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Introduction

The aim of this dissertation is threefold. At first, we develop a technique that
provides regularity results for L, and L, regular random variables (parts I and II
respectively). Next, we define a class of weighted hypergraphs that satisfy relative
counting and removal lemmas (part III). Finally, we present number theoretical
(part IV) and algorithmic (part V) applications of the aforementioned results.

In part I, which is based on [DKK16], we introduce the concepts of semirings
and uniformity norms, and prove a regularity result for L, random variables with
p > 1. This result extends the previous work that dealt with the case p = 2, (see e.g.
[Tao06b, Tao06¢, Taoll]) and its proof is implemented by developing a technique
which is based on an inequality about martingale difference sequences and may
be seen as an L, analogue of the energy increment strategy. Moreover, we give
applications of this result in the context of martingale convergence and graphon
regularity.

In part II, which is based mainly on [DKK18], we define the class of L, regular
random variables; a class of random variables that was introduced in [BCCZ14] and
originates from the work of Kohayakawa and Rodl [Koh97, KRO03]. For this class, we
show that a Holder-type inequality is satisfied and we use the techniques introduced
in the previous part to obtain a regularity result.

Part III is based on the work we did in [DKK15, DKK18]. After we introduce
some variants of the well known box norms, we proceed to define a class of weighted
hypergraphs. The most important property of this class is that it is the largest
class of weighted hypergraphs that we know of, which satisfies relative counting and
removal lemmas. This answers a question that was posed in [BCCZ14] and extends
similar results already known for smaller classes of weighted hypergraphs (see e.g.
[Tao06¢, CFZ15, DK16]).

In part IV we give a number theoretical application of part III results. More
precisely, we prove a special case of the multidimensional Green—Tao theorem (see
[CM12]) using an arithmetic version of the relative removal lemma.

Finally, part V, which is based on [BK17], contains an algorithmic consequence
of the technique we developed in parts I and II. More precisely, we construct an
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algorithm that approximates L, regular matrices (p > 1) by a finite sum of matrices
of rank 1. This approximation is done in the cut norm and extends the already
existing results about Lo regular matrices (see e.g. [COCF10]).

Aknowlegments. I would like to thank my advisors P. Dodos and V. Kanellopoulos
for their constant guidance and useful suggestions.



Basic Concepts & General notation

1. By N, Z,R and C we denote the sets of natural numbers (including 0), inte-
gers, real numbers and complex numbers respectively. Moreover, for every positive
integer n we set [n] = {1,2,...,n}. For every set X by |X| we shall denote its
cardinality and by P(X) we shall denote its powerset. If & € N and k£ < |X]| then
by ()k( ) we shall denote the set of all subsets of X of cardinality &, i.e.

<)k(> —{YCX:|Y|=k).

2. By P we shall denote the set of prime numbers. Also for every positive
integer n, by P,, we shall denote the set of prime numbers which are lower or equal
to n. Also, by 7(n) we shall denote the number of elements in P, i.e.

m(n) = [Pn|.

3. If X is a nonempty set and F C P(X) we write

Ur=Uyr

FeF

Also, if k is a positive integer and Aq, ..., A are families of subsets of X we write
k
ﬂ A = {A1 N...Ag: A; € A; for every i € [k:]}
i=1

Finally, if d is a positive integer, X1, ..., Xy are nonempty sets and 4; is a family
of subsets of X;, for every i € [d] then we write

d
XAiZ{A1><--'><Ad!Ai€Az‘ foreveryie[d]}.
=1

4. If (X, X, p) is a probability space and f: X — R is a random variable we

will write
/X f(x) du(x) = Ex(f) = E[f(z) |z € X]

to denote the mean value of f in X.
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5. If (X, 3, i) is a probability space and P C ¥ is a partition of X by Ap we
will denote the o-algebra produced by the cells of P and by ¢(P) we will denote
the measure of the “smallest” cell of P, i.e. «(P) = min{u(P): P € P}. Also, if
f: X — R is a random variable we will write E(f |.Ap) to denote the conditional
probability of f on the o-algebra P. Moreover, if P is finite then recall that

_ Jp fdu

where for every A C X, 14 stands for the characteristic function of A, that is,

1P7

1, ifze A
14 =
0, otherwise.

6. For every function f: N — N and every ¢ € [n] by f©) .= N — N we will
denote the ¢-th iteration of f defined recursively by the rule

O ) =n
FED () = 77O ().

7. Recall that a hypergraph is a pair H = (V, E) where V is a non-empty set
and £ C P(V). The elements of V' are called vertices and the elements of E are
called edges. If E is a nonempty subset of (‘T/) for some r € N, then the hypergraph
‘H is called r-uniform. Therefore, a 2-uniform hypergraph is a graph with at least

one edge.

8. Let (X, X, u) be a probability space and recall that a graphon is an integrable
random variable W: X x X — R which is symmetric, that is,

W($, y) = W(ya x)

for every z,y € X. If p > 1 and W is graphon which belongs to L, then W is said
to be an L, graphon.

9. Let (X,X, ) be a probability space. Recall that a set A € ¥ is called an
atom if p(A) > 0 and for every B C A with B € X, u(B) = 0. The set of atoms of
the probability space X will be denoted by Atoms(X).

10. Let (X,3, 1) be a probability space and n > 0. The probability space X
will be called n-nonatomic if p(A) < 7 for every A € Atoms(X).

11. Let n, m be two positive integers. Then, by gcd(n, m) we denote the greatest
common divisor of n and m and by lem(n, m) we denote their least common multiple.
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12. For every complex number s by Re(s) we shall denote the real part of s and
by Im(s) we shall denote its imaginary part.

13. By O(X) we shall denote a quantity Y for which there exists some constant
C' > 0 such that |Y| < C|X]|. If this constant depends on some parameters, say
ai,...,a; we will write Y = Og,..q,(X).

14. By o(1) we shall denote a quantity that can be made arbitrarily close to 0.
If this quantity depends on some parameters, say ar, ..., a; we will write o4, . q,(1).

15. For every positive integer d and for every K C Z? we denote the volume of
K by voly(K). If d is implied then we just write vol(K).

16. For every positive integer d and for every x = (r1,...,24) € Z% by ||7|ls

we denote its infinity norm as usual, i.e.

[#]|oc = max [z;].
1<i<d






Part 1

Decomposition of random variables



CHAPTER 1

Semirings and uniformity norms

We first introduce the following slight strengthening of the classical concept of
a semiring of sets (see also [BNOS]).

DEFINITION 1.1. Let X be a nonempty set and k a positive integer. Also let S
be a collection of subsets of X. We say that S is a k-semiring on X if the following
properties are satisfied.

(P1) We have that 0, X € S.

(P2) For every S,T € S we have that SNT € S.

(P3) For every S, T € S there exist £ € [k] and Ry, ..., Ry € S which are pairwise
disjoint and such that S\T = Ry U---U Ry.

From now on we view every element of a k-semiring S as a “structured” set and
a linear combination of few characteristic functions of elements of S as a “simple”
function. We will use the following norm in order to quantify how far from being

“simple” a given function is.

DEFINITION 1.2. Let (X, 3, u) be a probability space, k a positive integer and S
a k-semiring on X with S C X. For every f € L1(X, %, u) we set

I£1s =sup{| [ faul:5 s}, (1.1)
S
The quantity || f|ls will be called the S-uniformity norm of f.

The S-uniformity norm is, in general, a seminorm. Note, however, that if the
k-semiring S is sufficiently rich, then the function || - ||s is indeed a norm. More
precisely, the function |[|-||s is a norm if and only if the family {1g : S € S} separates
points in L1 (X, ¥, u), that is, for every f,g € L1(X, 3, u) with f # g there exists
S e S with [ fdu# [qgdp.

The simplest example of a k-semiring on a nonempty set X, is an algebra of
subsets of X. Indeed, observe that a family of subsets of X is a 1-semiring if and
only if it is an algebra. Another basic example is the collection of all intervals
of a linearly ordered set, a family which is easily seen to be a 2-semiring. More
interesting (and useful) k-semirings can be constructed with the following lemma.

8
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LEMMA 1.3. Let X be a nonempty set. Also let m,k1,. ..,k be positive integers
and set k=" ki. If S; is a k;-semiring on X for every i € [m], then the family

S = { ﬁ S;:5;€8; for every i € [m]} (1.2)

=1

s a k-semiring on X.

PRrROOF. Clearly we may assume that m > 2. Notice, first, that the family S
satisfies properties (P1) and (P2) in Definition 1.1. To see that property (P3) is
also satisfied, fix S,T € S and write S = (", S; and T' = (-, T; where S;,T; € S;
for every i € [m]. Weset P, = X \Ty and P = T1N---NTj1 N (X \Tj) if
j€{2,...,m}. Observe that the sets P, ..., P, are pairwise disjoint. Moreover,

X\(ﬁTi)anijj (1)
-

i=1

and so

i=1

1=

l&mﬂ) (1.4)

S\T=<ﬁ5i>\(ﬁﬂ) :JQ( :

Let j € [m] be arbitrary. Since S; is a kj-semiring, there exist ¢; € [k;] and pairwise
disjoint sets R{,... ,R%]_ € §; such that S; \ T, = RjU---U R@j. Thus, setting

(a) B1 =X and B = (1;;(SiNTy) if j € {2,...,m},

() Cj =Njcicm Si if j €{1,...,m =1} and Cp, = X,
and invoking the definition of the sets Py, ..., P, we obtain that

S\T:G(CH@nRynm) (1.5)

Now set I = %, ({4} x [¢;]) and observe that |I| < k. For every (j,n) € I let
U% =B;N R% N C; and notice that U% eSS, Ufl‘ - R% and U,Z C P;. It follows that
the family {U3 : (j,n) € I} is contained in & and consists of pairwise disjoint sets.
Moreover, by (1.5), we have

S\T= {J Uj. (1.6)

(4m)el

Hence, the family S satisfies property (P3) in Definition 1.1, as desired. O
By Lemma 1.3, we have the following corollary.

COROLLARY 1.4. The following hold.
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(a) Let X be a nonempty set. Also let k be a positive integer and for every
i € [k] let A; be an algebra on X. Then the family

{Ain---NA: A € A; for every i € [k]} (1.7)

1 a k-semiring on X.

(b) Let d,ki,...,kq be a positive integers and set k = 2?21 ki. Also let
X1,...,Xq be nonempty sets and for every i € [d] let S; be a k;-semiring
on X;. Then the family

{S1x---x84:8; €S8 for every i € [d]} (1.8)
18 k-semiring on X1 X -+ - X Xy.
Next we isolate some basic properties of the S-uniformity norm.

LEMMA 1.5. Let (X,%,u) be a probability space, k a positive integer and S a
k-semiring on X with S C 0. Also let f € L1(X,X, n). Then the following hold.

(a) We have || flls < £l -
(b) If B is a o-algebra on X with B C S, then ||E(f|B)|ls < ||flls-
(c) If S is a o-algebra, then || flls < |E(f|S)|lz, <2||flls-

PROOF. Part (a) is straightforward. For part (b), fix a o-algebra B on X with
B C Sandset P={z € X :E(f|B)(z) >0} and N = X \ P. Notice that
P,N € BC S. Hence, for every S € S we have

\/SE(fyB)dP\ < max{/POSE(f|B)dIP>,—/NmS]E(f\B)d]P’} (1.9)

max{/PE(f\B)dIP’,—/NE(f]B)dIP’}

max{/Pfd]P’,—/NfdP}<”f”S

which yields that ||E(f|B)|ls < ||flls-

Finally, assume that S is a o-algebra and notice that [, fdP = [(E(f|S)dP
for every S € S. In particular, we have ||f|ls < [|[E(f|S)||z,. Also let, as above,
P={xe X:E(f|S)(z) >0} and N =X \ P. Since P, N € S we obtain that

N

(1), <2 max{ [ B(s1S)ap.— [ B(f1S)dp) <2ifls (110)

and the proof is completed. ]

We close this chapter by presenting some examples of k-semirings which are rel-
evant from a combinatorial perspective. In the first example the underlying space is
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the Cartesian product of a finite sequence of nonempty finite sets. The correspond-
ing semirings are related to the development of Szemerédi’s regularity method for
hypergraphs as we shall see in Part II.

ExXaMPLE 1. Let d € N with d > 2 and Vi, ..., V; nonempty finite sets. We
view the Cartesian product V7 x --- x Vy as a discrete probability space equipped
with the uniform probability measure. For every nonempty subset F of [d] let
TE: Hie[d] Vi = [Licr Vi be the natural projection and set

Ap = {wgl(A):Ag Hv} (1.11)
i€EF
The family Ap is an algebra of subsets of Vj x --- x V; and consists of those sets
which depend only on the coordinates determined by F.
More generally, let F be a family of nonempty subsets of [d]. Set k = |F| and
observe that, by Corollary 1.4, we may associate with the family F a k-semiring Sr
on Vi X .-+ x V; defined by the rule

SesSreS= ﬂ Ap where Ap € Ap for every F' € F. (1.12)
FeF

Notice that if the family F satisfies [d] ¢ F and UF = [d], then it gives rise to a
non-trivial semiring whose corresponding uniformity norm is a genuine norm.

It turns out that there is a minimal non-trivial semiring S, one can obtain
in this way. It corresponds to the family Fim = ([iﬂ) and is particularly easy to
grasp since it consists of all rectangles of V; x --- x V. The Syiy-uniformity norm
is known as the cut norm and was introduced by Frieze and Kannan [FK99].

At the other extreme, this construction also yields a maximal non-trivial semir-
ing Spax on Vq X - -+ x V. It corresponds to the family Fiax = ( d[f]l) and consists of
those subsets of the product which can be written as A1 N--- N Ay where for every
i € [d] the set A; does not depend on the i-th coordinate. The Spax-uniformity norm
is known as the Gowers box norm and was introduced by Gowers [Gow06, Gow07].

This norm should not be confused with the box norms that are discussed in Chapter
7.

In the second example the underlying space is of the form X x X where X is
the sample space of a probability space (X, X, ). The corresponding semirings are
related to the theory of convergence of graphs (see, e.g., [BCLT08, Lov12]).

ExAMPLE 2. Let (X, X, 1) be a probability space and define

So={SxT:5Tex}. (1.13)
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That is, S is the family of all measurable rectangles of X x X. By Corollary 1.4,
we see that Sp is a 2-semiring on X x X. The Sp-uniformity norm is also referred to

as the cut norm and is usually denoted by || - ||g. In particular, for every integrable
random variable f: X x X — R we have
\f\|gzsup{|/ £ dyl :S,Te]—"}. (1.14)
SxT

There is another natural semiring in this context which was introduced by Bollobés
and Nikiforov [BNO8] and can be considered as the “symmetric” version of Sn.

Specifically, let
Sg={SxT:8T¢cY¥ andeither S =T or SNT =0} (1.15)

and observe that ¥ is a 4-semiring which is contained, of course, in Sg. On the
other hand, note that the family Sg is not much larger than ¥ since every element
of Sg can be written as the disjoint union of at most 4 elements of 5. Therefore,
for every integrable random variable f: X x X — R we have

Ifllen < 1fllo < 4l fllsq- (1.16)



CHAPTER 2

Regularity lemma via martingales

2.1. Backround material

A main ingredient towards the proof of the Regularity Lemma is the following

martingale differences inequality.

2.1.1. A martingale difference sequence inequality. Let (X,%, ) be a
probability space and recall that a finite sequence (d;)}_, of integrable real-valued
random variables on (X, X, i) is said to be a martingale difference sequence if there
exists a martingale (f;)I, such that dy = fo and d; = f; — fi—1 if n > 1 and ¢ € [n].

It is clear that every square-integrable martingale difference sequence (d;);" is
orthogonal in Ly and, therefore,

(S naatz) =1 ail,. 1)
1=0 i=0

We will need the following extension of this basic fact.

PROPOSITION 2.1. Let (X, X, ) be a probability space and 1 < p < 2. Then for
every martingale difference sequence (d;)i_ in Ly(X, 3, 1) we have

(éndiuip)l/z < (pil)l/2 Hédin%. (2.2)

—1/2 appearing in the right-hand

It is a remarkable fact that the constant (p — 1)
side of (A.5) is best possible. This sharp estimate was recently proved by Ricard

and Xu [RX16]. The proof is presented in Appendix A.

2.1.2. Some pieces of notation. We now introduce some pieces of notation
that we need in the statement and proof of the Regularity lemma that follows. For
every pair k, £ of positive integers, every 0 < o < 1, every 1 < p < 2 and every
growth function F': N — R we define h: N — N recursively by the rule

. (2.3)
h(i +1) = h(i) + [o2 £ FRO+2(0)2(p — 1)1

13
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and we set

R= h(WJ_Q(p -1 - 1). (2.4)
Finally, we define

Reg(k, (,0,p, F) = F)(0). (2.5)
Note that if F': N — N is a primitive recursive growth function which belongs to
the class £" of Grzegorczyk’s hierarchy for some n € N (see, e.g., [Ros84]), then the

numbers Reg(k, ¢, o, p, F) are controlled by a primitive recursive function belonging
to the class £™ where m = max{4,n + 2}' .

2.2. Regularity Lemma

We are now ready to state the main result of this chapter.

THEOREM 2.2. Let k, £ be positive integers, 0 <o <1,1<p<2and F: N—=R

a growth function. Also let (X,%, 1) be a probability space and (S;) an increasing
sequence of k-semirings on X with S; C X for every i € N. Finally, let C be a family
in Ly(X,%, p) such that || f||z, <1 for every f € C and with |C| = £. Then there
extst

(a) a natural number N with N < Reg(k,¢,0,p, F),

(b) a partition P of X with P C Sy and |P| < (k+ 1)V, and

(¢) a finite refinement Q of P with Q C S; for some i > N
such that for every f € C, writing f = fsr + ferr + funt where

foo =E(f [ Ap), fer =E(f|AQ) —E(f | Ap) and funs = f—E(f|Ag), (2.6)

we have the estimates

errr”Lp <o and ||funf”$i < (27)

F(i)
for every i € {0,...,F(N)}.

The case “p = 2” in Theorem 2.2 is essentially due to Tao [Tao06b, TaoO6c,
Taoll]. His approach, however, is somewhat different since he works with o-algebras
instead of k-semirings.

The increasing sequence (S;) of k-semirings can be thought of as the higher-
complexity analogue of the classical concept of a filtration in the theory of mar-
tingales. In fact, this is more than an analogy since, by applying Theorem 2.2
to appropriately selected filtrations, one is able to recover the fact that, for any
1 <p <2, every L, bounded martingale is L, convergent. We discuss these issues
in section 4.1.

1For more information about primitive recursive functions see [DK16, Appendix A]
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We also note that the idea to obtain “uniformity” estimates with respect to an
arbitrary growth function has been considered by several authors. This particular
feature is essential when one wishes to iterate this structural decomposition (this
is the case, for instance, in the context of hypergraphs — see, e.g., [Tao06¢]). On
the other hand, the need to “regularize”, simultaneously, a finite family of random
variables appears frequently in extremal combinatorics and related parts of Ramsey
theory (see, e.g., [DKT14, DKK18]). Nevertheless, in most applications one deals
with a single random variable and with a single semiring. Hence, we will isolate this
special case in order to facilitate future references.

To this end, for every positive integer k, every 0 < o0 < 1, every 1 < p < 2 and
every growth function F: N — R we set

Rog/(k,0,p, F) = (k + 1)featbLont) (2.8)

where F’: N — R is the growth function defined by the rule F'(n) = F((k + 1)")
for every n € N. We have the following corollary.

COROLLARY 2.3. Let k be a positive integer, 0 < ¢ < 1, 1 < p < 2 and
F: N — R a growth function. Also let (X,%, u) be a probability space and let S be
a k-semiring on X with S C ¥. Finally, let f € Ly(X,%, u) with || f||z, <1. Then
there exist
(a) a positive integer M with M < Reg'(k, o, p, F),
(b) a partition P of X with P C S and |P| = M, and
(¢c) a finite refinement Q of P with Q C S

such that, writing f = fstr + ferr + funt where

fso =E(f | Ap), ferr =E(f|Ag) —E(f | Ap) and funs=f—E(f|Ag), (2.9)

we have the estimates
1

FOI (2.10)

[ ferrllz, < 0 and || funtlls <

Finally, we notice that the assumption that 1 < p < 2 in the above results is
not restrictive, since the case of random variables in L, for p > 2 is reduced to the
case p = 2. On the other hand, we remark that Theorem 2.2 does not hold true for
p =1 (see Section 4.1). Thus, the range of p in Theorem 2.2 is optimal.

2.2.1. Proof of Theorem 2.2. We start with the following lemma.

LEMMA 2.4. Let k be a positive integer, p > 1 and 0 < § < 1. Also let (X, %, 1)
be a probability space, S a k-semiring on X with S C X, Q a finite partition of X
with @ € S and f € Ly(X, %, p) with [|f —E(f | Ag)|ls > 6. Then there exists a



16 2. REGULARITY LEMMA VIA MARTINGALES

refinement R of Q with R C S and |R| < |Q|(k + 1), and such that |E(f | Ar) —
E(f1 A9z, > 0.

PROOF. By our assumptions, there exists S € S such that
]/S(f—IE(fMQ)) dp| > 6. (2.11)

Since S is a k-semiring on X, there exists a refinement R of Q such that: (i) R C S,
(ii) IR| < |Q|(k + 1), and (iii) S € Ag. It follows, in particular, that

| B Am dn = | ran (2.12)
Hence, by (2.11) and the monotonicity of the L, norms, we obtain that
o< | [ (B AR) ~ B(F | A0)) (2.13)
< IE(f | AR) ~ B(f | AQ)lln, < IE(/ | AR) — E(f | AQ)ll,
and the proof is completed. 0

We proceed with the following lemma.

LEMMA 2.5. Let k, ¢ be positive integers, 0 < §,0 <1 and 1 < p < 2, and set

(2.14)

n =

(025]
(p-1)1
Also let (X, %, 1) be a probability space and let (S;) be an increasing sequence of
k-semirings on X with S; C X for every i € N. Finally, let m € N and P a partition
of X with P C Sy, and |P| < (k+1)"™. Then for every family C in Ly(X, X, u) with
IC| = ¢ there exist j € {m,...,m +n} and a refinement Q of P with Q C S; and
|O| < (k+ 1), and such that either

(a) E(f|Ag) —E(f[Ap)|L, > o for some f €C, or

(b) E(f[AQ)—E(f[Ap)lL, < o and [|[f=E(f | Ag)lls;, < for every f € C.

The case “p = 2” in Lemma 2.5 can be proved with an “energy increment strat-
egy” which ultimately depends upon the fact that martingale difference sequences
are orthogonal in Lo (see, e.g., [Tao06b, Theorem 2.11]). In the non-Hilbertian case
(that is, when 1 < p < 2) the geometry is more subtle and we will rely, instead,
on Proposition 2.1. The argument can therefore be seen as the L,-version of the
“energy increment strategy”. More applications of this method are given in the next
chapter 6.

PROOF OF LEMMA 2.5. Assume that the first part of the lemma is not satisfied.
Note that this is equivalent to saying that
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(H1) for every j € {m,...,m + n}, every refinement Q of P with @ C §; and
|Q] < (k+1)7 and every f € C we have |[E(f|Ag) —E(f|Ap)|z, <o.

We will use hypothesis (H1) to show that part (b) is satisfied.

To this end we will argue by contradiction. Let j € {m,...,m +n} and let Q
be a refinement of P with Q C S; and |Q| < (k+1)7. Observe that hypothesis (H1)
and our assumption that part (b) does not hold true, imply that there exists f € C
(possibly depending on the partition Q) such that ||f —E(f|.Ag)lls,,, > d. Since

the sequence (S;) is increasing, Lemma 2.4 can be applied to the k-semiring Sj41,
the partition Q and the random variable f. Hence, we obtain that

(H2) for every j € {m,...,m+n} and every refinement Q of P with @ C S; and
|Q] < (k + 1)7 there exist f € C and a refinement R of Q with R C S;41
and |R| < (k+1)7*!, and such that |E(f | Azr) — E(f]Ag)|z, > 0.

Recursively and using hypothesis (H2), we select a finite sequence Py,...,P, of
partitions of X with Py = P and a finite sequence fi,..., f, in C such that for
every i € [n] we have: (P1) P; is a refinement of P;_1, (P2) P; C Sp4i and |P;| <
(k+1)™*" and (P3) |E(f; | Ap,) — E(fi | Ap,_,)|z, > 0. It follows, in particular,
that (Ap,)i is an increasing sequence of finite sub-o-algebras of ¥.. Also note that,
by the classical pigeonhole principle and the fact that |C| = ¢, there exist g € C and
I C [n] with |I| > n/¢ and such that g = f; for every i € I.

Next, set f = g—E(g| Ap) and let (d;)}"_, be the difference sequence associated
with the finite martingale E(f | Ap,),...,E(f|Ap,). Observe that for every i € I
we have d; = E(g | Ap,) —E(g | Ap,_,) and so, by the choice of I and property (P3),
we obtain that ||d;||, > ¢ for every i € I. Therefore, by Proposition 2.1, we have

(2.14

. < VP‘15(%>1/2<\/p—16\111/2 (2.15)
- /
< Vo1 (Xladz,)”
=0

(A.5) n
< Do dill,, = IE(g] Ap,) —E(g] Ap)lL,-
=0

On the other hand, by properties (P1) and (P2), we see that P, is a refinement of
P with P, C Spyn and |Py| < (k+1)™*". Therefore, by hypothesis (H1), we must
have ||E(g|Ap,) — E(g|Ap)|r, < o which contradicts, of course, the estimate in
(2.15). The proof of Lemma 2.5 is thus completed. O

The following lemma is the last step of the proof of Theorem 2.2.



18 2. REGULARITY LEMMA VIA MARTINGALES

LEMMA 2.6. Let k, £ be positive integers, 0 <o <1, 1 <p<2and H: N>R
a growth function. Set L = [£a=2(p — 1)1 and define (n;) recursively by the rule

ng = 0,
niy1 = n; + [02 0 H(n;)*(p—1)71].

Also let (X, %, 1) be a probability space and let (S;) be an increasing sequence of
k-semirings on X with S; C X for every i € N. Finally, let C be a family in
Ly(X, %, ) such that ||fl|z, < 1 for every f € C and with |C| = £. Then there
exist j € {0,...,L =1}, J € {nj,...,njq1} and two partitions P, Q of X with the
following properties: (i) P C Sp; and @ C Sy, (i) |P| < (k+1)" and [Q] <
(k+1)7, (ili) Q is a refinement of P, and (iv) |E(f | Ag) —E(f | Ap)|L, < o and
If = E(f1 A0)s,.r < 1/H(nj) for every f €C.

PROOF. It is similar to the proof of Lemma 2.5. Indeed, assume, towards a

(2.16)

contradiction, that the lemma is false. Recursively and using Lemma 2.5, we select a
finite sequence Jy, ..., Jr in N with Jy = 0, a finite sequence Py, . .., Py, of partitions
of X with Py = {X} and a finite sequence fi, ..., fr in C such that for every i € [L]
we have that: (P1) J; € {n;_1,...,n;}, (P2) the partition P; is a refinement of P;_1,
(P3) Pi © SJi with ’Pl| < (k + 1)Jia and (P4) HE(f’L ’API) - E(fl |"4Pi—1)HLp > 0.
As in the proof of Lemma 2.5, we observe that (Ap,)E is an increasing sequence
of finite sub-o-algebras of ¥, and we select g € C and I C [L] with |I| > L/¢ and
such that g = f; for every i € I. Let (di)iLZO be the difference sequence associated
with the finite martingale E(g | Ap,),...,E(g|Ap,). Notice that, by property (P4),
we have ||d;||, > o for every i € I. Hence, by the choice of L, Proposition 2.1 and
the fact that |g[|z, < 1, we conclude that

L

1 < p—1oI'?<\/p—1. (ZHdiH%p)l/2 (2.17)

=0
H Zd I, = IE(g | AL, < llgllz, <1

which is clearly a contrad1ct10n. The proof of Lemma 2.6 is completed. (|
We are ready to complete the proof of Theorem 2.2.

PROOF OF THEOREM 2.2. Fix the data k,¢,o,p, the growth function F', the
sequence (S;) and the family C. We define H: N — R by the rule H(n) = F"*+2)(0)
and we observe that H is a growth function. Moreover, for every ¢ € N let m; =
F®(0) and set S! = Sy, Notice that (S}) is an increasing sequence of k-semirings
of X with §/ C X for every i € N.
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Let j,J,P and Q be as in Lemma 2.6 when applied to k, ¢, o, p, H, the sequence
(2;) and the family C. We set

N =m,, = F")(0) (2.18)
and we claim that the natural number N and the partitions P and Q are as desired.
Indeed, notice first that n; < ny_;1. Since F' is a growth function, by the choice

of h and R in (2.3) and (2.4) respectively, we have

N < Foe-0 ) = F®(0) %) Reg(k, £, 0, p, F). (2.19)

On the other hand, note that n; < F(™)(0) = N and so |P| < (k+ 1) < (k+ 1)V
and P C szj = Sy. Moreover, by Lemma 2.6, we see that Q is a finite refinement of
P with @ C S; for some i > N. It follows that NV, P and Q satisfy the requirements
of the theorem. Finally, let f € C be arbitrary and write f = fstr + ferr + funf Where

fotr = E(f’A’P)a Jerr = E(f|AQ) - E(f|"47’) and funr = f — E(f"AQ) Invoking

Lemma 2.6, we obtain that

[ ferrllz, = IE(f [ Ag) — E(f | Ap)l|L, < o (2.20)
Also observe that n; +1 < J + 1 which is easily seen to imply that Sp(y) C S/ 1

Therefore, using Lemma 2.6 once again, for every i € {0,..., F(N)} we have
[funtlls; = [If =E(f[Ao)lls; < If = E(f[Ad)ls,, (2.21)
1 1
< = <

H(n;)  F(F(N)) = F@)
The proof of Theorem 2.2 is completed. (|



CHAPTER 3

Applications of the regularity lemma

In this chapter we present two applications of Theorem 2.2. More applications of
Theorem 2.2, such as the well-known Szemerédi’s regularity lemma ([Sze78, Tao06b])
may be found in [DK16].

3.1. Martingale convergence theorem

Our goal in this section is to use Theorem 2.2 to show the well-known fact that,
for any 1 < p < 2, every L, bounded martingale is L,, convergent (see, e.g., [Durl0]).
Besides its intrinsic interest, this result also implies that Theorem 2.2 does not hold
true for the end-point case p = 1. In fact, based on the argument below, one can
easily construct a counterexample to Theorem 2.2 using any L; bounded martingale
which is not L; convergent.

We will need the following known approximation result (see, e.g., [Pis16]). We

recall the proof for the convenience of the reader.

