
ì

Y

ë8

National Kapodistrian University of Athens
Graduate Program of Logic, Algorithms and Computations

Department of Mathematics

Online Shortest Path with Switching Cost

Master Thesis
of

Tziotis Isidoros

Thesis’ Advisor: Fotakis Dimitris
Assistant Professor NTUA.

Computation and Reasoning Laboratory
Αthens, November 2017

ì

Y

ë8

National Kapodistrian University of Athens
Graduate Program of Logic, Algorithms and Computations

Department of Mathematics

Online Shortest Path with Switching Cost

Master Thesis
of

Tziotis Isidoros

Thesis’ Advisor: Fotakis Dimitris
Associate Professor NTUA.

Accepted by the committee 22th November 2017:

......................
Fotakis Dimitris Pagourtzis Aris Zachos Stathis

Assistant Professor NTUA Associate Professor NTUA Professor NTUA

Computation and Reasoning Laboratory
Athens, November 2017

.......................
Tziotis Isidoros
Graduate Student of Department of Informatics & Telecommunications in National Kapodis-
trian University of Athens

Copyright © Τζιώτης Ισίδωρος, 2017.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμή-
ματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό
μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή
προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Καποδιστρια-
κόυ Πανεπιστημίου Αθηνών.

Περίληψη
Ένα χαρακτηριστικό on-line πρόβλημα διεξάγεται σε γύρους, όπου σε κάθε γύρο ένας on-line αλ-
γόριθμος δέχεται ένα αίτημα και οφείλει να το ικανοποιήσει. Θα επικεντρωθούμε σε μία συγκε-
κριμένη οικογένεια on-line προβλημάτων γνωστά ως Smooth On-line Convex Optimization (SOCO)
προβήματα. Δύο γνωστά επιστημονικά πεδία που μελετούν τέτοια προβλήματα είναι το πεδίο
competitive analysis και το πεδίο on-line learning. Θα εμβαθύνουμε στη σχέση των δύο πεδίων και
θα εξηγήσουμε πως μπορούμε να επωφεληθούμε εισάγωντας την τεχνική regularization από το
πεδίο του on-line learning στο competitive analysis. Στη συνέχεια θα εστιάσουμε σε μία τεχνική
rounding η οποία εμφανίστηκε στη βιβλιογραφία τα τελευταία χρόνια και ονομάζεται exponential
clocks. Τέλος, θα ορίσουμε ένα νέο πρόβλημα της οικογένειας SOCO, το On-line Shortest Paths with
Switching Cost. Χρησιμοποιώντας εργαλεία από τη βιβλιογραφία θα πάρουμε μία on-line fractional
λύση του προβλήματος θυσιάζοντας ένα λογαριθμικό παράγοντα. Θα ολοκληρώσουμε παρουσιά-
ζοντας ένα νέο rounding αλγόριθμο χρησιμοποιώντας exponential clocks, ο οποίος θα επιτύχει μια
O(logm logn)− προσέγγιστική λύση για το πρόβλημα On-line Shortest Path with Switching Cost.

Λέξεις Κλειδιά

Online ConvexOptimization, SmoothOptimization, On-line Learning, ΣυντομότεραΜονοπάτια, Exponential
Clocks

Abstract
A typical on-line problem proceeds in rounds, where in each round an on-line algorithm is
given a request and needs to serve it. We will focus on a specific class of on-line problems
known as Smooth On-line Convex Optimization (SOCO) problems. Two mature research
fields that study such problems are competitive analysis and on-line learning. We will dive
into their interrelationship and we will explain how we can benefit by introducing regular-
ization, a standard technique from on-line learning in the framework of competitive analysis.
Subsequently, we will turn our attention towards a rounding technique introduced over the
last couple of years, called exponential clocks. Finally, we will define a new problem in the
class SOCO, namely On-line Shortest Path with Switching Cost. Using the toolbox provided
by the literature we will obtain an on-line fractional solution sacrificing a logarithmic factor.
We will wrap up presenting a new on-line rounding algorithm using exponential clocks which
will derive a O(logm logn)-approximation for the On-line Shortest Path with Switching Cost
problem.

Keywords

Online Convex Optimization, Smooth Optimization, Online Learning, Shortest Paths, Expo-
nential Clocks

Acknowledgements
I would like to express my deep appreciation to my supervisor, professor Dimitris Fotakis,
for his constant help, encouragement and guidance which led me to this point. Moreover, I
would like to express my gratitude to my colleagues Myrto Galenianou, Lydia Zakinthinou and
Thanasis Lianeas whose unwavering support played a major role in the successful fulfillment of
this dissertation. Furthermore, I would like to thank especially my colleague Manolis Vlatakis
whose help and encouragement had a crucial impact over the last stages of my thesis. Finally,
I would like to thank my family. Nothing would be possible if it wasn’t for their guidance and
love.

Isidoros Tziotis

Contents

1 Introduction 1

2 Smooth On-line Convex Optimization 4
2.1 On-line algorithms and competitive analysis . 4
2.2 From OCO to SOCO . 7
2.3 Unifying competitive analysis and on-line learning 10
2.4 Common ground - The Regularization technique 16

3 Exponential Clocks 21
3.1 Introduction to exponential clocks . 21
3.2 Facility Location with stable intervals . 25
3.3 On-line Set Cover with Service Cost revisited 28

4 On-line Shortest Path with Switching Cost 29
4.1 Problem Formulation . 29
4.2 Rounding Algorithm for On-line Shortest Paths with switching Costs 31

5 Conclusion 38
5.1 Summing up . 38

Bibliography 39

ii CONTENTS

Chapter 1

Introduction

On-line algorithms represent a theoretical framework for studying problems in interactive
computing. They model, in particular, that the input in an interactive system does not arrive
as a batch but as a sequence of input portions and that the system must react in response to
each incoming portion. Moreover, it is assumed that at the future input is unknown and as
the name suggests, on-line algorithms consider the algorithmic aspects of interactive systems.
That is we wish to design strategies that always compute good output through consecutive
rounds. No assumptions are made about the input stream. The input can even be generated
by an adversary that creates new input portions based on the system’s reactions to previous
ones (adaptive adversary). We seek algorithms that have a provably good performance. A
very interesting class of problems that we are going to study here is the class of on-line convex
optimization problems.

In the context of on-line convex optimization (OCO) we consider the problem
of a learner/decision-maker who interacts with an environment in a sequence of rounds and
needs to make decisions in the face of uncertainty. During each round t :

• The learner must choose an action xt from a convex decision space F

• The environment reveals a cost convex function ct

• The learner experiences cost ct(xt).

Depending on the setting (i) can happen before (ii) or vice versa. The objective here
is to design learning algorithms that minimize the cost suffered over a long period of time i.e.
T rounds. OCO has a wide array on applications such as portfolio management [CO96; KV02]
and network routing [Ban+03].

1

2 CHAPTER 1. INTRODUCTION

Making more specific assumptions, two main performance metrics arise in order to
deal with such problems. The first is competitive ratio where the benchmark is the optimal
off-line solution and the second is regret where the goal is to minimize the difference between
our incurred total cost and the total cost of the best fixed action. There is a large amount
of related work in the literature, exploring the connection between competitive analysis and
on-line learning [BB97; Buc+16; BBK99; KV02]. Despite their core deferences, there are also
techniques that can be successfully transfered from one field to the other, providing innovative
results. One such technique of great interest is Regularization. Regularization appears in the
literature as early as [KW97] and [Gor99]. More recent results appear in [BCN14] and [CL06;
RS13].

In our work the main focus will be on deriving good competitive ration in a gen-
eralization of on-line convex optimization. This more general framework is called smoothed
on-line convex optimization (SOCO) whose study was motivated by the development in dy-
namic control algorithms in data centers [Lin+13; Lin+12a] and other streaming applications
[JV11]. The only change in smoothed on-line convex optimization compared to on-line convex
optimization is that the cost experienced by the learner is now ct(xt)+ ∥ xt − xt−1 ∥, where
∥ · ∥ is an arbitrary norm. In words the learner experiences an additional smoothing cost or
switching cost associated with changing his action over consecutive time steps. Lin et al. have
studied in [Lin+12b], the interrelationship of regret and competitive ratio in the framework
of SOCO.

A robust on-line technique which applies to a large family of covering SOCO problems
was presented in the work of Buchbinder et al. [BCN14]. In each round their algorithm solves
a linear relaxation of the problem, via primal dual techniques [Lin+12a] and produces on-line a
fractional solution within a logarithmic factor from the optimal off-line solution. A key element
in this technique is the notion of regularization. The second main result of this paper considers
an on-line version of Set Cover with Service Cost. The authors propose a rounding algorithm
based on exponential clocks. Exponential clocks have been used extensively over the last couple
of years in a variety of combinatorial problems such as Multi-way Cut Problem [Lin+13],
Dynamic Facility Location [KV02; Fot06], Set Cover [Lin+13] and others. Coupling their
rounding technique with the first result of their paper the authors derive an on-line algorithm
solving the aforementioned problem with a total approximation factor O(logm log |Smax|),
where m is the number of sets and |Smax| is the maximum capacity among the sets.

The setting proposed in [BCN14] is strongly motivated from a variety of real life
applications. Often, one needs to solve instances of the same combinatorial optimization
problem that changes over time. While this is naturally handled by re-solving the optimization
problem in each time step separately, it is reasonable to assume that changing the solution
in between consecutive time steps often incurs a transition cost. Related work on the same
framework focused on On-online Multistage Matroid Maintenance problem [GTW14] and On-
line Dynamic Facility Location.

3

In this dissertation we set on the same direction and construct a randomized on-
line algorithm for the On-line Shortest Path problem with Switching Cost. The first step of
our algorithm utilizes the results provided in [BCN14] in order to obtain a fractional on-line
solution. Then we proceed rounding the solution at every time step coupling exponential
clocks with a variation of Dijkstra which derives similar approximation bounds to the ones
achieved in [BCN14; GTW14]. Thus, our algorithm is O(logm logn)−approximate where n
is the number of vertices and m is the number of edges.

