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ABSTRACT 

To address the limitations of current Radio Access Networks (RANs), Cloud-RANs (C-

RANs) have been proposed introducing increased transport bandwidth requirements and 

strict latency and synchronization constraints. To relax the stringent C-RAN requirements, 

flexible functional splits have been proposed relying on transferring some of the processing 

functions away from the Radio Units and locating these centrally at a central unit (CU). In this 

master thesis, the concept of flexible functional splits is addressed by combining servers with 

low processing power (cloudlets) and relatively large-scale DCs placed in the access and metro 

network domains respectively. The remote processing requirements of the functional split 

options, impose the need for a high bandwidth transport interconnecting radio units and the 

CU. The selection of the optimal split option is performed in a dynamic fashion through a novel 

mathematical model based on Evolutionary Game Theory (EGT). This model allows to 

dynamically identify the optimal split option with the objective to unilaterally minimize the 

infrastructure operational costs in terms of power consumption. The speed of convergence 

and the stability of the proposed scheme is theoretically analyzed for different scenarios and 

use cases. Finally, the impact of various parameters characterizing the 5G network on the split 

option selection is analytically determined. 
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Chapter 1 Introduction 

 

The demanding requirements of 5G and vertical operational and end-user services 

including unprecedented level of scalability (x1000) on the numbers of interconnected 

elements, high bandwidth, low latency and ubiquitous coverage, introduce the need for a 

common, flexible and open underlying network infrastructure involving a variety of advanced 

interconnected radio access network technologies. To address the limitations of current Radio 

Access Networks (RAN), Cloud-RANs (C-RANs) have been proposed introducing increased 

transport bandwidth requirements and imposing strict latency and synchronization 

constraints. To relax the stringent C-RAN requirements, taking advantage of its pooling and 

coordination gains the adoption of alternative architectures exploiting the option of flexible 

functional splits has been proposed. The concept of flexible splits relies on transferring some 

of the processing functions away from the RU and locating these centrally at a CU.  

In this master thesis, the concept of flexible functional splits is addressed by 

appropriately combining servers with low processing power (cloudlets) and relatively large-

scale DCs placed in the access and metro domains respectively. The remote processing 

requirements associated with some of the functional split options, impose the need for a high 

bandwidth transport interconnecting RUs and the CU. On the other hand, the variability of 

remote processing requirements across the various split options introduce the need for a 

transport network that offers finely granular and elastic resource allocation capabilities. The 

selection of the optimal split option is performed in a dynamic fashion through a novel 

mathematical model based on Evolutionary Game Theory (EGT). This model allows network 

operators to dynamically adjust their FH split option with the objective to unilaterally minimize 

their operational expenditures in terms of power consumption. The speed of convergence and 

the stability of the proposed scheme is theoretically analyzed for different scenarios and use 

cases.  Finally, the impact of various parameters characterizing the 5G network (i.e. 

bandwidth, cost transmission, power consumption etc) on the split option selection is 

analytically determined. 
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In Chapter 2, the Fifth-Generation key enablers- the Densification and the 

Centralization of Baseband processing -are presented. Chapter 3 introduces the notion of 

Flexible Centralization of Wireless Networks. Five possible functional splits are analyzed and 

the required data rate for each split is calculated. In Chapter 4, a model for calculating the 

power consumption of the base station, as well as the network’s power consumption is 

discussed. In Chapter 5, we examine the Evolutionary Game Theory, which we will use as a 

mathematical tool in order to approach this problem. Chapter 6 implements the replicator 

equation of evolutionary game theory, in order to find the optimal split. Lastly, in Chapter 7 

we examine the optimal split’s dependence on the system parameters, with the usage of 

numerical examples. 
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Chapter 2 Evolution of Mobile Wireless 
Communication Networks towards 5G 

 

Over the years there has been a rapid development in mobile communications. The 

growing number of users, in combination with the limited bandwidth, has led to the research 

of new technologies to improve service quality and enable more users to the network. The 

evolution of mobile wireless communication networks is shown in Figure 1. In order for 

wireless communications to reach the current technological standards, they evolved through 

several stages, which are called generations.  The first mobile phone networks emerged in the 

1980s, GSM followed in the 1990s, 3G reached the turn of the century, and the LTE started 

unfolding in 2009. Each generation was meant to correct the mistakes of its predecessor. GSM 

has corrected the security weaknesses of analogue communications, 3G came to cover the 

lack of GSM mobile data and the 4G eventually was needed to make data usage more user-

friendly. Now, the next generation of mobile technology (5G) is beginning to take shape.  

 

Figure 1: Evolution of wireless technologies. [1] 

 



11 
 

The evolution towards the fifth-generation networks is characterized by an enormous 

increase in data traffic. Future mobile networks shall provide a high amount of traffic with 

varying data rates from machine to machine (low data transfer) to high-speed 3D applications. 

This enormous growth is attributed to the rapidly increasing: a) number of network-connected 

end devices, b) Internet users with heavy usage patterns, c) broadband access speed, and d) 

popularity of applications such as cloud computing, video, gaming etc. [2] Thus, the need is 

emerged for the wireless networks to be able to handle changing traffic patterns, both 

spatially and temporally, as well as terminals with different quality requirements and services. 

[3] [4]  

One of the key enablers of 5G implementation is densification of the network. 5G 

demands the movement towards a denser network (Densification) in order to increase the 

efficiency of the spectral range. This leads to a network of much smaller cells, reducing the 

distance between the terminals and the radio access points (RAPs). Small cells will not be 

homogeneous, but will form a flexible heterogeneous network where resources can be 

dynamically adapted, as the users' demand in space, time and spectral resources varies. 

Nonetheless, the establishment of a denser network induces several problems. Initially, 

due to the numerous cells, there is an increase of intercell interference phenomena. 

Moreover, as the network density increases, the possibility of an access point (RAP) to transfer 

a small percentage - or even zero - of the total network traffic rises, because of the time-

varying traffic fluctuations. [3] 

Another key enabler of 5G implementation is the centralization of the Baseband 

Processing. The idea of centralized baseband processing emerged several years earlier, to 

facilitate the establishment of wireless base stations at large buildings or on a campus. The 

development of digital radio interfaces as well as Remote Radio Headers (RRHs) was crucial 

for the connection between the Base Unit (BU) and the Remote Unit (RU) through optical fiber. 

[5] With the invention of multipoint transmission and reception, this idea evolved on a larger 

scale, creating centralized wireless access networks (C-RANs). A classical C-RAN is shown in 

Figure 2. In C-RAN concept, RRHs are connected to a data center (DC) where all the digital 
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processing is executed. Radio signals are exchanged through dedicated transmission lines 

(called fronthaul) between the RRH and the data center (DC).  

The problems of densification can be handled by the centralization of baseband 

processing. As far as the intercell interference is concerned, central processing will allow the 

employment of effective Radio Resource Management (RRM) algorithms that coordinate the 

resources in multiple cells. Furthermore, it enables the optimization of the performance at a 

signal-level, for example through the processing of multiple cells and the Intercell Interference 

Coordination (ICIC). RRM and ICIC enhance the wireless network’s efficiency by avoiding, 

canceling or even exploiting the interference between neighboring cells. [3] [6] 

 

Figure 2: The classic centralized access network (C-RAN). [5] 

Centralization of digital processing is also important at network-level, as it is required 

for the orchestration and optimization of overly dense networks. For example, it provides the 

ability to selectively activate and suppress RUs, thus addressing the problem of motion 

fluctuations. In addition, pooling resources may allow the development of a flexible software. 

Depending on the actual scenario, different algorithms can be used, that have been optimized 

for specific usage situations, e.g. based on traffic characteristics, cell-to-cell relations, or the 

allocation of wireless access networks. It also allows the operator to apply the latest 

algorithms on a large scale. [6] 
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  On the other hand, at present, only optical fibers are capable of supporting the data 

rates that are required for the connection between the RRH and the data center, e.g. 10 Gbps 

for TD-LTE with bandwidth 20MHz and eight receiving antennas. [3] This need for a high-

capacity fronthaul connection is the main drawback of C-RAN. Due to the necessary use of 

optical fiber, current C-RAN networks are characterized by low flexibility and scalability, as 

only points with existing fiber optic infrastructure can be selected. In addition, current C-RAN 

infrastructures are based on baseband processor pools that do not allow the development of 

flexible and adaptive software and therefore make it impossible to exploit the huge 

capabilities of cloud computing. [4] [6] 

Therefore, there is a dispute over what is more efficient: the existence of centralized 

processing that requires large capacity links to connect the DCs with the RRHs or the old-

fashioned decentralized processing using traditional backhaul to transfer data to / from RAPs. 

To relax the stringent FH requirements of C-RAN architectures, while taking advantage of its 

pooling and coordination gains, solutions relying on alternative architectures adopting flexible 

functional splits have been proposed. [2] The introduction of flexible splits allows dividing the 

processing functions between the DC and the RU. Based on these solutions, a set of processing 

functions is performed at the RU and the remaining functions are performed centrally.  

In the next chapters, a model for identifying the optimal split, depending the 

circumstances, is proposed. The overall objective of the model is twofold: The need to address 

the huge increase in data traffic combined with a significant reduction in energy consumption. 



14 
 

Chapter 3 Flexible Centralization of Wireless 
Networks 

 

In this chapter, the idea of Radio Access Network as a Service (RANaaS) is introduced, 

an idea of a RAN that takes into consideration the actual needs and features of the network. 

Then, we examine possible split points to determine which functions will be executed locally 

on RU and which will be centralized. The required data rate for each split is also calculated. 

3.1 Radio Access Network as a Service (RANaaS) 

Centralized processing and management of 5G mobile networks should be flexible and 

adaptable to the real service requirements. Thus, a co-operation between full centralization 

and decentralization is of critical importance. This collaboration raises the new concept of the 

RAN as a Service (RANaaS), which partially centralizes the wireless access network functions 

according to actual needs and features of the network. This idea belongs to the more general 

«X as a Service» concept, according to which any kind of operation can be packaged and 

delivered as a form of a service that may be centralized within a cloud platform. [7] This 

enables increased storage and data processing capabilities that are provided by a cloud 

platform hosted on data centers. Thus, in the following, we refer to the concept of 

centralization toward commodity cloud-computing platforms as cloud-RAN. [3] 

A major feature of RANaaS is the flexible assignment of functionality between RUs and 

the central processor. Cloud-computing platforms permit the necessary adaptivity for dealing 

with time and special traffic fluctuations in mobile networks. [6] This is imperative in order to 

improve the economic and ecological operation and use of mobile networks. An additional 

advantage of cloud-RAN technology is that it does not use specialized hardware and software, 

like currently proposed by C-RAN, but general-purpose processing technology (GPPs).  [3]  
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Figure 3: Flexible functional split. [6] 

 Figure 3 shows the functional split that is recommended by RANaaS. As it is evident, the 

split offers more alternatives in processing design and, therefore, flexibility in the actual 

execution of functions. The left side of the figure represents a traditional LTE implementation, 

where all functions up to Admission/Congestion Control are locally carried out at the RU, at 

the base station (BS). On the right side C-RAN is depicted, where only RF processing is executed 

locally and all other functionalities are centralized. RANaaS on the other hand doesn’t 

centralize all RAN functions, but only a part of them. [6]  

Cloud-RAN will further advance scalar algorithms, designed for cloud computing 

environments, and therefore exploit mass parallelism. This means that the algorithms will not 

simply be conveyed to cloud computing platforms but will be redesigned to gain from the 

available computing resources. [3] Cloud-RAN allows the development of algorithms that scale 

with the need for co-operation and coordination between individual cells, for example 

depending on traffic demand and user density, RUs can be grouped differently or use different 

algorithms. 

As mentioned before, cloud-RAN permits partial (or full) unloading of the classic 

features, that are typically processed locally, on a cloud-computing platform, in order to take 
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advantage not only of computing power but also of centralized processing. In theory, such a 

separation can occur at each protocol level or at the interface between each level. However, 

the 3GPP LTE implies some timing limitations and feedback loops between the individual 

protocol layers. [6] Generally, the lower the separation of functions is imposed, the higher is 

the overhead and the more stringent is the transport capacity. 

It is obvious that this new pattern depends to a large extent on the availability of 

resources on the RANaaS platform and also on the transport capacity. Hence, a common 

design of both is crucial. 

3.2 Functional Split 

As described in the previous section, the first attempts to implement a centralized 

wireless access network were based on the complete centralization of digital processing. 

However, this process is extremely costly due to the requirement of large bandwidth and 

short-delay of the network that connects the Central Units, such as a BBU, to the local RF 

equipment, such as a RRH. In this section, in order to reduce the required bandwidth, the 

digital processing chain is analyzed, and possible split points are defined to determine which  

 

Figure 4: The functional splits between RUs and the cloud-platform for the uplink transmission. [3] 

functions will be executed locally on RU and which centrally on the cloud platform. The 

influence of each split on the required connection rate is also calculated. 

The analysis will focus on the uplink as the processing load in this case is higher than in 

the case of downlink. In this case, the received signals undergo RF processing, are transferred 
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to the baseband and converted from analog to digital (A/D conversion). Then the cyclic prefix 

(CP) is removed, and the signal is transformed to the frequency domain. Next, the subframes 

are dissembled (resource demapping). At this point the per cell processing comes to an end. 

Functions like equalization, IDFT, QAM, multi-antenna processing are performed on a per-user 

basis. The processing of the first layer ends with the Forward Error Correction (FEC).  Lastly, 

the packets are forwarded to higher-level operations (MAC, RLC, PDCP). [5] 

Figure 4 shows the digital uplink processing chain and possible points where the split of 

functions can be placed. In the following, each split point is analyzed and the required 

transport rate is calculated. 