LEMMA 3.1. Let (X,3, u) be a probability space and p > 1. Also let (g;) be a
martingale in L,(X,3, u) and § > 0. Then there exist an increasing sequence (3;)
of finite sub-c-algebras of ¥ and a martingale (f;) adapted to the filtration (3;) such
that ||g; — fillz, < 0 for everyi € N.

Proor. Fix a filtration (B;) such that (g;) is adapted to (B;) and let (4A;) be
the martingale difference sequence associated with (g;). Recursively and using the
fact that the set of simple functions is dense in L,, we select an increasing sequence
(%;) of finite sub-o-algebras of ¥ and a sequence (s;) of simple functions such that
for every i € N we have that: (i) ¥; is contained in By, (ii) [|A; — sz, < §/2772,
and (iii) s; € Lp(X, %, ). For every ¢ € N let d; = E(A;|%;) and notice that the
sequence (d;) is a martingale difference sequence since, by (i),

E(dis11%i) = E(E(Aip1 | Fi1) | %) (3.1)
= E(Ais1|%) =E(E(Ai1 | Bi) [ Zi) = 0.

20
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Thus, setting f; = do + --- + d;, we see that (f;) is a martingale adapted to the
filtration (3;). Moreover, by (ii) and (iii), for every ¢ € N we have

| >

+ ) sk — dillw, (3.2)

i
lg: = fill, < D IAK—dillz, <
k=0 k=0

5 < 5 <
= 3+ D IE(sk — Ag [ Sz, < 5t > llsk — Agllz, <6
k=0 k=0
and the proof is completed. [l

We will also need the following well known fact that martingale difference se-
quences are monotone basic sequence in Ly, for p > 1, i.e. if (d;)_, is a martingale
difference sequence in L, for some p > 1, then for every 0 < k < n and every
aop, . ..,an € R we have

k n
1 " aidilln, <) aidillz,. (3.3)
i=0 i=0
In particular,

V4 n
”ZdiHLp < 2”ZdiHLP7 (3.4)
i—k =0

for every 0 < k < ¢ < n.! We pass now to the main theorem of this section.

THEOREM 3.2. Let 1 < p < 2 and (X, X, u) be a probability space. Then any
Ly(X,%, 1) bounded martingale is L, convergent.

Assume, towards a contradiction, that there exists a bounded martingale (g;)
in L,(X,3, ) which is not norm convergent. By (3.4), we see that (g;) has no
convergent subsequence whatsoever. Therefore, by passing to a subsequence of
(9i) and rescaling, we may assume that there exists 0 < ¢ < 1/3 such that: (i)
lgillL, < 1/2 for every i € N, and (ii) ||g; — gjl/z, = 3¢ for every i, j € N with i # j.
By Lemma 3.1 applied to the martingale (g;) and the constant “0 = £”, there exist

(P1) an increasing sequence (¥;) of finite sub-o-algebras of ¥, and
(P2) a martingale (f;) adapted to the filtration (%;)

such that [|g; — fil|z, < € for every i € N. Hence,

(P3) || fill, <1 for every i € N, and
(P4) |Ifi = fillL, = € for every i,j € N with i # j.

I¥or further properties of martingale difference sequences see Appendix A.
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Notice that, by (P1), for every i € N the space L,(X,3, 1) is finite-dimensional.
Since || - ||, is @ norm on L,(X, X, 1), there exists a constant C; > 1 such that

Ifll7 < 1fllz, < Cill flls, (3.5)

for every f € L,(X,%, p).
Define F': N — R by the rule

7

F(i)=(i+1)+(8/2) ) _Ci (3.6)

Jj=0

and observe that F' is a growth function. Next, set
n = F(Reg(1,1,¢/8,p,F)) + 1 (3.7)

and let (S;) be defined by §; = %; if i < n and §; = %, if i > n. Clearly, (S;) is an
increasing sequence of 1-semirings on X. We apply Theorem 2.2 to the probability
space (X,X,,u), the sequence (S;) and the random variable f,, and we obtain a
natural number N < Reg(1,1,¢/8,p, F), a finite partition P of X with P C Sy and
a finite refinement Q of P such that, writing f, = fstr + ferr + funt Where

fstr = E(fn ’A'P)u ferr = E(fn ‘ -AQ) - E(fn | -AP) and funf - fn - ]E(fn | AQ):

we have that || fer||z, < /8 and || funtlls;, < 1/F (i) for every i € {0,...,F(N)}. In
particular, by the choice of n and (S;), we see that

1

g
err < o d un < T AT 1) .
Now observe that, by property (P2),
fN = E(fn | z:N) = E(fstr ‘ EN) + IlE(ferr | EN) + IlE(funf | ZN) (3'9)

and, similarly,
Ini1 = E(fn[En41) = E(fsor | Env11) + E(ferr [ En41) + E(fune [ Eng1). (3.10)
The fact that P C Sy yields that Ap C Xy C X x4 and so
fstr = E(fstr | ) = E(fotr | Xny1)- (3.11)

On the other hand, by (3.8), we have

HE(ferr | Z:N)”Lp < and ”E(ferr ‘ EN-H)HLP < (3'12)

ool ™

£
8
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Finally, notice that E( funf | Xn) € Lp(X, %, p). Thus, by (3.5) and Lemma 1.5, we
obtain that

[E(funt |EN)lL, < ONIE(funt|EN) [y < On|lfuntllzy (3.13)
(38) Oy (36 ¢
< un < ———— < -.
CNHf fHEN-H F(N+1) 3
With identical arguments we see that
€
[E(funt | En+1)lz, < 3 (3.14)

Combining (3.9)-(3.14), we conclude that || fx — fn11l/z, < /2 which contradicts,
of course, property (P4). Hence, every bounded martingale in L, (X, 3, 1) is norm
convergent, as desired.

3.2. Weak and strong regularity lemmas for graphons

We now extend the, so-called, strong regularity lemma for Lo graphons (see, e.g.,
[Lov12, LSOT7]).
Let (X,%, ) and W be an Ly, graphon.” Also, let R be a finite partition of X with
R C ¥ and notice that the family

R?2={SxT:5T¢cR} (3.15)

is a finite partition of X x X. Asin Chapter 1, let A2 be the o-algebra on X x X
generated by R? and observe that A2 consists of measurable sets. If IW: X x X — R
is a graphon, then the conditional expectation of W with respect to Ag2 is usually
denoted by Wx. Note that Wy is also a graphon and satisfies (see, e.g., [Lov12])

Wrlo < [IWllo (3.16)

where || - ||g is the cut norm defined in (1.14). On the other hand, by standard
properties of the conditional expectation (see, e.g., [Durl0]), we have |[Wg||r, <
Wz, for any p > 1. It follows, in particular, that Wz is an L, graphon provided,
of course, that W € L,,.

We have the following Proposition.

PROPOSITION 3.3 (Strong regularity lemma for L, graphons). For every 0 <
e <1, every 1 < p <2 and every positive function h: N — R there exists a positive
integer s(e,p, h) with the following property. If (X,%, ) is a probability space and
W: X x X — Ris an Ly graphon with ||W{|r, < 1, then there exist a partition R

2 For the definition of a graphon see Basic Concepts & General Notation in the beging of the
thesis. Also for further results about L, graphons see [BR09, BCCZ14].
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of X with R C ¥ and |R| < s(e,p, h), and an L, graphon U: X x X — R such that
|W —Ul|, <& and |U — Ug|lo < h(|R]).

PROOF. Fix the constants €, p and the function h, and define F': N — R by the
rule

F(n) = B h(Sl (3.17)
1=0

Notice that F' is a growth function. We set
S<6apa h) = Reg/(47€7p7 F) (318)

and we claim that with this choice the result follows.

Indeed, let (X, X, i) be a probability space and fix an L, graphon W: X xX — R
with [[W]|L, < 1. Also let ¥g be the 4-semiring on X x X which is defined via
formula (1.15) for the given probability space (X, 3, ). We apply Corollary 2.3 to
Y0 and the random variable W and we obtain

(a) a partition P of X x X with P C Y7 and |P| < Reg’(4,¢,p, F), and
(b) a finite refinement Q of P with Q C ¥

such that, writing the graphon W as Wy, + Wepr + Wy where Wy, = E(W | Ap),
Werr = E(W | Ag) —E(W | Ap) and Wyne = W —E(W | Ag), we have the estimates
|[Werellz, < € and [|[Wnt|lsy, < 1/F(|P[). Note that, by (a) and (b) and the
definition of the 4-semiring ¥ in (1.15), there exist two finite partitions R, Z of X
with R, Z C ¥ and such that P = R? and Q = Z2. It follows, in particular, that
the random variables Wt,, Werr and Wy are all L, graphons.
We will show that the partition R and the L, graphon U := Wy + Wynt are as
desired. To this end notice first that
R < R? = [P| < Reg/(4,e,p. F) "= s(e.p. h). (3.19)

Next observe that
W — U”Lp = HWerrHLp <e. (3.20)

Finally note that, by (3.16), we have ||(Wunf)r |0 < ||Wunt||o. Moreover, the fact
that P = R? and the choice of Wy, yield that (Wst)r = Wit Therefore,

(1.16)
IU=Urlo < 2[Wudlo < 8[Wuntllss < (3.21)

F(|Pl)
(3.19) g (317
< sy S AR

and the proof of Corollary 3.3 is completed. O
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We pass now to the so called weak regularity lemma. In [BCCZ14] Borgs,
Chayes, Cohn and Zhao extended the weak regularity lemma that already existed
for Ly graphons (see, e.g., [Lov12]) to L, graphons for any p > 1. Their extension
follows, of course, from Proposition 3.3, but this reduction is rather ineffective since
the bound obtained by Proposition 3.3 is quite poor. However, this estimate can be
significantly improved if instead of invoking Corollary 2.3, one argues directly as in
the proof of Lemma 2.5. More precisely, we have the following result.

PROPOSITION 3.4 (Weak regularity lemma for L, graphons.). For every 0 <
e <1, every 1 < p < 2, every probability space (X,%,p) and every L, graphon
W: X x X =R with [W||L, <1 there exists a partition R of X with R C X and

IR| < 4D (3.22)
and such that ||[W — Wgllo < e.

The estimate in (3.22) matches the bound for the weak regularity lemma for the
case of Lo graphons (see, e.g., [Lov12]) and is essentially optimal.
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CHAPTER 4
Hypergraph systems

We introduce the concept of a hypergraph system (see [Tao06c, DK16, DKK15,
DKK18])

DEFINITION 4.1. A hypergraph system is a triple
A = (n, ((Xi, 5, ;) i € [n]), H) (4.1)

where n is a positive integer, ((X;, X, p;) : @ € [n]) is a finite sequence of probability
spaces and H is a hypergraph on [n]. If H is r-uniform, then S will be called an
r-uniform hypergraph system. On the other hand, if for every i € [n], (X;, Xi, i)

is n-nonatomic, then H will be called n-nonatomic.

Given a hypergraph system J# = (n, ((X;, %, i) : i € [n]), H) by (X, X, u) we
denote the product of the spaces ((X;, i, i) : i € [n]). More generally, for every
nonempty e C [n] let (X, 3¢, pte) be the product of the spaces ((X;, X;, i) 1 i € €)
and observe that the g-algebra 3. can be “lifted” to X by setting

Be = {ng(A) tAeX.} (4.2)

where m.: X — X, is the natural projection. Observe that if f € L1(X, B, ),
then there exists a unique random variable f € L1 (X, 3, pte) such that

f=Ffor. (4.3)
and note that the map L1 (X, B, ) 3 f — f € L1(Xe, Xe, He) is a linear isometry.
Now, when |e| > 2, let de = {e/ Ce:|e/| = |e| — 1} and define
Spe = () Ber C Be. (4.4)
e’€de
Observe that for every |e| > 2, Sy is a |e| — 1 semiring. Hence, if f € L1(X,, X, pte)

is a random variable its uniformity norm on the previous semiring is

1lls,, = sup{] /A fdul: A€ Syl (4.5)

From now on, we will refer to this norm as the cut norm of f. Also, observe that
every A € Sy, is the intersection of events which depend on fewer coordinates, and
so it is useful to view the elements of Sy, as “lower-complexity” events.

28
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We present now a Sierpinski type result in the context of np-nonatomic hyper-
graph systems which will be very useful.

ProrosiTiION 4.2. Letn,r e Nwithn>2r 22 and0 < a,n <1 withrn < 1—a.
Also let 7 = (n, (X4, Zi, 1i): 1 € [n]),H) be an n-nonatomic hypergraph system,
and let e € ‘H with |e|] = r. Then for every A € Sp. with pu(A) < a there ezists
B € Sy, with AC B and a < u(B) < a+ 21n.

Before we proceed to the proof of the previous Proposition we need some pre-
liminary work. To this end, recall that the classical theorem of Sierpinski asserts
that for every nonatomic finite measure space (X, %, u) and every 0 < ¢ < u(X)
there exists C' € ¥ with pu(C) = ¢. This result may be extended on n-nonatomic
probability spaces in the following way.

LEMMA 4.3. Let n > 0 and (X, %, u) be an n-nonatomic probability space. Also
let B € ¥ with u(B) > n and n < ¢ < u(B). Then, there exist C € ¥ with C C B
and ¢ < p(C) < c+n.

Lemma 4.3 is straightforward for discrete probability spaces. The general case fol-
lows from the aforementioned result of Sierpinski and a transfinite exhaustion argu-

ment. More precicely,

PROOF OF LEMMA 4.3. Assume not, that is,
(H) for every C € ¥ with C' C B either u(C) < c or u(C) = c+n.

We will use hypothesis (H) to construct a family (Z,, : @ < wj) of measurable events
of (X,%, u) such that u(Z,) < ¢ and pu(Zat1 \ Zo) > 0 for every o < wq. Clearly,
this leads to a contradiction.

We begin by setting Zy = (). If « is a limit ordinal, then we set Z, = Uﬁ<a Z3;
notice that u(Z,) < ¢ and so, by hypothesis (H), we see that u(Z,) < c. Finally, let
a = B+ 1 be a successor ordinal. By Sierpinski’s result and hypothesis (H), the set
B\ Z, must contain a set A € Atoms(X). We set Z,11 = Zo U A and we observe
that ((Zat1 \ Za) = n(A) > 0. Also notice that pu(Zay1) < ¢+ n. Thus, invoking
hypothesis (H) once again, we conclude that p(Zy41) < ¢ and the proof of Lemma
4.3 is completed. ]

We are ready now to prove Proposition 4.2

PROOF OF PROPOSITION 4.2. We argue as in the proof of Lemma 4.3. Specifi-
cally, fix A € Sy, with pu(A) < a and assume, towards a contradiction, that

(H) for every B € Sy, with A C B either u(B) < a or u(B) > a + 2.
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For every ¢’ € Je we select A € B such that A = (,cg, Aer and we observe that

37 (X \ Ay) >u(X\ N Ae/) >1—a3m. (4.6)

e’€0e e’€0e
Therefore, there exists €] € de such that p(X \ Acr) > n. Since 7 is n-nonatomic
we see that u(A) < n"~! < g for every atom A of (X, B, ). Hence, by Lemma 4.3
applied for “A = X\ A,” and “c =", there exists B, € B, with By, C X \ A,
and n < p(By) < 2n. We set Aii = Ay UB, and Al = Ao if € € de\ {€}}.
Notice that: (i) p,(Aé,l) > p(Ae) +n, (i) Nercoe Al € Spe, and (iil) A C Nyeoe A
Moreover, p((\oege AL) < m(A) +2n < a + 2n and so, by hypothesis (H), we
obtain that p( (N cg. AY) < a. It follows, in particular, that the estimate in (4.6)
is satisfied for the family (A, : €’ € de).

Thus, setting M = [2r/n], we select recursively: (a) a finite sequence (¢! )M

m=1
in de, and (b) for every ¢’ € Je a finite sequence (A™)M_ | in B, with A% = A/,
such that for every m € [M] the following hold.
(C1) For every ¢’ € de we have A”/~1 C A™. Moreover, p(AL ) > M(AZ,;_I) +1.
(C2) We have (N AT < a.

e’€de ‘e’
By the classical pigeonhole principle, there exist L C [M] with |L| > M/r and
g € Oe such that e}, = g for every m € L. If £ = max(L), then by (C1) we conclude
that u(Af;) > 2 which is clearly a contradiction. O



CHAPTER 5

L, regular random variables

5.1. The class of L, regular random variables

We describe now a generalisation of L, random variables in the context of hyper-
graph systems, the class of L, regular random variables (see [BCCZ14, DKK18]).
These random variables satisfy a Holder-type inequality, a property which will play
a crucial role in what follows.

Before we introduce the aforementioned family of random variables it is useful
to recall one of the most well known pseudorandomness conditions for graphs, in-
troduced in [Koh97, KR03]. Specifically, let G = (V, E) be a finite graph and let
p:=|FE|/ (|‘2/|) denote the edge density of G; the reader should have in mind that we
are interested in the case where G is sparse, that is, in the regime p = o(|V|?). Also,
let D >1and 0 <« < 1, and recall that the graph G is said to be (D, y)-bounded
provided that for every pair X, Y of disjoint subsets of V' with |X|,|Y| = ~|V|, we
have |[E N (X xY)| < Dp|X||Y|. This natural condition expresses the fact that the
graph G has “no large dense spots”, and is satisfied by several models of sparse
random graphs (see, e.g., [BR09]).

Without further redue we proceed to the definition of L, regular random vari-
ables.

DEFINITION 5.1. Let 7 = (n, ((X;, X4, i) : @ € [n]),H) be a hypergraph system.
Also let C;m > 0 and 1 < p < o0, and let e € H with |e| > 2. A random variable
f e Li(X,Be, p) is said to be (C,n,p)-regular (or simply L, regular if C and n are
understood) provided that for every partition P of X with P C Spe and u(A) = n
for every A € P we have

IECf [ APz, <C. (5.1)

The main point in Definition 5.1 is that, even though we make no assumption
on the existence of moments, an L, regular random variable behaves like a function
in L, as long as we project it on sufficiently “nice” o-algebras of X.

Notice that L, regularity becomes weaker as p becomes smaller. In particular,
the case “p =17 is essentially of no interest since every integrable random variable
is Ly regular.

31
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On the other hand, in the context of graphs L, regularity reduces to the bound-
edness hypothesis that we mentioned above. Indeed, it is not hard to see that a
bipartite graph G = (V1, Vo, E)) with edge density p is (D, v)-bounded for some D, ~y
if and only if the random variable 15 /p is Lo regular. (Here, we view V; and
Vs as discrete probability spaces equipped with the uniform probability measures.)
For weighted graphs, however, L, regularity is a more subtle property. It is im-
plied by the pseudorandomness conditions appearing in the work of Green and Tao
[GT08, GT10], though closer to the spirit of this work is the work of Tao in [Tao06a].

Between the above extremes there is a large class of sparse weighted hypergraphs
(namely those which are L, regular for some 1 < p < oo) which are, as we shall see,
particularly well-behaved.

5.2. A Holder-type inequality for L, regular random variables

A useful inequality when studying L, random variables is the Holder inequal-
ity. The following proposition asserts that a similar inequality holds for L, regular
random variables.

PRrOPOSITION 5.2 (Holder-type inequality). Let n,r € N with n > r > 2 and
0<n<(r+1)7t Alsolet C >0 and 1 < p < oo, and let q be the conjugate
exponent of p. Finally, let 7 = (n,{((X;,Xi, pi): @ € [n]),H) be an n-nonatomic
hypergraph system, e € H with |e| = r, and let f € L1(X,Be, i) be nonnegative.
Then the following hold.

(a) If f is (C,n,p)-regular, then for every A € Sy, we have

(/Afd“>q < CUu(A) + (r +3)n). (5.2)

(b) On the other hand, if (5.2) is satisfied for every A € Sy,, then the random
variable f is (K,n,p)-regular where K = C(r + 4)Y4~YP_ In particular,
if p =00, then f is (C(r +4),n, c0)-reqular.

Proposition 5.2 is based on the simple (but quite useful) observation that for
every A € Sy, with p(A) > n we can find a partition of X which almost contains the
set A, and whose members are contained in Sy, and are not too small. We present
this fact in a slightly more general form (this form is related to the semiring defined
on (1.7) and is needed in the next chapter). Recall that for every probability space
(X, %, u) and every finite partition P of X with P C 3, ¢(P) = min{u(P) : P € P}.
Then, we have the following lemma.
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LEMMA 5.3. Let r be a positive integer and 0 < 6 < 1. Also let (X,3, u) be a
probability space, (B;)i_, a finite sequence of sub-c-algebras of X, and set

S= { hAi : A € B; for every i € [r]}
i=1

Then for every A € S with u(A) > 6 there exist: (i) a partition Q of X with
QCSand 1(Q) =0, (ii) a set B € Q with A C B, and (iil) pairwise disjoint sets
Bi,...,B, € S with pi(B;) < 0 for every i € [r], such that B\ A= J,_, B;.

ProoOF. Fix A € § with p(A) > 0 and write A = ();_; A; where A; € B; for
Clr

every i € [r]. For every nonempty [ ] and every i € I let

Cri = ( N Aj) N(X\ A4)
je{terl:t<i}
with the convention that Cr; = X \ A; if ¢ = min(f). It is clear that C;; € S
for every ¢ € I. Moreover, notice that the family {C;; : i € I} is a partition of
X\Nics Ai- Weset G = {i € [r]: u(Cpy;) =0} and we observe that if G = (), then
the trivial partition Q@ = {X} and the sets C, 1, ..., C, satisfy the requirements
of the lemma. So, assume that G is nonempty and let

B = ﬂAi and Q:{B}U{Cg,i:iEG}.
i€G
Also let B; = BNCyp\q, ifi ¢ G, and B; = (0 if i € G. We will show that Q, B and
By, ..., B, are as desired.

Indeed, notice first that Q is a partition of X with Q C S, B€ Q and A C B.
Next, let @ € Q be arbitrary. If Q = B, then u(Q) = u(B) > p(A) > 0. Otherwise,
there exists ¢ € G such that = Cg,;. Since C,j; C Cg; and @ € G, we see that
@) = w(Cqi) = w(Cp;) = 0. Thus, we have ((Q) > ¢. Finally, observe that
By,..., B, €S are pairwise disjoint and

T

B\A=JBnCu) = JBNC e = B
i=1 i¢G i=1

Moreover, for every i ¢ G we have

B; =BNCypngi = < ﬂ Aj> NChnGi € Cp,i
jea

and so p(B;) < pu(Cpy,) < 0. The proof of Lemma 5.3 is completed. O

We are ready now to prove Proposition 5.2.
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PROOF OF PROPOSITION 5.2. (a) Fix A € Spe. If n < p(A), then we claim
that

/ Fp)" < O (u(4) + ). (5.3)
Indeed, by Lemma 5.3, there exist a partition Q of X with Q C Sy, and ¢(Q) > n,
and B € Q with A C B and u(B\ A) < rn. Since f is (C,n, p)-regular we see that

fﬁ{;“m )P < E(f| AQ)z, < C

(Here, we have u(B)Y? =1 if p = co.) Hence,

(/Afdﬂ)q§ (/deu)qgcqu(B)<Cq(u(A)+m7).

Next, assume that 0 < u(A) < 1. Our hypothesis that 0 < n < (r 4+ 1)~! yields
that rp < 1 — n and so, by Proposition 4.2, there exists B € Sy, with A C B and
n < p(B) < 3n. Therefore,

/ fdp, / fdu ! (2 CI((B) +rn) <ClY(pw(A)+ (r+3)n)  (5.4)

and the proof of part (a) is completed.

(b) Let P be an arbitrary partition of X with P C Sy, and ¢«(P) > n. By (5.2) for
every P € P we have [, fdu < C(r+ 4)Yap(P)Y/49. Therefore, if 1 < p < oo,

HE(f|v47>)H]£p = Z (fpfd,u)Pu(P) < CP(r + 4)P/4 Z p(P)P/rH1-p

PeP w(P) PeP
= CP(r+4)P/9|P| < CP(r + 4)P/ap~L,
On the other hand, if p = oo,

[ECf [ AP) Lo = maX{fZ{;)“ :Pec P} < C(“(P)l;(;(; +3)n) <O(r+4)

as desired. OJ




CHAPTER 6

Regularity lemma for L, regular random variables

In this chapter we present a decomposition of L, regular random variables which
first appeared in [DKK18]. The proof proceeds via an “energy”-type increment
argument and is close in the spirit of the proof of Theorem 2.2. More precicely, our
interest is to prove the following result.

THEOREM 6.1 (Regularity Lemma). Let n,7 € N withn > r > 2, and let C > 0
and 1 < p < oo. Alsolet F: N — R be a growth function and 0 < o < 1. Then there
exists a positive integer Reg = Reg(n,r,C,p, F,0) such that, setting n = 1/Reg,
the following holds. Let 7 = (n,((Xi, Xi,pi) : @ € [n]),H) be an n-nonatomic,
r-uniform hypergraph system. For every e € H let fo € L1(X, Be, 1) be nonnegative
and (C,n,p)-reqular. Then there exist

(a) a positive integer M with M < Reg,

(b) for every e € H a partition P. of X with P. C Spe and p(A) = 1/M for
every A € P., and

(c) for every e € H a refinement Q. of P. with Qe C Sy and u(A) = n for
every A € Q,

such that for every e € H, writing fe = f&, + f& + [Sor with
foo =EB(fe| AR), for = E(fe] Ag.) —E(fe| AR), fint = fe —E(fe|Ag.), (6.1)

we have the estimates

1
[fsullz, < Cs Ifenllz,y <o and [ fiallse. < FOM) (6.2)
where pt = min{2, p}.
Note that, unless p = oo, the structured part of the above decomposition

(namely, the function fS,) is not uniformly bounded. This is an intrinsic feature
of L, regular hypergraphs, and is an important difference between Theorem 6.1
and several related results (see, e.g., [BR09] ,|COCF10], [CFZ15], [Gow10], [GT08],
[Koh97], [RTTVO08], [TZ08]). Observe, however, that, by part (b) and (6.2), one
has a very good control on the correlation between f$, and fg;f for every e, e’ € H.
Hence, by appropriately selecting the growth function F', we can force the function
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f&, to behave like a bounded function for many practical purposes. The main part
of the proof of Theorem 6.1 will be given in section 6. Before we proceed to it we

will need some preparatory work.

A partition lemma. Let n,7r e Nwithn>r>2,let C >0and 1 < p < co. Let g
denote the conjuggate exponent of p, i.e. 1/p+1/q =1 and set p’ = min{2, p}. Also
let S = (n, ((Xi, i, i) =i € [n]),H) be an r-uniform hypergraph system. These
data will be fixed throughout this section.

The following result is a refinement of Lemma 5.3. Recall that for every prob-
ability space (X,3, u) and every partition P of X with P C ¥ we write «(P) =
min{u(P): P € P}.

LEMMA 6.2. Let 0 < 9,n <1 ande € H. Let f € L1(X, Be, ) be nonnegative
and (C,n,p)-reqular, and P a finite partition of X with P C Sp.. Assume that

n< (9 uP))* (6.3)

and that S is n-nonatomic. Then for every A € Sy there exist: (i) a refinement
Q of P with Q C Spe and 1(Q) = (V- u(P))?, and (ii) a set B € Ag, such that

/ E(f|Ap)du < Crd and fdu < 5Cr0. (6.4)
AAB AAB

Proor. We fix A € Sy, and we set
0 =99 (P)T L. (6.5)

First, for every P € P we select a partition Op of P with Qp C Sy, and a
set Bp € Spe as follows. Let P € P be arbitrary. If p(AN P) < Op(P), then we
set Qp = {P} and Bp = (). Otherwise, let (P,Xp, up) be the probability space
where ¥p = {C NP : C € ¥} and pp is the conditional probability measure of
p with respect to P, that is, up(C) = u(C N P)/pu(P) for every C € 3. Write
de = {e},...,e;} and for every i € [r] let B; = {BN P : B € By }; observe that B,
is a sub-c-algebra of Xp. Also let S = {ﬂ;zl B; : B; € BB; for every i € [7‘]} C Spe.
By Lemma 5.3 applied to the probability space (P, ¥ p, up) and the set ANP € S,
we obtain: (i) a partition Qp of P with Qp C S and «(Qp) > 0, (ii) aset Bp € Qp
with AN P C Bp, and (iii) pairwise disjoint sets Bf ..., B € S with up(Bf) < 0
for every i € [r], such that Bp \ (AN P) = J._, BF.

Next, we define

Q= U Op and B = U Bp. (6.6)

pPcp pPeP
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Observe that Q is a refinement of P with Q C Spe and ¢(Q) > 0-(P) = (9-+(P))“.
Also note that B € Ag and, setting P* ={P € P: u(ANP) > 6u(P)}, we have

AAB:( U (AmP) (U UBP) (6.7)
PeP\P Pep* i=1

where for every P € P* the sets BY,..., B are as in (iii) above. In particular,
noticing that p(A N P) < Ou(P) for every P ¢ P* and p(BY) < Ou(P) for every
P € P* and every i € [r], we see that

w(AAB) <ré. (6.8)
On the other hand, by (6.3), we have «(P) > n, and so |E(f|Ap)|r, < C since f
is (C,n, p)-regular. Hence, by Holder’s inequality, we obtain that

e 8 1 69
| B I AR du < B Ap) s, - w(A L BV < Ortiagila < Cra,
AANB

We proceed to show that [, 5 fdp < < 5Cr%9. To this end, notice first that

/AAde“_ 2 /Ampfd“JrZZ/ f dps. (6.9)

PeP\P* PepP* i=1
By (6.3) and (6.5), we have n < Ou(P) for every P € P. Hence, if P € P\ P*, then,
by Proposition 5.2,
(/ fdu)' < CUwANP)+(r+3)n)
ANP
< CUOu(P) + (r+3)0pu(P)) < 5C9rou(P)

and so

> fdu <5CreMe > u(P)t, (6.10)

pep\p+ 7/ ANE PEP\P*
Respectively, for every P € P* and every i € [r] we have

(/BP fdu>q < CY(u(BF) + (r + 3)n) < 5C0u(P)

which yields that
303 / fdu <5021 Y p(p)a (6.11)
PepP* i=1 pPep*

Finally, notice that the function 2}/7 is concave on R, since ¢ > 1. Therefore,

S w(P)V1 < [PV < o(P) . (6.12)
PeP
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Combining (6.9)—(6.12) we conclude that

)

/ fdp <5CT*0M1N " (P9 < 5Cr2 0N (PP O 502y
ANAB

pPecP

and the proof of Lemma 6.2 is completed. O

Proof of Theorem 6.1. We begin the proof of the Regularity Lemma with the
following lemma. It asserts (roughly speaking) that if a given approximation of an
L, regular random variable is not sufficiently close to f in the cut norm, then we

can find a much nicer approximation.