Chapter 2

Smooth On-line Convex
Optimization

2.1 On-line algorithms and competitive analysis

In this dissertation we will work in the framework of on-line problems. A typical on-line
problem proceeds in rounds, where in each round the on-line algorithm is given a request and
needs to serve it.

To provide a better understanding we introduce the reader to the representative
context of on-line convex optimization (OCO). In on-line convex optimization (OCO) we
consider the problem of a learner/decision-maker who interacts with an environment in a
sequence of rounds and needs to make decisions in the face of uncertainty.

During each round t :

1. The learner must choose an action xt from a convex decision space
F .

2. The environment reveals a cost convex function ct.

3. The learner experiences cost ct(xt).

Depending on the setting (1) can happen before (2) or vice versa. The objective here is to
design learning algorithms that minimize the cost suffered over a long period of time i.e. T
rounds.

Competitive analysis and on-line learning are two important research fields studying
variations of such on-line problems. In competitive analysis in each time step t the learner is

4

2.1. ON-LINE ALGORITHMS AND COMPETITIVE ANALYSIS 5

picking his action xt after the cost function ct is revealed i.e. 1−lookahead, thus suffering cost
ctxt. Then his total cost is compared to the total cost of the optimal off-line algorithm. Let
S1 and OPT be the cost our algorithm and the optimal off-line solution pay respectively. For

now we can think of S1 =
T∑
t=1

xtct. Let also d be some constant. Then the competitive ratio

c is the smallest number such that :

S1 ≤ c ·OPT + d

In the field of on-line learning however, the learner is far weaker picking his action before
the cost function ct is revealed i.e. 0−lookahead, thus paying ctxt−1. To compensate for the
lack of information about the future the learner in this framework has a weaker benchmark
to compare to, namely regret. Minimizing regret is minimizing the difference between our
incurred total cost and the total cost of the best fixed action x∗:

Regret =

T∑
t=1

xt−1ct −
T∑
t=1

x∗ct

where x∗ = arg min
x

T∑
t=1

xct.

Both areas have been extensively studied and important results are known. In the
last couple of years a systematic attempt has been made to unify and compare the results from
these two related fields. Although later we will come back to further explore this direction our
primary focus remains on competitive analysis. To give a round view on competitive analysis
and eventually move towards a more general definition than the one we gave for on-line convex
optimization, we will introduce two typical competitive analysis problems, On-line Set Cover
[Alo+03] and Metrical Task Systems[BLS92].

The Set Cover problem is defined as follows. Let X = {1, 2, ..., n} be a ground set of
n elements and let S be a family of subsets of X, |S| = m. A cover is a collection of sets such
that their union is X. Each S ∈ S has a nonnegative cost cS associated with it. The goal is to
find a cover of minimum cost. The set cover problem is a classic NP−hard problem that was
studied extensively in the literature, and the best approximation factor achievable for it in
polynomial time (assuming P ̸= NP) is Θ(logn) [Lov75; AT96]. Now consider the following
On-line version of the Set Cover problem, described as a game between an algorithm
and an adversary. An adversary gives elements to the algorithm from X one-by-one. Once
a new element is given, the algorithm has to cover it by some set of S containing it. Denote
by X ′ ⊂ X the set of elements given by the adversary. Our assumption is that the set cover
instance, i.e. the elements of X and the members of S, is known in advance to the algorithm.
The objective is to minimize the total cost of the sets chosen by the algorithm. However, the
algorithm does not know in advance the set of elements X ′ given by the adversary, i.e., X ′

may be a strict subset of X in general. Let C denote the family of sets in S that the algorithm
chooses. At the end of the game the adversary also produces (off-line) a family of sets COPT

that covers all the elements belonging to X ′. The performance of the algorithm is defined to

6 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

be the ratio between the cost of C and the cost of COPT . The maximum ratio, taken over all
input sequences, is defined to be the competitive ratio of the algorithm.

For the problem above there is a O(logm logn) approximation algorithm. More
importantly we note the following:

• Initially the feasible region in Rm since no element needs to be covered.

• Upon arrival of element t the convex feasible region Pt is defined to be the intersection
of Pt−1 and the new covering constrain corresponding to element t.

• In the on-line set cover there is no service cost and thus there is no reason to drop any
set chosen in some previous round.

This is a typical on-line problem which fits well in the context of OCO. Let us now move on
to an other fundamental problem in competitive analysis:

A Task System is a pair (S, d) where S = {s1, s2, . . . , sn} is a set of states and
d : S×S → R is a distance function. If d is a metric, (S, d) is a Metrical Task System (MTS).
An input to the task system is a sequence σ = T1, T2, . . . , Tl such that for each i, Ti is a vector
of n non-negative entries that determine the processing costs for the n states when processing
the ith task. An algorithm for the task system produces a schedule π that determines the
sequence of states. For instance, π(i) = sj means that the ith task Ti is run in state sj . The
processing cost of a schedule is :

cost(π, σ) =
l∑

i=1

d(π(i− 1), π(i)) + Ti(π(i))

The objective of the algorithm is to find a schedule such that the cost is minimized.

This on-line problem has a slightly different flavor than what we have seen so far.
Although the feasible region is the same in every round we can see that the notion of states is
introduced. This element is of vital importance in many fundamental problems in competitive
analysis such as the k-Server problem [BBN10], the k -Armed Bandit problem [AT96; GM09]
and the Stock Portfolio Management. Despite its importance the context of on-line convex
optimization fails to capture this concept adequately. Thus we will proceed to generalize the
context we are going to work in, to a more suitable one.

2.2. FROM OCO TO SOCO 7

2.2 From OCO to SOCO

In the previous section we saw that the On-line Set Cover problem was sufficiently accom-
modated in the context of OCO whereas for the Metrical Task Systems there was a need to
encapsulate the notion of states deriving from the previous rounds. An elegant, widely spread
way to capture this, is the addition of switching or movement cost. In this case the learner
experiences an additional smoothing cost associated with changing his action over consecutive
time steps. Having this in mind we will extend the framework we provided for on-line convex
optimization.

In smooth on-line convex optimization (SOCO) we consider the problem of a
learner/decision-maker who interacts with an environment in a sequence of rounds and needs
to make decisions in the face of uncertainty.

During each round t :

• The learner must choose an action xt from a convex decision space F .

• The environment reveals a cost convex function ct.

• The learner experiences cost ct(xt) + ∥xt − xy−1∥.

Although we will see some results from the literature where different assumptions are made,
for our convenience we can think the movement cost to be measured in ℓ1. Furthermore,
we assume that F is closed and bounded and that the Euclidean norm of the gradient of
the service cost function is bounded. A famous algorithm designed for the problem we just
described is the On-line Gradient Descent Algorithm. It turns out that not only does it give
nice results in terms of competitive analysis but it also achieves good guarantees with respect
to regret.

8 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

Online Gradient Descent:

Parameters: ηt > 0 changing in every round.

Initialization: Choose an arbitrary x1 ∈ F , where F is the convex
decision space.

At each time t = [T]:

(a) Let ct ∈ [0, 1]n be the service cost vector.
(b) Suffer cost ct(xt).
(c) Update the decision as follows:

xt+1 = P (xt − ηt∇ct(xt))

where P (y) = arg min
x∈F

∥x− y∥2 is the projection of point y on

the convex space F under the Euclidian norm.

This algorithm achieves sublinear regret, depending on the choice of the learning
rates ηt. For ηt = Θ(1/

√
t) the regret after T rounds with respect to the best action in hind-

sight is O(
√
T). Making some additional assumptions and choosing ηt = Θ(1t) instead, the

regret bound falls to O(logT).

As the authors of [Lin+12b] point out, the same algorithm provides a good regret bound

even when switching cost is added. That is if
n∑

t=1

ηt = O(γ1(T)) and the algorithm’s regret

is O(γ2(T)) for Online Convex Optimization problems, then the same algorithm guarantees
an O(γ1(T) + γ2(T)) regret for SOCO problems which implies that the two algorithms we
mentioned before achieve the same regret bounds for the SOCO setting.

Coming back to the framework of competitive analysis we can also find a variety of results
achieving good approximation ratio under different assumptions. Interestingly if we restrict
our decision space to be a line then the approximation ratio for the problem can be even con-
stant. In [BBN10], the authors present three algorithms for the SOCO problem given that the
convex decision space F = R. A randomized algorithm that yields a fractional solution and
a corresponding deterministic algorithm with competitive ratio 2 as well as a ”memoryless”
algorithm which only remembers the previous decision point xt−1 and has a 3-competitive
ratio, which is also optimal (compared to any other memoryless deterministic algorithm).
An important feature in the analysis of these algorithms is the usage of a suitable poten-
tial function. The method of defining appropriately and taking advantage of some potential
function in the analysis of on-line learning techniques, is a recurring theme with great interest.

Before we move on we will present a natural problem from SOCO called On-line Set Cover
with Service Cost. This problem encompasses features from both On-line Set Cover and MTS.
Specifically, the feasible region Pt is going to change over the rounds and the notion of states is
going to be captured by the introduction of switching cost on the sets chosen by our algorithm.

2.2. FROM OCO TO SOCO 9

In order to define concretely the On-line Set Cover with Service Cost first let us re-
call the classic On-line Set Cover problem. In each round we are given elements which need
to be covered by some set whose opening cost we pay only once. Transitioning in this new
version of the problem, we are forced in each round t, to pay a service cost for every set we
choose to use. Moreover, we are paying an opening cost(switching cost) whenever we opt to
add in our solution a set which was not in the solution of the previous round. It is clear that
an algorithm should both add and delete sets from the solution throughout its execution in
order to achieve optimality in this setup.

More formally, the algorithm starts with P0 = Rn (here we opt to denote with n the number
of sets and m the number of elements in the ground set) as the feasible solution space and
it is given a new polyhedron Pt in each round, defined by covering, along with a cost vector
ct ∈ Rn

+. The objective function we seek to minimize is:

T∑
t=1

ctyt +

T∑
t=1

n∑
i=1

wi· | yi,t − yi,t−1 |

where yt ∈ Pt and the movement cost is not uniform.