I. SPLIT A: IQ Forwarding 

 

In this case, the received signals, after being transferred to the baseband and 

converted from analog to digital, they are forwarded to the cloud platform. 

Therefore, the whole frame, including the circular prefix, must be transmitted 

through the transport connection. This approach is used in the common public 

radio interface (CPRI). [3] The major advantage of this split is that almost no 

digital processing equipment is needed in RUs, making them smaller and 

cheaper. However, for the implementation of a flexible function split, digital 

processing equipment at the access points is needed, in which case the above 

advantage is canceled. The required transport capacity is: [3] 

 𝑅𝐴 = 𝑁𝑜 ∙ 𝑓𝑠 ∙ 2 ∙ 𝑁𝑄 ∙ 𝑁𝑅 (3.2.1) 

Where 𝑁𝑜 is the oversampling factor, 𝑓𝑠 the sampling frequency, 𝑁𝑄 are the 

quantization bits per I/Q and 𝑁𝑅 the number of the receiving antennas. 

II. SPLIT B: Subframe forwarding 

 

Here we place the split after the removal of the cyclic prefix (CP) and the Fast 

Fourier Transformation (FFT). Thus, guard subcarriers can be removed. As FFT 

can be highly efficient with dedicated equipment, it is better if it is executed 
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locally at access points. Thus, if these functions are done locally, the signal to be 

forwarded to the platform requires a lower transport rate than before. This rate 

is calculated according to the formula: [3] 

 𝑅𝐵 = 𝑁𝑠𝑐 ∙ 𝑇𝑠
−1 ∙ 2 ∙ 𝑁𝑄 ∙ 𝑁𝑅 (3.2.2) 

Where 𝑁𝑠𝑐 is the number of subcarriers that are being used. 

III. SPLIT C: RX data forwarding 

 

Another split of the functions of digital processing is after the disassembly of the 

subframes (resource demapping). If only part of the resource elements (Res) is 

used by the user's equipment, then only they will remain after the disassembly 

and therefore should be forwarded to the cloud platform. The required transport 

capacity is the fraction of the REs that are used: [3] 

 𝑅𝐶 = 𝑅𝐵 ∙ 𝜂 (3.2.3) 

Where 𝜂 is the percentage of used REs. The main advantage of this split is that 

the rate depends on the actual wireless network load over the theoretically 

maximum. 

IV. SPLIT D: Soft-bit forwarding 

 

One of the per-user functions is the ΜΙΜΟ receive processing. In a MIMO system 

that uses the diversity of receivers, multiple antenna signals are combined during 

channel equalization, thus removing the transport rate’s dependence on the 

number of receive antennas. The transport capacity decreases and is calculated 

based on the formula: [3] 

 𝑅𝐷 = 𝑅𝐶 𝑁𝑅⁄  (3.2.4) 

On the other hand, in the case of spatial multiplexing with 𝑁𝑆 levels per user 

equipment, the rate is given by the formula: [3] 
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 𝑅𝐷 = 𝑅𝐶 ∙ 𝑁𝑆 𝑁𝑅⁄  (3.2.5) 

 

V. SPLIT C: MAC-PHY 

 

The last functional split that we will assume is between the two network layers. 

In this case, all generating and tracing functions are performed locally on the 

remote unit (RU), while the higher-level functions, such as timing, are performed 

centrally. [5] The resulting transport rate is highly dependent on the modulation 

and the coding scheme, which are expressed by a factor that is called spectral 

efficiency 𝑆: [3] 

 𝑅𝐸 = 𝑁𝑠𝑐 ∙ 𝑇𝑠
−1 ∙ 𝜂 ∙ 𝑆 (3.2.6) 
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Chapter 4 Power Efficiency for Radio Networks 

 

One of the major problems that the fifth-generation network needs to solve is energy 

consumption. This is particularly important for base stations, which consume most of the total 

power in cellular networks. In this chapter, a model for calculating the power consumption of 

the base station, as well as the network’s power consumption, is analyzed. 

4.1 Power Modeling of Base Stations 

To optimize the energy consumption of new generation networks, we must first 

calculate the energy efficiency of today's mobile communications. An Energy Efficiency 

Evaluation Framework (E3F), which allows quantitative assessment of the performance in 

different traffic and load scenarios, has been developed by the EARTH (Energy Aware Radio 

and NeTwork technologies) program. [8] This framework describes a detailed base station 

power model, and focuses on how power varies in different scenarios.  

The base stations are divided according to the geographical area they serve. Thus, there 

are four main categories: macro, micro, pico and femto. [8] As it is expected, each category 

has different energy consumption. This depends on the components used for each station, for 

example macro and micro stations, which require more resetting, use less dedicated hardware 

and more Field Programmable Gate Arrays (FPGAs), which leads to higher power 

consumption.  

 

Figure 5: Base station components included in the power model. [8] 
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In order to study the energy efficiency in this model, power versus energy was used, 

since the input and output of electronic systems are usually measured in terms of power. The 

base station is divided into the parts shown in Figure 5. Those parts relate to the functions 

that occur in the base station. The BB unit refers to digital processing, RF to analog, PA to 

signal amplification and finally there is also the unit that is responsible for the power 

conversion and the cooling of the system (Overhead).  

The division of the base station helps in understanding the power consumption of each 

system’s operation and how it varies with the system parameters. These parameters are the 

bandwidth, the number of the antennas, the modulation, the coding rate, the fraction of the 

bandwidth that is being used (frequency-domain duty cycle - 𝑑𝑓) and the fraction of time at 

which the base station is operating (Time-domain duty cycle - 𝑑𝑡).  The rest of the time, the 

base station is considered to be sleeping. The number of the antennas is considered to be the 

same in both uplink and downlink [8]. Table 1 shows the typical values in which the above 

parameters range.  

The total power at the base station is measured after calculating the power 

consumption of each element. 

Table 1: Parameters affecting scaling of baseband and RF power consumption. [8] 

 

Symbol Description Range 

BW Bandwidth (MHz) 1.4-20 

Ant Number of antennas 1, 2, 4 

M Modulation (bits per symbol) 1, 2, 4, 6 

R Coding rate 1/3 – 1 

dt Time-domain duty cycling 0 - 1 

df Frequency-domain duty cycling 0 - 1 



22 
 

4.1.1 Baseband Processing 

Digital baseband processing includes all the functions that need to be done after the 

signal has been transferred to the baseband and has been digitized. Taking into consideration 

the leakage power, the total power consumption of the digital processing unit is [8]: 

 

𝑃 = 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝐿𝑒𝑎𝑘 ⟹ 

𝑃 = 𝑃𝐷𝑃𝐷 + 𝑃𝐹𝑖𝑙𝑡𝑒𝑟 + 𝑃𝐶𝑃𝑅𝐼 + 𝑃𝑂𝐹𝐷𝑀 + 

+𝑃𝐹𝐷,𝑙𝑖𝑛 + 𝑃𝐹𝐷,𝑛𝑙 + 𝑃𝐹𝐸𝐶 + 𝑃𝐶𝑃𝑈 + 𝑃𝐿𝑒𝑎𝑘 

(4.1.1) 

𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 in the above formula is the total power that is consumed by the distinct operations 

of signal processing and 𝑃𝐿𝑒𝑎𝑘 is the leakage power.  

Table 2 shows the reference values of the baseband processing operations of the four 

base station types for downlink and uplink, respectively. Those values were calculated for a 

system with 20𝑀𝐻𝑧 bandwidth, a single antenna, 64 − 𝑄𝐴𝑀, coding rate equal to 1 and a 

load of 100%. The term load refers to the fraction of time and frequency resources that the 

system uses (𝑙𝑜𝑎𝑑 = 𝑑𝑡 × 𝑑𝑓). The chosen CMOS technology is 65 𝑛𝑚.  

Table 2: Complexity of baseband operations in downlink and uplink (GOPS). [8] 

 

For the computations, the factor GOPS (Giga Operation Per Second) was used. GOPS 

expresses power models that depend on the internal performance of the selected technology 

GOPS per 
operation type 

Macro Micro Pico Femto 

D U D U D U D U 

DPD 160 - 160 - 0 - 0 - 

Filter 200 200 160 160 120 160 100 150 

CPRI/SERDES 360 360 300 300 0 0 0 0 

OFDM 80 80 80 80 70 80 60 60 

FD (linear) 30 60 30 60 20 40 20 30 

FD (non-linear) 10 20 10 20 5 10 5 10 

FEC 20 120 20 120 20 120 20 110 

CPU 200 200 200 200 30 30 20 20 
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(GOPS/W). For the 65 𝑛𝑚 Genaral Purpose CMOS technology, this factor is 40 GOPS/W for 

macro and micro stations, and  120 GOPS/W for pico and femto stations. Furthermore, the 

reference value for the leakage power is defined as [8]: 

 𝑃𝐿𝑒𝑎𝑘,𝑟𝑒𝑓 = 𝜂𝐿𝑒𝑎𝑘 ∙ 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐,𝑟𝑒𝑓 (4.1.2) 

The coefficient 𝜂 is 0.1 for the 65 𝑛𝑚 technology. It is worth noting that power 

consumption is highly dependent on technology. Specifically, for each new generation CMOS 

the dynamic power is halved, but the leakage power is tripled. 

As shown in Table 2, the deformation reduction (DPD) does not apply to small base 

stations (pico and femto) as they have different type of power amplifiers and power levels. 

Moreover, in small base stations there is no specific backbone network. [8] On the other hand, 

filtering and signal accuracy are more stringent at large base stations, which affects the power 

that is consumed during filtering and MIMO-OFDM processing. Last but not least, comparing 

the downlink and uplink results, it is obvious that MIMO processing and decoding are much 

more complex for the uplink. 

Finally, the change in power for the various operations of baseband processing with 

each system parameter in downlink is shown in Table 3. In uplink, all exponents are the same 

except in the case of non-linear processing in the frequency domain (there is cubic 

dependence instead of square). 

Table 3: Scaling exponents for the baseband sub-components in downlink. [8] 

Downlink 

Digital scaling exponents BW M R Ant. dt df 

DPD, Filter and OFDM 1 0 0 1 1 0 

CPRI/SERDES 1 1 1 1 1 1 

FD (linear) 1 0 0 1 1 1 

FD (non-linear) 1 0 0 2 1 1 

FEC 1 1 1 1 1 1 

CPU 0 0 0 1 0 0 

Leakage 1 0 0 1 0 0 
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4.1.2 Analog Processing 

The RF processing unit consists of elements like clock/carrier generator, modulators, 

multiplexers, filters, buffers, low-noise amplifiers and analog/digital converters. Table 4 and 

Table 5 demonstrate the power consumption of each element, considering the same case as 

in that of digital processing. Some elements do not exist in small base stations, so they have a 

zero value in the tables. Additionally, a downscaling factor reduces the power of small base 

stations due to less constraining specs and different hardware implementation of small cells. 

[8]  

All analog elements have a scaling exponential of 1 in relation to the number of 

antennas (Ant) and the operating time (dt). The clock generator has zero all the other 

exponential coefficients. For the rest of the elements, the exponential coefficient is 1 in 

relation to the bandwidth (ΒW) as well as the bandwidth that is being used (df) for small base 

stations. [8] 

Table 4: RF analog component power (mW) in the downlink. [8] 

 

Downlink 

Power per analog component (mW) Macro Micro Pico Femto 

IQ Modulator 1000 1000 1000 1000 

Variable attenuator 10 10 0 0 

Buffer 300 300 0 0 

Forward Voltage-Contr. Osc. (VCO1) 170 170 170 170 

Feedback Voltage-Contr. Osc. (VCO2) 170 170 0 0 

Feedback mixer 1000 1000 0 0 

Clock generation and buffering 990 990 990 990 

Digital-to-Analog Converter (DAC) 1370 1370 200 200 

Analog-to-Digital Converter (ADC) 730 730 140 140 

TOTAL 5740 5740 2500 2500 

Downscaling factor 1 2 7 12 

Total after downscaling (W) 5,7 2,9 0,4 0,2 
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Table 5: RF analog component power (mW), in the uplink. [8] 

 

The type of technology affects power consumption in this case too. An empirical 

formula for finding power consumption is: [8] 

 𝑃𝑜𝑤𝑒𝑟(𝑡𝑒𝑐ℎ) = 𝑃𝑜𝑤𝑒𝑟(65𝑛𝑚) ∙ (1 +
𝑡𝑒𝑐ℎ

65⁄ − 1

2
) (4.1.3) 

 𝑃𝑜𝑤𝑒𝑟(65 𝑛𝑚) is the power reference for the 65 𝑛𝑚 𝐶𝑀𝑂𝑆 technology. 

4.1.3 Power Amplifier 

The power amplifier cannot be modeled by a single power reference value and specific 

scaling rules. Therefore, the PA model is represented by a table containing output power 

measurements in relation to power consumption. The power model selects the point with the 

minimum power consumption that satisfies the output power’s and linearity’s limitations. 

