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Abstract: The main subject of this graduate thesis is a study of Hardy
and Rellich-type inequalities on Riemannian manifolds. The first section
serves as a brief introduction to the theory of Riemannian manifolds. The
second section offers some background material on Hardy and Rellich inequal-
ities in the much-studied context of Euclidean spaces, aiming to prepare the
reader for the third section, which deals with such inequalities in the con-
text of Riemannian manifolds. Finally, Section 4 presents some semi-original
results concerning vector fields.
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1 Introduction to Riemannian Geometry

This first section aims to be a brief introduction to the theory of smooth
manifolds and Riemannian geometry. The material presented here is stan-
dard knowledge covered in many textbooks, so no references will be given
throughout. However, it should be noted that most of it has been adapted
from [Lee1], [Lee2] and [Burs] (see references).

1.1 Topological Manifolds

The primary objective of this section is to construct generic spaces on
which one can extend the concepts and methods of infinitesimal calculus. The
cornerstone of calculus is the derivative, and a quick review of its definition
reveals that the only thing that seems to be required to define derivatives is
that the domain (and co-domain) has a locally linear structure, preferably
over some field which is totally ordered (if we hope to have some sense of
direction on the space) and complete (so that limits are well-defined). The
only such field, up to isomorphism, is of course R, and if we restrict our
attention to the finite dimensional case, the choice of linear space is naturally
Rn. In addition, before we even think about differentiability, we need to
establish a notion of continuity. The weakest structure one can establish
on sets that allows us to address questions of continuity and locality is a
topology.

Definition 1. Let S be a set. A topology O on S is a collection of subsets
of S, such that:
(1) ∅, S ∈ O,
(2) if U, V ∈ O, then U ∩ V ∈ O,
(3) if Ui ∈ O, i ∈ I, then

⋃
i∈I Ui ∈ O, for any index set I.

The sets that belong to the topology are called open sets. A topology
is by definition closed under unions and finite intersections. Once we have
defined a topology O on a set S, the pair (S,O) is called a topological space.
Sometimes we may refer to S as the topological space when no confusion
arises or when the topology need not be specified. As already mentioned,
this is all that we need in order to define continuity.

Definition 2. Let (S1,O1), (S2,O2) be topological spaces. A map φ : S1 −→
S2 is called continuous (with respect to O1 and O2), if φ−1(O2) ⊂ O1.
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This is, in fact, one of several equivalent definitions for continuity. For
our purposes, it is the most convenient. By φ−1 we mean the preimage of φ
and not the inverse (φ need not even be invertible). The following is a basic
and useful result that concerns the composition of continuous maps.

Theorem 1. If φ : S1 −→ S2 and ψ : S2 −→ S3 are continuous maps, so is
their composition ψ ◦ φ : S1 −→ S3.

Given a topological space (S,O), one can construct a special topology
on any subset G of S, inherited directly from O. It is easy to check that
OG = {U ∩ G : U ∈ O} is indeed a topology, and it is called the subset
topology inherited from S. It is of special importance because of the following
result.

Theorem 2. Let φ : S1 −→ S2 be a continuous map and G ⊂ S1. If we
equip G with the subset topology inherited from S1, then the restriction
φ|G : G −→ S2 remains continuous.

The structure-preserving maps of topological spaces are the homeomor-
phisms. They are defined as follows.

Definition 3. Let (S1,O1), (S2,O2) be topological spaces. A map φ : S1 −→
S2 is called a homeomorphism if it is bijective and both φ and φ−1 are con-
tinuous.

From a more intuitive perspective, a homeomorphism is a map that con-
tinuously distorts a topological space (no cutting or gluing allowed). They
are of central importance in topology, since they preserve all topological prop-
erties, such as connectedness, compactness, etc. They actually preserve even
the topology itself, in the sense that φ(O1) = O2 and φ−1(O2) = O1, which
is why they are also called topological isomorphisms.

We are now fully prepared to start dealing with topological manifolds,
that is, locally Euclidean topological spaces.

Definition 4. A topological space (M,O) is called a topological manifold of
dimension n, if for each point p ∈ M , there is a neighbourhood U ∈ O of p
and a homeomorphism x : U −→ x(U) ⊂ Rn.

In other words, a topological manifold ”looks like” Euclidean space around
each of its points. Every pair (U, x) as above is called a chart and, in par-
ticular, the map x : U −→ x(U) is called the chart map. If we break x down
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to its components x = (x1, ..., xn), xi is called the i-th coordinate map. Any
collection of charts A = {(Ui, xi)} such that

⋃
i Ui = M (i.e the collection

covers the manifold) is called an atlas.
Rn has a lot of good topological properties, such as being Hausdorf and

second countable. ”Hausdorff” means that each point is considered topologi-
cally distinct from the others, in the sense that any two different points have
disjoint open neighbourhoods. ”Second countable” means that the topol-
ogy can be produced from countably many sets under unions. One could
naively assume that these properties are preserved on topological manifolds
through the local homeomorphisms with open subsets of Rn. Unfortunately,
the homeomorphisms are only local, which means we can only draw weaker
conclusions for topological manifolds (they only need to be T1 and first count-
able). However, all the non-pathological cases that appear in practice are
still Hausdorf and second countable, and every manifold from now on will be
considered as such. From now on, we will also assume connectedness.

The ways that one can can construct charts on topological manifolds is,
of course, all but unique. This means some charts may overlap. In order to
switch between different charts, or, in other words, to change coordinates, we
use the chart transition maps, which we define as follows.

Definition 5. Let M be a topological manifold and (U1, x1), (U2, x2) be two
charts on M with U1∩U2 6= ∅. The maps x2◦x−1

1 : x1(U1∩U2) −→ x2(U1∩U2)
and x1 ◦ x−1

2 : x2(U1 ∩ U2) −→ x1(U1 ∩ U2) are called the transition maps of
(U1, x1) and (U2, x2).

Since the chart maps are by assumption homeomorphisms, the transition
maps are always continuous.

1.2 Differentiable Manifolds

Let M be a topological manifold and γ : I −→M be a path on M (where
I is an open interval in R). Assume that in some chart region U1 with
corresponding chart map x1, the image of the path x1 ◦ γ is continuous. If
(U2, x2) is any other chart that overlaps with the above chart, the image
x2 ◦ γ = (x2 ◦ x−1

1 ) ◦ (x1 ◦ γ) is then guaranteed to be continuous in the
interval γ−1(U1 ∩ U2), because transition maps are always continuous and
the composition of continuous maps is continuous.

However, if x1 ◦ γ is differentiable, there is absolutely no guarantee that
x2 ◦ γ in the overlapping region will be, unless of course we require that the
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transition map be differentiable. This motivates the following definitions.

Definition 6. Two charts (U1, x1) and (U2, x2) are called Ck-compatible if
the corresponding transition maps x2 ◦x−1

1 and x1 ◦x−1
2 are Ck-differentiable

functions in their respective domains of definition.

Definition 7. An atlas A is Ck-compatible if its charts are pairwise Ck-
compatible.

Definition 8. A topological manifold equipped with a Ck-compatible atlas,
(M,O,A), is called a Ck-manifold.

Again, when no confusion arises or when the topology and the Ck-compatible
atlas need not be specified, we may simply refer to M as the Ck-manifold.

As already mentioned, one can choose charts in many ways, and thus
one can obtain many atlases for the same manifold. The same is in general
true, if we require that the atlases be Ck-compatible. We can, however,
construct Ck-compatible atlases that are maximal with respect to inclusion,
that is, they contain all the possible charts that they can contain, under
the restriction that they remain Ck-compatible. Such an atlas is called a
maximal Ck-compatible atlas. The following theorem, due to Whitney, will
greatly simplify our treatment of differentiable manifolds.

Theorem 3. Let k ≥ 1 be an integer. Any maximal Ck-compatible atlas of
a topological manifold contains a C∞-compatible subatlas.

This means that, without loss of generality, we can from now on assume
that all differentiable manifolds are C∞-manifolds. Such manifolds are also
called smooth.

So far we have only defined continuity of maps between manifolds, which
only depends on their topology. To define differentiability we need to use all
the extra structure we have just introduced, essentially reducing the defini-
tion to differentiability of real multivariable functions.

Definition 9. Let (M1,O1,A1) and (M2,O2,A2) be smooth manifolds. A
continuous map φ : M1 −→M2 is called Ck-differentiable if for all (U1, x1) ∈
A1 and (U2, x2) ∈ A2, the map x2 ◦ φ ◦ x−1

1 : x1(U1 ∩ φ−1(U2)) −→ x2(U2 ∩
φ(U1)) is a Ck-differentiable function.

The smoothness of the transition maps ensures that this is indeed a good
definition. Moreover, if someone wishes to extend either of the smooth atlases
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(assuming they are not maximal), they wouldn’t ruin the differentiability of
the map, because all new charts would be by assumption C∞-compatible
with the existing ones.

Similar to the homeomorphisms, the structure-preserving maps of smooth
manifolds are the diffeomorphisms.

Definition 10. Let M1 and M2 be smooth manifolds. A map φ : M1 −→M2

that is bijective, smooth and has a smooth inverse is called a diffeomorphism.

Intuitively, a diffeomorphism is, again, a continuous distortion, but this
time the distortion is required to be smooth as well, in the sense we just
defined.

1.3 Multilinear Algebra

So far we have managed to equip manifolds with a differentiable structure,
which allows the definition of differentiable maps. The next natural step is
to define derivatives of differentiable maps, as well as a notion of a ”tangent”
vector space at each point of the manifold, as was the case in multi-variable
calculus and elementary differential geometry. However, this is not possible
unless we first study vector spaces in the more abstract context.

First we will quickly review some basic definitions. A vector space over
R (or any other field) is a triple (V,+, ·), where V is a set, + : V × V −→ V
is a binary operation that takes two elements of V to another element of V ,
and · : R × V −→ V is a binary operation that takes a real number and an
element of V to another element of V , such that the usual axioms of addition
and scalar multiplication are satisfied. The elements of a vector space are
called vectors.

A map φ : V1 −→ V2 between two vector spaces V1 and V2 is called linear
if

φ(α1v1 + α2v2) = α1φ(v1) + α2φ(v2)

for every α1, α2 ∈ R and v1, v2 ∈ V . Linear maps are extremely important
in linear algebra. Moreover, it is easy to show that the composition of two
linear maps is again linear. A linear map is also called a homomorphism.

Next, we present some more advanced concepts of linear algebra, which
are necessary for our treatment of smooth manifolds. We denote Hom(V1, V2)
the set of all linear maps from V1 to V2. Then we have the following important
(yet easy) result.
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Theorem 4. Let V1, V2 be vector spaces. Then Hom(V1, V2), equipped with
the vector operations of V2, is also a vector space.

A special case of the above is the dual space V ∗ of a vector space V , defined
to be the set of all linear functionals of V . In other words, V ∗ = Hom(V,R).
In view of the previous theorem, V ∗ equipped with the real addition and
multiplication is a vector space. If any element v ∈ V is called a vector, any
element φ ∈ V ∗ is called a covector.