Later we are going to further analyze this problem thus it is an opportune moment to fa-
miliarize the reader with the Linear Program describing On-line Set Cover with Service Cost:

min
T∑
t=1

ctyt +
T∑
t=1

n∑
i=1

wizi,t

subject to
∑
i∈Sj,t

yi,t ≥ 1 ∀t ≥ 1, 0 ≤ j ≤ mt

zi,t ≥ yi,t − yi,t−1 ∀t ≥ 1, 1 ≤ i ≤ n

zi,t, yi,t ≥ 0 ∀t, 1 ≤ i ≤ n

The variables yi,t are indicators denoting if we include set i in the solution for this
round or not. In each round, the subset of elements to be covered changes, so we denote by
mt the new number of constraints for this round. Also, Sj,t is the set of sets which include
element j in round t. The first constraint ensures that the j-th element to be covered is indeed

fractionally covered and
n∑

i=1

wizi,t =

n∑
i=1

wi max{0, yi,t − yi,t−1} denotes the movement cost in

round t.

10 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

2.3 Unifying competitive analysis and on-line learning

At this point we are going to revisit on-line learning. Despite the differences we already
pointed out between competitive analysis and on-line learning there has been significant work
in the direction of exploring to what extent common techniques can be applied to these rich
and mature fields. Ideally, we would like to come up with a single algorithm which could
guarantee both small regret bounds and good competitive ratio.

The first concrete attempt appears in [BB00] where the authors explore the area between
the two frameworks with a combination of the well known and studied problem of Experts
in on-line learning [FS97] and the Metrical Task Systems [BLS92] in competitive analysis.
Specifically, this paper showed how certain algorithms, based on tuning some parameters, are
able to interpolate between a reasonable regret bound and a reasonable competitive ratio. The
interpolation was performed using the notion of α-unfair competitive ratio, which forces the
policy we compete with to pay α times more for the movement cost.

We notice that in the limit, as α goes to infinity the competing policy becomes essentially
static, and the setting becomes reminiscent of on-line learning. On the other hand by setting
α equal to 1 the competing solution becomes the optimal as it is considered in competitive
analysis. Thus, this scheme seems appropriate to track a sweat spot in between the two dif-
ferent benchmarks.

It turns out however, that the interpolation suggested above is not capable of achieving the
best of the two worlds at the same time. Subsequently, many algorithms were proposed such
as in [BBN10], trying to reach the same Holy Grail but it was Buhbinder et al. who proposed
a rigorous unified approach in [Buc+16]. The authors via primal-dual techniques, described
in this survey [BE98], provide good performance guarantees with respect to regret and com-
petitive ratio which allows them to extend their results to more interesting settings.

Let us proceed to describe formally the setting as it is introduced in the latter paper. We
denote by T the total number of rounds. We also have a set E of actions, with |E| = n to chose
from. In the experts setting in on-line learning, the decision maker maintains a distribution
of weights over the set of actions, which can be considered to be a probability distribution
over the actions. Based on that distribution the action of the next round is chosen. Since in
on-line learning we have 0-lookahead, we denote by wt−1

i the weight of the i-th expert that
the algorithm has chosen at the end of the previous round, and by cti the cost incurred in the
current round for expert i which we assume is bounded in [0, 1] by scaling. The total cost our
algorithm is going to suffer over all rounds is given as:

S0 =

T∑
t=1

wt−1ct

2.3. UNIFYING COMPETITIVE ANALYSIS AND ON-LINE LEARNING 11

Whereas we can express the regret as:

T∑
t=1

wt−1ct −
T∑
t=1

w∗ct

where w∗ = arg min
w≥0,∥w∥1=1

T∑
t=1

wct is the fixed distribution over the experts with the

minimum total cost. At this point it is useful to mention the notion of shifting and drift-
ing experts, which seems to bridge on-line learning and competitive analysis. In the case

of shifting experts, we want to minimize the difference
T∑
t=1

wt−1ct −
T∑
t=1

w∗
t ct where w∗ for

t ∈ {0, ..., T − 1} is the optimal sequence of actions which changes at most k times. Drifting
experts is an even more general notion which captures shifting experts as well. The goal in

this case is to minimize the optimal sequence under the constraint that
T∑
t=1

1

2
∥w∗

t −w∗
t−1∥1 ≤ k

which restricts in some sense the distance of the movement of the distribution. In the paper we
are considering, drifting experts are used as a mean to measure the algorithm’s performance
over the ”sweat spot” area, i.e. the area where we have good bounds with respect to both
regret and competitive ratio.

In the context of competitive analysis again we assume 1-lookahead and thus the total cost
for the distribution we choose in each round is:

S1 =
T∑
t=1

wtct

In this setting, we also have an additional switching cost :

M =

T∑
t=1

1

2
∥w∗

t − w∗
t−1∥1

In contrast to on-line learning, we compare our results to an optimal sequence w∗
1, ..., w

∗
T which

minimizes the total cost:
T∑
t=1

wtct +

T∑
t=1

1

2
∥w∗

t − w∗
t−1∥1

and which has S∗
1 total service cost and M∗ total switching cost. Let OPT = S∗

1 +
M∗ be the optimal total cost. Then, in accordance with the definition we gave earlier the
competitive ratio is the minimum c such that

S1 +M ≤ c ·OPT + d

12 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

where d is a constant. Finally, we formalize the α-unfair setting, where the optimal sequence
is the minimizing sequence of S1 + αM and we denote its total cost by OPT (α).

Having all the definition nailed down we can now proceed to highlight the take away points
as stated by the authors.

1. Let OPTk denote the optimal k-drifting sequence, then OPT (α) ≤ OPTk + αk.
To see why this holds true, it is enough to consider the optimal k-drifting sequence with
the additional term ak as an α-unfair sequence.

2. Since ct is bounded for every t we have S0 ≤ S1 +M .
To derive this, one only needs to replace every distribution with the previous one and
pay the appropriate switching cost if they are different.

Based on the above, the following inequalities hold, given that we have a c competitive algo-
rithm for the α-unfair setting.

S0 ≤ S1 +M ≤ cOPT (α) + d ≤ cOPTk + cαk + d

The core algorithm the authors propose is the following:

Experts/MTS Algorithm (learning-style formulation)

Parameters:α ≥ 1, η > 0

Initialization: Set wi,0 =
1
n for all i.

At each time t =| T |

(a) Let ct ∈ [0, 1]n be the service cost vector.

(b) Using binary search, find the smallest at such that
n∑

i=1

wi,tt is a distribution

and

wi,t = max{0, (wi,t−1 +
1

eηα − 1
)e−η(ci,t−at) − 1

eηα − 1
}

2.3. UNIFYING COMPETITIVE ANALYSIS AND ON-LINE LEARNING 13

This algorithm achieves the following competitive ratio and regret as a function of
the parameters α and η:

S1 ≤ OPT (α) + lnn
η

≤ (1 + n
eηα−1)(η OPT (α) + lnn)

Setting α = 1 and η = lnn+ ln lnn we get the best known bound for MTS on uniform metrics.
For α → ∞ where we pointed out earlier that our the setting approaches the classic on-line
learning setting with experts, it holds that S0 ≤ S1+M ≤ (1+ η)OPT (∞)+ lnn

η + lnn which
matches the known bound from the multiplicative weights update framework.

The proof of the bound is based on the fact that this algorithm can be formulated equivalently
in a primal-dual context which provides valuable insight regarding the inherent connection of
the aforementioned problems.

The primal-dual formulation of the algorithm is the following:

Experts/MTS Algorithm(fractional primal-dual formulation):

Parameters: α ≥ 1, η > 0

Initialization: Set wi,0 =
1
n , bi,1 = α− ln(e

ηα+n−1
n

)

η for all i ∈ {1, ..., n}.

During execution maintain the relation:

wi,t = max{0, e
η(α−bi,t+1)

eηα − 1
− 1

eηα − 1
}

At each time t = [T]:

(a) Let ct ∈ [0, 1]n be the service cost vector.
(b) Set bi,t+1 = bi,t + ci,t

(c) Using binary search find the smallest at and set bi,t+1 = bi,t − at

such that
n∑

i=1

wi,t = 1

The algorithm increases the dual variables of the following LP and sets the primal
variables accordingly. The authors then show that the dual solution constructed by the algo-
rithm is feasible, and that the cost of the primal solution is bounded by the dual using the
toolbox provided in [BN09].

14 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

The primal LP is the following:

min
T∑
t=1

n∑
i=1

ci,twi,t +
T∑
t=1

n∑
i=1

αzi,t

s.t.
n∑

i=1

wi,t = 1 ∀t ≥ 0

zi,t ≥ wi,t − wi,t−1 ∀t > 1,∀i ∈ [n]

wi,t ≥ 0 ∀t > 0,∀i ∈ [n]

zi,t ≥ 0 ∀t > 1,∀i ∈ [n]

And its dual whose variables the algorithm increases is:

max
T∑
t=0

at

s.t.a0 + bi,1 ≤ 0 ∀i ∈ [n], t = 0

bi,t+1 ≤ bi,t + ci,t − at ∀i ∈ [n], t ≥ 1

0 ≤ bi,t ≤ α ∀i ∈ [n], t ≥ 0

So far we have seen that despite their differences competitive analysis and on-line learning
are characterized by a tight interrelationship. For most of the algorithms studied so far this
boils down to appropriate interpolation of some parameters. However, we have not yet seen
a candidate succeeding in deriving the result we hoped for. That is no algorithm discussed so
far can achieve both sublinear regret and constant competitive ratio at the same time. The
chase for such an optimistic result came to an end when the authors of [And+15] proved the
following theorem:

2.3. UNIFYING COMPETITIVE ANALYSIS AND ON-LINE LEARNING 15

Theorem 2.3.1. There is no algorithm (randomized of deterministic) which can achieve sub-
linear regret and constant competitive ratio in the SOCO setting, even when the cost functions
are linear.