The maximum total output power is 46 dBm for macro cell, 41 dBm for micro cell, 24 

dBm for pico and 20 dBm for femto cells. [8] 

Uplink 

Power per analog component (mW) Macro Micro Pico Femto 

First Low-Noise Ampl. (LNA1) 300 300 300 300 

Main variable attenuator 10 10 10 10 

Second Low-Noise Ampl. (LNA2) 1000 1000 0 0 

Dual mixer 1000 1000 1000 1000 

Dual IF Variable Gain Ampl. (VGA) 650 650 0 0 

Clock generation and buffering 990 990 990 990 

Analog-to-Digital Converter (ADC) 1190 1190 290 290 

TOTAL 5140 5140 2590 2590 

Downscaling factor 1 2 7 12 

Total after downscaling (W) 5,1 2,6 0,4 0,2 
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4.1.4 Overhead 

In this category belong all the elements that are related to the system power supply, 

such as AC / DC or DC / DC conversion as well as the cooling of the system. The power in this 

case is assumed to depend linearly on the total power of the rest of the base station: [8] 

 
𝑃𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = (𝑃𝐵𝐵 + 𝑃𝑅𝐹 + 𝑃𝑃𝐴)

× ((1 + 𝜂𝑐𝑜𝑜𝑙)(1 + 𝜂𝑑𝑐𝑑𝑐)(1 + 𝜂𝑎𝑐𝑑𝑐) − 1) 
(4.1.4) 

The factor 𝜂 represents the loss coefficient of each function in this category.  Typical 

values for the loss coefficients are 𝜂𝑑𝑐𝑑𝑐 = 5%, 𝜂𝑎𝑐𝑑𝑐 = 10% and 𝜂𝑐𝑜𝑜𝑙 = 10% for the big 

base stations, since small ones don’t use a cooling system. 

4.1.5 Power Consumption of the Base Station 

The total power of the base station shall be calculated according to the formula: [8] 

 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐵𝐵 + 𝑃𝑅𝐹 + 𝑃𝑃𝐴 + 𝑃𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ⟹ 

𝑃𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑖,𝑟𝑒𝑓∏(
𝑥𝑎𝑐𝑡
𝑥𝑟𝑒𝑓

)

𝑠𝑖,𝑥

𝑥∈𝑋

+

𝑖∈𝐼𝐵𝐵

+ ∑ 𝑃𝑖,𝑟𝑒𝑓∏(
𝑥𝑎𝑐𝑡
𝑥𝑟𝑒𝑓

)

𝑠𝑖,𝑥

+ 𝑃𝑃𝐴 + 𝑃𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
𝑥∈𝑋𝑖∈𝐼𝑅𝐹

 

(4.1.5) 

In the above formula, 𝐼𝐵𝐵 and 𝐼𝑅𝐹 represent the set of elements of the baseband and 

the analog processing, respectively, whereas 𝑋 = {𝐵𝑊,𝐴𝑛𝑡,𝑀, 𝑅, 𝑑𝑡, 𝑑𝑓} is the set of the 

system parameters. The 𝑠 in the above formula symbolizes the exponential scaling factor that 

relates each operation of the base station with the system parameters. For instance, if an 

element’s power doesn’t depend on the number of the antennas, then 𝑠 = 0, that is a change 

in the number of the antennas won’t affect the power consumption of that element. 

In the interest of understanding the calculation of the power consumption, lets 

compute the power of baseband processing for the scenario of 𝑋 =
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{10𝑀𝐻𝑧, 2, 4 (16𝑄𝐴𝑀),
3

4
, 100%, 30%} and 65𝑛𝑚 𝐶𝑀𝑂𝑆 technology.  Beginning from the 

reference scenario (𝑋 = {20𝑀𝐻𝑧, 1, 6 (64𝑄𝐴𝑀), 1, 100%, 100%}), we convert the GOPS 

value of table ταδε σε 𝑊: 

𝑃𝐹𝑖𝑙𝑡𝑒𝑟,𝑟𝑒𝑓 =
200

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 5𝑊, 𝑃𝐶𝑃𝑅𝐼,𝑟𝑒𝑓 =

360

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 9𝑊 

  

𝑃𝑂𝐹𝐷𝑀,𝑟𝑒𝑓 =
80

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 2𝑊, 𝑃𝐹𝐷,𝑙𝑖𝑛,,𝑟𝑒𝑓 =

60

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 1.5𝑊 

 

𝑃𝐹𝐷,𝑛𝑙,𝑟𝑒𝑓 =
20

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 0.5𝑊, 𝑃𝐹𝐸𝐶,𝑟𝑒𝑓 =

120

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 3𝑊 

 

𝑃𝐶𝑃𝑈,𝑟𝑒𝑓 =
200

40

𝐺𝑂𝑃𝑆

𝐺𝑂𝑃𝑆
𝑊⁄
= 5𝑊, 𝑃𝐿𝑒𝑎𝑘,𝑟𝑒𝑓 = 0.1 ∙ 26𝑊 = 2.6𝑊 

The scaling vector [𝑠1, … , 𝑠6] is shown in Table 3. Thus, the power consumption of each 

baseband element is: 

𝑃𝑠𝑢𝑏 = 𝑃𝑠𝑢𝑏,𝑟𝑒𝑓 ∙ (
𝐵𝑊𝑎𝑐𝑡

𝐵𝑊𝑟𝑒𝑓
)

𝑠1

∙ (
𝑀𝑎𝑐𝑡

𝑀𝑟𝑒𝑓
)

𝑠2

∙ (
𝑅𝑎𝑐𝑡
𝑅𝑟𝑒𝑓

)

𝑠3

∙ (
𝐴𝑛𝑡𝑎𝑐𝑡
𝐴𝑛𝑡𝑟𝑒𝑓

)

𝑠4

∙ (
𝑑𝑡𝑎𝑐𝑡
𝑑𝑡𝑟𝑒𝑓

)

𝑠5

∙ (
𝑑𝑓𝑎𝑐𝑡
𝑑𝑓𝑟𝑒𝑓

)

𝑠6

 

Thus, the results for each element are: 

𝑃𝐹𝑖𝑙𝑡𝑒𝑟 = 5 ∙ (
10

20
)
1

∙ (
4

6
)
0

∙ (
3
4⁄

1
)

0

∙ (
2

1
)
1

∙ (
1

1
)
1

∙ (
0.3

1
)
0

= 5𝑊 

𝑃𝐶𝑃𝑅𝐼 = 9 ∙ (
10

20
)
1

∙ (
4

6
)
1

∙ (
3
4⁄

1
)

1

∙ (
2

1
)
1

∙ (
1

1
)
1

∙ (
0.3

1
)
1

= 1.35𝑊 
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𝑃𝑂𝐹𝐷𝑀 = 2 ∙ (
10

20
)
1

∙ (
4

6
)
0

∙ (
3
4⁄

1
)

0

∙ (
2

1
)
1

∙ (
1

1
)
1

∙ (
0.3

1
)
0

= 2𝑊 

𝑃𝐹𝐷,𝑙𝑖𝑛 = 1.5 ∙ (
10

20
)
1

∙ (
4

6
)
0

∙ (
3
4⁄

1
)

0

∙ (
2

1
)
1

∙ (
1

1
)
1

∙ (
0.3

1
)
1

= 0.45𝑊 

𝑃𝐹𝐷,𝑛𝑙 = 0.5 ∙ (
10

20
)
1

∙ (
4

6
)
0

∙ (
3
4⁄

1
)

0

∙ (
2

1
)
3

∙ (
1

1
)
1

∙ (
0.3

1
)
1

= 0.6𝑊 

𝑃𝐹𝐸𝐶 = 3 ∙ (
10

20
)
1

∙ (
4

6
)
1

∙ (
3
4⁄

1
)

1

∙ (
2

1
)
1

∙ (
1

1
)
1

∙ (
0.3

1
)
1

= 0.45𝑊 

𝑃𝐶𝑃𝑈 = 5 ∙ (
10

20
)
0

∙ (
4

6
)
0

∙ (
3
4⁄

1
)

0

∙ (
2

1
)
1

∙ (
1

1
)
0

∙ (
0.3

1
)
0

= 10𝑊 

𝑃𝐿𝑒𝑎𝑘 = 2.6 ∙ (
10

20
)
1

∙ (
4

6
)
0

∙ (
3
4⁄

1
)

0

∙ (
2

1
)
1

∙ (
1

1
)
0

∙ (
0.3

1
)
0

= 2.6𝑊 

Therefore, the total power consumed by the digital baseband processing unit in this 

scenario is: 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐹𝑖𝑙𝑡𝑒𝑟 + 𝑃𝐶𝑃𝑅𝐼 + 𝑃𝑂𝐹𝐷𝑀 + 𝑃𝐹𝐷,𝑙𝑖𝑛 + 𝑃𝐹𝐷,𝑛𝑙 + 𝑃𝐹𝐸𝐶 + 𝑃𝐶𝑃𝑈 + 𝑃𝐿𝑒𝑎𝑘 = 22.45 𝑊 

4.2 Power Consumption of IP Networks 

A traditional IP network is constructed by four main parts, that are shown in Figure 6. 

The access network connects the end user with the edge switches in the provider’s network. 

The link between the access network and the core network is called metro and edge network.  

The core network is composed by core routers that perform all the necessary routing and also 

serve as the gateway to neighboring core nodes. Finally, the VDN is an additional 

infrastructure in order to deliver video program content to the access node. [9] 
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Figure 6: The structure of a traditional IP Network. [9] 

There are quite a few types of access technologies that are in use or in development, 

however, our analysis is constrained to four popular access technologies. Asymmetric Digital 

Subscriber Line (ADSL) is the most commonly used technology. The broadband service is 

delivered by the coppered pairs that are installed to deliver a fixed-line telephone service. Due 

to the fact that ADSL uses copper pair, it has limited capacity. For example, ADSL2+, gives 

theoretical speeds of 24 Mb/s downstream and 1 Mb/s upstream. [9] Fiber based technologies 

give a desirable solution in order to overcome the limit in the capacity. In Passive shared 

Optical Networks (PON) groups of end users are connected to the provider’s network by one 

single fiber, through a passive splitter. The capacity of PON networks is significantly higher 

than that of ADSL (G-PON has theoretical speeds of 2.4 Gb/s downstream and 1.2 Gb/s 

upstream). [9]  

Another viable solution, in order to exploit the copper pair infrastructure is the 

technology Fiber To The Node (FTTN). These networks use a fiber to connect the network 

switch with a cabinet close to a cluster of customers. Then high speed DSL technologies (e.g. 

VDSL) are used to connect the cabinet with the end user. Lastly, the highest access speed 

network today is the Point to Point Network (PtP) that employs a dedicated fiber between the 

customer premises and the network access node. [9] 

In order to see the dependence of the optimal split with the network technology, we 

calculate the power consumption of each part by using two power models, a linear and a 

nonlinear that takes into consideration the technology improvement rate. 
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4.2.1 Linear Model 

The total power consumption of the network consists of the power that individual 

parts of the network consume, that is:  

𝑃𝑁𝐸𝑇,𝑡𝑜𝑡 = 𝑃𝑎 + 𝑃𝑚 + 𝑃𝑐 + 𝑃𝑣𝑑𝑛 + 𝑃𝑇𝑆, (4.2.1) 

where 𝑃𝑎 is the power consumption of the access network, 𝑃𝑚 the metro and edge network’s 

power consumption, 𝑃𝑐  the core network’s power consumption, 𝑃𝑣𝑑𝑛 the power consumption 

of VDN and 𝑃𝑇𝑆 the power consumption of the transport systems.  

Each access network technology absorbs different amounts of power per customer 

(𝑃𝑎), which is [9]  

𝑃𝑎 = 𝑃𝐶𝑃𝐸 +
𝑃𝑅𝑁
𝑁𝑅𝑁

+
2𝑃𝑇𝑈
𝑁𝑇𝑈

 
(4.2.2) 

where 𝑃𝐶𝑃𝐸 , 𝑃𝑅𝑁 , 𝑃𝑇𝑈 are the power consumption of the customer premises equipment, the 

remote node and the terminal unit, respectively. 

The per customer consumption of the metro network can be expressed as: [9] 

𝑃𝑚 = 2(𝑃𝐸𝑆 + 2𝐴𝐼 (
�̃�𝐺𝑎𝑡𝑒𝑤𝑎𝑦

𝐶𝐺𝑎𝑡𝑒𝑤𝑎𝑦
+
�̃�𝑃𝐸𝑑𝑔𝑒

𝐶𝑃𝐸𝑑𝑔𝑒
)) (4.2.3) 

In the above equation �̃�𝐺𝑎𝑡𝑒𝑤𝑎𝑦/ 𝐶𝐺𝑎𝑡𝑒𝑤𝑎𝑦 and  �̃�𝑃𝐸𝑑𝑔𝑒/ 𝐶𝑃𝐸𝑑𝑔𝑒 are the total power 

consumption/ the capacity of the gateway and provider edge routers, respectively. 𝑃𝐸𝑆 is the 

power consumed by the edge Ethernet switches. The factor 𝐴𝐼 relates to the peak access rate 

𝐴𝑃. Peak access rate is the highest rate that can be provided to the customers. Nevertheless, 

network operators provide a lower worst case minimum rate to every customer, in order to 

manage the data traffic.  The connection of those two rates is through a factor that is called 

oversubscription rate (𝑀): [9] 



31 
 

𝐴𝐼 =
𝐴𝑃
𝑀

 
(4.2.4) 

 The power consumption of the VDN is: [9] 

𝑃𝑉𝐷𝑁 = 4 ×
3𝐴𝐶
𝐶

× 𝑃 
(4.2.5) 

where 𝑃, 𝐶 are the power consumption and the capacity of the VDN routers, while 𝐴𝐶  is the 

per-customer capacity in VDN.  