LEMMA 6.3. Let 0 < 6,7 < 1 and set ¥ = §(12Cr?)~L. Also let e € H and
let f € L1(X,Be, ) be nonnegative and (C,n,p)-regular. Finally, let P be a finite
partition of X with P C Sp. such that ||f —E(f | Ap)lls,, > . Assume that

n< (9 uP))* (6.13)

and that € is n-nonatomic. Then there exists a refinement Q of P with Q C Sy
and 1(Q) > (9 - 1(P))?, such that |E(f | Ag) — E(f| .Ap)HLpT >4/2.

PROOF. We select A € Sy, such that
| /A (f —E(f | Ap)) dp| > 5. (6.14)

Next, we apply Lemma 6.2 and we obtain a refinement Q of P with Q@ C Sy, and
((Q) = (9 u(P))?, and a set B € Ag such that [,z E(f|Ap)du < Crd and
Jang fdp < 5Cr%9. Then, by the choice of ¥, we have

\/ (f—E(f!Ap))du—/ (f —E(f|Ap)) du| <
A B
<[ sans [ B AR <500+ Cro < 60r20 = o2
AAB AAB
and so, by (6.14),

[ (=B Ar) il > 572 (6.15)

On the other hand, the fact that B € Ag yields that

| (=B Ap) du = [ (B(F1A0) B | Ap) dp. (6.10)
B B
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Therefore, by the monotonicity of the L, norms, we conclude that

IE(f [ Ag) = E(f | Ap)llz; = IE(f[Ag) —E(f[AP)lL, =

PR s

5.16 (6.15)
| / (E(f | Ao) — E(f | Ap)) dpu| =" | / (f ~E(f| Ap)) | > 5/2
B B
as desired. ]

The previous lemma has the following dichotomy as a consequence.

LEMMA 6.4. Let 0 < §,np < 1 and 0 < o < 1, and set 9 = §(12Cr?)~! and
N = [4(pt —1)7102672]. Also let e € H, let f € L1(X, B, ) be nonnegative and
(C,n,p)-regular, and let P be a finite partition of X with P C Spe. Assume that

N

n< (V- u(P))* (6.17)

and that € is n-nonatomic. Then there exists a refinement Q of P with Q C Sy
N
and 1(Q) = (VN - «(P))" , such that either

(a) [E(f[Ag) —E(f[Ap)lL ; >0, or
(b) IE(f | A) —E(f | Ap)llzy <o and |[f —E(f|Ag)llss. <9

The proof follows similar steps with the proof of Lemma 2.5.

PROOF. Assume that part (a) is not satisfied, that is,
N

(H1) for every refinement Q of P with Q C Sy, and ¢(Q) > (WY - «(P))? we
have [[E(f | Ag) — E(f | Ap)lL,, < 0.

We claim that there exists a refinement Q of P which satisfies the second part of
the lemma. Indeed, if not, then, by (H1) and Lemma 6.3, we see that

(H2) for every refinement Q of P with Q C Sy, and ¢(Q) > (97 - L(P))qN there
exists a refinement R of Q with R C Sy, and +(R) > (19 . L(Q))q such that
I(F1AR) — B(f | AQ)lL,, > 6/2.

Recursively and using (H2), we select partitions Py, ..., Py of X with Py = P such
that for every i € [N] we have: (P1) P; is a refinement of P;_; with P; C Sy, and
L(PZ) = (79 ’ L(Pi—l))q7 and (PQ) HE(f ‘ APz) - E(f ’ APFJHLPT > 6/2

Next, set g = f —E(f | Ap) and let (d;)XY, be the difference sequence associated
with the finite martingale E(g|.Ap,),...,E(g]|Ap,). Notice that for every i € [N]
we have d; = E(f | Ap,) — E(f | Ap,_,) which implies, by (P2), that HdiHLPT > 0/2.
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Therefore, by the choice of N and Proposition 2.1,

t 120 a2 N Y 2 \/?
o< -)INT < pf ) (Zudin%)

HZdHL = [E(f | Apy) — E(f | AP)]lL,, -

On the other hand, by (P1), we see that Py is a refinement of P with Py C Sa.
N
and ¢(Q) = (WY - «(P))? and so, by (HL), |[E(f | Apy) —E(f|Ap)|L i S 0 which

contradicts, of course, the above estimate. The proof is thus completed ]

We introduce some numerical invariants. For every growth function F': N — R
and every 0 < o < 1 we define, recursively, a sequence (N,,) in N and two sequences
(nm) and (V) in (0, 1] by setting No =0, o =1, 6y = (1207‘2F(1))_1

Npg1 = [4(p" = 1)71e2F([n;,11)?],
N1 = (ﬁ%erl 'nm)qu+la (618)
Om1 = (12072 F([n;21))

The following lemma is the last step of the proof of Theorem 6.1 and is similar to

and

Lemma 2.6.

LEMMA 6.5. Let 0 <o <1 and F: N —= R a growth function. Set
L=T[C*p" —1)"to2n"] (6.19)

and let (nm) be as in (6.18). Let 0 < n < nr and assume that € is n-nonatomic.
For every e € H let fo € L1(X,Be, ) be nonnegative and (C,n,p)-regular. Then
there exist: (i) a positive integer m € {0,...,L—1}, (ii) for every e € H a partition
P. of X with P. C Spe and t(P.) = Nm, and (iii) for every e € H a refinement
Q. of P, with Q. C Sy, and L(Qe) Nm—+1, Such that for every e € H we have
IE(f. | Ao,) — E(f. | Ar)lL,, < o and [If. — B(f. | Ao )s,. < 1/F(Tnz']).

PROOF. It is similar to the proof of Lemma 6.4 and so we will briefly sketch the
argument. If the lemma is false, then using Lemma 6.4 we select for every e € H
partitions Pg,...,Pf of X with P§ = {X} as well as e1,...,e, € H such that
for every m € [L] we have: (P1) P, is a refinement of P¢,_; with PS, C Sp. and
W(Pr) = nm for every e € H, and (P2) [[E(fe,, | Apem) — E(fe,, [ Apem )L >0
By the pigeonhole principle, there exist e € H and I C [L]| with |I| > L/n such
that e = e, for every m € I. Let (d,,)E%_, be the difference sequence associated
with the finite martingale E(fe [ Ape), ..., E(fe | Ape) and notice that HdeLpT >0
for every m € I. Moreover, since fe is (C,n,p)-regular and ¢(Pg,) = nm = 1L = 1
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we see that |[E(fe [ Apg )|z ; < [IE(fe | Apg)lL, < C for every m € [L]. Hence, by
the choice of L in (6.19) and Proposition 2.1, we conclude that

L 1/2 L
C< ' =" ( X My, ) " <X dull, | = IECe [ App)lls,, < C
m=0 m=0

which is clearly a contradiction. O
We are ready to complete the proof of Theorem 6.1.

PROOF OF THEOREM 6.1. Let F': N — R be a growth function and 0 < ¢ < 1,
and let L and 7y, be as in (6.19) and (6.18) respectively. We set Reg = [n; '] and
we claim that with this choice the result follows. Indeed, set n = 1/Reg < 7
and assume that % is np-nonatomic. For every e € H let fo € Li(X,Be, pt) be
nonnegative and (C,n,p)-regular. Let m € {0,...,L — 1}, (P. : e € H) and (Q, :
e € H) be as in Lemma 6.5 and define M = [n,,!]. Tt is clear that M, (P, : e € H)
and (Q. : e € H) are as desired. O
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CHAPTER 7

Box norms

We begin by introducing some pieces of notation. Let 52 = (n, ((X;, X, pi): @ €
[n]),H) be a hypergraph system and e C [n] be nonempty. Then, recall that by
me: X — X, we denote the natural projection. If the set [n] \ e is nonempty, then
for every x. € X, and every xp,)\. € X\ We denote the unique element x of X
such that x, = m(x) and X\ = Tp)\e(X). Moreover, for every f: X — R and
every X, € X let fx,: X\ — R be the section of f at x, that is, fx (X)) =

f(Xe, X[p)\e)- Finally, let £ € N with £ > 2. For every x&“) = (:cgo))iEG, .. ,ngl) =
(ml@_l))iee in X, and every w = (wj)ice € {0,...,¢ — 1} we set

ng) = (xz(wi))iee € Xe. (7.1)
Notice that if w = m® for some m € {0,...,¢—1} (that is, w = (w;)ice With w; =m
for every i € e), then xéw) = xgm).

Recall now, that the box norm of a random variable f: X, — R is the quantity

" 1/2lel
Iflee =E[ JT 7 |x0xMe x| ™ . (7.2)
we{0,1}¢

These norms were introduced by Gowers [Gow01], [Gow07] and are a fundamental
tool in additive and extremal combinatorics.

7.1. /-Box norms

Throughout this section let .2 = (n, ((X;, Xi, 1i) : @ € [n]), H) denote a hyper-
graph system. The variant of the box norm that interests us in this work is the
following one, which first appeared® in [Hat09]. Let £ > 2 be an even integer and
e € H. Then the ¢-box norm of a random variable f: X, — R is defined by

a 1/¢lel
||f||D§ :E[ H f(x(eu))) ’XEO),...,Xg 2 € X . (73)
we{0,...,0—1}e

Observe that when £ = 2 then the previous norm coincides with the classic box
norm of (7.2).

1 Actually, the framework in [Hat09] is more general and includes several other variants of (7.2).

44
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7.1.1. Basic properties. Let e C [n] be nonempty and let £ > 2 be an even
integer. Also let f € L1(X,, X, pte). We first observe that the {-box norm of f can
be recursively defined as follows. If |e| = 1, then by (7.3) we have

-1 " B /elel
I£1cs =B IL ) o -oooof 0 € 3] = (19 = LA 70
w=0

On the other hand, if |e| > 2, then for every j € e we have

glel=1 0) (£-1)
e\ {5}
o,V

az§ s T € X,

} Y 1)

-1
1o =B [ TT £Co )
w=0
In the following proposition we gather further properties of the ¢-box norms.

PROPOSITION 7.1. Let e C [n] be nonempty and let £ > 2 be an even integer.

(a) (Gowers—Cauchy—Schwarz inequality) For every w € {0,...,0 — 1}¢ let
fo € L1(Xe,Xe, pte). Then we have

B T RGO oxVex][< T Wl (76)
we{0,...,0—1}e we{0,....4—1}e

(b) Let f € Li(Xe, X, pre). Then we have |E[f]| < || fllog. Moreover, if £1 <
Uy are even positive integers, then ”fHDZ < Hf”DEQ-

(c) If le| =2, then || - [[og is a norm on the vector subspace of L1(Xe, Xe, pe)
consisting of all f € L1(Xe, B¢, pe) with || flloe < co.

(d) Let 1 < p < oo and let q denote the conjugate exponent of p. Assume that
¢ > q and that e = {i, j} is a doubleton. Then for every f € L1(Xe, Xe, te),
every u € Ly (X;, X, ;) and every v € Ly(X;,X;, uj) we have

E[f (i, zj)u(zi)v(z;) |2 € Xi, x5 € X]| < || fllog lulle, ([v]lL,- (7.7)

ProOOF. (a) We follow the proof from [GT10, Lemma B.2] which proceeds by
induction on the cardinality of e. The case “le] = 17 is straightforward, and so
let » > 2 and assume that the result has been proved for every ¢ C [n| with
1 < || <r—1. Let e C [n] with |e] = r be arbitrary. Fix j € e, set ¢/ = ¢\ {j}
and for every w € {0,...,0 —1}¢ let f, € L1(Xe,Xe, pe). Moreover, for every
wj €1{0,...,£—1} we define G, : X5 = R by

0 /-1 Wer
ij(xé,),...,xé, )) :E|: H f(we“wj)(xg,E),xj) ’a;j GX]':| (78)
Wy €40,...,0—1}¢
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where (we,w;) is the unique element w of {0,...,¢ — 1}¢ such that w(j) = w; and
w(i) = we (i) for every i € €. Observe that

‘E[ 11 fw<><£“)>{x£”’,--.,x£f—1>exe}
we{0,...,0—1}e

-1
== IT ¢

and, by Holder’s inequality, |E[HZ__10GWJ,]| < HfgiOE[ijj]l/E. Therefore, it is

Wj=

enough to show that for every w; € {0,...,¢ — 1} we have

BGLI<  TI Wl (7.9)
w€40,....6—1}¢

Indeed, fix w; € {0,...,¢ — 1} and notice that, by (7.8),

-1
Gﬁj(xg?), . ,ngl)) = E{ H H f(we,,wj)(ngﬁl), xg-w))} (7.10)

wer €{0,...,4—1}¢ w=0

where the expectation is over all 335-0), . ,xéz_l) € X;. By (7.10) and Fubini’s

theorem, we see that

—1
E[G,,] = E[E[ T T2 <@, 00 ¢ Xe/]}
wor€{0,...,4—1}e w=0

§-0), e ,a:y*l) € X;. Thus, applying the

induction hypothesis and Hélder’s inequality, we obtain that

where the outer expectation is over all x

/-1
]:E[G!fj]j| < E|: H H Hf(we/,w])(7$§w))’|j(é/:| (711)
W €{0,....—1}¢"  w=0
m ()< 1/0"
< H E[H Hf(we/ij)("mj )}Dzl] .
w=0

WE/E{O,,..,K—l}el

By (7.5) and (7.11), we conclude that (7.9) is satisfied.

(b) It is a consequence of the Gowers—Cauchy—Schwarz inequality. Specifically, for
every w € {0,...,0—1}¢let f, = f if w={0}° and f, = 1 otherwise. By (7.6), we
see that [E[f]| < | f[log. Next, let £1 < £2 be even positive integers. As before, for
every w € {0,...,0p — 1}¢ let f, = fif w € {0,...,¢; — 1}¢; otherwise, let f, = 1.
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Then we have

fel w _
I, = B[ I ) <0 x D e X
wE{O,.‘.,Zl—l}e

@7 | © (t2-1) Tl
= B[ I @) |xO. . xE Ve x| <5,
w€e{0,...,0o—1}¢ 2

which implies that ”fHD?1 < ||f||[|§2 .
(¢) Absolute homogeneity is straightforward. The triangle inequality

If + gllog < [[fllog + [lgllog

follows by raising both sides to the power ¢/¢l and then applying (7.6). Finally, let
[ € Li(Xe, Xe, pe) with || f[log = 0 and observe that it suffices to show that f =0
pe-almost everywhere. First we note that using (7.6) and arguing precisely as in
[GT10, Corollary B.3] we have that E[f - 1g] = 0 for every measurable rectangle
R of X, (that is, every set R of the form [[,c. A; where A; € X; for every i € e).
We claim that this implies that E[f - 14] = 0 for every A € X.; this is enough
to complete the proof. Indeed, fix A € 3. and let € > 0 be arbitrary. Since f
is integrable, there exists 0 > 0 such that E[|f|- 1¢] < ¢ for every C' € ¥, with
pe(C) < §. Moreover, by Caratheodory’s extension theorem, there exists a finite
family R, ..., R, of pairwise disjoint measurable rectangles of X, such that, setting
B = |Ji“, Rk, we have pu.(AA B) < § (see, e.g., [Bil08, Theorem 11.4]). Hence,
E[f-1p] =0 and so

[E[f - 1a]l = [E[f - 1] = E[f - 1B]| <E[|f] - 1aaB] <e.
Since ¢ was arbitrary, we conclude that E[f - 14] = 0.

(d) Set I =E[f(z;, zj)u(z;)v(z;)|z; € X;,z; € X;] and let ¢/ denote the conjugate
exponent of £. Notice that 1 < ¢/ < p. By Holder’s inequality, we have

11| = [E[E[f(zs, z)v(z;) |25 € Xjlu(z:) |2 € Xi| (7.12)

1/¢ 1/¢
< E[E[f (i, 25)v(z;) |25 € X1 |25 € Xa] 'V Jullz, < 176 Julls,
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where I} = E[Hf;;lo ($i,x§w))v(x§w)) | z; € X, 1:50), . ,xg.e*l) € X;|. Moreover,

{—1 /-1
L= E[]E[ H f(xi,xg»w)) |z € X;] - H v(mﬁ»w)) ) xg-o), . 7$§£—1) € Xj}
w=0 w=0
J ]

-1 B 1/¢
< E[E[Hf(xi7x§w))|a?i eXi]g(x“)),... 2 er] ol
w=0

(7.5) ¢ 14 ¢ 14
= fllEe - llvllz, < Iflige - llliz,-

By (7.12) and the previous expression the result follows. O
7.1.2. The (¢,p)-box norms. We will need the following L,, versions of the

¢-box norms. We remark that closely related norms appear in [Can]. Recall that by
S = (n, ((Xi, X, pi) 27 € [n]),H) we denote a hypergraph system.

DEFINITION 7.2. Let e C [n] be nonempty and let £ > 2 be an even integer. Also
let 1 <p<ooand fe Ly(Xe,Xe, pte). The (£,p)-box norm of f is defined by

1
£, = Pl (7.13)
Moreover, for every f € Loo(Xe, Xe, phe) we define the (£,00)-box norm of f by
IAllz = ] Lo (7.14)

We have the following analogue of Proposition 7.1.

PROPOSITION 7.3. Let e C [n] be nonempty and let £ > 2 be an even integer.
(a) Let 1 <p <oo. If fu, € Lp(Xe, B¢, pte) for every w € {0,...,0 —1}¢, then
Bl I IRPE) [0 xex] < T Il - (715)
we{0,...,t—1}e we{0,...,0—1}e

(b) Let 1 < p,q < oo be conjugate exponents, that is, 1/p+1/q =1. Then for
every f € Lp(Xe, X, pe) and every g € Ly(Xe, e, pre) we have

Ifgllog < fllog, - llgllog - (7.16)

(c) Assume that |e| > 2 and let 1 < p < co. Then || - HD?,p is a norm on the
vector subspace of Ly(Xe, X, pe) consisting of all f € L,(Xe¢, B¢, pe) with
||f||sz < 00. Moreover, the following hold.

() For every [ € Ly(Xe, Se, ie) we have | £, < I/l .
(ii) For every 1 < p1 < p2 < 0o and every f € Lp,(X¢, 3¢, pe) we have
1fllog,, < 1Al -
(iii) For every f € Loo(Xe, X, pe) we have limy, o0 || flloe = HfHD?,,oo'

£,p
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PRrROOF. Part (a) follows immediately by (7.6). For part (b) fix a pair 1 < p,q <
oo of conjugate exponents, and let f € L,(Xe, X, pe) and g € Ly(Xe, Xe, pte) be

arbitrary. We define F,G: X! — R by F(Xéo), . ,xéﬁ_l)) = luefo,...o—13e f(xéw))

and G(xgo), . ,x,(f_l)) = [Luego,.o—13e g(x,(gw)). By Holder’s inequality, we have
gl <E[|F-G|] <E[|F|")"/? - E[|G|7]"/7.

Noticing that E[|F|?]'/? = HfHDZp and E[|G|1]"/1 = Hg”DZq we conclude that (7.16)
is satisfied.

We proceed to show part (¢). Arguing as in the proof of the classical Minkowski’s
inequality we see that the (¢, p)-box norm satisfies the triangle inequality. Absolute
homogeneity is clear and so, by Proposition 7.1, we conclude that || - ngp is indeed a
norm. Next, observe that part (c.i) follows by (7.15) applied for f,, = f if w = {0}¢
and f,, = 1 otherwise. For part (c.ii) set p = pa/p; and notice that
(7.16)

< |

1718, = (s

[1F17]

_ p2/p1
D; sz - ”f“ljzp2
Finally, let f € Loo(Xe, Ze, pre). By part (c.i), we have || f[|z, < [|fllog, < [If]lze-

Since limp o0 || [z, = [If]|zo, We obtain that limy oo || fllog ) = [Ifllze = IFllog
and the proof is completed. ]

7.2. A counting lemma for L, graphons

Let n be a positive integer and let G be a nonempty graph on [n]. Recall that
the mazimum degree of G is the number A(G) := max{|{e € G : i € e}| : i € [n]}.
Given two graphons W and U, a natural problem (which is of particular importance
in the context of graph limits — see [Lov12]) is to estimate the quantity

‘E[ H W(mi,xj)‘xl,...,xneX}—E{ H U(xi,xj)’xl,...,xneX”.
{i,5}€6 {i,j}€6

If W and U are uniformly bounded, then this problem has a very satisfactory answer
(see, e.g., [Lov12]). The unbounded case, however, is quite involved. Recently, there
was progress in this direction in [BCCZ14, Theorem 2.20] where effective estimates
were obtained provided that W and U are L, graphons for some p > A(G). It
is important to note that this integrability restriction is necessary at this level of
generality. Indeed, if p < A(G), then the above difference may not even be defined.

Nevertheless, we have the following theorem which has the advantage of being
applicable to L, graphons for any p > 1 but requires a rather different type of
integrability assumption.
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THEOREM 7.4. Let A be a positive integer, C > 1 and 1 < p < oco. We set £ =2
if either p = oo or A = 1; otherwise, let
¢=min{2n:neN and 2n > p»=V 7 (pA-DT _ 1)~ (7.17)
Also let 9 = (n, (X4, %4, 145) = @ € [n]),G) be a 2-uniform hypegraph system with
A(G) = A. For every e € G, let fe,ge € Lp(X, Be, ) such that
IElloy, <1 and Jgllo;, <1 (7.18)

where f. and g. are as in (4.3) for fe and ge respectively. Assume that for every
G1,G2 C G with G1 NGz = we have
H H Je H geHLp <C. (7.19)
ecG1  e€lo

(Here, we follow the convention that the product of an empty family of functions is

equal to the constant function 1.) Then we have

‘E[Hf‘f} _E[ng} <C- Y | — gl (7.20)
ecg g e€g

ec

PROOF. Set M = |G| and write G = {e1,...,en}. Since

m

]E[elg[gfe} E[egge] => E[ngs(fek — Gex) ers]

k=1 s<k s>k
it suffices to show that for every k € [M] we have

‘E[ngs(fek —90]] fes]

s<k s>k

<C- ||f8k - gekHDZk- (721)

So, fix k € [M], and set e = e, and H, = fe, — ge,, € Lp(X, Be, ). Moreover, for
every ¢ € G\ {e} let s € [M]\ {k} be such that ¢’ = e; and set he = g, if s < k
and he = fe, if k < s; notice that he € Ly(X, Ber, ). Thus, setting

I:E[He I1 h}
e’eG\{e}
we need to show that |I| < C - |He[|g; where H, is as in (4.3) for He.
To this end, we first observe that if A = 1, then the result is straightforward.
Indeed, in this case we have £ = 2, and the edges of G are pairwise disjoint. Hence,
by part (b) of Proposition 7.1 and part (c.ii) of Proposition 7.3, we see that

(7.18)
1] = [EE] - [ Eb] < |Helog - [T Ibellog, < C-|Hellos.
e'€G\{e} e’€G\{e}
Therefore, in what follows we will assume that A > 2. To simplify the exposition
we will also assume that p # co. (The proof for the case p = co is similar.) Write
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e=1{i,j},and set G(i) = {e' € G\ {e}:i €€} and G* (i) ={e € G\ {e} : i & ¢'};
notice that G\ {e} = G(i)UG* (7). Let ¢’ be the conjugate exponent of ¢ and observe
that, by (7.17), we have ¢ > ¢’ where ¢’ is the conjugate exponent of p(2~—1)"~ '

Hence,
1< <p D7 <. (7.22)
We set
/—1
—E| [T H, ) T] bl em)] (7.23)
w=0 e'€g (i)
and
Igo) =E| ] H hol” (2 2en )] (7.24)
e'eG (i) w=0
where both expectations are over all x( ), .. 7%@—1) € X; and X\ (5} € X[\ (i) -
CLAIM 7.5. We have |I] < el/ge()

PrOOF OF CLAIM 7.5. Since i ¢ €’ for every e’ € G*(i), we have
I =E[E[H(zi2) [] helwiea) |zi€ X - ] hetxe)]:
e'eG(i) e'€G* (i)
By Holder’s inequality, (7.19), (7.22) and (7.23), we obtain that
1 < IE[IE[H zivzy) [ helwizongy) | 2i € Xi] }
e'eg(i) e’'eG* (i)

1/¢
<C-1, '5)

I/E
< e g(z

e'eg*(i
as desired. 0

We proceed with the following claim.
CLAIM 7.6. We have I, g(;) < ||He|| 1/6)
PROOF OF CLAIM 7.6. Note that j ¢ ¢’ for every ¢’ € G(i), and so

Lo =E[E HH n @) ey e X;] - ] Hh (2 i)

e'eG (i) w=0

Using this observation the claim follows by Holder’s inequality and arguing precisely
as in the proof of Claim 7.5. g

The following claim is the last step of the proof.

Cramm 7.7. We have Ig;) < 1
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PrOOF OF CLAIM 7.7. We may assume, of course, that G(i) is nonempty. We
set m = |G(i)| and we observe that 1 < m < A — 1. Therefore, by (7.22), we see
that

1< ()< () t<yp (7.25)
for every r € [m]. Write G(i) = {€},...,e.,} and for every r € [m] let j, € [n] such
that e = {7, j, }. For every d € [m] set

m {—1 4
Qu=E[[] IT et @, 2] (7.26)
r=d w=0
and note that
/-1
Qi =1Igg) and Qu=E[ ] b |7 (2, 25,)] (7.27)
w=0

(0) )

(Here, the expectation is over all z;, ..., x; € X; and X[\ (i} € Xpp)\(iy-) Now

observe that it is enough to show that for every d € [m — 1] we have
1/¢
Qa < Qd/ﬂ. (7.28)

Indeed, by (7.28), we see that Q1 < 1/( e Hence, by (7.27), the monotonicity
of the L, norms and part (a) of Proposition 7.3, we obtain that

T i, (@) e/
Igey < E[H\hefml (; 7-1'jm)} (7.29)

[H\her 23,0] " < |

It remains to show (7.28). Fix d € [m — 1] and notice that j; ¢ e, for every
re{d+1,...,m}. Thus,

/-1 m
Qu=E[E[ ] Ihe,| " @, 25,) |2, € X;) - T] H|h @250
w=0

r=d+1 w=0

(7 25) o (718)

DZ?S < 1.

By Hélder’s inequality and arguing as in the proof of (7.29), we see that

Q<B[ TI  mey @] @l <, Qi/fi
we{0,...,0—1}° a
as desired. 0

By Claims 7.5, 7.6 and 7.7, we conclude that (7.21) is satisfied, and so the entire
proof of Theorem 7.4 is completed. O



CHAPTER 8

Pseudorandom families

8.1. Definition and basic properties

We introduce a class of weighted hypergraphs which first appeared in [DKK18,
Definition 6.1]. Closely related definitions appear in [CFZ15, Tao06a]. As we have
already noted in the introduction, the most important property of this class is that
it satisfies relative versions of the counting and removal lemmas, as we will see in
the following two chapters. We follow the notation® described in the beginning of
Chapter 7.

DEFINITION 8.1. Let n,mr € Nwithn >r > 2, andlet C > 1 and 0 < n < 1.
Also let 1 < p < oo and let q denote the conjugate exponent of p. Finally, let
H = (n, ((Xi, %, 14) 17 € [n]),H) be an r-uniform hypergraph system. For every
e € H let ve € L1(X,Be, ) be a nonnegative random variable. We say that the
family (v. : e € H) is (C,n,p)-pseudorandom if the following hold.

(C1) (Copies of sub-hypergraphs of H) For every nonempty G C H we have
E[[leegve] 21—
(C2) For every e € H there exists 1 € Lyp(X,Be, ) with ||¢pe|r, < C and
satisfying the following properties.
(a) (The cut norm of v, — v, is negligible) We have ||ve — ells,, < 7.
(b) (Local linear forms condition) For every ¢’ € H \ {e} and every w €
{0,1} let ggf) € Li(X,Be, ) such that either 0 < gg,d) < Vo or
0< gi‘,”) < 1. Let ve and v, be as in (4.3) for ve and 1 respectively.
Then we have

E[we—votxe) TT E[TT 0% 0 Xpne) | Xpune € Xppe]

we{0,1} e’eH\{e}

Xe € Xe} <n. (8.1)

(C3) (Integrability of the marginals) Let e € H and let G C H\ {e} be nonempty,
and define veg: Xe = R by veg(xe) = E[He'eg Ver (Xes X[p)\e) ‘x[n}\e €

1Recall, that if (X, X, u) is a probability space and f: X — R is a random variable then the
mean value of f in X is denoted by / f(@)du(z) = E[f(z)|z € X].
X

53
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X[n}\e]. Then, setting
1
‘= mi : > - = — s .
1 m1n{2n n € N and 2n 2q+<1 C>+p} (8.2)
we have

Evlg) < C+n. (8.3)

Definition 8.1 looks rather technical at first sight, but it is possible to justify
combinatorially conditions (C1)-(C3). First observe that condition (C1) expresses
a natural combinatorial requirement, namely that the weighted hypergraph (v, : e €
‘H) contains many copies of every sub-hypergraph of H. Condition (C2.a) is also
rather mild and implies that each v, is, to some extend, well-behaved. Specifically,
we have the following lemma.

LEMMA 8.2. If the family (v. : e € H) satisfies condition (C2.a), then for every
e € H the random variable v, is (C' + 1,n,p)-regular.

PROOF. Let e € H and let P be a partition of X with P C Sy and p(P) > n
for every P € P. By condition (C2.a), for every P € P we have

| fp(l/e — Pe) dps]
n(P)
and, consequently, ||E(ve — e | Ap)|lL.. < 1. Therefore, by the triangle inequality

<1

and the monotonicity of the L, norms, we conclude that

[E(ve | APz, < IE(e | AP)lL, + IE(ve — Ye| Ap)llL, < C+1
and the proof is completed. ]

Condition (C2.b), the local linear forms condition, is the strongest (and as such,
the most restrictive) condition of all. In the case where 1), = 1 for every e € H it was
explicitly isolated? by Conlon, Fox and Zhao in [CFZ15, Lemma 6.3], though closely
related variants appear in the work of Green and Tao [GT08]. One of the signs of the
strength of the local linear forms condition is that it implies condition (C2.a) as long
as the hypergraph H is not too sparse. More precisely, assume that for every e € H
we have de C {¢/Ne: e’ € H} (this is the case, for instance, if H is the r-simplex).
Fix e € ‘H and for every f € Oe let Ay € By. We set gg)) = 14, if e€ne=f;
otherwise, let gg) = 1. By (8.1), we see that | [(ve — e) [1cpe 1, du| < 1 which
implies, of course, that ||ve —1e|s,, < 7. Condition (C3) can be seen as an instance
of the general fact that by taking averages we improve integrability. It will be used

in the following form.

2Note that in [CFZ15] condition (C2.b) is referred to as the “strong linear forms” condition.
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LEMMA 8.3. If the family (v. : e € H) satisfies condition (C3), then for every
e € H and every nonempty G C H \ {e} the following hold.

