion on n: For n = 2, [A%]' is O-connected. TLet [A"]"™? be (n — 3)-connected.
Then, combining the homeomorphism D"*! = A"*! with the fact H,,_»(D"*1) =0,
the isomorphism H,, »(X) = H, o(X"™) for ¢ > —1 from Proposition and
the theorem’s induction hypothesis applied to the absolute case, we conclude that
[A"T7=1 s (n — 2)-connected.

I

The induction assumption also gives m,_1'([A"]"71 vy) = H,,_;([A™""1) for the
(n — 2)-connected skeleton [A™T!|"~1. Commutativity of the diagram in Figure
gives 0,h,' = h,_1'07 and it is easy to see that 9,h,'[b,]" = 0, (bn.(id,)) = 0, since

#
7T_n/(aAn+17 [AnJrl]nfl’ UO) a_n> ,ﬂn_ll([AnJrl]nfl’ UO)

lhn/ lhn— 1/

Hn(aA"'H, [An—i—l]n—l) On Hn—l([An+1]n_1)

Figure 5.5
it is a boundary. This leads to h,_,'0# [b,]¥ = 0 and finally results to 87[b,]* = 0,
because h,_;" is an isomorphism.

We split the boundary map 97 into
H /
a# . ﬂ_n/([AnJrl]n7 [An%»l]nfl’ UO) J_*> 7_[_n/(An+1’ [AnJrl}nfl? UO) i> anll([AnJrl]nil, UO)

and, since A" is contractible, & is an isomorphism, as one can see from the long
exact homotopy sequence of the pair (A" [A"H]"=1). Thus, j#[b,]* = 0 = ¢0d =
0, which means that the inverse map v can be extended and this finishes the inductive
step for the relative Hurewicz theorem. O

Corollary. 7,(S") = Z, n > 2.
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A.1 Categories and functors

The following are based on [12] and [15].

Definition A.1.1. A category % consists of:

1. A class of objects Obj(%).

2. A set of morphisms Hom(X,Y') for every ordered pair of objects (X,Y") such
that it is pairwise disjoint and for each A € Obj(%) it includes an ’identity’
morphism 1,4 € Hom(A, A).

3. A function for the composition of morphisms o: Hom(X,Y)xHom(Y,Z) —
Hom(X, Z) for every ordered triple of objects (X,Y,Z), which is associative
when defined and satisfies fol, = f and 1409 = g, for all f € Hom(X, A),
g € Hom(4, X), X, A € Obj(¥).

Definition A.1.2. Let &/ and ¥ be categories with Objé C Objo/. If A, B €
Obj¥, let us denote the two possible Hom sets by Homg (A, B) and Hom (A, B).
Then % is a subcategory of o/ if Homy (A, B) C Hom, (A, B) for all objects A,
B in ¥ and if composition in % is the same as composition in o/. A subcategory

¢ that inherits all morphisms between its objects from 7, namely Hom, (A, B) =
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Hom, (A, B), is called a full subcategory.

Example A.1.3.

1.

The category of all topological spaces .7 has topological spaces X as objects,
continuous functions between spaces as morphisms and the usual composition
of maps as composition.

. The category of all pointed topological spaces .7* has pointed spaces (X, z)

as objects, basepoint preserving continuous functions between spaces as mor-
phisms and the usual composition of maps as composition.

. The category of all pointed sets .ets* has pointed sets (X, zg) as objects,

basepoint preserving functions between sets as morphisms and the usual com-
position of maps as composition.

. The category of all algebraic groups ¢4 has groups as objects, morphisms be-

tween groups as morphisms and the usual composition of morphisms as com-
position.

. The category of ordered pairs of topological spaces .72 has ordered pairs (X, A),

A C X, as objects, functions f : (X, A) — (Y, B) with f(A) C B as mor-
phisms and the usual composition as composition. The category of pointed
ordered pairs, .72*, can be defined combining the definitions of .72 and .7*.

. The category # of topological spaces that have the homotopy type of a CW

complex has spaces X € .7 with X ~ K, K a CW complex, as objects and all
morphisms between these spaces as morphisms. It is a full subcategory of .7 .

Definition A.1.4. A congruence on a category % is an equivalence relation ~
on the class (J 4 pyHom(A, B) of all morphisms in %, such that f €Hom(4, B) and
f ~ [ implies f’ €Hom(A, B) and, if f ~ f', g ~ ¢' and gof exists, then gof ~ ¢'of’.

Theorem A.1.5. Let € be a category with congruence ~ and let [f] denote the

equivalence class of a morphism f. Define €' as follows:

Obj¢" = Obj€
Homg: (A, B) = {[f]| f € Hom(A, B)}
lglof]=1lgo f].
Then €' is a category.
Proof. See Theorem 0.4 in [15]. O

Remark. The category " is called a quotient category of ’. We usually denote
Home (A, B) by [A, B].
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Example A.1.6. A very common category in algebraic topology is the homotopy
category h.7. It is constructed as a quotient category of .7, where the congruence
relation ~ is the homotopy relation between morphisms in .7. Thus h.Z has topolog-
ical spaces as objects and equivalence classes of continuous functions as morphisms.
In a similar way, we get h.7* from the category of pointed topological spaces 7* and
h7? from the category of ordered pairs of topological spaces .72 The homotopy
relations are realised again through morphisms in the respective categories.

