ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΙΑΤΡΙΚΗ ΣΧΟΛΗ
Β’ΠΡΟΠΑΙΔΕΥΤΙΚΗ ΧΕΙΡΟΥΡΓΙΚΗ ΚΛΙΝΙΚΗ
ΔΙΕΥΘΥΝΤΗΣ: ΓΡΗΓΟΡΙΟΣ ΚΟΥΡΑΚΛΗΣ
ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ
ΜΕΛΕΤΗ ΤΩΝ ΥΠΟΔΟΧΕΩΝ ΤΗΣ ΘΥΡΕΟΕΙΔΙΚΗΣ ΟΡΜΟΝΗΣ ΣΤΗΝ
ΚΑΛΟΗΘΗ ΚΑΙ ΚΑΚΟΗΘΗ ΠΑΘΟΛΟΓΙΑ ΤΟΥ ΜΑΣΤΟΥ
ΠΕΤΡΟΣ ΧΑΡΑΛΑΜΠΟΥΔΗΣ
ΧΕΙΡΟΥΡΓΟΣ

ΑΘΗΝΑ 2018
Περιεχόμενα

Στοιχεία διατριβής ... 4
Ευχαριστίες .. 5
Βιογραφικό σημείωμα .. 8
ΓΕΝΙΚΟ ΜΕΡΟΣ.. 23
ΜΙΚΡΟΣΚΟΠΙΚΗ ΑΝΑΤΟΜΙΑ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΜΒΡΥΟΛΟΓΙΑ ΤΟΥ ΜΑΣΤΟΥ .. 23
 Πρώτο τρίμηνο της κύησης ... 24
 Δεύτερο τρίμηνο της κύησης .. 24
 Τρίτο τρίμηνο της κύησης .. 25
 Η ανάπτυξη του μαστού κατά τη νηπιακή ηλικία .. 26
 Η ανάπτυξη του μαστού στην εφηβεία ... 26
 Κυτταρικές μεταβολές κατά την ανάπτυξη του μαστού ... 27
Ο ΚΑΡΚΙΝΟΣ ΤΟΥ ΜΑΣΤΟΥ .. 28
 Χειρουργική στον καρκίνο του μαστού ... 30
 Χημειοθεραπεία στον καρκίνο του μαστού .. 31
 Ορμονοθεραπεία στον καρκίνο του μαστού .. 33
ΙΣΤΟΛΟΓΙΑ ΚΑΙ ΙΣΤΟΠΑΘΟΛΟΓΙΑ ΤΟΥ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ... 36
 Από τον πορογενή in situ στο διηθητικό καρκίνο του μαστού ... 38
ΒΙΟΔΕΙΚΤΕΣ ΚΑΙ ΥΠΟΔΟΧΕΙΣ ΣΤΟΝ ΚΑΡΚΙΝΟ ΤΟΥ ΜΑΣΤΟΥ .. 40
 Στεροειδογένεση .. 41
 Ο οιστρογονικός υποδοχέας (ER) .. 43
 Ο προγεστερονικός υποδοχέας (PR) ... 43
 Ο ανδρογονικός υποδοχέας (AR) .. 44
ΑΝΑΤΟΜΙΑ, ΕΜΒΡΥΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΤΟΥ ΘΥΡΕΟΕΙΔΟΥΣ ΑΔΕΝΑ 45
ΦΥΣΙΟΛΟΓΙΑ ΤΟΥ ΘΥΡΕΟΕΙΔΟΥΣ ΑΔΕΝΑ .. 46
 Θυρεοειδής και αμφιβληστροειδής ... 47
 Θυρεοειδής και σύνδρομο DOWN ... 47
 Θυρεοειδής και κυτταρικός μεταβολισμός ... 48
 Θυρεοειδής και γνωσιακή λειτουργία ... 49
 Θυρεοειδής και νευρικό σύστημα ... 49
 Θυρεοειδής και καρδιά ... 50
 Θυρεοειδής και οστά ... 50
 Θυρεοειδής, κύηση και γονιμότητα ... 51
ΥΠΟΔΟΧΕΙΣ ΤΗΣ ΘΥΡΕΟΕΙΔΙΚΗΣ ΟΡΜΟΝΗΣ (Thyroid hormone receptors, TRs) ... 52
Δομή και βιολογικές δράσεις των υποδοχέων της θυρεορμόνης................. 52
Биолογικές δράσεις του TRα – πειραματικά δεδομένα 55
TRs ΚΑΙ ΚΑΡΚΙΝΟΣ ΜΑΣΤΟΥ .. 58
ΕΙΔΙΚΟ ΜΕΡΟΣ... 62
Εισαγωγή... 62
Υλικό και μέθοδος... 63
Ανοσοϊστοχημεία... 64
Ανάλυση εικόνας... 65
Στατιστική ανάλυση.. 66
Αποτελέσματα.. 67
Συζήτηση των αποτελεσμάτων.. 70
Βιβλιογραφία... 73
Στοιχεία διατριβής

Θέμα
Μελέτη των υποδοχών της θυρεοειδικής ορμόνης στην καλοήθη και κακοήθη παθολογία του μαστού

Υποβολή θέματος 05/11/2011
Ορισμός Επταμελούς Εξεταστικής Επιτροπής 27/09/2017
Αριθμός Πρωτοκόλλου ορισμού επταμελούς εξεταστικής επιτροπής 1718002641/27.09.2017

Τριμελής Συμβουλευτική Επιτροπή:
Γεώργιος Χ. Σωτηρόπουλος, Αναπληρωτής Καθηγητής, επιβλέπον μέλος
Γρηγόριος Κουράκλης, Καθηγητής
Κωνσταντίνος Κόντζογλου, Αναπληρωτής Καθηγητής

Επταμελής Εξεταστική Επιτροπή:
Γεώργιος Χ. Σωτηρόπουλος, Αναπληρωτής Καθηγητής
 Γρηγόριος Κουράκλης, Καθηγητής
Κωνσταντίνος Κόντζογλου, Αναπληρωτής Καθηγητής
Δημήτριος Μαντάς, Αναπληρωτής Καθηγητής
Δημήτριος Δημητρούλης, Επίκουρος Καθηγητής
Νικόλαος Αρκαδόπουλος, Αναπληρωτής Καθηγητής
Μιχαήλ Κοντός, Επίκουρος Καθηγητής
Ευχαριστίες

Ευχαριστώ θερμά:
Τον Αναπ. Καθ. κ. Γεώργιο Σωτηρόπουλο για την αμέριστη υποστήριξη, καθοδήγηση και υπομονή του καθόλου τη διάρκεια της εκπόνησης της διατριβής.
Το Διευθυντή μου, Καθηγητή κ. Γρηγόριο Κουράκλη, για την εμπιστοσύνη που μου έδειξε και για την πολύτιμη στήριξή του κατά τη διάρκεια της εκπαίδευσής μου στην Β’ Προπαιδευτική Χειρουργική Κλινική.
Τον Διευθυντή μου, Καθηγητή κ. Γρηγόριο Κουράκλη, για την εμπιστοσύνη που μου έδειξε και για την πολύτιμη στήριξή του κατά τη διάρκεια της εκπαίδευσής μου στην Β’ Προπαιδευτική Χειρουργική Κλινική.
Τον Αναπ. Καθ. κ. Κωνσταντίνο Κόντζογλου για την αγάπη που μου ενέπνευσε για τη χειρουργική μαστού.
Τον Αναπ. Καθ. κ. Κωνσταντίνο Κόντζογλου για την αγάπη που μου ενέπνευσε για τη χειρουργική μαστού.
Τον Αναπ. Καθ. κ. Κωνσταντίνο Κόντζογλου για την αγάπη που μου ενέπνευσε για τη χειρουργική μαστού.
Τα μέλη ΔΕΠ της Β’ Προπαιδευτικής Χειρουργικής Κλινικής του Λαϊκού Νοσοκομείου.
Τον καλό φίλο και συνάδελφο Γιώργο Αγρογιάννη και την τεχνολόγο Μαρία Κεμερλή για την απαράμιλλη τεχνική και επιστημονική τους υποστήριξη.
Την οικογένειά μου για την αγάπη τους και τη συμπαράστασή τους σε κάθε μου βήμα.
Ευχαριστώ επίσης τους: Ash, Tibor, Hisham, Michael, Arnie, Táso, Δημήτρη, Μάνο, Άννα, Μαρία, Γιώργο, Γιάννη, Εύα, Βαγγέλη, Κώστα, Αντρέα, Ευγένιο, Χρήστο και τους Judy Versus.
Αφιερώνεται

Στη σύντροφό μου, Αριστέα

Στα παιδιά μου, Φίλιππο και Μάγια

Στους γονείς μου
Ο ΟΡΚΟΣ ΤΟΥ ΙΩΠΩΡΑΤΟΥΣ

ΜΝΥΜΗ ΑΠΟΜΝΗΜΑΤΙΚΑ ΙΗΜΩΝ, ΚΑΙ ΑΣΚΗΤΙΚΩΝ ΚΑΙ ΥΓΕΙΑΝ, ΚΑΙ ΠΑΝΑΚΕΙΑΝ, ΚΑΙ ΘΕΟΥΣ ΠΑΝΤΑΣ ΤΕ ΚΑΙ ΠΑΣΑΣ, ΙΣΤΟΡΙΑΣ ΠΟΙΕΥΜΕΝΟΣ, ΕΠΙ ΤΕΛΕΩΝ ΠΟΙΗΣΗΝ ΚΑΤΑ ΔΥΝΑΜΗΝ ΚΑΙ ΚΡΙΣΙΝ ΕΜΗΝ ΟΡΚΟΝ ΤΟΝ ΔΕΙ ΚΑΙ ΞΥΓΟΡΑΦΗΝ ΘΝΕΙΣΕ ΧΝΗΣΑΣΟ ΑΙ ΜΕΝ ΤΟΝ ΔΙΔΑΣΚΑΛΟΝ ΜΕ ΤΗΝ ΤΕΧΝΗΝ ΤΑΥΤΗΝ ΝΤΙ ΠΝΕΥΜΟΝΕΣ ΕΜΟΙΟΙ ΚΑΙ ΒΙΟΥ ΚΟΙΝΑΣ ΛΑΣΟΙ ΚΑΙ ΑΙ ΧΡΕΙΝ ΧΡΗΣΙΟΝ ΜΕΤΑΔΟΣΙΝ ΠΟΙΗΣΑΣΘΑΙ ΚΑΙ ΜΕΝΟΣ ΤΟ ΕΞ ΟΥΤΕΟΥ ΑΔΕΛΦΟΙΣ ΙΟΝ ΕΠΙΚΡΙΝΕΙΝ ΕΕΙΝ ΑΡΡΕΣΙ ΓΙΑΙ ΔΙΔΑΣΚΑΛΟΝ ΤΗΝ ΤΕΧΝΗΝ ΤΑΥΤΗΝ ΧΝΗ ΧΡΗΣΙΟΝ ΜΑΝΓΑΛΙΝ, ΑΝΕΥ ΜΙΣΟΥΝ ΚΑΙ ΞΥ ΓΡΑΦΗΣ, ΠΑΡΑΓΓΕΛΙΑΣ ΤΕ ΚΑΙ ΑΚΡΟΒΛΙΑΣ ΚΑΙ ΘΗΣ ΛΟΙΠΗΣ ΑΝΑΦΗΚΗΣ ΜΑΝΓΑΛΙΑΣ ΜΕΤΑΔΟΣΙΝ ΠΟΙΗΣΑΣΘΑΙ ΘΑΙ ΥΙΟΙΣ ΤΕ ΕΜΟΙΟΙ, ΚΑΙ ΤΟΙΟΙ ΤΟΥ ΕΞ ΕΞ ΑΡΡΕΣΙ ΤΟ ΚΑΙ ΚΑΙ ΜΑΝΓΑΛΙΑΣ ΣΥΣΤΕΡΑΡΜΕΝΟΙ ΣΙΣ ΙΠΗΝ ΚΡΙΣΜΕΝΟΙ ΝΟΜΑΣ, ΙΗΜΩΝ, ΑΛΛΑ, ΟΥΣ ΔΕ ΟΥΣΕΙΝ ΔΙΑΔΗΜΑΣΙ ΣΙ ΧΡΗΣΙΟΝ ΕΓΙΣ ΦΙΛΕΙΝ, ΚΑΜΝΟΝΤΑΝ ΚΑΤΑ ΔΥΝΑΜΗΝ ΚΑΙ ΚΡΙΣΙΝ ΕΜΗΝ ΕΠΙ ΔΗΝ ΣΕΙ ΔΕ ΚΑΙ ΑΣΚΗΣΗΙ ΕΙΡΕΙΝΕΙ ΟΥ ΘΑΝΗΣ ΔΕ ΟΥΣ ΦΙΛΕΙΝΟΝ ΟΥΣΕΙΝ ΑΙΤΗΣΙ ΘΑΙΝΑΣΙΝ ΟΥΣΕΙΝ ΦΙΛΗΣΙΟΝ ΕΥΒΟΥΛΙΗΝ ΤΟΙΝΔΕ ΟΜΟΙΟΝ ΟΥΝ ΘΑΙΝΑΙ ΤΕΝΝΟΝ ΠΕΡΙΣΟΝ ΦΙΛΕΙΝ ΔΑΣΝΑ, ΑΛΛΑΝΘΟΝ ΕΓΙΣ ΚΑΙ ΟΣΙΟΝ ΔΙΑΧΡΗΝΙΟΝ ΒΙΟΝ ΣΟΝ ΕΜΟΝ ΚΑΙ ΤΕΧΝΗΝ ΝΤΙ ΕΜΗΝ ΟΥΝ ΤΕΝΝ ΟΥ ΜΗΝ ΑΙ ΣΙΟΝΤΑΝ, ΕΚΧΡΗΣΗΝ ΔΕ ΕΡΜΑΘΕΙΣΙΝ ΑΝΑΡΓΩΝ ΝΤΙ ΝΕΘΟΣ ΘΗΑΝΕΙ ΕΓΙΣ ΕΙΚΑΣΙ ΔΕ ΟΚΟΣΑΣ ΑΝ ΕΓΙΣ ΕΙΣΑΣΙΟΝ ΕΓΙΣ ΦΙΛΕΙΝ, ΚΑΜΝΟΝΤΑΝ, ΕΚ ΟΥ ΕΓΙΣ ΠΑΝΗΣ ΑΣΚΗΣΗΗ ΕΚΘΗΣΗΝ ΚΑΙ ΦΙΛΩΘΗΣΗ ΝΤΙ ΑΙΤΗΣΗΛΗΝ ΕΜΗΝ ΕΠΙ ΤΕ Υ ΝΑΙΚΕΙΝ ΣΥΜΑΤΗΙΝ ΚΑΙ ΑΝΑΡΓΩΝ, ΕΞΕΥΘΕΝ ΝΤΙ ΚΑΙ ΔΟΥΝΑΙΝ, ΑΙ ΔΑΣΝΗ ΕΡΜΑΘΕΙΣΗ ΝΤ ΧΝΗΣΗΝ ΚΑΙ ΑΙΝΕΥΘΗΣΗΝ ΚΑΤΑ ΒΙΟΝ ΑΝΕΡΓΟΥΣΝΑΙ ΔΝ ΧΡΗΣΙΟΝ ΕΚΛΕΙΕΙΟΝ ΕΓΙΣ, ΣΙΓΝΗΣΟΝ ΕΓΙΣ ΕΓΙΣ ΝΕΚΥΜΕΝΟΣ ΕΙΝΑΙ ΤΟ ΤΑΥΤΑ ΟΡΚΟΝ ΜΕΝ ΟΥΝ ΜΟΙ ΤΟΝ ΔΕ ΕΠΙΤΕΛΕ ΑΙ ΠΟΙΗΣΤΑΝ, ΚΑΙ ΜΗ ΞΥΓΟΡΑΦΗΝ, ΕΙΝ ΕΓΙΣΑ ΑΙΝΕΥΘΗΣΗΝ ΑΙΝ Κ ΒΙΟΥ ΚΑΙ ΤΕΧΝΗΣ ΝΕΚΥΜΕΝΟΣ, ΠΑΡΑ ΠΑΙΝΕΙ ΑΙΝΕΥΘΗΣΗ ΕΝ ΤΟΝ ΑΝΕΡΓΟΥΣΝΑΙ ΕΝ ΑΙΝΕΥΘΗΣΗΝ ΑΙΝ ΕΙΝΑΙ ΧΡΗΣΙΟΝ ΠΑΡΑΒΑΙ ΝΟΙΝΤΑΝ ΚΑΙ ΕΠΙΟΡΚΟΥΝΤΑΙ, ΤΑΝΑΝΤΙΑ ΘΕΤΕΙΝ.
Βιογραφικό σημείωμα

Πέτρος Χαραλαμπούδης MD PhD FRCS FEBS
Ογκοπλαστικός Χειρουργός Μαστού
Επίκουρος Καθηγητής Χειρουργικής Μαστού

Γενικά στοιχεία
Διεύθυνση κατοικίας: Ground Floor Flat 1, 35 Kings Avenue, London N10 1PA, United Kingdom
Ημερομηνία γέννησης: 06/09/1982
Τηλέφωνο: 00447510833660
Οικογενειακή κατάσταση: έγγαμος με δύο παιδιά
Email 1: Petros.Charalampoudis@gstt.nhs.uk
Email 2: petros.charalampoudis.laiko@gmail.com
Email 3: petros.charalampoudis@gmail.com

Επαγγελματική εμπειρία
01/12/2016-σήμερα: Consultant Oncoplastic Breast Surgeon, Guy’s and Saint Thomas’ NHS Foundation Trust, London, UK
01/12/2016-σήμερα: Honorary Consultant Oncoplastic Breast Surgeon, Lewisham and Greenwich NHS Foundation Trust, London, UK
01/09/2015-σήμερα: Honorary Clinical Lecturer (Clinical Assistant Professor) in Breast Surgery, Division of Cancer Studies, King’s College London, London, UK
08/09/2014-01/12/2016: Senior Clinical Fellow in Breast Surgery, Breast Unit, Guy’s and Saint Thomas’ NHS Foundation Trust, London, United Kingdom
08/09/2015-01/12/2016: Honorary Senior Clinical Fellow, Breast Unit, University Hospital Lewisham, NHS, London, United Kingdom

02/2014-08/2014: Ειδικευόμενος Γενικός Χειρουργός, Β’ Προπαιδευτική Χειρουργική Κλινική, Λαϊκό Νοσοκομείο, Διευθυντής: Καθηγητής Γρηγόριος Κουράκλης

11/2013-12/2013: Επισκέπτης ειδικευόμενος Χειρουργικής, Hautepierre Hospital, Strasbourg Medical School, Strasbourg, France

01/2014-08/2014: Ειδικευόμενος Γενικός Χειρουργός, Β’ Προπαιδευτική Χειρουργική Κλινική, Λαϊκό Νοσοκομείο, Διευθυντής: Καθηγητής Γρηγόριος Κουράκλης

09/2007-09/2009: Ειδικότητα Γενικής Χειρουργικής, Saint Joseph and Warquignies Hospital, Catholic University of Louvain, Belgium

01/2007-05/2007: FY2 MD, St. Luc University Hospital, Brussels, Belgium

07/2005-08/2005: Clinical Observer, Surgical Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA

Εκπαίδευση

09/2016: 3η Θέση στις Ευρωπαϊκές Εξετάσεις Χειρουργικής Μαστού (FEBS, UEMS), Fellow of the European Board of Breast Surgery, Krakow, Poland

2012-2017: Διδακτορική Διατριβή – Υποδοχείς θυρεορμόνης και καρκίνος του μαστού Ιατρική Σχολή ΕΚΠΑ

02/2014: 1η θέση στις εξετάσεις για τη λήψη της Χειρουργικής ειδικότητας

2007-2014: Ειδικότητα Χειρουργικής, UCL (Belgium), ΕΚΠΑ, Ελλάδα

2000-2006: Πτυχίο Ιατρικής Αθηνών 7.34/10

2000: Αποφοίτηση με Αριστα από το Λεόντειο Λύκειο Πατησίων, Αθήνα
Ερευνητική δραστηριότητα

09/2015-σήμερα: Honorary Clinical Lecturer, Research, Division of Cancer Studies, King’s College London

2014- σήμερα: Breast Unit, GSTT, Participation in the Unit’s Academic and Research Portfolio – Clinical Trials, Audits, Peer-review manuscript preparation, data collection and interpretation, research meetings

Διεθνείς δημοσιεύσεις

Charalampoudis P, Karakatsanis A, Neoadjuvant chemotherapy for early breast cancer; invaluable surgical tool in the systemic era, Lancet Oncology (accepted)

Review.