(a) If either C > 1 or 1 < p < oo, then £ > 2q and for every A € ¥, we have
[ v dne < (€4 1) Ay © (5.4
A
where e(C,p) = (4pq)~t if 1 < p < oo, and e(C,o0) =1/2 if C > 1.
(b) Assume that the family (ve : e € H) also satisfies condition (C1), and that

C =1andp=oo. Thent =2 and ||[veg — 1|1, < 4n'/%. In particular,
for every A € 3, we have

/ V2 dpte < 2p1(A) + 802, (8.5)
A

PROOF. (a) The fact that £ > 2q follows immediately by (8.2). Next, fix A € 3.
By Holder’s inequality, we have

2q (8.3) 2
[ v < vl ma) = S CHnp@r . 6)

On the other hand, by (8.2) and the choice of e(C, p), we see that 1 — % > e(C,p).
By (8.6), the proof of part (a) is completed.

(b) First observe that £ = 2. Moreover, by Fubini’s theorem and Jensen’s inequality,

(C1) 1/2 (C3)
1-7 < /Hue/du—/ve,gdue< (/v?,gdue) < (1+7)7?2

e'eg
and, consequently, | [(12g — 1) dpe| < 20 and | [(Veg — 1) dpe| < n'/2. Therefore,
oo~ 1R = [ Wi 2ug+1)dn. (5.7
< | /(Vg,g — 1) dpe| + 2| /(u@g — 1) dpe| < an/?,

Now let A € 3, and note that ||veg- 1A — 1A||z, < ||Veg — 1||1,. Hence, by (8.7)
and the triangle inequality, we have ||veg - 1Az, < ||1allz, + (47"/?)Y/? and so

/A'/S,g dpte < (pe(A)Y2 + (4Y2)H2)? < 20 (A) + 802

as desired. 0
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8.2. Conditions on the majorants

Although for the analysis of pseudorandom families we need precisely conditions
(C1)—(C3), in practice some of these conditions are not so easily checked. This
is the case, for instance, with the local linear forms condition, since it requires
verifying the estimate in (8.1) not only for the “majorants” (v, : e € H) but also
for all nonnegative functions which are pointwise bounded by them. However, this
problem can be effectively resolved by imposing some slightly stronger conditions on
(Ve : e € H), and then reducing (8.1) to these conditions by repeated applications of
the Cauchy—Schwarz inequality. This method was developed extensively by Green
and Tao [GT08, GT10] and has become standard in the field. As such, we will not
present the proof of the following proposition here, see e.g [DKK15, CFZ15].

PROPOSITION 84. Let C > 1 and 0 < n < 1. Also let 1 < p < oo and let
q denote the conjugate exponent of p. For every e € H let v, € Li(X,Be, ) be
a nonnegative random variable and let v, be as in (4.3) for v.. Assume that the

following properties are satisfied.
(P1) If ¢ is as in (8.2), then
1777<]E[H H uge’“(xg"))‘xgo),...,xg_l)GXe]<C’+77
e€H we{0,...,4—1}°
for any choice of ne,, € {0,1}.
(P2) For every e € H there exists e € Ly(X, Be, ) with ||¢el|z, < C such that
(0) (

n_ s w Xe 7xel) e
E[ J] @we—wo)x¥) ][] 11 Ve/e’w(xif))’x(m <1)€€§6,]

o Kot
we{0,1} e’eM\{e} we{0,1}¢

for any choice of ne,, € {0,1}.
Then (ve : e € H) is a (C, 1, p)-pseudorandom family where f = (C' 4 1)n'/?".

8.3. The linear forms condition

We isolate now a special subclass of pseudorandom families that will play an
important role in the arithmetic applications of the relative removal lemma in Part
4.

DEFINITION 8.5 (Linear forms condition for hypergraphs). Let n,r € N with
n>=r>2and H = (n,{((Xi,Zi,p): 7 € [n]),H) be an r-uniform hypergraph
system. Also for every e € H, let ve € Li(X,Be, ) be a nonnegative random
variable. We say that the family (ve: e € H) satisfies the linear forms condition if

E| H H ve (xW) ‘xgo),xgl) € X =1+0(1) (8.8)
e€H we{0,1}¢
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for any choice of ne,, € {0,1}. In the previous expression v, is as in (4.3) .

Taking C =1, p = oo, £ = 1 and 9. = 1 for every e € H then a family of
measures that satisfies (8.8) we see that it also satisfies properties (P1) and (P2) in
Proposition 8.4, see [CFZ15, Lemma 6.3].

8.4. Examples of Pseudorandom families

We present now two examples of pseudorandom families. The proofs that the
following examples are indeed pseudorandom families are omitted and may be found
in [DKK15].

Our first example is the following theorem.

THEOREM 8.6. Letn € N withn > 3, C > 1 and 1 < p < oo, and let £ be
as in (8.2). Also let 0 < n < (4C)™™" and let A = (n, (X, Si, ) i € [n]),H)
be a hypergraph system with H = (nﬁl). (In particular, 7€ is (n — 1)-uniform.) For
every e € H let \e € L1(X,Be, ) and ¢. € Ly(X,Be, ) be nonnegative random
variables, and let A and pe be as in (4.3) for A\ and @e respectively. Assume that

the following conditions are satisfied.

(I) We have

1—17<IE[H H Aree (x| xO L xED e X <1479 (8.9)
eeH wed0,...,0—1}e

for any choice of ne,, € {0,1}.
(II) For every e € H we have [|pello; < C.

Then the family (\e + @ : e € H) is (C',1,p)-pseudorandom where C' = (4C)™
and n = (4C)" gt/

We will briefly comment on the assumptions of Theorem 8.6. We first observe
that condition (I) is a modification of the “linear forms condition”. It expresses
the fact that the weighted hypergraph (\. : e € H) contains roughly the expected
number of copies of the ¢-blow-up of H and its sub-hypergraphs; as such, it is a rather
strong independence-type assumption. On the other hand, note that condition (II)
is just an integrability assumption for the function .. Thus, we see that the family
(Aet@e : e € H) is a perturbation of (A, : e € H) where only integrability conditions
are imposed on each “noise” (e.

The second example is the following theorem. This theorem was motivated by
[CFZ13, Lemmas 5 and 6] which dealt with the case C' =1, p = co and 1. = 1 for
every e € ‘H.
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THEOREM 8.7. Letn e Nwithn >3, C 21 and 1 < p < o0, and let £ be as
in (8.2). Alsolet 0 < n < 1/(nf) and let 7 = (n, (X, Xi, p5) : @ € [n]),H) be
a hypergraph system with H = (nﬁl). (Again observe that F is (n — 1)-uniform.)
For every e € H let ve,ve € Ly(X,Be, ) be nonnegative random wvariables, and
let ve and e be as in (4.3) for ve and 1. respectively. Assume that the following
conditions are satisfied.

(I) We have
1—77<E[H H Pree (x| xO L xEV e X[ <O+ (8.10)

€M wef0,. f—1}°
for any choice of ne ., € {0,1}.
(II) We have 1 < HV@HE'Zp < 00, H'z/)e”gzp < C and
[ve — ello: < n(C- M)~ (1t (8.11)

where M = max{|[vello;  : e € H}.
Then the family (ve: e € H) is (C,n', p)-pseudorandom where n' = ntn.



CHAPTER 9

Relative counting lemma for pseudorandom families

We present now a relative counting lemma for pseudorandom families. Similar
results may be found in several places, see e.g. [Tao06¢c, NRS06, GT08, CFZ15].

THEOREM 9.1 (Relative Counting lemma). Let n,r € N with n > r > 2, and let
C>2landl <p<oo. Alsolet( > 1 and 0 <~ < 1. Then there exist two strictly
positive constants n = n(n,r,C,p,(,v) and a = a(n,r,C,p,(,v) with the following
property. Let 7 = (n, ((X;, X, p;): @ € [n]), H) be an r-uniform hypergraph system,
and let (v : e € H) be a (C,n,p)-pseudorandom family. Moreover, for every e € H
let ge,he € L1(X, Be, ) such that 0 < ge < ve, 0 < he < ¢ and ||ge — hells,, < a.

Then we have
\/ngdu—/Hhedqu- (9.1)

eeH ecH

The hypotheses of Theorem 9.1 might appear rather strong: on the one hand
the function g, is dominated by v, (and so, by Lemma 8.2 , it is L, regular), but
on the other hand it is approximated in the cut norm by a nonnegative function h.
with || hel|z., < ¢. It turns out, however, that for every 0 < fe < v, we can indeed
satisfy these requirements by slightly truncating f., as we will see in Proposition
10.3. The rest of this chapter is devoted to the proof of Theorem 9.1.

Proof of Theorem 9.1. First we need to do some preparatory work. Let n,r €
N with n > r > 2, and let 5 = (n, ((X;, X, i) @ € [n]),H) be an r-uniform
hypergraph system. Also let C' > 1 and 1 < p < 00, and denote by ¢ the conjugate
exponent of p. These data will be fixed throughout the proof.

Next, observe that it suffices to prove Theorem 9.1 only for the case “¢ = 1”.
Indeed, if the numbers n(n,r,C,p,1) and a(n,r,C,p, 1) have been determined, then
it is easy to see that for every ¢ > 1 Theorem 9.1 holds true for the parameters
n(n,r,C,p,1,7¢™"") and ¢ - a(n,r,C,p,1,7¢™™"). Thus, in what follows we will
assume that ¢ = 1. To avoid trivialities, we will also assume that |H| > 2.

We proceed to introduce some numerical invariants. For every 0 < v < 1 we set

By) = (10(C + 1) )P and 6(7) = (20C+ 1)) ™, (9.2)

59
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where x(C,p) = (4pq)~t if 1 < p < o0, 2(C,00) = 1/2 if C > 1, and z(1,00) = 1.
Moreover, for every m € {0,...,n"} and every 0 < 7 < 1 we define a,,(y) and
Nm () in (0, 1] recursively by the rule

ao(v) =7/5 and ami1(7) = am (6(7)) (9.3)

and

m0(7) = (30(C + 1)) "9 and 41 (7) = 0 (0(7). (9.4)

Notice that a,+1(7) < am(y) and 9yp41(y) < N () for every 0 < v < 1.

After this preliminary discussion we are ready to enter into the main part of
the proof which proceeds by induction. Specifically, let (v, : e € H) be a family
of nonnegative random variables such that v, € L1(X,Be,u) for every e € H.
By induction on m € {0,...,|H|} we will show that for every 0 < v < 1 if the
family (ve : e € H) is (C,n(v), p)-pseudorandom where 7,,(7y) is as in (9.4), then
the estimate (9.1) is satisfied for any collection (ge, he € L1(X, Be, ) : € € H) with
the following properties: (P1) for every e € ‘H we have that either 0 < g. < v, or
ge = he, (P2) for every e € 1 we have 0 < he < 1 and ||ge — hells,, < am(y) where
am(y) is as in (9.3), and (P3) [{e € H : ge # he}| <m
“m = 0” is straightforward, and so let m € {1,...,|H|} and
assume that the induction has been carried out up to m — 1. Fix 0 < v < 1 and let
(ge, he € L1(X,Be, ) : e € H) be a collection satisfying properties (P1)—-(P3). Set

A= /ngdu /Hhedu

ecH ecH

The initial case

and recall that we need to show that |A| < 7. To this end, we may assume that
{e € H : ge # he}| = m (otherwise, the desired estimate follows immediately from
the inductive assumptions). Thus, we may select ey € H with ge, # he,; note that,
by property (P1), we have 0 < gey < ve,- Weset G = {e € H\ {eo} : ge # he} and
we define G, H: X., — R by the rule

Xeo / H ge Xeq d”[n I\eo and H Xeo / H e XEO dljl[n I\eo-

e€H\{eo} ecH\{eo}

Observe that 0 < H < 1. Moreover, if G is nonempty, then we have 0 < G < vg, g
where v, g is as in Definition 8.1. On the other hand, notice that G = H if G = .

We are ready present two claims which are the main steps towards the proof
of Theorem 9.1. Their proof will be given after we see how they are used in the
proof of this Theorem. In the following claim we obtain a first estimate for |A]. As
we said earlier it is the first step of the proof of Theorem 9.1 and is important to
note that its proof does not use the inductive assumptions and relies, instead, on
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the local linear forms condition (condition (C2.b) in Definition 8.1) and Holder’s
inequality. Closely related estimates appear in [CFZ15, Tao06a].

CrLAM 9.2. We have
1Al < 2(C+ D) (G = Hll Loy + 1)) + 1ge0 = Treo 1500, - (9.5)
The next claim is the second step of the proof.

Cram 9.3. If B() and 0(7) are as in (9.2), then we have
(6= P due, < 250)760) + (€ + 1780) 7OV 8, () 2. (06)

Granting Claims 9.2 and 9.3, the proof of the inductive step (and, consequently,
of Theorem 9.1) is completed as follows. First observe that, by (9.4) we have 7, () <
(30(C + 1))74(174‘1; in particular 8n,,(y)"/? < (10(C + 1))72(]72‘1. On the other
hand, by Claim 9.3 and the choice of 5(y) and 6(v) in (9.2), it is easy to see that
|G — H||1,, <3(10(C + 1))_17. Therefore, by Claim 9.2 and property (P2)

A 2(C + D)(IG = Hllnay +1(0)"?) + llgen = Peollss

<
< Ay/5+ am(y) <4v/5+ ap(y) <4v/5+7/5 = 1.

It remains to prove Claims 9.2 and 9.3.

Proof of Claim 9.2. Let g, be as in (4.3) for ge,. Set

I = /geO(G—H) dpe, and Iy :/(geo —hey) [] hedn
e€H\{eo}

and notice that |A| < |[I1| 4 |I2|. Next, observe that

[L2] < [|gey — h€0||San' (9.7)

This follows by Fubini’s theorem and the following well-known fact (see, e.g., [Gow07]).
We recall the proof for the convenience of the reader.

FAacT 9.4. Let e € H with |e| > 2 and g € L1(X, B, ). For every f € Oe let
uf € Loo(X, By, p) with 0 <uyp < 1. Then we have | [ ge [Trcoe wr dpl < llgellss. -

PROOF. Set k = |e| and let {fi,..., fx} be an enumeration of de. We de-
fine Z: [0,1]F — R by the rule Z(t1,...,t) = [ ge [[}_) 1ju, 51, dp. Notice that
ﬂle[ujci > t;] € Spe for every (t1,...,tx) € [0,1]% and so |G|, < ||gells,.- On the
other hand, denoting by A the Lebesgue measure on [0, 1]*, by Fubini’s theorem we
have [ ge[]recpeusdp = [ G dX and the result follows. O



62 9. RELATIVE COUNTING LEMMA FOR PSEUDORANDOM FAMILIES

We proceed to estimate |I;]. First, by the Cauchy—Schwarz inequality and the
fact that 0 < ge, < ve,, We obtain

|]12g/gEOdﬂeo‘/geo(G_H)zd/"@o </Veodl"EO'/Veo(G_Hv)zdll‘eO'

Let tpe, € Lyp(X, Bey, pt) with [[1)ey] 2, < C be as in Definition 8.1 and notice that
by condition (C2.a) we have | [(ve, — ¥e,) dps| < n(y). This is easily seen to imply
that [ ve, dp < C + 1 and so, by the previous estimate, we have

P <@+ 1) ([ (G P+ [ (g = 60)(G — 1) )

where 1), is as in (4.3) for 9.,. Next, writing (G — H)?> = G* — 2GH + H? and
applying (8.1), we see that | [(Ve, — Ve ) (G — H)?*dpre,| < 4n(7y). On the other
hand, by Holder’s inequality, | [ 1, (G — H)*dpe,| < C||G — H||? Ly, Therefore,

111 < 2(C+ 1)(IIG = Hl| o, + 1 (7)) (9-8)

Combining (9.7) and (9.8) we conclude that the estimate in (9.5) is satisfied, as
desired.

Before we pass to the proof of Claim 9.3 we make the following comments.
Estimates of this form are usually obtained for stronger norms than the cut norm,
and as such, they depend on stronger pseudorandomness conditions. In fact, so far
the only general method available in this context was developed by Conlon, Fox
and Zhao [CFZ15]. It is known as densification and consists of taking successive
marginals in order to arrive at an expression which involves only bounded functions
(see also [Shal6, TZ15b]).

We introduce a new method to deal with these types of problems which is based
on a simple decomposition scheme. The method is best seen in action: we first
observe the pointwise bound

(G—H)* <(G—H)*ligsp + (H—G) H* " "1igp.

Since 0 < H 2‘1_11[G< ) < 1 the expectation of the second term of the above de-
composition can be estimated using our inductive hypotheses. For the first term we
select a cut-off parameter 5 > 1 and we decompose further as

If g is large enough, then we can effectively bound the expectation of the first term
of the new decomposition using Lemma 8.3 and Markov’s inequality. On the other
hand, we have 0 < G2q_11[G>H}1[G<5] < B?971 and so the second term can also be
handled by our inductive assumptions. By optimizing the parameter 3, we obtain
the estimate in (9.6) thus completing the proof of Claim 9.3. More precicely



9. RELATIVE COUNTING LEMMA FOR PSEUDORANDOM FAMILIES 63

Proof of Claim 9.3. Recall that G stands for the set {e € H \ {eo} : ge # he}-
We may assume, of course, that G is nonempty and, consequently, that G #% H. Set
A=[G<H],B=[G>H|N|G<B(y)]and C =[G > H|N|[G > B(7)], and notice
that A,B,C € X.,. Next, define

I = /(H — GYH?" "1 dpe,, I = /(G — H)G* "pgdu.,, I3 = / G du,,
C

and observe that Iy, I5, I3 > 0 and [(G — H)* dpe, < I + I + I3. Thus, it suffices
to estimate I;, Is and I3.

First we argue for I;. Let h’eo = (H*17'15) o ey € L1(X, Be,, ) and notice
that 0 < h, < 1. Moreover, by the definition of G and H, we see that

L=l [ T studn= [ TI he-biydul
ecH\{eo} ecH\{eo}
On the other hand, by (9.3) and property (P2), we have ||ge — hel|sy, < m—1(0(7))
for every e € H \ {ep}. Hence, by our inductive assumptions, we obtain that
I <0(v). (9.9)

The estimation of Iy is similar. Indeed, observe that

I = B(y)>! / (G — H)(G/B()* 15 dpey

and 0 < (G/ﬂ(v))%_llB < 1. Therefore,
L < B(y)*10(y) (9.10)

We proceed to estimate I3. Let v, g and £ be as in Definition 8.1, and recall that
0 < G < vg,,g. By Markov’s inequality and the monotonicity of the L, norms,

f’/€07g dpte, < HVeo,g”Le (Z) C+ 1‘
B() B() B()
Thus, by Lemma 8.3 and the choice of z(C,p), we have

Heo (C) < Meo(['/eo,g > /8(7)]) <

I < /C V2 ity < (C+ 1) e C)FCP 48y, ()12 (9.11)

< (C+1)28()7"OP) 4 8y (1) V2.

Combining (9.9)—(9.11) we conclude that the estimate in (9.6) is satisfied. The proof
of Claim 9.3 is completed.
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Relative removal lemma for pseudorandom families

THEOREM 10.1 (Relative Removal lemma). Let n,r € N with n > r > 2, and
let C 21 and 1 < p < oco. Then for every 0 < € < 1 there exist two strictly
positive constants n = n(n,r,C,p,e) and § = §(n,r,C,p,e) and a positive integer
k = k(n,r,C,p,e) with the following property. Let 7 = (n,{(X;, 2i, i) : @ €
[n]),H) be an n-nonatomic, r-uniform hypergraph system and let (v, : e € H) be a
(C,n,p)-pseudorandom family. For everye € H let fo € L1(X,Be, ) with 0 < fo <

Ve such that
/ I[ fean <o (10.1)
ecH
Then for every e € H there exists F, € B, with

/ fedp<e and () F.=0. (10.2)
X\Fe ecH

Moreover, there exists a collection (P. : € C e for some e € H) of partitions of X
such that: (1) Po C Be and |Po| < k for every ¢’ C e € H, and (ii) for every e € H
the set F, belongs to the algebra generated by the family Uelge P

Before we proceed to the proof of the previous theorem we need some preparatory

work.

10.1. Preliminary tools

The first key ingredient towards the proof of Theorem 10.1 is the following
version of the removal lemma for hypergraph systems which is due to Tao [Tao06¢]
(see also [DK16] for an exposition). Closely related discrete analogues were obtained
earlier by Gowers [Gow07] and , independently, by Nagle, R6dl, Schacht and Shokan
[NRS06, RS04].

THEOREM 10.2 (Removal lemma). For every n,r € N withn > r > 2 and every
0 < e < 1 there exist a strictly positive constant A(n,r,€) and a positive integer
K(n,r,e) with the following property. Let 7 = (n,{(X;, X, p;) : i € [n]),H) be an

64
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r-uniform hypergraph system and for every e € H let E. € B, such that

p,( ﬂ Ee) < A(n,re). (10.3)

ecH

Then for every e € H there exists F, € B, with

w(EN\F)<e and () F.=0. (10.4)
ecH

Moreover, there exists a collection (P. : € C e for some e € H) of partitions of X
such that: (i) P C Be and |Po| < K(n,r,e) for every ¢ C e € H, and (ii) for
every e € H the set F, belongs to the algebra generated by the family Ue'ge P

Another key ingredient for the proof of Theorem 10.1 is the following proposition.

ProrosiTIiON 10.3. Let n,r,C,p and € be as in Theorem 9.1, and let M be
a positive integer, 0 < a < 1 and e € H. Also let P. be a partition of X with
P. C Spe and u(P) = 1/M for every P € P., and let Q. be a finite refinement
of P. with Q¢ C Spe. Finally, let fo € Li(X,Be, ) be nonnegative and write
fe = for + [o + f5o where fS., f&r and fS ;¢ are as in (6.1). Assume that the
estimates in (6.2) are satisfied for 0 = /2 and a growth function F: N — R with
F(m) > 2a='m for every m € N. Then the following hold.

(a) For every A € Ap, we have || fe- 14 — fS; - 1alls,. <

a.
(b) Assume that 1 < p < oco. Let ( > 1 and set A = [fS, < (]. Then we have
Ae Ap, and u(X \ A) < (C/C)P. Moreover,

fedpu < CPCP 4+ a and / f& du < CPCP, (10.5)
X\A X\A
PRrROOF. For part (a), fix A € Ap, and let P’ C P. such that A = [JP’. Notice
that |P/| < |P.| < M and
fellA_f:tr'lA:feerr'lA—i_ Z fﬁnf'lp'
PeP’
Therefore, for any B € Sy, we have

‘/(fe'lA_ setr']'A)d/J" < ‘/ f«aerrd“|+ Z ‘/ ft?nfd/""
B BNA BNP

PP’

< ”feerrHLpr + M || finellss. <o+ <o

M
F(M)

which implies, of course, that ||fe 14 — f&, - 1als,. < .
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For part (b), let ( > 1 be arbitrary and set A = [f, < (]. First observe that
A € Ap, since f§, = E(f.| Ap,). Next, by Markov’s inequality, we have

J(f&:)P dp

u(X 0\ A) < S

<COPCP
and so, by Holder’s inequality,
[ T <l X\ A0 < O,
X\A

Finally, by part (a) and the fact that X \ A € Ap,, we conclude that

fodu < / Fodp+ \/ (fe — f5) dul
X\A X\A X\A
< CPCP 4| fe - 1xva — [ Ixalls, < CPCTP +a

and the proof of Proposition 10.3 is completed. O

10.2. Proof of the Relative Removal lemma

We begin by introducing some numerical invariants. First, we set
¢ =((C,pe) = (C+1)1(/6)" 7,

where ¢ is the conjugate exponent of p. Also let A(n,r, 6%) and K(n,r, 6%) be as in

Theorem 10.2 and note that we may assume that A(n,7, 5z) < gz. We define

» 6¢
A7, &)

0 =4(n,r,C,p,e) = and k= k(n,r,C,p,e) = K(n,r, i) (10.6)

6¢
Next, let a(n,r,C,p,(,0) and n(n,r,C,p,(,0) be as in Theorem 9.1 and set

o =min{k~?(e/3),a(n,r,C,p,(,8)} and Reg = Reg(n,r,C +1,p, F,a/2)

where F: N — R is the growth function defined by the rule F(m) = 2a~1(m + 1)
and Reg(n,r,C + 1,p, F,a/2) is as in Theorem 6.1. Finally, we define

n=mn(n,r,C,p,e) = min{1/Reg,n(n,r,C,p,(,0)}. (10.7)

We will show that the parameters n, § and k are as desired.

Indeed, let 7 = (n, ((X;, Xi, ;) : @ € [n]),H) be an np-nonatomic, r-uniform
hypergraph system and let (v, : e € H) be a (C,n,p)-pseudorandom family. For
every e € H let f. € L1(X, Be, ) with 0 < fe < v, and assume that

/ I fedu <. (10.8)
eEH

By Lemma 8.2, for every e € H the random variable v, is (C' 4 1,7, p)-regular and,
consequently, so is fe. Therefore, by (10.7), we may apply Theorem 6.1 and we
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obtain: (a) a positive integer M with M < Reg, (b) for every e € H a partition P.
of X with . C Sy, and pu(A) > 1/M for every A € P., and (c) for every e € H a
finite refinement Q. of P, such that for every e € H, writing fo = f&, + f&r + [Eos

where and f¢ ¢ are as in (6.1), we have the estimates

strs ferr
[ fswllz, S C+1, [[falln,y < /2 and |[fGllss. < F(l ] (10.9)

where p! = min{2,p}. For every e € H let
= [fsr <Cl ge=fe 1a, and he=f§, - 14, (10.10)

and notice that 0 < ¢g. < v, and 0 < he < (. Moreover, by Proposition 10.3, we see
that ||ge — hells,, < a

CLAIM 10.4. We have fHeeH hedp < A(n, 7, &)nr

PROOF. First observe that, by the choice of o and Theorem 9.1,
\/H ge dp — /H he dp| < 6. (10.11)
ecH ecH

On the other hand, we have 0 < g, < f. for every e € H. Hence, by (10.8) and
(10.11),

[T hedu< /erdu+|/Hh du— [ ] gedu| <25
e€H ecH
Finally, by (10.6), we have 2§ < A(n,r, 64)’” and the proof is completed. O
Now for every e € H set Ee = [he 2 A(n, 7, 5¢)]. Since [H| < (M) <n"—1and
A(n,r, 64) 1, by Claim 10.4 and Markov’s inequality, we have

u( ﬂ Ee> < u({x € X: ghe(x) > A(n,r, &)lm}) < A(n,r, é)

ecH
Thus, by Theorem 10.2, for every e € H there exists F, € B, with
WENF) < — and () F=0. (10.12)
6C ecH

Moreover, by (10.6), there exists a collection (P : € C e for some e € H) of
partitions of X such that: (i) P C Be and |P./| < k for every ¢/ C e € H, and (11)
for every e € H the set Fi belongs to the algebra generated by the family |, c P
Therefore, the proof of the theorem will be completed once we show that

/ fodp < e (10.13)
X\F.
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for every e € ‘H. To this end, fix e € H and notice that

/ fedu</ heduﬂ/ (ge—hadu\ﬂ/ (fo — ge) dp|. (10.14)
X\Fe X\F. X\F. X\F.

Next observe that, by the definition of F, and the fact that 0 < h, < {, we have

/ hedp < / he dp —i—/ he dp (10.15)
X\F. X\E. Ec\Fe
e (10.12)
< — <
X A(H,T76<>+CM(Ee\Fe) < ¢g/3.

To estimate the second term in the right-hand side of (10.14), let A denote the
algebra on X generated by the family | J eCe P., and note that every atom of A is
of the form ﬂe,ge Ae where Ay € Po for every € & e. It follows that the number
of atoms of A is less than k%" and, moreover, every atom of A belongs to Sp.. In
particular, there exists a family F C Sy consisting of pairwise disjoint sets with
|F|] < k?" and such that X \ F, = JF. Therefore, by the fact that ||ge — he||s,, < @
and the choice of «;, we have

[ Ge—hydu| < S |/(ge Che)dp| < | Fla <k a<e/3 (1016)
X\Fe Aer 74

Finally, to estimate the last term in the right-hand side of (10.14), notice that if

p = 00, then this term is equal to zero. (Indeed, in this case we have ( = C + 1

and A, = X.) On the other hand, if 1 < p < oo, then, by Proposition 10.3 and the
choice of ( and «, we obtain that

[ Gemgddul = [ fetxades [ e (017
X\F. X\F. X\A.
< (CH+1DPCP+a<e/3.
Combining (10.14)—(10.17) we conclude that (10.13) is satisfied, and so the entire
proof of Theorem 10.1 is completed.



Part IV

Arithmetic consequences of the

Relative Removal lemma



CHAPTER 11

An arithmetic version of the Relative Removal lemma

In this chapter we present a Szemerédi-type result for sparse preudorandom
subsets of finite additive groups. (Recall that an additive group is an abelian group
written additively.) The argument for deducing this result is well-known — see ,
e.g., [Gow07, RTST06, Sol04, Tao06a] — and originates from the work of Ruzsa and
Szemerédi [RS78]. It follows from Theorem 10.1 arguing precisely as in the proof of
[Tao06a, Theorem 2.18].

THEOREM 11.1. For every integer k > 3, every C > 1, every 1 < p < o©
and every 0 < § < 1 there exist a positive integer N = N(k,C,p,d) and a strictly
positive constant ¢ = c(k,C,p,d) with the following property. Let Z,Z' be finite
additive groups and let {p; : i € [k]) be a collection of group homomorphisms from
Z into Z' such that the set {@;(d) — p;(d) : 3,5 € [k] andd € Z} generates Z'.
Consider the (k — 1)-uniform hypergraph system A = (k,{((X;,pi) : @ € [k]),H)
where: (a) H = (kfl), and (b) (Xi, i) is the discrete probability space with X; = Z
and p; the uniform probability measure on Z for every i € [k]. Also let v: Z' — R
be a nonnegative function and for every j € [k] define vy (j3: X — R by the rule

v (@iep) = v (D (pulai) = g5(@) ). (11.1)
1€[k]

(Here, we have X = Xy X --- x Xy). Assume that the family (v : J € [K])
is (C, N~1 p)-pseudorandom and that |Z| = N. Then for every f: Z' — R with
0< f<vand E[f(x)|x € Z'] > § we have

E[H f(a—i—tpj(d))‘an’,deZ] > e (11.2)
JElK]

PROOF. Let k,C,p and § be as in the statement of the theorem and set r = k—1.
Also let n(k,r, C,p, %) and 0(k,r,C,p, %) be as in Theorem 10.1 and define

1
n(kv Ty Capa %)

We will show that N and ¢ are as desired.