After giving the hardness result, the authors provide a new algorithm with close
to optimal bounds with respect to both metrics. The Randomly Biased Greedy algorithm
achieves (1+ γ) competitive ratio and O(max{T/γ, γ}) regret. Setting γ =

√
T the algorithm

guarantees O(
√
T) bounds regarding both the regret and the competitive ration. Opting for

constant ratio and linear regret it suffices to set γ = 1. Intuitively, γ decides the distance be-
tween the new and the previous point in the decision space which in turn defines the movement
cost.

Randomly Biased Greedy

Parameters: Norm N.

Initialization: Set w0 = N(x).

At each time t = [T] :

(a) wt(x) = min
y

{wt−1(y) + ct(y) +N(x− y)}.

(b) Generate a random number r ∈ (−1, 1) uniformly.
(c) Return xt = arg min

x
{wt−1(x) + rN(x)}.

16 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

2.4 Common ground - The Regularization technique

Regularization is a common technique introduced in the field of on-line learning. As
we mentioned earlier the learner in this setup has no knowledge about the future (0-lookahead)
and thus a notion of stability is crucial in order to derive satisfying bounds. The general idea
of regularization is to alter the objective function of an optimization problem in order to
enforce stability on the optimal solution. The most common approach is to add some smooth
and convex regularizing term to the objective function, such as the relative entropy or the
Bregman divergence. Thus, sacrificing some approximation factor we end up with an overall
more stable objective which is easier for the learner to track.

Moving beyond the boundary of on-line learning and coming back to competitive
analysis we notice that any SOCO algorithm must try to mimic the configurations of the
optimal off-line solutions on one hand while minimizing the movement cost on the other.
Thus, it is clear that in some sense our algorithm has to maintain stability in a similar way to
on-line learning. This high level connection allows us to successfully transfer the regularization
technique to competitive analysis problems such as MTS problem [Abe+10] and On-line Set
Cover with Service Cost [BCN14].

In the work of Buchbinder et al.[BCN14] the authors propose a general on-line algo-
rithm for any SOCO problem that can be formulated as a covering LP i.e. the convex space
of the decision points is a polyhedron that can be described by covering constrains in every
round. Losing a O(logn) approximation factor with respect to the optimal off-line solution
the algorithm returns on-line a fractional solution to the problem. Here n denotes the maxi-
mal sparsity of the covering constraints which in the worst case is as large as the number of
variables. This work is based on regularization via relative entropy and primal dual techniques
developed in this survey [BN09].

The example problem used in this paper is On-line Set Cover problem whose defini-
tion and LP formulation we have already stated. In order to understand how the aforemen-
tioned algorithm derives the logarithmic approximation we are going to need the primal and
the dual relaxations of the problem:

(P) min
T∑
t=1

ctyt +
T∑
t=1

n∑
i=1

wizi,t

subject to
∑
i∈Sj,t

yi,t ≥ 1 ∀t ≥ 1,0 ≤ j ≤ mt

zi,t ≥ yi,t − yi,t−1 ∀t ≥ 1,1 ≤ i ≤ n

zi,t, yi,t ≥ 0 ∀t,1 ≤ i ≤ n

2.4. COMMON GROUND - THE REGULARIZATION TECHNIQUE 17

(D) max
T∑
t=1

mt∑
j=1

aj,t

subject to bi,t ≤ wi ∀i∀t ≥ 1

bi,t+1 − bi,t ≤ ci,t −
∑

j|i∈Sj,t

aj,t ∀i∀t ≥ 1

aj,t, bi,t ≥ 0 ∀i, j∀t ≥ 1

To use regularization in this case would mean to add a smooth function to the
objective function ctyt in each round to ensure that the distribution yt will not change too
much from the previous round. A natural function which is an indication of the resemblance
of two distributions is the relative entropy function

∆(w ∥ u) =
n∑

i=1

wi ln wi

ui
+ ui − wi

The on-line regularization algorithm which is one of the two main results of the paper is the
following:

Regularization Algorithm

Parameters: ϵ > 0, η = ln(1 + n
ϵ)

Initialization:yi,0 = 0 ∀i ∈ [n]

At each time t = [T]:

(a) Let ct ∈ Rn
+ be the service cost vector and let Pt be the feasible set of solutions.

(b) Solve the following convex program to obtain yt

yt = arg min
x∈Pt

{ctx+ 1
η

n∑
i=1

wi((xi +
ϵ

n
) ln(

xi +
ϵ
n

yi,t−1 +
ϵ
n

)− xi)}

Using the regularization introduced above we can isolate in each round t the instance
of the problem and produce a new regularized LP P ′.

18 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

(PREG) min ctyt +
1

η

n∑
i=1

wi((yi,t +
ϵ

n
) ln(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

)− yi,t)

subject to
∑
i∈Sj,t

yi,t ≥ 1 ∀t ≥ 1, 0 ≤ j ≤ mt

yi,t ≥ 0 ∀t, 1 ≤ i ≤ n

In this new LP we note that the learning parameter η serves as a tuning parameter between
service and movement cost. For large values of η the service cost is favored and the opposite
holds true when η is small. The regularization function is almost the relative entropy of the
current point and the previous point adjusted for the weighted case. One more difference is
that the points are noisy, since we have added a small amount of noise uniformly distributed
on the coordinates.

Before we present the related result given in [BCN14] we will provide a high level
description. In each round t a new PREG is constructed on-line using information only from
rounds t and t − 1. Since the new LP has convex objective function over a convex feasible
region it is solvable in polynomial time using standard convex optimization techniques. Using
K.K.T.−(Karash-Kuhn-Tucker)− optimality conditions for each of these, t in number, PREGs
the authors of this paper prove that the sequence of solutions produced on-line, constitute
a feasible solution for (D) (defined above). Surprisingly, this solution is also proven to be
within a logn-multiplicative factor from the optimal solution of (D), delivering immediately,
the desired result through weak duality. In order to present the proof we first have to derive
the appropriate relations from the K.K.T optimality conditions. Thus, for each PREG we
define a Lagrangian variable aj,t for every covering constrain in the current round.

For all 1 ≤ j ≤ mt, ∑
i∈Sj,t

yi,t − 1 ≥ 0 (2.1)

aj,t

∑
i∈Sj,t

yi,t − 1

 = 0 (2.2)

Also for all 1 ≤ i ≤ n,

ci,t +
wi

η
ln
(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

)
−

∑
j:i∈Sj,t

aj,t ≥ 0 (2.3)

yi,t

ci,t +
wi

η
ln
(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

)
−

∑
j:i∈Sj,t

aj,t

 = 0 (2.4)

2.4. COMMON GROUND - THE REGULARIZATION TECHNIQUE 19

Plugging in (D) the aj,t from the consecutive PREG and setting bi,t+1 =
wi
η ln(1+ϵ/n

yi,t+ϵ/n)

we create a feasible solution. To prove feasibility it is enough to see that

bi,t+1 − bi,t = −wi

η
ln(yi,t + ϵ/n

yi,t−1 + ϵ/n
) ≤ ci,t −

∑
j:i∈Sj,t

aj,t

where the inequality follows from 2.3. And also

0 ≤ bi,t+1 =
wi

ln(1 + ϵ/n)
ln(1 + ϵ/n

yi,t + ϵ/n
) ≤ wi

since 0 ≤ yi,t ≤ 1.
As we stated above we will now proceed to bound the movement (M) and the service (S) cost
of the constructed solution with respect to the optimal solution of (D).

Mt = η
∑

yi,t>yi,t−1

wi

η
(yi,t − yi,t−1) ≤ η

∑
yi,t>yi,t−1

(
yi,t +

ϵ

n

)
·
(
wi

η
ln
(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

))
(2.5)

= η
∑

yi,t>yi,t−1

(
yi,t +

ϵ

n

)
·

 ∑
j|i∈Sj,t

aj,t − ci,t

 (2.6)

≤ η

n∑
i=1

(
yi,t +

ϵ

n

) ∑
j|i∈Sj,t

aj,t = η

mt∑
j=1

aj,t

∑
i∈Sj,t

yi,t +
ϵ | Sj,t |

n

 (2.7)

≤ η

(
1 +

ϵk

n

) mt∑
j=1

aj,t. (2.8)

S =
T∑
t=1

n∑
i=1

ci,tyi,t =
T∑
t=1

mt∑
j=1

aj,t
∑
i∈Sj,t

yi,t −
1

η

T∑
t=1

n∑
i=1

wi · yi,t ln
(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

)
(2.9)

=

T∑
t=1

mt∑
j=1

aj,t −
1

η

n∑
i=1

wi

{
T∑
t=1

(
yi,t+ ϵ

n

)
ln
(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

)
− ϵ

n

T∑
t=1

ln
(

yi,t +
ϵ
n

yi,t−1 +
ϵ
n

)}
(2.10)

≤
T∑
t=1

mt∑
j=1

aj,t −
1

η

n∑
i=1

wi


(

T∑
t=1

(
yi,t+ ϵ

n

))
ln


T∑
t=1

(
yi,t +

ϵ

n

)
T∑
t=1

(
yi,t−1 +

ϵ

n

)
− ϵ

n
ln
(
yi,T + ϵ

n

yi,0 +
ϵ
n

)


(2.11)

≤
T∑
t=1

mt∑
j=1

aj,t = value of (D). (2.12)

Regarding the movement cost, inequality 2.5 follows as a−b ≤ a ln(a/b), equality 2.6
and inequality 2.8 follow from the KKT optimality conditions. Respectively for the service cost

20 CHAPTER 2. SMOOTH ON-LINE CONVEX OPTIMIZATION

equalities 2.9 and 2.10 derive from KKT conditions and inequality (2.7) follows by telescopic

sum and by the fact that
∑
i

ai log(ai/bi) ≤ (
∑
i

ai) log(
∑

i ai∑
i bi

).

Summing the movement and the service costs over all rounds t and substituting η
provides the logarithmic approximation.

It turns out that this technique can be generalized to a broader class of problems
whose linear program apart from covering, contains constrains of the form

∑
i∈Si,t

yi,t ≥ rj,t or

even precedence constrains x ≤ y. Problems falling in this framework are facility location
formulations, allocation problems and many others such as the On-line Shortest Path with
Switching Cost which we will study further in Chapter 4.