Kykalos S, Mantas D, Charalampoudis P, Markopoulos C. Incidence of inactive allele CYP2D6*4 between Greek women suffering from hormone-sensitive breast cancer, Eur J Gyn Onc, in press

Charalampoudis P. Sotiropoulos GC Surgery for giant primary neuroendocrine carcinoma of the liver, J Gastrointestinal Surgery 2013 Oct 22.

Mantas D, **Charalampoudis P**. Preoperative biliary drainage in patients with distal obstruction due to pancreatic head cancer-a review, Int J Endocrin Oncology, 2014 (1) 1-6.

Charalampoudis P. Ferdin F, Therasse A, Fastrez J, Interest of peroperative arteriography to control the quality of lower limb revascularization, Acta Chir Belg Supplement (2008), 108

Ελληνικές Δημοσιεύσεις

Συγγραφή κεφαλαίων σε βιβλία

Charalampoudis P. Douek M, Assessing outcomes following surgery. Recent Advances in Surgery 38, Jaypee Brothers Editions

Audit

Reg No 6466: IBRA-2 National Audit on Breast reconstruction, Lead Investigator, Guy’s Hospital Breast Unit, Data collection starting July 1st 2016

Reg no 5935: Axillary nodal volume of disease in patients with node positive breast cancer on USS FNA after axillary node clearance – data collection complete, manuscript drafting

National Margins Audit (Breast Surgery), UK, 2016 principal investigator, Guy’s Hospital – data collection completed May 2016, published

Reg No 6062: Compliance with including the implant label/sticker on operation notes of implant reconstruction

Reg.No 5225: Sentinel Node Biopsy in DCIS, GSTT

Reg.No 5226: VTE Chemical Prophylaxis in Breast Surgery, GSTT

Παρουσιάσεις σε ελληνικά και διεθνή συνέδρια

2014: Charalampoudis P. Axillary management-a tricky case on the post-Z11 era?, ESO/ESSO Masterclass in Breast Cancer Surgery, Ermatingen, Switzerland

2013: Charalampoudis P. Sotiropoulos GC, Modern surgery of liver tumors, ELIGAST congress, Athens, Greece
2013: Sotiropoulos GC, Spartalis ED, Charalampoudis P, Kouraklis G, Palliative hepatojejunostomy, Panhellenic hepatology congress, May 2013, Rhodes, Greece

2013: Sotiropoulos GC, Charalampoudis P, Kouraklis G, Caudate lobectomy, Panhellenic hepatology congress, May 2013, Rhodes, Greece

2013: Sotiropoulos GC, Charalampoudis P, Kouraklis G, Co-existence of FNH and intrahepatic cholangiocarcinoma, Panhellenic hepatology congress, May 2013, Rhodes, Greece

2008: Charalampoudis P, Ferdin F, Therasse A, Fastrez J, Should we perform routine preoperative arteriography during limb revascularization surgery? 8th BSW, Oostende, Belgique

Courses – Meetings – Διδακτική εμπειρία

2015-2016: Διδάσκων - Seminar Series on Concepts and Principles of Oncoplastic Breast Surgery – Member of Teaching Faculty (Lead: Mr Tibor Kovacs, Consultant oncoplastic breast surgeon)

Σεπ 2016: Educational Supervision (Training the Trainers Course), GSTT, London UK

Ιούλ. 2016: Oncoplastic Breast Surgery and ADM reconstruction course, GSTT, ESSO, King’s College London

09-11 Ιούλ. 2015: Oncoplastic Breast Surgery and ADM reconstruction course, GSTT, ESSO, King’s College London

14 Ιούλ. 2015: Clinical Supervision (Training the Trainers) Course, GSTT

8 Μαί. 2015: ABS, Association of Breast Surgery, the 3rd London Regional Symposium, GSTT

Μαί 2015: Safeguarding Children & Young Adults - Level 2 (POCA 2), SOVA - Safeguarding of Vulnerable Adults - Level 2 (POVA 2), Safeguarding Children & Young Adults - Level 3 (POCA 3), Equality, Diversity & Inclusion

Μαί 2015: fire safety, infection control, lone worker, handling of violence and aggression, Caldicott Protocols (Information Governance, Data Protection and Caldicott Protocol), complaint & conflict resolution training, health & safety including risk incident reporting, COSHH (Control of Substances Hazardous to Health regulation) Training Programme, RIDDOR (Reporting of Injuries, Diseases & Dangerous Occurrences Regulations)
Απρ 2015: ETFT e-course; modules: Hospital introduction to training, emotional intelligence, hospital DOPS, hospital mini-CEX, hospital CBD, hospital MSF, Simulation, Clinical Leadership

09/12/2014: King’s Health Partners Clinical Trials Office; Good clinical practice and the medicines for human use (clinical trials) regulations

Sep 2014: Basic Life Support Course, BLS

2014: ESO/ESSO Masterclass in Breast Cancer Surgery, Ermatingen, Switzerland

2014: Breast Cancer Meeting (Hellenic Society of Mastology): changes in practice, Athens, Greece

2013: HPB Surgery course, European Association for HPB Surgery

2006: European Pediatric Life Support Course (EPLS)

2006: Basic Life Support (BLS) course

2006: Basic Life Support (BLS) instructor course

Συμμετοχή σε διεθνή και ελληνικά περιοδικά

Editor: Continuous Medical Education, Surgery, Archives of Hellenic Medicine

Συμμετοχή σε επιστημονικές εταιρείες και οργανισμούς

Fellow of the European Board of Surgery (Breast Division, UEMS, FEBS)
Fellow of the Royal College of Surgeons of England (FRCS)
Deputy, Clinical Governance, Breast Unit, Guy’s and Saint Thomas’ NHS Foundation Trust, London, United Kingdom

General Medical Council, no.6154338, Full registration with a license to practice/Specialist Register for General Surgery

Athens Medical Association

European Society of Mastology (EUSOMA)

Royal Belgian Society for Surgery

European Society of Surgical Oncology (ESSO)

European School of Oncology (ESO)

European Young Surgeons and Alumni Club (ESSO-EYSAC)

Γλώσσες

Ελληνική (μητρική)

English (Full professional proficiency and license to teach-Ministry of Education, Greece), Cambridge Certificate of Proficiency in English

French/Français (Full professional proficiency and license to teach-Ministry of Education, Greece), Diplôme Approfondi de Langue Française, DALF
ENGLISH ABSTRACT

BACKGROUND: In breast cancer, hormonal receptors hold promise for developing novel targeted therapies. The thyroid exerts its actions via the thyroid hormone receptors alpha and beta. The clinical significance of the expression of thyroid hormone receptors in breast cancer is unclear.

MATERIAL AND METHODS: We studied thyroid hormone receptor alpha (TRa) expression in 82 samples from 41 women with ductal invasive breast cancer and no thyroid disease. We performed quantitative immunohistochemistry with digital image analysis and correlated TRa expression with clinicopathological parameters.

RESULTS: TRa was expressed in both normal breast epithelium and breast cancer, but expression in breast cancer was significantly lower. TRa was expressed significantly less in larger and grade III tumors. Conversely, breast cancers with lymphovascular invasion showed increased TRa expression compared to cancers without lymphovascular invasion. TRa expression was not significantly different between node-positive and node-negative breast cancers, or among different hormonal profiles and intrinsic subtypes.

DISCUSSION: This is the first-in-human study to combine quantitative immunohistochemistry with image analysis to study TRa expression in women with ductal invasive breast cancer and no clinical or biochemical evidence of thyroid dysfunction. We confirm that TRa is expressed in both normal and malignant breast epithelium and suggest that TRa expression is downregulated during breast carcinogenesis. Larger and higher-grade breast cancers demonstrate partial loss in TRa expression. Alterations in TRa expression take place even in the absence of clinical or biochemical thyroid disease. The underlying mechanism of these findings and their potential significance in survival and relapse mandate further research.
ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Στον καρκίνο του μαστού, οι ορμονικοί υποδοχείς διαδραματίζουν κυρίαρχο ρόλο στην ανάπτυξη νέων, στοχευμένων θεραπειών. Ο θυρεοειδής αδένας ασκεί την επίδρασή του στους ιστούς-στόχους μέσω των ορμονικών υποδοχών TRa/TRb. Η κλινική σημασία της έκφρασης των υποδοχών αυτών στον καρκίνο του μαστού είναι άγνωστη.

Στην παρούσα διατριβή, μελετήσαμε την έκφραση του υποδοχέα TRa σε 82 δείγματα ληφθέντα από 41 γυναίκες με διηθητικό πορογενή καρκίνο μαστού και απουσία κλινικής και βιοχημικής θυρεοειδοπάθειας. Πραγματοποιήσαμε ποσοτική ανοσοϊστοχημεία με ψηφιακή ανάλυση εικόνας και συσχέτισαμε την έκφραση του υποδοχέα με κλινικοπαθολογικές παραμέτρους. Ο TRa βρέθηκε να εκφράζεται τόσο στον καλοήθη όσο και στον κακοήθη μαζικό αδένα. Ο TRa εκφράστηκε στασιστικά σημαντικά λιγότερο σε μεγαλύτερους και πτωχότερας διαφοροποίησης όγκους. Αντίθετα, όγκοι με λεμφαγγειακή διήθηση κατέδειξαν υψηλότερη έκφραση του υποδοχέα. Δεν υπήρχε στατιστικά σημαντική συσχέτιση έκφρασης ως προς τη λεμφαδενική μετάσταση ή το ορμονικό προφίλ των όγκων.

Η παρούσα διατριβή αποτελεί την πρώτη μελέτη σε ανθρώπινο ιστό που συνδύασε ποσοτική ανοσοϊστοχημεία με ψηφιακή ανάλυση εικόνας για να μελετήσει την έκφραση του TRa σε ασθενείς με καρκίνο μαστού και απουσία θυρεοειδικής νόσου. Επιβεβαιώσαμε ότι ο υποδοχέας εκφράζεται στον καλοήθη και κακοήθη μαζικό αδένα ακόμα και σε πλήρη απουσία θυρεοειδοπάθειας. Η μελέτη κατέδειξε στατιστικά σημαντική κατωρύθμιση του υποδοχέα κατά την καρκινογένεση του μαστού. Μεγαλύτεροι και πτωχότερας διαφοροποίησης καρκίνοι μαστού εκφράζουν μερική απώλεια του TRa. Η σημασία αυτών ευρημάτων σε σχέση με την επιβίωση και την υποτροπή χρήζει περαιτέρω έρευνας.
ΓΕΝΙΚΟ ΜΕΡΟΣ

ΜΙΚΡΟΣΚΟΠΙΚΗ ΑΝΑΤΟΜΙΑ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΜΒΡΥΟΛΟΓΙΑ ΤΟΥ ΜΑΣΤΟΥ

Ο ανθρώπινος μαστός αποτελείται από παρεγχυματικά και στρωματικά στοιχεία.(1) Το παρέγχυμα του μαστού συναποτελείται από ένα δίκτυο πόρων που καταλήγουν με διακλαδώσεις στα εκκριτικά λόβια. Από την άλλη πλευρά, το μαζικό στρωματικό στοιχείο αποτελείται βασικά από λιπώδη ιστό, που παρέχει υποστήριξη για την ανάπτυξη του παρεγχύματος. Οι δομικές αυτές μονάδες του μαζικού αδένα αναγνωρίζονται ανατομικά ήδη από την εμβρυική ζωή(2). Η διαδικασία ανάπτυξης των εκκριτικών πόρων ξεκινά στο έμβρυο, παραταύτα παύεται κατά τη διάρκεια της πρώιμης παιδικής ηλικίας για να επανεκκινήσει κατά την εφηβεία υπό την επίδραση των ορμονικών μεταβολών που ενορχηστρώνουν την περαιτέρω δομική και λειτουργική του διαφοροποίηση. Υπό ορμονικό έλεγχο, πολύπλοκες αλληλεπιδράσεις επισυμβαίνουν, με τελικό αποτέλεσμα τη διαμόρφωση του ώριμου μαζικού αδένα(3).

Κατά τη διάρκεια της εμβρυικής ζωής, δύο είναι οι βασικές αναπτυξιακές διεργασίες που λαμβάνουν χώρα όσον αφορά στην ανάπτυξη του μαζικού αδένα: η διαμόρφωση του πρώιμου μαστού (mammary bud) και η ανάπτυξη του στοιχειώδους μαστού (rudimentary mammary gland, rudimentary breast)(4). Τα πρώτα στάδια της εμβρυογένεσης είναι κατά μεγάλο ποσοστό ανεξάρτητα από την ορμονική επίδραση. Οι περισσότερες πληροφορίες που έχουμε συλλέξει γύρω από την ανάπτυξη του μαστού στην εμβρυική ζωή προέρχονται από μελέτες σε τρωκτικά. Αξίζει τέλος να σημειωθεί ότι τα αρχικά στάδια της μορφογένεσης του μαστού είναι παρόμοια και στα δύο φύλα.(1,2,5)
Πρώτο τρίμηνο της κύησης

Ήδη κατά το πρώτο τρίμηνο της κύησης, περιγράφονται στο έμβρυο πρόδρομα κύτταρα με ειδική διαφοροποίηση προς το μαζικό αδένα. Κατά την 35η ημέρα της ενδομητριός ζωής, παρατηρείται συσσώρευση τέτοιων κυττάρων στο επιθήλιο της θωρακικής χώρας, κατά μήκος της πρόδρομης μορφής της γαλακτοφόρου γραμμής. Οι γραμμές αυτές είναι διακριτές και αναπτύσσονται άμφω από τη μασχαλιαία χώρα έως τη βουβωνική περιοχή(4). Στις περιοχές αυτές μπορούν να παρατηρηθούν έκτοπες θηλές (supernumerary nipples) κατά την ενήλικο ζωή, ως κατάλοιπα αυτής της μορφογενετικής διαδικασίας(6,7). Κατά το τέλος του πρώτου τριμήνου, οι πρώιμοι μαστοί αρχίζουν να αναπτύσσονται στο υποκείμενο μεσέγχυμα και οι δομές αυτές μεταναστεύουν με αργό ρυθμό από τη ραχιαία στην κοιλιακή θέση. Στο τέλος του πρώτου τριμήνου, ο διακριτός πρώιμος μαστός παρατηρείται στο επίπεδο της αρχέγονης δερμίδας (χόριο). Παράλληλα, τα μεσεγχυματικά κύτταρα διαφοροποιούνται σε ινοβλάστες, λεία μυικά κύτταρα, τριχοειδή ενδοθηλιακά κύτταρα και λιποκύτταρα(8).

Δεύτερο τρίμηνο της κύησης

Κατά τη διάρκεια του δευτέρου τριμήνου, δευτερογενείς επιθηλιακές διαγκώσεις αναπτύσσονται από τον κυρίως πρώιμο μαστό. Κάθε δευτερογενής διάγκωση αναπτύσσεται κάθετα εντός του μεσεγχύματος και αποτελεί την αρχέγονη δομή από την οποία συντελείται η έναρξη της ανάπτυξης και διακλάδωσης των γαλακτοφόρων πόρων(8). Τα επιθηλιακά κύτταρα που επενδύουν τους γαλακτοφόρους πόρους διατάσσονται σε δύο στρώματα: το επιπολής στρώμα κυττάρων επιτελεί την εκκριτική λειτουργία ενώ το βασικό, εν τω βάθει στρώμα διαφοροποιείται σταδιακά σε μυοεπιθηλιακά κύτταρα(8,9). Κατά τους πρώτους 6 μήνες της εμβρυνικής ζωής, το βασικό μορφογενετικό σκαρίφημα του μαζικού αδένα έχει διαμορφωθεί. Κατά το τέλος
του δεύτερου τριμήνου, παρατηρείται μια καλώς διαφοροποιημένη σωληνώδης αρχιτεκτονική επί εδάφους πυκνού ινοσυνδετικού ιστού(10).

Τρίτο τρίμηνο της κύησης

Κατά το τρίτο τρίμηνο, επισυμβαίνει η διακλάδωση και η περαιτέρω ανάπτυξη του πρώιμου σε στοιχειώδη μαστό(3,11). Η επικρατούσα ανατομική άποψη υποστηρίζει ότι περί το τρίτο τρίμηνο, ο μαστός αποτελείται κατά βάση από πόρους διατεταγμένους εντός του πυκνού στρώματος, ενώ η ανάπτυξη των λοβίων επέρχεται αργότερα. Η επιδερμίδα στην περιοχή της μελλοντικής θηλής διαμορφώνεται στο θηλαίο πεδίο (άλω) και πίσω από τη δομή αυτή, οι γαλακτοφόροι πόροι συνέχονται στα γαλακτοφόρα φύματα της υποθηλαίας άλω. Η ανάπτυξη μικτών εξωδερματικών και μεσοδερματικών στοιχείων θα συνδιαμορφώσει τη μελλοντική αρχιτεκτονική δομή της θηλής(12). Στη διαδικασία αυτή συνεπάγεται ευρεία επικυκλοφορία και επιμήκη διάταξη. Κατά τα τελευταία στάδια της κύησης, ο χαλαρός ινοσυνδετικός ιστός ανεξάνει την αγγείωσή του μέσω αγγείογένεσης. Υπό την ορμονική επίδραση σε αυτό το στάδιο, ο εμβρυνικός μαστός μπορεί να αναπτύσσεται. Από αυτό το στάδιο, ο εμβρυνικός μαστός μπορεί να αναπτύσσεται με αποτέλεσμα εκκριτική λειτουργία. Περί το τέλος της κύησης, σηματοδοτείται η έναρξη της ανάπτυξης 15-20 μαζικών λοβίων καθώς και των συνδέσμων του Cooper, οι οποίοι αποτελούν προσκεκλιστικές της εν επαναληψιας θωρακικής περιτονίας και επικυκλοφορίας την αγγείωσή του μαζικού αδένα τόσο επί του μείζονος θωρακικού μυών όσο και επί του ινοσυνδετικού δέρματος. Στη χειρουργική ανατομία, οι σύνδεσμοι αυτοί επικυκλοφορίζουν το χειρουργικό πλάνο της μαστεκτομής(13–15).
Η ανάπτυξη του μαστού κατά τη νηπιακή ηλικία

Κατά τα δύο πρώτα χρόνια της ζωής του νηπίου, ο μαστός υφίσταται κρίσιμες μορφολογικές και εξελικτικές μεταβολές(16). Ο φυσιολογικός αδένας παραμένει λειτουργικά ανενεργός περίπου έως την έναρξη της εφηβείας. Κατά τη γέννηση του νεογνού, ο μαστός είναι ψηλαφητός με άλλοτε άλλη πυκνότητα και ποσότητα μαζικού αδένα και μικρές έως καθόλου διαφορές ανάμεσα στα δύο φύλα. Τα μειούμενα επίπεδα των μητρικών οιστρογόνων στο νεογνό διεγείρουν τη νεογνική υπόφυση να παράγει προλακτίνη η οποία έχει ως αποτέλεσμα την ετερόπλευρη ή αμφοτερόπλευρη αύξηση του μεγέθους του αδένα και παραδοκική εκκριτική λειτουργία σε έως 70% των περιπτώσεων(17–19). Ο μαζικός αδένας εμμένει περισσότερο χρόνο στα θήλεα από ότι στα άρρενα φημία λόγω της παραγωγής οιστραδιόλης από τα θήλεα φημία. Αμέσως μετά τον τοκετό, οι θηλές εκστρέφονται λόγω της ανάπτυξης του υποκείμενου μεσοδέρματος ενώ το στρώμα επιδεικνύει αυξημένη αγγειογενετική δραστηριότητα. Η μορφολογική διαδικασία ωρίμανσης του νηπιακού μαστού έως τα δύο πρώτα έτη της ζωής έχει περιγράφει με ακρίβεια. Τα μορφολογικά αυτά γεγονότα συνίστανται κυρίως στην αδενική διαφοροποίηση, τη διακλάδωση και διαμόρφωση των λοβίων, και τη λειτουργική ωρίμανση που χαρακτηρίζεται από την εκκριτική ικανότητα του επενδυτικού επιθηλίου(7,20).