The per customer power consumption of the core network is given by [9] 

𝑃𝑐 =
8𝐴𝐼(𝐻 + 1)

𝐶𝑟,𝑐
× 𝑃𝑟,𝑐 

(4.2.6) 

where 𝐻 symbolizes the number of core node hops. 𝑃𝑟,𝑐, 𝐶𝑟,𝑐 are the power consumption and 

the capacity of the core routers. 

 Last but not least, it is crucial to calculate the power consumption of the WDM 

transport systems, that are important in order to connect longer links between the metro 

edge routers sites and core router sites. These systems can be either terrestrial or undersea. 

Their power consumption is expressed by the formula: [9] 

𝑃𝑇𝑆 =

{
 
 

 
 4(

𝐴𝐼(1 − 𝑈)

𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙
) ×

𝐻

2
× 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙,   𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙

4 (
𝐴𝐼𝑈

𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙
) × 𝐻 × 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙,   𝑢𝑛𝑑𝑒𝑟𝑠𝑒𝑎

 (4.2.7) 

where 𝑈 is the proportion of traffic going to neighboring nodes through undersea WDM 

systems and 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙 are the cumulative power per channel and the rate of each 

channel, respectively. 
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4.2.2 Nonlinear Model 

In recent years there have been exponential developments in the efficiency of routers 

and switches. A relation between the access rate and the technology improvement can be 

expressed as: [9] 

𝑃𝑅
𝐶𝑅
=
𝑃0
𝐶0
× (1 − 𝑎)

𝑙𝑛(𝐴/𝐴𝑜)
𝑙𝑛𝛽  

(4.2.8) 

where 𝛼 is the technology improvement rate and 𝛽 the per year traffic growth rate. 

This model will be applied to the core, VDN and metro and edge networks, but not to the 

access network, because this equipment is replaced less frequently. The WDM transport 

systems obey to the formula: [9] 

𝑃𝑊𝐷𝑀
𝐶𝑊𝐷𝑀

=
𝑃0,𝑊𝐷𝑀
𝐶0,𝑊𝐷𝑀

× (0.1 + 0.9(1 − 𝑎)
𝑙𝑛(𝐴/𝐴𝑜)
𝑙𝑛𝛽 ) 

(4.2.9) 

shows the dependence of the power per customer on the peak access rate, for the cases of 

four different access network technologies with no VDN. In this case there was assumed a 

technology improvement rate of 10%. It is evident that, as the access rate grows, the 

technologies that are copper pair- based consume a considerably large amount of power, in 

comparison with fiber-based technologies. 
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Chapter 5 Game Theory 

 

As it was pointed out, the new generation of mobile communication networks must 

confront the constant increase of data traffic. This increment will lead to a heavy load on the 

base stations, which will cause an augmentation in power consumption. A viable solution 

would be the centralization of baseband processing that was discussed in Chapter 3. However, 

a fully centralized solution indicates high data rates for the connection of the remote and the 

centralized unit. Thus, a compromise must be found, between high data rate connections and 

high power consumption. In this chapter, we examine the necessary mathematical tools in 

order to approach this problem. 

5.1 Classic Game Theory 

Classic theory game origins back to 1930, when the economist Oskar Morgenstern 

realized the difficulty of economic provisions. The problem lays to the fact that the provision 

itself may affect the economic result. Morgenstern described this phenomenon by using the 

strife between Sherlock Holmes and Professor Moriarty. These two enemies will never 

mutually outguess each in order to end up to a final solution. [10] 

As an introduction, we begin with the two-players game. Player 𝐼 can choose from a 

finite set of 𝑛 choices, which are called strategies. We represent this set by {𝑒1, 𝑒2, … , 𝑒𝑛}. 

Similarly, player 𝐼𝐼 chooses from another set of 𝑚 strategies: {𝑓1, 𝑓2, … , 𝑓𝑛}. If player 𝐼 picks 

the strategy 𝑒𝑖 and player 𝐼𝐼 the strategy 𝑓𝑗, then both players receive payoffs  𝑎𝑖𝑗 and 𝑏𝑖𝑗 

respectively. Hence, the game is described by two matrices 𝑛 × 𝑚, or alternatively we can 

describe the game by one matrix 𝑛 × 𝑚, whose 𝑖𝑗-th element represents the pair (𝑎𝑖𝑗 , 𝑏𝑖𝑗). 

The payoffs are measured on a utility scale that is consistent with the preferences of both 

players. [10] 
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Table 6: "Rock, Scissors, Paper", a classic example of a two players game. [10] 

PLAYER I    

                   PLAYER II 
ROCK SCISSORS PAPER 

ROCK (0,0) (1,-1) (-1,1) 

SCISSORS (-1,1) (0,0) (1,-1) 

PAPER (1,-1) (-1,1) (0,0) 

 

A classic example of a two players game is the game “Rock, Scissors, Paper”. [10] [11] 

Each player has to choose between three strategies. The matrix that describes the game is 

described by Table 6. According to this game, if both players choose the same strategy, then 

it’s a tie and the payoffs are zero. If the result is either (0,0) or (-1,1), then player I would have 

done better if he changes his strategy. The same applies for player II if the result is (0,0) or (1,-

1). If one prediction becomes public, at least one of the players will have the incentive to 

deviate. This deviation would be predicted by his adversary, how consequently will also 

deviate.  Thus, the players will result in an endless loop, both trying to outguess each other. 

Nevertheless, in an earlier paper, mathematician John von Neumann had found a way 

to overcome Morgenstern’s dead end. The solution lays in randomness, that is to say let the 

chance decide.  It’s obvious that if players choose their strategies with equal probability, then 

no one will have the motive to deviate. In the next decade, the collaboration of these two led 

to the birth of game theory. Landmark of their work was the publication of “Theory of Games 

and Economic Behavior” in 1944. Few years later, John Nash introduced the concept of 

equilibrium that stands for an even wider context and became the corner stone of game 

theory.  [10] [12] 

Classic game theory separates the games into three categories: matrix games, 

continuous static game games and differential games. [12]  Matrix game, like the “Rock, 

Scissor, Paper” game, have a finite number of options. When a player chooses his strategy, he 

receives a payoff that is defined by an element of the matrix. Player I’s strategy equals to the 
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selection of one row of the matrix, while player II’s strategy equals to the selection of one 

column. Hence, all payoffs are given by the elements of the matrix.  The payoff of each player 

is specified by the combination of their strategies. Continuous static games, strategies and 

payoffs are associated by a continuous manner. The use of the word “static” indicates that the 

strategy of each player is stable. Differential games are characterized by strategies and payoffs 

that constantly change with time, and by a dynamic system of differential equations. 

 One should not confuse game theory with the theory of optimization. In a conventional 

game, the goal of every player is the choice of the strategy that will maximize his payoff. When 

the player’s payoff is related only to his own strategy, we refer to it as a problem of game 

theory. The game consists of players, strategies, payoffs and rules that determine how these 

strategies lead to the corresponding payoffs. In the contrary, when each payoff is related to 

the strategies of other players, then this is an optimization problem. The main component of 

optimization theory is the concept of maximum, while game theory varies in the potential 

solutions to predict the outcome of the game and the best choices of the players. [12] 

5.1.1 Nash Equilibrium 

In order to fully understand the concepts of game theory, here we analyze a very simple 

model of strategic interaction. Let’s assume that player I chooses to play a strategy 𝒆𝑖 with 

probability 𝑥𝑖. This mixed strategy is given by a vector 𝒙 = (𝑥1, … , 𝑥𝑛) , where 𝑥𝑖 ≥ 0 and 𝑥1 +

⋯+ 𝑥𝑛 = 1. [10] [11]. The set of all the mixed strategies is represented by 𝛥𝑛 and it is a 

simplex in 𝑅𝑛. The unit vectors 𝒆𝑖 of the standard base that construct this simplex symbolize 

the original strategies. We refer to them as “pure strategies”.  Respectively player II chooses 

a mixed strategy 𝒚 from the simplex 𝛥𝑚, that is constructed by the unit vectors 𝒇𝑗. 

If player I chooses the pure strategy 𝒆𝑖, while player II a mixed strategy 𝒚 , then the 

expected payoff of player I is: [10] 

 (𝐴𝒚)𝑖 =∑ 𝛼𝑖𝑗𝑦𝑗
𝑚

𝑗=1
, (5.1.1) 
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where 𝐴 is his payoff matrix. If player I also picks a mixed strategy 𝒙, then his expected payoff 

becomes: [10] [11] 

 𝒙 ⋅ 𝐴𝒚 =∑𝑥𝑖

𝑛

𝑖=1

(𝐴𝒚)𝑖 =∑∑𝛼𝑖𝑗𝑥𝑖𝑦𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (5.1.2) 

Equally, player II receives a payoff: 

 𝒙 ⋅ 𝐵𝒚 =∑𝑥𝑖

𝑛

𝑖=1

(𝐵𝒚)𝑖 =∑∑𝑏𝑖𝑗𝑥𝑖𝑦𝑗

𝑚

𝑗=1

𝑛

𝑖=1

, (5.1.3) 

where 𝐴 is his payoff matrix. 

Assuming that player I knows the strategy 𝒚 of his opponent, he must use the strategy that is 

the best response to 𝒚. The set of “best responses” is defined as: [10] 

 𝐵𝑅(𝒚) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑥
 𝑥 ⋅ 𝐴𝒚 (5.1.4) 

That is the set of all 𝑥 ∈ 𝜟𝑛 for which 𝒛 ∙ 𝐴𝒚 ≤ 𝒙 ∙ 𝐴𝒚 for all 𝒛 ∈ ∆𝑛.  The set of best 

replies is never void, because the function 𝒛 ↦ 𝒛 ∙ 𝐴𝒚 is continuous and 𝜟𝑛 is compact. 

Additionally, if 𝒙 ∈  𝐵𝑅(𝒚), then all the “pure strategies” 𝒆𝒊 with 𝑥𝑖 ≥ 0 belong to the set: [10] 

 (𝐴𝒚)𝑖 = 𝒆𝑖 ∙ 𝐴𝒚 ≤ 𝒙 ∙ 𝐴𝒚 (5.1.5) 

When player I has found the best response to strategy 𝒚 of his adversary, he has no 

reason to deviate, as long as player II doesn’t change his strategy. Player II will remain to his 

strategy only if he has no reason to deviate, that is if he has found the best response to the 

strategy of player I. Two strategies form a “Nash equilibrium” if mutually they are the best 

response to each other, i.e. 𝒙 ∈  𝐵𝑅(𝒚) and 𝒚 ∈  𝐵𝑅(𝒙). [10] A Nash equilibrium states that 

no player has the incentive to deviate from their strategies. Nash equilibrium exists in every 

strategic game. This is true for even larger game categories, for every number of players, every 

set of strategies and ever payoff function.   
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A symmetric Nash equilibrium pair is of most importance, that is a pair of a Nash 

equilibrium in which 𝒙 = 𝒚. A symmetric Nash equilibrium point is therefore determined by a 

𝒙 strategy that has the property of being the optimal response to itself: [10] 

 𝒛 ∙ 𝐴𝒙 ≤ 𝒙 ∙ 𝐴𝒙, (5.1.6) 

for all 𝒛 ∈ ∆𝑛, i.e no player can improve his payoff by changing unilaterally. In every 

symmetrical game there exists a symmetric Nash equilibrium. 

Mixed strategies are the corner stone of Nash equilibrium. Their importance is evident 

in the game “Rock, Scissors, Paper”. In this case the mixed strategy 𝒙 = (
1

3
,
1

3
,
1

3
), that consists 

of the choice of equal probability between the three pure strategies, leads to a Nash 

equilibrium pair. There is no reason for the players to deviate. Instead, if player I chooses 

another strategy but strategy 𝒙 of his opponent, then he will still receive a zero payoff, but 

player II will have the motive to deviate, which lead to the deviation of player I etc.  

5.2 Evolutionary Game Theory 

Up to now, the discussion was about games of two players who try to guess each other’s 

strategy in order to find the best response. These games, which belong to the classic game 

theory, were addressed to mathematical and economical problems. Beginning from the sixties 

and seventies, theory as well as its applications were motivated by problems of evolutionary 

biology, like the sex ratio or the investigation of fight behavior in the animal kingdom. 

Consequently, the necessity of an essential change of scene was emerged, especially the 

introduction of thinking in terms of population in game theory.  

Evolutionary game theory studies the behavior of large populations, whose members 

repeatedly participate in strategic interactions [11]. The mathematician and biologist Maynard 

Smith was the first who studied the evolution from the angle of game theory, in his book 

“Evolution and Theory of Games”. He adjusted the methods that were created to explain the 

economic behavior, in the biologic natural selection. Evolution through natural selection 

belongs to the evolutionary game theory in the sense that it also has players, strategies, set 
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of strategies and payoffs. According to Maynard, evolution Is about the survival of a distinct 

strategy among a population of individuals who probably use many different strategies. 

There are several points in which evolutionary game theory separates itself from the 

classic. To start with, evolutionary game theory doesn’t belong to any of the three categories 

of classical games. One could say that it is a hybrid between continuous static games and 

differential ones. Furthermore, the attention now focuses on the strategies that will remain 

as time goes by, instead of classical game theory, where the focus was on the players who 

tried to choose the proper strategies in order to optimize their payoff. In classical game theory, 

each player may have different sets of strategies and different payoffs that correspond to 

them. On the other hand, in evolutionary game theory there are groups of individuals that are 

identical in the sense that they choose from the same set of strategies and have the same 

payoffs that correspond to the same strategies. In classical game theory, individuals try to 

optimize their payoffs, based on their personal interest, while in an evolutionary game natural 

selection is the optimization factor.  In conclusion, one can say that classic game theory 

focuses on the winners, whereas evolutionary game theory focuses on the survivors. This 

doesn’t mean that winners can’t be survivors rather that survivors don’t have to be the 

winners. [12] 

A significant part of the importance of the evolutionary game theory is its appliance in 

many different problems, like language evolution, social dilemmas or animal behavior. Its 

methods are becoming more and more popular in computer science, in engineering and 

automation, since they assist the design and the control of multi user systems (like driving 

drivers through motorway networks, or routing packets over the Internet). 