By using a vector space and its dual, one can define more general linear
maps, called tensors.

Definition 11. Let V be a vector space. An (r, s) − tensor T over V is a
multilinear map T : V ∗r × V s −→ R.

Multilinear of course means linear in each of its arguments. So, in other
words, a tensor is a multilinear map that takes r covectors and s vectors to
a real number.

One of the most useful properties of vector spaces is that their elements
can be expanded linearly in terms of a basis.

Definition 12. A (Hamel) basis of a vector space V is a subset B ⊂ V such
that for each v ∈ V , there exists a unique finite subset {v1, ..., vn} ⊂ B and
unique real numbers α1, ..., αn ∈ R, such that v = α1v1 + ...+ αnvn.

If we accept the axiom of choice, it follows by Zorn’s Lemma, that, in fact,
every vector space has a basis. If the basis itself has finitely many elements,
say n-many, we say that the vector space has dimension n (we write this as
dimV = n). The real numbers α1, ..., αn ∈ R are then called the components
of v with respect to the specific given basis.

Now, it is true that, given a basis for V , one can also construct a special
basis for V ∗.

Theorem 5. Given a basis {e1, ..., en} for a finite-dimensional vector space
V , there exists a unique basis {ε1, ..., εn} for V ∗, such that εi(ej) = δij.

This is called the dual basis of V ∗ with respect to the basis {e1, ..., en}
of V . Just as we can define the components of vectors and covectors with
respect to a basis and its dual basis, we can also define the components of a
tensor.
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Definition 13. Let T be an (r, s)-tensor over an n-dimensional vector space
V , with a chosen basis {e1, ..., en} and dual basis {ε1, ..., εn}. The components
of T are the (r + s)n real numbers T i1...irj1...js

= T (εi1 , ..., εir , ej1 , ..., ejs), where
i1, ..., ir, j1, ..., js ∈ {1, ..., n}.

Because of linearity, we can reconstruct the whole tensor by knowing only
the components.

1.4 The Tangent Space

Manifolds in general do not have a vector space structure. However, hav-
ing some kind of (at least local) vector space structure on the manifold is
necessary if we wish to introduce a sense of direction while moving on it, let
alone derivatives. In the simple case where the manifold is Rn, the direction
of motion along a continuously differentiable curve γ : I −→ Rn at a point
p = γ(t) is given by the velocity vector γ′(t). A straightforward attempt to
generalise this to arbitrary smooth manifolds fails immediately in the ab-
sence of a vector space structure, because the above derivative cannot be
defined. One possible solution would be to define the velocity in terms of a
chart (U, x) as (x ◦ γ)′(t), but this is not a good definition since it depends
on the chart, and we could have two or more velocity vectors in transition
areas. The way to get around this difficulty, on a first glance, may not seem
very intuitive, but in fact it is more natural than introducing coordinates.

Definition 14. Let M be a smooth manifold and γ : I −→ M an at least
C1 injective curve. The velocity of γ at the point γ(t) is the linear functional
γ′(t) : C∞(M) −→ R, such that γ′(t)[f ] = (f ◦ γ)′(t) for each f ∈ C∞(M).

While this definition may seem complicated, it actually matches our per-
ception of velocity better than the one based on coordinates. Before we are
even taught about coordinates, we perceive our ”velocity”, that is, ”how fast
and in which direction we are moving”, as the rate of change of some sur-
rounding parameters along our trajectory. Which specific parameters is of
no particular importance, and this is best left unspecified in the definition,
and in this one, it actually is. So instead of thinking about velocity as ”the
rate of change of coordinates along a curve”, we simply think of it as ”the
rate of change along a curve”, without specifying a quantity of reference.

With the above in mind, we proceed in defining the tangent space.
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Definition 15. Let M be a smooth manifold, and let p ∈ M . The tangent
space of M at p is the set of all velocities γ′(0) of any C∞ curve γ : (−ε, ε) −→
M , ε > 0, such that γ(0) = p.

Apart from being linear, each velocity vector γ′(0) satisfies the Leibniz
rule

γ′(0)[fg] = γ′(0)[f ]g(p) + γ′(0)[g]f(p).

The opposite is also true: any linear functional ξp : C∞(M) −→ R satisfying
the Leibniz rule

ξp[fg] = ξp[f ]g(p) + ξp[g]f(p)

can be written as the velocity vector of some curve passing through p at
parameter value 0. This allows us to restate the definition of the tangent
space from a more algebraic perspective.

Definition 16. Let M be a smooth manifold, and let p ∈ M . The tangent
space TpM of M at p is the set of all linear functionals ξp : C∞(M) −→ R
satisfying the Leibniz rule ξp[fg] = ξp[f ]g(p) + ξp[g]f(p) for every f, g ∈
C∞(M).

The two definitions are, of course, equivalent. The first one is more
geometric while the second one is more algebraic. Either of them can be more
useful than the other depending on the context in which we use them. In
either case, the following is true (though proving it for the algebraic definition
is much easier).

Theorem 6. TpM equipped with pointwise real addition and multiplication
is a vector space.

So we have managed to introduce the much wanted vector space structure
to each point of the manifold. Unknowingly, we have actually accomplished a
lot more. Each vector in this new structure is actually a directional derivative.
When generalising from Rn to arbitrary smooth manifolds, vectors survive
as the directional derivatives that they induce.

This becomes clearer once we represent a tangent vector in terms of a
specific chart. Let γ′(0) ∈ TpM be a tangent vector, and (U, x) be a chart
such that p = γ(0) ∈ U . Then, for each f ∈ C∞(M),

γ′(0)[f ] = (f ◦ γ)′(0) = (f ◦ x−1 ◦ x ◦ γ)′(0) =
∂(f ◦ x−1)

∂xi
(x(p)) · (xi ◦ γ)′(0).
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In the above, we have used the Einstein summation convention, where re-
peated up and down indices are summed over all possible values. Now,
(xi ◦ γ)′(0) is nothing but the derivative of the i -th coordinate map along

the curve, which we shall denote γ̇ix(0). Also, ∂(f◦x−1)
∂xi

(x(p)) is the i -th par-
tial derivative of f with respect to the chart map x, which we shall denote
(∂f/∂xi)p. Then we can represent the tangent vector as

γ′(0) = γ̇ix(0)
( ∂

∂xi

)
p
.

Thus, each tangent vector ξp ∈ TpM can be represented in terms of a
local chart (U, x) as

ξp = ξip,x

( ∂

∂xi

)
p
,

which looks and behaves exactly like a directional derivative. Moreover,
it is clear that {(∂/∂x1)p, ..., (∂/∂x

n)p} constitutes a basis for TpM , called
the chart induced basis of TpM with respect to the chart (U, x). It follows
immediately that dim TpM = dim M = n. Each ξip,x is then called the i-
th component of ξp with respect to the chart induced basis. Whenever no
confusion arrises or whenever we need not refer to any specific chart, we will
use the abbreviation (∂i)p for the i-th basis vector.

Of course, each chart induces a different basis, so in cases we have over-
lapping charts, we need to know how vector components and bases transform.
Let (U, x) and (V, y) be two overlapping charts, p ∈ U ∩ V and ξp ∈ TpM .
For the basis vectors, straightforward application of the chain rule yields( ∂

∂xi

)
p

=
(∂yj
∂xi

)
p

( ∂

∂yj

)
p
.

If we choose to represent the vector as ξp = ξip,x · (∂/∂xi)p = ξip,y · (∂/∂yi)p
in the two bases respectively, it follows immediately that the components
transform as

ξip,x =
(∂xi
∂yj

)
p
ξjp,y.

Next, it is useful to consider the dual of the tangent space, which we shall
call cotangent space.

Definition 17. The vector space T ∗pM = Hom(TpM,R) is called the cotan-
gent space of M at p. Its elements are then called cotangent vectors.
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A special case of of cotangent vector is the derivative of a real valued
function on a smooth manifold.

Definition 18. Let φ ∈ C∞(M). The derivative of φ at p is the cotangent
vector (dφ)p : TpM −→ R, such that (dφ)p(ξp) = ξp[φ] for every tangent
vector ξp ∈ TpM .

Since T ∗pM is a vector space, it is natural to equip it with some basis
that facilitates calculations in terms of a chart, just as we did for the tangent
space. The most useful choice is the dual basis with respect to the chart
induced basis of TpM . It turns out that this basis is given in terms of the
derivatives of the coordinate maps.

Theorem 7. Let M be a smooth manifold and (U, x) be a chart. Then
{(dx1)p, ..., (dx

n)p} is the dual basis of T ∗pM with respect to the chart induced
basis {(∂/∂x1)p, ..., (∂/∂x

n)p} of TpM .

The next step is to find how cotangent vector components transform under
change of chart. Again, straightforward calculation yields that if ωp ∈ T ∗pM ,
(U, x), (V, y) are overlapping charts with p ∈ U ∩ V and ωp = ωp,x,i · (dxi)p =
ωp,y,i · (dyi)p, then

ωp,x,i =
(∂yj
∂xi

)
p
ωp,y,j,

and the basis elements transform accordingly.

1.5 The Tangent Bundle

So now we have defined vectors at each point of a smooth manifold. Next,
we could define vector fields by just assigning to each point of the manifold a
tangent vector. While this isn’t wrong, such a definition would lack the ability
to define smoothness of a vector field, let alone vector field differentiation,
which is vital for future progress. The only way to get around this is to
introduce a smooth bundle structure that will smoothly attach tangent spaces
to their respective points.

Definition 19. A smooth bundle is a triple (N,M, π), where N is a smooth
manifold called the total space, M is another smooth manifold called the base
space and π : N −→M is a smooth surjective map called the projection map.
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Definition 20. Let (N,M, π) be a smooth bundle. The fibre of a point
p ∈M is the preimage π−1{p}.

Definition 21. Let (N,M, π) be a smooth bundle. A section is a map
σ : M −→ N such that π ◦ σ = idM (in other words, σ(p) lies in the fibre of
p).

We next consider the disjoint union of all tangent spaces of a smooth
n-dimensional manifold (M,O,A),

TM =
⊔
p∈M

TpM =
⋃
p∈M

{p} × TpM.

We have chosen the disjoint union because we want to keep track of where
each tangent vector comes from, for reasons that will become clear in an
instant. With this definition, each element of TM is a pair ξ = (p, ξp), where
p ∈M and ξp ∈ TpM .

Defining smooth vector fields requires that we find a way to smoothly
project TM onto M . To this end, we define the natural projection π :
TM −→ M , (p, ξp) 7−→ p. We equip TM with the topology O′ = π−1(O)
(which is the smallest topology such that π is continuous), and we introduce
the smooth atlas A′ = {(TU, χx) : (U, x) ∈ A}, where χx : TU −→ R2n is
the chart map such that

χx((p, ξp)) = (x(p), (dx)p(ξp)),

where (dx)p(ξp) = ((dx1)p(ξp), ..., (dx
n)p(ξp)). It then follows that (TM,O′,A′)

is a smooth manifold, and one can easily show that in this construction, π is
a smooth surjective map. We sum up all the above in the following.