Η ανάπτυξη του μαστού στην εφηβεία

Ο Tanner περιέγραψε με ακρίβεια τα καλώς πλέον αποδεκτά στάδια της ανάπτυξης του μαστού κατά την εφηβεία(21). Κατά την προεφηβεία, το πρώτο στάδιο (στάδιο 1 κατά Tanner) συνίσταται στην έγερση των θηλωδών σχημάτων. Κατά την προεφηβεία, το πρώτο στάδιο (στάδιο 1 κατά Tanner) συνίσταται στην έγερση των θηλωδών σχημάτων. Σε αυτό το σημείο, δεν παρατηρείται επιπρόσθετη στρωματική ανάπτυξη ή παρεγχυμική αύξηση πάνω από τα επίπεδα ανάπτυξης που ήδη συντελέστηκαν κατά τη νηπιακή ηλικία. Η ανάπτυξη του μαστού στα θήλεα, αποτελεί συνήθως το πρώτο δευτερογενές
χαρακτηριστικό του φύλου που αναπτύσσεται, 6 μήνες περίπου νωρίτερα από την έναρξη αύξησης της τριχοφυίας. Παρόλο που η έκκριση οιστρογόνων κατά την εφηβική περίοδο αποτελεί άμεσο διεγέρτη της ανάπτυξης του μαστού, η δράση των οιστρογόνων σε αυτό το στάδιο εξαρτάται από την υποφυσιακή παραγωγή της αυξητικής ορμόνης και τη συνακόλουθη επίδραση του IGF-1 στο μαζικό αδένα. Απουσία ανάπτυξης του μαστού σε κορίτσια άνω των 14 ετών χρήζει ενδοκρινολογικής διερεύνησης(22–25).

Το στάδιο 2 κατά Tanner συνίσταται στη διαμόρφωση του πρώιμου μαστού (breast bud) με έγερση της θηλής και αύξηση της διαμέτρου της θηλαίας άλω. Το στάδιο 3 κατά Tanner χαρακτηρίζεται από περαιτέρω αύξηση του μεγέθους του εφηβικού μαστού και συντελείται περί τα 12 έτη της ζωής. Κατά το στάδιο 4 ο μαστός αποκτά τον κυρίως όγκο και την καμπυλότητα του. Ακολουθεί το στάδιο 5, κατά το οποίο η θηλή και η άλω αποκτούν σαφή όρια σε σχέση με το κυρίως σώμα του μαστού(26).

Κυτταρικές μεταβολές κατά την ανάπτυξη του μαστού

Τα πολυδύναμα αρχέγονα κύτταρα διαφοροποιούνται σε στρωματικά και παρεγχυματικά στοιχεία. Στο κυτταρικό επίπεδο, τόσο οι στρωματικές όσο και οι παρεγχυματικές εξελικτικές μεταβολές λαμβάνουν χώρα κατά τη διάρκεια της εφηβείας. Έχει παρατηρηθεί ότι η αύξηση του ινώδους και λιπώδους ιστού του στρώματος προηγείται των μεταβολών στο δίκτυο των πόρων(27). Το επιθήλιο διαμορφώνεται σε μια διακλαδιζόμενη δομή αποτελούμενη από δύο κυτταρικές στιβάδες (όπως περιγράψαμε και παραπάνω): η εν τω βάθει στιβάδα αποτελεί τη βασική μεμβράνη ενώ η επιπολής το εκκριτικό γαλακτοφόρο επιθήλιο των πόρων(28). Η επιμήκυνση των πόρων και οι δαιδαλώδεις, πολύπλοκες διακλαδώσεις του δικτύου
οδηγούν στη δημιουργία και ανάπτυξη των κυρίων, τμηματικών και υποτμηματικών πόρων. Οι υποτμηματικοί πόροι καταλήγουν στους τελικούς πόρους και τελικά στα λοβίδια του μαστού(29). Το υποσύνολο των λοβιδίων που συνδέονται με έναν τελικό πόρο συναπτώνουν μια ενιαία δομική, ανατομική και λειτουργική μονάδα, την τελική πορολοβιακή μονάδα (terminal ductal lobular unit, TDLU), που αποτελεί την αφετηρία των μεταπλαστικών και δυσπλαστικών μεταβολών που μπορούν να οδηγήσουν στην καρκινογένεση του μαστού(30,31).

Ο ΚΑΡΚΙΝΟΣ ΤΟΥ ΜΑΣΤΟΥ

Ο καρκίνος του μαστού είναι μια παγκόσμια επιδημία(32,33). Κάθε χρόνο περίπου 1.5 εκατομμύρια γυναίκες διαγιγνώσκονται με τη νόσο (λαμβάνοντας υπόψη όλα τα κλινικά στάδια). Ο καρκίνος του μαστού αποτελεί τη συχνότερη κακοήθεια στο Δυτικό Κόσμο και συγχρόνως τη δεύτερη σε επίπτωση αιτία θανάτου από καρκίνο-ακολουθώντας στη δεύτερη θέση πίσω από τον καρκίνο του πνεύμονα. Το σύνολο της θεραπευτικής αντιμετώπισης του καρκίνου του μαστού συμπεριλαμβάνει ένα πολύπλοκο - σε άλλες άλλη διάδοχη - συνδυασμό τοπικής χειρουργικής θεραπείας, ακτινοθεραπείας, χημειοθεραπείας καθώς και σύγχρονες ανοσοθεραπείες με χρήση μονοκλωνικών αντισωμάτων(34).

Σε μεγάλο τμήμα του σύγχρονου κόσμου, ο καρκίνος του μαστού επιδεικνύει διαρκώς αυξανόμενη επίπτωση - που αποδίδεται εν μέρει στην ευρεία υιοθέτηση του προληπτικού μαστογραφικού ελέγχου(34). Παρά όμως τις δραματικές εξελίξεις στα διαγνωστικά και θεραπευτικά πρωτόκολλα που έχουν αναπτυχθεί στη σύγχρονη Δύση, μεγάλο μέρος του γυναικείου πληθυσμού έχει μειωμένη πρόσβαση στη μοντέρνα διάγνωση και θεραπεία. Κατά συνέπεια διαγνωστικά συχνά σε προχωρημένο
κλινικό στάδιο επηρεάζοντας αρνητικά την πρόγνωση και την επιβίωση από τη νόσο(35,36).

Ενα από τα χαρακτηριστικά της δραματικής προόδου που συντελείται τα τελευταία χρόνια στο πεδίο της ογκολογίας μαστού συνίσταται στο μοριακό profiling που έχει να επιδείξει 4 διαφορετικές υποομάδες καρκίνων μαστού(37). Όπως θα δούμε παρακάτω, στόχος της νέας αυτής διάκρισης - σε αντιδιαστολή με την κλασική ιστοπαθολογική κατηγοριοποίηση που γνωρίζουμε εδώ και δεκαετίες - δεν είναι τόσο η περιγραφική μικροσκοπική ανατομική των νέων υπομορφών, όσο η διερεύνηση της διαφορικής ανταπόκρισης των υπομορφών αυτών στις συνδυασμένες συστηματικές θεραπείες, είτε στο προεγχειρητικό, ή το μετεγχειρητικό στάδιο(38–40).

Από τη σύγχρονη παγκόσμια εμπειρία προκύπτει ότι πάνω από 70% των γυναικών διαγιγνώσκονται με πρώιμο καρκίνο μαστού (early breast cancer), ο οποίος θεωρείται σε μεγάλο βαθμό ιάσιμο(41–43). Παραταύτα, ένα 30% περίπου των γυναικών παρουσιάζονται με κλινική διάγνωση προχωρημένου καρκίνου του μαστού (advanced breast cancer), ο οποίος ακόμα και στις μέρες μας αντιμετωπίζεται μεν αλλά δε θεωρείται ιάσιμο(44,45). Από το συνολικό πληθυσμό ασθενών με προχωρημένο καρκίνο μαστού, περίπου το ένα τρίτο διαγνώσκεται με απομεικτικές μεταστάσεις και έχει πολύ κακή πρόγνωση(46–48). Στον προχωρημένο καρκίνο μαστού, ο πρωταρχικός στόχος είναι η επιμήκυνση του προσδόκιμου και της ποιότητας ζωής. Νέα αισιόδοξα στοιχεία προκύπτουν τέλευτα με σχέση με το μεταστατικό καρκίνο μαστού. Μια νέα υποομάδα ασθενών με ολιγομεταστατικό φορτίο δείχνει βελτιωμένα ποσοστά επιβίωσης όταν υπόκειται σε επιθετικό συνδυασμό χειρουργικών και συστηματικών θεραπειών(49–53).

Με βάση τα επιδημιολογικά και στατιστικά στοιχεία δεκαετιών, είμαστε σε θέση να γνωρίζουμε ότι η επίπτωση του καρκίνου του μαστού αυξάνει με την ηλικία,
η επιθετικότητα της νόσου όμως παρουσιάζεται αντιστροφικά ανάλογη. Χάρη στην εκτεταμένη εφαρμογή του προληπτικού κλινικού και μαστογραφικού ελέγχου στη Δύση, όλο και περισσότερες νέες γυναίκες (<40) ασθενείς διαγιγνώσκονται με τη νόσο(54). Οι νέες γυναίκες με καρκίνο μαστού επιδεικνύουν αυξημένα ποσοστά υποτροπής, μετάστασης και θανάτου από τη νόσο, κύριως γιατί η βιολογική συμπεριφορά και τα ορμονικά προφίλ των ασθενών αυτών (ER-, Her-2+, TNBC, high grade) προσωποδιατετα και σιμο επιθετική κλινική πορεία και αντοχή στις συστηματικές θεραπείες πρώτης γραμμής(55,56). Οι νέες γυναίκες με καρκίνο μαστού είναι συχνότοποι προεμμηνοπαυσιακός και οι συστηματικές θεραπείες μπορεί να προκαλέσουν αμηνόρροια και υπογονιμότητα, συμβάλλοντας αρνητικά στην ποιότητα ζωής των ασθενών αυτών(57–59). Οι νέες γυναίκες επίσης, ειδικότερα αυτές με τριπλό αρνητικό καρκίνο μαστού (TNBC), είναι πιο πιθανό να εμφανίζουν μεταλλάξεις των γονιδίων BRCA1 και BRCA2, γεγονός που επικαθορίζει σε μεγάλο βαθμό εκτεταμένες επανασύνθεσης όπως αμφοτερόπλευρη μαστεκτομή και η σαλπιγγο-ωοθηκεκτομή(60–64).

Χειρουργική στον καρκίνο του μαστού

Παρά τις εντυπωσιακές και εκτεταμένες εξελίξεις της συστηματικής θεραπείας του καρκίνου του μαστού, η χειρουργική εξαιρετική του όγκου σε υγιή όρια αποτελεί ακόμα και σήμερα τον αντικείμενο λίθο της αντιμετώπισης της νόσου(65). Καθώς η αντικείμενο της παρούσης διατριβής αφορά περισσότερο σε ομορονικές και τους υποδοχείς τους, θα αναφερθούμε μόνο σύντομα στη χειρουργική του καρκίνου του μαστού. Ιστορικά, η ριζική μαστεκτομή (με ολική εξαιρήσεις του μαζικού αδένα, συμπεριλαμβανομένων και των δύο θωρακικών μυών, μείζονος και ελάσσονος, του δέρματος του μαστού, της θηλής και της θηλαίας άλω) με πλήρη λεμφαδενικό καθαρισμό της μασχάλης (μαστεκτομή Halsted), εφαρμόστηκε ως και τα μέσα περίπου του εικοστού αιώνα(66,67). Στη συνέχεια σημαντικές μελέτες έδειξαν ότι η

χημειοθεραπεία στον καρκίνο του μαστού

Η χημειοθεραπεία στον καρκίνο του μαστού αποτελεί βασική επιλογή σε πολλές περιπτώσεις ακόμα και πρώιμου καρκίνου, καθώς σύγχρονες μελέτες έχουν δείξει ότι η πολυχημειοθεραπεία είτε στο προεγχειρητικό ή στο μετεγχειρητικό στάδιο της αντιμετώπισης, μειώνει τον κίνδυνο θανάτου από τηνόσο (81,82). Κλασικές ενδείξεις για χημειοθεραπεία αποτελούν οι καρκίνοι με θετικούς λεμφαδένες, όγκοι >5 εκατοστά σε διάμετρο, όγκοι Grade II/Grade III, κυρίως σε νέες ασθενείς (<50 ετών), τριπλοί αρνητικοί καρκίνοι (με πλήρη αντοχή στην ερμοθεραπεία) καθώς και προγεγραμμένη χημειοθεραπεία για τη μετατροπή της μαστεκτομής σε διατήρηση του μαστού ως χειρουργική επιλογή (83,84). Τα κλασικά σχήματα που χρησιμοποιήθηκαν για δεκαετίες (CMF, Κυκλοφωσφαμίδη, μεθοτρεξάτη και 5-φθοριουρακίλη) έχουν εν πολλοίς δώσει τη θέση τους σε σχήματα με βάση τις ταξάνες (δοξεταξέλη και πακλιταξέλη) σε συνδυασμό με επιρουβική και
κυκλοσφωσφαμίδη(85,86). Δεν είναι υπερβολή να πούμε ότι η σύγχρονη χημειοθεραπεία του καρκίνου του μαστού σφαγίστηκε από τη χρήση των ταζανών. Χημειοθεραπευτικά σχήματα με βάση την πλατίνα χρησιμοποιούνται επίσης σε ασθενείς με καρκίνο του μαστού που φέρουν μετάλλαξη στο γονίδιο BRCA1(87–89).

Ακτινοθεραπεία στον καρκίνο του μαστού

Η ακτινοθεραπεία αποτελεί κύρια θεραπευτική επιλογή σε όλες τις επεμβάσεις διατήρησης του μαστού (ογκεκτομή και ογκοπλαστικές μαστοπλαστικές), προκειμένου να ελεγχθεί και να περιοριστεί η νόσος τοπικά(90,91). Η ακτινοβόληση του μαστού (ολική ακτινοβόληση) με 40 Gy/15 δόσεις ή με 50 Gy/25 δόσεις μειώνει κατά 50% το ποσοστό τοπικής υποτροπής της νόσου στον ομόπλευρο μαστό (ipsilateral in-breast recurrence)(92). Όσον αφορά στις ασθενείς, οι οποίες έχουν υποβληθεί σε ολική αφαίρεση του μαστού (μαστεκτομή), η ακτινοθεραπεία συστήνεται συνήθως εάν ο όγκος που έχει αφαιρεθεί είναι μεγαλύτερος από τον 5 εκατοστό (T3 όγκοι), σε άκινητο και θετικό μασχαλιάνως λεμφαδένων (σχετική ένδειξη), σε 1-3 διηθημένους λεμφαδελφούς μασχαλιάνως και σε τοπικά προχωρημένους καρκίνους (Locally advanced, inflammatory breast cancer)(93,94). Η ακτινοθεραπεία αποσκοπεί στην καταστροφή των καρκινικών κυττάρων που δεν ανιχνεύονται τοπικά στο μαστό κατά την τοπική ευρεία εκτομή ή στην ουλή της μαστεκτομής. Κατά τη διάρκεια της ακτινοβολίας τα καρκινικά κύτταρα προβάλλονται σε μεγαλύτερο βαθμό από τα φυσιολογικά κύτταρα(95). Η ακτινοθεραπεία του μαστού, συνήθως δεν προκαλεί παρενέργειες, με τις περισσότερες ασθενείς να εμφανίζουν κάποιου βαθμού κόπωση και ερυθρότητα στο δέρμα. Περιστασιακά, οι πιο μακροπρόθεσμες παρενέργειες περιλαμβάνουν αυξημένη μελάγχρωση του δέρματος και ελαφριά σκληρύνση του ιστού(96).
Βιολογική/ανοσολογική θεραπεία στον καρκίνο του μαστού

Τα μονοκλωνικά αντισώματα και οι αναστολέες της τυροσινικής κινάσης είναι δύο τύποι στοχευμένης θεραπείας, που χρησιμοποιούνται στη θεραπεία του καρκίνου του μαστού(97). Τα αντισώματα αυτά αναστέλλουν την ανάπτυξη και τον πολλαπλασιασμό των καρκινικών κυττάρων(56,98). Η τραστουζουμάμπη (transtuzumab, Herceptin) είναι ένα μονοκλωνικό αντίσωμα που αναστέλλει τη δράση του αυξητικού παράγοντα Her-2 (cerb-b2), ο οποίος αποτελεί κύριο παράγοντα κυτταρικής σήμανσης για την ανάπτυξη των καρκινικών κυττάρων του μαστού(99). Η προσθήκη της τραστουζουμάμπης στη συμβατική χημειοθεραπεία ως επικουρική αγωγή μειώνει κατά 50% το ποσοστό υποτροπής(100). Η λαπατινίμπη (lapatinib) είναι ένας αναστολέας της τυροσινικής κινάσης που αναστέλλει τη δράση τόσο της πρωτεΐνης Her-2 όσο και του επιδερμιδικού αυξητικού παράγοντα (EGFR)(101). Έχει ένδειξη χορήγησης σε όγκους Her-2+ που δεν ανταποκρίνονται στην αγωγή με Herceptin(102). Οι PARP αναστολείς (olaparib) είναι ένα είδος στοχευμένης θεραπείας που αναστέλλει την επιδιόρθωση του DNA των καρκινικών κυττάρων μέσω αναστολής της PARP (poly-ADP-ribose polymerase) στα καρκινικά κύτταρα(103,104). Τα τελευταία χρόνια, η περτουζουμάμπη (Perjeta) έχει χρησιμοποιηθεί εκτενώς σε ασθενείς με υψηλού κινδύνου Her-2 positive καρκίνους μαστού, ως συνεπικουρική θεραπεία (dual blockade) είτε προεγχειρητικά ή μετεγχειρητικά, καθώς και σε περιπτώσεις προχωρημένου ή μεταστατικού καρκίνου του μαστού που είναι Her-2 θετικός(105,106).