5.2.1 Evolutionary Stability 

In his effort to explain evolution in terms of game theory, Maynard introduced a basic 

principle: The evolutionary success of a given behavioral characteristic depends on the 

dominance of all behavioral characteristics. [11] As a consequence, natural selection among 

the traits can be modeled as a random match of animals to play Normal Form Games. A 
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Normal Form Game is a strategic interaction in which each of the 𝑛 players chooses a strategy 

and receives a payoff that depends on the strategic choices that were made by all players. [11] 

The main problem that emerges from this assumption is finding the proper solution 

for the games. Every evolutionary system produces trajectories of changing strategic values. 

[12] The question that arises is if these trajectories end up in a stable point, and if those stable 

points have anything in common.  Specifically do these points have the property of producing 

the best strategy given the circumstances? One may consider that the best strategy is the one 

that maximizes the total payoff, however such a solution may not be appropriate given the 

nature of evolutionary game theory. 

Working on this direction, in 1973, Maynard Smith with Price proposed a concept of 

stability for populations of animals who share a common trait. That is, in order for a strategy 

to be evolutionary stable, it must resist the invasion of other strategies. Particularly, let’s 

assume that an animal population, that is programmed to play the mixed strategy 𝒙, is invaded 

by a group of mutants who play the mixed strategy 𝒚. The mixed strategy 𝒙 forms an 

Evolutionary Stable Strategy (ESS), if despite the choice of 𝒚, the expected payoff of a domestic 

animal at a random match after the invasion is bigger than that of a mutant’s. This is true as 

long as the size of the mutants’ group is sufficiently small. [11] [12] 

Based on the above definition, the resistance in an invasion is strong only when the 

majority of the population is using the ESS. ESS should be the best strategy from all the 

alternatives when it is common to the entire population. Soon it became clear that the 

concept of ESS had many similarities with the Nash equilibrium from a classic game. Both 

concepts refer to strategies which when they are played by the entire population, then no one 

will benefit by changing strategy unilaterally. They differ, though, to the fact that Nash 

equilibrium is associated with the payoffs without taking into consideration the dynamic of 

the population, whereas an ESS must also refer to the population dynamics, i.e. how the 

population is affected by the strategies that exist inside and between the populations. [12] 

The definition of an Evolutionary Stable Strategy can be expressed by the assistance of 

two conditions: [11] 
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 𝒙 ⋅ 𝐴𝒙 ≥ 𝒚 ⋅ 𝐴𝒙, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒚 ∈ ∆𝑛 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝒚 ≠ 𝒙, [𝒙 ⋅ 𝐴𝒙 = 𝒚 ⋅ 𝐴𝒙] 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 , [𝒙 ⋅ 𝐴𝒙 > 𝒚 ⋅ 𝐴𝒚] 

(5.2.1) 

First condition is the description of Nash Equilibrium. Native strategy 𝒙 must be the 

best response to itself. Second condition states that if a mutant’s strategy 𝒚, is the best 

response to 𝒙, then the native earns a higher payoff against the mutant, than the mutant 

against himself. 

In conclusion, the concept of ESS of Maynard Smith attempts to explain the dynamic 

evolution of natural selection with the usage of a static definition. This can be extended in 

order to cover a wide range of strategic sets, and has been generalized in many directions.  

5.2.2 Population Games 

Population game provide a simple and general frame for studying strategic interactions 

in large populations, whose members play pure strategies.  Consider a population, where each 

of the players has a given strategy. Randomly in time, two random players meet and play a 

game by using their strategies. These strategies are analyzed as behavioral programs, in the 

sense that they can be teached, inherited or imprinted by every other way.   In order to 

simplify the analysis, all the individuals are assumed to be identical. They differ only in their 

strategies. Such games are called symmetric. This assumption isn’t always true, like the case 

of sellers and consumers or the case of parents and offsprings. [10] 

In symmetric games of two players, there is no distinguish among player I and II. Both 

players have the same set of strategies, i.e. 𝑛 = 𝑚 and 𝑓𝑗 = 𝑒𝑗 for all 𝑗. If a player chooses the 

strategy 𝑒𝑖 over someone who chose the strategy 𝑒𝑗, then he receives the same payoff, 

regardless if he is player I or II. For the payoff matrices, this means that 𝛼𝑖𝑗 = 𝑏𝑗𝑖  or 𝐵 = 𝐴𝑇. 

The behavior of the entire population is described by a population state  𝒙 ∈ ∆𝑛, where 𝑥𝑗 

represents the percentage of players who choose the pure strategy 𝑒𝑗. It must be noticed that 

the same symbol 𝒙 that was used before to state a mixed strategy of a certain player, is now 

used to denote a population state. [10] [11] 
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As population game is a continuous payoff function 𝐹 ∶  ∆𝑛→ 𝑅𝑛. Scalar 𝐹𝑖(𝒙) 

expresses the payoff of strategy 𝑒𝑖 when the population state is 𝒙. That is, a player that plays 

the strategy 𝑒𝑖 has expected payoff  𝐹𝑖(𝒙), while the mean payoff of the population is �̅�(𝑥) =

∑ 𝑥𝑖𝐹𝑖(𝒙)𝑖 . The expected payoff 𝐹𝑖(𝒙) and the mean payoff 𝐹(𝑥) are given by the expressions: 

[11] 

 𝐹𝑖(𝒙) = (𝐴𝒙)𝑖 =∑𝛼𝑖𝑗𝑥𝑗
𝑗

 , (5.2.2) 

 �̅�(𝒙) = 𝒙𝐴𝒙 (5.2.3) 

5.2.3 Revision Protocols 

Before tackling the evolution dynamics it’s necessary to introduce a basis for the 

evolutionary model. This foundation is the revision protocol, which describes the timing as 

well as the results of the players’ myopic decisions about their behavior in strategic 

interactions. A revision protocol is a map 𝜌: 𝑅𝑛 × 𝛥𝑛 → 𝑅+
𝑛×𝑛 that accepts as inputs the 

vectors of payoffs 𝝅 and the population states 𝒙 and returns no negative matrices as output. 

The scalar 𝜌𝑖𝑗(𝝅, 𝒙) is called the conditional switch rate from strategy 𝑒𝑖 to strategy 𝑒𝑗. [11] 

A revision protocol 𝜌, a population game 𝐹 and a population size 𝑁 form a continuous 

evolutionary process- a Markov process. According to Markov process, each player in the 

population is supplied with a stochastic alarm clock.  The times between the ringings of each 

players alarm are independent and they are dominated by an exponential distribution with 

rate 𝑅.  When the clock rings, it creates a revision opportunity for the alarm’s owner. If a player 

who uses strategy 𝑒𝑖 gets a revision opportunity, he changes his strategy from 𝑒𝑖 to 𝑒𝑗 with a 

probability 𝜌𝑖𝑗/𝑅. If a change takes place, then the population state changes from state 𝒙 to 

state 𝒚 that correspond to the change of the player’s strategy. 

There are many types of revision protocols. One of them is the imitative protocol, that 

has the form: [11] 
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 𝜌𝑖𝑗(𝝅, 𝒙) = 𝑥𝑗�̂�𝑖𝑗(𝝅, 𝒙) (5.2.4) 

In accordance with this protocol, a player of 𝑒𝑖 strategy, with the arrival of a revision 

opportunity, chooses a random opponent and observes his strategy 𝑒𝑗.  The player changes to 

the strategy of his opponent with probability �̂�𝑖𝑗. Take into consideration that the player does 

not need to be aware of the value of the population state 𝑥𝑗. This term in the above equation 

simply declares the observation of the opponent’s strategy. 

In imitative protocols only strategies that already exist in the population may be 

chosen from the players that have a revision opportunity. In other protocols, the behavior of 

the players doesn’t depend directly on the current behavior of the population, but vicariously 

through its effect on the payoffs. These protocols are called evaluative protocols and require 

from the players to directly calculate the payoff of every strategy, unlike the indirect 

calculation that is offered by the imitative protocols. [11] 

5.2.4 Mean Dynamic 

As it is described above, a revision protocol 𝜌, a population game 𝐹 and a population 

size 𝑁 form a Markov process. The next step of the analysis is the assumption that the 

population evolves as time passes, in the sense that the percentages of the players who use 

specific strategies may change.  

Each of the 𝑁 players receives revision opportunities with rate 𝑅 of exponential 

distribution. Thus for 𝑑𝑡 time span, there are expected 𝑅𝑑𝑡 revision opportunities. The 

expected number of revision opportunities that are received by the players who use strategy 

𝑒𝑖 is approximately 𝑁𝑥𝑖𝑅𝑑𝑡, where 𝒙 is current state of the population. When a player with 

strategy 𝑒𝑖 receives an opportunity, he can switch to the strategy  𝑒𝑗 with probability 𝜌𝑖𝑗/𝑅. 

Hence the expected number of those switches for the next 𝑑𝑡 time span is 𝑁𝑥𝑖𝜌𝑖𝑗𝑑𝑡. This 

leads to the mathematical expression of the expected change in the number of players who 

use the strategy 𝑒𝑖 in 𝑑𝑡 time units: [11] 
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(𝑥𝑖)𝑡+𝑑𝑡 − (𝑥𝑖)𝑡 = 𝑁(∑𝑥𝑗
𝑗

𝜌𝑗𝑖(𝐹(𝒙), 𝒙) − 𝑥𝑖∑𝜌𝑗𝑖(𝐹(𝒙), 𝒙)

𝑗

)𝑑𝑡 (5.2.5) 

By dividing the above equation with the number of the players in the population (𝑁) 

and eliminating the time differential 𝑑𝑡, we end up with a differential equation that describes 

the rate of change in the percentage of players using strategy 𝑒𝑖: [11] 

 �̇�𝑖 =∑𝑥𝑗
𝑗

𝜌𝑗𝑖(𝐹(𝒙), 𝒙) − 𝑥𝑖∑𝜌𝑗𝑖(𝐹(𝒙), 𝒙)

𝑗

 (5.2.6) 

The differential equation that arose is called “Mean Dynamics”. The first term 

describes the inflow of players of other strategies who change to strategy 𝑒𝑖, while the second 

term refers to the outflow of players who use strategy 𝑒𝑖, to other strategies. 

5.2.5 Replicator Equation 

Replicator Equation is the most notable dynamic of evolutionary game theory. 

According to the replicator equation the rate of change in the percentage of players using one 

strategy is: [11] 

 �̇�𝑖 = 𝑥𝑖(𝐹𝑖(𝒙) − �̅�(𝒙)) (5.2.7) 

As stated in ((6.1.6) the percentage growth rate 
�̇�𝑖
𝑥𝑖⁄  of the strategies that are 

currently used is equal to the excess of the current payoff versus the average population’s 

payoff. This means that strategies employed at present will be spread or eliminated depending 

on whether their payoff is better or worse than the average. On the other hand, unused 

strategies will remain unused. Notice that 𝛴�̇�𝑖 = 0. 

One of the revision protocol that produces the replicator equation is the pairwise 

proportional imitation protocol: [11] 

 𝜌𝑖𝑗(𝝅, 𝒙) = 𝑥𝑗[𝜋𝑗 − 𝜋𝑖]+ (5.2.8) 
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This protocol is an imitative protocol. When one player receives a revision opportunity, 

he chooses an opponent and imitates his strategy only when the payoff of the opponent’s 

strategy is higher than his, with probability proportional to the difference of the payoffs. 

One interesting property of the replicator equation is that it remains unchanged even 

by adding an arbitrary function 𝑏(𝑥) to all payoffs 𝐹𝑖(𝑥) = (𝐴𝒙)𝑖. The factors that are added 

to the payoffs are also added to the average payoff �̅�(𝒙) = 𝒙 ⋅ 𝐴𝒙, cancelling the difference. 

This means that a constant 𝑐𝑗 can be added in the 𝑗 − 𝑡ℎ column of the matrix 𝐴, without 

changing the dynamic of the replicator. Another significant property is described by the 

formula below: [10] 

 (
𝑥𝑖

𝑥𝑗
)
̇
=

𝑥𝑖

𝑥𝑗
[(𝐴𝒙)𝑖 − (𝐴𝒙)𝑗],            𝑥𝑗 > 0, (5.2.9) 

i.e. the relative sizes of two strategies change according to the difference of their payoffs. 

Generally, it is true that: [10]  

 �̇� = 𝑉 [𝒑 ∙ 𝐴𝒙 − (∑𝑝𝑖) 𝒙 ∙ 𝐴𝒙] ,          𝑉 =∏𝑥𝑖
𝑝𝑖  (5.2.10) 

The points where all the payoffs values (𝐴𝒛)𝑖 , for all 𝒛𝑖 > 0, are equal, are called 

resting points of the replicator equation. The typical value of those payoffs is the average 

payoff 𝒛 ∙ 𝐴𝒛. [10] All vectors 𝑒𝑖 of ∆𝑛 simplex are resting points. This is obvious since if all 

players use the same strategy, then the adoption of the opponents’ strategy won’t lead to any 

difference. In the interior ∆𝑛, the resting point exists as the solution of the linear equation: 

 (𝐴𝒙)1 = ⋯ = (𝐴𝒙)𝑛 (5.2.11) 

If there is no resting point inside of ∆𝑛, then all the trajectories in ∆𝑛 convert on the 

limits for 𝑡 → ±∞. On the contrary, if resting point exists in the interior of ∆𝑛, then there is a 

trajectory that is bounded away from the borders. 