N = N(k,C,p,8) = { ] and ¢ = c(k, C, p, 6) :5<k‘,r,C,p, 2%)

70
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To this end, fix the data Z, 7', (p; : i € [k]), 2, v and (vppq53 : 7 € [K])-
Moreover, let f: Z — R with 0 < f < v and E[f] > 0 and assume, towards a
contradiction, that (11.2) is not satisfied. First, we introduce some families of group

homomorphisms between the additive groups X, Z' x Z and Z’ as follows. We begin
by defining Q: X — Z’ x Z by the rule

Q((xi)icw) (Z vi(xi), Z azz) (11.3)

i€[k] i€k]

Using the fact that the set {¢;(d) —¢;(d) : ¢,j € [k] and d € Z} generates Z’, we see
that @ is an onto homomorphism. Next, for every j € [k] we define s;: Z' x Z — Z'
and Q;: X — Z' by setting

sj(a,d) =a+¢;(d) and Q;(x)=s; (Q(X)) (11.4)

Observe that for every j € [k] the maps s; and @) are onto homomorphisms. Also
notice that, by (11.3) and (11.4), we have

Qi ((@iemw) = D (pilm) — i) = D (i) — @j(x)) (11.5)

ic[k] ic[k\{7}

and so Q; € L1(X, B\ yj3, #). Finally, for every j € [k] we set e; = [k] \ {j} and
we define f.;: X — R by

fo, = foQj (11.6)

Note that, by (11.1) and (11.5), we also have v, = v o Q; for every j € [k].

We claim that the hypergraph system 7 and the families (v, : j € [k]) and
(fe; : j € [K]) satisfy the assumptions of Theorem 10.1. Indeed, by the choice of N
and the fact that |X;| = |Z| > N for every i € [k], the hypergraph system .7 is

n(k,r, C,p, W)—nonatomlc and r-uniform. It is also clear that for every j € [k] we
have fe,,ve; € L1(X, Be;, ) and 0 < fe;, < ve,. Hence, it is enough to show that

E[H fej(x)‘ xeX} <5(k,r,c,p, %) (11.7)

To see that (11.7) is satisfied notice first that |Q~*(a1,d1)| = |Q ™ (az, d2)| for every
(a1,d1), (az,d2) € Z'x Z since Q: X — Z'x Z is an onto homomorphism. Therefore,
the map @) is a measure preserving transformation. (Here, we view X and Z' x Z
as discrete probability spaces equipped with the corresponding uniform probability
measures.) By (11.4), (11.6), the choice of ¢ and our assumption that (11.2) is not
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satisfied, we conclude that

B[ I1 fej(x)‘ xeX|=E[[] f(sj(a,d))‘an’,deZ}
jEk

] JE[K]

:E[ I1 f(a+ (@) ‘ aeZ.de Z} < 5<k,r,c,p,2%).
JE[K]

It follows from the previous discussion that we may apply Theorem 10.1 and we
obtain a family (Fe, : j € [k]) with Fe; C [[;c.. Xi for every j € [k] such that,
setting Fe, = F, x X, we have

1ee;

)
() Fe; =0 and E[f., Ixr,] < g5 (11.8)
j€n]
Now for every j € [k] we set
_ 1 _
45 ={ae 2 1Q7 )N (X \ F.)| < 7 1Q7 (@) }. (11.9)

CraM 11.2. The following hold.

(a) For every a € Z' and every d € Z we have [Ticm 14, (a+¢j(d) =0.
(b) For every j € [k| we have E[f - 17n4,] <d/k.

Granting the above claim, the proof of the theorem is completed as follows.
By part (a) of Claim 11.2 applied for “d = 0”7, we see that ﬂje[k] A; = 0 and as
such Z" = ;e (2" \ 4;). Therefore, invoking part (b) of Claim 11.2, we get that
E[f] < X2jep ELf - 12n4,] < 6 which is clearly a contradiction.

We proceed to the proof of Claim 11.2. First we argue for part (a). Assume that
there exists a pair (ag, dy) € Z' x Z such that ag+ ¢;(dy) € A; for every j € [k]. Set
Ey = Q *({(ao,do)}). Note that Ey = Qj_l({ao +¢j(do)}) for every j € [k] and so,
by (11.9), we have |[Eg N (X \ Fe;)| < |Ep|/k. But this is impossible by (11.8) and
the classical pigeonhole principle. Thus, we conclude that [] e 14 (a—Hoj (d)) =0
for every a € Z’ and every d € Z. For part (b), fix j € [k]. Since Q;: X — Z' is an

onto homomorphism, we have |Q;1(a)| = |X|/|Z'| for every a € Z'. Therefore,
1 _
E[f-1zn4;,] = x| > Q5 ()l - f(a)
CLEZ’\AJ‘
(1.9 1 _
< Y kIQ @ N (X \ Bl (@)
’ | acZ’
(11.6) (11.8) §

kE[fe; -1x\r,] < o
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This completes the proof of Claim 11.2, and as we have already indicated, the proof
of Theorem 11.1 is also completed. [l



CHAPTER 12

“Pseudorandom” functions in the primes

In this chapter we introduce the appropriate arithmetic setting in order to apply
Theorem 11.1. So, we first define a function in P? that is majorized by a function
that obeys certain pseudorandomness conditions. In order to do so we use the W-
trick-see e.g. [Tao06a, GT10, CFZ14, FZ15, TZ15a]- which originates from the work
of B. Green [Gre05]. The W-trick is very useful since it states that if we want to
find certain “structures” in P¢ by the Dirichlet theorem we may restrict our selves
to primes that belong to an arithmetic progression.

In the second section we discuss the form the majorizing function should have
and in the last two sections we define this majorant and prove that it obeys certain
pseudorandomness conditions.

Before we begin we need to fix some notation and prove some preliminary results.
At first, we define the functions w, W: N — [0, 00) by the rule

w(n) = log™® (n) and W (n) = H D, (12.1)
pEP: p<w(n)

for every n € N. For these functions we will need the following lemma.

LEMMA 12.1. Let N be a large positive integer', w = w(N) and W = W(N).

Then,
W < 4/log N. (12.2)

PROOF. The prime number theorem (see Appendix B, Theorem B.1) suggests
that

logW = Z logp = (1 + on—yeo(1))w = O(w)

psw
and thus W = ¢“(), This implies of course (12.2). O

Now, for every v > 0 we define the function R,: N — [1,00) by the rule

R, (n) =n/2. (12.3)

YFrom now on when we say that N is a large positive integer we practically see this N as
tending to oo, i.e. is sufficiently large for the purpose at hand.

74
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Finally, from now on ¢ will denote the Euler totient function, p will denote the
Mébius function and A will denote the restriction of the Von Mangoldt function in
the primes, i.e. A(n) = 1p(n)logn, for every n € Z. For more details about these
functions see Appendix B.

12.1. The W-trick

We begin with the one dimensional case. Let N be large positive integer and
w=w(N),W =W(N)beasin (12.1). Then, for every b € {0, ..., W —1} such that
ged(b, W) = 1 the modified Von Mangoldt function Kb,Wi Z — [0,00) is defined by
the rule
¢V Jog(Wn +b), when Wn+be P

Apw(n) = .
0 , otherwise,

(12.4)

for every n € Z. A very important fact about this function is the following?.

PROPOSITION 12.2. For every large positive integer N and for everyb € {0,..., W (N)—
1} such that ged (b,W(N)) =1 we have that

> Apw(n) = (14 onooe(1)) . (12.5)
ne(N]

PROOF. Let N be a large positive integer, w = w(N),W = W(N) and b €
{0,..., W — 1} with ged(b, W) = 1. The main ingredient for the proof is the Siegel-
Walfisz theorem (Theorem B.8 in Appendix B). By (12.2) we see that this theorem
may be applied and thus

oW T
(W ) Y An) = (1+ onooo(1))N.
ne[WN+b)
n=bmodW
But then
% o(W) % (W) %
S Aw(n)= Y AW +b) = =5 > An)
n€e[N] n€[N] ne[WN+b]
n=bmodW
= (1 + 0N—>oo(1))N
and the proof is completed. [l

We extend now the previous function to higher dimensions. To this end, let N
be a large positive integer, w = w(N),W = W(N) be as in (12.1) and d be a
positive integer. Then, for every b = (by,...,by) € Z¢ such that b; € {0,..., W —1}

2Using the terminology of [GT08, GT10] the following proposition states that the function

defined on (12.4) constitutes a “measure” on the set Zy.
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and ged(b;, W) = 1 for every i € [d] we define the multidimensional modified Von
Mangoldt function Ap wq: Z¢ — [0,00) by the rule

Apwam) = Ay w(n1) ... Ay, w (n4), (12.6)

for every n = (ni,...,nq) € Z% As a straightforward consequence of Proposition
12.2 we have the following similar result for the multidimensional modified Von
Mangoldt function.

PROPOSITION 12.3. For every large positive integer N and b = (b1, ...,bg) € Z¢
such that b; € {0,...,W(N) — 1} and ged (b, W(N)) =1 for every i € [d] we have
> Rpwva®) = (14 onoo(1) N (12.7)

ne[N]¢

12.2. Truncated divisor sums

We define now a function that as we will see later on gives rise to a pointwise
“majorant” of the modified Von Magoldt function with the additional property that
this “majorant” has “good” pseudorandom properties. In [GT08], motivated by
[GY03, GY], this function was defined as

Z wu(d)log(R/d),

din
d<R

for R > 0. In the works that followed (see e.g [GT10]), the previous function was
modified to take eventually the following form. Let x: R — [0, 1] be a smooth and
compactly supported function, a be a positive integer and R > 0. Then, we define
the function Ay pq: Z — [0,00) by the rule

Ayra(n logR(Z,u fzgg; ) , (12.8)
din

for every n € Z.*

REMARK 1. Note that Agr = A, g1, where x(z) = max(1 — |z|,0), although we
have abused notation since x is not smooth in this case.

Observe now that if y is supported on [—1,1], n = p* for some prime p and some k
and ged(n, [[,cgp) = 1 then Ay ra(n) = x(0)*log R. Thus, Ay r, may be seen as
weights on the “almost” primes, although it also give weights to other numbers as
well. When a = 1 we have the disadvantage that A, g1 can be negative. Therefore
in what follows we will take a = 2.

3For intuition about what reason could lead to this function see Proposition B.4.
4 This function for a = 2 is closely related to the A? Selberg sieve (see [IK04, Chapter 6]).
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We will need the following result about the functions that where defined (12.8). This
result is known as the linear forms condition estimate, see [GT08, GT10, CFZ14]
and is an immediate consequence of Theorem C.20 in Appendix C.

PROPOSITION 12.4. Let D be a positive integer, x: R — [0,1] be a smooth
and supported on [—1,1] function such that x(0) = 1 and [ |x'(x)|*dz = 1 and
N be a large positive integer. Also, let w = w(N),W = W(N) as in (12.1) and
N = |N/W |. Then, there exists a constant vy = v(D, x) > 0 such that if R = RA,(]\?)
is as in (12.3) the following holds. Let 1 < d,t < D and 41, ..., Z¢ — 7 be non
zero affine linear forms with no two of them be rational multiples of each other and
with coefficients bounded by D. Also, let B = Hie[d] I; where for every i € [d], I; is
a set ofﬁ consecutive integers and by, ..., by € {0,..., W — 1} with ged(b;, W) =1
for every i € [t]. Then,

E[(qﬁ(wm)t H Ay r2(Wipi(n) +b;) [n € Bl =1+ op n—soo(l). (12.9)
i€lt]
12.3. Construction of the majorants

From now on we fix a positive integer D, a large integer N,w = w(N),W =
W(N) and N = |[N/W |. Moreover, we fix a smooth and supported on [—1,1] func-
tion x: R — [0, 1] with the additional properties that x(0) = 1 and [, |X'(z)|*dz = 1.
Finally, we fiz the constant v = (D, x) that arises from Proposition 12.} for the
previous choice of D and x and also fix R = RV(]V).

We will first construct a majorant for the one dimensional modified Von Mangoldt

function and then we will do the same for higher dimensions.

For the one dimensional case we have the following. For every 0 < €1,e2 < 1 with

€1 < g9 and every b € {0,...,W — 1} with ged(b, W) = 1 we define the function
Veieabt Z]V — [0, OO)

by the rule

%AX7372(W71 +b), when n € [qﬁ,sgﬁ]

(12.10)
1 , otherwise,

V€1,€2,b(n) =

for every n € Zg. Let’s show first that the previous function bounds pointwise Kb’w.

PROPOSITION 12.5. Let 0 < 1,690 < 1 with 1 < €2, b € {0,..., W — 1} such
that ged(b,W) =1 and Apw be as in (12.4). Then, there exists o > 0 such that

5,}, . Kbyv(n) < Val,az,b(n)a

for every positive integer n € [slﬁ, 52ﬁ].
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PROOF. Let ¢, =~y/6 andn € [e1 N, e2N]. It suffices to consider the case Wn+b
is prime since otherwise Ay (n) = 0. Then, by the definition of N, Lemma 12.1
and the fact that v/log N < N for large N we have

Wn+b< \/logNN + v/ Iog N < N3,
and hence by the definition of R
3y log(Wn +b) < %logﬁg’ <log NV/? = log R.

On the other hand, by the discussion after (12.8) and since x(0) = 1 we have that
Ay r2(Wn +b) =log R, when Wn + b is prime. Thus,

o(W)
W

~ w
Sy Apw(n) = oy gb(VV ) log(Wn +b) < log R = vz, 2y 0(1)

and the proof is completed. ]

We proceed to the higher dimensions. For every d < D, every 0 < 1,2 < 1 with
€1 < e and every b = (by,...,by) € Z¢ with b; € {0,...,W —1} and ged(b;, W) = 1
we define the function v, ¢, b.4: Zjdv — [0, 00) by the rule

Ve eab,d() = Veyep0 (1) - - Vey 2904 (M) (12.11)

for every n = (ny,...,nq) € Z%. Using Proposition 12.5 we see that the following
proposition holds.

PROPOSITION 12.6. For every d,e1,e2 and b as before the following holds. If 6.,
is as in Proposition 12.5 and 0,4 = 5$ > 0 we have that

Syd - Aowa(m) < Ve ey p.a(n),
for every n € [51]\7,52N]d.

REMARK 2. The quantities €1, 2 will be chosen in the proof of the multidimen-
sional Green—Tao theorem in order to extend constellations of Z‘]% that arise from

the use of Theorem 11.1 to genuine constellations of Z¢.

12.4. Pseudorandomness conditions for the majorants.

Our task now is to show that v., ., b4 Obeys a certain pseudorandomness condi-
tion. We will prove this result for the one dimensional case and then as a consequence

we will have a similar result for higher dimensions also. More precisely, we have

PROPOSITION 12.7. Let 0 < e1,69 < 1 with g1 < €3, b € {0,..., W — 1} with
ged(b, W) =1 and 1 < d,t < D be positive integers. Also let Py, ... 1 2% — 7 be
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non constant affine-linear forms where no two of them are rational multiples of one
another and where their coefficients are bounded by D. Then,

neZd [H Vey,e0,b %( ))} =14 0p N—oo(1).

1€(t]
In the last expression® we induce the affine linear forms Py Z% — L5 from their

global counterparts 1;: 7% — 7 in the obvious manner.

ProOOF. The idea is to split Z‘]iv into smaller boxes and then apply Proposition
12.4. For notational simplicity we set v¢, ¢, 5 = 1. So, let Q@ = Q(N) be the largest
prime that is lower or equal to N2 and observe that by the Bertrand-Chebysev
theorem (Theorem B.3) we have that Q > N/2/2. Then,

N2 < N/Q < 2N'/2 (12.12)

Consider now the boxes

N N
Bul,...,ud — {n € Z(]iff: nj € HUJEJ’ L(u] + 1)5J)}5
for every (ui,...,uq) € Z‘é. Then, we have the following result.

CrAaM 12.8. The following holds true.
Eyeze | [T v(im)] = 0+ 04(0)Eus...cvsezg [Enes,, ., [ [T v(:m)]]:

1€(t] i€[t]
PROOF OF THE CLAIM. First observe that for every wui,...,uq € Zg we have
N 4 N 4
(a —1)" < [Buy,..ug] < (a +1)

and since @) < NY2 we have,

Bl = (14 0aD) ()"

gy v(5(0)
SRS | ) D YD S ué]—

i€[t] ULy UgELQ NEBuy,q ...,

= (1 + Od(l))EneZ% { H V(lbz(n))]

i€(t]

ulv---vud|

and the proof is completed. ]

S5This expression is usually referred to as the linear forms condition for functions in Zg, see
[GT10]
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In order to apply Proposition 12.4 we do the following dichotomy. We call a box good
if for every i € [t] the set {¢;(n): n € By, . .,} either lies in the subset [61N,52ﬁ]
of Zg or it is completely outside of this subset. If a box is not good we call it bad.
For the good boxes using (12.12) and since N is sufficiently large we may apply
Proposition 12.4 and obtain that

Enes,, ., [ [ v%im)] =1+ 0pnooo(l). (12.13)
1€t]
For the bad boxes we take the trivial bound

I/(n) <1+ WAX7R72(WH + 1)

which by expansion and the use of Proposition 12.4 yields that

,,,,,

and thus
EncBa,. ., | || ¥(¥i(n))] = Op(1). (12.14)

.....

Therefore it suffices to show that the number of bad boxes is at most Op(Q4™1).

Indeed, assuming the previous bound we have

Bucs [ [L ()] = (14 0u) gz 3 By, [ ] (o)

i€t] ul,...,udEZdQ 1€[t]

1
Q1

since @) increases with N. It remains to show the bound about the number of bad

= (1+00(1)) 57 (@1 = 0p(@*1) (1 + 0p(1) + On(Q™")) = 1+ 0py e (D),

boxes. Before we do so we need the following result.

CLAIM 12.9. Assume that for some ui,...,uq € Zg and for some i € [t] there
exists n € By, . ., and { € 7 such that

61]\7 < 1[11(11) + EN < €2N.
. Then, for everyn’ € By,,....u; we have that
1 < ¢;(n') + N < N.

Proor or THE CLAIM. Since 1; is an affine linear form there exist L; 1,...,L; 4,¢; €
Z such that
Pi(x) = Z Lijxj + ci,

JEld]
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for every x = (x1,...,24) € Z% Then if n = (n1,...,ny) we have that
(e1 —O)N —¢; < Z Lijn; < (e2 — ON — ¢ (12.15)
Let now n' = (n},...,ny) € By, u, and observe that |n; — n| < N/Q for every

j € [d]. Then we have that

2.15) _ -
ZLjn —ZL”n—nJ +ZLJ”J < 52—5)N—C¢+2DtN1/2
JEld] JE€ld]

< (62— ON —¢; +2D*NY? < (1 = O)N — ¢,

since D, ey are fixed and N is large enough. Working similarly we also obtain that

Z L”n /N — C
JEld]

and thus we have proved the desired result. ]
We are ready now to bound the number of bad boxes.

CLAIM 12.10. The number of bad bozes is bounded by Op(Q41).

PROOF OF THE CLAIM. Assume that for every x = (x1,...,24) € Z%
n) = Z Li,jxj + ¢4,
jeld]

for some L;1,...,L;q,¢; € Z. Also assume that B,, . ., is bad. Then, by the
definition of bad boxes there exist ¢ € [t] and n,n’ € By, ., such that ¢;(n) lies
in [51]\7, 62N] while ¢;(n") does not. Then, by the Claim 12.9 we may find integer ¢
such that either

1<) + N < N < ¢i(n) + (N < eoN (12.16)
either
e1N < ¢i(n) + N < N < ¢;(n’) + /N < N. (12.17)
But from the definition of By, .. ., and since L;js, ¢; are bounded by D we also
have B B
N N
w LZ — —|— ¢+ Op(—
Z ilug o(g)
which together with (12.16) and (12.17) yields that either
N N
elN =YL u]QJ +Cz+£N+OD(Q)

JEld]
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either

- N - N
eoN = Z L; LUJEJ +c + N + Op(a).
Jeld]
- N | — o N
Since now |u; | = u;jg + O(1) we have

Z Lmuj = <€1Q — CZ']% + OD(l))mon
Jjeld]

or
Z Liju; = (52Q - Cig + OD(l))mon.
; N
JEld]
Since (Li,j)je[d] is non-zero, the number of d-tuples uq,...,ug which satisfy these

equations is Op(Q?!), which happens because we have d — 1 degrees of freedom
in the choice of u;’s. Therefore, letting ¢ vary and taking into account that the
previous should hold for €1 or €2 we have that the number of bad boxes is bounded
by

2DOp(Q"1) = Op(Q"™)

which completes the proof of the claim. [l

With the completion of the proof the previous claim we also have completed the
proof of Proposition 12.7. O

As an immediate consequence we have the following proposition for the function

Vey,eo,b,d-

PROPOSITION 12.11. Let 0 < 1,62 < 1 with €1 < g2 and d,t be positive integers
with 1 < dt < D. Also, for every i € [t| and every j € [d] let ;- 7% — 7 be
non constant affine-linear forms where no two of them are rational multiples of one
another and where their coefficients are bounded by D. Then,

]EHGZ% |: H V61,62,b,d(¢i1 (n)a cee ﬂ/hd(n))} =1 + OD,NHOO(l)a
i€[t]
where as in Proposition 12.7 we induce the affine linear forms 1);: Z% — ZLg from

their global counterparts 1;: Z% — 7 in the obvious manner.



CHAPTER 13

A multidimensional Green—Tao theorem

In this section we prove a special case of the multidimensional Green—Tao the-
orem. More specifically we will show that every “large” subset of P?lv, where N is
large, contains at least one constellation of every finite set of Z¢ that is in general
position. This result was proved by B. Cook and A. Magyar in [CM12]. For the
general case the arguments that we use here don’t work and in order to give a com-
plete proof one needs to take a completely different approach passing through some
deep results, [GT10, GTZ12, GT12, FZ15].

13.1. Shapes in Z¢

This section contains definitions about special types of shapes in Z% and a tech-
nical lemma concerning one of these types. First recall that a shape in Z¢ is just a
finite set of vectors uq, ..., u; € Z* and a constellation of this shape is called every
homeothetic copy of it, i.e. a constellation of ui,...,u; € Z% is a set of the form
T+ tug,..., o+ tu, € Z2, for some x € Z4 and t € Z \ {0}.

DEFINITION 13.1 (General Position). A shape {u1,...,ur} C Z%\ {0} is in
general position if for every i,j € [k] with i # j and every |l € [d] we have that
u;y # wj, where u;; and wj; are the [th coordinates of u; and uj respectively.

For example, the shape of Z2, {(1,2),(2,1)} is in general position while the shape
of 72, {(1,0,0),(0,1,0),(0,0,1)} is not.

Observe now that a shape {ug, ..., u;} C Z% may be seen as a vector u = (u, ..., uy) €
7% . Having this in mind we have the following definition.

DEFINITION 13.2 (Primitive shapes). A shape u = (uy,...,ux) € Z% is called
primitive if
{x € Z%: x = M, for some 0 < X <1} =0,

i.e. the line segment [0,u] does not contain other point of Z% other than 0 and .
REMARK 3. Observe that if u € Z% is primitive then

inf |lm —ylle = 1.
meZ® \{0,u},
y€[0,u]

83
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From now on, for every x € Z% for some d,k > 1, by [0,x] we will denote the line
segment with boundary points 0 and x.

We proceed now to a lemma concerning affine linear forms defined on shapes
that are in general position.'.

LEMMA 13.3. Let d be a positive integer and {us,...,uq} C Z% be a shape in
general position such that u;s are linearly independent for every i € [d]. Also, for
every j,1 € [d] let W;,: Z¢ — 7Z be the function defined by the rule

U,i(x) = Zﬂfzuzl - (sz) uji,
i#] 1#]
where x = (x1,...,24) € Z% and w; is the lth coordinate of u; for every i,l € [d].
Then, no two of the functions W;; are rational multiples of each other.

PROOF. Let j,7',1,1' € [d]. We distinguish the following two cases. The first
case is when j = j/. Assume on the contrary that there exists some rational A such
that

Vj(x) = AW (x)
for all x € Z%. Then, by the definition of V; ;s this A would satisfy the following
equation
Dz Tiluwiy — ujp)
> iz Tiluig — ugy)
for all x. But by comparing the coefficients of the x;s this would imply one of the

A=

)

following two cases in turn

e cither for every i,4' # j, with i # i’ we have that u;; —u;; = uy; —u;j; and

Ui — Uj = Uy ) — Uj 1

e cither there exists some b such that for every i # j, u; p —u;p = b(u;;—u;j;)
But the first case contradicts the fact that w1, ..., uq are in general position while the
second case contradicts the fact that u1,...,uq are linearly independent. Therefore
the case j = j' is proved. For the case j # j' we work similarly 2. Thus, the proof
of the lemma is completed. ]

13.2. A special case of the multidimensional Green—Tao Theorem

Our interest in this section is to prove the multidimensional Green—Tao Theorem
for shapes in general position. Before we proceed to the precise statement and proof

of this theorem we have the following preparatory lemma.

1This lemma along with Proposition 12.11 and Theorem 11.1 plays an important role in the
proof of the special case of the multidimensional Green—Tao Theorem.

2In fact, in this case only the linear independency of the wu;s is needed.
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LEMMA 13.4. Let 6 > 0 and d, k be positive integers with k > 3. Also let N be
a large positive integer, w = w(N),W = W(N) be as in (12.1) and N = |[N/W|.
Then, for every A C P4, with |A| > 6|Pn|¢ there exists b = (by,...,bg) € Z¢ with
b; € {0,...,W — 1} and ged(b;, W) = 1, for every i € [d] such that

) ~
> Lapw(m)Apwa(n) > TiHNd, (13.1)
ne[N]d
where for every b
1A,b,W(n) = lA(Wm +b1,...,Wng+ bd),

for every n = (nq,...,ng) € Z°.

PROOF. We begin with the following result.

CLaM 13.5. The following expression holds true

IAN[VN,N¥| > f]P . (13.2)

PrOOF OF THE CLAIM. Recall that for every positive integer n, m(n) = |Py|.

Assume now that (13.2) does not hold true. Then we should have that
5

2r(N)” = JIPAl < |AN([L N\[V, N)| < w(V)'~ (x(N) +(VI))". (13.3)

By the binomial theorem and the prime number theorem we have that

d—1
(V) = (r(N) + 7(vVN))* = > <d>7r(zv)’fﬂ(\/ﬁ)d’f

k
k=0
d—1 ik
= (1 + onsoo(1) ( )Qd—sz
log Nk:o
1
< ——2"(d - 1)dN‘z.
log® N

But then (13.3) and the prime number theorem would imply that
N < §2d+1(d —1)dN‘3,

which is clearly a contradiction since N is sufficiently large. Therefore we have
completed the proof of Claim 13.5. O

Using now the previous claim and the prime number theorem once again we have
that

|

> Any) ... A(ng) > W(N)dlog(\/ﬁ)bizvd. (13.4)

n=(n1,...,ng) EAN[VN,N]4
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Set

Co(W) = {(by,...,bg) € {0,..., W—1}¢: ged(b;, W) = 1, for every i € [d]} (13.5)
and observe that there exists b = (by,...,bq) € Co(W) such that

(¢(W))d Z 1abw(n) H log(Wn; + b;)

W _ .
n=(ni,...,nq)€[N]¢ i€ld]

¢(” ) d /
( W ) b’:(b’l,..r.r,lb%})(GCo(W) Z _ TAb w(n) H og(Wni +b;) (13.6)
n:(nlv"'vnd)e[N]d Ze[d]

> % > > Lapw(n) [] log(Wn; + b))

b’:(bll,...,b:l)ECO(W) n:(n1 ..... nd)E[j\?]d iE[d]

We will show that the previous b is the desired one. To this end, for this choice of

b we have
Z Lapw(n)Apwa(n)
ne[N]d
(13.6) 1
> > > Lapw(n) [] log(Wni + b;)
b:(bl7~-~7bd)€{07"'7W_1}d n:(n1,...,nd)€[]v}d lé[d}
1 ~ ~ (134)  § ~
> 5 > A(ny) ... Ang) > WNCI
n=(n1,...,ng) EAN[VN,N]4
which completes the proof of the Lemma. ]

We are ready now to prove the main result of this chapter and of this part in
general.

THEOREM 13.6. Let d,k be positive integers with k > 3, u = (uy,...,ug) €
Zka\ {0} be a shape in general position and & > 0. Also, let N be sufficiently large.
Then for every A C P4 with |A| > 6|P%| there exist x € Z¢ and t € Z \ {0} such
that

T+ tuy,...,r+tuy € A.
PROOF. Our aim is to form the proper setting in order to apply Theorem 11.1.
So, let

D= max{k:d2d(k71) ,max || U] oo},
1€[k]

w = w(N),W = W(N) be as in (12.1), N = [N/W|, Z = Zg, Z' = Z% and
b = (by,...,bq) € Z% be as in Lemma 13.4. Moreover, let v = (D, x) be as in
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Proposition 12.4 and R = R«,(K/) be as in (12.3). Finally, let
J J

2= (- jgmp) =1 = e (18.7)
0~,4 be as in Proposition 12.6 and
No = N(k,1,00,80,.p/272), co = c(k,1,00,88, p/27"?) (13.8)
be as in Theorem 11.1. We begin with the following claim.

CLamM 13.7. We may assume that k = d and also that the vectors ui,...,uy
are linearly independent. We may also assume that the shape u = (uq,...,ux) is
primitive.

PROOF OF CLAIM 13.7. For the first part of the claim let wy, ..., w, € Z* be

independent vectors. For every i € [k] set u; = (u;,w;) € Z4T*. Expand the linearly
independent u;’s to form a basis uf, ..., uj, up ..., Uy, 4 0f Z9+*% and observe that
this expansion can be done in order for the basis (u}: i € [k + d]) of Z** to be in
general position. Set A’ := A x P* and observe that if there exist z; € Z%, xy € ZF
and ¢t € Z \ {0} such that (z1,2z2) + tu; € A’ for every i € [k + d] then z; + tu; € A
for every i € [k|.

For the second part of the claim observe that it suffices to show that there exists
a primitive shape u’ = (u, ..., u}) € Z% and a positive integer s such that u = su’.
To this end we assume that u is not primitive since otherwise we take s = 1 and
u’ = u. Then, there exist finite A € (0,1) such that A™*|u;; for every i,j € [d],
where as usual u;; is the jth coordinate of u;. Setting A\p to be the minimum X
that has the previous property we have that u’ = \gu is primitive. Thus, if we take

5=y 1 we have the desired result. The proof of the claim is completed. ]
Hence in what follows we assume that k = d, that w1, ..., uq form a basis of Z¢ and
that {ug,...,uq} is primitive.

We define now the functions ¢1, ..., ¢4, : Zg — Z% by the rule
pi(m) = m - uj,
for every m € Zg and every i € [d] and observe that the set
{pi(m) — @j(m):i,j € [d] and m € Zg}

generates Z%, since (u;: i € [d]) is a basis of Z.