Ορμονοθεραπεία στον καρκίνο του μαστού

Η ορμονοθεραπεία σε ER+ καρκίνους μαστού αποτελεί ακρογωνιαίο λίθο της συστηματικής θεραπείας της νόσου εδώ και δεκαετίες(107). Τα συχνότερα φάρμακα που χορηγούνται για αυτό το σκοπό είναι η ταμοξιφένη (ή ραλοξιφένη στις ΗΠΑ), η

Η χορήγηση ορμονικής θεραπείας ενδείκνυται σε ασθενείς με πρώιμο καρκίνο μαστού που εκφράζει θετικούς οιστρογονικούς και/ή προγεστερονικούς υποδοχείς (107,118). Όταν τίθεται ένδειξη χημειοθεραπείας για τον καρκίνο του μαστού, η ενδοκρινική θεραπεία πρέπει να χορηγείται μετά το πέρας της χημειοθεραπείας. Επιπροσθέτως, σε ασθενείς με θετικούς Her-2 καρκίνους μαστού, η ΕΘ μπορεί να χορηγηθεί ταυτόχρονα με το trastuzumab αλλά όχι με τη χημειοθεραπεία (119,120).

Σε ασθενείς με καρκίνο μαστού και 15ετή παρακολούθηση, η χορήγηση ταμοξιφένης επί 5 έτη προσέφερε 11.8% απόλυτη ελάττωση του κινδύνου υποτροπής και 9.2% μείωση της θνητότητας σε ασθενείς με ER+ καρκίνους μαστού (121). Η απόλυτη βελτίωση στη θνητότητα ήταν 12.6% σε ασθενείς με θετικούς λεμφαδένες και 5.3% σε ασθενείς με αρνητικούς λεμφαδένες, ανεξαρτήτως της ηλικίας, της χορήγησης χημειοθεραπείας ή της δόσης της ταμοξιφένης που χορηγήθηκε. Η ελάττωση του
κινδύνου υποτροπής και θανάτου από τη νόσο ήταν διπλάσια στις ασθενείς που έλαβαν ΕΘ για 5 έτη σε σύγκριση με ασθενείς που έλαβαν ΕΘ για 1-2 έτη(121). Επίσης, οι ασθενείς που έλαβαν ΕΘ παρουσίαζαν 50% ελάττωση του κινδύνου ανάπτυξης νέου καρκίνου στον ετερόπλευρο μαστό, σε σύγκριση με ασθενείς που δεν έλαβαν ΕΘ(121,122).

Μέχρι τώρα η κλασική ενδεικνυόμενη διάρκεια χορήγησης ταμοξιφένης είναι 5 έτη. Τα αποτελέσματα των μελετών ATLAS/AttoM έδειξαν περαιτέρω βελτίωση του κινδύνου υποτροπής όταν η ταμοξιφένη χορηγείται για 10 έτη(123). Οι μελέτες αυτές έδωσαν πρόσφατα το έναυσμα για την ενθάρρυνση της εκτεταμένης ΕΘ (extended ET) σε επιλεγμένες ασθενείς υψηλού ρίσκου, όπως ασθενείς <40 ετών, με θετικός λεμφαδένες, Grade III καρκίνους ή όγκους T3/T4, και LVI (λεμφαγγειακή διήθηση)(123,124). Σε προεμμηνοπαυσιακές ασθενείς, ο συνδυασμός καταστολής των ωοθηκών με συγχορήγηση ταμοξιφένης έχει μελετηθεί σε αντιδιαστολή με χορήγηση ταμοξιφένης μόνο για 5 έτη, με ενθαρρυντικά αποτελέσματα(125). Ιστορικά, η ωοθηκεκτομή έχει δείξει ότι βελτιώνει την κλινική πορεία ασθενών με ER+ καρκίνους μαστού, έχει όμως το σημαντικό μειονέκτημα ότι προκαλεί μη αναστρέψιμη απώλεια της ωοθηκικής λειτουργίας. Στη βάση αυτή, έχουν αναπτυχθεί τα ανάλογα της έκκρισης γοναδοτροπικών, όπως η roselinη, τα οποία χορηγούνται σε δόση 3.6 mg υποδορίως μηνιαίως για 2 έτη σε συνδυασμό με την προτεινόμενη ΕΘ(126–128).

Για τις μετεμμηνοπαυσιακές γυναίκες, η ΕΘ θα πρέπει να περιλαμβάνει τουλάχιστον 2 χρόνια χορήγησης λετροζόλης/αναστροζόλης ακολουθούμενα από 3 έτη ταμοξιφένης. Ασθενείς με ιστορικό θρομβεμβολικής νόσου ή συμπτώματα από το ενδομήτριο και ασθενείς που δεν ανέχονται καλά τη θεραπεία λόγω οστεοπενικών συμπτωμάτων, υπόκεινται σε
εναλλακτικά σχήματα με άλλοτε άλλους παράγοντες (switch)(130). Ο στόχος πάντως θα πρέπει να είναι τουλάχιστον 5 έτη συνολικής ΕΘ είτε σε προ- ή σε μετεμμηνοπαυσιακές γυναίκες με ορμονοευαίσθητο καρκίνο μαστού(131).

ΙΣΤΟΛΟΓΙΑ ΚΑΙ ΙΣΤΟΠΑΘΟΛΟΓΙΑ ΤΟΥ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

Το αρχικό ιστολογικό δόγμα ότι οι διακριτές ιστολογικές μορφές του καρκίνου του μαστού αναδύονται από αντίστοιχα διακριτές ανατομικές μονάδες στο μαζικό αδένα αμφιβολία για πρώτη φορά το 1973 από τους Wellings και Jensen, οι οποίοι έδειξαν ότι η πλειονότητα των καρκίνων μαστού αναδύεται από μια κοινή προέλευσης μικροσκοπική ανωμαλία στην τελική πορο-λοβιακή μονάδα του μαζικού αδένα (TDLU, terminal ductal lobular unit)(132,133). Από το σύνολο των διακριτών ιστολογικών μορφών του καρκίνου του μαστού, ο συχνότερος είναι ο πορογενής διηθητικός (ductal invasive NST, no special type or NOS, not otherwise specified), με τον οποίο θα ασχολήθουμε στο ειδικό μέρος της παρούσης διατριβής, ο οποίος και αποτελεί έως και το 85% των ιστολογικών διαγνώσεων διηθητικού καρκίνου του μαστού(134). Αξίζει να σημειωθεί ότι η χειρουργική αντιμετώπιση του διηθητικού καρκίνου του μαστού δεν εξαρτάται από τον ιστολογικό τύπο ούτε το βαθμό διαφοροποίησης(135,136). Αντίθετα, συγκεκριμένοι ιστολογικοί τύποι σχετίζονται με πολύ καλές προγνώσεις (όπως για παράδειγμα μικροί grade I tubular καρκίνοι ή εγκυστωμένοι θηλώδεις), ενώ άλλοι μπορεί να σχετίζονται με χειρότερες κλινικές πορείες λόγω ιστολογικής επιθετικότητας και ορμονικού προφίλ(137,138).

Κλασικά, σε μια διάγνωση διηθητικού καρκίνου του μαστού, πρέπει να αναφέρονται οι εξής παράμετροι: μέγεθος σε χιλιοστά, Grade, ιστολογικός υπότυπος, ER έκφραση, PgR έκφραση και Her-2 έκφραση. Μερικά κέντρα αναφέρουν και το
Ki67 ως παράμετρο ρουτίνας αλλά το cutoff value δεν είναι ισότιμα αποδεκτό από όλους(139,140).

Τα τελευταία χρόνια, η μικροσκοπική ανάλυση του καρκίνου του μαστού παρουσίασε επαναστατικά δεδομένα. Οι Perou et al έβαλαν τα θεμέλια για το σύγχρονο μοριακό profiling του καρκίνου του μαστού με την ιστορική πλέον δημοσίευσή τους το 2000(141). Στη μελέτη αυτή, οι συγγραφείς πραγματοποιήσαν cDNA microarray analysis σε 38 διηθητικούς καρκίνους μαστού, 1 DCIS, 1 ινοαδένωμα και 3 δείγματα
από φυσιολογικό μαζικό αδένα και πρότειναν 4 μοριακές ‘οικογένειες’ καρκίνου μαστού:

1. Luminal A breast cancer - ER positive and Her2 negative, with low Ki67
2. Luminal B breast cancer - ER positive and Her2 negative with high Ki67 OR ER positive and Her2 positive
3. Her-2 amplified breast cancer - ER negative and Her2 positive
4. Basal-like (triple negative) breast cancer

Η διάκριση αυτή άλλαξε τον τρόπο με τον οποίο αντιμετωπίζουμε σήμερα τον καρκίνο του μαστού, όχι τόσο σε σχέση με τη χειρουργική του θεραπεία, αλλά περισσότερο διότι το κάθε μοριακό προφίλ δείχνει διαφορική ανταπόκριση στη συστηματική θεραπεία. Έτσι, περαιτέρω μελέτες έδειξαν ότι οι τύποι 1 και 2 ανταποκρίνονται καλά σε ΕΘ αλλά όχι σε χημειοθεραπεία, ενώ οι τύποι 3 και 4 το αντίστροφο(37,142,143).

Παραταύτα, οι κλασικοί ιστολογικοί τύποι του καρκίνου του μαστού με βάση τα μικροσκοπικά τους χαρακτηριστικά χρησιμοποιούνται ακόμα στην κλινική πράξη. Ο διηθητικός πορογενής καρκίνος του μαστού αποτελεί το συχνότερο διηθητικό
ιστολογικό τύπο και αυτός θα αποτελέσει το αντικείμενο στο ειδικό μέρος της παρούσης διατριβής.

Από τον πορογενή in situ στο διηθητικό καρκίνο του μαστού

Το DCIS του μαστού χαρακτηρίζεται από σημαντική ετερογένεια, σε ό,τι αφορά στη μορφολογία, στην ανοσοϊστοχημεία, στα μοριακά αποτυπώματα και στην κλινική του έκφραση(146,147). Για μερικές ασθενείς, η χειρουργική εξαίρεση επί ιστιογράφων θα αποτελέσει επαρκή θεραπεία, όμως ένα σημαντικό ποσοστό ασθενών θα υποτροφιάσουν μετά από απλή χειρουργική θεραπεία χωρίς ακτινοβόληση του μαστού. Με βάση τις σύγχρονες οδηγίες, ασθενείς κάτω των 70 ετών με DCIS οποιουδήποτε grade και διατήρηση του μαστού, υποβάλλονται σε ολική ακτινοβόληση του μαστού μετά την επέμβαση (Δόση 40 Gy σε 15 δόσεις ή 50 Gy σε 25 δόσεις). Σε ασθενείς που υποβάλλονται σε μαστεκτομή για αμιγώς DCIS δεν χρειάζεται ακτινοβόληση του θώρακα(148,149).

Τα τελευταία χρόνια εξελίσσεται εκτεταμένη έρευνα με σκοπό να ταυτοποιήσει τα μοριακά γεγονότα που χαρακτηρίζουν τη μετάβαση του φυσιολογικού μαζικού επιθηλίου στα DCIS (in situ) και IDC (invasive, διηθητικός καρκίνος μαστού)(150).

Επιθηλιακά κύτταρα, μικοεπιθηλιακά κύτταρα καθώς και στρωματικά κύτταρα υπόκεινται σε μεταβολές στην γονιδιακή έκφραση, βήμα πολύ σημαντικό στη διαδικασία της καρκινογένεσης του μαστού. Επιγενετικές τροποποιήσεις, όπως η μεθυλίωση του DNA και μεταβολές στο microRNA, διαδραματίζουν αποφασιστικό ρόλο στα γενετικά αυτά γεγονότα. Μοριακές τεχνικές που αρχικά εφαρμόστηκαν στο διηθητικό καρκίνο με σκοπό να αποκρυσταλλώσουν την ιστολογική του ετερογένεια, εφαρμόζονται στο DCIS με επιτυχία τα τελευταία χρόνια. Στο μέλλον, η ταξινόμηση του DCIS αναμένεται να ενσωματώνει το μοριακό profiling ακολουθώντας το
παράδειγμα του διηθητικού καρκίνου, δίνοντας έτσι την ευκαρία στο θεράποντα να εξατομικεύει τη θεραπεία (προγνωστικοί δείκτες τοπικής υποτροπής)(151).

Ιδιαίτερο ενδιαφέρον στην έρευνα για το DCIS αποτελεί η μελέτη της ικανότητας των κυττάρων να διηθούν και αναπτύσσονται στο στρώμα και ως εκ τούτου να αποκτούν μεταστατικό δυναμικό, διαμορφώνοντας το διηθητικό καρκίνο του μαστού. Όλα αυτά τα βήματα είναι κρίσιμα καθώς η βασική αρχή της θεραπείας του DCIS είναι η πρόληψη μετάβασής του σε διηθητικό καρκίνο. Η θυντότητα από DCIS είναι 0% εξ ορισμού καθώς η in situ νόσος δεν μπορεί να δώσει μεταστάσεις(152). Η κρίσιμη μεταβολή στο κυτταρικό επίπεδο που χαρακτηρίζει τη μετάβαση από DCIS σε IDC είναι η απώλεια των μυοεπιθηλιακών κυττάρων στο διηθητικό καρκίνο(153). Τα μυοεπιθηλιακά κύτταρα είναι γνωστά ότι διαφέρουν στη βιολογική τους συμπεριφορά και κυτταρική πορεία ανάμεσα στο in situ και διηθητικό καρκίνωμα του μαστού. Στο DCIS, συμπεριφέρονται περισσότερο ως ογκοκασταλτικά κύτταρα, ως αναστολείς της διήθησης του επιθήλιου καθώς και ως αναστολείς της αγγειογένεσης. Η απώλεια των μυοεπιθηλιακών κυττάρων ελέγχεται με δείκτες όπως το p63, η καλπονίνη, η ακτίνη του λείου μυός, το CD10, η κυτταροκερατίνη 5/6, η πρωτεϊνη S100 καθώς και η βαρείας αλύσου μυοσίνη(154).

Δύο είναι οι θεωρίες που έχουν διατυπωθεί όσον αφορά στην απώλεια των μυοεπιθηλιακών κυττάρων κατά τη μετάβαση από DCIS σε IDC. Η πρώτη θεωρία υποστηρίζει ότι ένας κλώνος κυττάρων που έχει δυνατότητα τοπικής διήθησης επιλέγεται και αναπαράγεται από το επιθήλιο ώστε να επεκταθεί μέσα στο στρώμα(155). Με βάση τη δεύτερη θεωρία, τα μυοεπιθηλιακά κύτταρα στο DCIS σωρεύουν τοπικά στρωματικά φλεγμονώδη κύτταρα μέσω κυτταρικής επικοινωνίας και προσκόλλησης με τελικό αποτέλεσμα τη διάρρηξη και διήθηση της βασικής μεμβράνης. Το έναυσμα για την προσκόλληση αυτή δίδεται από φαινοτυπικές
μεταβολές στο μυοεπιθηλιακό κύτταρο του DCIS. Πολλά γονίδια που παρουσιάζουν ειδικότητα στο φυσιολογικό μυοεπιθηλιακό κύτταρο όπως τα CTK14, CTK17, OXTR και EGFR, έχει δειχθεί ότι απουσιάζουν ή επιδεικνύουν δραματικά μειωμένη έκφραση στο μυοεπιθήλιο του DCIS(156).

Είναι επίσης γνωστό ότι τα στρωματικά κύτταρα στον καρκίνο του μαστού εκκρίνουν παράγοντες όπως VEGF, ιντερλευκίνη-6 και ιντερλευκίνη-8, οι οποίοι προάγουν την αγγειογένεση και την ανάπτυξη καρκίνου στο μαζικό αδένα(157). Οι Allinen et al διεξήγαγαν μια μελέτη μοριακής ταξινόμησης κάθε κυτταρικού τύπου στο φυσιολογικό μαζικό αδένα, το DCIS και το διηθητικό καρκίνο του μαστού σε μια προσπάθεια καλύτερης κατανόησης του μηχανισμού της μετάβασης από την in situ στη διηθητική μορφή της νόσου. Οι ερευνητές κατέληξαν ότι παρατηρούνται μεταβολές στη γονιδιακή έκφραση σε όλους τους τύπους κυττάρων που εμπλέκονται στη διαδικασία αυτή, με πρωτεργάτη όμως το μυοεπιθηλιακό κύτταρο(158).

ΒΙΟΔΕΙΚΤΕΣ ΚΑΙ ΥΠΟΔΟΧΕΙΣ ΣΤΟΝ ΚΑΡΚΙΝΟ ΤΟΥ ΜΑΣΤΟΥ

Ένας βιολογικός δείκτης, ή βιοδείκτης (biomarker), αποτελεί ένα χαρακτηριστικό το οποίο μπορεί αντικειμενικά να μετρηθεί και να αξιολογηθεί σε σχέση με την επίδρασή του ή το αποτέλεσμα μιας βιολογικής διεργασίας, μιας παθολογικής εξεργασίας ή μιας φαρμακολογικής παρέμβασης(159–161). Η ανακάλυψη και ανάπτυξη των βιοδεικτών στη σύγχρονη ιατρική και βασική έρευνα, αποτελεί κρίσιμο τομέα της σύγχρονης ογκολογίας. Η μοντέρνα βασική έρευνα έχει να επιδείξει μια μυριάδα βιοδεικτών που η χρησιμότητά τους έχει δειχθεί σε εκτεταμένες κλινικές μελέτες. Ανάμεσα στους διαφόρους τύπους βιοδεικτών, οι κυτταρικοί υποδοχείς διαδραματίζουν ένα ξεχωριστό ρόλο ως διαγνωστικοί και προγνωστικοί βιολογικοί δείκτες στη σύγχρονη έρευνα και θεραπεία του καρκίνου(162,163). Στον
καρκίνο του μαστού, οι οιστρογονικοί και προγεστερονικοί υποδοχείς, καθώς και οι υποδοχείς του Her-2 αποτελούν χαρακτηριστικά παραδείγματα βιοδεικτών που λειτουργούν προγνωστικά για τη νόσο, αλλά και η έκφραση των οποίων μας δίνει σημαντικές πληροφορίες για το δυναμικό ανταπόκρισης της νόσου στις συστηματικές θεραπείες (164,165).