Chapter 3

Exponential Clocks

3.1 Introduction to exponential clocks

In this chapter we are going to dive into a new rounding technique which has been applied with
success in the framework of SOCO. First, we will define exponential clocks and we will point
out some useful properties they have. Subsequently, we will go through some applications of
exponential clocks and we will try to understand the underlying advantages and disadvantages
of this technique in order to utilize it in an attempt to tackle the On-line Shortest Path with
Switching Cost problem.

Definition 3.1.1. By exponential clocks we mean competing independent exponential random
variables. An exponential clock wins a competition if it has the smallest value among all par-
ticipating exponential clocks. A random variable X is distributed according to the exponential
distribution with rate λ if it has density fX(x) = λe−λx ∀x ≥ 0 and fX(x) = 0 otherwise.
We denote this by X ∼ exp(λ).

Below we will give a high level description of the steps that an exponential clock
rounding algorithm usually follows:

• We associate each variable yi of our problem with a random value sampled in the begin-
ning of our algorithm from the exponential distribution Xi ∼ Exp(λ)

• We then define the clock of each variable to be Xi
yi

where yi is the fractional value of the
variable given by the relaxed linear program.

• The clocks are competing with each other or versus a threshold in order to be rounded.
Smaller clocks are more likely to be rounded during our algorithm.

21

22 CHAPTER 3. EXPONENTIAL CLOCKS

We are going to state some basic properties of exponential clocks:

• F (x) =

{
1− e−λx, x ≥ 0

0, otherwise

• Let X ∼ Exp(λ) then E[X] = 1
λ

• Let X ∼ Exp(λ) and c > 0, then X
c ∼ Exp(λc)

• Let X1, . . . , Xk be independent random variables for which Xi ∼ Exp(λi):

(a) min{X1, ..., Xk} ∼ Exp(
k∑

i=1
λi)

(b) Pr[Xi ≤ minj ̸=i{Xj}] = λi
λ1+...+λk

• For any independent exponential random variables X,Y
Pr[X ≤ Y |X ≥ t] = λX

λX+λY
e−λY t

• The probability to have two exponential clocks with the same value is zero.

Before we move on studying application we are going to give some underlying characteristic
of exponential clocks which make them so useful in many combinatorial problems:

1. Pr[min{X1/y1, ..., Xk/yk} > a] < e
−aλ

k∑
i=1

yi
. That means that if our relaxed LP picks a

set of fractional values such that the sum of them is greater than 1 then our rounding
algorithm (setting a as threshold) will have exponentially small chance to not round at
least one of these variables.

2. The second property is related with on-line problems with switching cost. Since we are
assigning a value Zi to every random variable at the beginning of the algorithm, we are
in fact defining a quantitative ordering over the variables. As a corollary our algorithm
is desensitized to small fluctuations in the fractional solution.

The first application we are going to see is the classic Set Cover problem. The usage
of exponential clocks in this simple example is an ideal way to introduce the reader to this
technique. Recall that the Set Cover problem is defined as follows. Let X = {1, 2, ..., n} be a
ground set of n elements and let S be a family of subsets of X, |S| = m. A cover is a collection
of sets such that their union is X. Each S ∈ S has a nonnegative cost cS associated with it.
The goal is to find a cover of minimum cost.

And the respective linear program relaxation is :

3.1. INTRODUCTION TO EXPONENTIAL CLOCKS 23

min
∑
S∈S

ctyt

subject to
∑

S:x∈X
yS ≥ 1 ∀x ∈ X

yS ≥ 0 ∀S ∈ S

Set Cover Rounding Algorithm

• Initialization: ∀S ∈ S choose i.i.d. random variables ZS ∼ Exp(1).

• Output
∪
x∈X

arg min
S:x∈S

{ZS

yS
}

Notice that the smaller the value of ZS and the bigger the fractional value yS , the
more likely it is for set S to be chosen. In a sense on one hand the exponential random variables
are defining a quantitative ordering over the sets and on the other the more a set is chosen
by the LP relaxation the better it is and thus we should include it with higher probability
in our solution. We are going to show that given a fractional solution for the Set Cover, this
algorithm rounds the solution suffering only ln(Smax) + 1 approximation:

Let Ax,S be the event that :

ZS

yS
≤ minS′∈S{

ZS′

yS′
|x ∈ S′, S′ ̸= S}.

24 CHAPTER 3. EXPONENTIAL CLOCKS

Then

Pr[S ∈ S is chosen] = Pr[∃x : Ax,S]

=


Pr[∃x : Ax,S | ZS/yS < α] · Pr[ZS/yS < α]

+

Pr[∃x : Ax,S | ZS/yS > α] · Pr[ZS/yS > α]

≤ Pr[ZS/yS < α] + Pr[∃x : Ax,S | ZS/yS > α] · Pr[ZS/yS > α]

=


∫ α

0
ySe

−yStdt

+

Pr[∃x : Ax,S | ZS/yS > α]
∫∞
a ySe

−yStdt

= (1− e−ySα) + Pr[∃x : Ax,S |ZS/yS > α]e−ySα

≤ 1− e−ySα) + e−ySα
∑
x∈S

Pr[Ax,S |ZS/yS > α]−(by union bound)

≤ ySα+ e−ySα
∑
x∈S

yS∑
S′:x∈S′

yS′
e
−α(

∑
S′:x∈S′

(yS′)−yS)

−
(

by exponential clock properties
and

ex ≥ 1 + x

)
≤ yS(α+ |S|e−α) = yS(ln |Smax|+ 1)− (setting α = ln |Smax|)
≤ yS(lnSmax) + 1)

This proof is given in the appendix of [BNS13]. The main result of the paper is
an exponential clocks based algorithm for the Multiway-Cut problem. The authors map the
instance of the Multiway-Cut problem to a simplex of appropriate dimensions. Then, they
randomly partition the simplex using exponential clocks, deriving a good approximate solution
for the initial problem. Instead of focusing further on this problem, we will see three other
more instructive applications.

3.2. FACILITY LOCATION WITH STABLE INTERVALS 25

3.2 Facility Location with stable intervals

Eisenstat et al. in [EMS14] introduced a Dynamic version of Facility Location with
Switching Cost. Formally, we are given a set F of m facilities and a set C of n clients together
with a finite sequence of distances (dt)1≤t≤T over F × C, a non-negative facility opening cost
f and a non-negative client switching cost g. The goal is to output a subset A ⊆ F of facilities
and, for each time step t ∈ [T], an assignment ϕt : C → A of facilities to clients, so as to
minimize:

f ·
∑

1≤t≤T

#At +
∑

1≤t≤T,j∈C
dt(ϕt(j), j) + g ·

∑
1≤t<T

∑
j∈C

1{ϕt(j) ̸= ϕt+1(j)},

that is to say the sum of the service cost (f for each open facility in each time step), of the
total distance cost to connect each client to its assigned facility at every time step, and of the
switching cost for each client (g per change of facility per client).

A linear relaxation. For an integer programming formulation, we define indicator 0-1
variables yi, xtij , and ztij for i ∈ F , j ∈ C, and t ∈ [T]: yi = 1 iff facility i is open; xtij = 1 iff
client j is connected to facility i at time t; and ztij = 1 iff client j is connected to facility i at
time t but no more at time t+ 1. The dynamic facility location problem is then equivalent to
finding an integer solution to the following linear programming relaxation.



min f ·
∑

1≤t≤T

∑
i∈At

yti +
∑
j∈C

∑
1≤t≤T

∑
i∈F

xtij · dt(i, j) + g ·
∑
j∈C

∑
1≤t<T

∑
i∈F

ztij

such that : (∀ijt) xtij ≤ yti

(∀jt)
∑
i∈F

xtij = 1

(∀ij, ∀t < T) ztij ≥ xtij − xt+1
ij

yti , x
t
ij , z

t
ij ≥ 0


The authors provide a randomized rounding algorithm proving the following theorem:

Theorem 3.2.1 (Hourly opening cost). There is a polynomial time randomized algorithm
which outputs a solution to the dynamic facility location problem with hourly opening cost
whose cost verifies:

Pr[cost ≤ 4 log(2nT) · OPT] ≥ Pr[cost ≤ 4 log(2nT) · LP] ≥ 1/4.

26 CHAPTER 3. EXPONENTIAL CLOCKS

Algorithm 1 Fixed opening cost
• Solve the linear program LP (3.2). Let (x, y, z) be the solution obtained.
• Draw a facility at random Γ = 2 log(2nT)

∑
i∈F yi times independently, with distribution

proportional to y; let A be the resulting multiset of facilities.
for For each client j do
• Determine when it should change from one facility to another using the z-variables, and
assign it to the cheapest selected facility between each change:

(a) Partition time greedily into ℓj intervals [tjk, t
j
k+1) such that tj1 = 1 and where tjk+1

is inductively defined as the largest t ∈ (tjk, T + 1] such that
∑
i∈F

(
min

tjk≤u<t
xuij

)
≥ 1/2, and

tjℓj+1 = T + 1;
(b) For each time interval [tjk, t

j
k+1), connect j to the facility in A that is cheapest for j

for that time interval.
end for

The algorithm’s success is a product of the exponential clocks’ properties and the
clever definition of stable intervals for each client j. These intervals make sure that our
algorithm will not reassign client j unless the fractional solution is guaranteed to pay at least
g/2 switching cost. This novelty combined with a more accurate analysis actually derives
better approximation on the follow up work in [ANS17].

Sabanne et al.[EMS14] utilize again exponential clocks in order to achieve constant
approximation for the same problem. To do so they first execute two preprocessings. The first
is heavily related to the notion of stable intervals as we defined them previously.

Lemma 3.2.1. Given an LP solution, we can, by increasing its cost by at most a factor of 2,
obtain in polynomial time a feasible solution (x, y, z) satisfying:

• If we let Zt = {j ∈ C | xtij ̸= xt+1
ij for some i ∈ F} denote the set of clients that

changed its fractional connection between time step t and t + 1, then
∑T−1

t=1 |Zt| ≤∑T−1
t=1

∑
i∈F,j∈C ztij .