We consider further the (d — 1)-uniform hypergraph system ¢ = (d, ((X;, p;): i €
[d]), H) where: (a) H = (dfl), and (b) (X, u;) is the discrete probability space with
X; =Zz and p; the uniform probability measure on Zg for every i € [d].
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Moreover, we set vV = Vg, oy bd: Z% — R to be the function defined in (12.11) and
define
Vapgip: X = R
by the rule
v (@iew) = v( X (eila) = ¢i(2))).
i€(d)
By Lemma 13.3, the choice of D and Corollary 12.11 we see that

L0 (1)
IE[ H H l/( Z %(xz(wz)) - @j(xgwﬂ)) Jow 20),,. 21) € Zﬁ] =1+ on—oo(1),
J€[d] we{0,1}dN\ {7} i€[d] T, @y

for any choice of n;,, € {0,1}. Therefore, the family (vg\(;3: J € [d]) satisfies the
linear forms condition defined in (8.8) and thus since N is sufficiently large we see
that the previous family is (1, Nj ! 00) pseudorandom and |Z| = N > Ny, where
Ny is as in (13.8).

We set now f: Z% — [0,00) to be the function defined by the rule
f(n) = 6,4 Apwa(n) - Lynter ¥ epja (Wnn 401, Wi + bg),

where n = (n1,...,ng) € Z% and /~\b7W7d is as in (12.6) and by Theorem 12.6 we see
that f < v. For the function f we also have the following Claim.

CrAaM 13.8. The following inequality holds true.

504
E[f(n)|nez%] > le’?.

(13.9)

PROOF OF cLAIM 13.8. For the choice of £1 and &5 in (13.7) we use Proposition
12.6 and obtain that

- 5~
Z Apw,a(n) < WNCI
ne[ﬁ]d\[alﬁ,agﬁ]d
and thus
00y,d =4
Z f(n) < 10d+1N ’

nE[ﬁ]d\[alf\?,EQ[\?]d
Combining now the previous expression with Lemma 13.4 we see that

1 1 ~ 0044 ~
Z f(n) > 65’%d(2d+2 - 10d+2)N > 2d12 N.
ne[N]d

Using now the identification Zg = []\7 | the proof of the Claim is completed. O
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Therefore, by Theorem 11.1 we have that

E[ [ f(x+9;t)|x€z%,t € Zg] > co. (13.10)
jeld]
We observe now that by the prime number theorem the contribution of the trivial
term ¢t = 0 is O(log™® ]V) and thus since N is large we see that there exist x € Z‘ij
and t € Zg \ {0} such that

X+ tug, ..., x+tug € AN[e1N,eaN]% (13.11)

It remains to show that the previous expression gives rise to a genuine constellation.
More precisely we have the following claim.

CLAIM 13.9. There exist X' € Z¢ and t' € Z\ {0} such that
x 4+ tuy,. . X +tuge A (13.12)

PRrOOF OF CLAIM 13.9. By (13.11) there exist x1,...,Xq € Z% and t1,...,tq €
Z \ {0} such that

X1+ tUr, ..., Xg +tqug € AN [81N,52N]d,

with x; = x in Z% and t; =t in Zg for every i € [d]. Thus, our task is to show that
there exist X’ € Z% and t' € Z \ {0} such that x; = x’ and t; = ' for every i € [d].
Assume first that we have found a ¢’ such that ¢; = ¢’ in Z% and t'u; € [Elﬁ, 52]\~7]d
for every i € [d]. Then, for every i € [d], x; + t'u; € [e1N,e2N]% and thus by the
choice of £1, 9 we have x; = x in Z? for every i € [d]. Thus, we may set X’ = x.

It remains to show that there exists a ¢ such that ¢; = ¢ in Z% and t'u; €
[e1N,e2N]%, for every i € [d]. To this end we will use the fact that u = (uy, ..., uq)
is a primitive shape and more precisely that by Remark 3 we have

inf lm -yl =1 (13.13)
meZ?\{0,u},
y€[0,u]
We do the identification Z5 = [N] and observe that for every i € [d] there exists
k; € Z and m; € Z¢ such that

t; =t + k;N and t;u; — m;N € [61N,52N]d.
Thus there exist m},...,m/, € Z¢ such that
tu; — miN € [e1N,eaN%, (13.14)
for every ¢ € [d]. More especially we have that for every i € [d]

[tw; — M N|joo < N
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and thus ;
|=u—m|« <1,
N

where m = (mf,...,m}) € 7% . Since t € [N — 1] by (13.13) we see that m = 0 or
m = u. Therefore by (13.14), taking ¢ = ¢ in the first case and ¢ = ¢t — N in the
second one we have completed the proof of the claim. ]

With the proof of the previous claim the proof of Theorem 13.6 is completed
also. g

Theorem 13.6 provides us with the following corollaries.

COROLLARY 13.10. Let d,k be positive integers with k > 3, u = (u1,...,ug) €
Z%\ {0} be a shape in general position and § > 0. Then, every A C P with
AN(1,N)¢
lim sup # > 6° (13.15)
N—o00 ‘PN‘

contains infinitely many constellations of u.

PROOF. By (13.15) there exists a sequence (N;)72; of large positive integers
such that
[ AN LN = 6Py |,

for every j. Therefore applying Theorem 13.6 successively to those N;’s gives us the
desired result. O

Furthermore, by the previous corollary we obtain the following result.

COROLLARY 13.11. For every positive integers d, k with k > 3, the set P% con-
tains infinitely many constellations of every shape u € Z% \ {0} that is in general
position.

Finally, as a corollary we obtain the Green—Tao theorem, [GT08]. More precisely,

COROLLARY 13.12 (Green-Tao theorem). Let k be a positive integer with k > 3,
N be sufficiently large and § > 0. Also, let A C Py with |A| > §|Pn|. Then there
exist x,t € Z with t # 0 such that

r+t,...,x+ kt € A

PROOF. Just observe that the set {1,...,k} is in general position in Z and apply
Theorem 13.6. 0

3The (LHS) of this expression is usually referred to as the upper density of the set A.
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CHAPTER 14

An algorithmic regularity lemma for L, regular sparse

matrices

In this chapter we discuss an algorithmic regularity lemma for L, regular sparse
matrices. This result is based on the techniques described in Parts I and II.

To proceed with our discussion it is useful at this point to introduce some pieces
of notation and some terminology. Unless otherwise stated, in the rest of this chapter
by n1 and ng we denote two positive integers. Now, if X is a nonempty finite set, then
by pux we denote the uniform probability measure on X, that is, pux(A) = |A|/| X/,
for every A C X. For notational simplicity, the probability measures pi,,], fi[n,] and
Hni]x[no] Will be denoted by pi1, p2 and p. If P is a partition of [n1] x [ng], then by
Ap we denote the (finite) o-algebra on [n1] x [n2] generated by P.

Next, let X1, Xo be nonempty finite sets and set

Sx i xXx, = {A; x A3: A; C X7 and Ay C Xs}.

If X; and X, are understood from the context (in particular, if X; = [n;] and
X2 = [n2]), then we shall denote Sx, xx, simply by S. Moreover, fro every partition
P of X1 x Xo with P C Sx, «x, we set

(P) = min { min{px, (P1), px,(P2)} : P =Py x P, € P}.

That is, the quantity ¢(P) is the minimal density of each side of each rectangle
P x P5 belonging to the partition P.

Now recall that a cut matriz g: [n1] X [n2] — R is a matrix for which there exist
two sets S C [n1] and T C [ng], and a real number ¢ such that g = ¢- 1gx7; the
set S x T is called the support of the matrix g. Also recall that for every matrix
f: [n1] X [n2] — R the cut norm of f (see also Chapter 1, Example 1) is the quantity

[fllo = max ‘ > flan,m)| = (ning) - max ’/ fdu‘
SClna] SxT SClm] 1 JgxT
TClny] (#1,2)€5X TClna]

We are now ready to introduce the class of L, regular matrices (see also Defini-
tion 5.1).

92
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DEFINITION 14.1 (L, regular matrices). Let 0 <n<1,C>1and1<p< 0.
A matriz f: [nq] X [ng] — {0, 1} is called (C,n, p)-regular (or simply L, regular if C
and 1 are understood) if for every partition P of [n1] X [n2] with P C S and «(P) = n
we have

IE(f [ ARz, < ClIfllL,- (14.1)
The following theorem is the main result of this chapter.

THEOREM 14.2 (Algorithmic Regularity Lemma). There exist absolute constants
ai,az > 0, an algorithm and a polynomial Iy such that the following holds. Let
0<e<1/2andC > 1. Also let 1 < p < oo, set p' = min{2, p} and let q denote
the conjugate exponent of pt (that is, 1/pt +1/q =1). We set

7 oap-C? Cfag e\ XTI GG

If we input
INP: a (C,n,p)-regular matriz f: [ni] X [na] — {0, 1},
then the algorithm outputs
OUT: a partition P of [n1] x [n2] with P C S, |P| <47 and «(P) = n, such that

If = E(f | Ap)llo < el fllo- (14.3)

Moreover, this algorithm has running time (747) - Ilo(ny na).

Theorem 14.2 extends [COCF10, Theorem 1] which corresponds to the case
p = oo'. Note that, by (14.2) and (14.3), the matrix f is well approximated by a sum
of at most 47 cut matrices with disjoint supports and, moreover, the positive integer
7 is independent of the size of f and its density. Also observe that, as expected, the
running time of the algorithm in Theorem 14.2 increases as p decreases to 1.

14.1. Backround material

The proof of Theorem 14.2 will be based on Proposition 2.1 and the following
algorithmic version of Grothendieck’s inequality. This result is due to Alon and
Naor [ANOG].

ProposITION 14.3. There exist a constant ag > 0, an algorithm and a polyno-
mial IIpaNn such that the following holds. If we input

INP: a matriz f: [ni] X [ne] — R,
I Actually, the argument in [COCF10] works for the more general case p > 2. We also remark

that the cut matrices obtained by [COCF10, Theorem 1] do not necessarily have disjoint supports,
but this can be easily arranged—see [COCF10, Corollary 1] for more details.
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then the algorithm outputs
OUT: a set A € S such that (n; nz)‘ Sa fdn] = aol fllo.

Moreover, this algorithm has running time IIan(n1 ng2).

The constant ag in Proposition 14.3 is closely related to Grothendieck’s constant
K (see, e.g., [Pis12]); in particular, we have ag > K&l.

14.2. Preparatory Lemmas

In this section we prove some preparatory results concerning L, regular matrices.
We begin with the following lemma.

LEMMA 14.4. There exist an algorithm and a polynomial 11y such that the fol-
lowing holds. Let X1, Xo be two nonempty finite sets, let v1,vs denote the uniform
measures on X1 and Xg respectively, and let v denote the uniform probability mea-
sure on X1 X Xo. Also let 0 < 9 < 1/2. If we input

INP: two sets Ay C X and Ay C Xo with v1(A1) = ¥ and va(Ag) > ¥,
then the algorithm outputs

QUT1: a partition Q C S with |Q] < 4 and 1(Q) > ¥, and
0UT2: a set B € Q such that A1 x Ay C B and I/(B \ (A1 x Ag)) < 29.

Moreover, this algorithm has running time 11y (| X1] - | X2]).

PrROOF. We distinguish the following four (mutually exclusive) cases.

CASE 1: v1(A1) < 1 -9 and 1a(Az) < 1 — 9. In this case the algorithm outputs
Q = {A1 XAQ, (Xl\Al) XAQ, A1 X (XQ\AQ), (Xl\Al) X (XQ\AQ)} and B = Al XAQ.
Notice that @ and B satisfy the requirements of the lemma.

CASE 2: v1(A1) < 1 =19 and v9(Az) > 1 —¢. In this case the algorithm outputs
Q={A4; x X5,(X1\ 41) x Xo} and B = A; x X5. Again, it is easy to see that Q
and B satisfy the requirements of the lemma.

CASE 3: v1(A41) > 1 — 9 and v9(A3) < 1 — 9. This case is similar to Case 2. In
particular, we set @ = {X; x Ag, X7 x (X2 \ A2)} and B = X X As.

CASE 4: v1(A1) 2 1 -9 and v5(A3) = 1 — 9. In this case the algorithm outputs
Q = {X1 x Xs} and B = X; x Xa. As before, it is easy to see that Q and B are as
desired.

Finally, notice that the most costly part of this algorithm is to estimate the
quantities 1 (A1) and v2(As2), but of course this can be done in polynomial time of
| X1] - | X2|. Thus, this algorithm will stop in polynomial time of |X1] - | Xs]. O
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The following lemma is a Holder-type inequality for L, regular matrices (see
also Proposition 5.2).

LEMMA 14.5. Let 0 <n < 1/2 and C > 1. Also let 1 < p < 2 and let q denote
its conjugate exponent. Finally, let f: [n1] x [n2] — {0,1} be (C,n, p)-reqular. Then
for every A C [n1] X [ne] with A € S we have

/A Fdp < C 11l (1s(A) + 67)Va. (14.4)

PrOOF. Fix a nonempty subset A of [n;] X [ng] with A € S, and let A; C [nq]
and Ay C [ng] such that A = Ay x Ag. If u1(A1) = n and pa(Az2) > n, then we
claim that

/A Fp < Clfll (i(A) + 2. (14.5)

Indeed, by Lemma 14.4 applied for X; = [n;] and Xy = [ng], we obtain a partition
Q of [n1] x [ng] with @ € S and «(Q) > n, and a set B € Q such that A C B and
n(B\ A) < 21. By the L, regularity of f, we have

I fdn
u(B)

w(B)VP < |E(f | AQ)llL, < ClIfls
and so
/ fdu< / fdp < C |l p(B)Y1 < C I fl|L, (s(A) + 201/,

Next, we assume that pi(A41) > n and ps(Az) < n and observe that we may
select a set B C [ng] with n < po(B) < 27n. Then, we have

(14.5)
[ran < | Jap < Cllfll ((Ar % (42U B)) +29)
A A1><(A2UB)

< C Ul (B(A) + 20 pa(Ar) + 20) 9 < C | fllz, ((A) + 49) 2.

The case p1(A1) < n and pa(Az) > n is identical.
Finally, assume that pu1(A41) < n and pa(Az) < 7, and observe that there exist
B; C [n1] and By C [ng] such that n < pu1(B1) < 2n and 1 < pa(B2) < 2n. Then,

Jraw < f du
(A1UB1)><(A2UBQ)
(14.5 1/q
< Clfllz, (r((A1 U By) x (A2 U By)) + 21)
< Clfllzy ((A) + 8% +20) 9 < C || f ]|, ((A) + 61m) "/
and the proof of the lemma is completed. O

Lemmas 14.4 and 14.5 will be used in the proof of the following result.
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LEMMA 14.6. There exist an algorithm and a polynomial 1la such that the fol-
lowing holds. Let 0 < & < 1/2 and C > 1. Let 1 < p < 0o, set p! = min{2, p} and
let ¢ denote the conjugate exponent of pt. Also let ag be as in Proposition 1/.3, and

set

ap € 2 41\¢
_ Jo° < (9. f .
9 160 and n < (19 L(P)» )

If we input

INP1: a partition P of [ni] x [ng] with P C S,

INP2: a subset A of [n1] X [no] with A € S, and

INP3: a (C,n,p)-reqular matriz f: [n1] x [na] — {0, 1},
then the algorithm outputs

OUT1: a refinement Q of P with QCS, |Q|<4|P| and 1(Q) > (19-L(73)10TJr

0UT2: a set B € Ag such that

/ E(f| Ap) dpe < 2C |f |, and/ Fdp < 6C | fllL, 9.
AAB AAB

If we additionally assume that the matrixz f in INP3 satisfies

| [ (5 =B( 14m) du > ave 11,

then the partition Q in 0UT2 satisfies

IE(f [ Ao) — E(f | Ap)|L , > a0€H2fHL1.

Finally, this algorithm has running time |P| - Ila(n1 n2).

1)q, and

(14.6)

(14.7)

(14.8)

Lemma 14.6 is an algorithmic version of Lemmas 6.2 and 6.3. We also notice

that if the matrix f satisfies the estimate in (14.7), then inequality (14.8) implies

that the partition Q is a genuine refinement of P. We proceed to the proof.

PROOF OF LEMMA 14.6. We may (and we will) assume that A is nonempty.

We select Ay C [n1] and Ay C [ng] such that A = A; x Ag, and we set

2

0 =97 (P)rt.
Also let
pl = {P=PixP,eP:pui(A1NP)<Oui(Pr) and po(Az N Py) < Oua(Pa)},
P?={P =P x Py eP: (A1 NP) <O (Pr) and po(Az N Pr) > Oua(Pa)},
P3 = {P=Pix P, €P:u1(A1NP) = 0u(Pr) and po(A2 N Py) < Oua(Po)},
P'={P=Pi x P €P: (A1 NP) =0 (Pr) and p2(Az N P2) = Opa(P2)}.

Clearly, the family {P!, P2, P3, P*} is a partition of P.
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Now for every P € P we perform the following subroutine. First, assume that
P ¢ PLUP?UP? and notice that in this case we have (AN P) < Opu(P). Then we
set Bp = () and Qp = {P}. On the other hand, if P = P; x P, € P*, then we apply
Lemma 14.4 for X7 = P; and X2 = P, and we obtain® a partition Qp of P with
QeS8 |9p| <4and «(Qp) = 0-1(P), and a set Bp € Qp such that AN P C Bp
and u(Bp \ (AN P)) < 20u(P).

Once this is done, the algorithm outputs

Q= U Qp and B = U Bp.
pPeP PeP

Notice that there exists a polynomial IIs such that this algorithm has running time
|P| - II2(n1 n2). Indeed, recall that the algorithm in Lemma 14.4 runs in polynomial
time and observe that we have applied Lemma 14.4 at most |P| times.

We proceed to show that the partition Q and the set B satisfy the requirements
of the lemma. To this end, we first observe that Q satisfies the requirements in OUT1.
Moreover, we have B € Ag and

3
AAB:(U U(Amp))u( U (Bp\(AmP))). (14.9)
i=1 pepi Pept
Therefore,
w(AAB) <20 (14.10)

and so, by the L, regularity of f, Holder’s inequality, the monotonicity of the
L, norms and the fact that pl < p, we obtain that

/A (| Ap)du < [E(f | Ap)n,, - (AL B)Y" < E(] | Ap)l, - w(A L B)

C £l (20)9 < 2C ||,
which proves the first inequality in (14.6). For the second inequality, by (14.9), we

fap= > /AmpfdquZ/ (14.11)

PePIUP2UP3 peps’ BrA( A”P

have

AAB

2
and, by the definition of § and the fact that n < (J- L(P)PTH)‘I we have n < Ou(P)
for every P € P. Thus, if P € P'UP2UP3, then, by Lemma 14.5 and our assumption
that f is (C,n, p)-regular (and, consequently, (C,n, p!)-regular), we have

)
[ 7 Ol (a(A D P) -+ 61)!1 < 5C ] (0m(P) "

2Notice that if 11 is the uniform probability measure on X1, then for every A C X; we have
v1(A) = p1(A)/p1(X1), and similarly for Xs.
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which yields that

> [ rdws<scifluett 3 @) (14.12)
pepiup2ups Y ANP PePLUP2UP3
On the other hand, by the choice of the family {Bp : P € P*} and Lemma 14.5,
S [ Fdn<oC| e 61 Y u(p) . (14.13)
pepi” BPAANP) Pep4

Moreover, since ¢ > 2 we have that /9 is concave on R, and so

S wl(P)V1 < [P <o(P) . (14.14)

PeP
Combining (14.12)—(14.14), we see that the second inequality in (14.6) is satisfied.
Finally, assume that the matrix f satisfies (14.7). By (14.6) and the choice of ¥,

‘/A(f—E(flAp))du—/B(f—E(fyAp))du‘

< E d d < a0€ ||f”L1
</AAB (f | Ap) u+/AABf pS =5
and so, by (14.7), we have
‘/B(f—E(ﬂ.Ap))du) > ‘“)5“2"0”“ (14.15)
Moreover, the fact that B € Ag yields that
[ =BG Ap) du= [ (B | 40) ~ (7| Ap) dp (14.16)
B B

Thus, by the monotonicity of the L, norms, we conclude that
IE(f [ Ag) —E(f | Ap)llz; = [E(f[Ag) —E(f [ Ap)lL,

115 age || fllz,

>| [ (©(r140) ~ =071 Ap)) a2 | [ (7 - (s 1 Ap) a2 2L

and the proof of Lemma 14.6 is completed. O

14.3. Proof of the algorithmic regularity lemma

We will describe a recursive algorithm that performs the following steps. Start-
ing from the trivial partition of [ni] X [ng] and using Lemma 14.6 as a subroutine,
the algorithm will produce an increasing family of partitions of [ni] X [n2]. Simul-
taneously, using Proposition 14.3 as a subroutine, the algorithm will be checking
if the partition that is produced at each step satisfies the requirements in OUT of
Theorem 14.2. The fact that this algorithm will eventually terminate is based on
Proposition 2.1.
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PrOOF OF THEOREM 14.2. Let ag be as in Proposition 14.3, and set

192;1';»11 (pl.r+1)i71qi

_ age :{( 4c? (14.17)

- 16C7 pt —1)e?ad
Also fix a (C,n, p)-regular matrix f: [n1] x [n2] — {0,1}. The algorithm performs

—‘ and n=

the following steps.

InitialStep: We set Py = {[n1] x [n2]} and we apply the algorithm in Proposi-
tion 14.3 for the matrix f —E(f | Ap,). Thus, we obtain a set Ay C [n1] x [ng] with
Ap € S and such that (n; n2)|fA0 (f = E(f|Ap,)) dp| = aollf — E(f | Ap,)|lo- I
| on (f —E(f | Ap,)) du| < aoe || f]|L,, then the algorithm outputs the partition Py
and Halts. Otherwise, the algorithm sets m = 1 and enters into the following loop.

GeneralStep: The algorithm will have as an input a positive integer m € [r — 1], a
partition® P, 1 C S and a set A, 1 C [n1] x [ng] with A,,_1 € S, such that

(&) [Pm-1] < 4m72 e

(b) (9 o(Pon1)? " )e > 9= G ang

©) [ fa,_, (f ~E(f|4p,,_,)) dul > age |If|L,.

By (b) and the choice of n in (14.17), we have n < (9 - ¢(Pm—1) 4. This fact
together with the choice of ¢ in (14.17) allows us to perform the algorithm in

2
1

Lemma 14.6 for the matrix f, the partition P,,_1 and the set A,,_1. Thus, we obtain

2
a refinement Pm of Pm—l with Pm - 87 "Pm| < 4’7)771—1‘7 L(Pm) = (ﬁ'L(Pm—l)pT +1)q7
such that

IE(f | Ap,.) — E(f | A, )L ; > @06||2f||L1‘

Next, we apply the algorithm in Proposition 14.3 for the matrix f —E(f|.Ap,,), and
we obtain a set Ay, C [n1] X [n2] with A,, € S and such that

(mna)| [ (F =B 1 Ap)) du > ao I = BAS | Ap, o

If | fAm (f —E(f|Ap,.)) dn| < aoe||f||z,, then the algorithm outputs the partition
P, and Halts. Otherwise, if m < 7 — 1, then the algorithm reruns the loop we
described above for the positive integer m + 1, the partition P, and the set A,,,
while if m = 7 — 1, then the algorithm proceeds to the following step.

FinalStep: The algorithm will have as an input a partition Pr—; C S and a set
A;_1 C [n1] x [ng] with A,_;1 € S, such that

(d) [Proa] <477,

3Notice that Py C S and 1(Py) = 1.
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(e) (V- L(PTfl)”%H)q = 192::1(%+1)i71qi, and

(0) [fa, , (F —E(f|Ap, ) dul > age | fllL,-
Again observe that, by (e) and the choice of 7 in (14.17), we have n < (9 -
L(PT,l)P%—H)q. Using this fact and the choice of ¥ in (14.17), we may apply
the algorithm in Lemma 14.6 for the matrix f, the partition Pr_; and the set
A;_1. Therefore, we obtain a refinement P, of P,_y with P, C S, |P-| < 4|Pr-1],
W(P) > (9 1(Pr 1) T1)7, and such that

aoe || fllz,

IECS [ AP ) —E(f [Ap, )z, > ——

The algorithm outputs the partition P, and Halts.

Notice that there exists a polynomial IIy such that the previous algorithm has
running time (747) - Ily(ning). Indeed, by Proposition 14.3, there exists a poly-
nomial IIj such that the InitialStep runs in time IIj(nj n2). Moreover, by the
running times of the algorithms in Lemma 14.6 and Proposition 14.3, there exists
a polynomial II{j such that each of the GeneralStep runs in time 47 - IIj(n1 ng).
Finally, invoking again Lemma 14.6, we see that there exists a polynomial II{j such
that the FinalStep runs in time IIj(n; ng). Therefore, the algorithm we described

above runs in time
05 (ny ng) + (7 — 1) 47 I (ny ng) + 1§ (ny ng)

which in turn yields that there exists a polynomial ITy such that the algorithm has
running time (747) - IIp(ng ng).

It remains to verify that the previous algorithm will produce a partition that
satisfies the requirements in OUT of Theorem 14.2. As we have noted, the argument
is based on Proposition 2.1.

We proceed to the details. First assume that the algorithm has stopped before
the FinalStep. Then the output of the algorithm is one of the partitions we de-
scribed in InitialStep and in GeneralStep, say P,, for some m € {0,...,7 — 1}.
Observe that P, satisfies P,,, C S, |Ppn| < 4™, and «(P,) = n; in other words, P,
satisfies the first three requirements in OUT of Theorem 14.2. Moreover, recall that
there exists a set A,, C [n1] X [ng] with 4,, € S, and such that

()| [ (F =B 1 4p,) du| > 17 =B L) o

On the other hand, since the output of the algorithm is the partition P,,, we have
| Ja,, (f —E(f|Ap,.)) du| < age | f|lr,- Combining these estimates, we conclude
that || f — E(f | Ap,,)llo < el flo-
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Next, assume that the algorithm reaches the FinalStep. Recall that P, C S
and observe that, by (d) above and the fact that |P;| < 4|Pr_1], we have |P;| <
Moreover, by (e) and the choice of n in (14.17),

2 T (2 i—1,i
((Pr) 2 (0 L(Proy)?t Tt 2 9= G 5y (14.18)

Thus, we only need to show that ||f — E(f | Ap.)|lo < ¢||f|lo- To this end assume,
towards a contradiction, that || f —E(f | Ap,)|lo > €| f||o. Notice that, by the choice
of nin (14.17) and (14.18), we have (- L(PT)I%H)Q > 1. Using the previous two es-
timates, Proposition 14.3, Lemma 14.6 and arguing precisely as in the GeneralStep,
we may select a refinement P41 of P with Pry; € S and ¢(Pr41) = 1, and such
that [|E(f|Ap, ) — E(f|Ap,. )L 2 (ape||fllz,)/2. It follows that there exists
an increasing finite sequence (P; )TJrl of partitions with Py = {[n1] x [n2]} and such
that for every i € [T+ 1] we have P; C S, «(P;) > n, and

IE(F 1 Ap) — (S | Ap ), > 20 (14.19)
Now set dy = E(f | Ap,) and d; = E(f | Ap,) —E(f | Ap,_,) for every i € [T+ 1], and
observe that the sequence (d;);. +01 is a martingale difference sequence. Therefore, by
Proposition 2.1 and the fact that the matrix f is (C,n, p)-regular, we have

(14.19) 71 T+1 /
aog”j’h.\/m < (ZHdHL> <(§”di”%pr)l2

=1

( ) T+1

//\ &

= —=——=E(f[Ap,))llL ;

\/fHZdHLT \/7

C
11,

Vi1

which clearly contradicts the choice of 7 in (14.17). The proof of Theorem 14.2 is

N

thus completed. O



CHAPTER 15

Applications

15.1. Tensor approximation algorithms

Throughout this chapter let £ > 2 be an integer. Also let ny,...,n; be positive
integers, and let pj denote the uniform probability measure on [ng] x - -+ X [ng].

Recall that a k-dimensional tensor is a function F': [n1]x---x[ng] — R. (Notice,
in particular, that a 2-dimensional tensor is just a matrix.) Also recall, that a tensor
G: [n1] x -+ x [n] — R is called a cut tensor if there exist a real number ¢ and for
every i € [k] a subset S; of [n;] such that G = ¢ 1g,x...xs,. Finally, recall that for
every tensor F': [n1] X ... [ng] — R its cut norm is defined as

k
Fllg= n; | - max / Fdu| : S; C [n;] for every ¢ € [k] p.
17| (H Jomac{| [ ] ]}
Next, let
/{71 = UC/QJ, Ak = [nl] X X [nkl] and Bk = [nkﬁ_l] X X [nk], (15.1)

and for every tensor F': [n1] x --- x [ng] — {0, 1} let the respective matriz fr of F
be the matrix fr: Ax X By — {0,1} defined by the rule

fr((in, i), Gkygts ooy ik)) = Flin, .. ik) (15.2)

for every ((i1, R ,ikl), (ik1+17 R ,ik)) € A, x B, = [nl] X oo X [nk]
As in [COCF10], we extend the notion of L, regularity from matrices to tensors

as follows.

DEFINITION 15.1 (L,-weakly regular tensors). Let 0 <7 < 1,C > 1 and 1 <
p < o0o. A tensor F': [nq] X -+ x [ng] is called (C,n,p)-weakly regular if its respective
matriz fr is (C,n,p)-reqular, that is, if for every partition P of Ap X By with
P C Sa,xB, and L(P) = n we have |E(fr | Ap)|lz, <C.

To state our main result about L, regular tensors we need to introduce some
numerical invariants. Specifically, let € > 0 and C' > 1. Also let 1 < p < o0, set
pl = min{2,p} and let ¢ denote the conjugate exponent of p'. Finally, let a1, as be

102
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as in Theorem 14.2, and define

,C,p)+1 i_1 4
ags)Zf(i ?) (F+)" g’

C

al 02
(pf —1)e?

We have the following theorem.

7(e,C,p) = [ 1 and n(e,C,p) = ( (15.3)

THEOREM 15.2. There exist a constant b, an algorithm and a polynomial 113
such that the following holds. Let 0 < e < 1/2 and C > 1. Also let 1 < p < oo, and
let T=1(¢/2,C,p) and n =n(e/2,C,p) be as in (15.3). If we input

INP: a (C,n,p)-weakly reqular tensor F: [ni] x -+ x [ng] — {0, 1},
then the algorithm outputs

2b C'\ 2(k—1)
OUT: cut tensors G1,...,Gs with s < (W) and such that
- - ClFz, 2
1F =S Gillo <ellFlln and Y Gil2. < (’7721> 2k 150
i=1 i=1

Moreover, this algorithm has running time (7' 47 + (E)Sk) 'Hg(Hle n,)

en?

Theorem 15.2 can be proved arguing precisely as in the proof of [COCF10,
Theorem 2] and using Theorem 14.2 instead of [COCF10, Corollary 1]. We leave
the details to the interested reader.

15.2. MAX-CSP instances approximation

It is well known that it is NP-hard not only to compute the optimal solution
for the MAX-CSP problem, but also to find “good” approximations of this optimal
solution (see, e.g., [Has01, KKMOO07, TSSW00]). We will show that such approxima-
tions may be computed in polynomial time if we assume some additional properties
for the given MAX-CSP problem (see also [FK99, COCF10]). In what follows let
n, k denote two positive integers with k£ < n.