Οι βιοδείκτες διαδραματίζουν σημαντικό ρόλο στη διάγνωση και θεραπεία των ασθενών με καρκίνο μαστού. Μετά από μια διάγνωση καρκίνου του μαστού, τα σύγχρονα μοριακά profilings βιοδεικτών όπως το Oncotype Dx ή το uPA/PAI-1 μπορούν να χρησιμοποιηθούν ώστε να δώσουν πληροφορίες σχετικά με την πρόγνωση και πιθανή ανταπόκριση ασθενών με ER+ καρκίνους με αρνητικούς λεμφαδένες και να προσδιορίσουν το όφελος από τη χημειοθεραπεία (166,167). Άλλα γονιδιακά tests βασιζόμενα σε σύγχρονους βιοδείκτες (PAM50-ROR, Breast Cancer Index, EndoPredict) προσδιορίζουν την πιθανότητα ανάπτυξης όψιμης υποτροπής της νόσου και καθοδηγούν τα σχήματα EΘ σε ασθενείς που λαμβάνουν εκτεταμένη ορμονοθεραπεία (168–170). Σε μια διάγνωση καρκίνου μαστού, οι υποδοχείς που έως τώρα αναλύονται υποχρεωτικά είναι ο ER που καθορίζει αν η ασθενής υφελείται ή όχι από ορμονοθεραπεία καθώς και ο Her-2 που προσδιορίζει το όφελος από στοχευμένη ανοσοθεραπεία με transtuzumab και τα σύγχρονα του φάρμακα (lapatinib, pertuzumab, ado-trastuzumab emtansine) (171). Τέλος, βιοδείκτες του ορού όπως τα CA 15-3 και CEA έχουν θέση στην παρακολούθηση ασθενών με προχωρημένη νόσο που λαμβάνουν συστηματικές θεραπείες 1ης ή 2ης γραμμής (172).

Στεροειδογένεση

Το σύνολο των στεροειδών ορμονών παράγονται από τη C27 χοληστερόλη (173). Η κύρια πηγή χοληστερόλης που απαιτείται για τη σύνθεση των
στεροειδών ορμονών (στεροειδογένεση) είναι η LDL χοληστερόλη(174). Η
χοληστερόλη μεταβολίζεται σε 21-, 19- και 18- ανθρακικές στεροειδείς ορμόνες,
αντίστοιχα(175). Το πρώτο βήμα της ωοθηκικής στεροειδογένεσης στον άνθρωπο είναι
η μετακίνηση της χοληστερόλης εντός του μιτοχόνδριου. Το βήμα αυτό καταλύεται
από την πρωτεΐνη StAR που κωδικοποιείται από το γονίδιο STAR(176). Στη συνέχεια η
χοληστερόλη μετατρέπεται σε πρεγνενολόνη, μια διαδικασία που καταλύεται από μια
πλαγία αλύσου πρωτεϊνη κάθαρσης. Η πρεγνενολόνη αποτελεί το πρόδρομο μόριο για
όλες τις στεροειδείς ορμόνες. Μεταβολίζεται από διάφορα ένζυμα, και υπό τη δράση
tης 17-υδροξυλάσης (που κωδικοποιείται από το γονίδιο CYP17A1) μετατρέπεται σε
προγεστερόνη ή ανδροστενεδιόνη. Η ανδροστενεδιόνη στη συνέχεια μεταβολίζεται
στα υπόλοιπα ανδρογόνα και οιστρογόνα(177).

Τα οιστρογόνα είναι από τα λίγα αρωματικά οργανικά μακρομόρια στον
άνθρωπο. Η δομή τους ανήκει στα C18 στεροειδή και αποτελούνται από ένα βενζολικό
dακτύλιο, 18 άνθρακες, και μια υδροξυλομάδα ή κετονομάδα (στην περίπτωση της
17β-οιστραδιόλης ή της οιστρόνης, αντίστοιχα)(178). Τα κυρίως κυκλοφορούντα
οιστρογόνα είναι η οιστραδιόλη, η οιστρόνη και η οιστριόλη(179). Παρόλο που η
οιστριόλη είναι το κυρίως οιστρογόνο στην κύηση, η οιστραδιόλη αποτελεί την
περισσότερο βιολογικά δραστήρια οιστρογονική ορμόνη, και εκκρίνεται κυρίως από
tα κυκλοφορούντα κύτταρα της ωοθήκης, ενώ η έκλυση της ρυθμίζεται από την FSH(180).

Στις προεμμηνοπαυσιακές γυναίκες, η οιστραδιόλη συντίθεται στις ωοθήκες
και αποτελεί το κυρίως οιστρογόνο, ενώ η οιστρόνη αποτελεί το πιο άφθονο
οιστρογόνο των περιφερικών (εξο-ωοθηκικών) ιστών(181). Η αρωματάση, που
κωδικοποιείται από το γονίδιο CYP19A1, ρυθμίζει τον καταρράκτη μετατροπής των
ανδρογόνων σε οιστρογόνα(182). Ως εκ τούτου, η στοχευμένη αναστολή του με
φάρμακα (λετροζόλη, αναστροζόλη) αποτελεί σημαντική θεραπευτική επιλογή σε ER εξαρτώμενες ασθένειες όπως ο καρκίνος του μαστού(183,184).

O οιστρογονικός υποδοχέας (ER)

Η βιολογική δράση των οιστρογόνων ασκείται μέσω δύο διακριτών οιστρογονικών υποδοχών, του ERa και του ERb, που αμφότεροι ανήκουν στην πυρηνική υπεροικογένεια των μεταγραφικών παραγόντων(185). O οιστρογονικός υποδοχέας περιέχει διάφορες λειτουργικές περιοχές πρόσδεσης, εκ των οποίων σημαντικότερο είναι το σύμπλεγμα DNA πρόσδεσης DBD(186). Η μεταγραφική ενεργοποίηση επιτελείται από δύο περαιτέρω λειτουργικές περιοχές, την AF1 και την AF2. Και οι δύο αυτές περιοχές ελκύουν και προσδένουν ρυθμιστικά πρωτεϊνικά συμπλέγματα επηρεάζοντας τον υποδοχέα πρόσδεσης του DNA(187). Και οι δύο υπότυποι του οιστρογονικού υποδοχέα μοιράζονται σε μεγάλο βαθμό ομολογία αλληλουχίας, εκτός από τις αμινοτελικές τους περιοχές(188).

O προγεστερονικός υποδοχέας (PR)

Η μείωση της έκφρασης του προγεστερονικού υποδοχέα σε ασθενείς με ER θετικούς καρκίνους μαστού μεταφράζεται σε επιδείνωση της πρόγνωσης και πιθανή δευτεροπαθή αντοχή στην ΕΘ(189). Σύγχρονα δεδομένα δείχνουν ότι η ενεργοποίηση του προγεστερονικού υποδοχέα στα καρκινικά κύτταρα του μαστού αναστέλλει την καρκινογένεση μέσω τροποποίησης στην πρόσδεση και τη μεταγραφική δραστηριότητα της ERa χρωματίνης(190). O προγεστερονικός υποδοχέας φαινεται ότι υφίσταται ενδογενής ρύθμιση από τον ERa υποδοχέα αλλά ο μηχανισμός αυτής της διαδικασίας δεν έχει αποκρυσταλλωθεί πλήρως έως και σήμερα. Εν τη απουσία έκφρασης του προγεστερονικού υποδοχέα η λοβιακή ανάπτυξη αναστέλλεται ένω
αντίθετα η διαδικασία διακλαδιζούμενης ανάπτυξης των πόρων εντός του μαζικού αδένα παραμένει ενεργή (191). Με βάση τα μοντέρνα δεδομένα από τη βασική έρευνα, είναι ξεκάθαρο ότι η δραστηριότητα του προγεστερονικού υποδοχέα ρυθμίζεται γραμμικά από τον ERα υποδοχέα (192).

Σήμερα, γνωρίζουμε ότι η πλειονότητα των PR+ κυττάρων ενέχουν δραστηριότητα ‘αισθητήρα’ και ανταποκρίνονται στην Ρ διέγερση μέσω παρακρινούς κυτταρικής επικοινωνίας (193). Επίσης, έχει προταθεί η υπόθεση ότι η Ρ διέγερση σε αυτές τις περιπτώσεις μπορεί να λάβει χώρα μέσω αυτοκρινούς ρύθμισης (εκτός από την παρακρινή) στο φυσιολογικό μαζικό αδένα (194). Κατ’ επέκταση, η μεταβολή από την αυτοκρινή στην παρακρινή ρυθμιστική λειτουργία του προγεστερονικού υποδοχέα λειτουργεί ως έναν σημαντικό πρώτον ογκογένεσης (195).

O ανθρωπονικός υποδοχέας (AR)

Ως πυρηνικός υποδοχέας, ο AR αποτελείται από τέσσερις διακριτές περιοχές που καθορίζουν τη δραστηριότητά του (196). Η κυρίως περιοχή ενεργότητας είναι το αμινοτελικό του άκρο που εμπλέκει μια ποικιλία προσδετικών περιοχών για μεταγραφικούς παράγοντες, παρουσιάζει δε μεγάλη ομολογία όσον αφορά στην περιοχή AF1 (που περιεχόμενε στον οιστρογονικό υποδοχέα) (197). Το καρβοξυτελικό άκρο του επίσης, παίζει σημαντικό ρόλο στην έκπτωση ενεργών προσδετικών μορίων όπως η τεστοστερόνη και η 5α-διυδροστερόνη. Στον καρκίνο του μαστού, ο AR επιδεικνύει σημαντικό αύξησης της έκφρασης στην πρώιμη και μεταστατική μορφή της νόσου (198). Μάλιστα, τελευταία δεδομένα προτείνουν ένα πολλά υποσχόμενο υπότυπο τριπλού αρνητικού καρκινού του μαστού που εκφράζει τον AR και ως εκ τούτου αποτελεί δυνητικό θεραπευτικό στόχο. Ενδιαφέρον δε είναι ότι οι πορογενείς διηθητικοί καρκίνοι του μαστού εκφράζουν τον AR εντονότερα από τους λοβιακούς διηθητικούς υπότυπους (199). Το γεγονός αυτό μπορεί εν μέρει να
εξηγηθεί λόγω του σπανίτερου τριπλού αρνητικού φαινότυπου (basal-like) στα λοβιακά καρκινώματα του μαστού(200).

ΑΝΑΤΟΜΙΑ, ΕΜΒΡΥΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΤΟΥ ΘΥΡΕΟΕΙΔΟΥΣ ΑΔΕΝΑ

Η ανάπτυξη του θυρεοειδούς αδένα συντελείται από την τρίτη ώς την ενδέκατη εβδομάδα της κύησης(201–203). Η πρώιμη ανατομική δομή του αδένα εμφανίζεται ως επιθήλιακή προσεκβολή στο έδαφος του φάρυγγα σε ουραία σχέση ως προς το πρώτο και δεύτερο φαρυγγικό κόλπωμα(204). Το σημείο έναρξης της ανατομικής ανάπτυξης του αδένα θα αποτελέσει το μελλοντικό τυφλό τρήμα. Τελικά ο αδένας κατέρχεται στο έδαφος του φάρυγγα έμπροσθεν του υοειδούς οστού και λαμβάνει την τελική του θέση μπροστά από την τραχεία περί την 7η εβδομάδα της κύησης(205).

Περί το τέλος του τρίτου μήνα της κύησης, ο εμβρυϊκός θυρεοειδής αδένας ενσωματώνει στοιχειακό ιώδιο και παράγει/εκκρίνει θυρεορμόνη περί την 12η εβδομάδα(206). Ο θυρεοειδής στον ενήλικο ξυγίζει περίπου 25 γραμμάρια και αποτελείται από δύο λοβούς που συνέχονται στον ισθμό. Ο αδένας καλύπτεται από λεπτή ινώδη κάψα και εδράζεται επί τα εντός των 2 καρωτιδικών θηκών. Μια τοπική ανατομική πύκνωση της εν τω βάθει τραχηλικής περιτονίας αποτελεί το σύνδεσμο του Berry που καθηλώνει το θυρεοειδή επί της τραχείας(207). Ο πυραμοειδής λοβός αποτελεί εμβρυϊκό κατάλοιπο του θυρεογλωσσικού πόρου και μπορεί να καθηλώνεται επί του υοειδούς οστού μέσω μια λεπτής ινώδους ταινίας(208).

Ο θυρεοειδής αδένας λαμβάνει την αιμάτωσή του από την άνω και κάτω θυρεοειδική αρτηρία που παρουσιάζουν ανατομική σταθερότητα(209). Ένα τρίτο αρτηριακό στέλεχος (thyroida ima artery) μπορεί να υποκαθιστά την κάτω θυρεοειδική αρτηρία ως κύρια πηγή αιμάτωσης(210). Το φλεβικό/λεμφικό δίκτυο αναπτύσσεται
κατά παραλληλιά και αντιστοιχία προς τα αρτηρικά στελέχη, με επιπρόσθετο φλεβικό στέλεχος τη μέση θυρεοειδική φλέβα που εκβάλλει στη έσω σφαγίτιδα(211).

Η ανατομία του πνευμονογαστρικού νεύρου όπως τη γνωρίζουμε σήμερα περιγράφηκε από τους Vesalius και Willis κατά τον 16ο και 17ο αιώνα, αντίστοιχα(212). Οι τραχηλικοί κλάδοι του πνευμονογαστρικού νεύρου δίνουν τους παλίνδρομους και τους άνω λαρυγγικούς κλάδους, που έχουν μεγάλη σημασία στη χειρουργική ανατομία του θυρεοειδούς αδένος. Εντός του τραχήλου τα παλίνδρομα λαρυγγικά νεύρα πορεύονται εντός της καρωτιδικής θήκης μαζί με την κοινή καρωτίδα και τη έσω σφαγίτιδα φλέβα(213). Η ανατομία των παραθυρεοειδών αδένων καθώς και του θύμου δε θα περιγραφεί αναλυτικά από το σκοπό της παρούσης διατριβής.

ΦΥΣΙΟΛΟΓΙΑ ΤΟΥ ΘΥΡΕΟΕΙΔΟΥΣ ΑΔΕΝΑ

Ο θυρεοειδής, μέσω της δράσης των θυρεοειδικών ορμονών, ελέγχει και ρυθμίζει μια μυριάδα κυτταρικών δραστηριοτήτων, μεταβολικών και αναπτυξιακών διεργασιών πρακτικά σε κάθε ιστό-στόχο του ανθρώπινου οργανισμού(214). Η κύρια δράση του θυρεοειδούς στους ιστούς-στόχους ασκείται μέσω της Τ3, η οποία επιδεικνύει δραστικότητα 4 με 5 φορές μεγαλύτερη από αυτή της Τ4. Στους περιφερεικούς ιστούς η Τ4 μεταβολίζεται στην ενεργό Τ4 μέσω αποϊωδίωσης. Όπως θα δούμε αναλυτικά παρακάτω, η δράση της θυρεοερμόνης (Τ3) επάγεται μέσω των υποδοχέων της θυρεοειδικής ορμόνης (TRs)(215).

Η Τ3 ασκεί πλειότροπη δράση στην ανάπτυξη και την ομοιόσταση(216). Τα κυκλοφορούντα επίπεδα Τ3 και Τ4 στον ενήλικα είναι συνήθως πολύ σταθερά(217). Ο υπερθυρεοειδισμός, συχνά απότοκο της νόσου Graves, προκαλεί βροχοκήλη, περιφθαλμικό οίδημα, απόλεια βάρους, ταχυκαρδία, αρρυθμίες, αίσθημα παλμών,
μυκή αδυναμία και οστεορρωση(218). Από την άλλη πλευρά, ο υποθυρεοειδισμός σχετίζεται κλινικά με βρογχοκήλη, μυξοίδημα, κόπωση, θερμοστατικές διαταραχές, λέπτυνση των μαλλιών, κατάθλιψη, ξηροδερμία, βραδυκαρδία και δυσκοιλιότητα(219).

Θυρεοειδής και αμφιβλητροειδής

Στον αμφιβλητροειδή, η θυρεορμόνη παίζει κεντρικό ρόλο στην έκφραση της οψίνης των κωνίων. Η θυρεορμόνη αναστέλλει την έκφραση της S οψίνης και ρυθμίζει την οξύτητα των φωτοϋποδοχέων. Νεότερα δεδομένα από μικροσκοπικές μελέτες εμπλέκουν απευθείας τη θυρεορμόνη με το δυναμικό επιβίωσης των κωνίων ανεξάρτητα από το βιοχημικό μονοπάτι της οψίνης. Υπερδιέγερση των κωνίων με θυρεορμόνη σε πειραματικά μοντέλα προκαλεί νέκρωση των εξειδικευμένων αυτών κυττάρων(220).

Θυρεοειδής και σύνδρομο DOWN

Η θυρεοειδική δυσλειτουργία αποτελεί την τυπικότερη ενδοκρινική διαταραχή στο σύνδρομο Down. Ασθενείς με το σύνδρομο παρουσιάζουν μεγάλα ποσοστά υπερ- και υποθυρεοειδισμού. Νεότερα δεδομένα δείχνουν ότι οι ασθενείς με το σύνδρομο υφίστανται μεγάλο βαθμό οξειδωτικού stress το οποίο σχετίζεται με τη θυρεοειδική λειτουργία όπως θα δούμε και παρακάτω. Στα άτομα με το σύνδρομο (τρισωμία 21), το γονίδιο της υπεροξειδικής δισμουτάσης του Cu/Zn (SOD1) εδράζεται στο χρωμόσωμα 21 και υπερεκφράζεται με αποτέλεσμα να αυξάνεται η παραγωγή των ελεύθερων ριζών (ROS) που επάγουν την οξειδωτική καταστροφή του DNA, των πρωτεϊνών και των λιπιδίων(221).
Θυρεοειδής και κυτταρικός μεταβολισμός

Η θυρεορμόνη ασκεί πλειάδα δράσεων στα μιτοχόνδρια και στα βιοχημικά μονοπάτια του ενεργειακού μεταβολισμού στο κύτταρο. Η πλευνότητα των μεταβολικών δράσεων της θυρεορμόνης ασκείται εμμέσως από τη μιτοχονδριακή βιογένεσή και την αύξηση της διαπερατότητας της κυτταρικής μεμβράνης. Η θυρεορμόνη επιταχύνει την κατανάλωση οξυγόνου με αποτέλεσμα την παραγωγή ελευθέρων ριζών οξυγόνου (που όπως προαναφέραμε συνιστούν θεμέλιο συστατικό του οξειδωτικού stress σε μια μιριάδα παθήσεων) οι οποίες με τη σειρά τους διεγείρουν την ενεργοποίηση μεταγραφικών παραγόντων (kB, signal transducer/activator of transcription 3). Σε αυτό το βιοχημικό καταρράκτη το κύτταρο αντιδρά αυξάνοντας το ομοιοστατικό του δυναμικό μέσω αντιφλεγμονώδους και αντιαποπτωτικής δράσης πρωτεϊνών. Ο παραπάνω μηχανισμός έχει παρατηρηθεί κατά τη μελέτη της ισχαιμίας-επαναιμάτωσης του ήπατος αλλά και εξωηπατικών ιστών σε πειραματικά μοντέλα επιβεβαιώνοντας τον κεντρικό ρόλο της θυρεορμόνης στο μονοπάτι αυτό (216,222).