Theorem 8. Let (M,O,A) be a smooth manifold and (TM,O′,A′) as above.
If π : TM −→ M is the natural projection, then (TM,M, π) is a smooth
bundle (called the tangent bundle).

Sometimes, even though erroneously, we may refer to the manifold TM
itself as the ”tangent bundle”, assuming all the above structure, when no
confusion arises. Likewise, we may refer to the elements of TM as ”tangent
vectors”, and may even let them act on functions, even though they are not
functionals, by taking the action of the vector part of the element, of course.
These are common abuses of notation that are conventionally used in pretty
much every textbook on the subject.
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Finally, we consider the cotangent bundle of a smooth manifold M ,

T ∗M =
⊔
p∈M

T ∗pM =
⋃
p∈M

{p} × T ∗pM.

As with the tangent bundle, we can equip T ∗M with a natural projection
π on M , a topology and a smooth atlas such that (T ∗M,M, π) is again a
smooth bundle. The procedure is similar to the one above, so it is omitted.

1.6 Fields

With the tangent bundle structure in mind, we are now ready to define
(smooth) vector fields on a smooth manifold.

Definition 22. A vector field X on a smooth manifold M is a smooth section
X : M −→ TM .

In other words, a vector field is a smooth map that takes a point of the
manifold to a tangent element of the tangent space of the same point, that
is, X(p) ∈ {p} × TpM .

The set Γ(TM) of all vector fields on M is called the vector field module
of M . Of course, Γ(TM) is not called a ”module” for nothing. It turns out
that C∞(M), equipped with point-wise real addition and multiplication, is
in fact a ring. Then, the following important result justifies the name.

Theorem 9. Let M be a smooth manifold. Then Γ(TM) is a C∞(M)-
module.

A module is, roughly speaking, the equivalent of a vector space over a
ring (instead of a field), excluding the axioms that don’t make sense for rings,
of course. It is a weaker structure than a vector space, but they have a lot
in common. We have seen that all vector spaces have a basis, given that
we accept the axiom of choice. A reasonable question is weather this is true
for modules as well. The answer is, unfortunately, no. This means that
there are cases where we cannot globally represent a vector field X ∈ Γ(TM)
in terms of components X1, ..., Xn with respect to some basis. To make
matters worse, this does not only occur in pathological manifolds that are of
no practical interest, but in very simple and fundamental cases as well, such
as the spheres Sn = {x ∈ Rn+1 : |x| = 1}. This will not stop us, however,
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from expressing the restriction of a vector field X in some chart region in
terms of the corresponding chart induced basis, that is,

X = X i∂i,

where ∂i is the local vector field such that ∂i(p) = (∂i)p for each p in the
chart region.

In the same way that we defined vector fields we can define covector fields,
assuming the cotangent bundle structure, of course.

Definition 23. A covector field ω on a smooth manifold M is a smooth
section ω : M −→ T ∗M .

It can be proved that the set of all covector fields Γ(T ∗M) is again a
C∞(M)-module, called the covector field module.

Finally, we can generalise to tensor fields.

Definition 24. Let M be a smooth manifold. An (r, s)-tensor field T over
M is a C∞(M)-multilinear map T : Γ(T ∗M)r × Γ(TM)s −→ C∞(M).

1.7 Connections

In the formalism we have developed so far, the vectors are the directional
derivatives of scalar functions. Extending this concept of differentiation to
vector fields again requires new structure on the manifold, namely a connec-
tion.

Definition 25. A connection ∇ on a smooth manifold M is a map ∇ :
Γ(TM)2 −→ Γ(TM), (X, Y ) 7−→ ∇XY , such that for everyX1, X2, X, Y1, Y2, Y ∈
Γ(TM) and f1, f2, f ∈ C∞(M):
(1) ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y ,
(2) ∇X(Y1 + Y2) = ∇XY1 +∇XY2,
(3) ∇X(fY ) = f · ∇XY +X[f ] · Y .

This is a reasonable definition since we would expect from a directional
derivative to be linear in the subscript and additive in the argument, and we
would also expect it to obey some kind of Leibniz rule in the argument.

The only problem is that such a map is not unique, so one needs to specify
it before using it. To this end, it is again useful to introduce some kind of
”components” (quote marks used since a connection is not a tensor field), at

14



least locally. To do this, we assume a smooth manifold M with a connection
∇ and vector fields X, Y restricted on some chart region. Then

∇XY = ∇Xi∂i(Y
j∂j) = X i∂iY

j∂j +X iY j∇∂i∂j

= X i∂iY
j∂j +X iY jΓkij∂k,

where Γkij = (∇∂i∂j)
k are the Christoffel symbols of ∇ with respect to the

specific chart. It is clear that specifying the connection is equivalent to
specifying the Christoffel symbols for all charts. Direct calculation shows
that if (U, x), (V, y) are overlapping charts and the Christoffel symbols Γ(x)

k
ij

are known in the first, the Christoffel symbols Γ(y)
k
ij

with respect to the new
chart must then satisfy the compatibility condition

Γ(y)
k
ij

=
∂xp

∂yi
∂xq

∂yj
Γ(x)

r
pq

∂yk

∂yr
+
∂yk

∂ym
∂2xm

∂yi∂yj

in the overlap region. Moreover, the above formula clearly shows that the
Gammas are not the components of any tensor field, for they would transform
differently.

1.8 Parallel Transport

Now that we have a way to differentiate vector fields, it is usefull to intro-
duce the concept of parallel transport.

Definition 26. A vector field X on a smooth manifold M with a connection
∇ is said to be parallely transported along a smooth curve γ : I −→ M if
∇γ′(t)X = 0 for all t ∈ I.

This is actually a very familiar concept. It means that a vector field
remains ”constant” while moving on some path. The tangent spaces change
along the path, of course, so the tangent vectors can’t ever be the same, but
this is as close as we can get to the original idea. The best example is a
compass. As long as we don’t cross the poles, the direction (and of course,
the length) of the needle remains ”the same” no matter how we move.

If we use the velocity of the curve itself as the vector field, one can obtain
a notion for uniform straight motion.

Definition 27. Let M be a smooth manifold with connection ∇. A curve
γ : I −→M is called auto-parallely transported if ∇γ′(t)γ

′(t) = 0 for all t ∈ I.

15



Auto-parallely transported curves are therefore the straightest possible
curves that we can have on the manifold, with respect to the given con-
nection, at least. One would expect, of course, that we should impose the
weaker condition ∇γ′γ

′ = µγ′ to define straightness, but every smooth curve
satisfying this condition also satisfies the first under some reparametrisation.

It is useful to have an expression of the auto-parallel equation on local
coordinates. Let γ′ = γ̇i∂i be the local component representation of the
velocity with respect to some chart. Straightforward substitution yields

γ̇i∂iγ̇
k∂k + γ̇iγ̇jΓkij∂k = 0.

Applying the chain rule and separating the components, it follows that

γ̈k + Γkij γ̇
iγ̇j = 0.

1.9 Torsion and Curvature

Given a connection on a smooth manifold, we can define two important
tensor fields, namely torsion and curvature. First we need the following
definition.

Definition 28. Let X, Y be two vector fields on a smooth manifold. The Lie
bracket of X and Y is the vector field [X, Y ] such that for every φ ∈ C∞(M),

[X, Y ](φ) = X(Y (φ))− Y (X(φ)).

We first define torsion.

Definition 29. Let M be a smooth manifold with a connection ∇. The
torsion of M with respect to ∇ is the (1,2)-tensor field T : T ∗M×(TM)2 −→
C∞(M) such that for every covector field ω and vector fields X, Y ,

T (ω,X, Y ) = ω(∇XY −∇YX − [X, Y ]).

A smooth manifold is called torsion-free if its torsion is identically zero
everywhere. Like every tensor field, we can locally represent it via its com-
ponents T kij.

Next we proceed to curvature.

Definition 30. Let M be a smooth manifold with a connection ∇. The cur-
vature of M with respect to ∇ is the (1,3)-tensor field R : T ∗M× (TM)3 −→
C∞(M) such that for every covector field ω and vector fields X, Y, Z,

R(ω, Z,X, Y ) = ω(∇X∇YZ −∇Y∇XZ +∇[X,Y ]Z).

Likewise, we can locally express curvature via its components Rk
mij.

16



1.10 Riemannian Manifolds

So far, none of the structure we have introduced allows us to define length,
area, or volume in a manifold. The easiest way to do this is to introduce
some kind of inner product on the tangents spaces. This new structure is
called a Riemannian metric.

Definition 31. A Riemannian metric g on a smooth manifold M is a (0,2)-
tensor field g : Γ(TM)2 −→ C∞(M) that is symmetric and positive-definite,
that is, for every X, Y ∈ Γ(TM),
(1) g(X, Y ) = g(Y,X),
(2) g(X,X) > 0 iff X 6= 0.

Each pair (M, g) is called a Riemannian manifold. Sometimes we write
〈X, Y 〉 instead of g(X, Y ). It is clear that a metric induces an inner product
gp : TpM

2 −→ R on each tangent space, which we may also denote 〈·, ·〉p.
This way we may also define a norm |·|p on TpM , such that |ξp|p = 〈ξp, ξp〉1/2p .
If ξ = (p, ξp) ∈ TM , we will assume |ξ| to mean the norm of the vector part,
|ξp|p, following our line of conventions.

A very important and useful property of metrics is that they allow us to
convert vectors to covectors and vice versa.

Definition 32. Let (M, g) be a Riemannian manifold. The map [ : Γ(TM) −→
Γ(T ∗M), X 7−→ X[(·) = g(X, ·) is called the flat map of M with respect to
g.

It follows that, in coordinates, X[ = gijX
idxj. This is sometimes called

lowering the indices, because the components of the new covector are Xj =
(X[)j = gijX

i, so in essence all we have done is use the metric to ”lower”
the component indices.

From the above and the fact that, by the definition, the matrix of g is
invertible, it follows that the flat map is also invertible. We denote its inverse
by ] = [−1 : Γ(T ∗M) −→ Γ(TM), which is called the sharp map. Therefore,
if ω is a covector field, we obtain a vector field ω] with local components
ωi = (ω])i = gijωj, where gij are the components of the inverse of gij. For
the same reason, this is sometimes called raising the indices.

We may now proceed with defining length, and more specifically, length
of a curve.
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Definition 33. Let (M, g) be a Riemannian manifold and γ : I −→M be a
smooth curve. The length of γ is the number

l[γ] =

∫
I

|γ′(t)|dt,

whenever this integral exists, of course.

We have seen that the straightest possible curves with respect to some
connection are the auto-parallely transported curves. Likewise, we may now
define the shortest (or longest, if they exist) possible curves with respect to
a metric.

Definition 34. Let (M, g) be a Riemannian manifold. A curve γ : I −→M
is called a geodesic if it is stationary with respect to l, that is, δl[γ] = 0.