The second preprocessing is obtained by using the standard trick of duplicating
facilities, while being careful that if the connection variables of a client remain the same
between two consecutive time steps, they remain so even after the preprocessing.

Observation 3.2.2. Without loss of generality, we may assume that (x, y, z) satisfies the
following:

1. For any facility i ∈ F , client j ∈ C, and time step t ∈ [T], xtij ∈ {0, yti}.

2. For each facility i ∈ F , there exists oi ∈ [0, 1] such that yti ∈ {0, oi} for each time step
t ∈ [T].

3.2. FACILITY LOCATION WITH STABLE INTERVALS 27

Given a preprocessed solution (x, y, z) to the linear programming relaxation that
satisfies the properties of Lemma 3.2.1 and Observation 3.2.2, our algorithm proceeds by first
making a random choice and then opening facilities and connecting clients in each time step.

Rounding method of Svenson, Norouzi-Fard and An

Random choice: Sample independently an exponential clock
Qi ∼ Exp(oi) for each facility i ∈ F and an exponential clock
Rj ∼ Exp(1) for each client j ∈ C.

Opening and connecting: At each time step t ∈ [T], open facil-
ities and connect clients as follows. Consider the clients in the
non-decreasing order of their sampled clocks (Rj ’s). When
client j ∈ C is considered, find the facility i = arg min

i:xt
ij>0

Qi of

the smallest clock among the facilities that j is connected to
in the support of xt. Similarly, let j′ = arg min

j′:xt
ij′>0

Rj′ be the

client with the smallest clock in the neighborhood of i. The
connection of j at time t is now determined as follows: if
j = j′ then open i and connect j to i; otherwise, connect j
to the same facility as j′.

Here the improvement lies on the choice of facility i where we assign client j in each
stable interval. The exponential clocks again define a quantitative ordering between facilities
and clients. This creates neighborhoods where a single facility dominates, meaning that all
the clients in this region connect to it. This dominance keeps the solution produced by the
algorithm stable deriving a constant bound with respect to the switching cost. However, it also
allows distant connections which increases the service cost. Using the properties of exponential
clocks and some combinatoric arguments the authors show that the probability that client j
connects to facility i diminishes rapidly as the distance grows longer. Thus the main result of
this paper is the following theorem.

Theorem 3.2.3. There is a randomized 14−approximation algorithm for the dynamic facility
location problem.

Summing up the takeaway points regarding the applications we have seen so far we
can note the following:

• We have seen cases where the exponential clocks compete with each other in order to be
selected and cases where specific thresholds determine the selection of the clocks.

• The introduction of stable intervals seems to be effective when the variables suffering
switching cost add up to some a priory known value. However, the construction of
these intervals requires lookahead which implies that this method can not be transferred
immediately to some on-line setting like the one we are about to see next.

28 CHAPTER 3. EXPONENTIAL CLOCKS

3.3 On-line Set Cover with Service Cost revisited

Let us shift to the on-line framework and recall the On-line Set Cover with Service Cost once
more. Using regularization Buchbinder et al. presented an on-line O(logm)−approximation
algorithm which computes on the fly a fractional solution to this problem. Following the work
of [BCN14] we will now see the on-line rounding algorithm proposed by the authors eventually
deriving an O(logm logn)−approximation.

Rounding Algorithm for On-line Set Cover with Service Cost

1. parameter : α ≥ 0

2. ∀S ∈ S choose i.i.d. random variables ZS ∼ Exp(1).

3. ∀e ∈ E , choose i.i.d. random variable Ze ∼ Exp(1)

4. at any time step t, let yS,t denote the current fractional value of S.

5. for t = 1, 2, ...T do

(a) let At = {S ∈ S | ZS
yS,t

< α}.

(b) Bt =
∪
e∈E

{
S|S = arg min

S′:e∈S′
{ ZS′

yS′,t
} and ZS

yS
<

Ze

max{0, 1−
∑

S:e∈S yS,t}

}
.

(c) output At ∪Bt.

Here we notice that there exists a threshold α such that any clock greater than that,
is included in At. For the rest of the clocks there is a competition related with each element e
which decides which sets S will end up in Bt. The high level intuition related with sets At and
Bt is that all the ”nice” sets S are included immediately in the solution through At whereas
Bt ensures that the final solution we will return, is indeed feasible.

The analysis bounds the service cost using standard techniques similar to the previous
applications but for the switching cost a new approach is presented. The authors separate
every time step from t to t + 1 into consecutive sub-steps where the fractional value of only
one variable changes. Considering cases it is proven that every such change can not affect
the expected cost too much, eventually deriving the desired (logn)− approximation. We are
going to dive into more detail in chapter 4 where we are going to prove a similar bound for
the On-line Shortest Path with Switching Cost.

Chapter 4

On-line Shortest Path with
Switching Cost

4.1 Problem Formulation

Let G = {V,E} be a directed weighted graph with no negative length cycles. Let also |V | = n
and |E| = m. We are giving firstly the integral LP formulation for the Dynamic Shortest s− t
Path with Switching Cost and afterwards we will present its fractional relaxation:

min
T∑
t=1

∑
(i,j)∈E

ctijx
t
ij + g

T∑
t=1

∑
(i,j)∈E

ztij

s.t.
∑

(i,j)∈δ+(i)

xtij −
∑

(j,i)∈δ−(i)

xtji =


1, if i = s

−1, if i = t

0, ∀i ∈ V \ {s, t}∑
(i,j)∈δ+(i)

xtij ≤ 1 ∀i ∈ V

ztij ≥ xtij − xt−1
ij ∀t,∀(i, j) ∈ E

xtij ∈ {0, 1} ∀t,∀(i, j) ∈ E

ztij ∈ {0, 1} ∀t,∀(i, j) ∈ E

Integral Version

29

30 CHAPTER 4. ON-LINE SHORTEST PATH WITH SWITCHING COST

min
T∑
t=1

∑
(i,j)∈E

ctijx
t
ij + g

T∑
t=1

∑
(i,j)∈E

ztij

s.t.
∑

(i,j)∈δ+(i)

xtij −
∑

(j,i)∈δ−(i)

xtji =


1, if i = s

−1, if i = t

0, ∀i ∈ V \ {s, t}∑
(i,j)∈δ+(i)

xtij ≤ 1 ∀i ∈ V

ztij ≥ xtij − xt−1
ij ∀t,∀(i, j) ∈ E

xtij ≥ 0 ∀t,∀(i, j) ∈ E

ztij ≥ 0 ∀t,∀(i, j) ∈ E

Fractional Version

Interpreting the integral formulation we get that variables xtij are indicators taking
value either 0 or 1 depending on whether the corresponding edge (i, j) is included in the
shortest path at time t. The ctijs represent the weights or costs associated with each edge and
ztij capture the switching cost as usual. The constrains we use are the standard shortest paths
constrains for the case where no negative length cycle exists, extended with the corresponding
constrains for ztij .

Regarding the linear programming relaxation we make the following observations :

• From the above constraints, it is implied that:∑
(i,j)∈δ+(S)

xtij ≥ 1 ∀t, ∀S s.t. :S ⊂ V and s ∈ S and t ̸∈ S

• Furthermore, it is easy to verify that this formulation belongs in the framework provided
by Buchbinder et al. in [15] and thus a fractional solution can be obtained on-line, via
regularization, sacrificing an O(logm) approximation factor.

Given a fractional solution to the above LP we will proceed to round on-line the
solution in each time step t losing an other logarithmic factor on the approximation. To
this end we will present a new algorithm which taking advantage of the exponential clocks
properties will return a feasible solution in a O(logn)−approximation.

4.2. ROUNDING ALGORITHM FOR ON-LINE SHORTEST PATHS WITH SWITCHING COSTS31

4.2 Rounding Algorithm for On-line Shortest Paths with switch-
ing Costs

Before we state the rounding algorithm we should try to deeply understand the problem we
are trying to solve and its inherent structure. A couple of things differentiate this problem
from the one we saw at the end of the previous chapter. First of all, obtaining feasibility for
the rounded solution is not trivial in this problem. Let’s just think for a minute the case where
we opt in each round t to pick the edges whose exponential clock is higher than some threshold
α. This would include all the ”good” edges similarly to On-line Set Cover with Service Cost.
However, this set of edges is far from providing a feasible solution. An attempt to restore
feasibility, by making sure that every s− t cut is bridged, is hindered by the exponentially big
number of cuts. Even worse, there is a strong dependence between the edges that constitute
an s − t shortest path. Changing even one edge could trigger a chain of changes creating a
new, totally different shortest path. The above argumentation poses a serious difficulty both
in extending our set of edges to a feasible set but more importantly it makes our effort to
bound the switching cost bleak.

The high level idea in the algorithm we propose is the following. In each round t
we indeed opt to pay for the ”good” edges of the graph i.e. the edges whose clock is smaller
than some threshold α. Having these edges in the solution we set out to obtain feasibility as
cheaply as possible. To this end we elect to run Dijkstra’s algorithm on a carefully modified
copy of our graph. Note that Dijkstra not only guarantees feasibility but also restricts, nicely,
the number of cuts we have to consider. We are now left with figuring out the appropriate
modification for our graph.

• All the vertices and the edges remain the same in the graph. Thus, there is no way to
add or remove paths from s to t.

• Given that we have already paid for the ”good” edges in the graph it is natural to let
our Dijkstra to freely cross each one of them. With this reasoning we assign zero weight
on each such edge.

• On the other hand considering the rest of the edges we prefer edges with higher fractional
values and smaller exponential random variables i.e. the smaller the clock the more likely
it should be for this edge to be included in the solution. We set the weight of each such
edge to be the value of its corresponding clock and let Dijkstra to the rest.