Το κυρίως εκκριτικό προϊόν του θυρεοειδούς είναι η L-θυροξίνη, που επιτελεί αντιαποπττικό ρόλο σε φυσιολογικές συγκεκριμένες σε πειραματικά μοντέλα καρκινικών κυττάρων. Μια από τις καλά μελετημένες αντιαποπτωτικές λειτουργίες της T4 είναι η ενεργοποίηση του p53 μέσω φωσφορυλίωσης. Η θυρεορμόνη επίσης ελαττώνει την κυτταρική αφθονία και ασκεί ρυθμιστικό ρόλο στις πρωτεολυτικές κασπάσες και το σύμπλεγμα BAX, πρωτεϊνές κλειδιά του προγραμματισμού κυτταρικού θανάτου. Οπώς προαναφέρθηκε, η T4 στους περιφερεικούς ιστούς στόχος υφίσταται αποξώδιος σε T3, που ασκεί την πολυποίκιλη δράση της μέσω των TRs και επιδεικνύει έως και πέντε φορές μεγαλύτερη ενεργότητα από τη θυροξίνη (T4)(206,223).
Θυρεοειδής και γνωσιακή λειτουργία

Η λειτουργία του θυρεοειδούς ασκεί σημαντικότατο ρόλο στη διάθεση και τη γνωσιακή λειτουργία. Τις τελευταίες δεκατίες, η βασική και κλινική έρευνα έχει επιχειρήσει να αποκρυσταλλώσει τους μηχανισμούς της δράσης αυτής. Η επίδραση στη διάθεση και γνωσιακή λειτουργία παρατηρείται από άκρη σε άκρη του φάσματος της θυρεοειδοπάθειας. Έχει δειχθεί ότι η θεραπεία του υπερθυρεοειδίσμοι αλλά και του υποθυρεοειδίσμοι μπορεί να έχει θεαματικά αποτελέσματα όσον αφορά στη βελτίωση των συμπτωμάτων από τη διάθεση και τη γνωσιακή σφαίρα. Ωστόσο, μέρος της διαταραχής αυτής μπορεί να μην υποστερένει πλήρως, ειδικά μετά από θεραπευτική ρύθμιση του υποθυρεοειδίσμοι. Όμοια - κλειδί για αυτές τις διαταραχές έχει θεωρηθεί η ελεύθερα κυκλοφορούσα θυροξίνη (Free T4)(224,225).

Θυρεοειδής και νευρικό σύστημα

Η θυρεορμόνη ασκεί ποικίλες δράσεις στην επιβίωση, ορίμανση και διαφοροποίηση των αρχέγονων νευρικών κυττάρων κατά την περιγεννητική περίοδο. Μελέτες έχουν δείξει ότι η θυρεορμόνη διατηρεί σημαντικό ρυθμιστικό ρόλο στη λειτουργία και φυσιολογία του ενήλικου εγκεφάλου. Ο υποδοχέας TRα, που θα αναλυθεί παρακάτω, και αποτελεί το αντικείμενο του ειδικού μέρους της παρούσης διατριβής, ρυθμίζει την επιβίωση και απόπτωση των αρχέγονων νευρικών κυττάρων ενώ ασκεί επίσης ρυθμιστική επιρροή στη φυσιολογία των νευρωνικών δικτύων. Από ανατομικής άποψης, η δράση αυτή εστιάζεται κυρίως στην υποκατάταξη του ιπποκάμπου(226).
Θυρεοειδής και καρδιά

Μια από τις πιο κεφαλαιώδεις και καλά μελετημένες δράσεις του θυρεοειδούς είναι η δράση του στην καρδιακή λειτουργία και φυσιολογία. Οι θυρεομόνες ρυθμίζουν τη έκφραση της ATPάσης του δικτυωτού ενδοπλασματικού δικτύου και της φωσφολαμπάνης(227). Συνολικά, ο υπερθυρεοειδισμός χαρατηρίζεται από αύξηση του όγκου παλμού, της συσταλτικότητας του μυοκαρδίου και του κλάσματος εξάθησης. Αντίθετα, κατά τον υποθυρεοειδισμό, ο καρδιακός ρυθμός ελαττώνεται και παρατηρείται επιμήκυνση της διάρκειας συστολής και της πρώιμης διαστολής. Το καρδιακό μεταφόρτιο αυξάνεται, ενώ σημειώνεται ελάττωση των χρονότροπων και ινότροπων λειτουργιών(228–235).

Ο υποκλινικός υποθυρεοειδισμός, που εμφανίζει αυξημένη επίπτωση στους ασθενείς >65 ετών, σχετίζεται με αυξημένο κίνδυνο ισχαιμικής καρδιοπάθειας και θνητότητας από τη νόσο(233). Ο κίνδυνος μάλιστα από ισχαιμική καρδιοπάθεια και κολπική μαρμαρυγή είναι μεγαλύτερος σε ασθενείς με χαμηλή θυρεοτροπία του ορού. Τέλος, φάρμακα όπως η αμιωδαρόνη μπορούν να προκαλέσουν είτε υπο– ή υπερθυρεοειδισμό, ενώ και οι δύο διαταραχές συνδέονται εν πολλοίς με την υψηλή συγκέντρωση ιωδίου στο φάρμακο αυτό(236).

Θυρεοειδής και οστά

Η δράση των θυρεομονών στον οστικό μεταβολισμό είναι επίσης καλώς μελετημένη. Ο υπερθυρεοειδισμός κατά την παιδική ηλικία αυξάνει την επιμετάλλωση του οστού και επιταχύνει την ωρίμανση της επιφάνειας, ενώ στους ενήλικες επάγει οστική απώλεια και απορρόφηση μέσω της δραστικότητας των οστεοκλαστών. Από την άλλη, η θυρεοειδική δυσλειτουργία έχει σχετιστεί με ρευματολογικά νοσήματα, και ιδιαίτερα έχει μελετηθεί in vivo η επίδραση της θυρεοειδικής δυσλειτουργίας στη
ρευματοειδή αρθρίτιδα, που επάγεται μέσω γενωμικών δράσεων και γονιδιακών πολυμορφισμών (237).

Θυρεοειδής, κύηση και γονιμότητα

Η θυρεοειδική δυσλειτουργία αποτελεί τη δεύτερη σε συχνότητα ενδοκρινική διαταραχή σε γυναίκες αναπαραγωγικής ηλικίας, πίσω από το σακχαρώδη διαβήτη (238). Η δυσλειτουργία του αδένα στην κύηση και κατ'επέκταση τη διαταραχή στο προφίλ των κυκλοφορούντων θυρεοειδικών ορμονών αυξάνει την επίπτωσή της αποβολής, της υπέρτασης στην κύηση, της αποκόλλησής του πλακούντα, του πρόωρου τοκετού και της περιγεννητικής νεογνικής εγκεφαλικής βλάβης. Το ιώδιο της μητροπλακουντικής κυκλοφορίας ρυθμίζεται από το συμμεταφορέα νατρίου/ιωδίου (sodium/iodide symporter, NIS) (239).

Κατά την κύηση, τα κύρια γεγονότα που λαμβάνουν χώρα σε σχέση με τη θυρεοειδική λειτουργία είναι τα εξής:

[α] αύξηση της θυρεοσφαιρίνης του ορού

[β] απευθείας διέγερση του μητρικού θυρεειδούς αδένα από την ανθρώπινη χοριακή γοναδοτροπίνη

[γ] τροποποίηση του περιφερικού μεταβολισμού των μητρικών θυρεορμονών και

[δ] μεταβολές στη μητρική δεξαμενή ιωδίου (240).

Η επίπτωση της κλινικά σημαντικής θυρεοειδικής δυσλειτουργίας στην κύηση είναι 1-2%. Αναμένονται όμως περισσότερες περιπτώσεις υποκλινικού υπο- και υπερθυρεοειδισμού. Η ανεπάρκεια ιωδίου σχετίζεται με αύξηση της επίπτωσης των θυρεοειδικών όζων, ενώ ανεπάρκεια των θυρεορμονών από τη μητροπλακουντική κυκλοφορία οδηγεί σε μη αναστρέψιμη εγκεφαλική βλάβη καθώς και σε αυξημένες πιθανότητες για κρετινισμό (241).
ΥΠΟΔΟΧΕΙΣ ΤΗΣ ΘΥΡΕΟΕΙΔΙΚΗΣ ΟΡΜΟΝΗΣ (Thyroid hormone receptors, TRs)

Δομή και βιολογικές δράσεις των υποδοχέων της θυρεορμόνης

Η ταυτοποίηση των υποδοχέων των θυρεοειδικών ορμονών (TR) αρχικά βασίστηκε σε μελέτες μοριακής πρόσδεσης. Το κυρίως προσδετικό μόριο στον TR είναι η 3,5,3′-τριωδο-L-θυρονίνη (T₃)(215). Όπως έχουμε προαναφέρει, η παραγωγή της T₃ λαμβάνει χώρα κυρίως από αποιωδίωση της T₄ στο θυρεοειδή αδένα και τους περιφερικούς ιστούς. Οι περισσότεροι μάλιστα μεταβολίτες της T₃ και T₄ αποτελούν αδύναμους προσδέτες στον TR, εκτός από το 3,3,5′-τριωδο-θυρεοξικό οξύ, που είναι όμως παρόν σε πολύ μικρές συγκέντρωσεις στον ορό(228).

Οι TRs κωδικοποιούνται από τα γονίδια NRI1A1/THRA (για τον TRα) και NRI1A2/THRB (για τον TRβ). Το γονίδιο του TRα αρχικά ταυτοποιήθηκε στα πουλερικά ως κυτταρικό ομόλογο του ογκογονιδίου v-erbA. Το γονίδιο για τον TRβ κωδικοποιήθηκε από βιβλιοθήκες cDNA αρουραίων. Πέραν τουτου, το γονίδιο THRβ έχει επίσης κλωνοποιηθεί από cDNA βιβλιοθήκες ανθρώπινου γονιδιώματος. Η έκφραση του THRA στους ιστούς είναι συνολικά αφθονότερη από εκείνη του THRB(242). Το THRA εκφράζεται σε αφθονία στο ήπαρ, την υπόφυση, το έσω ους, τον αμφιβληστροειδή και διάφορες περιοχές του εγκεφάλου(243). Το promoter γονίδιο του TRα διαθέτει ενα προσδετικό στοιχείο ανταπόκρισης στον ορφανό υποδοχέα NR3B1 και το 3′ άκρο του επικαλύπτει το γονίδιο RevErbaA (NR1D1) - εξ’ ου και η κυτταρική ομολογία με το ογκογονιδίο v-erbA όπως προαναφέρθηκε στην αρχή του κεφαλαίου. Το βιολογικό αποτέλεσμα αυτών των ιδιαίτερων χαρακτηριστικών του γονιδίου THRA δεν έχουν αποκρυσταλλώθει πλήρως. Έχει προταθεί ότι η αλληλεπικάλυψη στο 3′ άκρο θα μπορούσε να εξηγεί μερικώς την κυρκάδια μεταβολή στην έκφραση του υποδοχεά-ισομορφής TRα2 στο ανθρώπινο ήπαρ(244).
Τα γονίδια THRA και THRΒ κωδικοποιούν τις μειζόνες ισομορφές του υποδοχέα (TRα1, TRβ1 και TRβ2). Ο υποδοχέας TRβ3 είναι ειδικός για τον αρουραίο και δεν έχει ταυτοποιηθεί στον άνθρωπο. Οι υπόλοιπες ισομορφές του υποδοχέα εκφράζονται σε διάφορους ιστούς αλλά είναι ‘ορφανοί’ - δεν έχει δηλαδή ταυτοποιηθεί κανένας προσδέτης(245). Οι υποδοχείς αυτοί είναι οι TRα2, TRα3, TRΔα1, TRΔα2, και ο ειδικός για τον αρουραίο TRΔβ3). Τα mRNA των TRα2 και TRα3 επάγονται από εναλλακτικό (alternative) splicing και διαφέρουν στο C άκρο τους. Οι TRΔα1 και TRΔα2 αποτελούν προϊόντα τμήσεις των TRα1 και TRα2, αντιστοίχως, και μεταφράζονται από mRNA που εδράζεται σε ένα επαγωγικό τμήμα στο ιντρόνιο 7. Όλες οι ‘ορφανές’ ισομορφές του υποδοχέα αναστέλλουν την T3-επαγόμενη μεταγραφική ενεργοποίηση αλλά οι υποκείμενοι μηχανισμοί παραμένουν ασαφείς(242,246).

Δεδομένα από in vitro μελέτες δείχνουν ότι ο TR δρα κυρίως ως ετεροδιμερές με το RXR (retinoid X receptor, υποδοχέας των ρετινοειδών), παρόλο που έχουν μελετηθεί επίσης ομοδιμερή TRβ1 αλλά και ετεροδιμερή του TR με τον υποδοχέα του ρετινοϊκού οξέος(247). Η πρόσδεση του DNA στα ετεροδιμερή TR/RXR είναι ανεξάρτητη από προσδέτη και επιδεικνύει ενεργότητα σε στοιχεία DR-4 (5′-AGGTCANNNAGGTCA-3′) καθώς και ανάστροφα παλίνδρομα στοιχεία (inverted palindromes)(248).

Μελέτες με κρυσταλλογραφία X έχουν αποκαλύψει τη δομή της περιοχής που είναι υπεύθυνη για την πρόσδεση του αγωνιστή στον TR(249). Τα δεδομένα αυτά δείχνουν ότι κατά τη διάρκεια της πρόσδεσης της T3 η καρβοξυτελική έλικα-12 του υποδοχέα αναδιπλώνεται εντός του σκαριφήματος που σχηματίζεται από τις έλικες 3,4 και 5 - δημιουργώντας έτσι μια επιφάνεια με υδρόβοφες ιδιότητες. Η επιφάνεια αυτή επιτελεί το διμερισμό TR/RXR(250).
Οι μεταλλάξεις του γονίδιου THRB έχουν μελετηθεί in vitro και in vivo. Αντίθετα είναι αξιοσημείωτο, ότι μεταλλάξεις στο γονίδιο THRA δεν έχουν παρατηρηθεί in vivo, και ως εκ τούτου έχει προταθεί ότι οι τελευταίες πιθανό να σχετίζονται με διαταραχές ασύμβατες με τη ζωή ή με ασυνήθη κλινικά σύνδρομα(251).

Ο TRα1 αποτελεί τον κύριο ρυθμιστή της ανάπτυξης στους περιφερικούς ιστούς κατά της πρώτης εβδομάδας της νεογνικής ζωής. Οι 3 αυτές εβδομάδες χαρακτηρίζονται από απότομη αύξηση στη συγκέντρωση της T3 στον ορό και παρουσιάζουν αναλογίες με την αμφίβια μεταμόρφωση(255). Σε αυτό το σημείο, η T3 ελέγχει το remodelling του εντέρου, την ανάπτυξη της παραγκεφαλίδας, την σπληνική ερυθροποίηση και την οστική ανάπτυξη, λειτουργίες που επάγονται μέσω ενεργοποίησης του TRα1. Ο TRα1 επίσης μείζονα ρόλο στην καρδιακή λειτουργία και τη θερμογένεση(256). Ο TRβ1 αποτελεί τη βασική ισομορφή που ρυθμίζει την ηπατική λειτουργία και την ανάπτυξη της ακοής, και μαζί με τον TRβ2 συμμετέχει στον άξονα
υποθαλάμου - υπόφυσης - θυρεοειδούς αδένα(257). Παράλληλα, ο TRβ2 επιδρά στα κονία του αμφιβληστροειδούς και ενέχει ρόλο στην κοχλιακή λειτουργία(258).

Βιολογικές δράσεις του TRα – πειραματικά δεδομένα

Τα πειραματικά δεδομένα ως προς τις ισομορφές TRα1 και TRα2 και τη διαφορική τους λειτουργία είναι περιορισμένα(259). Ο TRα1 είναι ικανός να προσδένει τη θυρεορμόνη και επομένως να διαμεσολαβεί τη βιολογική της δράση στους ιστούς-στόχους(260). Αντίθετα, ο TRα2 (όπως ήδη προαναφέρθηκε στη μοριακή δομή) δεν έχει ικανότητα προσδέτη και ουσιαστικά δρα ως αδύναμος ανταγωνιστής της T3 επαγόμενης μεταγραφής(261).

Οι Ortega et al μελέτησαν την έκφραση των TRα1/α2 στο λιπώδη ιστό σε μια προσπάθεια να αποσαφηνίσουν τον πιθανό τους ρόλο στις περιοχικές διαφορές εναπόθεσης λίπους(262). Τα ευρήματα τους είναι ενδιαφέροντα υπό την έννοια ότι το mRNA των TRα και TRα1 βρέθηκε να εκφαζεται 1.46 φορές περισσότερο στο υποδόριο από ότι στο σπλαχνικό λίπος, Οι οριζόντιες προτείνουν ότι οι TRα/α1 φαίνεται να επηρεάζουν ανωρυθμιστικά την εναπόθεση λίπους στον υποδόριο χώρο σε παχύσαρκους ασθενείς(262).

Οι Goumidi et al διερεύνησαν τη σχέση των πολυμορφισμών στο γονίδιο THRA σε ασθενείς με νόσο Alzheimer(263). Οι συγγραφείς ανέλυσαν 5 πολυμορφισμούς στο THRA καλύπτοντας τις πιο συνήθεις ποικιλομορφίες στο γονίδιο στη μελέτη Lille AD (710 περιπτώσεις και 597 μάρτυρες). Οι συγγραφείς παρατήρησαν ότι τα υποκείμενα της μελέτης που επεδείχνουν τον γονότυπο rs939348-TT είχαν μεγαλύτερο κίνδυνο αναπτύξης νόσου του Alzheimer σε σχέση με τα υποκείμενα που δεν έφεραν το συγκεκριμένο γόνοτύπο. Οι μελετητές σχολίασαν ότι απαιτείται στοιχείο μεγαλύτερης εμφάνισης για να αποδειχθεί ο συσχετισμός μεταξύ πολυμορφισμών στο THRA και της νόσου(263).
Όπως έχουμε προαναφέρει, η θυρεορμόνη διαδραματίζει ουσιαστική δράση στην ανάπτυξη του εγκεφάλου και η δράση της αυτή διαμεσολαβείται κυρίως από τον TRα1. Οι Wallis et al δημιούργησαν ένα πειραματικό μοντέλο σε ποντίκια ώστε να αποκρυσταλλώσουν την έκφραση του TRα1 κατά την εμβρυϊκή και πρώιμη νεογνική αναπτυξιακή φάση του εγκεφάλου(264). Από την ανάλυση των αποτελέσματών, ο TRα1 εντοπίστηκε στα μεταμιτωτικά κύτταρα του φλοιού και στον εμβρυϊκό τηλεγκέφαλο και η έκφρασή του φάνηκε να προηγείται της έκφρασης της νευρονικής πρωτεϊνής NeuN. Παράλληλα, ο TRα1 βρέθηκε να εκφράζεται στα υπό ανάπτυξη κύτταρα του Purkinje αλλά όχι στα αντίστοιχα όρισμα κύτταρα της σειράς. Η γλοιακή έκφραση του υποδοχέα εντοπίστηκε στα τανυκύτταρα του υποθαλάμου και της παρεγκεφαλίδας(264).

Όπως έχουμε τονίσει και παραπάνω, η θυρεορμόνη ασκεί κρίσιμο ρόλο στην καρδιακή φυσιολογία. Η δράση της Τ3 στο μυοκάρδιο έχει τη δυνατότητα να περιορίσει τη βλάβη από ισχαιμία επαναιμάτωσης μέσω μιας λεπτής εξισορρόπησης προ-αποπτωτικών και προ-επιβιωτικών μονοπατιών σήμανσης. Ακριβώς αυτή η ανταπόκριση στο μυοκαρδιακό τραύμα διαμεσολαβείται από τον TRα1(265). Επιπρόσθετα, η αλληλεπίδραση μεταξύ της σήμανσης της stress-επαγόμενης κινάσης και του TRα1 δείχνει να επιδρά στην ικανότητα επούλωσης του μυοκαρδίου μετά από ισχαιμία. Τα δεδομένα αυτά έχουν υποστηριχθεί από ευρήματα στην καρδιοχειρουργική, την καρδιακή μεταμόσχευση και τη θεραπεία της καρδιακής ανεπάρκειας με ανάλογα της θυρεορμόνης(266).