Let V = {z1,...,x,} be aset of Boolean variables, and recall that an assignment
oconVisamapo:V — {0,1}. Notice that if o is an assignment on V and W C V|
then o|y: W — {0,1} is an assignment on W. Also recall that a k-constraint is a
pair (¢, V) where Vs C V with |V,| = k and ¢: {0,1}V% — {0, 1} is a not identically
zero map. Finally, recall that a k- CSP instance over V' is a family F of k-constraints
over V.

For every k-CSP instance F we define

OPT(F) = max > (ol (15.5)
o0 G Voer
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Moreover, let W), be the set of all non-zero maps {0,1}* — {0,1}. We have the
following definition.

DEFINITION 15.3. Let ¢ € Wy,. Also let (¢,Vy) be a k-constraint over V where
Vo ={xiy, ..., 2} for some 1 < iy < --- < i < n. We say that (¢,Vy) is of type
Y if for every assignment o: V. — {0, 1} we have

¢(U($i1)7 e >O-(:L'l'k)) = ¢(U|V¢)'

Observe that every k-CSP instance F can be represented by a family (F }p)we%
of 22° — 1 tensors where for every 1) € U}, the tensor F}Z’: [n]* — {0,1} is defined by

the rule
1 if there is (¢, V) € F of type ¢

F}p(il,...,’ik) - with V¢: {l‘il,...,l’ik}, (156)
0 otherwise.

Having this representation in mind, we say that a k-constraint F is (C,n, p)-weakly
regular for some 0 <7 <1, C > 1 and 1 < p < oo, provided that for every ¢ € Uy
the tensor F }/} defined above is (C, 7, p)-weakly regular.

We have the following theorem which extends [COCF10, Theorem 3]. It follows
from Theorem 15.2 using the arguments in the proof of [COCF10, Theorem 3]; as
such, its proof is left to the reader.

THEOREM 15.4. There exist an algorithm, a constant v > 0 and a polynomial 114
such that the following holds. Let k be a positive integer, and let 0 <e <1/2, C > 1
and 1 < p < 0o. Set a = 2~ 4242 gnd let 7 = 7(a,C,p) and n = n(a,C,p) be
as in (15.3). If we input

INP: a (C,n,p)-weakly reqular k-CSP instance F over a set V. = {x1,...,x,} of

Boolean variables,
then the algorithm outputs
OUT: an assignment o: V. — {0,1} such that
> ¢(oly,) = (1—¢)- OPT(F).
(9, Vy)EF
Moreover, this algorithm has running time

I, (nk exp (k2822 (26 m(QC))).

en? en?
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APPENDIX A
Analytic inequalities

Through the rest of this chapter (X, X, u) will denote a probability space and
L, will denote the space L, (X, X, ut), for every 1 < p < oc.

A.1. A uniform convexity inequality

Our aim in this section is to show the following proposition (see, e.g. [Nao04]).

ProPOSITION A.1l. Let 1 <p <2 and f,g € L,. Then

If +9lZ, +11f = 9liZ,
5 :

2 2
11z, + (p = Dlglz, < (A.1)

The proof of the previous inequality is a straightforward consequence of two well
known analytic inequalities, the Bonami-Beckner “two point” inequality ([Gar(07,
Proposition 13.1.1]) and Hanner’s inequality ([Nao04]). We present them here for
the convenience of the reader.

THEOREM A.2 (Bonami-Beckner inequality). Let1 < p; < p2 < oo and z,y € R.
Then,

1 1 1 1
(5(’35 + rpoylP? + |z — Tpay’pz)) fpe < (5(|x +rp Y|Pt + o — "”my’pl)) /p1’ (A.2)

where for every 1 < p < oo, r, = 1/y/p — 1. More specifically, for every 1 < p < 2,
we have that

2 2\1/2 |z +ylP + ]z —ylP\1/p
-1 < . A3
(@ +-1y") " < ( 7 ) (A-3)
THEOREM A.3 (Hanner’s inequality). Let 1 < p < 2 and f,g € L,. Then
1 fllz, = Ngllz, |” + (1 fllz, + lgllz,)” <IF+all7, +1F = all7, - (A.4)

We are now ready to prove Theorem A.1.
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PRrROOF OF THEOREM A.1. We have that

1/2 1
Cu+m&,wu—mi> ><W+9Mgﬂﬁ—m&>/p

2 2
p p\ 1/p
st (190, +lls,)" + 1712, = gl
- 2
(A.3) 1/2
> (1712, + =1 gl
and the proof of Theorem A.1 is completed. O

A.2. A martingale difference sequence inequality

We will now prove Proposition 2.1'. We restate it here for the convenience of
the reader.

PROPOSITION 2.1. Let (X, X, i) be a probability space and 1 < p < 2. Then for
every martingale difference sequence (d;)}_, in L,(X, X, 1) we have

(g jaii,) " < (25) " édiu%. (4.5)

The proof of Proposition 2.1 follows directly from the following lemma whose
proof is based on an elegant pseudo-differentiation argument and is due to Ricard
and Xu (see [RX16]).

LEMMA A4. Let f € L, and G be a sub-o-algebra of X. Then,
IEFIDIZ, + @ = DIf —EF1DIZ, <IFIZ,- (A.6)
Let’s see first how this Lemma implies Proposition 2.1.

PROOF OF PROPOSITION 2.1. By iteration of (A.6) we obtain that
n n
Idollz, + (0= 1) D lldil3, < [ - il
i=1 =0

But p < 2 and thus we have

n

(=1 IdillZ, < lldollZ, + (p—1) D lldillZ,,
=0

i=1

which completes the proof of Proposition 2.1. ]

1For a more instructive yet far more lengthy and with a worst contant proof of the previous

inequality the reader may refer (and is encouraged to do so) to [Pis16].
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It remains to prove Lemma A.4.

PROOF OF LEMMA A.4. The proof is based on a pseudo-differentiation argu-
ment. Set a = E(f|G) and b = f — E(f|G). Define the function F': [0,1] — R by
the rule F(t) = |la + th%p + (p— 1)t2HbH%p, for every t € [0, 1]. Also, for every real
continuous function ¢ defined on an interval I of R recall that its pseudo-derivative
of second order at t € I is

g @ R) (= h) — 26(8)
Diolt) =l nf E

Also recall that if D%¢ > 0, then ¢ is convex.

Fact A.5. The function F is convex.

ProoF OF FACT A.5. Let h > 0 and t € R. Applying Proposition A.2, for
f=a/h+1tb/h and g = b we obtain that
F(t+h)+ F(t—h)—2F(t)
h2
Hence, D?F > 0 and thus F is convex. ]

= 0.

Define the function G(t) = |la + th%F, for every t € [0,1]. Since E(-|G) is a
contraction on L, we have that
la+tbl[L, = [E(a+1t0|G)||z, = llallz,.

Also, since G is convex its right-derivative G’, exists and by the previous inequality
we have that G, (0) > 0 and thus F’ (0) = G’ (0) > 0 too. Thus, F is increasing
and hence F'(0) < F(1). This completes the proof of Lemma A.4. O



APPENDIX B

Analytic number theory backround

B.1. Prime number theorems

Recall that m(n) = [{p € P: p < n}| for every positive integer n. Then,

THEOREM B.1 (Prime number theorem). Let N be a large positive integer, then

N

m(N)=(1+ 0N—>oo(1))10g7N'

The previous theorem is a celebrated result first proved in 1896 independently by
J.Hadamard and C.J. de la Valle-Poussin. For a proof of this result see [Apo76,
Chapter 13].

The following result was first proved by P.G.L Dirichlet and is sometimes referred
to as the Dirichlet’s prime number theorem.

THEOREM B.2 (Dirichlet’s theorem). Let a,q be coprime. Then there exist in-
finitely many primes of the form a + nq.

For a proof see [Apo76, Chapter 7]. Observe that if for some a,q we have that
ged(a, g) > 1 then there is no prime of the form a + ng, for n > 1.

Closing this section we present the Bertrand-Chebysev theorem, see [AZHE10,
Chapter 2]. It states the following

THEOREM B.3 (Bertrand-Chebysev theorem). For every n > 1, there exists at
least one p € P such that n < p < 2n.

B.2. Arithmetic functions

An arithmetic (or arithmetical) function is a real (or complex) function defined
on the set of natural numbers. An arithmetic function f is called multiplicative
if f(nm) = f(n)- f(m), for all coprime natural numbers n,m. If, f(1) = 1 and
f(nm) = f(n)- f(m) for all natural numbers n, m, regardless if they are coprime or
not, then the function f will be called completely mulptiplicative. In the rest of this

section we will present some well known arithmetic functions.
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B.2.1. The Mobius function p. The Mobius function p is the arithmetic
function defined by the rule

1, if n is square-free with an even number of prime factors,
wu(n) = ¢ —1, if n is square-free with an odd number of prime factors,
0, otherwise.
Observe that 1 is a multiplicative function. For the Mdbius function we have the

following proposition (for a full proof see [Apo76]) which is known as the Mobius

inversion formula.

PROPOSITION B.4 (Mobius inversion formula). Let f, g be two arithmetic func-

= /@)

din

tions such that

for every positive integer n. Then, for every positive integer n
= 3 ko).
din
B.2.2. The Euler totient function ¢. The Fuler totient function ¢ is the
arithmetic multiplicative function defined by the rule

é(n) = |{k: 1 <k <nand ged(k,n) = 1},

for every positive integer n. The following identity (for a proof see [Apo76]) is known
as the Euler’s product formula.

ProposITION B.5 (Euler’s product formula). For every positive integer n we

(n)=n]JC

pln

B.2.3. The Von Mangoldt function A. The Von Mangoldt function A is
the non muptiplicative arithmetic function defined by the rule

have

An) log p, if n = p¥ for some p € P and some positive integer k,
n)=

0 , otherwise.

By a straightforward calculation one may see that for every positive integer n

log(n Z A(n

din
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and thus by Proposition B.4,
Z,u )log(n/d). (B.1)
dln

Another important property of the Von Mangoldt function is the following propo-
sition (for a proof see [Apo76]), which is in fact equivalent to the prime number
theorem.

PrROPOSITION B.6. Let N be a large positive integer. Then

D" A(n) = (140(1))N.

ne[N]

B.2.4. The restriction of the Von Mangoldt function in the primes A.
The restriction of the Von Mangoldt function A in the primes is the arithmetical
function A defined by the rule

/NX(n) _ logn, if n € P,

0 , otherwise,

i.e. A(n) = 1p(n)A(n). This function has similar properties with A. For example
we have the following proposition

ProPOSITION B.7. Let N be a large positive integer. Then

> A(n) = (14 onos(1)N.
ne[N]

A quantitative version of the previous proposition is the following theorem of C.L.Siegel
and A.Walfisz.

THEOREM B.8 (Siegel-Walfisz Theorem). Let ¢ > 0 and m be a positive integer.
Also, let q,a be positive integers with ged(q,a) = 1 and g < (logm)'~=¢. Then, there
exists a constant ¢ such that

Z A(n) = % + mO; (exp(—cy/logm)).

ne(m)
n=amodq

For a proof of the previous result see [Dav00, Chapter 20].

B.3. Euler products

We present now a useful result about arithmetic functions which proof can be
found in many textbooks, see e.g. [Apo76, Theorem 11.6]
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THEOREM B.9. Let f be a multiplicative function, s € C and assume that the
) SILALI
nS
n=1
— f(n) f")
= . B.2
nzl ns H Z pks ( )

Expressions of the form of the (RHS) of (B.2) are known as Euler products. A
straightforward consequence of the previous theorem is the following proposition.

Then,

PROPOSITION B.10. Let f: N — C be a multiplicative function in each coordi-

nate, i.e.

fna, . .oonimy, oo ng) = f(na, .o ngy oo ong) - f(na, ..o ymg, ..., ng)

for every i € [d] and for every n;,m; such that gcd(n;,m;) = 1. Also, let s € C.

Then, assuming that
o0

S )

Ny, Ng=1 (nl ce nd)s

Z f(nl,...,nd):H Z f(p ,...,1: )

d
ny...ng)s S my
N1,e,ng=1 ( 1 d> P mi,....mqeN pei=t

we have

B.4. The Chinese remainder theorem

The classical Chinese remainder theorem states that for every positive integers
mi,...,ms and every aq,...,a; € Z the system of equations

T = ajmodmy,

T = a;modmy

is solvable if and only if a; = ajmodged(m;, m;) for every i,j € [t] with i # j.
Furthermore, this solution is unique modulo lem(my, ..., m;). This theorem implies
the following result which is known as the Chinese remainder theorem of group
theory.

THEOREM B.11 (Chinese remainder theorem-Group theory). Let p1,...,ps be
distinct primes and m = [[}_, pi. Then, there exists an group isomorphism between
Ly, and @;_, Zy,, where @ denotes the direct sum of groups.

From the previous theorem we obtain the following proposition.
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ProrosITION B.12. Let d be a positive integer, Lo, ..., Lqg € Z and p1,...,ps be
distinct primes. Also, let a1, ...,aq € Z. Finally, let o : Z% — 7 be an affine linear
form defined by the rule

d
$(x) = Lizi + Lo, (B.3)
i=1
Jor every x = (x1,...,2q) € Z* and for every i € [s] let x; € Z& such that
Y(x;) = a;modp;. (B.4)

Then, if D = Hie[s} p; there exists a unique 'y € Z% such that

Y(y) = a;modp;,

for every i € [s]. If in addition, a1 = --- = as = 0 then there exists a unique'y € chl)
such that
¥(y) = OmodD.
PROOF. Forevery i € [s], there exist x;1,...,X;q € Zgi such that x; = (Xi,1,...,X;d)-

and thus by (B.3) and (B.4) we have that

Zle L;-x1; + Lo = aymodp;
ZL L; - x9; + Lo = agmodps

2521 L;-xs; + Lo = agmodps.

Moreover, by Theorem B.11 there exist unique ¥, ...,yq € Zp such that for every
i€ld],j e ls]

Yi = xj;modp;.
Thus, setting y = (y1,...,¥yq) and using the linearity of the modulo operation we
see that

Y(y) = a;modp;,
for every i € [s]. If now a; = -+ = as = 0 for the previous y we have that
Y(y) = Omodp;, for every i € [s] and hence ¥ (y) = OmodD. This completes the
proof of the lemma. O

B.5. The Riemann ( function

Recall that the Riemman ¢ function is defined for every s € C with Re(s) > 1/2
by the rule
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Although this function has been studied a lot we will only need two basic properties.
The first one is the following lemma which shows that ¢ has a simple pole at 1 with
residue 1.

PROPOSITION B.13. IfRe(s) > 1 and s = O(1), then ((s) = 725 + O(1).

1 ® dx > gy
Y

1 N | 1
0= [ G

From the mean value theorem and the hypotheses that s = O(1), Re(s) > 1 we have

L w% = O(#) Indeed, for every n € N and every x € [n,n + 1] we have

PROOF. Since,

we have that

ns

x
|nfs _xfs| — |S/ yflfsdy‘ < ‘S‘nflf‘}i(s) < |5]n72
n

and thus & — L O(%) Therefore,

s—1 n?
n=1

1 N | 1
¢(s) — = ZO(E> =0()_ —)=0(1)
n=1
and the proof of the lemma is complete. O

The second basic property of the Riemann ¢ function is the following amalgamation
of Proposition B.13 and Theorem B.9.

PROPOSITION B.14. Let s € C with Re(s) > 1 and s = O(1). Then,

H(l—i)‘lzsi1+0(1).

s
p p

ProoF. By Lemma B.13 we have

((s) = — +0(1)

and by Theorem B.9 we have

Putting the two previous together we have the desired result. ([l



APPENDIX C

The Goldston—Yildirim estimate

C.1. Backround material

C.1.1. Sieve factors. Throughout this subsection let x: R — R be a smooth
and compactly supported function.
Recall that the modified Fourier transform ¢ of x is defined by the formula

+0c0 )

(@) = [ e ()
—0o0

One important property of the modified Fourier transform is the fact that it de-

creases rapidly. More precisely we have the following proposition (see [SS03, Chapter
5, Theorem 1.3])

ProproSITION C.1. Let ¢ be the modified Fourier transform of x. Then, for every
&€ R and every A > 0 we have

p(&) = 0a((1L+)™).
We are about now to define the notion of sieve factors.

DEFINITION C.2 (Sieve factors,[GT10]). Let a € N with a > 1. Then, the sieve
factor of x with parameter a is the quantity

w= [ [ T (Ca+ie) Hm a;,

BCla] j€B

where ¢ is the modified Fourier transform of x.

Despite the fact that sieve factors look very complicated to estimate, for some par-
ticular choices of a they take a rather simple form. To be more specific, we have
(see [GT10, Lemma D.2])

cx,1 = —x'(0) (C.2)
and

+oo
ca= | W@l (©23)

—0o0

Moreover, for every choice of a we have that ¢, , € R.
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C.1.2. Systems of affine linear forms. Recall now that an affine linear form
(or affine linear map) on Z<, for some positive integer d is a function ¢ : Z¢ — Z of
the form 1) = ¥ +(0), where ¢: Z¢ — Z is a linear form and 1(0) € Z. Also recall
that two affine linear forms 1, ¥s: Z¢ — 7 are called affinely related if the linear
maps 91 — ¥1(0) and 1y — 12(0) are parallel.

Next recall that a system of affine linear forms ¥ = (¢1,...,1) is a t-tuple of
affine linear forms for some positive integer t. The previous system of affine linear
forms may be seen as an affine linear map from Z? to Z!, ie. ¥ = ¥ + ¥(0),
where ¥: Z¢ — 7! is a linear map and ¥(0) € Z!. From now on, in order to avoid
degeneracies, we will assume that if we have a system W as before none of the ;s
is constant. For any system of affine linear forms we define its size as follows.

DEFINITION C.3. Let d,t, N be positive integers and ¥: Z% — Zt be a system
of affine linear forms. Then, we define the size |V||ny of ¥ with the respect to the
scale parameter N by the rule

t d t
iy = 33 alepl + 30 1242, (c4)

i=1 j=1 =1

where e1, ..., eq is the standard basis of 7.

Observe that the size of a system of affine linear forms V¥ is a decreasing function
of the scale parameter. More precisely, if N1, Ny are positive integers with N7 < No
then ||¥| n, = ||¥| N, We also have the following definition.

DEFINITION C.4. Let d,t,q be positive integers and U = (1, ..., ) 24 — 7t

be a system of affine linear forms. Then, we define the set

C(V,q) = {n € Zg: H ged (@Z)Z-(n),q) = 1}.
i€[t]
In the previous expression we induce the affine forms 1;: Zg — Z from their global
counterparts 1;: Z¢ — 7. in the obvious way.

C.1.3. Local factors. We define now the so-called local factors and isolate
some of their basic properties.

DEFINITION C.5 (Local factors, [GT10]). Let d,t be two positive integers. Also
let W= (a1,...,10): Z% — 7t be a system of affine linear forms. For every positive
integer q the q-local factor of ¥ is defined by the rule

q
Bu,q = (M)t Enezalo(w,g):
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where C(¥,q) is as in Definition C.4 and ¢ is the Euler totient function (see Ap-
pendiz B, Subsection B.2.2.). More specifically, if ¢ € P then

q \t
Puqg= (q_il) Enezglc(\v,q)- (C.5)

Notice at this point that if ¢ is a positive integer and ¥ is a system of affine
linear forms by the Chinese remainder theorem (see Appendix B, Section B.4) we
have

/B\P,q = H /B\I!,p~ (06)

peP,
plg

We finally have the following lemma.

LEMMA C.6. Let t,d, L be positive integers and U = (¢1,...,¢) be a system
of affine linear forms from Z¢ to Z with ||¥||1 < L. Also let p € P. Then By, =
14+0(1/p). If in addition no two of the forms 1, ..., are affinely related then we
have that By, = 1+ O(1/p?). The implied constants depend on d,t, L.

PROOF. Let n be selected uniformly at random from Zg. Then, 1¢p,q(n) =1
with probability 1 — O(1/p). Moreover it is easy to observe that

(}%)t =1+ O4(1/p).

Combining the previous two estimations and (C.5) we have By, = 1+ O(1/p).
For the second part of the lemma assume that no two of the forms v1,...,v; are
affinely related. Then, it is easy to see that for every 1 <i < j < ¢, 1;,%; are not
multiple of each other modulo p. Therefore , if n is selected uniformly at random
from Zg then p divides both v;(n),1;(n) with probability O(1/p?). Then, using the
inclusion-exclusion principle and working as in the proof of the first part of the
Lemma we obtain that By, =1+ O(1/p?). O

C.2. The Goldston—Yildirim correlation estimates

The following theorem is due to Green and Tao[GT10] who where based on the
work of Goldston and Yildirim (see ,e.g,[GY, GY03, GY07]). Similar results may
be found in [GT08, Tao06a, CFZ14].

THEOREM C.7 (Goldston—Yildirim correlation estimate). Let t,d, L be positive
integers, N be a large positive integer and W = (1, ..., 9;): Z¢ — 7t be a system of
non-constant affine linear forms with ||¥|; < L.! Let a = (ay,...,a;) € N* be a t-
tuple of positive integers, K C [~N, N|® be a convex body and x1,...,xt: R — [0,1]

"n the original statement of Green-Tao they assume that ||¥||x < L. Since, this affects only
the constants that arise, for argument clarity we take the size of ¥ with scale parameter 1.
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be smooth and compactly supported functions. Also let R = N7, for some sufficiently
small v =~(t,d, L, x1, ..., xt, ) > 0. Additionally for every i € [t| let Ay, r.a, be as
n (12.8), let ¢y, q; be the sieve factor of x; with parameter a;, and for every p € P
let By be the p-local factor of V. Finally, set

Py ={p € P: 9;,¢; are linearly dependent modp for some i,j € [t]} (C.7)

and X =3 cp, P ~12 Then,
N X
Z l—IAX“RaZ % chl,al VOl HB\II,p‘f‘O 1/20R€ o( )), (08)
neKNZ% i€(t] i€t]

where the implied constants depend on t,d, L, x1,...,Xx: and a.

In subsection C.2.1 we present a sceleton of the proof of the previous theorem
and in subsection C.2.2 we prove all the intermediate results which we used in this
sceleton.

From mow on all the implied constants will depend on the parameters t,d, L,
X1,---,Xt and a or a subset of these parameters. Moreover u will denote the Mébius
function and ¢ will denote the Euler totient function (see Appendiz B).

C.2.1. Sceleton of the proof of Theorem C.7. Before we enter the main
part of the proof we need to write the (LHS) of (C.8) in a more manageable form.
To this end for every i € [t] we set the fibre of i to be the set F; = {i} x [a;] and
define

Q={(i,j):ielthjelal}=|]JF N

1E[t]
Then, we see that the (LHS) of (C.8) equals
log m; j
log! R Z ( H p(mi )X ( Tog RJ)> Z Lons jli(n)

(mi ), yen€N?  (i,§)€Q neKNZd (1,7)€Q
m; ; square-free

Moreover, for every i € [t| we set m; = lem(m;1,...,m;4;) and observe that the

previous expression may be rewritten as

log m; ;
log' R > ( IT #(mag)xi( log};J)> S I v (C9)
(mi )i, )en€N?  (1.7)€R neKNZd iclt]
m; ; square-free

We enter now the main part of the proof.
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Step 1: Elimination of the role of K and N. For every mq,...,m; as before
we set m = lem(my, ..., m;) (also square-free) and also we set
Omy,...;my = Enelfn H 1m¢\¢i(n)' (C.IO)
i€(t]

for which we have the following claim.

Cramm C.8.

Omy,...,my = | | Qprp,1 | pTpit
peP

where for every p and for every i € [t] we have rp; =1 if plm; and r,; = 0 otherwise.
We now have the following lemma.

LEMMA C.9. For every square-free integers (mivj)(i,j)eg we have
> T i = Vol )am m, + O(mNT) (C.11)
n€EKNZ4 i€[t]

where Gy, ,...m, s as in (C.10).

Observe now that since x;’s are compactly supported we have that m; < R and
thus m < RO, Therefore the contribution of the error term of (C.11) in (C.9) is
O(ROMN?=1]og R), which is o(N?) if 4 in the definition of R is sufficiently small.
Therefore it suffices to prove that

log i,
log! R Z ( H M(mi,j)Xi( Oli;R’J))aml""’mt

(mi ), jeneN?  (i,))EQ
m; j square-free

= H Cxiyai H /B‘I/,p + O(GO(X) logfl/zo R)

i€[t] peP
(C.12)
which is a genuinely simpler expression than (C.8) since the roles of K and N have

been eliminated.

Step 2: Fourier expansion. In this step our goal is to replace the sum of the
(LHS) of the previous expression by a product which is easier to cope with. To do
this, at first we replace y;s by integrals using the Fourier expansion we saw in (C.1).
More precisely we have that for every square-free m; ;
log m;,; / T
S — ) = m. e ; d y
Xl( log R ) R 1,j Qpl(g) 3

where ¢;’s are as in (C.1). In order to simplify further the previous expression

using the rapid decrease of the Fourier transform (Proposition C.1) and setting
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I = [—log'/? R,10g"/? R] we have that for every (i, ) € Q, every square-free m;j € N
and every A > 0, which we will choose later, we have

log mg ] 11?1% —1/1ogR 7,4
’ © 1
logR /m £)dé + Oa(m; R). (C.13)

Moreover, since every Y; is Lipschitz continuous we have that for every i € [t] and

every m; j, x(logm; ;/log R) = O(mi_’jl/logR). Therefore, by (C.13) we have

log m; ; A 1/10 Ry
H XZ(FRJ :/ / H mz] 301 §Zj)d€Z]+OA IOg R H &

(4,7)€Q (4,7)€Q (4,7)€Q
(C.14)

where z; ; = (14+1¢&; )/ log R for every (4, j) € Q. For the error term of the previous
expression we have the following lemma.

LEMMA C.10. There exists A > 0 such that

logm,-; o
logtR Z ( H p(m; Xz lOgRJ)>0¢m1,...7mt (log™ AR H l/lgR

(mi,j)(@j)EQGNQ (,5)€Q (i,J)€Q
m; j square-free

= O(log~Y/? R).
(C.15)

Thus we will have completed our proof as long as we show that

10gtR Z / / H /“me z_] am1, 7mt90z(€z,])d§z,]

(m; ])(z ])EQGNQ (1,5)€Q
m; j square-free

=TT e IT Bup + 0P 10g 12 R).

i€ft] pEP
(C.16)

To this end, by exchanging sums and integrals, which can be done since I is compact
and the summation is absolutely convergent?, we see that the (LHS) of the previous

equation equals

log! R/ / > I wOmime [ am,, . mepi(&g)dé;

m’L j)(1 ])eQGN (ZJ)GQ
m;,; square-free

20ne can use similar bounds with those that arise in the proof of Lemma C.10 (see Subsection
C.2.2. below)
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which in turn by the multiplicativity of «, which we saw in Claim C.8, may be
written as an Euler product

log' R / / H Epe [[ il6s)dé,
(1,7)€Q
where § = (&) (i)eq € I and E, ¢ is the Euler factor
Epe= Z H p(mg j)m, - aum, ,mt). (C.17)
(mi,j),5en€{lp}?  (4,5)€EQ
These estimations along with (C.16) reduce further our task in to showing that

log' R / / I Eve T] #i(G)dsis =11 exia [] Bup+ 0% 10570 R).

pEP (4,7)€Q i€(t] peP
(C.18)

In order to prove the previous equality we need to estimate the Euler product
Hp E, ¢, which is the next step of the proof.

Step 3: The Euler product Hp E,¢. We will “simplify” the Euler product
HpeP E,¢ and to do so we first need to “simplify” the Euler factors E, ¢.

LeEMMA C.11 (Euler factor estimate). Let & = (&) 3 j)en € I’ and let p € P.

Set
1 |—1|1BI-1

s = RS S C.19
pa{ BQL ( p1+z(i,,i)63 Zi,j ) Y ( )
B wvertical

where for every (i,j) € Q, z;; = (1 +1&;;)/log R. Then, we have
(1+0(1/p*)E! ver P> log"/'° R and p & Py,
Epe =1 (1+0(1/p))E, v D> log'/1° R and p € Py (C.20)
(Byp+ Ol 88 5)) By if p < log!/ " R.

The previous lemma gives rise to the following one which completes Step 3 of
the proof of Theorem C.7.

LeMMA C.12 (Euler product estimate). For every & € I we have
I Fu = (TT Ao + 06 1052 1) T 5
peP peP pEP

where E . is as in (C.19).

Step 4: Completion of the proof. We are ready now to prove (C.18). To do
this we first have the following claim
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Cramm C.13. For every & = (&) (i j)eq € I we have

H /e =(1+0(log /2 R)) H (Z Zi7j)(_1)|B|717

Pep BCQ  (ij)eB
B wvertical
where E), . is as in (C.19) and for every (i,7) € Q, z; = (L +1&;;)/ log R.
Moreover,
1
O(—— I @+1&;)°W). (C.21)
log" R+
peP (1.)€Q

We also have the following two lemmas.

LEMMA C.14. We have
log' R/ / H goi(&,j)dgm = H Cyia; + O(log V2O R),  (C.22)
peP (4,7)€Q i€lt]

where E},  is as in (C.19).

LEMmMA C.15. We have
log' R/ /H Epel TT lei(&.s)ldéi; = O(),
pEP (4,7)EQ
where E) . is as in (C.19).

Combining the two previous lemmas with Lemma C.12 we see that (C.18) holds
true and thus the proof of Theorem C.7 is completed.

C.2.2. Proofs of the intermediate results. As we have already stated this
subsection is devoted to proving all the lemmas and claims that we presented in the

previous section.

Proof of Claim C.8. Let {p1,...,ps} be the set of primes that divide m and
observe that since m is square-free we have that m = pips...ps. Then, we need to
show that

Enezgn H 1mi\wi(n) = HEnEZgJ_ H lijJz'(n)' (C.23)

il j=1 it pylm

To this end notice that |Z% | = [Lm |Zg| and by Lemma B.12 we have

RN | ESTRRES | SN | RS

n€Zd, i€lt] Jj= 1nEZd] it pjlm;

Thus (C.23) holds true and the proof of the claim is completed.
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Proof of Lemma C.9. First observe that since ;s are affine linear forms the
expression Hie[t] 1.0, 14:(n) S€€n as a function of n is periodic with respect to the
lattice m - Z¢. Having this in mind, the idea of the proof is to “fill” K with copies
of an, the problem being that some of these copies may not lie entirely inside K.
In order to quantify these “superfluous” copies we set 0K to be the boundary of K,
and also set

F={ACz% A=gz+7Z%, for some x € m-Z% and ANK # 0, AN(RN\K) # 0} C 0K.