A basic knowledge of variational calculus reveals that the local compo-
nents of a geodesic must satisfy the Euler-Lagrange equations

d

dt

∂L
∂γ̇i
− ∂L
∂γi

= 0,

where L(γ, γ′) = |γ′| = (gij γ̇
iγ̇j)1/2. Solving these equations for each compo-

nent yields the geodesic equation

γ̈k +
1

2
gkl(∂igjl + ∂jgli − ∂lgij)γ̇iγ̇j = 0.

This equation has a striking resemblance to the auto-parallel equation in
section 1.8. In any ”reasonable” geometry, we would expect the notions of
straightest and shortest curves to coincide. Given a Riemannian manifold,
we can always equip it with a special connection that satisfies the above
expectation by setting

Γkij ≡
1

2
gkl(∂igjl + ∂jgli − ∂lgij)

for each chart. This is called the Riemannian (or Levi-Civita) connection
with respect to the given metric, and it is the standard connection on any
Riemannian manifold. Since the Christoffel symbols uniquely determine the
connection, the Riemannian connection is unique. Moreover, the following
can be shown to be true.
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Theorem 10. Let (M, g) be a Riemannian manifold and ∇ be the Rieman-
nian connection of M with respect to g. Then ∇ is torsion-free and it is
compatible with the metric, that is, for every X, Y, Z ∈ Γ(TM),

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

Given a (connected, by assumption) Riemannian manifold (M, g), one
can turn it into a metric space by equipping with the distance function ρ :
M ×M −→ [0,∞) such that for each p, q ∈M ,

ρ(p, q) = inf {l[γ] : γ ∈ PM [p; q]},

where PM [p; q] = {γ ∈ C∞((0, 1),M) ∩ C([0, 1],M) : γ(0) = p, γ(1) = q}.
It also turns out that the topology induced by ρ coincides with the initial
topology of M .

1.11 Analysis on Riemannian Manifolds

We now have all the ingredients that we need in order to generalise the most
familiar objects from multi-variable calculus, such as differential operations
and integration. We begin by defining the differential of a map.

Definition 35. Let M,N be smooth manifolds and φ : M −→ N be a
smooth map between them. The differential of φ at p ∈ M is the map
(Dφ)p : TpM −→ Tφ(p)N , ξp 7−→ (Dφ)p(ξp) such that (Dφ)p(ξp)[f ] = ξp(f ◦φ)
for every f ∈ C∞(N).

The differential is therefore a linear map between vector spaces as was
the case in Rn, and it behaves in a similar manner. Since we can identify
TpRk ∼= Rk, it is easy to check that in the trivial case where M = Rm and
N = Rn the definition essentially coincides with the familiar one.

Next we proceed with the rest of the well-known differential operators.
In what follows, let (M, g) be a Riemannian manifold equipped with the
Riemannian connection.

Definition 36. The gradient of a function φ ∈ C∞(M) is the vector field

∇φ = (dφ)].

In components, straightforward calculation reveals that

∇φ = gij(∂iφ)∂j.
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Definition 37. The divergence of a vector field Y ∈ Γ(TM) is the function

divY = trace(X 7−→ ∇XY ).

In components, we have

divY = (∇∂iY )i = ∂iY
i + ΓiijY

j

and we can easily check that this is well defined, that is, chart-independent.

Definition 38. The Laplacian of a function φ ∈ C∞(M) is the function

∆φ = div∇φ.

Again, in components we have

∆φ = gij(∂i∂jφ− Γkij∂kφ).

By locally setting |g| = det(gij), one can proove the usefull formulas

div Y =
1√
|g|
∂i(
√
|g|Y i), ∆φ =

1√
|g|
∂i(
√
|g|gij∂jφ).

Moreover, it is easy to prove the following product rules, which we are
going to need later:

∇φa = aφa−1∇φ,

∇(φψ) = φ∇ψ + ψ∇φ,

div(φX) = 〈∇φ,X〉+ φdivX,

where φ, ψ ∈ C∞(M), X ∈ Γ(TM).
Next, we wish to define integration. Unfortunately, this is not possi-

ble without imposing some additional requirement on the manifold, namely
orientability.

Definition 39. Let M be a smooth manifold. M is called an oriented man-
ifold if for every pair of overlapping charts (U, x), (V, y), the transition maps
both have positive Jacobians, that is, det(∂y/∂x) > 0 and det(∂x/∂y) > 0.

Now we can define integration on a chart region.
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Definition 40. Let (M, g) be an oriented Riemannian manifold. The integral
of a function φ : M −→ R over a chart region U of a chart (U, x) is the number∫

U

φ dvg =

∫
x(U)

(φ ◦ x−1)
√
|g| ◦ x−1 dnx.

If change the chart, the integral will not change, so it is well defined.
However, orientability is crucial in the above definition. If the manifold was
not oriented, changing the chart might change the sign of the integral.

To integrate over the whole manifold, one might think that we should just
integrate over all chart regions and then add the integrals. This is wrong, of
course, since this does not take into account the fact that charts overlap, so
this way we count in some parts of the integral more than once. One way to
get around this is via partitions of unity.

Definition 41. Let M be a smooth manifold and {Uα} be a locally finite
open cover of M (each point belongs in finitely many sets of the cover),
made of chart regions. A family of functions {χα : M −→ [0, 1]} such that
suppχα ⊂ Uα and

∑
α χα = 1 is called a partition of unity on M .

Under the topological assumptions we made in section 1.1, a locally finite
open cover and a partition of unity always exist.

With this definition in mind, we can now define integration on the whole
manifold, since partitions of unity act as weights for each chart on any given
point, which all add up to 1, meaning we do not overcount or omit anything.

Definition 42. Let (M, g) be an oriented Riemannian manifold and {χα}
be a partition of unity on M . The integral of a function φ : M −→ R over
M is the number ∫

M

φ dvg =
∑
α

∫
Uα

χαφ dvg,

whenever the RHS is well-defined, of course.

It can be shown that the above definition is indeed a good one, that is,
it doesn’t depend on the locally finite open cover or the partition of unity.

Of significant importance are the following two results.

Theorem 11. For any compactly supported vector field X ∈ Γ(TM),∫
M

divXdvg = 0.
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Theorem 12. For any φ, ψ ∈ C∞(M) such that at least one is compactly
supported, ∫

M

φ∆ψdvg = −
∫
M

〈∇φ,∇ψ〉dvg,∫
M

φ∆ψdvg =

∫
M

ψ∆φdvg.

The first result is a generalisation of the divergence theorem and the
second is a generalisation of Green’s Identities.

Since the main subject of this thesis has to do with functional inequali-
ties, it would be extremely useful to have a generalisation of some well known
functional inequalities for Riemannian manifolds. Now that we have integra-
tion, it is easy to define a measure.

Definition 43. Let (M, g) be an oriented Riemannian manifold. The Haus-
doff measure for (M,B(M)) is the measure Haus : B(M) −→ [0,∞] such
that

Haus(U) =

∫
U

dvg

for any open subset U ⊂M .

It is easy to check that the Hausdorff measure is indeed a measure on
the Borel sets of the manifold and, therefore, (M,B(M)),Haus) is a mea-
sure space. As such, it inherits all the important results for measurable
functions on measure spaces, including the monotone and dominated conver-
gence theorems, Fatou’s Lemma and Hölder’s inequality, which will prove to
be irreplaceable tools for our purposes.
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2 Hardy and Rellich Inequalities on Euclidean

Spaces

The main subject of this thesis is the study of a wide class of integral
inequalities that involve a function and its derivatives up to some order,
called Hardy and Rellich inequalities. Such inequalities often have the form∫

Ω

X|u|p ≤ c

∫
Ω

Y |∇mu|p

where u, X and Y are functions defined on a domain Ω, which for simplicity
is assumed to be a domain of some Euclidean space (for the time being), and
c is some positive constant. ”Hardy” applies to the case m = 1, ”Rellich”
applies to the case m = 2. The other higher-order cases are usually obtained
by recursively applying the former two cases, and usually fall under the
general term ”higher-order Rellich inequalities”.

This section aims to offer some background on some of the most impor-
tant results in this area, and to prepare the reader for the more advanced
results of the next section, which deals with such inequalities in the context
of Riemannian manifolds.

2.1 Hardy Inequalities

Arguably, the most historic of the Hardy-type Inequalities is the one for-
mulated by Hardy himself in the 1920s, and for this reason we present it first.
It was originally stated in an integral form, which may not look the same as
the form mentioned above, but it can easily be brought to it. It states the
following.

Theorem 13 (Classic Integral Hardy Inequality). Let f ∈ Lp(0,∞), 1 <
p <∞ and F (x) = 1

x

∫ x
0
f(t)dt. Then F ∈ Lp(0,∞) and∫ ∞

0

|F (x)|pdx ≤
( p

p− 1

)p ∫ ∞
0

|f(x)|pdx.

There are several proofs of this result. The one presented below is an
adaptation from [BEL].
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Proof. Let p ∈ (1,∞) and and let q = p
p−1

be its conjugate exponent. Also,

let α ∈ (0, 1
q
). Then by Hölder’s inequality we have

|xF (x)| =
∣∣∣ ∫ x

0

f(t)t−αtαdt
∣∣∣ ≤ [ ∫ x

0

|f(t)tα|pdt
]1/p[ ∫ x

0

t−qαdt
]1/q

.

By evaluating the second integral in the RHS we get

|xF (x)| ≤
[ ∫ x

0

|f(t)|ptpαdt
]1/p x1/q−α

(1− qα)1/q
,

and since x > 0,

|F (x)| ≤ (1− qα)−1/qx−α−1/p
[ ∫ x

0

|f(t)|ptpαdt
]1/p

.

Exponentiating both sides by p and integrating over R+ yields∫ ∞
0

|F (x)|pdx ≤ (1− qα)−p/q
∫ ∞

0

∫ x

0

|f(t)|ptpαx−pα−1dtdx.

Changing the order of integration in the RHS triangular integral we get∫ ∞
0

|F (x)|pdx ≤ (1− qα)−p/q
∫ ∞

0

∫ ∞
t

|f(t)|ptpαx−pα−1dxdt,

thus ∫ ∞
0

|F (x)|pdx ≤ (1− qα)−p/q
∫ ∞

0

|f(t)|ptpα
∫ ∞
t

x−pα−1dxdt,

and therefore∫ ∞
0

|F (x)|pdx ≤ (1− qα)−p/q(pα)−1

∫ ∞
0

|f(t)|pdt.

Since f is Lp integrable, it follows immediately that so is F . Moreover,
choosing α = 1

pq
∈ (0, 1

q
), we get (1− qα)−p/q(pα)−1 = qp, and consequently∫ ∞

0

|F (x)|pdx ≤
( p

p− 1

)p ∫ ∞
0

|f(x)|pdx.