Definition A.1.7. If &/ and ¥ are categories, a covariant functor F': o — € is
a function that assigns to each object A € Obja/ an object FA € Obj% and to each
morphism f € Hom(A, A’) in &/ a morphism F'f € Hom(F' A, FA’) in €, in such a
way that:

1. if f, g are morphisms in & for which go f is defined, then F(go f) = Fgo F'f
and
2. F14 =1p4 for every A € Obj«.

Example A.1.8.

1. Fixing (X, A), [(X, A), (Y, B)] is a covariant functor from 2 or h.7? to the
category of sets and functions.

2. Fixing (X, *) € €9*, ()X is a covariant functor from €%* to €4*.

Proof. Let (Y,*) € €%*. Then (Y,*)"* is the compactly generated topo-
logical space produced by all the pointed continuous functions from (X, *) to
(Y,*). Thus (-)X*) takes objects from the category €4* to Obj(€'4*).

For fi € Hom((Y,*),(Z, %)), ()9 f1 : (Y, )&% — (Z %)X is given by
(XN f1 (g) = frog, g € (Y,%) ¥ which is a pointed continuous map. In
other words f; o g belongs to C((X, %), (Z,*)), which proves that ()" f, €
C9*.

For f; € Hom((Y,*),(Z, %)) and f, € Hom((Z,*), (W, *)) we have (-)**)(f, o
f2) (9) = (fro fa) o g = filfao g) = ()X (f1) o () (f2) (9), g € (Y, %))
and (-)*¥id (g) =idog =g. O

3. X is a functor from hT* — hT™*.

Proof. h7* is a quotient category, so it suffices to prove that X is a functor
from 7 to * and Xf ~ Yg for f ~ g.

Let X € *. Then the reduced suspension XX also belongs to 7%, since
it is a quotient space of X x I that that preserves a well defined basepoint.
For f € Hom((X,zo), (Y, f(x0))), 2f : ¥X — XY is given by Xf([z,t]) =
[f(z),t]. From the quotient topology and the commutative diagram in
(Xf)"1(U) is open for all U C XY open neighbourhoods of f(xg), which leads
ultimately to ¥f being continuous. Moreover, X f[zo,t] = [f(z0),t], where
[z0,t] is the basepoint of XX and [f(z¢),?] is the basepoint of XY. Thus
Sf € Hom((SX, [20,1)), (Y, [f(0), 1)).

Taking f € Hom((X,z0), (Y, f(0))), g € Hom((Y, f(x0)), (Z, g(f(20)))), we
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have (g0 f) (12, 1]) = [(90)(x),1] = lg(F(2)), 1] = Sg([f(2), ) = Sg(SF (2, 1)
= (Xg o Xf)([x,t]). Finally, ¥id([x,t]) = [z,t] and ¥ has been proved to be a
functor from . to .

Now, let f ~ g. Taking fsx,gsx : (ZX, (X x {0} UX x {1} U{zo} x I)) —
(ZY, (Y x {0} UY x {1} U{f(z0)} x I)) with fox(z,t) = (f(x),t) we have
fzx ~ gzx via a homotopy F : (ZX x [ — ZY). From we can finally
form the maps Xf, Xg : (XX, [zo,t]) — (ZY,[f(z0),t]), which are homotopic
via the homotopy F. O

4. Q is a functor from h.7* — h.7*. This is actually Theorem 11.8 in [14].

(X, 20) —L— (Y, f(w0))

[ I

(X, [20,1]) —2 (Y, [f (o), £])

Figure A.1

ZX x 1 r Y

[ l

F
ZX/ (xx{o13ufmoyx1) X I ——=Y /(v {0,130 (z0)} x1))

Figure A.2

Definition A.1.9. If &/ and % are categories, a contravariant functor F': o/ —
% is a function that assigns to each object A € Objo/ an object FFA € Obj% and
to each morphism f € Hom(A, A’) in & a morphism Ff € Hom(FA', FA) in €, in
such a way that:
1. if f, g are morphisms in o for which g o f is defined, then F(go f) = F'fo Fyg
and
2. F14 =154 for every A € Objo.

Example A.1.10.

1. Fixing (Y, B), [(X, A), (Y, B)| is a contravariant functor from 72 or h.7? to
the category of sets and functions.

2. Fixing (Y, %) € €9*, (Y,*)") is a contravariant functor from €%4* to €%*.
This is proved similarly to Example [A.1.§] 2.