32 CHAPTER 4. ON-LINE SHORTEST PATH WITH SWITCHING COST

Rounding algorithm for On-line Shortest Paths with Switching
Cost

1. Set Parameter: a ≥ 0

2. ∀(i, j) ∈ E choose i.i.d. random variable Zij ∼ Exp(1)

3. At any time step t let xtij be the current fractional value of edge (i, j).

4. for t = 1, 2, .., T do:

(a) Let At = {(i, j) ∈ E| Zij

xtij
< a}

(b) Create the graph Gt = {V,E} with the same vertices and edges as
G but different weights on the edges:

• For any edge (i, j) ∈ At, w(i, j) = 0.

• For any other edge (i′, j′) ̸∈ At, w(i′, j′) =
Zi′j′

xti′j′
.

(c) Run Dijkstra in Gt from s. Then let Bt be the edges on the shortest
path from s to t that are not included in At.
(In order to simplify the analysis here we opt to define Bt as the
set of all edges −not in At− in the shortest path tree that Dijkstra
will create reaching for t)

(d) output At ∪Bt.

Theorem 4.2.1. Rounding algorithm achieves r = O(logm logn) approximation ratio.

Proof. Our goal is to bound the switching and service cost of our algorithm with respect to
the quantities that the fractional solution will pay. Thus, we will achieve a multiplicative
approximation which will extend to the total cost that the integral optimal solution will pay.
Before we begin bounding the cost we will compute the expected cardinality of set Bt in
any time step t

Lemma. E[|Bt|] ≤ ne−a

Proof. We know that in order for Dijkstra to compute the shortest path from s to t it will
face at most n− 1, s− t cuts and it will make a choice regarding which edge to pick to cross
each cut. First, we will focus on one such cut S and will compute the probability that no edge
from At crosses S.

Pr
[

min
(i,j)∈δ+(S)

(
Zij

xtij

)
> a

]
= exp(−a

∑
(i,j)∈δ+(S)

xtij) ≤ exp(−a) = e−a

where the last inequality follows from the fact that
∑

(i,j)∈δ+(S)

xtij ≥ 1 due to the feasibility

4.2. ROUNDING ALGORITHM FOR ON-LINE SHORTEST PATHS WITH SWITCHING COSTS33

constrain.

Let us now define the random variable Xt
i = 1 when no edge from At crosses the cut Si

and Xt
i = 0 otherwise. Let k be the number of cuts that Dijkstra will face while computing

the shortest s− t path. Thus we have:

E[

k∑
i=1

Xt
i] =

k∑
i=1

E[Xt
i] ≤ ne−a

Corollary. It follows immediately that the expected switching cost with respect to Bt is at
most ne−a which is 1 for a = logn.

However, we want to replace this additive quantity with a multiplicative approxi-
mation. Thus, we will analyze more thoroughly how the changes in each xtij will affect the
expected switching cost of our algorithm. To this end between time steps t− 1 and t we will
consider m in between sub-steps so that in each of them only the fractional value of one of
the edges can change. First, we will consider all the edges whose fractional value will increase
and then those whose fractional value will decrease. Clearly, adding the switching and service
cost over all mT sub-steps can only be greater than the total cost that our algorithm will pay
since we may end up double counting some additions in the sets A and B. Also notice that
while we are considering the fractional values that increase, At−1 is a subset of the current
set A and similarly while we are considering the fractional values that decrease, At is a subset
of the current A. Thus the expected size of B conditioned on the additions or removals of
specific edges in set A over the sub-steps can only be smaller than ne−a.

Also let Y t
(i,j),S be the minimal clock in cut S other than the clock of edge (i, j) i.e.

Y t
(i,j),S = min

(i′,j′)∈δ+(S)|(i′,j′)̸=(i,j)

Zt
i′j′

xti′j′

By the properties of the exponential clocks Y t
(i,j),S is an exponential random variable with :

λ =
∑

(i,j)̸=(i′,j′)

xti′,j′ ≥ 1− xti,j

34 CHAPTER 4. ON-LINE SHORTEST PATH WITH SWITCHING COST

Step #A :Switching cost deriving from increasing fractional variables

Consider edge (i, j) ∈ E whose fractional value increases from xt−1
ij to xtij = xt−1

ij + ∆. The
probability that this increase will result in one more addition in our set At is:

Pr
[
(i, j) ∈ At and (i, j) /∈ (At−1 ∪Bt−1)

]
≤ Pr

[
(i, j) ∈ At and (i, j) /∈ At−1

]
= Pr

[Zij

xt−1
ij +∆

< a <
Zij

xt−1
ij

]
= e−axt−1

ij − e−axt−1
ij +∆

= e−axt−1
ij (1− e−a∆) ≤ a∆

This addition to set A can in turn trigger additions on set B. However the expected size of
B conditioned on the event that (i, j) ∈ At is smaller than ne−a deriving expected switching
cost a∆ne−a.

Let us now consider the event : {(i, j) /∈ At, Bt−1 and (i, j) ∈ Bt}

To bound the probability of the event above let us fist consider a specific s − t cut S. The
probability that no edge from A crosses this cut and the clock of (i, j) is the minimum only
after the increase of its fractional value is below. Note that Yij,S is referring to the current
sub-step:

Pr[Zij

xt−1
ij +∆

< Yij,S <
Zij

xt−1
ij

and
Zij

xt−1
ij +∆

> a] ≤ Pr[Zij

xt−1
ij +∆

< Yij,S <
Zij

xt−1
ij

and Yij,S > a]

=

∫ ∞

a
fY (k)Pr[Zij

xt−1
ij +∆

< k <
Zij

xt−1
ij

]dk

=

∫ ∞

a
λe−λk(e−xt−1

ij k − e−(xt−1
ij +∆)k)dk

=
λ

xt−1
ij + λ

e−a(xt−1
ij +λ) − λ

xt−1
ij +∆+ λ

e−a(xt−1
ij +∆+λ)

≤ e−a − 1

∆ + 1
e−a(∆+1)

= e−a(1− 1

∆ + 1
e−a∆)

≤ e−a(1− e−(a+1)∆)

≤ e−a(a+ 1)∆

Since Dijkstra will face at most n such cuts from union bound we have that :

Pr[(i, j) /∈ At, Bt−1 ∩ (i, j) ∈ Bt] ≤ ne−a(a+ 1)∆

4.2. ROUNDING ALGORITHM FOR ON-LINE SHORTEST PATHS WITH SWITCHING COSTS35

Conditioning on the addition of edge (i, j) to set B we can now bound from above the expected
size of B with 1 + ne−a. An easy way to derive this is by assuming that edge (i, j) belongs
to A. The current set A is a superset of At which implies that the expected size of B at the
current sub-step is smaller than ne−a. It follows that the conditioned expected size of B is at
most 1 + ne−a.
Adding everything up we get that the expected switching cost is bounded above by

ne−a(a+ 1)∆(1 + ne−a) = ne−a(a+ 1)∆ + n2e−2a(a+ 1)∆

= ∆ne−a(a+ 1 + ne−a(a+ 1))

Thus the total expected switching cost that the increase from xt−1
ij to xtij = xt−1

ij + ∆ is
bounded above by

a∆+∆ne−a(a+ a+ 1 + ne−a(a+ 1)) = a∆+∆ne−a(2a+ 1 + ne−a(a+ 1))

Step #B :Switching cost deriving from decreasing fractional variables

Consider edge (i, j) ∈ E whose fractional value decreases from xt−1
ij to xtij = xt−1

ij −∆. The
probability that edge (i, j) belonged to set At−1 and was removed is bounded above by :

Pr[(i, j) ∈ At−1 and (i, j) /∈ At] = Pr[Zij

xt−1
ij

< a <
Zij

xt−1
ij −∆

]

= e−axt−1
ij −∆ − e−axt−1

ij

= e−axt−1
ij (ea∆ − 1)

≤ a∆

This deletion from set A can in turn trigger additions in set B. However again the
conditioned expected size of B is smaller than ne−a deriving expected switching cost at most
a∆ne−a.

Let us now consider the event : { (i, j) /∈ At, Bt and (i, j) ∈ Bt−1 }.

To bound the probability of the event above let us first consider a specific s − t cut S. The
probability that no edge from A crosses this cut and the clock of (i, j) is the minimum only
before the decrease of its fractional value is

Pr[Zij

xt−1
ij

< Yij,S <
Zij

xt−1
ij −∆

and
Zij

xt−1
ij

> a] ≤ Pr[Zij

xt−1
ij

< Yij,S <
Zij

xt−1
ij −∆

and Yij,S > a]

Following the same analysis as before we can upper bound this probability from e−a(a+ 1)∆
Using union bound on the s − t cuts we get that Pr[(i, j) /∈ At, Bt and (i, j) ∈ Bt−1] ≤
ne−a(a+ 1)∆

36 CHAPTER 4. ON-LINE SHORTEST PATH WITH SWITCHING COST

At this point we differentiate from the increasing case noticing that the conditional
expected size of B is bounded above from ne−a from which we derive that the expected
switching cost is n2e−2a(a+ 1)∆

Thus the total expected switching cost that the decrease from xt−1
ij to xtij = xt−1

ij −∆

is bounded above by ∆ne−a(a+ ne−a(a+ 1))

Summing up we get that the total expected switching cost of our algorithm suffers
due to ∆ movement in the fractional solution can be at most :

a∆+∆ne−a(3a+ 1 + 2ne−a(a+ 1))

Having derived an appropriate multiplicative bound for the switching cost we now
turn our attention towards the service cost of our algorithm in comparison with the service
cost paid by fractional solution.

Now we will bound the cost that our algorithm suffers because of the set At, Bt

respectively.

Step #C :Service cost with respect to At

For each time step t for each edge (i, j) with fractional value xtij the probability that
it will be chosen in At is:

Pr[(i, j) ∈ At] = Pr[Zij

xtij
< a] = 1− e−xt

ija ≤ xtija

Thus the service cost due to the edges in At is at most a times the service cost that the
fractional solution pays.

Step #D :Service cost with respect to Bt.