Μια νέα γενετική διαταραχή έχει πρόσφατα αποκρυσταλλωθεί και σχετίζεται με μετάλλαξη στον THRA(242). Όπως έχουμε προαναφέρει, οι μετάλλαξες στον TRα που είναι συμβατές με τη ζωή παρατηρούνται σπάνια και ως εκ τούτου παρουσιάζουν ιδιαίτερο ενδιαφέρον. Τα παιδιά με τη συγκεκριμένη μετάλλαξη επιδεικνύουν σε
διάφορο βαθμό μαθησιακή διαταραχή αλλά και δυσκοιλιότητα, αλλά παρουσιάζουν σχετικά σταθερά σημαντικού βαθμού σκελετική δυσπλασία(267). Σε μια προσπάθεια να αναστραφεί αυτό το φαινόμενο, ερευνητές στην παιδιατρική αναπτυξιολογία έχουν χορηγήσει άλλοτε άλλου βαθμού συμπληρωματικές θεραπείες με Τ4, αλλά η ανταπόκριση τόσο στη σκελετική ανάπτυξη όσο και στα συμπτώματα του υποθυρεοειδίσμου είναι ποικίλα. Παράλληλα, πειραματικά μοντέλα σε ποντίκια με γονότυπο THRA(PV+/) εκφράζουν παρόμοιες διαταραχές και ως εκ τούτου αποτελούν άριστο μοντέλο πειραματικής επαλήθευσης των ανωτέρω(256).

Οι Furuya et al. διερεύνησαν το ρόλο του TRa στην ανάπτυξη των β κυττάρων του παγκρέατος που παράγουν ινσουλίνη, στην ανεπάρκεια των οποίων οφείλεται ο διαβήτης τύπου II(268). Οι ερευνητές επιμόλυναν κύτταρα RIN5F με ανασυνδυασμένο πλασμίδιο που εμπεριείχε TRα και παρατήρησαν ότι η διαδικασία αυτή αύξησε την έκφραση της κυκλίνης D τόσο στο μεταγραφικό όσο και το μεταφραστικό επίπεδο. Επιπρόσθετα, η ενδοπαγκρεατική χορήγηση ανασυνδυασμένου υποδοχέα TRα οδήγησε σε αποκατάσταση της νηστιδικής λειτουργίας και αύξησε τη μάζα των β κυττάρων(269).

Οι Mochizuki et al. διερεύνησαν την έκφραση του TRa στη νήστιδα σε αναπτυσσόμενα μοντέλα ποντικών, παρατήρησαν δε ότι η έκφραση του TRa mRNA και του λόγου TRα1/TRα2 mRNA αυξήθηκε κατά 2 φορές από την 5η έως τη 13η ημέρα της ζωής στα πειραματικά μοντέλα(261). Το ποσοστό έκφρασης αντίθετα του TRα2 mRNA παρέμεινε αναλλότεροι κατά την ίδια περίοδο. Παράλληλα, οι μελετητές παρατήρησαν ότι κατά τις ημέρες 5-13 της ζωής, οι διαμεμβρανικοί μεταφορείς εξόζης στη νήστιδα αύξηθηκαν σε αριθμό, παράλληλα προς την προαναφερθείσα αύξηση της μεταγραφής του THRA στα νηστιδικά κύτταρα. Έτσι, η ομάδα συμπέρανε ότι υπάρχει
συχέτιση του υποδοχέα και της ανάπτυξης των μεταφορέων εξόζης στα κύτταρα της νήστιδας κατά τις πρώτες ημέρες ζωής του μοντέλου(261).

TRs ΚΑΙ ΚΑΡΚΙΝΟΣ ΜΑΣΤΟΥ

Οι Guigon et al διερεύνησαν το ρόλο των μεταλλάξεων στον TRβ στο δυναμικό ανάπτυξης όγκων στο μαστό(270). Προς την κατεύθυνση αυτή, ανέπτυξαν knockout ποντίκια με μεταλλαξή στο γονίδιο THRβ (THRBπ mouse). Παρόλο που στα ενήλικα θηλυκά ποντίκια με μηδενικές κυήσεις, ένα μόνον αλλήλιο του THRBπ δεν οδήγησε σε ανάπτυξη όγκων/υπερπλαστικής μεταβολής στο μαστό, στα ποντίκια με 2 μεταλλαγμένα αλλήλια του γονίδιου, 36% των περιπτώσεων ανέπτυξαν υπερπλαστικές αλλαγές στο μαζικό αδένα. Όταν τα δύο αλλήλια συνδυάστηκαν σε μοντέλα ποντικιών με υγιή δυναμικό καρκίνου μαστού (Pten+/-), η συμπαρουσία των μεταλλαγμένων αλληλίων του THRBπ οδήγησε σε αύξηση κατά 60% της υπερπλασίας στο μαστό.

Όσον αφορά στο μηχανισμό, οι συγγραφείς προτείνουν ότι η T3 κατέστειλε το μονοπάτι σήμανσης του STAT5 οδηγώντας σε ελαττωση την STAT5-επαγόμενη μεταγραφική δραστηριότητα σε κύτταρα που εξέφραζαν το μεταλλαγμένο TRβ(270).

Οι Ditsh et al ήταν ουσιαστικά οι πρώτοι που μελέτησαν την ανοσοϊστοχημική έκφραση των TRs στον καρκίνο του μαστού(271). Η ομάδα ασθενών είναι ετερογενής ως προς τα ιστολογικά προφίλ, εντούτοις τα αποτελέσματα είναι ενδιαφέροντα. Οι ερευνητές μελέτησαν την έκφραση συνδυασμένων αντισωμάτων TRα1/α2, συνδυασμένων TRβ1/β2 αλλά και την έκφραση του καθενός από τα 4 αντισώματα εξωχριστά σε 82 ασθενείς με διάγνωση σποραδικού καρκίνου του μαστού. Οι ασθενείς δεν ήταν ομοιογενείς ως προς τη θυρεοειδοπάθεια (το θυρεοειδικό προφίλ τους ήταν άγνωστο στη μελέτη). Επίσης, οι ιστολογικοί υπότυποι των καρκίνων του μαστού εμφάνιζαν ποικιλία στο δείγμα. Ως προς τα αποτελέσματα, και o TRα αλλά και o TRβ εκφράστηκαν στον πυρήνα των καρκινικών κυττάρων. Ο υποδοχέας με τη συχνότερη
έκφραση στα καρκινικά κύτταρα ήταν ο TRβ2 ενώ στην πολυπαραγοντική ανάλυση, ο TRα2 βρέθηκε να είναι ανεξάρτητος προγνωστικός παράγοντας για την ελεύθερη νόσο και συνολική επιβίωση. Οι ασθενείς με χαμηλή έκφραση του TRα2 επέδειξαν χειρότερη επιβίωση(271).

Οι Gu et al μελέτησαν την έκφραση του TRβ σε κυτταρικές σειρές τριπλού αρνητικού καρκίνου μαστού(272). Όπως έχουμε προαναφέρει, ο TNBC σχετίζεται με το μοριακό προφίλ του basal-like (non luminal) μοριακού υπότυπου και ανταποκρίνεται στη χημειοθεραπεία αλλά όχι στην ΕΘ. Οι τριπλοί αρνητικοί καρκίνοι τείνουν να έχουν χειρότερη πρόγνωση και πιο προχωρημένα κυτταρικά (grade) και κλινικά (stage) στάδια. Οι ερευνητές προκάλεσαν knockdown του TRβ στις κυτταρικές αυτές σειρές και παρατήρησαν ελαττωμένη ανταπόκριση στη δοξορουβικίνη και τη δοξεταξέλη, κλασικά χημειοθεραπευτικά φάρμακα στο TNBC. Όταν στις knockdown σειρές εφαρμόστηκε αγωνιστής του TRβ, η ευαισθησία στη χημειοθεραπεία αποκαταστάθηκε. Οι συγγραφείς σημείωσαν ότι το μονοπάτι σήμανσης cAMP/PKA εμπλέκεται στη ρύθμιση της αντοχής στη χημειοθεραπεία από τον TRβ(272).

Με πηγή τη βάση δεδομένων Cancer Genome Atlas (TCGA), μερικοί καρκίνοι μαστού μπορεί να φέρουν μεταβολές στον αριθμό αντιγράφων του THRA, ενώ σε άλλους, τα επίπεδα του mRNA υφίστανται ανωρύθμιση(273). Επιπρόσθετα, έχει δειχθεί η συσχέτιση μεταξύ των επιπέδων ανωρύθμισης της THRA mRNA και της θετικότητας του υποδοχέα Her-2(274).

Οι Conde et al έδειξαν ότι υπάρχει στατιστικά σημαντική συσχέτιση μεταξύ της υψηλής έκφρασης του TRα και της ελεύθερης νόσου επιβίωσης σε 52 γυναίκες με διηθητικό καρκίνο του μαστού, αλλά οι 2 διαφορετικές υπομορφές του υποδοχέα δεν μελετήθηκαν σε αυτό το πρωτόκολλο(275).
Η μεγαλύτερη κλινική μελέτη μέχρι σήμερα έρχεται από τους Jezrak et al οι οποίοι μελέτησαν την ανοσοϊστοχημική έκφραση των υποδοχών TRα1/α2 σε 130 γυναίκες με διηθητικό καρκίνο του μαστού(276). Ακόμα και σε αυτή τη μελέτη, δεν έγινε διάκριση μεταξύ ιστολογικών υπότυπων καρκίνου μαστού ενώ επίσης δεν έχει σχολιαστεί αν κάποιες από τις ασθενείς ήταν δυσθυρεοειδικές κατά τη διάγνωση. Τα κριτήρια αποκλεισμού ήταν: καρκίνοι < 1 εκατοστό, λήψη προεγχειρητικής χημειοθεραπείας και φορείς μετάλλαξης στα γονίδια BRCA. Οι ασθενείς με χαμηλή έκφραση TRα2 είχαν χειρότερη 5η επιβίωση (συμφωνώντας με τη μελέτη του Ditsch) από ασθενείς με υψηλή έκφραση του υποδοχέα (271,276). Στην πολυπαραγοντική ανάλυση, ο υποδοχέας παρέμεινε ανεξάρτητος προγνωστικός κατά τη διάγνωση. Τέλος, ασθενείς με το συνδυασμό χαμηλής έκφρασης TRα1 και υψηλής έκφρασης TRα2 παρουσιάσαν τα καλύτερα ποσοστά 5-ετούς επιβίωσης, παρόλο που το υποσύνολο των ασθενών ήταν μικρό (12 ασθενείς). Οι συγγραφείς διατύπωσαν την ενδιαφέρουσα υπόθεση (για μελλοντικές μελέτες) ότι αρνητική ρύθμιση του TRα1 ή θετική ρύθμιση του TRα2 ή συνδυασμός τους - με χρήση αντιστοιχίων αγωνιστών και ανταγωνιστών - θα μπορούσε θεωρητικά να προκαλέσει ένα 'ευνοϊκό' προφίλ υποδοχών θυρεοειδικής ορμόνης σε γυναίκες με ήδη διαγνωσμένο καρκίνο μαστού και να επηρεάσει θετικά την επιβίωσή τους(276).

Σε αντιδιαστολή με τα αποτελέσματα των προαναφερθέντων μελετών, οι Alyusuf et al μελέτησαν την έκφραση του TRα1 στο κυτταρόπλασμα και τον πυρήνα 146 μικτών περιπτώσεων καλοήθους και κακοήθους παθολογίας του μαζικού αδένα - καρκίνος, ινοαδενώματα, μαζικοί αδένες με μεταβολές από το θηλασμό και φυσιολογικός μαστός(277). Συνδυασμένη έκφραση του υποδοχέα βρέθηκε σε 47.6%, 63.4%, 64.3%, και 58.3% στις ομάδες με καλοήθη παθολογία, ινοκυστική κατάσταση, ινοαδενώματα και μεταβολές από το θηλασμό αντίστοιχα, σε αντίθεση με μόνο 17.4%
έκφραση στις περιπτώσεις καρκίνου του μαστού. Παρόλο που η έκφραση του υποδοχέα στα καρκινικά κύτταρα ήταν σαφώς μειωμένη σε σχέση με άλλες μελέτες, εν τούτω αυτή είναι η πρώτη μελέτη που συνέκρινε την έκφραση ενός από τους υποδοχείς μεταξύ καλοήθους και κακοήθους μαζικού αδένα(277).

Οι Li et al διερεύνησαν το ρόλο της απώλειας της ετεροζυγότητας στο βραχύ τμήμα του χρωμοσώματος 3, και συγκεκριμένα την απώλεια του αλληλίου 3p24.3 στον καρκίνο του μαστού(278). Η απώλεια της ετεροζυγότητας στο βραχύ τμήμα του 3 παρατηρείται σε πολλές περιπτώσεις συμπαγών κακοήθων όγκων. Στον καρκίνο του μαστού, η απώλεια στο 3p επισημαίνει τόσο στα κύτταρα που έχουν ήδη υποστεί κακοήθη εξάλλαγη σε διηθητικό καρκίνο, όσο και στα παραπλήσια φυσιολογικά κύτταρα του μαζικού αδένα. Η απώλεια συγκεκριμένα του αλληλίου στη θέση 3p24.3 συμπεριλαμβάνει και το γονίδιο που κωδικοποιεί τον TRβ1. Στη μελέτη αυτή, οι ερευνητές παρατήρησαν διάφορους βαθμούς υπερμεθυλίωσης του TRβ1 και στις 11 περιπτώσεις καρκίνου μαστού που μελετήθηκαν. Επιπρόσθετα, η υπερμεθυλίωση επισυνέβη και σε περιφερικό υγιή ιστό παραπλήρως του καρκίνου. Αυτή ήταν η πρώτη παρατήρηση πειραματικής ελάστωσης της μεταγραφής του TRβ1 κατά την εξάλλαγη σε καρκινικά κύτταρα στο μαστό(278).
ΕΙΔΙΚΟ ΜΕΡΟΣ

Εισαγωγή

Όπως είδαμε στο γενικό μέρος, τόσο η συσχέτιση μεταξύ της θυρεοειδικής νόσου και του καρκίνου του μαστού, όσο και η συσχέτιση μεταξύ της έκφρασης των θυρεοειδικών υποδοχών και του καρκίνου του μαστού παραμένει σε μεγάλο βαθμό αδιευρίσκοντα. Οι μελέτες συσχέτισης των υποδοχών της θυρεοειδικής ορμόνης και του καρκίνου του μαστού είναι περιορισμένες. Επιπλέον, καμία από αυτές δεν αναφέρει λεπτομέρειες όσον αφορά στο θυρεοειδικό status των ασθενών. Για την παρούσα διατριβή επιλέξαμε τον υποδοχέα TRα (για λόγους οικονομίας της έρευνας δεν μελετήθηκε και ο TRβ) ενώ για πρώτη φορά στη βιβλιογραφία επιλέξαμε ομάδα ασθενών που παρουσίαζαν ομοιογένεια ως προς τον υπότυπο καρκίνου (διηθητικός πορογενής, ο συχνότερος) και ως προς τη θυρεοειδική λειτουργία (όλες οι ασθενείς ήταν κλινικά και εργαστηριακά ευθυρεοειδικές).

Στην παρούσα μελέτη λοιπόν εξετάσαμε την ιστική έκφραση του υποδοχέα της θυρεοειδικής ορμόνης TRα στο διηθητικό καρκίνο του μαστού, συνδυάζοντας ανοσοϊστοχημεία με ψηφιακή ανάλυση εικόνας. Πραγματοποιήθηκε συσχέτιση της έντασης χρώσης και έκφρασης του υποδοχέα σε καρκινικό και παραπλήσιο φυσιολογικό μαζικό αδένα. Επίσης έγινε συσχέτιση μεταξύ της ιστικής έκφρασης του υποδοχέα στον καρκίνο του μαστού με διάφορες κλινικοπαθολογικές παραμέτρους, όπως θα δούμε αναλυτικά παρακάτω.
Υλικό και μέθοδος

Σαράντα (41) ασθενείς με καρκίνο μαστού που υπεβλήθησαν σε χειρουργική αντιμετώπιση της νόσου στη Β’ Προπαιδευτική Χειρουργική Κλινική του Πανεπιστημίου Αθηνών (Λαϊκό Νοσοκομείο) από το 2012 έως το 2014 απετέλεσαν το υλικό της μελέτης. Οι ασθενείς είχαν διαγνωστεί με διηθητικό πορογενή καρκίνο με βιοψία κόπτους βελόνης, προεγχειρητικά, υπό υπερηχογραφική ή μαστογραφική καθοδήγηση. Όλες οι ασθενείς ήταν κλινικά και βιοχημικά ευθυροειδικές. Ασθενείς με ενεργή θυρεοειδική νόσο, με κλινικά ψηλαφητά οζίδια στο θυρεοειδή, με διαταραγμένη θυρεοειδική βιοχημεία, με ιστολογικό υπότυπο διαφορετικό από διηθητικό πορογενές ή με ατομικό ιστορικό καρκίνου του θυρεοειδούς ή ενδοκρινοπάθειας, αποκλείστηκαν από τη μελέτη. Η παρουσία DCIS ή LCIS σε συνύπαρξη με το διηθητικό πορογενή καρκίνο δεν αποτέλεσε κριτήρι αποκλεισμού. Όλες οι ασθενείς υπεβλήθησαν στην ενδεδειγμένη χειρουργική αντιμετώπιση του καρκίνου του μαστού (ογκεκτομή ή μαστεκτομή και λεμφαδένας φρουρός ή μασχαλιαίος λεμφαδενικός καθαρισμός ή δειγματοληψία μασχάλης). Σε περίπτωση που στο τελικό ιστολογικό παρασκεύασμα αναγνωριζόταν διαφορετικός υπότυπος καρκίνου του μαστού από διηθητικό πορογενές, η ασθενής αποκλείόταν από τη μελέτη.

Δύο blocks παραφίνης, μονιμοποιημένα σε φορμαλίνη, ένα με κακοήθη ιστό και ένα με παράπλευρο φυσιολογικό μαζικό αδένα, παρελήφθησαν από κάθε ασθενή για το σκοπό της μελέτης. Επιπλέον, από κάθε ασθενή, ελήφθησαν αχρωμάτιστα πλακάκια από τα αντίστοιχα blocks. Η ιστολογική ανάλυση ρουτίνας πραγματοποιήθηκε με χρήση αιματοξυλίνης και ιωσίνης, σε συμφωνία με το τοπικό πρωτόκολλο του 1ου εργαστηρίου Παθολογικής Ανατομίας του Πανεπιστημίου Αθηνών. Η παθολογική σταδιοποίηση πραγματοποιήθηκε με βάση την έβδομη έκδοση του TNM (TNM Classification of Malignant Tumors, for the Union for International
Η μελέτη ενεργήθηκε από την Επιτροπή Δεοντολογίας και Ιατρικής Ηθικής του Λαϊκού Νοσοκομείου και συμφωνεί με τις αρχές της Διακήρυξης του Ελσίνκι. Όλες οι ασθενείς υπέγραψαν συγκατάθεση πριν από τη συμμετοχή στη μελέτη, μετά από ενδελεχή ενημέρωσή τους για το πρωτόκολλο της διατριβής. Τα κλινικά και παθολογικά χαρακτηριστικά που συνελέγησαν είχαν ως εξής: ηλίκια, μέγεθος πρωτοπαθούς όγκου, διήθηση μασχαλιαίων λεμφαδένων, αριθμός διηθημένων λεμφαδένων στη μασχάλη, βαθμός διαφοροποίησης, στάδιο, υποδοχές οιστρογόνων, ιστικές διήθηση Her-2 και λεμφαγγειακή διήθηση.