Definition A.1.11. Let F : &/ — % and G : € — &/ be functors. The ordered
pair (F, G) is an adjoint pair of functors if, for each object A in &/ and each object
C'in €, there is a bijection
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T ="Tac: Hom(FA,C) — Hom(A,GC),

which is natural in each variable.

Naturality means that diagrams in FiglA.3] and Fig[A.4] commute for all f €
Hom(A',A) in o/ and g € Hom(C,C") in €.

Hom(FA,C) LEAV! Hom(FA',C) Hom(FA,C) EAION Hom(FA,C")
Hom(A,GC) L2 Hom(A',GO) Hom(A,GCO) Z2°Y Hom(A, GCY)
Figure A.3 Figure A.4

Example A.1.12. (3,Q) are adjoint functors from h.7* to h.T*.
Proof. See the proof for Theorem 11.2 in [15]. H

Remark. Using the previous result inductively we can conclude that (X", Q") are
adjoint functors.

Definition A.1.13. An equivalence in a category .7 is a morphism f: A — B
for which there exists a morphism g: B — A with fog=1pg and go f = 1 4.

Remark. For example, a homotopy equivalence between pointed topological spaces is
an equivalence in the category h.7*.
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A.2 Basic notions in algebra

The following are based on [14], [15] and [21].

Definition A.2.1. Let X be a set and G a group. Then the function
7T: GxX— X

(9,2) — g-x

is called the action of G on X, if the following are valid:

I.1-z=uz,forallz € X
2. g-(h-x)=(gh)- -z, forall g;h € Gand z € X.

Definition A.2.2. Let R be a ring. A left R-module is an abelian group M on

which R acts linearly; that is, there is a map

Rx M —M

(r,m) —rm

for r € R, m € M, for which

L. (r+s)m=rm+sm
2. r(m+n)=rm+rmn
3. (rs)m =r(sm)

4. Im = m.

Exact sequences of objects and morphisms can be defined in any category with

kernels and cokernels.

Definition A.2.3. In ¥, a sequence ... ﬂ A i> A; ﬁ) A g ... of groups

and group morphisms is called an exact sequence if kerf;, = Imf;,1, Vi € N. The

sequence may be either finite or infinite.

Definition A.2.4. In .Yets* a sequence

I A ) I (A ) IS (A ) I8

of pointed sets and pointed sets morphisms is called exact in Pets* if kerf;, =
Imfii1, Vi € N, where kerf; = f; ().
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Definition A.2.5. In h.7* a sequence

I A ) I (A ) I (A ) I8

of pointed topological spaces and pointed maps is called exact in h.7* if the induced

sequence

I ), (Aun, #)] 25 [(X %), (As, %)) Z28 10X, %), (Aiy, )] 253

is exact in .Yets* for every X € 7*.

Definition A.2.6. An exact sequence of the form 0 — A BEINY ; ANy R R
called a short exact sequence.

Definition A.2.7. A graded group C' = {C,} consists of a collection of abelian
groups C, indexed by integers ¢q. Elements of C, are said to have degree q. For C
and D graded groups, a homomorphism of degree d, 7 : C — D, consists of a

collection of morphisms 7 = {7, : C; — D 14}

Definition A.2.8. In homological algebra, a chain complex (A,d) is a sequence
of abelian groups {A;}, i € Z, connected by homomorphisms d,, : A, — A,_1, such
that the composition of any two consecutive of them is the zero map, i.e. d,od,_1 =0,
for all n. These maps are called boundary operators and a chain complex usually is

written as:
dn+1 dn dn—1 d1 do d_1
o— A — A A — . — A — A — ...
Lemma A.2.9. Let A, B, C, D, E, A, B', C", D', E' € 9% be in a commutative

as the one depicted in Figure [A.8 If the two rows are exact and o, 3, § and € are
1somorphisms, then v is an isomorphism too. The result is known as the Five-Lemma.

Proof. It suffices to show that -y is surjective if 5 and § are surjective and e is injective,

A—t sp-—J o % ,p_L F

[ PR S

AL p LoD

Y
o~
<

<

Figure A.5

and + is injective if § and 0 are injective and « is surjective. The proof is based on a
technique called diagram chasing. It is simple yet rather tedious, thus we prove here
the first statement and refer the reader to Chapter 2 in [10] for the second.

Let ¢ € C’. Since § is surjective, the second row exact and e injective, we have
K'(d) = 6(d) for some d € D, €(l(d)) = I'(6(d)) = U'(K'(c)) = 0 and I(d) = 0.
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Hence d = k(c) for some ¢ € C' by exactness of the upper row. Now commutativity
gives k(¢ — v(c)) = 0(d) — 6(k(c)) = 0. Therefore ¢ — v(c) = j'(V') for some
b € B’ by exactness and, since [ is surjective and b’ = (b) for some b € B, we get
e+ ) =(c) +7( (1) =1(c)7 (B(b)) = () +j'(¥') = ¢ which shows that 7 is
surjective. O
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