As an example, let’s assume a symmetric game 𝑛 × 𝑛 with a payoff matrix 𝐴 and a 

symmetric Nash equilibrium point 𝑧.  Based on (5.1.6) we conclude that: 
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 (𝐴𝒛)𝑖 ≤ 𝒛 ⋅ 𝐴𝒛 (5.2.12) 

For all 𝑖 = 1,… , 𝑛. Equality should apply to all  𝑖 for which 𝑧𝑖 > 0. The z-point is the 

resting point of replicator equation. It is also a saturation point, which means that for             

𝑧𝑖 = 0: 

 (𝐴𝒛)𝑖 − 𝒛 ⋅ 𝐴𝒛 ≤ 0 (5.2.13) 

Every saturation point is also a point of symmetrical Nash equilibrium, but the opposite 

is not true. In the interior of ∆𝑛 each resting point is saturated. In the borders, though, there 

may be resting points that are not saturated. In this case there are strategies that although 

they are not present in the state population 𝑧, have a better payoff than the average. [10] 

5.2.6 Lyapunov stability 

Nonlinear differential equations, like the replicator equation, cannot be resolved in 

any reasonably convenient way. One of the approaches that is being used for these cases, is 

the concept of stability, which leads to a qualitive understanding of the behavior of the 

solutions, rather than detailed quantitative information. 

Firstly, it is important to become familiar with the stability concept. We assume an 

ODE system of the form: 

 𝑑𝒙

𝑑𝑡
= 𝑓(𝒙) (5.2.14) 

Notice that the right part of the above formula, doesn’t contain the independent 

variable 𝑡. These ODE systems are called autonomous. [13] The aim is to characterize the 

stability of the equilibrium points. These points are found by solving the equation: 

 𝑓(𝒙) = 0 (5.2.15) 

This also means that for an equilibrium point it is true that 
𝑑𝒙

𝑑𝑡
=0, thus it constitutes a stable 

solution, that is an equilibrium.  
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Let’s say that an equilibrium point is the point 𝒙𝟎. The equilibrium point is said to be [14]: 

• stable if, for each 휀 > 0, there is a 𝛿 = 𝛿(휀) > 0 such that  

‖𝒙(0) − 𝒙𝟎‖ < 𝛿 ⇒ ‖𝒙(𝑡) − 𝒙𝟎‖ < 휀, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 ≥ 0. 

According to the above definition every solution that begins near 𝒙𝟎-that is the 

distance 𝛿- remain close to 𝒙𝟎-that is the distance 휀.  

• unstable if it is not stable. 

• asymptotically stable if it stable and 𝛿 can be chosen such that 

‖𝒙(0) − 𝒙𝟎‖ < 𝛿 ⇒  lim
𝑡→∞

𝒙(𝑡) = 𝒙𝟎. 

This means that the trajectories that begin near 𝒙𝟎, need not only to stay close to it, 

but also to approach 𝒙𝟎 as 𝑡 → ∞. 

Asymptotically stability is a stronger property than the property of simple stability. An 

equilibrium point must already be stable in order to examine if it is asymptotically stable. On 

the other hand, the limit of asymptotically stability’s definition, does not imply by itself the 

simple stability. There can be examples where all trajectories approach 𝒙𝟎 as 𝑡 → ∞, but for 

which 𝒙𝟎 isn’t a stable equilibrium point. [14] 

Having discussed the concept of stability, it is time to introduce the Lyapunov’s Indirect 

Method for finding the stability of a nonlinear system’s equilibrium points. Let us go back to 

the nonlinear autonomous system 5.2.14: 

𝑑𝒙

𝑑𝑡
= 𝑓(𝒙) 

By expanding the nonlinear function 𝑓 as a Taylor series about the equilibrium 𝒙 = 𝒙𝟎 we get: 

𝑓(𝒙) = 𝑓(𝒙𝟎) +
𝜕𝑓

𝜕𝒙
(𝒙𝟎)𝒙 + 𝑂(𝒙2) =

𝜕𝑓

𝜕𝒙
(𝒙𝟎)𝒙 + 𝑂(𝒙2) (5.2.16) 

If the initial condition 𝒙(0) = 𝒙0 is chosen close enough to 𝒙𝟎, then 𝒙 will be ‘small’ for some 

time interval extending from zero. Thus, we should be able to neglect the higher-order terms, 

and approximate our nonlinear system by the linear system: 
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�̇� = 𝐴𝒙, 𝑤ℎ𝑒𝑟𝑒  𝐴 =
𝜕𝑓

𝜕𝒙
(𝒙𝟎), the Jacobian matrix at 𝒙𝟎. (5.2.17) 

The stability of the equilibrium point 𝒙𝟎 is determined by the eigenvalues 𝜆𝑖 of the 

Jacobian matrix 𝐴. Thus [15]: 

•  𝒙𝟎 is asymptotically stable if ℜ(𝜆𝑖) < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝜆𝑖 𝑜𝑓 𝐴, 

•  𝒙𝟎 is unstable if ℜ(𝜆𝑖) > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝜆𝑖 𝑜𝑓 𝐴. 

However, if some eigenvalues have  ℜ(𝜆𝑖) = 0 then the linearization method of Lyapunov 

cannot determine the stability of the equilibrium point because the higher order terms of the 

Taylor Series become significant. 
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Chapter 6 Optimization of functional splits 

 

Having already discussed the functional splits of digital processing, in this chapter our 

interest focuses in finding the optimal split, depending on the circumstances. Each split has 

different demands as far as network and baseband processing is concerned. The lower the 

functional split is placed within the protocol stack, the higher is the demand on the network 

rate and, consequently, the network power. This is obvious since more data need to be 

transferred through the network. On the other hand, the baseband processing resources, that 

is the processing power, are reduced, since the functions that were typically performed within 

the base station, are now performed on the cloud. In this chapter, we use evolutionary game 

theory in order to extract the optimal functional split. 

6.1 Functional splits and game theory 

Let’s assume a population of N players. Each player chooses a strategy from the finite 

set S, that consists of 5 strategies- the 5 possible functional splits that were analyzed in the 

previous chapter. In order to simplify the problem, we will assume the case of the uplink. Table 

7 sums up the required transfer rate and required total processing power.   

Table 7: Network and processing demands of each functional split. 

Strategies                      

(Uplink) 

Required 

data rate 
Total Processing Power  

SPLIT 1  𝑅1 𝛼 ∙ 𝑃𝑅𝐹 + 𝛽 ∙ (𝑃𝑂𝐹𝐷𝑀 + 𝑃𝐹𝐷,𝑙 + 𝑃𝐹𝐷,𝑛𝑙 + 𝑃𝐹𝐸𝐶) 

SPLIT 2 𝑅2 𝛼 ∙ (𝑃𝑅𝐹 + 𝑃𝑂𝐹𝐷𝑀) + 𝛽 ∙ (𝑃𝐹𝐷,𝑙 + 𝑃𝐹𝐷,𝑛𝑙 + 𝑃𝐹𝐸𝐶) 

SPLIT 3 𝑅3 𝛼 ∙ (𝑃𝑅𝐹 + 𝑃𝑂𝐹𝐷𝑀 + 𝑃𝐹𝐷,𝑙) + 𝛽 ∙(𝑃𝐹𝐷,𝑛𝑙 + 𝑃𝐹𝐸𝐶) 

SPLIT 4 𝑅4 𝛼 ∙ (𝑃𝑅𝐹 + 𝑃𝑂𝐹𝐷𝑀 + 𝑃𝐹𝐷,𝑙+𝑃𝐹𝐷,𝑛𝑙) + 𝛽 ∙ 𝑃𝐹𝐸𝐶 

SPLIT 5  𝑅5 𝛼 ∙ (𝑃𝑅𝐹 + 𝑃𝑂𝐹𝐷𝑀 + 𝑃𝐹𝐷,𝑙 + 𝑃𝐹𝐷,𝑛𝑙 + 𝑃𝐹𝐸𝐶) 
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The total processing power is the sum of the required processing power on the 

antenna and the processing power on the cloud. It is easily concluded that the cost of local 

processing is higher than the cost of the remote one. For simplification purposes, we will 

assume the same power model as in the case of a macro base station, discussed in Chapter 4, 

for the case of the cloud. Taking this into consideration, the differentiation between the 

required local and remote processing power will be inserted by multiplying with a factor 𝑎 and 

𝛽 the two terms, respectively, with 𝑎 > 𝛽. The required rate depends on the type of the 

network. Both network and CPU resources will be depicted in the payoff matrix of the game. 

In order to be able to do elementary operations between those two parameters we assume a 

linear (with no improvement rate) and a nonlinear dependence of the network power and the 

network rate: 

 𝑃𝑁𝑒𝑡 = 𝑓(𝑅) (6.1.1) 

Consequently, for each split 𝑗 corresponds a total network power consumption 𝑃𝑁𝑗 

and a total baseband processing power consumption 𝑃𝑗. Random in time, two players of the 

population meet and play a game. In order to find the split with the minimum power 

consumption we describe the game with a 5 × 5 matrix whose elements are calculated by the 

formula: 

 𝑎𝑖𝑗 = −𝑃𝑖(𝑁𝑒𝑡𝑤𝑜𝑟𝑘 + 𝐶𝑃𝑈) − 𝑃𝑗(𝑁𝑒𝑡𝑤𝑜𝑟𝑘 + 𝐶𝑃𝑈),       𝑖, 𝑗 = 1,… ,5. (6.1.2)  

Therefore, the matrix is: 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑎11

𝑎11 + 𝑎22
2

𝑎11 + 𝑎33
2

𝑎11 + 𝑎44
2

𝑎11 + 𝑎55
2

𝑎11 + 𝑎22
2

𝑎22
𝑎22 + 𝑎33

2

𝑎22 + 𝑎44
2

𝑎22 + 𝑎55
2

𝑎11 + 𝑎33
2

𝑎22 + 𝑎33
2

𝑎33
𝑎33 + 𝑎44

2

𝑎33 + 𝑎55
2

𝑎11 + 𝑎44
2

𝑎22 + 𝑎44
2

𝑎33 + 𝑎44
2

𝑎44
𝑎44 + 𝑎55

2

𝑎11 + 𝑎55
2

𝑎22 + 𝑎55
2

𝑎33 + 𝑎55
2

𝑎44 + 𝑎55
2

𝑎55 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

   (6.1.3) 

 

Where: 

 𝑎𝑖𝑖 = −2 ∙ (𝑃𝑁𝑒𝑡𝑖 + 𝑃𝐶𝑃𝑈𝑖),    𝑖 = 1,… ,5. (6.1.4) 
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The aggregate behavior of the players is described by a vector 𝒙𝜖𝑿, where 𝑥𝑗 , 𝑗 =

1, … ,5, represents the proportion of the population that plays strategy 𝑗: 

 

𝒙 =

[
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5]
 
 
 
 

, 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 1 (6.1.5) 

So as to calculate the rate of change in the proportion of players choosing strategy 𝑖, 

the replicator equation is deployed: 

 �̇�𝑖 = 𝑥𝑖(𝐹𝑖(𝒙) − �̅�(𝒙)) ⇒ 

�̇�𝑖 = 𝑥𝑖((𝐴𝒙)𝑖 − 𝒙𝐴𝒙). 
(6.1.6) 

The term (𝐴𝒙)𝑖 represents the payoff of strategy 𝑖, while the term 𝒙𝐴𝒙 represents the mean 

payoff of the population. In order to calculate these terms, we will use the property of the 

replicator equation of remaining unchanged even by adding a constant 𝑐𝑗 in the 𝑗 − 𝑡ℎ column 

of the matrix 𝐴. Thus, we add the term 
𝑎𝑖𝑖

2
 to the 𝑖 − 𝑡ℎ column of the matrix 𝐴, which leads 

to the matrix: 

 

𝐴′ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑎11
2

𝑎11
2

𝑎11
2

𝑎11
2

𝑎11
2

𝑎22
2

𝑎22
2

𝑎22
2

𝑎22
2

𝑎22
2

𝑎33
2

𝑎33
2

𝑎33
2

𝑎33
2

𝑎33
2

𝑎44
2

𝑎44
2

𝑎44
2

𝑎44
2

𝑎44
2

𝑎55
2

𝑎55
2

𝑎55
2

𝑎55
2

𝑎55
2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.1.7) 

 

 

First one shall calculate the matrix 𝐴′𝒙: 
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𝐴′𝒙 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑎11
2

𝑎22
2

𝑎33
2

𝑎44
2

𝑎55
2 ]
 
 
 
 
 
 
 
 
 
 
 

    

(6.1.8) 

 The mean payoff follows: 

Hence the system of differential equations that emerges after substituting equations 6.1.8 

and 6.1.9 in equation (6.1.6 is:  

{
 
 
 
 

 
 
 
 �̇�1 =

𝑥1
2
∙ [(𝑎55 − 𝑎11)𝑥1 + (𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3 + (𝑎55 − 𝑎44)𝑥4 + 𝑎11 − 𝑎55]

�̇�2 =
𝑥2
2
∙ [(𝑎55 − 𝑎11)𝑥1 + (𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3 + (𝑎55 − 𝑎44)𝑥4 + 𝑎22 − 𝑎55]

�̇�3 =
𝑥3
2
∙ [(𝑎55 − 𝑎11)𝑥1 + (𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3 + (𝑎55 − 𝑎44)𝑥4 + 𝑎33 − 𝑎55]

�̇�4 =
𝑥4
2
∙ [(𝑎55 − 𝑎11)𝑥1 + (𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3 + (𝑎55 − 𝑎44)𝑥4 + 𝑎44 − 𝑎55]

𝑥5 = 1 − 𝑥1 − 𝑥2 − 𝑥3 − 𝑥4

 (6.1.10) 

6.2 Linearization and stability 

The system of differential equations that emerged in the previous section is a nonlinear 

dynamical system. Since this system cannot be easily solved by analytical methods it is 

important to examine its qualitive behavior without actually solving it. Our attention 

concentrates in finding the stability of a solution. The guidebook for this direction the 

Lyapunov stability theorem that has been discussed in Chapter 5. 