This completes the proof.
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Before moving on, there are two points of interest that should be ad-
dressed. First, note that there is nothing special about the choice of the
interval (0,∞). An identical inequality holds if we choose (−∞, 0) or R\{0}
instead. Likewise, we can obtain similar inequalities for any other interval
excluding 0. The only thing that might change is the constant.

Second, the constant ( p
p−1

)p that appears in the theorem is sharp, that
is, it is the smallest constant for which the above inequality holds. In other
words, ( p

p− 1

)p
= inf

f∈Lp(R+)

∫∞
0
|F (x)|pdx∫∞

0
|f(x)|pdx

.

Note, also, that the inequality holds as an equality only if f ≡ 0. The
sharpness of the constant can be proven by choosing a suitable family of test
functions (see [BEL]). This thesis, however, is more focused on the analytical
methods used to obtain the inequalities themselves, so sharpness will be
merely mentioned but not proven.

We now have the following corollary, which brings Hardy’s Integral In-
equality in a form that is in line with the one mentioned at the beginning of
this section.

Corollary 13.1. Let f : (0,∞) −→ R be absolutely continuous with f ′ ∈
Lp(0,∞) for some p ∈ (1,∞) and limx→0+ f(x) = 0. Then∫ ∞

0

|f(x)|p

|x|p
dx ≤

( p

p− 1

)p ∫ ∞
0

|f ′(x)|pdx.

Next, we present a generalisation of the above inequality for functions in
Rn. The following result is also an adaptation from [BEL].

Theorem 14 (Hardy Inequality in Rn). Let 1 < p < ∞, n ∈ N \ {p}, and
f : Rn −→ R be differentiable almost everywhere and |x|n/p−1f(x) → 0 as
|x| → 0 if n < p or as |x| → ∞ if n > p. Then∫

Rn

|f(x)|p

|x|p
dnx ≤

∣∣∣ p

p− n

∣∣∣p ∫
Rn

∣∣∣ x|x| · ∇f(x)
∣∣∣pdnx.

Proof. We switch to polar coordinates by setting x = rω, where r = |x| and
ω = x/|x| ∈ Sn−1. By change of variables the LHS integral becomes∫

Rn

|f(x)|p

|x|p
dnx =

∫
Sn−1

∫ ∞
0

rn−p−1|f(rω)|pdrdω.
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Integrating by parts we get∫ ∞
0

rn−p−1|f(rω)|pdr =
[ rn−p
n− p

|f(rω)|p
]∞
r=0
−
∫ ∞

0

rn−p

n− p
∂

∂r
|f(rω)|pdr.

Note that, by assumption, the first term of the RHS is non-positive in any
case, so we are left with∫ ∞

0

rn−p−1|f(rω)|pdr ≤ −
∫ ∞

0

rn−p

n− p
∂

∂r
|f(rω)|pdr

≤ 1

|p− n|

∫ ∞
0

rn−p
∣∣∣ ∂
∂r
|f(rω)|p

∣∣∣dr
≤
∣∣∣ p

p− n

∣∣∣ ∫ ∞
0

rn−p|f(rω)|p−1
∣∣∣ ∂
∂r
f(rω)

∣∣∣dr
≤
∣∣∣ p

p− n

∣∣∣[ ∫ ∞
0

r−p|f(rω)|prn−1dr
]1−1/p[ ∫ ∞

0

∣∣∣ ∂
∂r
f(rω)

∣∣∣prn−1dr
]1/p

,

where in the last step we use Hölder’s inequality. Now we note that ∂f/∂r =
x/|x| · ∇f , and we integrate both sides over Sn−1 with respect to ω. Finally,
we seperate the RHS integrals applying Hölder’s inequality once more, which
yields∫

Rn

|f(x)|p

|x|p
dnx ≤

∣∣∣ p

p− n

∣∣∣[ ∫
Rn

|f(x)|p

|x|p
dnx
]1−1/p[ ∫

Rn

∣∣∣ x|x| · ∇f(x)
∣∣∣pdnx]1/p

,

thus ∫
Rn

|f(x)|p

|x|p
dnx ≤

∣∣∣ p

p− n

∣∣∣p ∫
Rn

∣∣∣ x|x| · ∇f(x)
∣∣∣pdnx.

This completes the proof.

Once again, by a suitable choice of test functions it can be shown that
the constant | p

p−n |
p is sharp (see [BEL]).

It is interesting to note that the proof of such inequalities usually relies
on other well known functional inequalities. For example, the proofs of the
inequalities presented so far both rely heavily on Hölder’s inequality, with
its application being the key step, in fact.

Finally, the previous theorem has the following corollary.
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Corollary 14.1. Let 1 < p <∞ and n ∈ N \ {p}. The inequality∫
Rn

|f(x)|p

|x|p
dnx ≤

∣∣∣ p

p− n

∣∣∣p ∫
Rn
|∇f(x)|pdnx

holds for all f ∈ C∞c (Rn \ {0}) if n < p and for all f ∈ C∞c (Rn) if n > p.

This last corollary assumes the form in which most of our results will
be presented, from now on. By choosing to restrict our attention to com-
pactly supported functions, we essentially eliminate the assumptions about
the limit behaviour of the functions at infinity. Although this loses some of
the generality of the main result, it is much easier to state and remember.

2.2 Rellich Inequalities

The classic Rellich inequality, formulated by Rellich himself in the 1950s,
states that whenever u ∈ C∞c (Rn \ {0}) and n 6= 2,∫

Rn

|u(x)|2

|x|4
dnx ≤ 16

n2(n− 4)2

∫
Rn
|∆u(x)|2dnx.

Since Rellich’s proof, numerous such inequalities have been proven, including
weighted inequalities, improved inequalities with additive terms, as well as
more general higher-order Lp Rellich inequalities.

The main objective of this subsection is to prove some particularly power-
ful results formulated by Davies and Hinz in [DH] that deal with local singu-
larities in Euclidean spaces. In the original paper, which was initially set in a
Riemannian manifold context, they are a consequence of several more general
auxiliary results that are actually remarkable in their own right. However,
for our purposes, it is convenient to sum up the progress of these results in a
single lemma, in which the motivation behind each step of the proof becomes
more clear.

Lemma 15 (Davies-Hinz). Let 1 < p < ∞. Also, let Ω ⊂ Rn be open and
let V ∈ C2(Ω) be such that V > 0, ∆V < 0 and ∆V δ ≤ 0 for some δ > 1.
Then the inequality∫

Ω

|∆V ||u|p ≤ p2p

(1 + (p− 1)δ)p

∫
Ω

V p

|∆V |p−1
|∆u|p

holds for all u ∈ C∞c (Ω).
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Proof. Let u ∈ C∞c (Ω). Since ∆V < 0,∫
Ω

|∆V ||u|p = −
∫

Ω

∆V |u|p.

By Green’s first identity and the fact that ∇|u|p = p|u|p−2u∇u, it follows
that ∫

Ω

|∆V ||u|p =

∫
Ω

∇V · ∇|u|p = p

∫
Ω

|u|p−2u∇V · ∇u

≤ p

∫
Ω

|∇V ||u|p−1|∇u|,

and Hölder’s inequality yields∫
Ω

|∆V ||u|p ≤ p
[ ∫

Ω

|∆V ||u|p
]1−1/p[ ∫

Ω

|∇V |p

|∆V |p−1
|∇u|p

]1/p

,

therefore ∫
Ω

|∆V ||u|p ≤ pp
∫

Ω

|∇V |p

|∆V |p−1
|∇u|p. (1)

By Green’s second identity, we have∫
Ω

|∆V ||u|p = −
∫

Ω

V∆|u|p

= −
∫

Ω

V (p|u|p−2|∇u|2 + p(p− 2)|u|p−2|∇u|2 + p|u|p−2u∆u)

= −
∫

Ω

V (p(p− 1)|u|p−2|∇u|2 + p|u|p−2u∆u)

thus ∫
Ω

|∆V ||u|p + p(p− 1)

∫
Ω

V |u|p−2|∇u|2 ≤ p

∫
Ω

V |u|p−1|∆u|. (2)

Since, by assumption, ∆V δ = δ(δ−1)V δ−2|∇V |2 +δV δ−1∆V ≤ 0 and V > 0,
it follows that (δ−1)|∇V |2 ≤ V |∆V |. We now apply inequality (1) for p = 2
to get

(δ − 1)

∫
Ω

|∆V ||u|2 ≤ 4(δ − 1)

∫
Ω

|∇V |2

|∆V |
|∇u|2 ≤ 4

∫
Ω

V |∇u|2.
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Replacing u by |u|p/2 in the above inequality and taking into account that

|∇|u|p/2|2 = p2

4
|u|p−2|∇u|2 yields

(δ − 1)

∫
Ω

|∆V ||u|p ≤ p2

∫
Ω

V |u|p−2|∇u|2. (3)

Next we apply (3) and Hölder’s inequality on (2) to get∫
Ω

|∆V ||u|p +
p− 1

p
(δ − 1)

∫
Ω

|∆V ||u|p ≤ p

∫
Ω

V |u|p−1|∆u|

≤ p
[ ∫

Ω

|∆V ||u|p
]1−1/p[ ∫

Ω

V p

|∆V |p−1
|∆u|p

]1/p

,

therefore ∫
Ω

|∆V ||u|p ≤ p2p

(1 + (p− 1)δ)p

∫
Ω

V p

|∆V |p−1
|∆u|p.

This completes the proof.

A few comments before we proceed to the main theorems. First, notice
that, although not very unintuitive, the proof is significantly more compli-
cated than the proofs of the Hardy-type inequalities that we presented in the
previous subsection. When it comes to more modern results, this is the rule
rather than the exception.

However, despite the increased complexity, notice that the main tools
that were used remain essentially the same: integration by parts, Green’s
identities and other functional inequalities (particularly Hölder’s). Since all
these are still valid in a Riemannian manifold context (in fact, the above
result was originally set in such a context in [DH]), they will continue to
form the backbone of our ”toolbox” later when we deal with manifolds.

Now we are ready to state and prove the main results.

Theorem 16 (Davies-Hinz, higher-order Lp Rellich inequality). Let 1 < p <
∞, n,m ∈ N and β > 2 such that 2+2(m−1)p < β < n. Then the inequality∫

Rn

|u(x)|p

|x|β
dnx ≤ c(n,m, p, β)

∫
Rn

|∆mu(x)|p

|x|β−2mp
dnx

holds for all u ∈ C∞c (Rn \ {0}), where

c(n,m, p, β) =
m−1∏
k=0

γ(n, β − 2(1 + kp),
n− 2

β − 2(1 + kp)
, p)
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and

γ(n,m, p, β) =
β2

m(n− 2−m)((β − 1)p+ 1)
.

Proof. Consider the function V (x) = |x|−σ in Rn \ {0}. Straightforward
calculation reveals that

∇V (x) = −σ|x|−σ−2x, ∆V (x) = σ(σ − (n− 2))|x|−σ−2.