Ανοσοϊστοχημεία

Τα ιστικά δείγματα που παρελήφθησαν από τις μαστεκτομές και τις ογκεκτομές εμβαπτίσθηκαν σε διάλυμα 10% φορμαλίνης αμέσως μετά τη χειρουργική εξαίρεση. Όλα τα δείγματα ιστού υπέστησαν επεξεργασία με μια σειρά διαλυμάτων αλκοόλης, ξυλένης και παραφίνης 24 ώρες από τη χειρουργική επέμβαση. Στη συνέχεια, ελήφθησαν τομές σε μικροτόμο, πάχους 4 μικρομέτρων και στη συνέχεια οι τομές υπεβλήθησαν σε απο-παραφινοποίηση με τη χρήση ξυλένης. Οι τομές υποβλήθηκαν σε επανενυδάτωση με αλκοόλη. Η λήψη του αντιγόνου πραγματοποιήθηκε με τη χρήση ενός ρυθμιστικού διαλύματος κιτρικού οξέος με pH 6 στους 90 βαθμούς Κελσίου για 30 λεπτά της ώρας. Επειτα, 3% διάλυμα υπεροξειδίου του υδρογόνου εφαρμόστηκε στις τομές για 5 λεπτά της ώρας. Ακολούθως, ένα μπλοκ πρωτείνης ελεύθερο ορού (Dako, Glostrup, Denmark) εφαρμόστηκε στις τομές για 30 λεπτά και στη συνέχεια οι τομές εμβαπτίσθηκαν για 8 ώρες, στους 4 βαθμούς Κελσίου, σε διάλυμα που περιείχε τον υποδοχέα της θυρεοειδικής ορμόνης TRα1/a2 of human origin, product code sc-56873, Santa Cruz Biotechnology, Santa Cruz, California, USA, provided at 100μl), ως
μονοκλωνικό αντίσωμα μινός έναντι του αμινοτελικού άκρου του πεπτιδίου TRa1/TRa2, ανθρώπινης προέλευσης, σε διάλυση 1:100 στο ελεύθερο ορού πρωτεϊνικό μπλοκ. Περίπου 24 ώρες μετά την εμβάπτιση των τομών στον υποδοχέα, οι τομές υπεβλήθησαν σε στάγδη νερό με Link, streptavidin και διαμινοβενζιδίνη (DAB) για 30 λεπτά, με τη διαδοχή που αναφέρθησαν. Ακολούθως, οι τομές καλύφθηκαν με αιματοξυλίνη για 5 λεπτά και πραγματοποιήθηκε βύθιση σε διάλυμα έκπλυσης 10 φορές. Τελικά, οι τομές αναρτήθηκαν και καλύφθηκαν με μέσο υδατώδους βάσης. Ως θετικός μάρτυρας για την ιστολογική μελέτη χρησιμοποιήθηκε ανθρώπινος ιστός πλακούντα, ενώ η απάλειψη του πρωτογενούς αντισώματος χρησιμοποιήθηκε ως αρνητικός μάρτυρας.

Ανάλυση εικόνας
Η ψηφιακή ανάλυση εικόνας έλαβε χώρα για το 100% των δειγμάτων μέσα σε 4 εβδομάδες από την ανοσοϊστοχημεία με το αντίσωμα του TRa. Για την ανάλυση εικόνας χρησιμοποιήθηκε το open source software Fiji/Image J σε υπολογιστή Apple Macbook. Για την ανάπτυξη της τεχνικής ανάλυσης της εικόνας από την ψηφιοποίηση των τομών, βασιστήκαμε στη δημοσίευση των Nguyen et al που περιγράφαν αναλυτικά τη μέθοδο για την ανοσοϊστοχημεία σε οιστρογονικούς υποδοχείς στον καρκίνο του μαστού (280). Για να υπερπηδήσουμε το εμπόδιο της πιθανής ετερογένειας στις εντάσεις από διαφορετικές περιοχές του ίδιου slide, υπολογίσαμε τη μέση αμοιβαία ένταση (mean reciprocal intensity, mean RI), σε μία συγκεκριμένη περιοχή ενδιαφέροντος εντός της τομής (region of interest, ROI). Κάθε slide φωτογραφήθηκε με 40x οπτικό zoom με την ψηφιακή φωτογραφική Nikon DS-2 MW (Nikon, Tokyo, Japan), προσδεμένη σε ένα μικροσκόπιο φωτεινού πεδίου (Nikon Eclipse 80i; Nikon, Tokyo, Japan). Όλες οι εικόνες αποθηκεύτηκαν σε μορφή JPEG. Μια ομοιογενής σε
μέγεθος περιοχή ενδιαφέροντος τοποθετούνταν πάνω από τους πυρήνες χρησιμοποιώντας το εργαλείο σχεδίασης του προγράμματος και στη συνέχεια παράγαμε, για κάθε slide, μια τυπική εικόνα RGB (red-green-blue), μέσω της τεχνικής περιελιγμού DAB (DAB-specific colour deconvolution). Η μέση ένταση χρώσης υπολογίστηκε μέσω της λειτουργίας “Measure” στο πρόγραμμα, κάτω από τη μπάρα εργαλείων “Analyze”. Δεδομένου ότι η μέγιστη τιμή έντασης χρώσης μιας εικόνας RGB είναι 250, αφαιρέσαμε τη μέση τιμή έντασης κάθε ROI ανά slide από το 250, παράγοντας έτσι μια τιμή αμοιβαίας έντασης για κάθε slide, που ήταν ευθέως ανάλογη με την ένταση του χρωμογενούς στην τομή.

Στατιστική ανάλυση

Η δοκιμασία Shapiro-Wilk εφαρμόστηκε ώστε να εξετάσουμε αν τα δεδομένα είχαν ομαλή (Gauss) κατανομή. Το t-test χρησιμοποιήθηκε για τη σύγκριση 2 ομάδων δεδομένων με ομαλή κατανομή. Η δοκιμασία Pearson correlation coefficient εφαρμόστηκε για να συγκρίνει 2 ποσοτικές μεταβλητές. Η δοκιμασία Pearson correlation coefficient εφαρμόστηκε για να συγκρίνει 2 ποσοτικές μεταβλητές. Η δοκιμασία point biserial correlation coefficient συνέκρινε μεταξύ μιας ποσοτικής και μιας διχότομης μεταβλητής. Τέλος, η ανάλυση ANOVA χρησιμοποιήθηκε για να συγκρίνει πολλαπλές ομάδες δεδομένων με ποσοτικές μεταβλητές. Οι διαφορές θεωρήθηκαν στατιστικά σημαντικές αν p<0.05 για όλες τις δοκιμασίες.
Αποτελέσματα

Σαράντα μία [41] γυναίκες (82 δείγματα ιστού, 41 από κακοήθεια και 41 από γειτονικό φυσιολογικό μαζικό αδένα), με μέση ηλικία 50 ετών (εύρος 30-89) συμμετείχαν στη μελέτη. Το μέσο μέγεθος του πρωτοπαθούς όγκου του μαστού ήταν 26.8 χιλιοστά (εύρος 4-110). Δεκαπέντε [15/41] ασθενείς (36.58%) είχαν θετικούς μασχαλιαίους λεμφαδένες ενώ οι υπόλοιπες 26 ασθενείς (63.42%) ήταν αρνητικές για λεμφαδενική διήθηση. Είκοσι [20] ασθενείς (48.78%) υπεβλήθησαν σε ογκεκτομή και 21 σε μαστεκτομή (51.21%). Ο μέσος αριθμός παρασκευασθέντων λεμφαδένων ήταν 16 (εύρος 2-37). Ο μέσος αριθμός θετικών λεμφαδένων ήταν 1.53 (εύρος 0-17). Δεκατρείς [13] ασθενείς παρουσίασαν λεμφαδενική διήθηση (31.7%) και 28 όχι (68.3%). Όσον αφορά στο βαθμό διαφοροποίησης των καρκίνων, 22 γυναίκες είχαν grade I/II καρκίνου (53.65%), ενώ οι υπόλοιπες 19 ασθενείς είχαν grade III καρκίνου (46.34%). Δεκαοκτώ [18] ασθενείς ήταν ER+/Her-2- (43.9%), 5 ασθενείς ήταν ER+/Her-2+ (12.1%), 12 ασθενείς ήταν ER-/Her-2- (29.2%) και τέλος 6 ασθενείς ήταν ER-/Her-2+ (14.6%).

Ο TRa βρέθηκε να εκφράζεται στους πυρήνες των φυσιολογικών και κακοήθων κυττάρων του μαζικού αδένα, όμως η έκφρασή του ήταν στατιστικά σημαντικά ελαττωμένη στον καρκίνο σε σύγκριση με τον παρακείμενο φυσιολογικό μαζικό αδένα (καρκίνος μαστού, Mean RI 81.7, SD 16.9, 95% CI 75.2-88.2, φυσιολογικό παρέγχυμα Mean RI 94.1, SD 24.2, 95% CI 87.6-100.6), p=0.008529.

Η έκφραση του TRa εμφάνισε στατιστικά σημαντική αρνητική συσχέτιση με το μέγεθος του πρωτοπαθούς όγκου του μαστού (r=-0.3182, p=0.0426). Η έκφραση του υποδοχέα ήταν στατιστικά σημαντικά υψηλότερη στους όγκους με λεμφαγγειακή διήθηση, σε σύγκριση με τους όγκους χωρίς λεμφαγγειακή διήθηση (LVI+Mean RI 90.46 vs. LVI-77.64, p=0.0222).
Οι καρκίνοι Grade III παρουσίάσαν στατιστικά σημαντικά ελαττωμένη έκφραση TRa σε σύγκριση με τους Grade I/II καρκίνους μαστού (Rpb= -0.69, Mean RI 69.3 vs. 92.4, p<0.0001).

Η έκφραση του υποδοχέα εμφάνισε ασθενή αρνητική συσχέτιση με την ηλικία των ασθενών, χωρίς όμως να είναι στατιστικά σημαντική (r=0.230, p=0.1479). Δεν παρατηρήθηκε στατιστικά σημαντική διαφορά στην έκφραση του TRa ανάμεσα στους ασθενείς με θετικούς και αρνητικούς λεμφαδένες (p=0.0684), ή σε σχέση με τον αριθμό των διηθημένων λεμφαδένων. Τέλος, δεν παρατηρήθηκε στατιστικά σημαντική διαφορά στην έκφραση του υποδοχέα μεταξύ των ER+ και ER- καρκίνων (p=0.104), ή μεταξύ των Her-2+ και Her-2- καρκίνων (p=0.113). Τέλος, η ανάλυση της έκφρασης του υποδοχέα ανάμεσα στους μοριακούς υπότυπους στην ομάδα (ER+/Her-2+ vs. ER+/Her-2+ vs. ER-/Her-2- vs. ER-/Her-2+), δεν ανέδειξε στατιστικά σημαντική διαφορά.
Διηθητικό πορογενές καρκίνωμα, Grade II (A) και Grade III (B). Τα βέλη δείχνουν έντονη έκφραση (A) και μέτρια προς χαμηλή έκφραση (B) του TRa. Χρώση διαμινοβενζιδίνης, μεγέθος x400.
Συζήτηση των αποτελεσμάτων

Η παρούσα μελέτη είναι η πρώτη στη βιβλιογραφία που μελετά την κυτταρική έκφραση του υποδοχέα της θυρεοειδικής ορμόνης TRα σε ομοιογενή ομάδα ασθενών με διηθητικό πορογενή καρκίνο του μαστού. Είναι επίσης η πρώτη μελέτη που διερεύνα τη συσχέτιση της έκφρασης του υποδοχέα σε ένα ομοιογενή δείγμα με κοινή ιστολογική διάγνωση και σε απουσία ενεργής θυρεοειδοπάθειας.

Στη μελέτη μας, η έκφραση του TRα ήταν παρουσία στον πυρήνα τού φυσιολογικού, όσο και του καρκινικού μαζικού αδένα, η δε έκφραση παρουσίαστηκε σημαντικά ελαττωμένη στον καρκινικό ιστό. Επιπλέον, μεγαλότεροι και χαμηλότεροι διαφοροποιήσεις καρκίνων έκφρασαν να εκφράζουν λιγότερο TRα στον πυρήνα, ενώ παραδόξως, οι ασθενείς με λεμφαγγειακή διήθηση εκφράζουν λιγότερο TRα στον πυρήνα. Διαφαίνεται λοιπόν από τα αποτελέσματα ότι, με εξαίρεση τη λεμφαγγειακή διήθηση, η έκφραση του υποδοχέα από τις ασθενείς με έκφραση λεμφαγγειακής διήθησης. Διαφαίνεται σημαντική μειωμένη στον καρκινικό ιστό προς το grade, δεν καταγράφηκε συσχέτιση της έκφρασης του υποδοχέα με την ηλικία των ασθενών, ή με το ορμονικό προφίλ και το λεμφαδενικό status.

Οι Guigon et al. διερεύνησαν το ρόλο των μεταλλάξεων στον TRβ στο δυναμικό ανάπτυξης όγκων στο μαστό. Προς την κατεύθυνση αυτή, ανέπτυξαν knockout ποντίκια με μετάλαξη στο γονίδιο THRβ (THRBpv mice)(270). Παρόλο που στα ενήλικα θηλυκά ποντίκια με μηδενικές κυήσεις, ένα μόνον αλλήλιο του THRβ δεν οδήγησε σε ανάπτυξη όγκων/υπερπλαστικώς μεταβολή στο μαστό, εντούτοις στα ποντίκια με 2 μεταλλαγμένα αλλήλια του γονίδιου, 36% των περιπτώσεων ανέπτυξαν υπερπλαστικές αλλαγές στο μαζικό αδένα. Όταν τα δύο αλλήλια συνυφαστήκαν σε
μοντέλα ποντικιών με υψηλό δυναμικό καρκίνου μαστού (Pten+/-), η συμπαρουσία των μεταλλαγμένων αλληλίων του THRBprn οδήγησε σε αύξηση κατά 60% της υπερπλασίας στο μαστό (270). Οι Ditsch et al μελέτησαν την έκφραση συνδυασμένων αντισωμάτων TRa1/a2, συνδυασμένων TRβ1/β2 αλλά και την έκφραση του καθενός από τα 4 αντισώματα ξεχωριστά σε 82 ασθενείς με διάγνωση σποραδικού καρκίνου του μαστού. Οι ασθενείς δεν ήταν ομοιογενείς ως προς τη θυρεοειδοπάθεια (το θυρεοειδικό προφίλ τους ήταν άγνωστο στη μελέτη). Επίσης, οι ιστολογικοί υπότυποι των καρκίνων του μαστού εμφάνιζαν ποικιλία στο δείγμα. Ως προς τα αποτελέσματα, και ο TRa αλλά και ο TRβ εκφράστηκαν στον πυρήνα των καρκινικών κυττάρων. Οι ασθενείς με χαμηλή έκφραση του TRα2 επέδειξαν χειρότερη επιβίωση (271). Οι Gu et al μελέτησαν την έκφραση του TRβ σε κυτταρικές σειρές τριπλού αρνητικού καρκίνου μαστού. Οι τριπλοί αρνητικοί καρκίνοι τείνουν να έχουν χειρότερη πρόγνωση και πιο προχωρημένα κυτταρικά (grade) και κλινικά (stage) στάδια. Οι ερευνητές προκάλεσαν knockdown του TRβ στις κυτταρικές σειρές και παρατήρησαν ελαττωμένη ανταπόκριση στη δοξορουβίνη και τη δοξεταξέλη, κλασικά χημειοθεραπευτικά φάρμακα στο TNBC. Όταν στις knockdown σειρές εφαρμόστηκε αγωγιστής του TRβ, η ευαισθησία στη χημειοθεραπεία αποκαταστάθηκε(272). Οι Conde et al έδειξαν ότι υπάρχει στατιστικά σημαντική συσχέτιση μεταξύ της υψηλής έκφρασης του TRa και της ελεύθερης νόσου επιβίωσης σε 52 γυναίκες με διηθητικό καρκίνο του μαστού, αλλά οι 2 διαφορετικές υπομορφές του υποδοχέα δεν μελετήθηκαν σε αυτό το πρωτόκολλο(275). Στη μελέτη των Jezrak et al, οι ασθενείς με χαμηλή έκφραση TRa2 είχαν χειρότερη 5ετή επιβίωση (συμφωνώντας με τη μελέτη του Ditsch) αλλά ακόμη και με υψηλότερη έκφραση του υποδοχέα(276). Οι Alyusuf et al μελέτησαν την έκφραση του TRa1 στο κυτταρόπλασμα και τον πυρήνα 146 μικτών περιπτώσεων καλοήθους και κακοήθους παθολογίας του μαζικού αδένα - καρκίνος, ινοαδενώματα, μαζικός
αδένας με μεταβολές από το θηλασμό και φυσιολογικός μαστός. Συνδυασμένη έκφραση του υποδοχέα βρέθηκε σε 47.6%, 63.4%, 64.3%, και 58.3% στις ομάδες με καλοήθη παθολογία, ινοκυστική κατάσταση, ινοαδενώματα και μεταβολές από το θηλασμό αντίστοιχα, σε αντίθεση με μόνο 17.4% έκφραση στις περιπτώσεις καρκίνου του μαστού(277).

Συνολικά λοιπόν, τα αποτελέσματα της μελέτης μας εν πολλοίς επαληθεύουν την σχετική βιβλιογραφία ως προς το γεγονός ότι ο υποδοχέας TRa εμφανίζει μερική απώλεια στην πυρηνική έκφραση κατά τη μετάβαση από το φυσιολογικό μαζικό επιθήλιο στον καρκίνο του μαστού. Επίσης, όπως ήδη διαφαινόταν από τη σχετική βιβλιογραφία, όγκοι με χειρότερη πρόγνωση ως το προς μέγεθος και το grade εκφράζουν στατιστικά σημαντικά λιγότερο TRa από μικρότερους και πρωιμότερους σε grade καρκίνους. Από την άλλη, δεν βρέθηκε συσχέτιση της έκφρασης του υποδοχέα με το ορμονικό προφίλ ή τη λεμφαγγειακή διήθηση των όγκων. Τέλος, δεν παρουσιάζουμε ευρήματα σε σχέση με την επιβίωση ή την υποτροπή στις ασθενείς αυτές, εργασία που θα αποτελέσει αντικείμενο σε μερικά χρόνια, έχοντας στη διάθεσή μας επαρκές follow-up. Παρόλο που δεν έχει αποκρυσταλλωθεί ακόμα, ο ρόλος του θυρεοειδούς αδένα μέσω της δράσης του επί των υποδοχών της θυρεορμόνης, φαίνεται να διαδραματίζει ρόλο κατά την καρκινογένεση του μαστού, ακόμα και επί απουσίας κλινικής θυρεοειδοπάθειας.

of the breast according to HER2 amplification status and molecular subtype.

236. Zhong B, Wang Y, Zhang G, Wang Z. Environmental Iodine Content, Female Sex and Age Are Associated with New-Onset Amiodarone-Induced...