𝒙 ∙ (𝐴′𝒙) =
𝑎11 − 𝑎55

2
𝑥1 +

𝑎22 − 𝑎55
2

𝑥2 +
𝑎33 − 𝑎55

2
𝑥3 +

𝑎44 − 𝑎55
2

𝑥4 +
𝑎55
2

   (6.1.9) 
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We need to find the equilibrium points of system 6.1.10 by setting the right part of the 

equations equal to zero. After some calculation, we get four equilibrium points: 

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) =

{
 
 

 
 
(1,0,0,0,0)
(0,1,0,0,0)
(0,0,1,0,0)
(0,0,0,1,0)
(0,0,0,0,1)

 (6.1.11) 

The next step is to calculate the Jacobian matrix for each equilibrium point. For this 

direction, we shall differentiate the functions in the right part of the system with respect to 

each 𝑥𝑖  parameter: 

𝜕𝐹1(𝑥)

𝜕𝑥1
=
1

2
[2(𝑎55 − 𝑎11)𝑥1 +  (𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3+(𝑎55 − 𝑎44)𝑥4 + (𝑎11 − 𝑎55)] 

𝜕𝐹1(𝑥)

𝜕𝑥2
=
𝑥1
2
(𝑎55 − 𝑎22) 

𝜕𝐹1(𝑥)

𝜕𝑥3
=
𝑥1
2
(𝑎55 − 𝑎33) 

𝜕𝐹1(𝑥)

𝜕𝑥4
=
𝑥1
2
(𝑎55 − 𝑎44) 

𝜕𝐹2(𝑥)

𝜕𝑥1
=
𝑥2
2
(𝑎55 − 𝑎11) 

𝜕𝐹2(𝑥)

𝜕𝑥2
=
1

2
[ (𝑎55 − 𝑎11)𝑥1 + 2(𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3+(𝑎55 − 𝑎44)𝑥4 + (𝑎22 − 𝑎55)] 

𝜕𝐹2(𝑥)

𝜕𝑥3
=
𝑥2
2
(𝑎55 − 𝑎33) 

𝜕𝐹2(𝑥)

𝜕𝑥4
=
𝑥2
2
(𝑎55 − 𝑎44) 

𝜕𝐹3(𝑥)

𝜕𝑥1
=
𝑥3
2
(𝑎55 − 𝑎11) 
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𝜕𝐹3(𝑥)

𝜕𝑥2
=
𝑥3
2
(𝑎55 − 𝑎22) 

𝜕𝐹3(𝑥)

𝜕𝑥3
=
1

2
[(𝑎55 − 𝑎11)𝑥1 +  (𝑎55 − 𝑎22)𝑥2 + 2(𝑎55 − 𝑎33)𝑥3+(𝑎55 − 𝑎44)𝑥4 + (𝑎33 − 𝑎55)] 

𝜕𝐹3(𝑥)

𝜕𝑥4
=
𝑥3
2
(𝑎55 − 𝑎44) 

𝜕𝐹4(𝑥)

𝜕𝑥1
=
𝑥4
2
(𝑎55 − 𝑎11) 

𝜕𝐹4(𝑥)

𝜕𝑥2
=
𝑥4
2
(𝑎55 − 𝑎22) 

𝜕𝐹4(𝑥)

𝜕𝑥3
=
𝑥4
2
(𝑎55 − 𝑎33) 

𝜕𝐹4(𝑥)

𝜕𝑥4
=
1

2
[(𝑎55 − 𝑎11)𝑥1 +  (𝑎55 − 𝑎22)𝑥2 + (𝑎55 − 𝑎33)𝑥3+2(𝑎55 − 𝑎44)𝑥4 + (𝑎44 − 𝑎55)] 

Thus, we write the linearized system and find the stability for each point, according to the 

Lyapunov First (indirect) Method. 

1) Equilibrium point: (1,0,0,0,0) 

The linear system near this equilibrium point is: 

 

[

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 
 
 
 
𝑎55 − 𝑎11

2

𝑎55 − 𝑎22
2

𝑎55 − 𝑎33
2

𝑎55 − 𝑎44
2

0
𝑎22 − 𝑎11

2
0 0

0 0
𝑎33 − 𝑎11

2
0

0 0 0
𝑎44 − 𝑎11

2 ]
 
 
 
 
 
 
 

[

𝑥1
𝑥2
𝑥3
𝑥4

] 

 

The eigenvalues of the jacobian matrix above are: 
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𝜆1 =
𝑎55−𝑎11

2
,  𝜆2 =

𝑎22−𝑎11

2
,  𝜆3 =

𝑎33−𝑎11

2
, 𝜆4 =

𝑎44−𝑎11

2
 (6.2.1) 

In accordance with Lyapunov theorem, the equilibrium is asymptotically stable if 

ℜ(𝜆𝑖) < 0, for all eigenvalues 𝜆𝑖  of the jacobian matrix, and unstable if ℜ(𝜆𝑖) > 0, for 

some eigenvalues. Thus, in order for the equilibrium to be stable, the conditions below 

must be valid: 

{

𝛼22 < 𝑎11
𝛼33 < 𝑎11
𝛼44 < 𝑎11
𝛼55 < 𝑎11

 (6.2.2) 

Ιf the initial vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) is close enough to the equilibrium point 

(1,0,0,0,0) the evolution of strategies is shown in Figure 7. 

 

Figure 7: Evolution of strategies when a11 is higher than the other parameters. 

 

2) Equilibrium point: (0,1,0,0,0) 

The linear system near this equilibrium point is: 

 

[

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 
 
 
 
𝑎11 − 𝑎22

2
0 0 0

𝑎55 − 𝑎11
2

𝑎55 − 𝑎22
2

𝑎55 − 𝑎33
2

𝑎55 − 𝑎44
2

0 0
𝑎33 − 𝑎22

2
0

0 0 0
𝑎44 − 𝑎22

2 ]
 
 
 
 
 
 
 

[

𝑥1
𝑥2
𝑥3
𝑥4

] 
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The eigenvalues are: 

𝜆1 =
𝑎11−𝑎22

2
,  𝜆2 =

𝑎55−𝑎22

2
,  𝜆3 =

𝑎33−𝑎22

2
, 𝜆4 =

𝑎44−𝑎22

2
 (6.2.3) 

The equilibrium point is stable if: 

{

𝛼11 < 𝑎22
𝛼33 < 𝑎22
𝛼44 < 𝑎22
𝛼55 < 𝑎22

 (6.2.4) 

Ιf the initial vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) is close enough to the equilibrium point 

(0,1,0,0,0) the evolution of strategies is shown in Figure 8. 

 

Figure 8: Evolution of strategies when a22 is higher than the other parameters. 

 

3) Equilibrium point: (0,0,1,0,0) 

The linear system near this equilibrium point is: 

 

[

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 
 
 
 
𝑎11 − 𝑎33

2
0 0 0

0
𝑎22 − 𝑎33

2
0 0

𝑎55 − 𝑎11
2

𝑎55 − 𝑎22
2

𝑎55 − 𝑎33
2

𝑎55 − 𝑎44
2

0 0 0
𝑎44 − 𝑎33

2 ]
 
 
 
 
 
 
 

[

𝑥1
𝑥2
𝑥3
𝑥4

] 

 

The eigenvalues are: 
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𝜆1 =
𝑎11−𝑎33

2
,  𝜆2 =

𝑎22−𝑎33

2
,  𝜆3 =

𝑎55−𝑎33

2
, 𝜆4 =

𝑎44−𝑎33

2
 (6.2.5) 

Therefore, this equilibrium point is stable if: 

 

{

𝛼11 < 𝑎33
𝛼22 < 𝑎33
𝛼44 < 𝑎33
𝛼55 < 𝑎33

 (6.2.6) 

If the initial vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) is close enough to the equilibrium point 

(0,0,1,0,0) the evolution of strategies is shown in Figure 9. 

 

Figure 9: Evolution of strategies when a33 is higher than the other parameters. 

 

4) Equilibrium point: (0,0,0,1,0) 

The linear system near this equilibrium point is: 

 

[

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 
 
 
 
𝑎11 − 𝑎44

2
0 0 0

0
𝑎22 − 𝑎44

2
0 0

0 0
𝑎33 − 𝑎44

2
0

𝑎55 − 𝑎11
2

𝑎55 − 𝑎22
2

𝑎55 − 𝑎33
2

𝑎55 − 𝑎44
2 ]

 
 
 
 
 
 
 

[

𝑥1
𝑥2
𝑥3
𝑥4

] 

 

The eigenvalues of the jacobian matrix above are: 

𝜆1 =
𝑎11−𝑎44

2
,  𝜆2 =

𝑎22−𝑎44

2
,  𝜆3 =

𝑎33−𝑎44

2
, 𝜆4 =

𝑎55−𝑎44

2
, (6.2.7) 
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The equilibrium point is stable if: 

{

𝛼11 < 𝑎44
𝛼22 < 𝑎44
𝛼33 < 𝑎44
𝛼55 < 𝑎44

 (6.2.8) 

If the initial vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) is close enough to the equilibrium point 

(0,0,0,1,0) the evolution of strategies is shown in Figure 10. 

 

Figure 10: Evolution of strategies when a44 is higher than the other parameters. 

 

5) Equilibrium point: (0,0,0,0,1) 

The linear system near this equilibrium point is: 

 

[

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 
 
 
 
𝑎11 − 𝑎55

2
0 0 0

0
𝑎22 − 𝑎55

2
0 0

0 0
𝑎33 − 𝑎55

2
0

0 0 0
𝑎44 − 𝑎55

2 ]
 
 
 
 
 
 
 

[

𝑥1
𝑥2
𝑥3
𝑥4

] 

 

The eigenvalues are: 
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𝜆1 =
𝑎11−𝑎55

2
,  𝜆2 =

𝑎22−𝑎55

2
,  𝜆3 =

𝑎33−𝑎55

2
, 𝜆4 =

𝑎44−𝑎55

2
 (6.2.9) 

The equilibrium point is stable if: 

 

{

𝛼11 < 𝑎55
𝛼22 < 𝑎55
𝛼33 < 𝑎55
𝛼44 < 𝑎55

 (6.2.10) 

If the initial vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) is close enough to the equilibrium point 

(0,0,0,0,1) the evolution of strategies is shown in Figure 11: 

 

Figure 11: Evolution of strategies when a55 is higher than the other parameters. 
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Chapter 7 Numerical examples 

 

In the previous chapter, we discussed a model for finding the optimal split, using the 

evolutionary game theory. The parameters 𝑎𝑖𝑖 that define the optimal split depend on the 

Base Station processing power along with the Network power. The Network power 

consumption depends on the required connection rate between the remote unit and the 

cloud platform, as well as the network technology. On the other hand, the Base Station 

processing power depends on the parameters that were described in Table 1. In this chapter, 

we examine these dependencies with the usage of numerical examples. 

7.1 Effect of Network Technology on the Optimal Split 

As it has been discussed in Chapter 4, different access network technologies translate 

into different relation between the access rate and the power consumption. Thus, parameters 

𝑎𝑖𝑖, which are related on power consumption of the network, depend on the access network 

technology in use. In order to see this dependence, let’s assume the scenario of Table 8 with 

bandwidth 𝐵 = 20𝑀𝐻𝑧 for two types of access network technologies-PON and PtP. 

Table 8: Exemplary system parameters for calculating the impact of bandwidth on the optimal split. 

We will use two different models, in order to relate the access rate with the network 

power consumption.  First, we will use a linear model of the form: 

Symbol Value Symbol Value 

Ant 2 No 2 

M 4 Nsc 1200 

R 3/4 TS 66.6 μs 

dt 100 % NQ 10 

df 30 % S 3 bit/cu 

fs 30.72 MHz η 50 % 
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𝑃𝑁𝑒𝑡 = 𝜆 ∙ 𝑅 + 𝜎 (7.1.1) 

The parameter 𝜆 relates to the technical characteristics of the routers and the transport 

systems. The parameter 𝜎 depends on the technology of the access network and it is 

normalized to  

𝜎 = {
1,   𝑓𝑜𝑟 𝑃𝑂𝑁
2,    𝑓𝑜𝑟 𝑃𝑡𝑃

 
(7.1.2) 

Due to the recent improvements of router technologies and to the increment of data 

traffic, a more reliable model for power consumption is described by the non linear relation: 

𝑃𝑁𝑒𝑡 = (𝜆 ∙ 𝑅 + 𝜎) ∙ (1 − 𝑎)
𝑙𝑛𝑅/𝑙𝑛𝑏 (7.1.3) 

 Where 𝑎 is the router efficiency improvement per year and 𝑏 is the per year traffic growth 

rate. 