Hence, ∆V < 0 is satisfied for 0 < σ < n − 2 and ∆V δ ≤ 0 is satisfied for
0 ≤ δ ≤ (n− 2)/σ. In view of the previous lemma, for these values of σ and
for δ = (n− 2)/σ, it follows that∫

Rn

|u(x)|p

|x|σ+2
dnx ≤ cp

∫
Rn

|∆u(x)|p

|x|σ+2−2p
dnx

for all u ∈ C∞c (Rn \ {0}), where

c =
p2

(n− 2− σ)((p− 1)(n− 2) + σ)
.

Setting β = σ + 2 and inductively applying the above inequality completes
the proof.

Theorem 17 (Davies-Hinz, higher-order Lp Hardy-Rellich inequality). Let
1 < p <∞, n,m ∈ N and β > 2 such that 2 + 2(m− 1)p < β < n. Then the
inequality ∫

Rn

|u(x)|p

|x|β
dnx ≤ c̃(n,m, p, β)

∫
Rn

|∇∆mu(x)|p

|x|β−(2m+1)p
dnx

holds for all u ∈ C∞c (Rn \ {0}), where

c̃(n,m, p, β) =
p

n+ 2mp− β
c(n,m, p, β).

Proof. Applying inequality (1) from the proof of Lemma 15 for V (x) =
|x|−β+2+2mp to the previous theorem proves the assertion.

Note that in proving these results one has to explicitly calculate the con-
stants, essentially. We have omitted the details of these calculations, as they
are trivial but rather lengthy to right down. However, the values of the
constants that are obtained this way can be shown to be sharp (see [DH]).
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2.3 Uncertainty Principles

To close this section, we would like to point out that the broader family
of Hardy and Rellich-type inequalities is not restricted to the general form
discussed so far. For example, the classic quantum uncertainty principle is
obtained in a totally analogous manner, as we shall see. Similar inequali-
ties have been formulated in various contexts with numerous applications in
physics, statistics, information theory and other fields.

As a representative of this important class of inequalities, we present a
variant of the classic Heisenberg-Pauli-Weyl (HPW) uncertainty principle in
Euclidean spaces of arbitrary dimension.

Theorem 18 (HPW uncertainty principle). Let u ∈ C∞c (Rn). Then

n2

4

[ ∫
Rn
|u(x)|2dnx

]2

≤
∫
Rn
|x|2|u(x)|2dnx

∫
Rn
|∇u(x)|2dnx.

Proof. Let u ∈ C∞c (Rn). By the product rule (∇ · x)u2 = ∇ · (u2x)− x · ∇u2

and the fact that ∇ · x = n, it follows that

n

∫
Rn
|u(x)|2dnx =

∫
Rn

(∇ · x)u2(x)dnx = −
∫
Rn
x · ∇u2(x)dnx,

where in the last step we used the divergence theorem and the fact that u
vanishes outside a sufficiently large bounded set. Thus

n

∫
Rn
|u(x)|2dnx = −2

∫
Rn
u(x)x · ∇u(x)dnx ≤ 2

∫
Rn
|x||u(x)||∇u(x)|dnx.

Now we apply the Cauchy-Schwarz inequality to the RHS integral to get

n

2

∫
Rn
|u(x)|2dnx ≤

[ ∫
Rn
|x|2|u(x)|2dnx

]1/2[ ∫
Rn
|∇u(x)|2dnx

]1/2

,

therefore

n2

4

[ ∫
Rn
|u(x)|2dnx

]2

≤
∫
Rn
|x|2|u(x)|2dnx

∫
Rn
|∇u(x)|2dnx.

This completes the proof.
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3 Hardy and Rellich Inequalities on Rieman-

nian Manifolds

We are ready to start dealing with Hardy and Rellich inequalities in the
context of Riemannian manifolds. But before we begin, let us make a few
general remarks.

Since the inequalities of our interest are integral inequalities, we specialise
the term ”Riemannian manifold” to be such that integrals as presented in 1.11
are well defined. For the rest of this section, when we say, for example, that
M is a Riemannian manifold, we assume that M is a connected, Hausdorff,
second countable and orientable Riemannian manifold.

As already mentioned, we will continue to rely heavily on the divergence
theorem and Green’s identities, as well as on product rules of the usual differ-
ential operators. However, it is important to remember that these results still
hold because we implicitly assume a Riemannian manifold to be equipped
with the standard Riemannian connection. Otherwise, the picture could be
very different.

Another thing that requires attention is that this subject lies in the in-
tersection of Analysis and Differential Geometry. There are some minor
”communication problems” between these two fields that need to be dealt
with before we proceed any further. In particular, while matters of regularity
are of significant (and sometimes central) importance for analysts, most dif-
ferential geometers would rather consider everything to be C∞-differentiable
and turn their attention to other matters, as is evident in most Differential
Geometry textbooks. The entire first section of the present is, in fact, writ-
ten in such a fashion, although the author has tried not to toss regularity
completely. However, a large part of the theory of smooth manifolds is, in a
more or less obvious way, still valid for not-so-smooth functions and vector
fields, and for the rest of this thesis, their assumed regularity will be explicitly
stated.

Additionally, we may define differential operators in the weak sense as
follows: we say that a function u on M has weak gradient ∇u if∫

M

〈H,∇u〉dvg = −
∫
M

udivHdvg

for all vector fields H ∈ C1
c (M), and that a vector field X has weak divergence
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divX if ∫
M

ϕdivXdvg = −
∫
M

〈∇ϕ,X〉dvg

for all ϕ ∈ C1
c (M).

Last but not least, we define the Sobolev space W 1,p(M) to be the space
of all functions u ∈ Lp(M) such that the weak gradient ∇u exists and also
belongs to Lp(M), equipped with the norm

‖u‖W 1,p(M) =
(∫

M

|u|pdvg +

∫
M

|∇u|pdvg
)1/p

.

3.1 Hardy Inequalities

In [DD], D’Ambrosio and Dipierro prove a series of interesting results con-
cerning Hardy inequalities on Riemannian manifolds. These results are quite
remarkable due to their generality and the fact that they offer a criterion
that characterises the manifolds themselves.

In what follows, (M, g) is a Riemannian manifold and Ω is an open subset
of M . Let us begin with the following definition.

Definition 44. Let p > 1. The p-Laplacian of a function u ∈ W 1,p
loc (Ω) is the

function
∆pu = div(|∇u|p−2∇u)

defined in weak sense, that is, the equality∫
Ω

ϕ∆pudvg = −
∫

Ω

|∇u|p−2〈∇u,∇ϕ〉dvg

holds for all ϕ ∈ C1
c (Ω). The function u is called p-subharmonic on Ω if

∆pu ≥ 0, and p-superharmonic if ∆pu ≤ 0.

Notice that the classic Laplacian is the case p = 2. To prove the main re-
sults, we need the following lemma, which is actually a Hardy-type inequality
by itself.

Lemma 19 (D’Ambrosio-Dipierro)). Let h ∈ L1
loc(Ω) be a vector field and let

A ∈ L1
loc(Ω) be such that 0 ≤ A ≤ divh in weak sense and |h|p/Ap−1 ∈ L1

loc(Ω)
for some p ≥ 1. Then the inequality∫

Ω

|u|pAdvg ≤ pp
∫

Ω

|h|p

Ap−1
|∇u|pdvg

holds for all u ∈ C1
c (Ω).
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Proof. By assumption, we have that∫
Ω

|u|pAdvg ≤
∫

Ω

|u|pdivhdvg.

From the product rule of the divergence and the divergence theorem, it fol-
lows that∫

Ω

|u|pAdvg ≤ −
∫

Ω

〈∇|u|p, h〉dvg = −p
∫

Ω

|u|p−2u〈∇u, h〉dvg

≤ p

∫
Ω

|u|p−1|∇u||h|dvg.

Applying Hölder’s inequality on the RHS yields∫
Ω

|u|pAdvg ≤ p
[ ∫

Ω

|u|pAdvg
]1−1/p[ ∫

Ω

|h|p

Ap−1
|∇u|pdvg

]1/p

,

and since both sides are non-negative it follows that∫
Ω

|u|pAdvg ≤ pp
∫

Ω

|h|p

Ap−1
|∇u|pdvg.

This completes the proof.

By using the above result alone one can derive other similar results of
general nature. For example, taking the limit case A = divh proves the
following.

Corollary 19.1. Let h ∈ L1
loc(Ω) be a vector field such that divh ≥ 0 in

weak sense and |h|p/|divh|p−1 ∈ L1
loc(Ω) for some p ≥ 1. Then the inequality∫

Ω

|u|pdivhdvg ≤ pp
∫

Ω

|h|p

|divh|p−1
|∇u|pdvg

holds for all u ∈ C1
c (Ω).

Another interesting case is obtained if we take h = ∇V and A = divh =
∆V , where V is such that the assumptions of the lemma are met. The
outcome is strikingly similar to the lemma of Davies and Hinz in 2.2.
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Corollary 19.2. Let V ∈ C2(Ω) be such that ∆V ≥ 0 and |∇V |p/|∆V |p−1 ∈
L1
loc(Ω) for some p ≥ 1. Then the inequality∫

Ω

|u|p∆V dvg ≤ pp
∫

Ω

|∇V |p

|∆V |p−1
|∇u|pdvg

holds for all u ∈ C1
c (Ω).

We are now ready to state and prove the main result of this subsection.

Theorem 20 (D’Ambrosio-Dipierro, Lp Hardy Inequality). Let ρ ∈ W 1,p
loc (Ω)

be such that ρ ≥ 0 and ∆pρ ≤ 0 in weak sense for some p > 1. Then
|∇ρ|p/ρp ∈ L1

loc(Ω) and the inequality(p− 1

p

)p ∫
Ω

|∇ρ|p

ρp
|u|pdvg ≤

∫
Ω

|∇u|pdvg

holds for all u ∈ C1
c (Ω).

Proof. Let 0 < δ < 1 and set ρδ = ρ + δ. Consider, respectively, the vector
field and the scalar function

h = −|∇ρδ|
p−2∇ρδ
ρp−1
δ

, A = (p− 1)
|∇ρδ|p

ρpδ
.

Since 1/ρδ ≤ 1/δ and ∇ρ ∈ Lploc(Ω), it follows that h ∈ L1
loc(Ω) and A ∈

L1
loc(Ω). Moreover, notice that

|h|p

Ap−1
=

1

(p− 1)p−1
∈ L1

loc(Ω)

for all p > 1.
In order to apply Lemma 19 for h and A, we still need to show that

A ≤ divh in weak sense on Ω. To this end, it suffices to show that

(p− 1)

∫
Ω

|∇ρδ|p

ρpδ
ϕdvg ≤

∫
Ω

|∇ρδ|p−2〈∇ρδ,∇ϕ〉
ρp−1
δ

dvg (1)

for all non-negative ϕ ∈ C1
c (Ω).