For each time step t each edge (i, j) ∈ E is chosen in Bt due to a specific cut S that
Dijkstra faces with probability:

Pr
[Zij

xtij
< min

(i′,j′)∈δ+(S)|(i′,j′)̸=(i,j)

Zi′j′

xti′j′

∣∣∣Zij

xtij
≥ a

]
Pr[Zij

xtij
≥ a] =

xti,j∑
(i,j)∈δ+(S)

xtij
exp(−a

∑
(i′,j′)̸=(i,j)

xti′j′)e
−axt

ij

≤ xtijexp(−a
∑

(i,j)∈δ+(S)

xtij)

≤ xtije
−a

4.2. ROUNDING ALGORITHM FOR ON-LINE SHORTEST PATHS WITH SWITCHING COSTS37

For the first equality we used that :

Pr
Z,Y∼Exp(λZ,Y)

[
Z < Y |Z ≥ c

]
=

λY

λZ + λY
e−cλY

for Z, Y independent exponential random variables. The inequality is following again from
the feasibility constrain

∑
(i,j)∈δ+(S)

xtij ≥ 1.

Thus the expected service cost due to Bt is at most ne−a times the service cost of the optimal
solution, since Dijkstra will face at most n cuts.
Setting appropriately a = logn we get that the multiplicative factor our algorithm suffers with
respect to the switching cost is :

a+ ne−a(3a+ 1 + 2ne−a(a+ 1)) = logn+ 5 logn+ 3 = 6 logn+ 3

Clearly the respective factor related with the service cost is smaller:

a+ ne−a = logn

Finally, let Costalg denote the total cost our algorithm pays and Costfrac and Costint

the respective costs for the optimal fractional solution and the optimal integral solution.Then
we can state the following:

E[Costalg] ≤ (6 logn+ 3)Costfrac

Chapter 5

Conclusion

5.1 Summing up

In this dissertation our main focus was set on on-line settings where a learner has to
make decisions in the face of uncertainty. We defined the class of On-line Convex Optimiza-
tion problems and its generalization Smooth On-line Convex Optimization. We introduced
the reader to competitive analysis and on-line learning. We pointed out their underlining
differences, we explored the boundaries between the two areas and stated a fundamental in-
compatibility result. We then explained how the regularization technique can be transferred
from on-line learning to competitive analysis deriving innovating result.

We then approached a recent rounding method called exponential clocks. We ex-
plored different applications such as the classic and the On-line Set Cover with Service Cost
and the Off-line Dynamic Facility Location. We concluded identifying some nice properties of
exponential clocks which eventually we utilize in order to get a new result.

In the last part of our work we define a natural problem which belongs in the class
of Smooth On-line Convex Optimization, namely On-line Shortest Path with Switching Cost.
We take advantage of the existing framework in the literature in order to obtain, on-line,
a fractional solution within an O(logm) multiplicative factor from the optimal fractional
solution. As a final step we device a new rounding algorithm that works on-line and guarantees
providing an integral solution to our problem with total approximation ratio O(logm logn).

38

Bibliography

[Abe+10] Jacob D. Abernethy et al. “A Regularization Approach to Metrical Task Systems”.
In: Algorithmic Learning Theory, 21st International Conference, ALT 2010, Can-
berra, Australia, October 6-8, 2010. Proceedings. 2010, pp. 270–284.

[Alo+03] Noga Alon et al. “The online set cover problem”. In: Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego,
CA, USA. 2003, pp. 100–105.

[And+15] Lachlan L. H. Andrew et al. “A Tale of Two Metrics: Simultaneous Bounds on
Competitiveness and Regret”. In: CoRR abs/1508.03769 (2015). url: http://
arxiv.org/abs/1508.03769.

[ANS17] Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. “Dynamic Facility
Location via Exponential Clocks”. In: ACM Trans. Algorithms 13.2 (2017), 21:1–
21:20.

[AT96] M. Asawa and D. Teneketzis. “Multi-armed bandits with switching penalties”. In:
IEEE Transactions on Automatic Control 41.3 (Mar. 1996), pp. 328–348.

[Ban+03] Nikhil Bansal et al. “Online oblivious routing”. In: SPAA 2003: Proceedings of the
Fifteenth Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, June 7-9, 2003, San Diego, California, USA (part of FCRC 2003). 2003,
pp. 44–49.

[BB00] Avrim Blum and Carl Burch. “On-line Learning and the Metrical Task System
Problem”. In: Machine Learning 39.1 (2000), pp. 35–58.

[BB97] Avrim Blum and Carl Burch. “On-line Learning and the Metrical Task System
Problem”. In: Proceedings of the Tenth Annual Conference on Computational
Learning Theory, COLT 1997, Nashville, Tennessee, USA, July 6-9, 1997. 1997,
pp. 45–53.

[BBK99] Avrim Blum, Carl Burch, and Adam Kalai. “Finely-Competitive Paging”. In: 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 Oc-
tober, 1999, New York, NY, USA. 1999, pp. 450–458.

[BBN10] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. “Towards the Randomized k-
Server Conjecture: A Primal-Dual Approach”. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010. 2010, pp. 40–55.

39

http://arxiv.org/abs/1508.03769
http://arxiv.org/abs/1508.03769

40 BIBLIOGRAPHY

[BCN14] Niv Buchbinder, Shahar Chen, and Joseph Naor. “Competitive Analysis via Reg-
ularization”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014.
2014, pp. 436–444.

[BE98] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 1998.

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. “An Optimal On-Line Algo-
rithm for Metrical Task System”. In: J. ACM 39.4 (1992), pp. 745–763.

[BN09] Niv Buchbinder and Joseph Naor. “The Design of Competitive Online Algorithms
via a Primal-Dual Approach”. In: Foundations and Trends in Theoretical Com-
puter Science 3.2-3 (2009), pp. 93–263. url: https : / / doi . org / 10 . 1561 /
0400000024.

[BNS13] Niv Buchbinder, Joseph Naor, and Roy Schwartz. “Simplex partitioning via ex-
ponential clocks and the multiway cut problem”. In: Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 2013,
pp. 535–544.

[Buc+16] Niv Buchbinder et al. “Unified Algorithms for Online Learning and Competitive
Analysis”. In: Math. Oper. Res. 41.2 (2016), pp. 612–625.

[CL06] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cam-
bridge University Press, 2006.

[CO96] Thomas M. Cover and Erik Ordentlich. “Universal portfolios with side informa-
tion”. In: IEEE Trans. Information Theory 42.2 (1996), pp. 348–363.

[EMS14] David Eisenstat, Claire Mathieu, and Nicolas Schabanel. “Facility Location in
Evolving Metrics”. In: Automata, Languages, and Programming - 41st Interna-
tional Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Pro-
ceedings, Part II. 2014, pp. 459–470.

[Fot06] Dimitris Fotakis. “Incremental algorithms for Facility Location and k-Median”.
In: Theor. Comput. Sci. 361.2-3 (2006), pp. 275–313.

[FS97] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting”. In: J. Comput. Syst. Sci. 55.1
(1997), pp. 119–139.

[GM09] Sudipto Guha and Kamesh Munagala. “Multi-armed Bandits with Metric Switch-
ing Costs”. In: Automata, Languages and Programming, 36th Internatilonal Collo-
quium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II. 2009,
pp. 496–507.

[Gor99] Geoffrey J. Gordon. “Regret Bounds for Prediction Problems”. In: Proceedings of
the Twelfth Annual Conference on Computational Learning Theory, COLT 1999,
Santa Cruz, CA, USA, July 7-9, 1999. 1999, pp. 29–40.

[GTW14] Anupam Gupta, Kunal Talwar, and Udi Wieder. “Changing Bases: Multistage
Optimization for Matroids and Matchings”. In: Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I. 2014, pp. 563–575.

https://doi.org/10.1561/0400000024
https://doi.org/10.1561/0400000024

BIBLIOGRAPHY 41

[JV11] Vinay Joseph and Gustavo de Veciana. “Variability Aware Network Utility Max-
imization”. In: CoRR abs/1111.3728 (2011). arXiv: 1111.3728. url: http://
arxiv.org/abs/1111.3728.

[KV02] Adam Kalai and Santosh Vempala. “Efficient Algorithms for Universal Portfolios”.
In: Journal of Machine Learning Research 3 (2002), pp. 423–440.

[KW97] Jyrki Kivinen and Manfred K. Warmuth. “Exponentiated Gradient Versus Gra-
dient Descent for Linear Predictors”. In: Inf. Comput. 132.1 (1997), pp. 1–63.

[Lin+12a] Minghong Lin et al. “Online algorithms for geographical load balancing”. In: 2012
International Green Computing Conference, IGCC 2012, San Jose, CA, USA,
June 4-8, 2012. 2012, pp. 1–10.

[Lin+12b] Minghong Lin et al. “Online optimization with switching cost”. In: SIGMETRICS
Performance Evaluation Review 40.3 (2012), pp. 98–100.

[Lin+13] Minghong Lin et al. “Dynamic Right-Sizing for Power-Proportional Data Centers”.
In: IEEE/ACM Trans. Netw. 21.5 (2013), pp. 1378–1391.

[Lov75] L. Lovász. “On the ratio of optimal integral and fractional covers”. In: Discrete
Mathematics 13.4 (1975), pp. 383–390.

[RS13] Alexander Rakhlin and Karthik Sridharan. “Online Learning with Predictable
Sequences”. In: COLT 2013 - The 26th Annual Conference on Learning Theory,
June 12-14, 2013, Princeton University, NJ, USA. 2013, pp. 993–1019.

http://arxiv.org/abs/1111.3728
http://arxiv.org/abs/1111.3728
http://arxiv.org/abs/1111.3728

	Introduction
	Smooth On-line Convex Optimization
	On-line algorithms and competitive analysis
	From OCO to SOCO
	Unifying competitive analysis and on-line learning
	Common ground - The Regularization technique

	Exponential Clocks
	Introduction to exponential clocks
	Facility Location with stable intervals
	On-line Set Cover with Service Cost revisited

	On-line Shortest Path with Switching Cost
	Problem Formulation
	Rounding Algorithm for On-line Shortest Paths with switching Costs

	Conclusion
	Summing up

	Bibliography