Observe that the compactness of K implies that F is a finite family. Therefore,
there exists some 0 < I < 1 such that F C K + [—mi, mi]%.

We have the following simple fact from convex geometry (see, e.g., [TVO06,
GT10)).

Fact C.16. For any conver body K C [~N,N]¢ and for every ¢ > 0 we have
that
vol(0K 4 [—eN,eN]) = O(eN?).

Applying the previous fact for € = ml/N and observing that vol(lJ F) = ||J F| we
obtain that
|JFI=0(m-N"1).

Thus, using the last estimation and the periodicity of the expression Hie[t] L1 (n)
we have that

1
Z H 1m1w1 - VO Z H 1m1\¢1(n) + Z H 1m1|w1(n

ne KNZ% i€lt] nezd, i€(t] e(UF)NK i€lt]
vol(K
= H Linijws(n) + O(1)] UFI
1€[t]
= vol(K)am, ..m, +O(m - N1

and the proof of the lemma is completed.

Proof of Lemma C.10. Taking absolute values one sees that the (LHS) of (C.15)
is bounded up to a constant that depends on A by the quantity

(log R°D=A S i [T R (C.24)

(m4,5) 4,5y e €N (i,5)€Q
m; ; square-free

Then, by analyzing in prime factors and using Claim C.8 (see also Corollary B.10)
we have that the previous expression can be rewritten as

(log R)O(l)*A H Z apTl,...,thp_(Z(i’j)EQ n‘,j)/log R7 (C25)

P (ri,5),5)en€{0,1}¢
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where 7; = max(r;1,...,"iq,). Thus, we need to eastimate a,ri  p which is the
exact purpose of the following claim.

Cramm C.17. For every prime p and for every (r1,...,r¢) € {0,1}1\ {0}¢ we
have

Qpry < 1
Pt S
Furthermore, if ri = --- =1, =0, apr1 .. pre = 1.

PrROOF OF CLAIM C.17. Let p be a prime number. First of all notice that
a1 =1,ie ifry =--- =7, =0 we have apr1 . prv = 1.

Next, let (r1,...,7¢) € {0,1}'\{0}'. Let n € ZZ be selected uniformly at random
and observe that 1y, (n) equals 1 with probability 1/p, for every i € [t] such that
r; # 0. Thus,the product Hz’e[t] 1,rijy,(n) takes the value 1 with probability lower or
equal that 1/p, which completes the proof of the claim. ]

By the previous claim we have that (C.25) is bounded by

(log R)OM—4 1 + E ~Zpearii)/log R
s I1 ( P ) (C.26)
peP (Ti,j)(i,j)eﬂe{()’l}
not alll’s

and by the binomial theorem, applied for every p € P, we have
\Ql
1 1 |2 1
il (O 1 E
1 +p((p1/logR+1) ) =1+ ( ) pk/log R

12

Q| 2l
1+1/logR Z ( 1+1/logR

1 912 > 1 21€|
S (1 + p1+1/10gR) S (Z pk(l—l-l/logR))
k=0

1 _ol9|
= (1 B p1+1/10gR) :

N

Taking now product over all primes we have that (C.26) is bounded by
—A o)
(log R)© ITC 1+1/10gR) . (C.27)
peP
But by Proposition B.14 we have

1 -0() )
H (1 o p1+1/10gR) - O(IOgR (1))
peP
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and thus combining this estimation with (C.27) we see that the (LHS) of (C.15)
is bounded by O4((log R)°M~4). But for an adequate choice of A we have that
Oa((log R)OM-4) O(log™'/?" R) and thus the proof of the lemma is completed.

Proof of Lemma C.11. First of all notice that for every prime p and every
& = (&.5)(.)eq € I we may rewrite the Euler factor of (C.17) as follows
B__a(p,B)
Epe = %}(‘Ul l}m,

where for every (i,j) € Q, z;; = (1 +1&,;)/log R. In the previous expression
a(p,B) = apr1. pre, where 7y = 1 if BN F; # () and r; = 0 otherwise. We also
have that a(p,0) = 1. So, if we want to estimate E, ¢ the first thing to do is esti-
mate a(p, B). To this end we split the family {B C Q, B # 0} in two main classes,
the vertical sets and the rest. More precisely, call a set () # B C Q wvertical if there
exists ¢ € [t] such that B C F;, i.e. a set B is vertical if it is contained in a fibre F;,
and non-vertical if there is no such fibre, i.e. if it intersects more than one fibres.

Finally, notice that since N is large we may assume that
log/**R > L. (C.28)
We first have the following claim.

Cramm C.18. For every vertical set B and for every prime p with p > logl/10 R

we have a(p, B) = %.

PRrOOF. Let p be prime with p > logl/10 R and let B be a vertical set. Then there
exists 7 € [t] such that B C F; and therefore by definition a(p, B) = Znezg Lo (n)-
The main ingredient of the proof is to show that since p is large enough we have
that 1;: Zg — Zyp uniformly covers ZZ, ie. it is a p~! to 1 mapping. To do so,
since 1); is an affine linear form we only need to show that 1);(e;) # Omodp, for some
1 < j < d. Assume on the contrary that p|i;(e;) for every j. Since p > L we have

_ (C.28) 110
[i(e;) < P[] <L < log/"R<p

and thus %(ej) = 0 for every j. But this is clearly a contradiction since 1; is not
constant. Therefore 1); is a p?~! to 1 mapping and hence

1 pi1 1
a(p, B) = = Z Lpjyi(n) = e Z Ly = »
nEZg ne€lp

which completes the proof of the claim. O

On the other hand, for the non-vertical sets we have the following claim.
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Cram C.19. For every non-vertical set B C §, we have

O(]_/p?)’ when p € P\Il

a(p, B) =
O(1/p), when p € Py.

PROOF. Let B be a non-vertical set and observe that there exist 1 < i < <t

such that
a(p, B) < Enezalpj ) Lpjy, (n)-

We work as in Lemma C.6. If p & Py let n € Zg be selected uniformly at random.
Then, the expression 1,y (n) 1y, (n)> S€ED BS A function of n, takes the value 1 with
probability 1/p?. Therefore a(p, B) = O(1/p?). On the other hand, if p € Py then
we have the following. If p|i;(n) we would have that p|i(n) also. Therefore the
expression 1y, () Ly, (n) S€€N as a function of n takes the value 1 with probability
1/p and thus a(p, B) = O(1/p). Thus the proof of the claim is completed. O

Now, towards the proof of (C.20) assume first that p > log!/1°R. If p ¢ Py,
then by claims C.18 and C.19 we have

Bpe = 1 Y (B 2@B) s~y ol B)

. 2 o Zi i
BCO, pz(z,j)EB 5 BCO, pz(l,j)EB 5
B vertical B non-vertical
= 1 Y D e 1 0() = (140(5)) B
o 1+3 0 g Zig 2/ 2 D&’
BCO, P z(z,j)EB 5] P p
B vertical

where the last equality derives from the binomial theorem. If on the other hand

p € Py following the same steps as before we have E, ¢ = (1 + O(l/p))E]’%g
Assume now that p < logl/ 10 R, First observe that since ¢ € I*? then for every

B C Q and every (i,5) € B we have that |2 ;| = O(log™"/? R) and thus

log p
log!/? R)’
(C.29)
where we used the elementary inequality that for every ¢ < 1 and for every x > 0

pEnen | = o Swpessslosr| — | O(] Y zijllogp) =1+0(
(i,j)€B

e < 1+ cz. By Taylor expansion in w = p>% around w = 1, (C.29) and using
once again the fact that £, . = O(1) for p < log'/*" R we have

Ep¢ _ @ ( logp )
E. F, log'/? R"”’
where Ep, E]’D are defined setting all z; ; = 0 in E, ¢ and EZ/LE respectively, i.e.

E, =Y (-1)"la(p, B) (C.30)

BCQ
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and

Ey= ), <1—;>(‘”'B”. (C.31)

BCQ
B vertical

Therefore, in order to complete the proof of the lemma we need to show that

S ()Pla(pB) = fu, Y (1 2)UE (C.32)

BCQ BCQ p
B vertical

To this end, using the binomial theorem we see that for every i € [t] we have

S (B o

0#BC{i}x[as)

and thus the (RHS) of (C.32) may be rewritten as By ,(1 — p~1)! which by (C.5) is
equal to Enezg Hz‘e[t} 154y, (n) and and thus we reduced our task to showing

> (=1)Pla(p, B) = Enczg [ ] Lowi(m- (C.33)
BCQ i€(t]

By the inclusion-exclusion principle the (RHS) of the previous expression can be
written as
Z (_1)r1+-..+rtEneZg H 1P|wi(n)
r1,...,r¢€{0,1} i r;=1

which is equal to

71,..,m+€{0,1}

Thus we have to show that the (LHS) of (C.32) is equal to the previous expression.
This will be done by comparing the coefficients of a1 . e in these two expressions.
For the (LHS) of (C.32) fix apr1,. p and let I = {i C [t]: r; = 1}. Then the
coefficient of a,m ., equals

PORENCHEES | () DR LIRS

BCQ, i€l B;Cla;]
BNF;#0, for everyicl

where for the last equality we used the binomial theorem. With the previous es-
timation we showed that (C.33) holds true and thus the proof of Lemma C.11 is
completed.

Proof of Lemma C.12. The main idea is to dispose at first the contribution of
large primes (p > log!/!% R) and then deal with the small ones.
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Let € € I2. From Lemma C.6 we have that Bop =1+ 0(1/p2) if p ¢ Py and
Bu,p =1+ O(1/p) if p € Py, which yields that

1 Bop <O (C.34)
peP

We also have
H Byp < e, (C.35)
peP,

p<10g1/10 R

By these estimations we obtain that

1 _ 1
[T Ber < exp(OC > ;)) <exp (O(log /R %)))
peP, p>logt/0 R p>log!/1O R
p>log!/10 R pEPy pEPy

= exp (O(X log~1/%0 R) <1+ 0(e9X) 10g=1 /20 R),

where for the last inequality we used the elementary inequality e’ < 1 + \e®, for
every real numbers A, x such that A < 1 and z > 0. On the other hand using
the estimations for the By, once again and the inequalities 1 — x < e™ for every
0<z<3/2and e >1— \e® for A,z we also have

H Bup =1+ 02X log™1/20 R)
peP,
p>10g1/10 R

and thus

II Bep=1+0("F10g /" R). (C.36)

peP,
p>log1/10 R

Thus by the previous estimation and by (C.35) we see that it suffices to show the
following

[TEe=( TI Buw+0 0572 R)) ] By (C.37)

peP peP, peP
p<log!/10 R
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In order to do so, we use Lemma C.11 and obtain that

I e =en( X 5+ X ) I 5

peEP, p>log!/10 R p>log!/10 R peEP,
p>10g1/10 R p€¢ Py pePy p>log1/10 R
_ —~1/20 /
= exp (O(1+ X)log R) H B,
peP,

p>10g1/10 R

= (1+0(e°F g™ R)) [ Epe
peP,
1u>10g1/10 R

where for the last we equality we worked as in the proof of (C.36). But then we see
that we have completed our first task, that is to discard the contribution of large

primes, since now it suffices to prove

H Epe = ( H By p + 09X 10g=1/20 R)) H E,¢. (C.38)

p€P7 PGPu pGP,
pglogl/loR pglogl/lo R p<10g1/10 R

To this end , by Lemma C.11 it suffices to show that

lo _

[T (Bew+t o(bgf;fR)) = I Bup+0(LX10g VO R).
epP, €P,

pglggl/lo R pglggl/lo R

Assume first that there exists some py < logl/10 R such that By ,, = 0. Then, since
Bwp=1+0(1/p) (Lemma C.6) we have

[T (wn+O(E)) = O(2%0) ] (duy+ O )

2eP, logl/2 R logl/2 R 2eP, logl/2 R
p<log!/'°R p<log!/** R
PFPo

log po 10]0.¢ (0104 -
= O(—220)eO0X) — (92X 100~ 1/20 Ry,
(10g1/2R) ( & )
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On the other hand, if we assume that no By, vanishes we have the following. By
Lemma C.6 we have that Sy, =1+ O(1/p) and thus

log p log p
I[I (Fwtol—sz) = 11 B II (+oX )
peP, < 10g1/2 R ) peP, peP, 10g1/2 R
p<log1/10 R pélogl/lo R p<10g1/10 R
= ( II Bus)(+000g7 " R))
peP,

p<log!/10 R

H Bw p + 0(c?X) 1og=1/3 R)
peP,
pglogl/lo R

_ H B‘I/,p + O(GO(X) logfl/QO R)
peP,
pglOgI/IOR

(C.35)

This completes the proof of Lemma C.11.

Proof of Claim C.13. Let { = (&) )en € I, and for every (i,j) € Q let
zij = (14+1&,;)/log R. Observe that |z; j| = O(log™ 1/2 R), for every (i,j) € Q. By
Lemma B.13 we see that

1 (=18l
Fpe = 1o
}]P P BIJQ <ZHEB% )
Bvertlcal
- I oty L (X w)
B i 5 P50 (9)eB

)IBI-1
~ (a+otesr) [ (X zw>(1 ,

BCO, (ij)eB
B vertical

where for the last equality we used the binomial theorem (see the proof of Lemma
C.11 above). This completes the first part of the lemma. For the second part of the
claim we work similarly. First, by the definition of z; ; we have

1 _1)IBl-1 \B\ 1
[Iz:= I 7" I a+ant"" (C.39)
p BCQ, logR BCQ,
B vertlcal B vertlcal

By the binomial theorem the first factor of the (RHS) of the previous expression
equals log~* R, while for the second factor we have

| I] a+ant" <o T (a+lesh°w)

BCQ, (i.j)en
B vertical
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Thus, combining the two previous estimations we see that (C.21) holds true. There-

fore the proof of Claim C.13 is completed.

Proof of Lemma C.14. By the first part of Claim C.13 we have that the (LHS)
of (C.22) equals

log! R/ /1 S i)V T wilede

BCQ, (ij)eB (i,) €9
B Vertlcal

+ O(log 1/2R log R/ / H Pi 5@,] dgl,]

(1,5)€Q

By Proposition C.1 (the rapid decrease of @) we have

log' R/ / I X @)™ 1 eicide,

I Bca, (ijeB (i.§)€Q
Bvertlcal
|B|—1 _
= 10gtR/ / I > @)Y [I wi(&)di;+Ollog™/* R).
R Bca, (ijeB (i,§)€Q
Bvertlcal

and also

O(log~ 2 R)log' R / / [T #i&s)dé; = OQlog™/* R)

(1,7)€Q

On the other hand,

/ / H Z zm - H @i(&ij)d&ij

R Bca, (ijeB (i,5)€Q
B vertlcal
—_1)lBl , LR
- 11 / yl (log BV (S (14 ) T ] el6de
ielt] R @#Bc{ }x[ai] (i.d)eB =1
= log_tRHcXi,ai.
i€t

Combining the three previous estimations the proof of Lemma C.14 follows.

Proof of Lemma C.15. By Proposition C.1 we have |¢;(&;)| = Oa((1+&.;)~"),
for every i € [t], & ; € I and A > 0. Therefore if we choose A to be adequately large
by (C.21) the proof of the Lemma C.15 follows.

REMARK 4. By rerunning the proof we see that Theorem C.7 holds not only for
convex bodies K C [~N, N]¢ but also for convex bodies that belong to translations
of [-N, N]4, i.e. for K' C 2+ [N, N]? for some z € Z%.
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REMARK 5. If we assume that xi,...,x; are supported on [—1, 1] then we see
that v < 157

C.3. The Goldston—Yildirim correlation estimates-A special case

Using theorem C.7 we will now prove a theorem also known as the Goldston—
Yildirim correlation estimate, see [GT08, GT10, CFZ14]. This theorem gives as an
immediate result Proposition 12.4. From now on let D be a positive integer, let
x: R — [0,1] be a smooth and supported on [—1,1] function such that x(0) = 1
and fo Ix'(z)|?dz = 1, and let N be a large integer. Also, let w = =log® N, W =
[L,ep pcw s and N = | N/W |. Finally, let R = N7/2 for some small v = v(x, D) >
0.

THEOREM C.20 (Goldston—Yildirim correlation estimate). Let 1 < d,t,L < D,
bi,...,bp € {0,...,W — 1} be coprime to W and ¥ = (¢1,...,1¢) be a system of
affine linear forms such that 1;: Z% — Z, |¥||; = L and such that no two of the ;s
are affinely related. Then, for any convex body K C x + [—N, Kf]d, for some x € 74

we have that

P(W)\? _
((W)> > T Acr2(Wei(n) +bi,) = vol(K) + o(NY), (C.40)
KNz jelt]
for every iy, ... i € [t]. In the previous expression Ay gro is as in (12.8).

PROOF. Let z € Z¢, K C = + [—N,N]d be a convex body, let iy,...,4; € [t],
and let b = (b;,,...,b;,). Moreover, let Sy wyp,p be the p-local factor of WW + b, for
every prime p, let ¢, 2 be the sieve factor of x with parameter 2, let Pyyg4p be as
in (C.7) and X = ZPEPW\IJ+b p /2.

By Theorem C.7, Remark 4 and since by the choice of x, ¢, 2 = 1 we have

A d
Z H Ay r2(Wij(n) +bi) = H Bww b, - VOI(K) + O(eo(x)Ni)

KnNzd jelt] peP 108?1/20 R
(C.41)
For the error term first we observe that no two of the linear forms Wi;(n) +
b;; are affinely related. Also we observe that if p € Pyyip then p < w which
yields that p = O(w) = O(log¥ N) and thus X = O(logloglog'/? N). Hence,
@) 10g~ /20 R = o(1), and thus the error term of (C.41) becomes o(N%).
It remains to show that [[,cp Bwwibp, = (W/o(W ))t. To this end, notice that

if p is prime with p < w we have Bywwipp = (p/(p — )) and thus
W t
11 Bwwsep = (W) -

peP
psw
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Moreover, if p is prime with p > w we have that the affine linear forms W;(n) + b;;
are not related modulo p. Thus by Claim C.19 we have that By wyip, = 1 +O0(1/p?)
and so [[,.,, Bwp = 1+0(1). Combining the previous estimations we see that (C.40)
holds true and thus the proof of Theorem C.20 is completed. ]



[AKO6]
[ANO6]

[Apo76]
[AZHE10]

[BCCZ14]

[BCL

[BCL*08]

[Bil08]
[BK17]
[BNOS]
[BRO9]

[Bur82]

Bibliography

F. Albiac and N. J. Kalton. Topics in Banach space theory, volume 233.
Springer Science & Business Media, 2006.

N. Alon and A. Naor. Approximating the cut-norm via Grothendieck’s
inequality. SIAM Journal on Computing, 35(4):787-803, 2006.

T. M. Apostol. Introduction to analytic number theory. Springer, 1976.
M. Aigner, G. M. Ziegler, K. H. Hofmann, and P. Erdos. Proofs from
the Book, volume 274. Springer, 2010.

C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao. An LP theory of sparse
graph convergence I: limits, sparse random graph models, and power
law distributions. Available at https://arxiv.org/pdf/1401.2906v4.
pdf, 2014.

K. Ball, E. A. Carlen, and E. H. Lieb. Sharp uniform convexity and
smoothness inequalities for trace norms. Inventiones mathematicae,
115(1):463-482.

C. Borgs, J. T. Chayes, L. Lovasz, V. T. Sos, and K. Vesztergombi.
Convergent sequences of dense graphs i: Subgraph frequencies, metric
properties and testing. Advances in Mathematics, 219(6):1801-1851,
2008.

P. Billingsley. Probability and measure. John Wiley & Sons, 2008.

S. Brazitikos and T. Karageorgos. An algorithmic regularity lemma
for L, regular sparse matrices. Siam Journal on Discrete Mathematics,
31(4):2301-2313, 2017.

B. Bollobas and V. Nikiforov. An abstract Szemerédi regularity lemma.
In Building bridges, pages 219-240. Springer, 2008.

B. Bollobas and O. Riordan. Metrics for sparse graphs. London Math.
Soc. Lecture Note Ser, pages 211-287, 2009.

D. L. Burkholder. A nonlinear partial differential equation and the un-
conditional constant of the haar system in LP. Bulletin of the American
Mathematical Society, 7(3):591-595, 1982.

134


https://arxiv.org/pdf/1401.2906v4.pdf
https://arxiv.org/pdf/1401.2906v4.pdf

Bibliography 135

[Can] P. Candela. Uniformity norms and nilsequences (an introduction).
Available at http://www.renyi.hu/~candelap/unn-notes.pdf.

[CFZ13] D. Conlon, J. Fox, and Y. Zhao. Linear forms from the gowers uniformity
norm. Available at http://arxiv.org/pdf/1305.5565.pdf, 2013.

[CFZ14] D. Conlon, J. Fox, and Y. Zhao. The Green—Tao theorem: an exposition.
EMS Surveys in Mathematical Sciences 1, 1:249-282, 2014.

[CFZ15] D. Conlon, J. Fox, and Y. Zhao. A relative Szemerédi theorem. Geo-
metric and Functional Analysis, 25(3):733-762, 2015.

[CM12] B. Cook and A. Magyar. Constellations in P?. International Mathe-
matics Research Notices, 2012(12):2794-2816, 2012.

[COCF10] A. Coja-Oghlan, C. Cooper, and A. Frieze. An efficient sparse regular-

ity concept. SIAM Journal on Discrete Mathematics, 23(4):2000-2034,
2010.

[Dav00] H. Davenport. Multiplicative number theory. Springer, 2000.

[DK16] P. Dodos and V. Kanellopoulos. Ramsey Theory for Product Spaces.
Mathematical Surveys and Monographs, American Mathematical Soci-
ety, 2016.

[DKK15] P. Dodos, V. Kanellopoulos, and T. Karageorgos. L, regular sparse
hypergrahps:box norms. preprint, Available at https://arxiv.org/
pdf/1510.07140v2. pdf, 2015.

[DKK16] P. Dodos, V. Kanellopoulos, and T. Karageorgos. Szemerédi’s regularity
lemma via martingales. The Electronic Journal of Combinatorics, 23(3),
2016.

[DKK18] P. Dodos, V Kanellopoulos, and T Karageorgos. L, regular sparse hy-
pergrahps. Fundamenta Mathematicae, (240):265-299, 2018.

[DKT13] P. Dodos, V. Kanellopoulos, and K. Tyros. A simple proof of the density
Hales—Jewett theorem. International Mathematics Research Notices,
2014(12):3340-3352, 2013.

[DKT14] P. Dodos, V. Kanellopoulos, and K. Tyros. A density version of the
Carlson-Simpson theorem. Journal of the European Mathematical Soci-
ety, 2014.

[DKT16] P. Dodos, V. Kanellopoulos, and K. Tyros. A concentration inequality
for product spaces. Journal of Functional Analysis, 270(2):609-620,
2016.

[Durl0] R. Durrett. Probability: theory and examples. Cambridge university
press, 2010.

[FK99] A. Frieze and R. Kannan. Quick approximation to matrices and appli-
cations. Combinatorica, 19(2):175-220, 1999.


http://www.renyi.hu/~candelap/unn-notes.pdf
http://arxiv.org/pdf/1305.5565.pdf
https://arxiv.org/pdf/1510.07140v2.pdf
https://arxiv.org/pdf/1510.07140v2.pdf

136 Bibliography

[FZ15] J. Fox and Y. Zhao. A short proof of the multidimensional Szemerédi
theorem in the primes. American Journal of Mathematics, 137(4):1139—
1145, 2015.
[Gar07] D. J. H. Garling. Inequalities: A journey into linear analysis. Cambridge
University Press, 2007.
[Gow01] W. T. Gowers. A new proof of Szemerédi’s theorem. Geometric and
Functional Analysis, 11(3):465-588, 2001.
[Gow06] W. T. Gowers. Quasirandomness, counting and regularity for 3-uniform
hypergraphs. Combinatorics, Probability and Computing, 15(1-2):143—
184, 2006.
[Gow07] W. T. Gowers. Hypergraph regularity and the multidimensional Sze-
merédi theorem. Annals of Mathematics, 166(3):897-946, 2007.
[Gow10] W. T. Gowers. Decompositions, approximate structure, transference,
and the Hahn—Banach theorem. Bulletin of the London Mathematical
Society, 42(4):573-606, 2010.
[Gre05] B. Green. Roth’s theorem in the primes. Annals of mathematics,
161(3):1609-1636, 2005.
[GTO08] B. Green and T. Tao. The primes contain arbitrarily long arithmetic
progressions. Annals of Mathematics, 167(2):481-547, 2008.
[GT10] B. Green and T. Tao. Linear equations in primes. Annals of Mathemat-
ics, 171(3):1753-1850, 2010.
[GT12] B. Green and T. Tao. The Mobius function is strongly orthogonal to
nilsequences. Annals of Mathematics, 175(2):541-566, 2012.
[GTZ12] B. Green, T. Tao, and T. Ziegler. An inverse theorem for the Gowers
USTY[N]-norm. Annals of Mathematics, 176(2):1231-1372, 2012.
[GY] D. A. Goldston and C. Y. Yildirim. Small gaps between primes, I.
Available at https://front.math.ucdavis.edu/.
[GY03] D. A. Goldston and C. Y. Yildirim. Higher correlations of divisor sums
related to primes,I: Triple correlations. Integers, 3(A5):66, 2003.
[GY07] D. A. Goldston and C. Y. Yildirim. Higher correlations of divisor sums
related to primes III: Small gaps between primes. Proceedings of the
London Mathematical Society, 95(3):653-686, 2007.
[Has01] J. Hastad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798-859, 2001.
[Hat09] H. Hatami. On generalizations of Gowers norms. PhD thesis, University
of Toronto, 2009.
[IK04] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53. Amer-
ican Mathematical Society Providence, RI, 2004.


https://front.math.ucdavis.edu/

Bibliography 137

[KKMOO7] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapprox-
imability results for MAX-CUT and other 2-variable CSP’s. SIAM Jour-
nal on Computing, 37(1):319-357, 2007.

[Koh97] Y. Kohayakawa. Szemerédi’ s regularity lemma for sparse graphs. In
Foundations of computational mathematics, pages 216-230. Springer,
1997.

[KRO03] Y. Kohayakawa and V. Rédl. Szemerédi’ s regularity lemma and quasi-
randomness. In Recent advances in algorithms and combinatorics, pages
289-351. Springer, 2003.

[LO94] R. Latala and K. Oleszkiewicz. On the best constant in the Khintchine—
Kahane inequality. Studia Mathematica, 109(1):101-104, 1994.

[Lov12] L. Lovasz. Large networks and graph limits, volume 60. American
Mathematical Soc., 2012.

[LS07] L. Lovész and B. Szegedy. Szemerédi’ s lemma for the analyst. GAFA
Geometric And Functional Analysis, 17(1):252-270, 2007.

[Nao04] A. Naor. Proof of the uniform convexity lemma. Available at
https://web.math.princeton.edu/~naor/homepage’20files/
inequality.pdf, 2004.

[NRS06] B. Nagle, V. Rodl, and M. Schacht. The counting lemma for regular k-
uniform hypergraphs. Random Structures € Algorithms, 28(2):113-179,
2006.

[Pis12] G. Pisier. Grothendieck’s theorem, past and present. Bulletin of the
American Mathematical Society, 49:237-323, 2012.

[Pis16] G. Pisier. Martingales in Banach spaces, volume 155. Cambridge Uni-
versity Press, 2016.

[Pol12] DHJ Polymath. A new proof of the density Hales-Jewett theorem. An-
nals of Mathematics, 175:1283-1327, 2012.

[Ros84] H. E. Rose. Subrecursion: functions and hierarchies. Clarendon Press,
1984.

[RS78] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying
three triangles. volume 18, pages 939-945. 1978.

[RS04] V. R6dl and J. Skokan. Regularity lemma for k-uniform hypergraphs.
Random Structures & Algorithms, 25(1):1-42, 2004.

[RTST06] V. Rédl, E Tengan, M Schacht, and N Tokushige. Density theorems
and extremal hypergraph problems. Israel Journal of Mathematics,
152(1):371-380, 2006.

[RTTVO08] O. Reingold, L. Trevisan, M. Tulsiani, and S. Vadhan. Dense sub-
sets of pseudorandom sets. In Foundations of Computer Science, 2008.


https://web.math.princeton.edu/~naor/homepage%20files/inequality.pdf
https://web.math.princeton.edu/~naor/homepage%20files/inequality.pdf

138 Bibliography

FOCS’08. IEEFE }9th Annual IEEE Symposium on, pages 76-85. IEEE,
2008.

[RX16] E. Ricard and Q. Xu. A noncommutative martingale convexity inequal-
ity. Annals of Probability, 44:867-882, 2016.

[Shal6] X. Shao. Narrow arithmetic progressions in the primes. IMRN,
2017(2):391-428, 2016.

[She88] S. Shelah. Primitive recursive bounds for van der waerden numbers.
Journal of the American Mathematical Society, 1(3):683-697, 1988.

[Sol04] J. Solymosi. A note on a question of erdos and graham. Combinatorics,
Probability and Computing, 13(2):263-267, 2004.

[SS03] E. M. Stein and R. Shakarchi. Fourier analysis: an introduction. Prince-
ton Press, 2003.

[ST15] D. Saxton and A. Thomason. Hypergraph containers. Inventiones math-
ematicae, 201(3):925-992, 2015.

[SzeT5] E. Szemerédi. On sets of integers containing no k elements in arithmetic
progression. Acta Arith, 27(2):199-245, 1975.

[SzeT8] E. Szemerédi. Regular partitions of graphs. Collogue Internationaux du
CNRS, 260:399-401, 1978.

[Tao06a] T. Tao. The gaussian primes contain arbitrarily shaped constellations.
Journal dAnalyse Mathématique, 99(1):109-176, 2006.

[Tao06b] T. Tao. Szemerédi’s regularity lemma revisited. Contrib. Discrete Math,
1:8-28, 2006.

[Tao06¢] T. Tao. A variant of the hypergraph removal lemma. Journal of com-
binatorial theory, Series A, 113(7):1257-1280, 2006.

[Taoll] T. Tao. An Epsilon of Room, II: Pages from Year Three of a Mathe-
matical Blog. American Mathematical Society, 2011.

[TSSWO00] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets,
approximation, and linear programming. SIAM Journal on Computing,
29(6):2074-2097, 2000.

[TV06] T. Tao and V. H. Vu. Additive combinatorics, volume 105. Cambridge
University Press, 2006.

[TZ08] T. Tao and T. Ziegler. The primes contain arbitrarily long polynomial
progressions. Acta Mathematica, 201(2):213-305, 2008.

[TZ15a] T. Tao and T. Ziegler. A multi-dimensional Szemerédi theorem for the
primes via a correspondence principle. Israel Journal of Mathematics,
207(1):203-228, 2015.

[TZ15b] T. Tao and T. Ziegler. Narrow progressions in the primes. In Analytic
Number Theory, pages 357-379. Springer, 2015.