As the reader might already suspect, the proof of (1) will be based on
the fact that ρ (and consequently, ρδ) is p-superharmonic. In weak language,
this means that ∫

Ω

|∇ρδ|p−2〈∇ρδ,∇ϕ〉dvg ≥ 0 (2)
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for all ϕ ∈ C1
c (Ω). If ρ was of class C1, putting ϕ/ρp−1

δ in the place of ϕ
in (2) would do the trick. Unfortunately, ρ is only assumed to be a Sobolev
function, and this simple argument doesn’t work. To work our way around
this difficulty, we exploit the fact that any non-negative Sobolev function
defined on a relatively compact set can be approximated by a sequence of
smooth functions.

Let us fix a non-negative ϕ ∈ C1
c (Ω), and put K = suppϕ. Since Ω is

open and K ⊂ Ω is compact, there exists an open and relatively compact set
U such that K ⊂ U ⊂ Ω. Since

ln ρδ ∈ Lploc(Ω) and |∇ ln ρδ| =
|∇ρδ|
ρδ
≤ |∇ρ|

δ
∈ Lploc(Ω),

it follows that ln ρδ ∈ W 1,p
loc (Ω) ⊂ W 1,p(U). Hence there exists a sequence of

functions φn ∈ C∞(U), n ∈ N such that φn → ln ρδ a.e., ‖φn−ln ρδ‖W 1,p(U) →
0 and φn ≥ ln δ. Setting ψn = eφn , we have that ψn ∈ C∞(U), ψn ≥ δ,
ψn → ρδ a.e and ‖ lnψn − ln ρδ‖W 1,p(U) → 0, that is∫

U

| lnψn − ln ρδ|pdvg → 0 and

∫
U

∣∣∣∇ψn
ψn
− ∇ρδ

ρδ

∣∣∣pdvg → 0

as n→∞.
Now set ϕn = ϕ/ψp−1

n for all n ∈ N, which is a sequence of non-negative
C1 test functions on U with suppϕn = K. These functions can be smoothly
extended on Ω without changing the support, taking ϕn|Ω\U ≡ 0. Using ϕn
as a test function on (2), we get

0 ≤
∫

Ω

|∇ρ|p−2〈∇ρ,∇ϕn〉dvg =

∫
Ω

|∇ρ|p−2〈∇ρ,∇
( ϕ

ψp−1
n

)
〉dvg.

Since

∇
( ϕ

ψp−1
n

)
=
∇ϕ
ψp−1
n

− (p− 1)
∇ψn
ψpn

ϕ,

it follows that

(p− 1)

∫
Ω

|∇ρ|p−2〈∇ρ,∇ψn〉
ψpn

ϕdvg ≤
∫

Ω

|∇ρ|p−2〈∇ρ,∇ϕ〉
ψp−1
n

dvg. (3)

For the RHS, we have∣∣∣ |∇ρ|p−2〈∇ρ,∇ϕ〉
ψp−1
n

∣∣∣ ≤ |∇ρ|p−1

δp−1
|∇ϕ| ∈ L1(Ω),
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thus by dominated convergence∫
Ω

|∇ρ|p−2〈∇ρ,∇ϕ〉
ψp−1
n

dvg →
∫

Ω

|∇ρ|p−2〈∇ρ,∇ϕ〉
ρp−1
δ

dvg as n→∞.

For the LHS, we have that∫
Ω

|∇ρ|p−2〈∇ρ,∇ψn〉
ψpn

ϕdvg =

∫
Ω

〈 |∇ρ|
p−2∇ρ
ψp−1
n

,
∇ψn
ψn
〉ϕdvg.

Since
|∇ρ|p−2∇ρ

ψp−1
n

→ |∇ρ|
p−2∇ρ
ρp−1
δ

a.e.

and since ∣∣∣ |∇ρ|p−2∇ρ
ψp−1
n

∣∣∣ ≤ |∇ρ|p−1

δp−1
∈ L

p
p−1 (Ω) ⊂ L1(Ω)

and ∫
U

∣∣∣∇ψn
ψn
− ∇ρδ

ρδ

∣∣∣pdvg → 0,

it follows by dominated convergence that∫
Ω

|∇ρ|p−2〈∇ρ,∇ψn〉
ψpn

ϕdvg →
∫

Ω

|∇ρ|p

ρpδ
ϕdvg as n→∞,

so taking the limit in (3) yields (1).
Applying Lemma 19 for A and h yields(p− 1

p

)p ∫
Ω

|∇ρ|p

ρpδ
|u|pdvg ≤

∫
Ω

|∇u|pdvg,

and Fatou’s lemma for δ → 0 completes the proof.

The constant is sharp if and only if some additional assumptions are
satisfied (see [DD]).

The above result has the following generalisation.

Theorem 21 (D’Ambrosio-Dipierro, Weighted Lp Hardy Inequality). Let
ρ ∈ W 1,p

loc (Ω) be such that ρ ≥ 0 and (p − 1 − α)∆pρ ≤ 0 in weak sense on
Ω for some p > 1 and some α ∈ R, and |∇ρ|p/ρp−α, ρα ∈ L1

loc(Ω). Then the
inequality ∣∣∣p− 1− α

p

∣∣∣p ∫
Ω

|∇ρ|p

ρp−α
|u|pdvg ≤

∫
Ω

ρα|∇u|pdvg

holds for all u ∈ C1
c (Ω).
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Proof. Similar to the proof of the previous theorem, apply Lemma 19 for

h = −(p− 1− α)
|∇ρδ|p−2∇ρδ
ρp−1−α
δ

, A = (p− 1− α)2 |∇ρδ|p

ρp−αδ

,

and take the cases α < p − 1 and α > p − 1. In either case, dominated
convergence and Fatou’s lemma complete the proof.

It is worth considering the special case of the above where α = p + q,
for some q > −1. What we obtain is a Caccioppoli -type inequality for p-
subharmonic functions.

Corollary 21.1 (D’Ambrosio-Dipierro, Lp Caccioppoli-type Inequality). Let
ρ ∈ W 1,p

loc (Ω) be such that ρ ≥ 0 and ∆pρ ≥ 0 in weak sense on Ω for some
p > 1 and |∇ρ|pρq, ρp+q ∈ L1

loc(Ω) for some q > −1. Then the inequality(q + 1

p

)p ∫
Ω

|∇ρ|pρq|u|pdvg ≤
∫

Ω

ρq+p|∇u|pdvg

holds for all u ∈ C1
c (Ω).

The Hardy inequality is particularly useful since it allows us to obtain a
characterisation for manifolds. We will show that a manifold is p-hyperbolic
if and only if a particular type of inequality holds for it.

Definition 45. A Riemannian manifold M is said to be p-hyperbolic if there
exists a positive and symmetric Green function Gx(·) for the p-Laplacian for
some x ∈ M (that is, −∆pGx = δx). If this is not the case, it is called
p-parabolic.

The special case M = Rn is a good example of a p-hyperbolic manifold.
For p < n, the fundamental solution with pole at ξ ∈ Rn is given by

Gξ(x) = c(p, n)|x− ξ|
p−n
p−1 , x ∈ Rn \ {ξ},

which is both positive and symmetric (see, for example [FP]). Hence Rn is
p-hyperbolic for all p < n.

Before we obtain the criterion of the characterisation, we need the follow-
ing (for the proof, see [T], also mentioned in [DD]).

Lemma 22. Let p > 1. A Riemannian manifold (M, g) is p-parabolic if and
only if there exists a sequence of functions uk ∈ C∞(M) such that 0 ≤ uk ≤ 1,
uk → 1 uniformly on every compact subset of M and

∫
M
|∇uk|pdvg → 0.
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Now we are ready to state and prove the result.

Theorem 23. A Riemannian manifold (M, g) is p-hyperbolic if and only if
there exists a non-negative non-trivial function f ∈ L1

loc(M \ {x}) for some
x ∈M such that the inequality∫

M

f |u|pdvg ≤
∫
M

|∇u|pdvg

holds for all u ∈ C∞c (M \ {x}).

Proof. First, assume that M is p-hyperbolic, and let Gx be the non-negative
Green function such that −∆pGx = δx. We know that Gx ∈ W 1,p

loc (M) and
that ∆pGx = 0 on M \ {x}. By Theorem 20, it follows that |∇Gx|p/Gp

x ∈
L1
loc(M \ {x}), and that the inequality holds for

f =
(p− 1

p

)p |∇Gx|p

Gp
x

.

Conversely, assume that M is p-parabolic and the inequality holds at the
same time. Then there exists a sequence of functions uk ∈ C∞(M) such
that 0 ≤ uk ≤ 1, uk → 1 uniformly on every compact subset of M and∫
M
|∇uk|pdvg → 0. It follows by Fatou’s Lemma that

0 ≤
∫
K

fdvg ≤ lim inf
k→∞

∫
K

f |uk|pdvg ≤ lim inf
k→∞

∫
K

|∇uk|pdvg = 0

for every compact subset of K ⊂ M \ {x}, thus f = 0 almost everywhere, a
contradiction.

It is worth noting that the above also holds for functions u ∈ C∞c (M)
and non-negative non-trivial f ∈ L1

loc(M), provided that p < dimM . This
extension is based on the fact that, in this case,

C∞c (M)
W 1,p

= C∞c (M \ {x})
W 1,p

.

This can be shown by choosing a suitable sequence of C∞c (M \{x}) functions
that approximates any given C∞c (M) ∩W 1,p(M) function in the W 1,p sense.

Though not as numerous as in the Euclidean case, there exist quite a few
similar results written by other authors (see [KO], [X] and [C], to name a
few). The results of [DD] where mostly chosen because they, unlike most
others, where set in the more general Lp setting, and also because of they
offer a criterion for the characterisation of p-hyperbolic manifolds.
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3.2 Rellich Inequalities

Next, we move on to Rellich inequalities. Such results are quite rare for
Riemannian manifolds, and their proofs are rather complicated. Our main
objective in this subsection will be to prove an L2 Rellich inequality by
Kombe and Ozaydin from [KO].

Before we prove the result we are going to need the following Hardy-
type inequality from [C]. Let (M, g) be a non-compact, complete Riemannian
manifold.

Lemma 24 (Carron, L2 Hardy Inequality). Let α,C ∈ R be such that
C + α− 1 > 0 and ρ ∈ C2(M) be such that |∇ρ| = 1 and ∆ρ ≥ C/ρ. Then
the inequality (C + α− 1

2

)2
∫
M

ρα−2|u|2dvg ≤
∫
M

ρα|∇u|2dvg

holds for all u ∈ C∞c (M \ ρ−1{0}).

The proof is similar to the other Hardy-type inequalities we have seen so
far and will be omitted.

We proceed to the main result.

Theorem 25 (Kombe-Ozaydin, L2 Rellich Inequality). Assume that dimM ≥
2 and let ρ ∈ C2(M) be such that |∇ρ| = 1 and ∆ρ ≥ C/ρ for some C > 0.
Then the inequality

(C + α− 3)2(C − α + 1)2

16

∫
M

ρα−4|u|2dvg ≤
∫
M

ρα|∆u|2dvg

holds for all u ∈ C∞c (M \ ρ−1{0}), α < 2 and α > 3− C.