Figure 12 shows the scaling of the network power consumption with the access rate, 

using the two models. It is evident that, in the linear model the total power consumption is 

higher than that of the nonlinear model. According both models, for a certain access rate, PtP 

networks consume a larger amount of power. Furthermore, we notice that in the linear model, 

the difference between the power consumption of the two technologies remains the same as 

the access rate grows. On the contrary, in the nonlinear model, the variation of the power 

consumption between PtP and PON is growing with the increment of the access rate. Lastly, 

the optimal split in the case of PON is depicted in Figure 13. As we can see, the employment 

of the linear and the nonlinear model leads to different optimal splits.  
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Figure 12: Relation of network power consumption with access rate, based on (a) a linear model with λ=0.01 
and (b) a non linear model with 10% router efficiency improvement per year and 42% per year traffic growth 

rate. Includes the access rates of the five functional splits, calculated for the scenario of Table 8. 
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Figure 13: Optimal split of the scenario of Table 8 with 𝑩 = 𝟐𝟎𝑴𝑯𝒛 for a PON technology access based on 
(a) the linear model with λ=0.01 and (b) the nonlinear model. For the calculations, the nonlinear model was 
employed with 10% router efficiency improvement per year and 42% per year traffic growth rate. A Macro 

base station was assumed. The ratio local/remote processing was assumed  
𝒂

𝜷
=

𝟐

𝟏
 . 

7.2 Effect of Local Processing on Optimal Split 

As it has been pointed out, the processing of the same function differs whether it is 

being executed locally or remotely. The relation of the power consumption between the 

antenna and the cloud is depicted in the ratio  
𝑎

𝛽
  that was introduced in Table 7. It is obvious 

that for different ratio relations, the optimal split varies. 
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Figure 14: Optimal split with respect to the local/remote processing ratio  
𝒂

𝜷
 ,  for the scenario of Table 8 with 

𝑩 = 𝟐𝟎𝑴𝑯𝒛 and a PON technology access network, for (a) a Macro and (b) a Micro base station. For the 
calculations, the nonlinear model was employed with 10% router efficiency improvement per year and 42% 

per year traffic growth rate. 

 

In order to see the dependence of the optimal split on the local/remote cost, we 

computed the optimal split for different scenarios of the ratio 
𝑎

𝛽
 , normalizing term 𝛽 το 1 and 

investigating for different values of 𝑎 .  Figure 14 depicts the results for the case of Table 8 with 

B = 20MHz and a PON technology access network. For the calculations, the nonlinear model 

was employed with 10% router efficiency improvement per year and 42% per year traffic 
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growth rate. Both cases of large and small base station were investigated. We can conclude that 

as the ratio gets higher, the optimal split converges to split 1. Furthermore, the small base 

stations converge to split 1 at higher values of the local/remote processing ratio, than in the 

case of the large base stations. 

7.3 Effect of Bandwidth on Optimal Split 

In order to see the effect of bandwidth on optimal split we assume the scenario that is 

described in Table 8 for the unlink. The bandwidth affects the connection rates, thus, the 

Network power consumption, as well as the Processing power consumption.  

First, we compute the connection data rates, using the formulas of Chapter 3. We should 

point out that these formulas have been calculated for the case of 𝐵 = 20𝑀𝐻𝑧. Thus, in order 

to see the effect of the scaling of bandwidth on optimal split, it is crucial to multiply the 

formulas with a factor 𝐵/20𝑀𝐻𝑧. 

 The next step is to compute the power consumption of the RF components of the Base 

Station. 

 𝑃𝑅𝐹 = 𝑃𝐿𝑁𝐴1 + 𝑃𝑀𝑣𝑎 + 𝑃𝐿𝑁𝐴2 + 𝑃𝐷𝑚 + 𝑃𝑉𝐺𝐴 + 𝑃𝐶𝐺𝑏 + 𝑃𝐴𝐷𝐶  (7.3.1) 

Where 𝑃𝐿𝑁𝐴1,  𝑃𝑀𝑣𝑎 , 𝑃𝐿𝑁𝐴2, 𝑃𝐷𝑚, 𝑃𝑉𝐺𝐴, 𝑃𝐶𝐺𝑏   𝑎𝑛𝑑 𝑃𝐴𝐷𝐶  are the RF sub-components, 

shown in Table 5. The values that are depicted in Table 5 are for the reference scenario 𝑋 =

{20𝑀𝐻𝑧, 1, 6 (64𝑄𝐴𝑀), 1, 100%, 100%}. For obtaining the values of the RF sub-components 

for the exemplary scenario, we use the formula: 

 
𝑃𝑅𝐹 𝑠𝑢𝑏−𝑐𝑜𝑚𝑝 = 𝑃𝑅𝐹 𝑠𝑢𝑏−𝑐𝑜𝑚𝑝,𝑟𝑒𝑓 ∙ ∏ (

𝑥𝑎𝑐𝑡

𝑥𝑟𝑒𝑓
)
𝑠𝑖,𝑥

𝑥∈𝑋 ,  𝑋 = {𝐵𝑊,𝐴𝑛𝑡,𝑀, 𝑅, 𝑑𝑡, 𝑑𝑓} (7.3.2) 

The scaling exponent 𝑠𝑖 for the RF components is 1 as far as the number of the antennas 

(𝐴𝑛𝑡) and the time domain duty cycling (𝑑𝑡) is concerned. For Clock generation and buffering 

all the other exponents are zero. The remaining exponents for the other RF sub-components 

have the value 1 with respect the frequency domain duty cycling (𝑑𝑓) and the bandwidth 

(𝐵𝑊), except in the case of large Base Stations (Macro and Micro), where the exponent that 
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reflect the scaling of power with bandwidth is zero. The scaling exponents for the type of 

Modulation (𝑀) and the Coding rate (𝑅) are zero. Thus, we obtain: 

 

𝑃𝑅𝐹,𝑠𝑢𝑏 =

{
 
 

 
 𝑃𝑅𝐹,𝑠𝑢𝑏,𝑟𝑒𝑓 ∙ (

𝐴𝑛𝑡𝑎𝑐𝑡
𝐴𝑛𝑡𝑟𝑒𝑓

)

1

∙ (
𝑑𝑡𝑎𝑐𝑡
𝑑𝑡𝑟𝑒𝑓

)

1

∙ (
𝑑𝑓𝑎𝑐𝑡
𝑑𝑓𝑟𝑒𝑓

)

1

, 𝐿𝑎𝑟𝑔𝑒 𝐵𝑆

𝑃𝑅𝐹,𝑠𝑢𝑏,𝑟𝑒𝑓 ∙ (
𝐵𝑊𝑎𝑐𝑡

𝐵𝑊𝑟𝑒𝑓
)

1

∙ (
𝐴𝑛𝑡𝑎𝑐𝑡
𝐴𝑛𝑡𝑟𝑒𝑓

)

1

∙ (
𝑑𝑡𝑎𝑐𝑡
𝑑𝑡𝑟𝑒𝑓

)

1

∙ (
𝑑𝑓𝑎𝑐𝑡
𝑑𝑓𝑟𝑒𝑓

)

1

, 𝑆𝑚𝑎𝑙 𝐵𝑆

 (7.3.3) 

Where 𝑃𝑅𝐹,𝑠𝑢𝑏 are all the RF subcomponents except 𝑃𝐶𝐺𝑏. The power consumption of 

Clock generation and buffering (𝑃𝐶𝑔𝑏) is calculated by the formula: 

 
𝑃𝐶𝑔𝑏 = 𝑃𝐶𝑔𝑏,𝑟𝑒𝑓 ∙ (

𝐴𝑛𝑡𝑎𝑐𝑡
𝐴𝑛𝑡𝑟𝑒𝑓

)

1

∙ (
𝑑𝑡𝑎𝑐𝑡
𝑑𝑡𝑟𝑒𝑓

)

1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐵𝑆 (7.3.4) 

The calculation of the power consumption of the digital baseband processing is similar 

to the above. Hence for the digital baseband operations, the power consumption is given by 

the formula 

𝑃𝐵𝐵,𝑠𝑢𝑏 = 𝑃𝐵𝐵,𝑠𝑢𝑏,𝑟𝑒𝑓 ∙ (
𝐵𝑊𝑎𝑐𝑡

𝐵𝑊𝑟𝑒𝑓
)

𝑠1

∙ (
𝑀𝑎𝑐𝑡

𝑀𝑟𝑒𝑓
)

𝑠2

∙ (
𝑅𝑎𝑐𝑡
𝑅𝑟𝑒𝑓

)

𝑠3

∙ (
𝐴𝑛𝑡𝑎𝑐𝑡
𝐴𝑛𝑡𝑟𝑒𝑓

)

𝑠4

∙ (
𝑑𝑡𝑎𝑐𝑡
𝑑𝑡𝑟𝑒𝑓

)

𝑠5

∙ (
𝑑𝑓𝑎𝑐𝑡
𝑑𝑓𝑟𝑒𝑓

)

𝑠6

 (7.3.5) 

The 𝑃𝐵𝐵,𝑠𝑢𝑏,𝑟𝑒𝑓 for the uplink is given in Table 2. In order to convert the values of Table 

2 from 𝐺𝑂𝑃𝑆 to 𝑊, we divide the values with 40 𝐺𝑂𝑃𝑆/𝑊 and 120 𝐺𝑂𝑃𝑆/𝑊 for large and 

small base stations respectively. The scaling vector [𝑠1, … , 𝑠6] is given in Table 3.  

Having the relations of the total power consumption, we calculate the parameters 𝑎𝑖𝑖 

of the matrix 𝐴, using the exemplary scenario of Table 8. The formula that we will assume is 

the relation (6.1.4). The evolution of the game is depicted in Figure 15.  
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Figure 15: Scaling optimal splits with respect to bandwidth for the exemplary scenario of Table 8 for (α) a 
Macro Base Station and (b) a Pico Base Station using a non linear network power consumption with 10% 

router efficiency improvement per year and 42% per year traffic growth rate. The local/remote processing 
ratio  

𝒂

𝜷
 was assumed 

𝟐

𝟏
. 
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7.4 Effect of the Number of the Antennas on Optimal Split 

 

 

Figure 16: Effect of the number of the antennas on the optimal split. Calculated for the scenario of Table 8 
with 𝑩 = 𝟐𝟎𝑴𝑯𝒛 and PON access network. The nonlinear model was employed, with 10% router efficiency 
improvement per year and 42% per year traffic growth rate. (a) Macro base station, (b) Pico base station. 

The local/remote processing ratio  
𝒂

𝜷
 was assumed 

𝟐

𝟏
. 
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The number of the antennas affects not only the processing power consumption, but 

also the required capacity for the data transportation, and thus, the network energy 

consumption. Hence, it is crucial to see the relation of the optimal split with the number of 

the antennas (𝐴𝑛𝑡).  

Once again, for the calculations we use the exemplary scenario of Table 8, only now 

we fix the bandwidth at 𝐵 = 20𝑀𝐻𝑧 and set the number of the antennas as the variable. We 

assume PON as the access network technology, and employ the nonlinear model for the 

calculations. In Figure 16, we can see change of the optimal split for the scenario of 1, 2, 4 

received antennas. For the chosen scenario the number of the antennas doesn’t affect the 

optimal split in both cases. 
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Chapter 8 Summary 

 

In this master thesis, a model for optimizing the wireless networks in 5G was proposed. 

The overall objective of the model is twofold: The need to address the huge increase in data 

traffic combined with a significant reduction in energy consumption. 

We initiate our analysis by an introduction focusing on the evolution of mobile wireless 

communication networks towards 5G. As we pointed out, in order to increase the efficiency 

of the spectral range, the densification of the network is necessary. The centralization of 

baseband processing offers useful solutions to the problems that arise due the densification. 

However, central processing demands high fronthaul data rates, that are supported only by 

optical fibers. 

In order to reduce the required data rates, but also exploit the benefits of central 

processing, the option of introducing functional splits options has been proposed. In this 

architecture, the functions are performed either locally or centrally, or through a combination 

of local and central processing, depending on the circumstances. In our analysis, we used five 

different splits options and calculated the fronthaul capacity of each split option. 

To optimize the energy consumption of new generation networks, one should first 

calculate the energy efficiency of today's mobile communications. Thus, a model for 

calculating the power consumption of the base station was analyzed. As it was described, the 

power consumption of base stations depends on system parameters, like bandwidth and 

number of received antennas. Then, the network power consumption was examined. We 

correlated the network power consumption and the access rate by using a linear model and a 

non linear that depends on the network technology as well as the technology improvement 

Evolutionary game theory was employed in order to identify the optimal split option. 

We took into consideration both network and processing resources. The processing resources 

correspond to the sum of the required processing power on the antenna and the processing 

power on the cloud. For simplification purposes we assumed the same power model as in the 
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case of the macro base station, for the case of the cloud. Taking this into consideration, the 

differentiation between the required local and remote processing power was inserted by a 

ratio 
𝛼

𝛽
, where 𝛼 depicts the cost of the local processing and 𝛽 the cost of the processing on 

the cloud.  

We used the replicator equation and extracted general rules for the prediction of the 

optimal split option. Finally, we used numerical examples to see the dependence of the 

optimal split on the network technology and on the cost of local/remote processing.  The 

scaling of the optimal split option as a function of system parameters, such as bandwidth and 

number of the antennas, was investigated.  
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