Proof. First, notice that

∆ρα−2 = div(∇ρα−2) = div((α− 2)ρα−3∇ρ)

= (α− 2)(α− 3)ρα−4|∇ρ|2 + (α− 2)ρα−3∆ρ.

Since |∇ρ| = 1 and ∆ρ ≥ C/ρ, for α < 2 it follows that

∆ρα−2 ≤ (α− 2)(α− 3 + C)ρα−4.
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Multiplying both sides by u2 and integrating over M yields∫
M

u2∆ρα−2dvg ≤ (α− 2)(α− 3 + C)

∫
M

ρα−4u2dvg,

while by Green’s second identity, we have that∫
M

u2∆ρα−2dvg =

∫
M

ρα−2∆u2dvg =

∫
M

ρα−2(2|∇u|2 + 2u∆u)dvg.

Combining the last two relations yields

2

∫
M

ρα−2|∇u|2dvg − (α− 2)(α− 3 + C)

∫
M

ρα−4u2dvg

≤ −2

∫
M

u∆uρα−2.

Since by Carron’s Hardy inequality we know that(C + α− 1

2

)2
∫
M

ρα−2|u|2dvg ≤
∫
M

ρα|∇u|2dvg,

it follows that

(C + α− 3)(C − α + 1)

4

∫
M

ρα−4|u|2dvg ≤ −
∫
M

u∆uρα−2dvg

≤
∫
M

|u||∆u|ρα/2−2ρα/2dvg.

Finally, we apply the Cauchy-Schwarz inequality to the RHS to get

(C + α− 3)(C − α + 1)

4

∫
M

ρα−4|u|2dvg

≤
[ ∫

M

ρα−4|u|2dvg
]1/2[ ∫

M

ρα|∆u|2
]1/2

dvg.

For α > 3 − C both sides are non-negative, and taking the square of both
sides gives

(C + α− 3)2(C − α + 1)2

16

∫
M

ρα−4|u|2dvg ≤
∫
M

ρα|∆u|2dvg.

This completes the proof.
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As for higher-order Rellich inequalities and Lp Rellich inequalities, they
are significantly harder to obtain and even more rare to find. In [B], Barbatis
has obtained, under a simple geometric assumption, an improved Lp higher-
order inequality of the form∫

Ω

|∆m/2u|p

ργ
dvg ≥ A(m, γ)

∫
Ω

|u|p

ργ+mp
dvg +B(m, γ)

∫
Ω

Vi|u|pdvg,

where ρ(·) = dist(·, K), u ∈ C∞c (Ω \K), m, γ ∈ N and Vi involves some suit-
ably iterated logarithmic functions. The geometric assumption, in particular,
is that the distance function should be such that

ρ∆ρ ≥ k − 1

in Ω \K. This assumption is, for example, satisfied in Euclidean spaces and
Cartan-Hadamard manifolds, that is, simply connected geodesically complete
non-compact manifolds with non-positive sectional curvature.

The sectional curvature is obtained from the Riemannian curvature as
follows: if X and Y are two linearly independent vector fields, the sectional
curvature is the function

S(X, Y ) =
RkmijX

kY mX iY j

XaXaY bYb −XcYc
=

R̃(X, Y,X, Y )

|X|2|Y |2 − 〈X, Y 〉2
.

3.3 Uncertainty Principles

In [K], Kristaly proved a generalisation of the classic HPW uncertainty
principle for Riemannian manifolds, and more specifically that

n2

4

[ ∫
M

|u|2dvg
]2

≤
∫
M

ρ2
p|u|2dvg

∫
M

|∇u|2dvg

for all u ∈ C∞(M) and p ∈ M , where ρp(·) = dist(·, p) and (M, g) has
dimension n and satisfies some additional assumptions.

To be more precise, he proved that if M has non-positive sectional cur-
vature, the inequality holds and the constant is sharp. Moreover, he proved
that if M has non-negative sectional curvature, the inequality holds if and
only if M is isometric to some Euclidean space. We will not prove these
results.

Instead, we are going to prove two different results. The first one is
a straightforward consequence of the Caccioppoli-type inequality of section

42



3.1. Let (M, g) be a Riemannian manifold and Ω ⊂M be open.

Corollary 21.1.1. (Uncertainty Principle) Let p, q > 0 be such that 1/p +
1/q = 1, and let ρ ∈ C2(Ω) be such that ρ ≥ 0, ∆pρ ≥ 0. Then the inequality

1

2

∫
Ω

|∇ρ||u|2dvg ≤
[ ∫

Ω

ρq|u|qdvg
]1/q[ ∫

Ω

|∇u|p
]1/p

holds for all u ∈ C∞c (Ω).

Proof. By Hölder’s inequality we have[ ∫
Ω

ρq|u|qdvg
]1/q[ ∫

Ω

|∇u|p
]1/p

≥
∫

Ω

ρ|u||∇u|dvg =
1

2

∫
Ω

ρ|∇u2|dvg

and by the Caccioppoli inequality 21.1 for p = 1 and q = 0 it follows that∫
Ω

ρ|∇u2|dvg ≥
∫

Ω

|∇ρ||u|2dvg.

This completes the proof.

The other result is an Lp generalisation of the classic HPW uncertainty
principle for manifolds.

Theorem 26 (Lp Uncertainty Principle). Let X be a C1 vector field on Ω
such that divX ≥ 0, and let p > 1. Then the inequality∫

Ω

divX|u|pdvg ≤ p
[ ∫

Ω

|X|
p
p−1 |u|pdvg

] p−1
p
[ ∫

Ω

|∇u|pdvg
]1/p

holds for all u ∈ C1
c (Ω).

Proof. As with the proof of the classic HPW inequality, we use the product
rule for the divergence and the divergence theorem to obtain∫

Ω

divX|u|pdvg = −
∫

Ω

〈X,∇|u|p〉dvg = −p
∫

Ω

|u|p−1〈X,∇|u|〉dvg

≤ p

∫
Ω

|X||u|p−1|∇u|dvg.

Applying Hölder’s inequality on the RHS yields∫
Ω

divX|u|pdvg ≤ p
[ ∫

Ω

|X|
p
p−1 |u|pdvg

] p−1
p
[ ∫

Ω

|∇u|pdvg
]1/p

.

This completes the proof.
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Note that the classic HPW uncertainty principle is the very special case
where Ω = Rn, X(x) = x and p = 2.

For similar inequalities, the reader may also see [KO] and [X].
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4 Inequalities for Vector Fields

In this section we present some results that offer estimates for vector fields
instead of scalar functions. These may be considered to be modifications of
inequalities that we have already encountered, so they cannot be considered
entirely original, but the fact that they deal with vector fields is in itself a
novel aspect.

4.1 Preliminaries

Let M be a Riemannian manifold. From the definition of the gradient in
1.11, we know that ∇f = (df)]. We are going to apply this to the specific
case where f = 〈X, Y 〉 for two vector fields X and Y .

Assuming the Riemannian connection, we have that

d〈X, Y 〉(ξ) = ξ〈X, Y 〉 = 〈∇ξX, Y 〉+ 〈X,∇ξY 〉.

If we define the Jacobian of X to be the (0,2)-tensor field ∇X such that, for
all vector fields ξ, η, ∇X(ξ, η) = 〈∇ξX, η〉, it follows that

d〈X, Y 〉(·) = ∇X(·, Y ) +∇Y (·, X),

and therefore we obtain the product rule

∇〈X, Y 〉 = ∇X(·, Y )] +∇Y (·, X)]

= ∇X · Y +∇Y ·X,
where we use the notation ∇X · Y = ∇X(·, Y )].
∇X · Y is of course linear in Y , and therefore bounded at each point of

the manifold (since the tangent space is finite-dimensional), with norm

‖∇X‖(p) = sup
ξp∈TpM\{0}

|∇X · ξp|
|ξp|

for each point p ∈M .
Combining this with the product rule, we obtain the estimate

|∇〈X, Y 〉| ≤ ‖∇X‖|Y |+ ‖∇Y ‖|X|.

An important application of this is the special case X = Y , from which we
obtain |∇|X|| ≤ ‖∇X‖.
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4.2 A Hardy Inequality

Following a process similar to [DD], we obtain an Lp Hardy-type inequality
for vector fields. The only thing that changes is that the estimate now is given
in terms of the Jacobian of the vector field. This is totally analogous to the
scalar case where the estimate is given with respect to the gradient.

Theorem 27 (Lp Hardy Inequality for Vector Fields). Let Y be a C1 vector
field on Ω be such that divY ≥ 0 and |Y |p/|divY |p−1 ∈ L1

loc(Ω) for some
p ≥ 1. Then the inequality∫

Ω

divY |X|pdvg ≤ pp
∫

Ω

|Y |p

|divY |p−1
‖∇X‖pdvg

holds for all compactly supported C1 vector fields.

Proof. From the product rule of the divergence and the divergence theorem,
it follows that∫

Ω

divY |X|pdvg = −
∫

Ω

〈∇|X|p, Y 〉dvg = −p
∫

Ω

|X|p−1〈∇|X|, h〉dvg

≤ p

∫
Ω

|Y ||X|p−1‖∇X‖dvg.

Applying Hölder’s inequality on the RHS yields∫
Ω

divY |X|pdvg ≤ p
[ ∫

Ω

divY |X|pdvg
]1−1/p[ ∫

Ω

|Y |p

|divY |p−1
‖∇X‖pdvg

]1/p

,

and since both sides are non-negative it follows that∫
Ω

divY |X|pdvg ≤ pp
∫

Ω

|Y |p

|divY |p−1
‖∇X‖pdvg.

This completes the proof.

Since |X| is C1 almost everywhere, this may actually be considered an
application of Lemma 19.
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4.3 An Uncertainty Principle

In a similar fashion we may obtain an analogue of the generalised HPW
uncertainty principle for vector fields.

Theorem 28 (Lp Uncertainty Principle for Vector Fields). Let Y be a C1

vector field on Ω such that divY ≥ 0, and let p > 1. Then the inequality∫
Ω

divY |X|pdvg ≤ p
[ ∫

Ω

|Y |
p
p−1 |X|pdvg

] p−1
p
[ ∫

Ω

‖∇X‖pdvg
]1/p

holds for all compactly supported C1 vector fields.

Proof. We have∫
Ω

divY |X|pdvg = −
∫

Ω

〈Y,∇|X|p〉dvg = −p
∫

Ω

|X|p−1〈Y,∇|X|〉dvg

≤ p

∫
Ω

|Y ||X|p−1‖∇X‖dvg.

Applying Hölder’s inequality on the RHS yields∫
Ω

divY |X|pdvg ≤ p
[ ∫

Ω

|Y |
p
p−1 |X|pdvg

] p−1
p
[ ∫

Ω

‖∇X‖pdvg
]1/p

.

This completes the proof.

As a final remark, note that in general we can do the same for any Hardy
or Sobolev-type inequality, converting it to a vector field version of its initial
scalar form.
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